WorldWideScience

Sample records for chernobyl reactor accident

  1. The Chernobyl reactor accident

    The documentation abstracted contains a complete survey of the broadcasts transmitted by the Russian wire service of the Deutsche Welle radio station between April 28 and Mai 15, 1986 on the occasion of the Chernobyl reactor accident. Access is given to extracts of the remarkable eastern and western echoes on the broadcasts of the Deutsche Welle. (HP)

  2. Chernobyl reactor accident

    On April 26, 1986, an explosion occurred at the newest of four operating nuclear reactors at the Chernobyl site in the USSR. The accident initiated an international technical exchange of almost unprecedented magnitude; this exchange was climaxed with a meeting at the International Atomic Energy Agency in Vienna during the week of August 25, 1986. The meeting was attended by more than 540 official representatives from 51 countries and 20 international organizations. Information gleaned from that technical exchange is presented in this report. A description of the Chernobyl reactor, which differs significantly from commercial US reactors, is presented, the accident scenario advanced by the Russian delegation is discussed, and observations that have been made concerning fission product release are described

  3. Chernobyl reactor accident

    Following the accident at Chernobyl nuclear reactor, WHO organized on 6 May 1986 in Copenhagen a one day consultation of experts with knowledge in the fields of meteorology, radiation protection, biological effects, reactor technology, emergency procedures, public health and psychology in order to analyse the development of events and their consequences and to provide guidance as to the needs for immediate public health action. The present report provides detailed information on the transportation and dispersion of the radioactive material in the atmosphere, especially volatile elements, during the release period 26 April - 5 May. Presented are the calculated directions and locations of the radioactive plume over Europe in the first 5 days after the accident, submitted by the Swedish Meteorological and Hydrological Institute. The calculations have been made for two heights, 1500m and 750m and the plume directions are grouped into five periods, covering five European areas. The consequences of the accident inside the USSR and the radiological consequences outside the USSR are presented including the exposure routes and the biological effects, paying particular attention to iodine-131 effects. Summarized are the first reported measured exposure rates above background, iodine-131 deposition and concentrations in milk and the remedial actions taken in various European countries. Concerning the cesium-137 problem, based on the UNSCEAR assessment of the consequences of the nuclear fallout, one concludes that the cesium contamination outside the USSR is not likely to cause any serious problems. Finally, the conclusions and the recommendations of the meeting, taking into account both the short-term and longer term considerations are presented

  4. The reactor accident of Chernobyl

    The contamination, caused by the radioactivity released during the reactor accident of Chernobyl was measured in samples taken in the environment of the Karlsruhe Nuclear Research Center. The radioactivity was determined in air, fodder, milk, vegetables, other plants, foodstuffs, soil, precipitations, drinking water, sludge and other samples. Results of measurements are reported which were received with considerably more than 1000 samples. The evaluation of the data will be presented in KfK 4140. (orig.)

  5. Reactor accident in Chernobyl

    The bibliography contains 1568 descriptions of papers devoted to Chernobylsk accident and recorded in ''INIS Atomindex'' to 30 June 1990. The descriptions were taken from ''INIS Atomindex'' and are presented in accordance with volumes of this journal (chronology of recording). Therefore all descriptions have numbers showing first the number of volume and then the number of record. The bibliography has at the end the detailed subject index consisting of 465 main headings and a lot of qualifiers. Some of them are descriptors taken from ''INIS Atomindex'' and some are key words taken from natural language. The index is in English as descriptions in the bibliography. (author)

  6. Chernobyl reactor accident: medical management

    Chernobyl reactor accident on 26th April, 1986 is by far the worst radiation accident in the history of the nuclear industry. Nearly 500 plant personnel and rescue workers received doses varying from 1-16 Gy. Acute radiation syndrome (ARS) was seen only in the plant personnel. 499 individuals were screened for ARS symptoms like nausea, vomitting, diarrhoea and fever. Complete blood examination was done which showed initial granulocytosis followed by granulocytopenia and lymphocytopenia. Cytogenetic examinations were confirmatory in classifying the patients on the basis of the doses received. Two hundred and thirty seven cases of ARS were hospitalised in the first 24-36 hrs. No member of general public suffered from ARS. There were two immediate deaths and subsequently 28 died in hospital and one of the cases died due to myocardial infarction, making a total of 31 deaths. The majority of fatal cases had whole body doses of about 6 Gy, besides extensive skin burns. Two cases of radiation burns had thermal burns also. Treatment of ARS consisted of isolation, barrier nursing, replacement therapy with fluid electrolytes, platelets and RBC transfusions and antibiotic therapy for bacterial, fungal and viral infections. Bone marrow transplantations were given to 13 cases out of which 11 died due to various causes. Radiation burns due to beta, gamma radiations were seen in 56 cases and treated with dressings, surgical excision, skin grafting and amputation. Oropharangeal syndrome, producing extensive mucous in the oropharynx, was first seen in Chernobyl. The patients were treated with saline wash of the mouth. The patients who had radioactive contamination due to radioactive iodine were given stable iodine, following wash with soap, water and monitored. Fourteen survivors died subsequently due to other causes. Late health effects seen so far include excess of thyroid cancer in the children and psychological disorders due to stress. No excess leukemia has been reported so

  7. Radiological consequences of the Chernobyl reactor accident

    The reactor accident at unit 4 of the Chernobyl nuclear power plant in Ukraine has deeply affected the living conditions of millions of people. Especially the health consequences have been of public concern up to the present and also been the subject of sometimes absurd claims. The current knowledge on the radiological consequences of the accident is reviewed. Though an increased hazard for some risk groups with high radiation exposure, e.g., liquidators, still cannot be totally excluded for the future, the majority of the population shows no statistically significant indication of radiation-induced illnesses. The contribution of the Research Center Juelich to the assessment of the post-accidental situation and psychological relief of the population is reported. The population groups still requiring special attention include, in particular, children growing up in highly contaminated regions and the liquidators of the years 1986 and 1987 deployed immediately after the accident. (author)

  8. Radiological consequences of the Chernobyl reactor accident

    Fifty years of peaceful utilization of nuclear power were interrupted by the reactor accident in unit 4 of the Chernobyl nuclear power station in Ukraine in 1986, a disruptive event whose consequences profoundly affected the way of life of millions of people, and which has moved the public to this day. Releases of radioactive materials contaminated large areas of Belarus, the Russian Federation, and Ukraine. Early damage in the form of radiation syndrome was suffered by a group of rescue workers and members of the reactor operating crew, in some cases with fatal consequences, while the population does not, until now, show a statistically significant increase in the rate of late damage due to ionizing radiation expect for thyroid diseases in children. In particular, no increases in the rates of solid tumors, leukaemia, genetic defects, and congenital defects were detected. For some risk groups exposed to high radiation doses (such as liquidators) the hazard may still be greater, but the large majority of the population need not live in fear of serious impacts on health. Nevertheless, the accident shows major negative social and psychological consequences reinforced by the breakdown of the Soviet Union. This may be one reason for the observed higher incidence of other diseases whose association with the effects of radiation as a cause has not so far been proven. The measurement campaign conducted by the federal government in 1991-1993 addressed these very concerns of the public in an effort to provide unbiased information about exposures detected, on the one hand, in order to alleviate the fears of the public and reduce stress and, on the other hand, to contribute to the scientific evaluation of the radiological situation in the regions most highly exposed. The groups of the population requiring special attention in the future include especially children growing up in highly contaminated regions, and the liquidators of 1986 and 1987 employed in the period immediately

  9. Radiation exposure: Cytogenetic tests. Chernobyl reactor accident

    Forty test subjects who, either during or after the reactor accident of Chernobyl (26th April 1986), stayed at a building site at Shlobin 150 km away, were examined for spontaneously occurring as well as mitomycin C-induced Sister Chromatid Exchanges (SCE). The building site staff, who underwent a whole-body radionuclide count upon their return to Austria (June through September 1986), were used for the cytogenetic tests. The demonstration of the SCE was made from whole-blood cultures by the fluorescence/Giemse technique. At last 20 Metaphases of the 2nd mitotic cycle were evaluated per person. The radiation doses of the test subjects were calculated by adding the external exposure determined on the building site, the estimated thyroid dose through I-131, and the measured incorporation of Cs-134 and Cs-137. The subjects were divided into two groups for statistical analysis: One was a more exposed group (proven stay at Shlobin between 26th April and 31st May 1986, mostly working in the open air) and the other a less exposed group for comparison (staying at Shlobin from 1st Juni 1986 and working mainly indoors). (orig.)

  10. After the Chernobyl reactor accident: Just got away?

    The feeling of depression and insecurity experienced immediately after the Chernobyl reactor accident has gone by, and people go out for a walk again, and drink their milk. Are we happily aware we got away with it this time, or is it rather a feeling of resignation that makes us return to normal life? The Chernobyl disaster will only after some time be really assessed in its novel, global dimension. (orig.)

  11. Global impact of the Chernobyl reactor accident

    Radioactive material was deposited throughout the Northern Hemisphere as a result of the accident at the Chernobyl Nuclear Power Station on 26 April 1986. On the basis of a large amount of environmental data and new integrated dose assessment and risk models, the collective dose commitment to the approximately 3 billion inhabitants is calculated to be 930,000 person-gray, with 97% in the western Soviet Union and Europe. The best estimates for the lifetime expectation of fatal radiogenic cancer would increase the risk from 0 to 0.02% in Europe and 0 to 0.003% in the Northern Hemisphere. By means of an integration of the environmental data, it is estimated that approximately 100 petabecquerels of cesium-137 (1 PBq = 10(15) Bq) were released during and subsequent to the accident

  12. The consequences of the Chernobyl reactor accident

    After the decay of the iodine isotopes the measuring campaigns, in addition to the measuring of soil pollution and pollution of products, concentrated on the way of the cesium isotopes through the food chain, especially in crops, milk, meat and mother's milk. A special programme was developed for the analysis of foreign basic substances for teas, essences and tinctures. In connection with the incorporation measurements in the university hospital Eppendorf the measurement campaigns provided the data material in order to calculate with the aid of the computer program ECOSYS of the GSF the effective dose equivalent which the inhabitants of Hamburg additionally take up due to the accident of Chernobyl. Consequences with regard to measuring methods and social consequences are mentioned. (DG)

  13. Accidents - Chernobyl accident

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  14. Lessons for Germany from the Chernobyl reactor accident

    Since the Chernobyl reactor accident, conclusions for Germany are being translated into action. They comprise the creation of the legal and administrative preconditions for a uniform assessment of exposure situations and concerted recommendations to exposed persons within the framework of precautionary radiation protection and nuclear disaster relief. Measuring to determine the levels of event-related and dose-relevant nuclides in environmental media is being extended. A communication infra-structure for real-time information of the population is to be established and international agreements on mutual information in the case of nuclear accidents are to be concluded. (DG)

  15. The Chernobyl reactor accident - provisional results and consequences

    Those involved at present in the analysis and estimation of consequences of the Chernobyl reactor accident are in a dilemma: While a worried and uncertain Western German public is calling for information the Soviet Union was practicing a rigorously restrictive information policy. Both the severity of the reactor accident and the complexity of events do urgently require the acquisition and evaluation of facts which will provide the basis for an objective factual discussion of issues and possible measures. The paper abstracted is trying to assess the alleged causes of the accident and estimate possible consequences. However, all attempts of that kind are based but on incomplete and dubious information as of May 21st, 1986. (orig.)

  16. Analysis of the Chernobyl reactor accident. Pt. 2

    Of the six items of improvement measures including a future improvement measure announced by the USSR regarding the accident of Chernobyl nuclear power plant No. 4 reactor, the three items having exercised large influence over the plant behavior at the accident were analyzed by WIMS-ATR, EUREKA-2 and other calculational codes, and technically evaluated. As a result the following have been made clear: (1) If 80 manual control rods are inserted 1.2 m deep from the core upper end, any accident can be prevented by further inserting them at a 0.4 m/s speed, even under such power increase conditions as in this accident. (2) If the additional 80 manual control rods are inserted into the reactor, the coolant void reactivity coefficient can be improved from 2x10-4 Δk/k/% void to 1.4x10-4 Δk/k/% void. Further if the coefficient is less than 1.5x10-4 Δk/k/% void, the power increase speed will slow down much more and similar accidents can fully be prevented by means of the currently designed control rods of the shut-down system. (orig.)

  17. The Chernobyl reactor accident and how it changed the world

    After expressing his sympathy for the Chernobyl victims the author points out that in particular the Germans are tending to show emotions of a preponderantly negative character, that is emotions hampering a logical way of thinking and nourishing ideologies. He adds that the majority of the Western German population has not succeeded in seizing the real implications of radioactivity. Their ignorance results in a growing disbelief in the competent experts. Politicians therefore cannot but act as go-betweens between expert knowledge and the population. The reactor accident has made nuclear power a central topical subject of discussion in the election campaign. The author expresses his view on the need of giving a new direction to the safety debate by elucidating and illustrating the economic and ecological advantages as well as the safety of nuclear energy. (HSCH)

  18. Dose estimates in Japan following the Chernobyl reactor accident

    Estimates have been made of the maximum individual doses and the collective doses in Japan following the Chernobyl reactor accident. Based on the measured data of ground deposition and radionuclide concentrations in air, raw milk, milk on sale and leafy vegetables, the doses from some significant radionuclides were calculated for 5 typical exposure pathways; cloudshine, groundshine, inhalation, ingestion of milk and leafy vegetables. The maximum effective dose equivalents for hypothetical individuals were calculated to be 1.8 mrem for adults, 3.7 mrem for children and 6.0 mrem for infants. The collective effective dose equivalent in Japan was estimated to be 5.8 x 104 man · rem; 0.50 mrem of the average dose per capita. (author)

  19. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  20. The Chernobyl reactor accident source term: development of a consensus view

    Ten years after the reactor accident at Chernobyl, a great deal more data is available concerning the events, phenomena, and processes that took place. The purpose of this document is to examine what is known about the radioactive materials released during the accident, a task that is substantially more difficult than it might first appear to be. The Chernobyl station, like other nuclear power plants, was not instrumented to characterize a disastrous accident. The accident was peculiar in the sense that radioactive materials were released, at least initially, in an exceptionally energetic plume and were transported far from the reactor site. Release of radioactivity from the plant continued for several days. Characterization of the contamination caused by the releases of radioactivity has had a much lower priority than remediation of the contamination. Consequently, an assessment of the Chernobyl accident source term must rely to a significant extent on inferential evidence. The assessment presented here begins with an examination of the core inventories of radioactive materials. In subsequent sections of the report, the magnitude and timing of the releases of radioactivity are described. Then, the composition, chemical forms, and physical forms of the releases are discussed. A number of more recent publications and results from scientists in Russia and elsewhere have significantly improved the understanding of the Chernobyl source term. Because of the special features of the reactor design and the peculiarities of the Chernobyl accident, the source term for the Chernobyl accident is of limited applicability to the safety analysis of other types of reactors

  1. The Chernobyl reactor accident source term: Development of a consensus view

    In August 1986, scientists from the former Soviet Union provided the nuclear safety community with an impressively detailed account of what was then known about the Chernobyl accident. This included assessments of the magnitudes, rates, and compositions of radionuclide releases during the ten days following initiation of the accident. A summary report based on the Soviet report, the oral presentations, and the discussions with scientists from various countries was issued by the International Atomic Energy Agency shortly thereafter. Ten years have elapsed since the reactor accident at Chernobyl. A great deal more data is now available concerning the events, phenomena, and processes that took place. The purpose of this document is to examine what is known about the radioactive materials released during the accident. The accident was peculiar in the sense that radioactive materials were released, at least initially, in an exceptionally energetic plume and were transported far from the reactor site. Release of radioactivity from the plant continued for about ten days. A number of more recent publications and results from scientists in Russia and elsewhere have significantly improved our understanding of the Chernobyl source term. Because of the special features of the reactor design and the pecularities of the Chernobyl accident, the source term for the Chernobyl accident is of limited applicability of the safety analysis of other types of reactors

  2. The Chernobyl-4 Reactor and the possible causes of the accident

    A description and information about the Chernobyl nuclear reactor is given. Some comparison elements between the RBMK reactor type and GCR, CANDU, SGHWR and Hanford N reactor types are presented. A scenario of the possible causes of the accident is discussed. (A.F.)

  3. The Chernobyl accident

    In connection with the Chernobyl accident the report gives a description of the technical features of importance to the accident, the course of events, and the estimated health hazards in the local environment. Dissimilarities in western and Sovjet reactor safety philosophy are dealt with, as well as conceivable concequences in relation to technology and research in western nuclear power programmes. Results of activity level measurements of air and foodstuff, made in Norway by Institute for Energy Technology, are given

  4. Measured transfer factors in milk and meat after the Chernobyl reactor accident

    After the nuclear reactor accident at Chernobyl the radioactivity in the environment in Aachen was measured in detail at the Lehrgebiet Strahlenschutz in der Kerntechnik. The change of the different radionuclides in the eco-system made it possible to obtain radioecological parameters especially for iodine and caesium. The knowledge about the transport of iodine into cow's milk could be very much improved

  5. The accident at Chernobyl and its implications for the safety of CANDU reactors

    In August 1986, a delegation of Canadians, including two members of the staff of the AECB (Atomic Energy Control Board), attended a post-accident review meeting in Vienna, at which Soviet representatives described the accident and its causes and consequences. On the basis of the information presented at that meeting, AECB staff conducted a study of the accident to ascertain its implications for the safety of CANDU nuclear reactors and for the regulatory process in Canada. The conclusion of this review is that the accident at Chernobyl has not revealed any important new information which would have an effect on the safety requirements for CANDU reactors as presently applied by the AECB. All important aspects of the accident and its causes have been considered by the AECB in the licensing process for currently licensed reactors. However a number of recommendations are made with respect to aspects of reactor safety which should be re-examined in order to reinforce this conclusion

  6. Analysis of radioactive contaminations and radiological hazard in Poland after the Chernobyl reactor accident

    It is a report on radiological impact in Poland following the Chernobyl reactor accident prepared in the Central Laboratory for Radiological Protection. The results of measurement and its analysis are presented. Isotopic composition of the contamined air and the concentration of radionuclides are determined. The trajectories of the airborne radioactive material movement from Chernobyl to Poland at the last days of April 1986 are presented. Assessment of the radiological risk of the population is done. 38 refs., 20 figs., 11 tabs. (M.F.W.)

  7. The accident of Chernobyl

    RBMK reactors (reactor control, protection systems, containment) and the nuclear power plant of Chernobyl are first presented. The scenario of the accident is given with a detailed chronology. The actions and consequences on the site are reviewed. This report then give the results of the source term estimation (fision product release, core inventory, trajectories, meteorological data...), the radioactivity measurements obtained in France. Health consequences for the French population are evoked. The medical consequences for the population who have received a high level of doses are reviewed

  8. Chernobyl accident

    The examination of the radioelements in macromicetae taken in the area of Como's Groane and in other areas near Lakes of Como and Maggiore and a few samples in Pine' di Trento are reported. A number of samples has been collected and analyzed at Joint Research Center, Ispra. A sampling of many pieces has been picked up by the Circolo Micologico Plinio il Vecchio and by the Unita' Sanitarie of Como and Varese. The various samples are subdivided for specie and the denomination for each one of them is given. The foundamental sampling is dated atumn 1986, a second sampling is made in autumn 1987. Gamma spectrometry has revealed the presence of many radiosotopes due to the Chernobyl fall-out. as Cs137, Cs134 and Ag110 (metastable); levels of Potassium 40, a natural radioactive element have been also measured. A discussion of results is presented and the comparison among data of the 1986 season and the 1987 one

  9. The Chernobyl reactor accident and the aquatic environment of the UK: a fisheries viewpoint

    The monitoring programme undertaken by the Directorate throughout the UK following the Chernobyl reactor accident is described. The results of sampling and analysis of fish, shellfish, seaweed and other materials are discussed. Chernobyl fallout was readily detected in all sectors of the aquatic environment, particularly during May when the highest concentrations were observed. An assessment of the radiological impact of the fallout shows that freshwater fish were the most important source of individual (critical group) exposure though, based on cautious assumptions, the effective dose equivalent is around 1 mSv in a year. The collective effective dose equivalent commitment from Chernobyl due to aquatic ingestion pathways, predominantly marine fish, is estimated to be 30 man Sv. (author)

  10. Uptake in the human body resulting from the Chernobyl reactor accident

    During the reactor accident at Chernobyl, radioactive material was released to the atmosphere and was carried with the winds to many parts of Europe. Specifically some quantities of I-131, Cs-134 and Cs-137 in air have reached the European countries and exposed the population to internal radiation via inhalation. As a result of the fallout, these radionuclides were also taken by people via the food chain, this soon became the most significant exposure pathway. To determine the level of internal contamination, people were monitored for I-131, Cs-134 and Cs-137. Personal monitoring was performed on citizens (or visitors) of the European countries outside the Soviet Union or those who happened to visit the Soviet Union during or immediately after the Chernobyl accident. This paper gives a summary of the personal monitoring reported mainly by Canada, Finland, France, Switzerland and the United Kingdom. The paper also gives a summary of the techniques used today to assess internal contamination and in particular, it elaborates on the two methods which were used to measure uptake in the human body resulting from the Chernobyl accident. For these two methods (whole body or thyroid direct count and activity in urine) the paper summarizes the main physical, metabolic and radiological parameters for I-131, Cs-134 and Cs-137. These parameters help to put the two methods of personal monitoring into perspective and to convert the reported data on personal monitoring into internal radiation doses

  11. The Chernobyl accident

    The accident at Unit 4 of the Chernobyl nuclear power plant was the most severe in the nuclear industry. The accident caused the rapid death of 31 power plant employees and firemen, mainly from acute radiation exposures and burns, and brought about the evacuation of 116,000 people within a few weeks. In addition, about half a million workers and four million members of the public have been exposed, to some extent, to radiation doses resulting from the Chernobyl accident. A large number of radiation measurements have been made since the accident in order to reconstruct the doses received by the most exposed populations. On the basis of currently available information, it appears that: (1) average doses received by clean-up workers from external irradiation decreased with time, being about 300 mGy for the persons who worked in the first three months after the accident, about 170 mGy for the remainder of 1986, 130 mGy in 1987, 30 mGy in 1988, and 15 mGy in 1989; (2) the evacuees received, before evacuation, effective doses averaging 11 mSv for the population of Pripyat, and 18 mSv for the remainder of the population of the 30 km zone, with maximum effective doses ranging up to 380 mSv; and (3) among the populations living in contaminated areas, the highest doses were those delivered to the thyroids of children. Thyroid doses derived from thyroid measurements among Belarussian and Ukrainian children indicate median thyroid doses of about 300 mGy, and more than 1% of the children with thyroid doses in excess of 5000 mGy. A description is provided of the epidemiological studies that the National Cancer Institute has, since 1990, at the request of the Department of Energy, endeavoured to undertake, in cooperation with Belarus and Ukraine, on two possible health effects resulting from the Chernobyl accident: (1, thyroid cancer in children living in contaminated areas during the first few weeks following the accident, and (2) leukaemia among workers involved in clean

  12. MESORAD dose assessment of the Chernobyl reactor accident

    An accident involving Unit 4 of the Chernobylskaya Atomic Energy Station resulted in the release of a large amount of radioactive material to the atmosphere. This report describes the results of an assessment of the doses near the site (within 80 km) made at the Pacific Northwest Laboratory using the MESORAD Dose Assessment model. 6 refs., 10 figs., 5 tabs

  13. The general public's attitude towards nuclear power after the reactor accident at Chernobyl

    The results of three public opinion polls made within two years after the Chernobyl reactor accident revealed a deep feeling of insecurity in the population which did not disappear or diminish in the time from the first to the third survey, but instead was stirred up again by the affairs in the nuclear industry. Other than former accidents in a nuclear facility, as the one at Harrisburg for example, the Chernobyl reactor accident - from the subjective point of view of many citizens - had effects of a dimension exceeding the political level, and reaching into the normal sphere of life of anybody. Torn between two contravening feelings, namely the wish to get rid of the nuclear energy risk as soon as possible, and the fear that this might mean farewell also to the amenities of a life as a free consumer, the population gave into the strategy of suppression, so that there is verbal protest against the hazards of nuclear energy, but no will to really give up the advantages of a comfortable life created by modern technologies. (orig./HP)

  14. Consequences of the Chernobyl reactor accident with respect to the feeding of infants

    In view of the persisting and understandable fear of parents with regard to radioactivity in the food of their babies as a consequence of the Chernobyl reactor accident, the Commission on Nutrition of the Deutsche Gesellschaft fuer Kinderheilkunde (German Society of Pediatrics) and the Strahlenschutzkommission have published a statement. According to this statement, the maximum permissible level of radioactivity in commercial baby food has been fixed by the EC to be 370 Bq/kg. The dietetic food industry itself has fixed a maximum for its products which is only a tenth of the radioactivity level permitted by the EC directive. The milk powders for infants tested since the reactor accident contained no measurable radioactivity or only very low amounts of Cs 134 or Cs 137, correspondung to a maximum of 25 Bq/kg in the product. Late damage to health is not to be expected. (orig./ECB)

  15. Radioactive contamination in the Netherlands caused by the nuclear reactor accident at Chernobyl

    In this report of the Dutch Coordination Commission for Measurements of Radioactivity and Xenobiotic matters (CCRX) a detailed survey is presented of the spread of radioactive material over Europe as a consequence of the reactor accident in Chernobyl and of measurements of the contamination of the physical environment, food and human people in the Netherlands. The radiation burden for the Dutch people and the effects upon public health are estimated and a measuring program is introduced for monitoring the effects of the reactor accident upon the Dutch people. Finally a number of requirements are discussed on the base of the acquired experiments, to which future watching programs should satisfy. 24 refs.; 32 figs.; 16 tabs

  16. Scientific recommendations for the reconstruction of radiation doses due to the reactor accident at Chernobyl

    In the years after the Chernobyl reactor accident, many studies of the radiation exposure levels and resulting health effects in the countries of the CIS have been conducted. The increasing incidence of childhood thyroid cancers in Belarus and Ukraine has stimulated worldwide multi- and bilateral cooperations with those countries and Russia in order to optimize benefits for those directly affected, but also to enlarge current knowledge of the consequences of reactor accidents. An international workshop on dose reconstruction was held in Bad Honnef, June 6 to 9, 1994, to address the problems which arise in dose reconstruction. The main objectives of this workshop were to bring together the best professional expertise and scientific knowledge and to achieve a better, multi-disciplinary harmonisation of the different scientific approaches. After intensive discussions the participants of this workshop formulated the following scientific recommendations for radiation dose reconstruction. (orig.)

  17. Consequences of the Chernobyl accident

    A collection of three papers about the fallout in Austria from the 1986 Chernobyl reactor accident is given: 1. An overview of the research projects in Austria; 2. On the transfer into and uptake by crops and animal fodder; 3. On the reduction of cesium concentration in food. 18 tabs., 21 figs., 69 refs

  18. Report of the Land Berlin: The Chernobyl reactor accident and its effects on Berlin

    This report presents in detail the activities of the Berlin Senate administrations for the protection of the population after the reactor accident and outlines the consequences that have already resulted or are still to be expected for the people and the environment in Berlin. The radiation control guidelines and the provided instruments enabled the Berlin Senate to encounter the sudden accident with a fast and unbureaucratic crisis management. The special geopolitical situation of Berlin made it possible to set up a comprehensive control and measuring program for imported food. This report shows that all the measures required in connection with Chernobyl were taken by the Berlin Senate and that there is an effective precautionary program. (orig./HSCH)

  19. Chernobyl accident and Danmark

    The report describes the Chernobyl accident and its consequences for Denmark in particular. It was commissioned by the Secretary of State for the Environment. Volume 1 contains copies of original documents issued by Danish authorities during the first accident phase and afterwards. Evaluations, monitoring data, press releases, legislation acts etc. are included. (author)

  20. Chernobyl accident and Denmark

    The report describes the Chernobyl accident and its consequences for Denmark in particular. It was commissioned by The Secretary of State for the Environment. Volume 2 contains copies of original documents issued by Danish authorities during the first accident phase and afterwards. Evaluations, monitoring data, press releases, legislation acts etc. are included. (author)

  1. Standby after the Chernobyl accident

    The report is an investigation concerning strandby and actions by SKI (Swedish Nuclear Power Inspectorate) and SSI (National Institute of Radiation Protection) due to the Chernobyl reactor accident. It consists of a final report and two appendices. The final report is divided into two parts: 'I: Facts' and 'II: Analyzes'. 'Facts': The Swedish model for information: radio, press. Basic knowledge about ionizing radiation in the society. Resources for information. Need for information. Message forms for information. Announcements from the authorities in TV, radio, press, meeting, advertisements. Statements concerning the reactor accident and its consequences in Swedish mass media. How did the public recieve the information? 'Analyzis': Information responsibilities and policies. SSI information activities concerning radiologic accidents, conditions, methods and resources. Ditto for SKI, Swedish National Food Administration and the National Board of Agriculture. Appendix I: Information from authorities in the press three weeks after the Chernobyl accident: The material and the methods. The acute phase, the adoptation phase, the extension of the persective. What is said about the authorities in connection with Chernobyl? Appendix II: The fallout from Chernobyl, the authorities and the media coverage: The nationwide, regional and local coverage from radio and television. Ditto from the press. Topic and problem areas in reporting. Instructions from the authorities in media. Contribution in the media from people representing the authorities. Fallout in a chronologic perspective. (L.F.)

  2. Radioactivity measurements in Krakow surroundings in the aftermath of Chernobyl reactor accident

    A team from different laboratories of the Institute of Nuclear Physics was formed to set a crash program of measurement of water and food contamination after the Chernobyl reactor accident. The main contaminants in the first days were 131I and 132Te which were superseded later on by 104Ru, 137Cs and 134Cs. The highest value of contamination of surface waters by 131I was attained in the Vistula river on the 2-nd of May with 530 Bq/dm3. Also measurements of food contamination by 131I,134Cs, 137Cs and 137Te were carried out. The additional effective dose equivalent related to Chernobyl accident received by the population of Krakow region in May 1986 was estimated at 0.45 mSV (45 rem). Another rise of 134Cs + 137Cs content up to 46 Bq/dm3 in cows milk was observed during March and April 1987 and was probably explicable by the use of hay harvested in June 1986. (author)

  3. Application of natural adsorbents as decontamination agents for the elimination of the consequences of the Chernobyl reactor accident

    The scientific foundations of using natural adsorbents as ion exchangers,filtering media and adagulants for water purification ase presented. The results showing the efficiency of practical application of natural adsorbents for the decontamination of water, clothes, machinery, construction materials, etc. during the elimination of the consequences of the Chernobyl reactor accident in 1986-1987 are presented

  4. Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search

    The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains a minimum of 210 citations and includes a subject term index and title list.)

  5. Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS Bibliographic database). Published Search

    The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains a minimum of 208 citations and includes a subject term index and title list.)

  6. 131I content in canine thyroids in the Warsaw urban area after the Chernobyl reactor accident

    The levels of 131I were determined in the thyroids of 20 dogs from Warsaw submitted to euthanasia between May and September 1986. The animals were living with humans and were in similar way exposed to contamination after the Chernobyl reactor accident. After calculation of the radioactivity for May 10th the contamination was found to range from 142.9 to 1372.9 Bq. These values corresponded to the contamination of human thyroids as reported by Central Laboratory for Radiation Protection in Warsaw. From the begining of May to the end of November the number of operations performed in dogs for pathological thyroid hyperplasia was six times higher than in the preceding time period. 5 refs., 2 tabs. (author)

  7. Aspects of environmental monitoring by British Nuclear Fuels plc following the Chernobyl reactor accident

    The radioactive cloud from the Chernobyl reactor accident arrived in West Cumbria on 2 May 1986. The environmental monitoring facilities of the British Nuclear Fuels plc, Sellafield reprocessing plant were used to monitor radioactivity in air, deposition on grass and on soil and concentrations in milk. The distribution of deposition between sampled grass and soil was affected by heavy rainfall during the passage of the radioactive cloud. Measurements of radioactivity in milk at a lowland farm on the coastal plain resulted in a critical group effective dose of 0.64 mSv up to the end of July, but additional doses are expected to result from the use of silage during the winter. Comparisons are made between these doses from milk consumption and those predicted from the data available shortly after the deposition of the radioactivity on the pasture. (author)

  8. Reactor accident at the Chernobyl nuclear power plant-Block 4. Effects, countermeasures and consequences

    The findings of the Summary Report on the Chernobyl accident issued by IAEA in September 1986 (International Nuclear Safety Advisory Group (INSAG): Summary Report on the Post-Accident Review Meeting on the Chernobyl Accident. Safety Series No. 78-INSAG-1 Vienna, International Atomic Energy Agency (IAEA). Sept. 1986) are updated, reviewing more recent publications providing more complete information on the events both within and outside the plant. The available information on the resulting radioactive pollution of agriculture and the food chain is discussed considering also the consequences for the future in comparison with the other sources of radioactivity in the environment. 21 refs.; 3 figs.; 3 tabs

  9. Change of attitude and behaviour of the West-German population after the Chernobyl reactor accident

    As a result of the Chernobyl reactor accident, the West-German population has shown to be much more aware of the hazards emanating from environmental pollution and chemical or radioactive contamination of food. It could be observed that, on the whole, consumption of important basic food has been reduced, so that the population's supply with various, significant nutrients is expected to deteriorate. The nutrients to be mentioned in this context are primarily calcium, riboflavin, folic acid, and ascorbic acid. Investigations over the period May to July 1986 show that the reactor accident's impact on the food consumption behaviour subsides only slowly, and it remains to be seen to what extent changes and fluctuations in the population's nutritional behaviour will have to be taken as 'normal'. Hence some sort of nutritional deficiency can be expected among certain groups of the population, either temporarily or over a prolonged period. A National Survey of Food Consumption currently in preparation will yield more detailed insight into the whole process. (orig./MG)

  10. What did change in the FRG after the Chernobyl reactor accident? On the situation in churches

    The author discusses in detail the implications of the reactor desaster of Chernobyl both in terms of social ethics and theology and demonstrates processes within the churches and official church statements. (DG)

  11. Documents, used for drawing up the CCRX-report 'Radioactive contamination in the Netherlands caused by the reactor accident at Chernobyl'. Part 1

    In these documents the results are summarized of a large number of measurements and calculations performed by various Dutch organizations in consequence of the nuclear reactor accident at Chernobyl. refs.; figs.; tabs

  12. Health hazards to the population of Hamburg, due to the Chernobyl reactor accident. Part 2

    Estimations of cancer incidence within a time period of 50 years are stated and in brackets for comparison the cancer deaths within a time period of 50 years based on the Hamburg cancer register for 1985: 1) Pulmonary cancer 0-2 (47 100) 2) Thyroid (thyroida. 3) Hepatic cancer 1-69 (5 700) 4) Leucaemia 3-609 (8 850) 5) All cancer diseases 3-609 (259 000). Presuming that all cancer diseases caused by the Chernobyl accident lead to death and taking into consideration the total cancer risk of the next 50 years, the number of cancer deaths increases at maximum by a little more than one five hundredth (0.23%) As concerns the genetic risk, it is to be noticed that the estimated numbers of 1 to up to 55 cases per generation above all refer to the minor modifications of hereditary factor. With regard to severe hereditary diseases within the next two generations the health authority estimates that in comparison to the single case of clinical importance caused by the reactor accident there are 1760 spontaneous hereditary diseases. (orig./HP)

  13. Estimate of the radiation exposure of the Austrian population due to the reactor accident Chernobyl

    One year after the reactor accident at Chernobyl an estimate as objective as possible of the average exposure of the Austrian population in the first year after the accident is attempted. Besides the exposure path of external radiation from the cloud and ground and the exposure due to inhalation the most important path, that caused by ingestion of radionuclides via contaminated food is described in detail. The contribution of various food stuffs to the ingestion dose is described. The effective equivalent dose estimated from the average activity concentration and the average consumption per year of the respective food stuffs amounts to 0.46 mSv for the adult and 0.40 mSv for the one year old infant in the first year. In addition to the dose due to external radiation and inhalation this results in a total dose of 0.53 mSv for the adult and 0.47 mSv for the infant. The ingestion dose estimated in this way poses possibly a substantial overestimation since the whole body activity content measured in numerous whole body counter measurements results in only one third of the dose estimated from food activity concentrations. 18 refs., 11 figs. (Author)

  14. Impacts of the Chernobyl reactor accident on the territories of the former German Democratic Republic in 1989

    Several reports by SAAS (the Nuclear Safety and Radiation Protection Board of the German Democratic Republic) have been discussing the effects of the Chernobyl reactor accident through 1989. Only a summary had been published for 1989 in the environmental radioactivity annual report. Institut fuer Umweltschutz had been in charge of the publication of a more detailed account as part of the 'environmental report' but the project was abandoned since the institute was wound up as of October 1990. The report under review concludes the separate German Demoncratic Republic reporting by publishing the part of the manuscript on environmental contamination caused by artificial radionuclides which gives the 1989 situation on the basis of the previous results on the effects of the Chernobyl reactor accident. The appendix lists the SAAS reports published in the past. (orig./BBR)

  15. Environmental and health consequences in Japan due to the accident at Chernobyl nuclear reactor plant

    A comprehensive review was made on the results of national monitoring program for environmental radioactivity in Japan resulting from the accident at the Chernobyl nuclear power plant in USSR. Period of monitoring efforts covered by the present review is from 30th of April 1986 to 31st of May 1987. A radioactive cloud released from the Chernobyl nuclear reactor initially arrived in Japan on 30th of April 1986 as indicated by the elevated level of 131I, 137Cs and 134Cs activity in the total deposition on 30th of April and also by the increased 137Cs body burden noted on 1st of May. Almost all the radioactive nuclides detected in the European countries were also identified in Japan. For example, the observed nuclides were: 95Zr, 95Nb, 99mTc, 103Ru, 106Ru, 110mAg, 111Ag, 125Sb, 127Sb, 129mTe, 131I, 132Te, 132I, 133I, 134Cs, 136Cs, 137Cs, 140Ba, 140La, 141Ce and 144Ce. Among the above radionuclides, the country average concentration was determined for 131I, 137Cs and 134Cs in various environmental materials such as air, fresh water, soil, milk, leafy and root vegetables, cereals, marine products and other foodstuffs. In contrast to the sharp decline of 131I which was negligible after a few months, 137Cs showed a tendency to maintain its activity in foodstuffs at an appreciable level one year later. Collective effective dose equivalent and dose equivalent to thyroid in Japanese population due to 137Cs, 134Cs and 131I were estimated to be around 590 man Sv and 4760 man Sv, respectively. Corresponding values for the per caput dose equivalent are 5 μSv for whole body and 40 μSv for thyroid, respectively. (author)

  16. Soil contamination in Northern Austria as aftermath of the Chernobyl reactor accident

    The soil contamination caused by the accident at Chernobyl was very uneven distributed in Austria. In late autumn 1986 soil samples from northern Austria were analysed in order to get to know the actual contamination in terms of figures. The extreme values for Cs-137 found were 962 and 73630 Bq/m2 respectively. 3 refs., 2 figs. (Author)

  17. Radioactive contamination of Bavarian game as a result of the Chernobyl reactor accident. Pt. 1

    The Cs-137 contamination of the soil in South Germany, especially around Schwabmuenchen, after the reactor accident in Chernobyl at the end of April 1986 amounted up to 20000 Bq/2. At certain places, maximum loads of even 40000 Bq/2 were measured. In the other South Bavarian regions and the southern parts of East Bavaria Cs-137 loads of between 5000-10000 Bq/2 were recorded which gradually declined to the North and to the West and reached values of <5000 Bq/2 in Lower Franconia. The regional distribution of the radiocaesium contamination in Bavarian game, especially deer, showed in the time from May to June for the area south of the Danube a 3.4 times higher contamination with Cs-137 and Cs-134 as compared to the North-Bavarian regions. By the end of July, the activities in South Bavaria were reduced to 756 Bq Cs-137/kg venison as compared to 2020 Bq/kg in May and June. In North Bavaria the values amounted to 239 Bq as compared to 591 Bq Cs-137/kg venison. From September onwards, the rise in Cs-137 activities in venison could be attributed to the feeding plants. (ECB)

  18. The evaluation of the Chernobyl reactor accident by the help of the Hungarian Surveillance of Germinal Mutations

    The germinal mutagenic consequences or radioactive fall-out deposition from the Chernobyl accident in Hungary was evaluated in the ongoing program on the population-based Hungarian Surveillance of Germinal Mutations. The surveillance is based on three groups of indicator conditions: 15 sentinel anomalies (indicators of germinal dominant gene mutations), Down syndrome (an indicator of germinal numerical and structural chromosomal mutations) and unidentified multiple congenital abnormalities (indicators of germinal dominant gene and chromosomal mutations). Cases with indicator conditions were selected from the material of the Hungarian Congenital Abnormality Registry. After the diagnostic accuracies were checked, familial and sporadic cases were separated and only the latter group was evaluated for evidence of new mutations. The analysis did not reveal any measurable germinal mutagenic effects of the Chernobyl reactor accident in Hungary. (author)

  19. 10 years after the Chernobyl reactor accident. Thyroid cancer and consequences of public health in the CIS

    Ten years after the accident at the Chernobyl nuclear reactor, governmental and international organisations have identified considerable effects on the health of the various affected groups. A dramatic - over 100-fold - increase in thyroid cancers among children in Belarus has been caused by papillary thyroid carcinomas that are marked by aggressive growth with early metastatic spread. As early as 1995, the number of new cases of thyroid cancer among adults was four times the mean figure in the period before 1986. In Oblast Gomel, the number of children with diabetes mellitus doubled between 1986 and the end of 1995. The number of recorded cases of thyroid cancer, particularly among children, by far exceeds the prognoses made on the basis of established radiation risk estimates, and points to a considerable underestimation of the consequences of the Chernobyl accident. (orig.)

  20. Chernobyl accident. Exposures and effects

    The Chernobyl accident that occurred in Ukraine in April 1986 happened during an experimental test of the electrical control system as the reactor was being shut down for routine maintenance. The operators, in violation of safety regulations, had switched off important control systems and allowed the reactor to reach unstable, low-power conditions. A sudden power surge caused a steam explosion that ruptured the reactor vessel and allowed further violent fuel-steam interactions that destroyed the reactor and the reactor building. The Chernobyl accident was the most serious to have ever occurred in the nuclear power industry. The accident caused the early death of 30 power plant employees and fire fighters and resulted in widespread radioactive contamination in areas of Belarus, the Russian Federation, and Ukraine inhabited by several million people. Radionuclides released from the reactor that caused exposure of individuals were mainly iodine-131, caesium-134 and caesium-137. Iodine-131 has a short radioactive half-life (8 days), but it can be transferred relatively rapidly through milk and leafy vegetables to humans. Iodine becomes localized in the thyroid gland. For reasons of intake of these foods, size of thyroid gland and metabolism, the thyroid doses are usually greater to infants and children than to adults. The isotopes of caesium have relatively long half-lives (caesium-134: 2 years; caesium-137: 30 years). These radionuclides cause long-term exposures through the ingestion pathway and from external exposure to these radionuclides deposited on the ground. In addition to radiation exposure, the accident caused long-term changes in the lives of people living in the contaminated regions, since measures intended to limit radiation doses included resettlements, changes in food supplies, and restrictions in activities of individuals and families. These changes were accompanied by major economic, social and political changes in the affected countries resulting

  1. Assessment of the impact of the Chernobyl Reactor accident on the Biota of Swedeish Streams and Lakes

    The Chernobyl reactor accident resulted in elevated levels of radionuclides in the air space above Sweden, which were then washed into Swedish lakes and streams. Before suspended particles stripped the water column, the concentration of /sp137/Cs in small Swedish lakes was in the order of 10-40 Bq/l. This level of radioactivity should result in a negligible increase in the external exposure rate. However, by August 1986 increased levels of radioactivity were found at all trophic levels of freshwater ecosystems from algae to top carnivore, and from the available data the levels of radioactivity are still increasing. The calculated dose rate for the aquatic biota caused by the two cesium isotopes, /sp134/Cs and /sp137/Cs, is about 25 times higher than natural levels. While acute effectrs of the Chernobyl fallout on freshwater biota are unlikely, the long term ecological effects bear watching

  2. Feasibility of studies on health effects in western Europe due to the reactor accident at Chernobyl and Recommendations for research

    The report considers whether studies of health effects related to the radioactive contamination of western Europe caused by the releases from the Chernobyl reactor accident would be useful. The report evaluates the exposure patterns and the dose levels within the European Community, the different health effects that might be induced by such doses, and the likelihood that epidemiological studies could produce scientifically useful information. The report concludes that at the exposure levels experienced in the European Community the study of post-Chernobyl cancer rates in adults and the study of heritable genetic effects in the offspring of those exposed would be unproductive. It also concludes that even a study of childhood cancer following in utero exposure would be unlikely to demonstrate any attributable increase in risk. However, the report recommends that a small epidemiologic survey of childhood cancer be conducted within areas where selected cancer registration was in existence at the time of the Chernobyl accident to check the ability to predict risks from doses of the order received, to contribute to the understanding of the occurrence of childhood leukemia and to allay public anxiety

  3. Teratological evaluation of pregnancy outcomes in Hungary after the Chernobyl reactor accident

    The monthly distribution of pregnancy outcomes such as induced abortions, spontaneous abortions, stillbirths, newborns with birth weight under 2500 g, isolated congenital anomalies, identified multiple congenital anomaly syndromes including fetal radiation syndrome, and unidentified multiple congenital anomalies was evaluated in Hungary after the Chernobyl accident until Apr 1987. Only a somewhat higher rate of newborns with birth weight under 2500 g in May and June, 1986 was detected. It may have been due to premature labour caused by anxiety. (author) 15 refs.; 2 tabs

  4. Nuclear-reactor accidents: Chernobyl, TMI, and Windscale. January 1974-September 1988 (Citations from Pollution Abstracts). Report for January 1974-September 1988

    This bibliography contains citations concerning studies and measurements of the radiological consequences of nuclear-reactor accidents. The citations cover specifically the Chernobyl reactor in the USSR, the Three Mile Island (TMI) reactor in the US, and the Windscale reactor in the UK. Included are detection and monitoring of the fallout, the resultant runoff into rivers, lakes, and the sea, the radiation effects on people, and the transfrontier radioactive contamination of the environment. (Contains 105 citations fully indexed and including a title list.)

  5. R[ionuclide transport after the Chernobyl reactor accident and derivation of r[ioecological parameters

    Since due to the nuclear reactor accident in Chernobyl r[ionuclides arrived in the vicinity of Aachen, the enhancement of the local dose rate, the deposition of the different r[ionuclides on ground and vegetation and the transport of the r[ionuclides into the environment were measured. Partly the measurements were continued until today. Very informative time sequences of the specific activity in grass, food, cow's milk, beef, in the different plants, trees, ploughed soil and undisturbed soil, mushrooms, game, in humans etc. resulted. During different private and official journeys in the old Laender of the Federal Republic of Germany surface covering measurements of the 134Cs and 137Cs activity deposited on grass land at different places were carried out. These data were implemented into a map on ground contamination in 1986 in Germany, published in 1991 by the Institute for Water, Soil and Air Hygiene of the Federal Public Health Department in Berlin. Transfer factors soil-grass were measured in the whole Federal Republic of Germany analyzing grass samples which were partly taken at the same time. A large amount of r[ioecological parameters could be derived from the different time sequences. These are in particular: The deposition velocity for iodine and particle bound r[ioanuclides on grass and in forests, the rainout coefficient in dependence of the precipitation intensity, the retention factors on grass, the biological half-life time on grass, the transfer factor soil-grass in dependence of time, the transfer factor food-milk during the pasture period and during stable stay, the transfer factor food-beef, the transfer factors in eatable mushrooms, the translocation factor of cesium in cereals etc. A multi-compartment model was developed to calculate the specific Cs activity in cow's milk and beef. The specific activity in milk can be calculated sufficiently exact using a simple single compartment model. The correlation of the specific Cs activity in spruce

  6. Workshop on short-term health effects of reactor accidents: Chernobyl

    The high-dose early-effects research that has been continued has been done in the context of infrequent accidents with large radiation sources and the use of bone marrow transfusions for treating malignancies, especially leukemia. It thus seemed appropriate to bring together those who have done research on and have had experience with massive whole-body radiation. The objectives were to review what is known about the acute effects of whole-body irradiation, to review the current knowledge of therapy, and particularly of the diagnostic and immunologic problems encountered in bone marrow therapy, and to compare this knowledge with observations made to date on the Chernobyl accident radiation casualties. Dr. Robert Gale, who had helped to care for these casualties, was present at the Workshop. It was hoped that such a review would help those making continuing clinical and pathological observations on the Chernobyl casualties, and that these observations would provide a basis for recommendations for additional research that might result in improved ability to manage successfully this type of severe injury

  7. Workshop on short-term health effects of reactor accidents: Chernobyl

    1986-08-08

    The high-dose early-effects research that has been continued has been done in the context of infrequent accidents with large radiation sources and the use of bone marrow transfusions for treating malignancies, especially leukemia. It thus seemed appropriate to bring together those who have done research on and have had experience with massive whole-body radiation. The objectives were to review what is known about the acute effects of whole-body irradiation, to review the current knowledge of therapy, and particularly of the diagnostic and immunologic problems encountered in bone marrow therapy, and to compare this knowledge with observations made to date on the Chernobyl accident radiation casualties. Dr. Robert Gale, who had helped to care for these casualties, was present at the Workshop. It was hoped that such a review would help those making continuing clinical and pathological observations on the Chernobyl casualties, and that these observations would provide a basis for recommendations for additional research that might result in improved ability to manage successfully this type of severe injury.

  8. Chernobyl reactor transient simulation study

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  9. The Chernobyl accident. Appendix B

    In appendix B, the models introduced in chapter 6 are applied to the study of the Chernobyl accident. This event is very important in the teaching of nuclear engineering, and I have included in this Appendix a relatively detailed description of the accident. However, the analysis is limited to the physics of the relevant phenomena. (author)

  10. The Chernobyl reactor accident and its consequences. Informative report prepared on behalf of the IAEA meeting, Vienna, August 25-29, 1986. Pt. 1

    GRS has revised the German translation of part 1 of the report on the Chernobyl reactor accident. The translation is technically clear and intelligible and contains the current technical terms. The report comprises a description of RBMK-1000, a chronological description of the accident, the analysis of the accident, the causes of the accident, measures preventing the further development of the accident as well as measures controlling the radioactive contamination of the environment and the population. The report discusses immediate emergency measures improving the safety of RBMK-type nuclear power plants and deals with recommendations for nuclear safety engineering. (DG)

  11. Action level for imported food in Japan after the reactor accident at Chernobyl

    The nuclear accident at Chernobyl in Apr. 1986 caused a widespread release of radionuclides to environment. As a result of food movement in international trade, it was necessary to decide action level of radionuclides for food imported in Japan. The action level was derived from the following basic principle: Dose equivalent should be less than one third of 0.5 rem/year for whole body exposure. Assuming that the composition of representative radionuclides (90Sr, 134Cs and 137Cs) in imported food are equal to those of fallout in Japan and consumption of internal food products reduces total intake of radionuclides to 35 %, action level indicated by sum of 134Cs and 137Cs concentrations was estimated to be 370 Bq/kg. From Nov. 1986 to Sep. 1987, it was observed that twenty samples in imported food contained radioactivity exceeding the action level. (author)

  12. Consequences of the Chernobyl accident

    The techniques currently used in off-site consequence modelling are applied to the Chernobyl accident. Firstly, the time dependent spread of radioactive material across the European continent is considered, followed by a preliminary assessment of the dosimetric impact (in terms of collective and mean individual doses) on the various countries of Eastern and Western Europe. The consequences of the accident in the USSR are also discussed. Finally, the likely implications of the Chernobyl event on research in the field of environmental consequence assessment are outlined. (author)

  13. Follow-up to the accident at Chernobyl and its implications for the safety of CANDU reactors

    This report updates the status of the nine recommendations arising from the AECB staff review of the Chernobyl accident (INFO--0234). Six of the nine recommendations have been satisfactorily responded to by the Canadian nuclear utilities and are considered to be closed. Any follow-up actions arising from the responses to the recommendations will be addressed as part of the continuing licensing process. Of the remaining three, one concerns the effectiveness of the reactor shutdown systems under unusual circumstances. Satisfactory progress is being made. The other two outstanding items concern reviews of emergency and fire fighting practices. Again, satisfactory progress is being made but the response to the recommendations is not yet complete. Each recommendation is discussed separately in the body of this report

  14. Three years after the Chernobyl reactor accident: How high was the radiation exposure really?

    The author is an expert in radiological protection and radiation hygiene and on the basis of the current state of the art briefly answers some of the most frequently raised questions in connection with the reactor accident: (1) Which were the sources of the radiation exposure of the population? (2) How high are the resulting radiation doses? (3) Which radionuclides have entered the food chains, and how high is their contribution to the radiation exposure? (4) What is the long-term dose to children and adults due to the contamination of food? (5) What is the resulting radiation hazard? (MG)

  15. Artificial radioactivity in the vicinity of St. Marianna University School of Medicine after the Chernobyl reactor accident

    Following the Chernobyl reactor accident on April 26, 1986, rain water and atomospheric dust were monitored for their possible contamination by artificial radionuclides on the roof of the building of our medical school from April 30 through June 8, 1986. Radiological monitoring was also performed on cabbages obtained from a nearby field, city water, cow's milk produced in Kanagawa Prefecture and human milk obtained from a volunteer living in Kawasaki. Our campus and the nearby area were exposed to 131I from May 2 through 22 by rainfall and from May 1 through 15 by atomospheric dust. In particular, rain water on May 4 and May 5 contained 7600 pCi (282 Bq)/l and 6000 pCi (222 Bq)/l, respectively. The cabbage specimen obtained on May 7 was contaminated by 131I with 808 pCi/kg wet weight, but another specimen obtained on June 6 was not contaminated by any detectable amounts of 131I. No radioactivity was detected in city water during the period monitored. Cow's milk and human milk contained, as a total of β-radioactivity, 1412 pCi (52 Bq)/l and 915 pCi (34 Bq)/l, respectively. However, parallel determinations on their potassium concentrations revealed that these radioactivities were due entirely to natural 40K. The degree of radiological contamination in and around our campus following the Chernobyl accident was mostly below the action levels above which the governments of several countries involving Japan would take preventive measures against possible radiation damages. Although 131I radioactivities contained in the rain water of the first week of May, 1986 significantly exceeded the action level for this radionuclide, their effects on human health were considered negligible and undetectable in the vicinity of our school. (author)

  16. Chernobyl NPP accident. Overcoming experience. Acquired lessons

    This book is devoted to the 20 anniversary of accident on the Chernobyl NPP unit 4. History of construction, causes of the accident and its consequences, actions for its mitigation are described. Modern situation with Chernobyl NPP decommissioning and transferring of 'Ukryttya' shelter into ecologically safe system are mentioned. The future of Chernobyl site and exclusion zone was discussed

  17. The Chernobyl accident consequences

    Five teen years later, Tchernobyl remains the symbol of the greater industrial nuclear accident. To take stock on this accident, this paper proposes a chronology of the events and presents the opinion of many international and national organizations. It provides also web sites references concerning the environmental and sanitary consequences of the Tchernobyl accident, the economic actions and propositions for the nuclear safety improvement in the East Europe. (A.L.B.)

  18. Nuclear reactor accidents: Chernobyl, TMI (Three Mile Island), and Windscale. January 1974-September 1989 (Citations from Pollution Abstracts). Report for January 1974-September 1989

    This bibliography contains citations concerning studies and measurements of the radiological consequences of nuclear reactor accidents. The citations cover specifically the Chernobyl reactor in the USSR, the Three Mile Island (TMI) reactor in the US, and the Windscale reactor in the UK. Included are detection and monitoring of the fallout, the resultant runoff into rivers, lakes, the sea, the radiation effects on people, and the transfrontier radio ative contamination of the environment. (This updated bibliography contains 164 citations, 59 of which are new entries to the previous edition.)

  19. Chernobyl and the safety of nuclear reactors in OECD countries

    This report assesses the possible bearing of the Chernobyl accident on the safety of nuclear reactors in OECD countries. It discusses analyses of the accident performed in several countries as well as improvements to the safety of RBMK reactors announced by the USSR. Several remaining questions are identified. The report compares RBMK safety features with those of commercial reactors in OECD countries and evaluates a number of issues raised by the Chernobyl accident

  20. Reactor accidents in perspective

    In each of the three major reactor accidents which have led to significant releases to the environment, and discussed in outline in this note, the reactor has been essentially destroyed - certainly Windscale and Chernobyl reactors will never operate and the cleanup operation for Three Mile Island is currently estimated to have cost in excess of US Pound 500 000 000. In each of the accidents there has not been any fatality off site in the short term and any long-term health detriment is unlikely to be seen in comparison with the natural cancer incidence rate. At Chernobyl, early fatalities did occur amongst those concerned with fighting the incident on site and late effects are to be expected. The assumption of a linear non-threshold risk, and hence no level of zero risk is the main problem in communication with the public, and the author calls for simplification of the presentation of the concepts of radiological protection. (U.K.)

  1. Brookhaven lecture series No. 227: The Chernobyl accident

    This lecture discusses the events leading to, during, and following the Chernobyl Reactor number 4 accident. A description of the light water cooled, graphite moderated reactor, the reactor site conditions leading to meltdown is presented. The emission of radioactive effluents and the biological radiation effects is also discussed. (FI)

  2. Brookhaven lecture series No. 227: The Chernobyl accident

    Kouts, H.

    1986-09-24

    This lecture discusses the events leading to, during, and following the Chernobyl Reactor number 4 accident. A description of the light water cooled, graphite moderated reactor, the reactor site conditions leading to meltdown is presented. The emission of radioactive effluents and the biological radiation effects is also discussed. (FI)

  3. Radioactivity monitoring by the official monitoring stations in North-Rhine Westphalia and the Juelich Nuclear Research Centre after the Chernobyl reactor accident

    This official report presents a governmental declaration of the prime minister of NRW, Mr. Rau, concerning the reactor accident at Chernobyl, and a joint declaration of ministers of NRW, concerning the impact of the accident on the Land NRW. These statements are completed by six official reports on radioactivity measurements carried out by the official monitoring stations of the Land and by the KFA Juelich. These reports inform about methods, scope, and results of the measuring campaigns accomplished by the Zentralstelle fuer Sicherheitstechnik (ZFS), the public materials testing office (MPA), the Chemisches Untersuchungsamt, the Landesamt fuer Wasser und Abfall, and the KFA Juelich. (DG)

  4. Western reactors: how they compare with Chernobyl

    The author explains why western light water reactors are intrinsically more dangerous than the RBMK, Chernobyl design. It is also argued that for the fast breeder reactors (such as the PFR at Dounreay and the Super Phenix at Creys Melville) are more dangerous and could actually explode like an atomic bomb. This is contrary to official assurances that the Western reactors are of a safer design and more safely operated than the Chernobyl reactor, and so a similar accident could not happen here. The PWRs and BWRs are compared with the RBMK as to pressure vessels/no pressure vessel, fuel rods, reactor containment and containment building. The superiority of Western engineering and reactor operation is also disputed, with the Three Mile Island accident used as evidence. (U.K.)

  5. The radioactive contamination of milk and milk products due to the Chernobyl reactor accident

    The situation in the area around the town of Kiel in a given period of time is taken as the example to explain the radioactive contamination of milk and milk products due to the Chernobyl fallout. The measured data reported refer to the nuclides I-131 and Cs-137 in milk, and are compared with data on the I-131 and Cs-137 activity measured in raw milk collected in southern Bavaria, and in other Lands of the F.R.G. (DG)

  6. The causes of the Chernobyl accident

    For the man in the street Chernobyl epitomizes the danger of nuclear energy but when we examine the causes of this accident we see that this drama is not intrinsically linked to the production of electricity from nuclear fission. The author sees 2 components in the Chernobyl event: the accident itself and its sanitary consequences. The author considers 3 main causes to the accident: -) a design that makes the reactor difficult to control, -) a series of 6 humane failures or breaking of operating rules, and -) political reasons: the largest possible budget was dedicated to plutonium production so any improvement for safety was considered as costly and secondary, moreover the religion of secrecy which was well spread in the ancient Soviet Union, prevented any scientific from knowing all the information concerning this type of reactor. As for the sanitary consequences, the author considers direct causes and underlying causes. The lack of information for the local population, the delay taken for iodine distribution or for the interdiction of farm products consumption are included in the direct causes. The slowness of Soviet bureaucracy, tight budgets and politico-scientific disputes are quoted among the underlying causes. (A.C.)

  7. Seiberdorf scientists give answers to questions in connection with the Chernobyl reactor accident

    This is a collection of 8 largely non-technical papers written by experts in radiation protection, biology and agriculture from the Austrian Research Centre Seibersdorf, on the consequences for Austria of the Chernobyl fallout and washout. 5 papers are also published (partly under different titles) in the journals Pflanzenarzt 7-8, 1986, Agrozucker 4, 1986 und Blick ins Land, 1986. From the rest, one paper is treated separately for INIS while two papers are elemtary general introductions to radioactivity, radiation, units and doses. (G.Q.)

  8. Experimental verification of dynamic radioecological models after the Chernobyl reactor accident

    The comparitive analysis uses model data and data derived from field experiments. The translocation factors for Cs-134 and Cs-137 in edible plants have been determined after spraying of fields with Chernobyl fallout rainwater, considering the time of irrigation in relation to plant growth, and are shown to be the following: 0.002 - 0.13 in winter wheat, 0.003 - 0.09 in spring wheat, 0.002 - 0.27 in winter rye, 0.002 - 0.04 in barley, 0.05 - 0.35 in potatoes, 0.02 - 0.07 in carrots, 0.04 - 0.3 in bush beans, 0.1 - 0.5 in cabbage. The weathering half-life in lettuce is 10 days. The transfer factors for Cs-137 uptake by the roots have been determined to be 0.002 on the avarage for grain, 0.002 for potatoes, 0.004 for white cabbage, 0.003 for bush beans and carrots, and 0.007 for lettuce. The measured data agree well with the radioecological concentration data predicted by the ECOSYS model for post-Chernobyl radionuclide distribution. Some results of the verification study could be used to improve the results of the ECOSYS model by modification of certain parameters. (orig./HP)

  9. The modern Saamish reindeer husbandry in Sweden after the reactor accident of Chernobyl

    Large parts of the reindeer herding area in Sweden were contaminated with radioactive caesium from the Chernobyl fallout deposited mainly between 62 and 66 n.lat. by heavy rain-and snowfalls between April 28-30, the fjell and boreal forest regions of north-western Jaemtland and south-western Vaesterbotten being the home of 500 reindeer Saamis, organized in 19 Saamebys, and being the winter- and summer reindeer grazing areas for about 100000 reindeer worst contaminated, with a maximum soil contamination of 60000 Bq/m2 Cs137 along a line Gaevle-Gaeddede. The socio-economic effects and consequences of Chernobyl have on the hand changed the daily and yearly work routine patterns by applying early slaughter and feeding programs. On the other hand it has shown the vulnerability of reindeer husbandry in particular and of Saami culture and livelihood in general. It has also pointed out the influence of the state compensation payments have helped the mostly hit Saamebys to survive economically and the Saami herders to preserve their ethic identity and specific way of life. The measure of introducing a strict radioactivity limit should be fixed internationally. In reindeer meat where the average annual consumption is as low as 200 g per person a limit as low as 300 pr 1500 Bq/kg is in fact ineffective in reducing cancer risks but it has proved disastrous for the reindeer meat market

  10. Activities, projects and emergency planning etc. at the National Institute of Radiation Hygiene in connection with the Chernobyl reactor accident

    The National Institute of Radiation Hygiene (SIS) is the competent authority for radiation hygiene in Norway according to Act No.1 of 18 June 1938 and regulations given pursuant to the act. Legislation on duties specific to radiological emergencies in general has not been issued in Norway. The report describes how SIS organized the fallout survey and summarizes the different projects implemented by the institute after the Chernobyl accident. Furthermore, the institutes view on an alert system for detection of radiactive contamination and on emergency planning for radiation accidents is expressed

  11. Genetic effects of the Chernobyl accident

    Genetic radiation effects resulted from the Chernobyl accident were considered for the population of Russia, Ukraine and Belarus. Techniques of the assessment of genetic risk of exposure of a man was discussed. Results of cytogenetic examination of the population were presented as well as health state of pregnants and newborns following the Chernobyl accident. Elevated level of chromosomal aberrations in lymphocytes of peripheric blood in participants of the Chernobyl accident response and in population of contaminated zones. This fact testifies on the real genetic injury in cells due to accident. Growth of intrauterine losses in pregnancy, congenital anomalies, hereditary diseases in descendants of exposed parents. 17 figs

  12. Report of the Ad hoc Committee on the Chernobyl Accident

    The accident, which occurred on April 26 of 1986 at the fourth unit of the Chernobyl Nuclear Power Plant in the Ukrainian Soviet Socialist Republic of the Soviet Union, was the unprecedented accident in terms of, among other things, structural damages given to the reactor, an amount of radioactive materials released to the environment, and a number of casualties resulting from the accident. Investigation and analysis of the accident were conducted at JAERI by forming the Ad hoc Committee on the Chernobyl Accident within the organization under which Task Group A was responsible for the design and characteristics of the reactor and the accident sequence and Task Group B was responsible for behavior of radioactive materials and radiological consequences to the environment. The present report is the summary of the investigations and analyses which were carried out by the committee. (author)

  13. Thyroid consequences of the Chernobyl nuclear accident.

    Pacini, F; Vorontsova, T; Molinaro, E; Shavrova, E; Agate, L; Kuchinskaya, E; Elisei, R; Demidchik, E P; Pinchera, A

    1999-12-01

    It is well recognized that the use of external irradiation of the head and neck to treat patients with various non-thyroid disorders increases their risk of developing papillary thyroid carcinoma years after radiation exposure. An increased risk of thyroid cancer has also been reported in survivors of the atomic bombs in Japan, as well as in Marshall Island residents exposed to radiation during the testing of hydrogen bombs. More recently, exposure to radioactive fallout as a result of the Chernobyl nuclear reactor accident has clearly caused an enormous increase in the incidence of childhood thyroid carcinoma in Belarus, Ukraine, and, to a lesser extent, in the Russian Federation, starting in 1990. When clinical and epidemiological features of thyroid carcinomas diagnosed in Belarus after the Chernobyl accident are compared with those of naturally occurring thyroid carcinomas in patients of the same age group in Italy and France, it becomes apparent that the post-Chernobyl thyroid carcinomas were much less influenced by gender, virtually always papillary (solid and follicular variants), more aggressive at presentation and more frequently associated with thyroid autoimmunity. Gene mutations involving the RET proto-oncogene, and less frequently TRK, have been shown to be causative events specific for papillary cancer. RET activation was found in nearly 70% of the patients who developed papillary thyroid carcinomas following the Chernobyl accident. In addition to thyroid cancer, radiation-induced thyroid diseases include benign thyroid nodules, hypothyroidism and autoimmune thyroiditis, with or without thyroid insufficiency, as observed in populations after environmental exposure to radioisotopes of iodine and in the survivors of atomic bomb explosions. On this basis, the authors evaluated thyroid autoimmune phenomena in normal children exposed to radiation after the Chernobyl accident. The results demonstrated an increased prevalence of circulating thyroid

  14. About the causes and circumstances of the Chernobyl NPP accident

    The Chernobyl accident is the product of unsatisfactory solutions to scientific-technical, socio-economic and human problems. The documentarily recorded power excursion of the reactor and its rise velocity as well as the quick pressure rise in the separator drum admit the conclusion that the cause of the accident was the rapid power excursion of the reactor and not some external influence. (DG)

  15. The reactor accident at Chernobyl: A possibility to test colloid-controlled transport of radionuclides

    Radioactive fall-out from the damaged nuclear power plant at Chernobyl (USSR) has been measured between May 2 and May 20, 1986 in the River Glatt (Zurich, Switzerland) and in a shallow groundwater stream which is hydraulically connected to the river. Water infiltrating from the river into the groundwater was sampled at different distances and depths by means of a system of piezometer tubes which are part of an experimental installation for the investigation of groundwater quality and migration processes. The aquifer is a quarternary glaciofluvial deposit consisting of stones, gravel, sand, silt and clays. It is typical for large parts of alpine and peri-alpine regions and contains in Switzerlamd about 80% of the drinking water supplies. The radionuclides Tc-99m, Ru-103, I-131, Te-132, Cs-134 and Cs-137 were measured several times in the river water and in the groundwater using calibrated Ge(Li) gamma-ray spectrometers. Based on the present state of data evaluation the authors conclude that anionic species like iodides, ruthenates or tellurates are not or only slightly sorbed, whereas cesium is completely retained during infiltration from the river into the groundwater. Colloid (>0.05 μm) controlled migration of radionuclides in this heterogeneous glaciofluvial deposits is a transport mechanism of minor importance. However, with the present data it cannot be excluded completely

  16. Migration of 137Cs from air to soil and plants in the Gulsvik area, Norway after the Chernobyl reactor accident

    The migration of 137Cs from air to soil and vegetation after the Chernobyl accident has been studied using the concentrations measured in the Gulsvik area in Norway. The major part of the 137Cs deposition seems to be in the soil. An uptake of 137Cs from soil to plants through their root system is not a rapid process. Only a few percent of the deposition can be traced in plants. This seems to suggest that as far as 137Cs is concerned, an effect of the Chernobyl releases is not an acute but a long-term phenomenon. The 137Cs accumulation in soils is rather high, but doses not result in 137Cs levels in plants and diet higher than acceptable in Norway

  17. Contamination of the air and other environmental samples of the Ulm region by radioactive fission products after the accident of the Chernobyl reactor

    Since April 30, 1986, the radioactivity of the fission products released by the accident of the Chernobyl reactor has been measured in the air of the city of Ulm. The airborne dust samples were collected with flow calibrated samplers on cellulose acetate membrane filters and counted with a high resolution gamma ray spectrometer. Later on, the radioactivity measurements were expanded to other relevant environmental samples contaminated by radioactive atmospheric precipitates including grass, spruce needles, mosses, lichens, various kinds of food, drinking water, asphalt and concrete surface layers, municipal sewage sludge and sewage sludge ash. This paper reports the obtained results. (orig.)

  18. The Chernobyl reactor accident and its impact on the Land Baden-Wuerttemberg

    For better comprehension of the material presented, some basic facts and terms are first explained, followed by a brief description of the accident scenario. The impact on the Land Baden-Wuerttemberg is then explained by a review of the time-dependent deposition of the fallout, of the various compositions of the radioactive aerosols deposited in the different areas, by a detailed evaluation of measured data taken in free air, soil, waters, and food, and by an assessment of the resulting radiation exposure. (DG) With 23 coloured figs., 24 tabs

  19. Medical consequences of Chernobyl accident

    Galstyan I.A.

    2015-12-01

    Full Text Available Aim: to study the long-term effects of acute radiation syndrome (ARS, developed at the victims of the Chernobyl accident. Material and Methods. 237 people were exposed during the accident, 134 of them were diagnosed with ARS. Dynamic observation implies a thorough annual examination in a hospital. Results. In the first 1.5-2 years after the ARS mean group indices of peripheral blood have returned to normal. However, many patients had transient expressed moderate cytopenias. Granulocytopenia, thrombocytopenia, lymphopenia and erythropenia were the most frequently observed things during the first 5 years after the accident. After 5 years their occurences lowered. In 11 patients the radiation cataract was detected. A threshold dose for its development is a dose of 3.2 Gy Long-term effects of local radiation lesions (LRL range from mild skin figure smoothing to a distinct fibrous scarring, contractures, persistently recurrent late radiation ulcers. During all years of observation we found 8 solid tumors, including 2 thyroid cancers. 5 hematologic diseases were found. During 29 years 26 ARS survivors died of various causes. Conclusion. The health of ones with long-term ARS effects is determined by the evolution of the LRL effects on skin, radiation cataracts, hema-tological diseases and the accession of of various somatic diseases, not caused by radiation.

  20. Leukaemia incidents after Chernobyl accident

    Romania and especially its Eastern territory were among the most heavily affected area after Chernobyl accident. The objective of our study was to investigate whether or not the nuclear accident determined an increased number of leukaemia cases. The specific rates of leukaemia incidents by age group were calculated in 588167 children aged 0-6 years in April 1986 and 99917 children which have been exposed 'in utero'. The rates of 1989-1994 period were compared with the rates of 1980-1985 period. The incidence rates were lower in the exposed group than that in controls for children under 1 year (20.52/105 inh vs 23.11/105 inh), 1-3 years (13.26/105 inh vs 16.11/105 inh) and 4-6 years (9.58/105 inh vs 10.58/105 inh). The cohort of 'in utero' exposed children presented a leukaemia incidences insignificantly higher than that before the accident (23.10/105 inh vs 15.93/105 inh)

  1. The Chernobyl accident ten years later

    On April 26, 1986 at 1:23 AM a fire and explosion occurred at the fourth unit of the Chernobyl Nuclear Power Plant Complex, located in the Ukraine, that resulted in the destruction of the reactor core and most of the building in which it was housed. Several environmental impacts resulting from the accident will be discussed in this paper, which will include the effects on plant and wild life, radioactive waste generated and stored or disposed of, effects of evacuations relating to residents within the subsequently established 10km and 30km control zones, impacts of the emergency containment structure (sarcophagus), and potential effects on world opinion and future development of nuclear power. As an immediate result of the fire, 31 people died (2 from the fire ampersand smoke, and 29 from excessive radiation); 237 cases of acute radiation sickness occurred; the total fatalities based upon induced chronic diseases as a result of the accident is unknown: more than 100,000 people were evacuated from within the subsequently established 30 km control zone; in excess of 50 million curies of radionuclides that included finely dispersed nuclear fuel, fragments of graphite, concrete and other building materials were released from the reactor into the environment; an estimated one million cubic meters of radioactive waste were generated (LLW, ILW, HLW); more than 5000 tons of materials (sand, boron, dolomite, cement, and lead) were used to put the fire out by helicopter; shutdown of the adjacent power plants were performed; and other environmental impacts occurred. The Chernobyl Nuclear Power Plant Unit No 4 is an RBMK-1000. It initiated operations in 1983, it was a 1000 MWe with a power output of 3200 MW(th), the reactor core contained 190 MT of fuel, with 1659 assemblies (plus 211 control rods), the average burnup rate was 10.3 MWd/kg, and the reactor operated on a continuous basis with maintenance and fuel reload performed during operations

  2. Official announcement of an executive agreement between Federal German Government and Land governments, concerning payment of compensation for reasons of equity, for losses as result of the Chernobyl reactor accident; and announcement of the pertinent administrative directive

    The Federal Republic of Germany and the Lands concluded an executive agreement on compensation to be paid for reasons of equity, for losses incurred as a consequence of the Chernobyl reactor accident, and on the pertinent administration directive defining general principles of fair compensation for losses induced by the Chernobyl reactor accident (Fair Compensation Directive). The directive will be issued by each Land government for its province, and published in the pertinent regional, official gazettes. The full texts of the executive agreement and the Fair Compensation Directive are given below. (orig.)

  3. Radiation-biological consequences of the Chernobyl accident

    The paper points out essential aspects of the actual or potential impact of the Chernobyl reactor accident on human health in the areas immediately affected. In particular, radiation-induced diseases in the population are pointed out, which were caused by radioactive iodine. Epidemiological studies try to establish an increased incidence of leukaemia, lymphomas, and thyroid gland tumours. (DG)

  4. Cesium fallout in Norway after the Chernobyl accident

    Results of country-wide measurements of 137Cs and 134 Cs in soil samples in Norway after the Chernobyl accident are reported. The results clearly demonstrates that municipalities in the central part of southern Norway, Troendelag and the southern part of Nordland, have been rather heavily contaminated. The total fallout of 137Cs and 134Cs from the Chernobyl accident in Norway is estimated to 2300 TBq and 1200 TBq, respectively. This is approximately 6% of the cesium activity released from the reactor

  5. Twenty years after the Chernobyl accident

    Full text: The April 1986 accident at the Chernobyl nuclear power plant remains a painful memory in the lives of the hundreds of thousands of people who were most affected by the accident. In addition to the emergency rescue workers who died, thousands of children contracted thyroid cancer, and thousands of other individuals will eventually die of other cancers caused by the release of radiation. Vast areas of cropland, forests, rivers and urban centres were contaminated by environmental fallout. Hundreds of thousands of people were evacuated from these affected areas - forced to leave behind their homes, possessions, and livelihoods - and resettled elsewhere, in a traumatic outcome that has had long-lasting psychological and social impacts. The commemoration of the Chernobyl tragedy is taking place in many forums this month - in Minsk, in Kiev and in other locations. At the IAEA, it might be said that we have been responding to the accident and its consequences for twenty years, in a number of ways: first, through a variety of programmes designed to help mitigate the environmental and health consequences of the accident; second, by analyzing the lessons of what went wrong to allow such an accident to occur at all; and third, by working to prevent any such accident from occurring in the future. Building a strong and effective global nuclear safety regime is a central objective of our work. This requires effective international cooperation. The explosions that destroyed the Unit 4 reactor core, and discharged its contents in a cloud of radionuclides, made painfully clear that the safety risks associated with nuclear and radiological activities extend beyond national borders. International cooperation on nuclear safety matters - sharing information, setting clear safety standards, assisting with safety upgrades, and reviewing operational performance - has therefore become a hallmark of IAEA activity, particularly at a time when we are witnessing an expansion of

  6. US Department of Energy Chernobyl accident bibliography

    This bibliography has been prepared by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Office of Health and Environmental Research to provide bibliographic information in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the Ukrainian Republic, USSR in 1986. This report is a product of the Chernobyl Database Management project. The purpose of this project is to produce and maintain an information system that is the official United States repository for information related to the accident. Two related products prepared for this project are the Chernobyl Bibliographic Search System (ChernoLit trademark) and the Chernobyl Radiological Measurements Information System (ChernoDat). This report supersedes the original release of Chernobyl Bibliography (Carr and Mahaffey, 1989). The original report included about 2200 references. Over 4500 references and an index of authors and editors are included in this report

  7. US Department of Energy Chernobyl accident bibliography

    Kennedy, R A; Mahaffey, J A; Carr, F Jr

    1992-04-01

    This bibliography has been prepared by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Office of Health and Environmental Research to provide bibliographic information in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the Ukrainian Republic, USSR in 1986. This report is a product of the Chernobyl Database Management project. The purpose of this project is to produce and maintain an information system that is the official United States repository for information related to the accident. Two related products prepared for this project are the Chernobyl Bibliographic Search System (ChernoLit{trademark}) and the Chernobyl Radiological Measurements Information System (ChernoDat). This report supersedes the original release of Chernobyl Bibliography (Carr and Mahaffey, 1989). The original report included about 2200 references. Over 4500 references and an index of authors and editors are included in this report.

  8. The decrease of radiation exposure after the Chernobyl accident

    Six years after the Chernobyl accident the equivalent dose in Austria due to the reactor accident amounts to 0.025 mSv/year (this comprises 0.005 mSv from ingestion and 0.020 mSv from external irradiation). This is about 1% of the average natural radiation exposure of 2.4 mSv/year. Also published in Atomwirtschaft (2) v. 38 p. 138-145, Feb 1993

  9. A preliminary assessment of individual doses in the environs of Berkeley, Gloucestershire, following the Chernobyl nuclear reactor accident

    A preliminary assessment has been made of the individual doses to critical group members of the public in the environs of Berkeley arising from fallout resulting from the Chernobyl accident. The assessment was based on measurements of airborne radionuclide concentrations, ground deposition and nuclide concentrations in rainwater, tapwater, grass, milk and green vegetables. The committed effective dose-equivalent was found to be as follows:- Adult - 200 μSv, 1 year old child - 500 μSv, the 10 year old child receiving a dose intermediate between these two values. The estimate accounts only for the nuclides measured and the specific exposure routes considered namely ingestion of milk and vegetables, inhalation and external exposure. However, it is believed that the inclusion of a range of other nuclides of potential significance, which may have been present but not measured, and potential intakes from additional routes is unlikely to increase the above estimates by more than a factor of 2. (author)

  10. First international workshop on severe accidents and their consequences. [Chernobyl Accident

    1989-07-01

    An international workshop on past severe nuclear accidents and their consequences was held in Dagomys region of Sochi, USSR on October 30--November 3, 1989. The plan of this meeting was approved by the USSR Academy of Sciences and by the USSR State Committee of the Utilization of Atomic Energy. The meeting was held under the umbrella of the ANS-SNS agreement of cooperation. Topics covered include analysis of the Chernobyl accident, safety measures for RBMK type reactors and consequences of the Chernobyl accident including analysis of the ecological, genetic and psycho-social factors. Separate reports are processed separately for the data bases. (CBS)

  11. Neutronic static analysis of Chernobyl accident

    In the present analysis, estimates were made of the positive reactivity introduced through the growth of the coolant void fraction in a Graphite-water steam-generating reactor both at the average value of burnup given by the Soviets and at the maximum value. Using Monte Carlo models, various possible axial distribution of burnup, displacer models, conditions in the control channels and positions of the control rods were considered in calculating the insertion of positive reactivity with the fall of the manual and emergency control rods; that is the positive scram. The possibility of positive reactivity insertion due to the creation of a mixture of fuel, water and cladding in a number of central fuel channels has been examined. This situation corresponds to the explosion of these channels, and is considered in the present work as the cause of the second reactivity peak. At the level of the data presented in this study, vaporization of cooling water in the fuel channels can be considered as the cause of the Chernobyl accident. The accident began in the region of the channels close to the axis of the reactor and spread to its periphery. The positive reactivity due to insertion of the manual and emergency control rods - positive scram -played a marginal role in the development of the accident. Fracture of the fuel followed by bursting of the channels around the axis of the reactor, due to contact between the hot UO2 particles and the cooling water at th end of the first peak, could have started a mechanism capable of producing a second peak in reactivity, in the case of fuel damage extended to a sufficiently large portion of the core

  12. Reconstruction of the Chernobyl emergency and accident management

    Full text of publication follows: on April 26, 1986 the most serious civil technological accident in the history of mankind occurred of the Chernobyl Nuclear Power Plant (ChNPP) in the former Soviet Union. As a direct result of the accident, the reactor was severely destroyed and large quantities of radionuclides were released. Some 800000 persons, also called 'liquidators' - including plant operators, fire-fighters, scientists, technicians, construction workers, emergency managers, volunteers, as well as medical and military personnel - were part of emergency measurements and accident management efforts. Activities included measures to prevent the escalation of the accident, mitigation actions, help for victims as well as activities in order to provide a basic infrastructure for this unprecedented and overwhelming task. The overall goal of the 'Project Chernobyl' of the Institute of Risk Research of the University of Vienna was to preserve for mankind the experience and knowledge of the experts among the 'liquidators' before it is lost forever. One method used to reconstruct the emergency measures of Chernobyl was the direct cooperation with liquidators. Simple questionnaires were distributed among liquidators and a database of leading accident managers, engineers, medical experts etc. was established. During an initial struggle with a number of difficulties, the response was sparse. However, after an official permit had been issued, the questionnaires delivered a wealth of data. Furthermore a documentary archive was established, which provided additional information. The multidimensional problem in connection with the severe accident of Chernobyl, the clarification of the causes of the accident, as well as failures and successes and lessons to be learned from the Chernobyl emergency measures and accident management are discussed. (authors)

  13. A preliminary assessment of the radiological impact of the Chernobyl reactor accident on the population of the European Community

    Following the Chernobyl accident the Commission of the European Communities asked the National Radiological Protection Board to carry out a preliminary assessment of the radiological consequences of the accident on the population of the European Community (EC). The aim of the study was to review information on the environmental contamination measured in member states of the EC; to make a preliminary assessment of individual and population doses for each country; to make an estimate of the resulting health impact and to indicate the effects of the various countermeasures taken by member states in terms of the reductions in both individual and population exposure which they produced. All of the main pathways by which people have been and will be exposed to radiation as a result of the accident were included in the assessment. The impact estimate is based on environmental measurements made during the month after the accident, and on calculations made using mathematical models of radionuclide transfer through the environment. The calculated effective doses to average individuals in EC countries from exposure over the next 50 years range from 0.3 μSv (in Portugal) to between about 300 and 500 μSv (in the FRG, Italy and Greece). The total collective effective dose to the population of EC countries, integrated over all time, is estimated to be about 80 000 man Sv. This may be compared to the collective effective dose from natural background radiation of about 500 000 man Sv every year. In some countries, the restrictions placed on consumption of some foods are estimated to have been effective in reducing doses to the most exposed individuals; the reduction being up to about a factor of 2. The results presented in this paper should therefore be regarded as preliminary

  14. U.S./Belarus/Ukraine joint research on the biomedical effects of the Chernobyl Reactor Accident. Final report

    The National Cancer Institute has negotiated with the governments of Belarus and Ukraine (Ministers/Ministries of Health, institutions and scientists) to develop scientific research protocols to study the effects of radioactive iodine released by the Chernobyl accident upon thyroid anatomy and function in defined cohorts of persons under the age of 19 years at the time of the accident. These studies include prospective long term medical follow-up of the cohort and the reconstruction of the radiation dose to each cohort subject's thyroid. The protocol for the study in Belarus was signed by the US and Belorussian governments in May 1994 and the protocol for the study in Ukraine was signed by the US and Ukraine in May 1995. A second scientific research protocol also was negotiated with Ukraine to study the feasibility of a long term study to follow the development of leukemia and lymphoma among Ukrainian cleanup workers; this protocol was signed by the US and Ukraine in October 1996

  15. Latest report about health effects of the chernobyl accident

    After twenty years of Chernobyl accident, the international conference was hold in Kyiv, Ukraine, 24-26, April in 2006. During the conference WHO declares the paper named health effects of the Chernobyl accident. The report look back the nuclear accident in the history, and then recite conclusion about health effects of the Chernobyl accident, which from doses received from the Chernobyl accident, thyroid cancer, non-thyroid solid cancer, leukemia, mortality, cataract and cardiovascular disease. The report is considered as milestone events in the studying of health effects of Chernobyl accident. (authors)

  16. Real and mythical consequences of Chernobyl accident

    This presentation describes the public Unacceptance of Nuclear Power as a consequence of Chernobyl Accident, an accident which was a severest event in the history of the nuclear industry. It was a shock for everybody, who has been involved in nuclear power programs. But nobody could expect that it was also the end romantic page in the nuclear story. The scale of the detriment was a great, and it could be compared with other big technological man-made catastrophes. But immediately after an accident mass media and news agencies started to transmit an information with a great exaggerations of the consequences of the event. In a report on the Seminar The lessons of the Chernobyl - 1' in 1996 examples of such incorrect information, were cited. Particularly, in the mass media it was declared that consequences of the accident could be compared with a results of the second world war, the number of victims were more than hundred thousand people, more than million of children have the serious health detriments. Such and other cases of the misconstruction have been called as myths. The real consequences of Chernobyl disaster have been summed on the International Conference 'One decade after Chernobyl' - 2, in April 1996. A very important result of the Chernobyl accident was a dissemination of stable unacceptance of the everything connected with 'the atom'. A mystic horror from invisible mortal radiation has been inspired in the masses. And from such public attitude the Nuclear Power Programs in many countries have changed dramatically. A new more pragmatic and more careful atomic era started with a slogan: 'Kernkraftwerk ? Nein, danke'. No doubt, a Chernobyl accident was a serious technical catastrophe in atomic industry. The scale of detriment is connected with a number of involved peoples, not with a number of real victims. In comparison with Bhopal case, earthquakes, crashes of the airplanes, floods, traffic accidents and other risky events of our life - the Chernobyl is

  17. Consequences and problems of the Chernobyl accident

    The data on epidemic situation in connection with the Chernobyl accident, based on the personal medical and dosimetric information on all the persons, subjected to radiation effect, and included in the Russian state medicodosimetric register, are presented. The consequences of the Chernobyl accident become the cause for origination of serious radiation injures by 134 persons (with lethal outcome by 37 patients) and also remote radiation stochastic effects by children (thyroid gland cancer) and by liquidators (thyroid gland leucosis and cancer). The permanent stress and other unfavorable factors conditioned aggravation of chronical and increase in somatic diseases and psychoneurotic disorders

  18. Ten years after the Chernobyl Accident

    About 5 percent of the total amount of cesium released from the Chernobyl reactor accident deposited in Sweden. The middle part of Sweden received the highest fallout. During the first period after the accident, cows in these areas were not allowed to graze. Due to the time of the year there were very few problems with cultivated crops, even during the first summer. Game, reindeer, fresh water fish, wild berries and mushrooms, however, were contaminated to a great extent and still after 10 years high concentrations of 137Cs can be found in these animals and in mushrooms, but to a lesser extent in wild berries. Intensive controls of the Cs content are still being carried out in reindeer at the time of slaughtering. During the last few years, hand instruments for estimation of the Cs content of live animals (reindeer mostly) has been available. This makes it possible to slaughter only animals estimated to have levels of Cs below the limit value. When offered for sale, the limit value for 137Cs is 300 Bq/kg for the 'basic foodstuffs' and for meat from game, reindeer, fresh water fish, nuts, wild berries and mushrooms 1500 Bq/kg. High levels of 137Cs will be found in reindeer and fresh water fish from some areas for many years in the future. 8 refs, 11 figs

  19. The Chernobyl Nuclear Power Plant accident: ecotoxicological update

    Eisler, R.

    2003-01-01

    The accident at the Chernobyl, Ukraine, nuclear reactor on 26 April 1986 released large amounts of radiocesium and other radionuclides into the environment, contaminating much of the northern hemisphere, especially Europe. In the vicinity of Chernobyl, at least 30 people died, more than 115,000 others were evacuated, and consumption of milk and other foods was banned because of radiocontamination. At least 14,000 human cancer deaths are expected in Russia, Belarus, and the Ukraine as a direct result of Chernobyl. The most sensitive local ecosystems, as judged by survival, were the soil fauna, pine forest communities, and certain populations of rodents. Elsewhere, fallout from Chernobyl significantly contaminated freshwater and terrestrial ecosystems and flesh and milk of domestic livestock; in many cases, radionuclide concentrations in biological samples exceeded current radiation protection guidelines. Reindeer (Rangifer tarandus) in Scandinavia were among the most seriously afflicted by Chernobyl fallout, probably because their main food during winter (lichens) is an efficient absorber of airborne particles containing radiocesium. Some reindeer calves contaminated with 137Cs from Chernobyl showed 137Cs-dependent decreases in survival and increases in frequency of chromosomal aberrations. Although radiation levels in the biosphere are declining with time, latent effects of initial exposure--including an increased frequency of thyroid and other cancers--are now measurable. The full effect of the Chernobyl nuclear reactor accident on natural resources will probably not be known for at least several decades because of gaps in data on long-term genetic and reproductive effects and on radiocesium cycling and toxicokinetics.

  20. Chernobyl victims: realistic evaluation of medical consequences of Chernobyl accident

    Objective assessment of early and delayed medical consequence of the Chernobyl accident is presented. Mortality of people due to acute radiation disease, burns and mechanical injuries are attributed to the early effects. Oncological and genetic diseases are considered as the delayed effects. Delayed radiation effects on the residents of contaminated territories were estimated by epidemiologic examination taking into account the dose due to radioactive fallout. Certain regions of Belarus, Russia and Ukraine were mostly exposed to contamination. Contamination density by 137Cs is considered and radiation doses due to natural sources and Chernobyl accident are compared. Disease incidence is analysed for carcinoma and genetic diseases. Health hazard caused by non-radiation accidental factors (psychological stress, victim psychology thrusting, groundless evacuation) is assessed

  1. Meteorological data related to the Chernobyl accident

    This report presents a detailed technical description of the JRC-Ispra comprehensive collection of meteorological information related to the Chernobyl accident and attempts an analysis of the data in order to perform an initial checking of their quality and facilitate a suitable and compact way of display

  2. Consequences in Sweden of the Chernobyl accident

    It summarizes the consequences in Sweden of the Chernobyl accident, describes the emergency response, the basis for decisions and countermeasures, the measurement strategies, the activity levels and doses and countermeasures and action levels used. Past and remaining problems are discussed and the major investigations and improvements are given. (author)

  3. Sociological and medical aspects of Chernobyl accident

    The sociological survey data, the results of the state of health service in some districts of Gomel and Mogilev regions as well as of the completeness of the fulfillment of state resolutions concerning the liquidation of the Chernobyl accident after effects are given

  4. Consequences in Guatemala of the Chernobyl accident

    Because of the long distance between Guatemala and Chernobyl, the country did not undergo direct consequences of radioactive contamination in the short term. However, the accident repercussions were evident in the medium and long-term, mainly in two sectors, the economic-political and the environmental sectors

  5. Infant leukaemia after the Chernobyl accident; and reply

    In a correspondence concerning the incidence of infant leukemia in Germany and Greece, a disagreement is aired over the possible link between increased incidence and the fallout from Chernobyl reactor accident. Data are presented to demonstrate that observations made in Germany show no link between in utero exposure to ionising radiation from the fallout and increased infant leukemia. This conflicts with the findings published earlier by other researchers working on observations made in Greece. These researchers defend their initial conclusions. (UK)

  6. Infant leukaemia after the Chernobyl accident; and reply

    Michaelis, J.; Kaletsch, U. [Mainz Univ. (Germany). Inst. fuer Medizinische Statistik und Dokumentation; Burkart, W.; Grosche, B. [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Inst. fuer Strahlenhygiene; Petridou, E.; Trichopoulos, D. [Harvard Center for Cancer Prevention, Boston, MA (United States); Dessypris, N.; Flytzani, V.; Haidas, S.; Kalmanti, M.; Koliouskas, D.; Kosmidis, H.; Piperopoulou, F.; Tzortzatou, F.

    1997-05-15

    In a correspondence concerning the incidence of infant leukemia in Germany and Greece, a disagreement is aired over the possible link between increased incidence and the fallout from Chernobyl reactor accident. Data are presented to demonstrate that observations made in Germany show no link between in utero exposure to ionising radiation from the fallout and increased infant leukemia. This conflicts with the findings published earlier by other researchers working on observations made in Greece. These researchers defend their initial conclusions. (UK).

  7. The Chernobyl accident: An overview of causes and effects

    After a brief description of the Chernobyl reactor and the accident, the activity release is assessed. Radiological effects in the immediate vicinity as well as in Europe are discussed, with particular emphasis on Switzerland. Results concerning food contamination are presented. Protective measures are described and an overview of the radiation dose distribution is given. A comparison with the doses from natural radiation and weapons fallout is made

  8. Revisiting Chernobyl accident:what were the causes?

    It is generally stated, particularly in the West, that the Chernobyl accident was the result of a specific Soviet political and economic system, and that such an accident could not happen in the Western reactors. The reality is much more complicated. A careful examination of events that lead to the accident reveals that there were several different factors contributing to it. If any one of these factors were absent, there would have been no accident, or it would have been only a minor incident. Three of these factors were related to the reactor design, two to the preparation of the experiment, three to the judgment of the operators, judgments made under pressure and in a hurry, and at least one to the management..The management factor is perhaps the most controversial and interesting. One popular interpretation is that the accident was the result of excessive bureaucracy and individual irresponsibility. Some examples of mismanagement in other areas of human activity are quoted in this paper. They illustrate that similar mistakes occur quite frequently all around us, not only in the Soviet Union. The overall analysis of the Chernobyl accident confirms what scientists and engineers have known for a long time. It is extremely difficult, if not impossible, to develop a new technology without making mistakes, some of which may be fatal. (author)

  9. Health consequences [of the Chernobyl accident

    The World Health Organisation Conference on the Health Consequences of the Chernobyl and Other Radiological Accidents, held in Geneva last November, is reported. The lack of representation from the civil nuclear industry led often to one-sided debates instigated by the anti-nuclear lobbies present. Thyroid cancer in children as a result of the Chernobyl accident received particular attention. In Belarus, 400 cases have been noted, 220 in Ukraine and 60 in the Russian Federation. All have been treated with a high degree of success. The incidence of this cancer would be expected to follow the fallout path as the main exposure route was ingestion of contaminated foods and milk products. It was noted that the only way to confirm causality was if those children born since the accident failed to show the same increased incidence. Explanations were offered for the particular susceptibility of children to thyroid cancer following exposure to radiation. Another significant cause of concern was the health consequences to clean-up workers in radiological accidents. The main factor is psychological problems from the stress of knowing that they have received high radiation doses. A dramatic increase in psychological disorders has occurred in the Ukraine over the past ten years and this is attributed to stress generated by the Chernobyl accident, compounded by the inadequacy of the public advice offered at the time and the socio-economic uncertainties accompanying the breakup of the former USSR. (UK)

  10. Chernobyl

    The Chernobyl reactor accident provoked a wave of public discussion about the peaceful uses of nuclear energy, and particularly so in the Federal Republic of Germany. The article in hand discusses some consequences as can be assessed so far, although information on the causes and the course of the accident still is very incomplete. From the information available so far, the possible sequence of events is described. The safety engineering and design of Federal German reactor types is compared with the reactor type installed at Chernobyl, with the result that the Soviet type never would have been licensed in the FRG. The fallout, i.e. the resulting radiation exposure of the population, is expected to remain within the limits of the natural radioactivity; the political effects and possible consequences with regard to further commitments for the advancement of the fast breeder reactor line and the reprocessing of spent fuel are discussed. (orig./RB)

  11. Thyroid carcinomas induced by Chernobyl nuclear accident

    The Chernobyl nuclear station accident is the unprecedented catastrophic accident in human nuclear industry with a large of quantity of radioactive nucleons resulting in contamination in many countries of the northern Hemisphere. After almost 20 years studying, it is approved that Belarus is the most serious affected country by the accident. Especially thyroid carcinomas in the people exposed to radioactive fall-out is considered to be the only one late radiation effect. RET gene in the happening of thyroid carcinomas is being paid close attention at present

  12. Collection, documentation and assessment of data measured in the Federal Republic of Germany after the reactor accident in the nuclear power plant at Chernobyl

    Representative for the Federal Republic of Germany, regions were selected that showed a lesser (Hesse) and higher (Bavaria) contamination. The contamination in individual environmental media (milk, i.a.) was demonstrated by values measured and assessed on a prognostic model and subsequently compared with each other. The intake was then evaluated on the basis of food basket and total body measurement data for determining the dose for various age groups and regions. Against those from food baskets, the doses derived from total body measurements were generally lower by 20-60%. This indicates change in consumption habits, adherence to recommendations and the effect of countermeasures, particularly in the higher contaminated southern region of the Federal Republic of Germany. The intake and dose assessments were compared to those measured during the time of contamination from fallout due to nuclear weapons tests. External radiation exposure and cumulative dose from fallout due to nuclear weapons tests and the Chernobyl accident were calculated. In 1986, the radiation exposure from external sources and from ingestion in consequence of the reactor accident had reached in the region of highest contamination (County of Berchtesgaden) 40%, in the lesser contaminated region (Hesse) about 5% of the average natural radiation exposure. (orig./HP)

  13. Radiological impact of the Chernobyl accident with regard to Thailand

    The accident at the Chernobyl nuclear power plant in April 1986, in which large amounts of radioactive material were released into the environment, was the most serious accident that occurred in connection with the use of nuclear energy for electricity generation. The radiation levels from released radionuclides were highest in the immediate vicinity of the reactor, in the western part of the former Soviet Union and in the European countries. In other parts of the world, radionuclide contamination was due not only to external radiation but also to ingestion of contaminated food, mainly milk products. 1 fig., 1 tab

  14. Consequences of the Chernobyl accident in Lithuania

    After the Chernobyl accident of 26 April, 1986, population dose assessment favours the view that the radiation risk of population effected by the early fallout would be different from that in regions contaminated later. Taking into account the short half-time of the most important radioactive iodine isotopes, thyroid disorders would be expected mainly to follow the early fallout distribution. At the time of accident at Unite 4 of the Chernobyl NPP, surface winds were from the Southeast. The initial explosions and heat carried volatile radioactive materials to the 1,5 km height, from where they were transported over the Western part of Belarus, Southern and Western part of Lithuania toward Scandinavian countries. Thus the volatile radioiodine and some other radionuclides were detected in Lithuania on the very first days after the accident. The main task of the work - to conduct short Half-time radioiodine and long half-time radiocesium dose assessment of Lithuanian inhabitants a result of the early Chernobyl accident fallout

  15. Stress in accident and post-accident management at Chernobyl

    The effects of the Chernobyl nuclear accident on the psychology of the affected population have been much discussed. The psychological dimension has been advanced as a factor explaining the emergence, from 1990 onwards, of a post-accident crisis in the main CIS countries affected. This article presents the conclusions of a series of European studies, which focused on the consequences of the Chernobyl accident. These studies show that the psychological and social effects associated with the post-accident situation arise from the interdependency of a number of complex factors exerting a deleterious effect on the population. We shall first attempt to characterise the stress phenomena observed among the population affected by the accident. Secondly, we will be presenting an anlysis of the various factors that have contributed to the emerging psychological and social features of population reaction to the accident and in post-accident phases, while not neglecting the effects of the pre-accident situation on the target population. Thirdly, we shall devote some initial consideration to the conditions that might be conducive to better management of post-accident stress. In conclusion, we shall emphasise the need to restore confidence among the population generally. (Author)

  16. Appearing consequences of the Chernobyl accident

    Full text: Chernobyl is the greatest world's tragedy after Chirosima. Global results of this tragedy is already being seen. They are the people who have received radiation dose. the first type of cancer 5 years after Chernobyl accident was the thyroid gland cancer, the reason of it, large quantities of radioactive iodine in the air, food products, milk of cattle and finally their collection in the thyroid gland cancer entering the human body. Period all of a sudden after 10 years completed the next latent type of cancer was leykoz. Giving rise to this type of cancer more sensitive to radiation of the body - a violation of the spinal brain function. After 20 years passing from the accident in the first generation one ill child must be born cause of undergoing to radiation father or mother from each three days in Belarus, Russia and Ukraine

  17. The Chernobyl accident — an epidemiological perspective

    Cardis, E; Hatch, M.

    2011-01-01

    Twenty-five years have passed since radioactive releases from the Chernobyl nuclear accident led to exposure of millions of people in Europe. Studies of affected populations have provided important new data on the links between radiation and cancer – particularly the risk of thyroid tumours from exposure to iodine isotopes - that are important not only for a fuller scientific understanding of radiation effects, but also for radiation protection.

  18. The Chernobyl nuclear accident and its consequences

    An AAEC Task Group was set up shortly after the accident at the Chernobyl Nuclear Power Plant to monitor and evaluate initial reports and to assess the implications for Australia. The Task Group issued a preliminary report on 9 May 1986. On 25-29 August 1986, the USSR released details of the accident and its consequences and further information has become available from the Nuclear Energy Agency of OECD and the World Health Organisation. The Task Group now presents a revised report summarising this information and commenting on the consequences from the Australian viewpoint

  19. Medical aspects of the Chernobyl accident

    From 11 to 13 May 1988, the All-Union Scientific Centre of Radiation Medicine convened a Conference on Medical Aspects of the Chernobyl Accident in Kiev. This was the first conference on this subject with international participation held in the Soviet Union. There were 310 specialists representing Soviet scientific establishments and over 60 experts from 23 other countries and international organizations participated in the Conference. Participants at the Conference discussed medical aspects of accident mitigation, including therapeutic, psychological, demographic, epidemiological and dosimetric problems. These proceedings include 29 reports presented by Soviet scientists during the four sessions as well as summaries of discussions and opening addresses. Refs, figs and tabs

  20. Pseuchoneurotic disorders associated with the Chernobyl accident

    This survey relied largely on random selection. As a rule, the attention of the specialists was directed to people with certain specific complaints. Psychogenic disorders observed in the area of the accident at the Chernobyl plant were followed and studied by a team of specialists from the USSR Ministry of Health, beginning on 29 April 1986. According to the nature of the observed stress effects and of the resultant psychic disorders, it was possible to delineate three periods: first the acute period of the disaster from the time of the accident, lasting about 10 days until completion of the evacuation of the population from the danger zone (5 May); second the intermediate delayed period, the period of comparatively early consequences (from 6 May to October 1986); and third, the period of remote consequences. In the course of the year, 1,572 people were examined. The data available indicate that the psychogenic disorders observed after the Chernobyl accident can be regarded as the consequence of a single process, the dynamics of which are determined on the one hand by the characteristics of the emergency situation and on the other by the traits and the degree of preparedness of the people involved. The special nature of the stress situation in all three periods - the threat to health - gave rise to certain characteristic clinical observations, primarily a high degree of somatization and hypochondria. An understanding of the psychological disorders affecting those who lived through the Chernobyl accident, and of their effects on the work capability and pattern of life of people at various stages after the accident, has made it possible to develop and implement a complex and refined system of prophylactic and medical measures. (author)

  1. Preliminary dose assessment of the Chernobyl accident

    From the major accident at Unit 4 of the Chernobyl nuclear power station, a plume of airborne radioactive fission products was initially carried northwesterly toward Poland, thence toward Scandinavia and into Central Europe. Reports of the levels of radioactivity in a variety of media and of external radiation levels were collected in the Department of Energy's Emergency Operations Center and compiled into a data bank. Portions of these and other data which were obtained directly from published and official reports were utilized to make a preliminary assessment of the extent and magnitude of the external dose to individuals downwind from Chernobyl. Radioactive 131I was the predominant fission product. The time of arrival of the plume and the maximum concentrations of 131I in air, vegetation and milk and the maximum reported depositions and external radiation levels have been tabulated country by country. A large amount of the total activity in the release was apparently carried to a significant elevation. The data suggest that in areas where rainfall occurred, deposition levels were from ten to one-hundred times those observed in nearby ''dry'' locations. Sufficient spectral data were obtained to establish average release fractions and to establish a reference spectra of the other nuclides in the release. Preliminary calculations indicated that the collective dose equivalent to the population in Scandinavia and Central Europe during the first year after the Chernobyl accident would be about 8 x 106 person-rem. From the Soviet report, it appears that a first year population dose of about 2 x 107 person-rem (2 x 105 Sv) will be received by the population who were downwind of Chernobyl within the U.S.S.R. during the accident and its subsequent releases over the following week. 32 refs., 14 figs., 20 tabs

  2. Determinations of cesium-134, cesium-137 and potassium-40 as a measure of intrauterine exposure to rays and contamination of human milk after the Chernobyl reactor accident

    In order to gain better insights into the degree of intrauterine exposure to rays after the Chernobyl reactor accident, placental measurements of the activity levels of cesium-134 and cesium-137 were carried out in 125 expectant mothers from the Munich area using four thallium-activated sodium iodine crystal detectors. The lower limit of detection determined for this technique was 1-2 bq/kg. Parallel tests were performed on human milk samples to establish their contents of cesium-137 and potassium-40. The ultrapure germanium detector used for this purpose measured levels down to a detection threshold of 1 bq/l. In a total of 13 placentae (10 %) and 56 milk samples (57%) the activity of cesium-137 was found to be so low as to preclude detection. The highest values measured were 18.6 bq/kg for the placentae and 10.6 bq/l for the milk samples. The activity concentrations of potassium-40 were frequently seen to exceed those of cesium-137, the highest value determined here being 73.6 bq/l. The author has come to the conclusion that the alleged increases in radiation levels remain within the range of variations generally expected to occur with natural radiation. Mothers are not discouraged from breast-feeding, even though their attention must be drawn to the fact that the rates of malignant diseases and genetic damage tend to rise on a global scale. (KST)

  3. Radioactivity in surface and coastal waters of the British Isles. Monitoring of fallout from the Chernobyl reactor accident

    The incremental contribution to the gamma dose rate in intertidal areas from Chernobyl was highest in areas of high deposition but this did not persist and an upper estimate to the dose by this route was about 0.025 mSv. Levels in low deposition areas were much less, so that overall no significant exposure occurred due to beach occupancy. The collective dose commitment from Chernobyl fallout in marine pathways is tentatively estimated to be 30 man Sv. Almost all of this is due to consumption of sea fish and to the caesium radionuclides, but due to maximising assumptions in the calculation this is likely to be an overestimate. The collective dose commitment from freshwater fish is very difficult to assess with confidence but can be conservatively set at less than 1 man Sv at which level it is not significant. (UK)

  4. Chernobyl accident: lessons learned for radiation protection

    Full text: The long-term nature of the consequences of the accident at the Chernobyl nuclear power plant, which was a major technological catastrophe in terms of its scope and complexity and created humanitarian, environmental, social, economic and health consequences. After more than twenty years we can conclude that Chernobyl accident was requested the big efforts of the national governments and international organisations for improvement new approaches to radiation safety, radiation protection, health care, emergency preparedness and response. During first years after accident some response actions did more harm than good because not based on international radiation protection principles, based on criteria developed during emergency and associated with mistrust, emotions, political pressure. As a result was inappropriate government reaction: unjustified relocation and decontamination - loss jobs, homes, billions of $ cost; unjustified compensation (high portion of annual national budgets). Non-radiological (e.g. detrimental economic, social and psychological) consequences was worse than direct radiological consequences. Psychological effects do not correlate with real exposure but with perception of risk. The affected people believe in threat to their health, doubt what has been reported about accident and resulted doses, got modification in life style, have somatic complains, got substance abuse (alcohol, tranquilizers, sleeping pills). The lack of accurate information and misperception of real radiation risk is believed also to have lead to change in behavior of some affected people. Possible long-term health effect due to the accidental exposure remains an issue. There is no doubt that excess thyroid cancer incidence results from exposure to radioactive iodines, mainly by iodine-131. Radiation induced thyroid cancer could easily be prevented by timely warning, effective thyroid blocking, timely restriction of consumption for contaminated food. The

  5. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1.

    Imanaka, Tetsuji; Hayashi, Gohei; Endo, Satoru

    2015-12-01

    In this report, we have reviewed the basic features of the accident processes and radioactivity releases that occurred in the Chernobyl accident (1986) and in the Fukushima-1 accident (2011). The Chernobyl accident was a power-surge accident that was caused by a failure of control of a fission chain reaction, which instantaneously destroyed the reactor and building, whereas the Fukushima-1 accident was a loss-of-coolant accident in which the reactor cores of three units were melted by decay heat after losing the electricity supply. Although the quantity of radioactive noble gases released from Fukushima-1 exceeded the amount released from Chernobyl, the size of land area severely contaminated by (137)Cesium ((137)Cs) was 10 times smaller around Fukushima-1 compared with around Chernobyl. The differences in the accident process are reflected in the composition of the discharged radioactivity as well as in the composition of the ground contamination. Volatile radionuclides (such as (132)Te-(132)I, (131)I, (134)Cs and (137)Cs) contributed to the gamma-ray exposure from the ground contamination around Fukishima-1, whereas a greater variety of radionuclides contributed significantly around Chernobyl. When radioactivity deposition occurred, the radiation exposure rate near Chernobyl is estimated to have been 770 μGy h(-1) per initial (137)Cs deposition of 1000 kBq m(-2), whereas it was 100 μGy h(-1) around Fukushima-1. Estimates of the cumulative exposure for 30 years are 970 and 570 mGy per initial deposition of 1000 kBq m(-2) for Chernobyl and Fukusima-1, respectively. Of these exposures, 49 and 98% were contributed by radiocesiums ((134)Cs + (137)Cs) around Chernobyl and Fukushima-1, respectively. PMID:26568603

  6. Thyroid diseases after Chernobyl accident

    Radioactive iodine is released at every atomic-bomb testings and nuclear plants accidents and radioactive iodine is taken up by thyroid glands (internal radiation). In addition to the internal radiation, radioactive fallout causes the external radiation and thyroid glands are known to be sensitive to the external radiation. Furthermore, patients with radiation-induced thyroid disease can survive for a long time regardless of the treatment. The survey of thyroid diseases, therefore, is very sensitive and reliable ways to investigate the effects of radiation caused by atomic bomb explosion, testing and various types of nuclear plants' accidents. Our group from Nagasaki University was asked to investigate the thyroid diseases and jointed to the Sasakawa Project. In order to investigate the effects of radiation on thyroid disease, it is essential 1) to make a correct diagnosis in each subject, 2) to calculate a correct radiation dose in each subject and finally, 3) to find out the correlation between the radiation dose and thyroid diseases including age-, sex- and area-matched controls. We have established 5 centers (1 in Russia, 2 in Belarus, 2 in Ukraine) and supplied the most valuable ultrasonography instruments, commercial kits for the determination of serum free T4 and TSH level and for the autoantibodies, instrument for urinary iodine measurements, syringers, tubes, refrigerators, etc. We visit each center often and asked people at centers to come to Japan for training. Protocol of investigation is essentially the same as that in Nagasaki, and we are planning to investigate more than 50,000 children within 5 years. We are hoping to show a definite conclusion in the near future. Recent articles are also discussed. (author)

  7. Consequences and experiences - ten years after the Chernobyl accident

    On 26 April 1986. the most serious accident in the history of the nuclear industry occurred at the Chernobyl nuclear power plant in the former Soviet Union, near the present borders of Ukraine, Belarus and Russia.Material released into the atmosphere dispersed and eventually deposited back on the surface of the earth,were it was measurable over the whole northern hemisphere. Millions of people and all segments of life and economy have been affected by the accident. Radioactive contamination has reached several tens of MBq/m2 in the area of 30 km diameter around the reactor in 1986., and plants and animals have been exposed to short lived radionuclides up to external doses of several tens of Gy. In the early phase after the accident, 237 persons were suspected to have acute radiation syndrome as a consequence of the Chernobyl accident, but diagnoses has been confirmed in 134 cases. In that phase 28 person have died as a consequence of exposure. There are significant non - related health disorders and symptoms, such as anxiety, depression and various psychosomatic disorders attributable to mental stress among the population in the region

  8. Children thyroid carcinoma and Chernobyl accident

    In Nuclear medicine diagnostic department of Kaunas Medical University Clinics 22 children (6-16 years of age), ill with thyroid carcinoma were examined. Bas ing on the data of Kaunas Medical University Clinic the incidence of children thyroid carcinoma did not increase after Chernobyl accident. Ratio of boys and girls was 4.5:1. Differentiated thyroid carcinoma was detected in 15 (68.2%)children, mixed carcinoma - 4 (18.2%), nondiferenciated -3 (13.6%) children. First stage of cancer was detected only in one patient (4.5%), second -16 (72.7%), third - 3 (13.6%), fourth stage - 2 (9.1%) patients. (author)

  9. The Chernobyl active phase: why the ''official view'' is wrong [Chernobyl accident

    The results of a new investigation into the active phase of the Chernobyl accident are summarised. This phase is defined as the period from the initial destruction of the core to the puzzling and very sharp drop in environmental radionuclide release about nine days later. The research was carried out at Chernobyl over 18 months in cooperation with scientists living there. Its objective was to examine the reliability of the official Soviet presentation at the IAEA post-accident review conference in August 1986. In order to reconstruct the events, four new spheres of information were brought together: a reappraisal of the effectiveness of the accident management actions taken to limit the consequences of the accident; a description of the remains of the reactor building and the solidified corium; results of radiochemical analyses of the melted fuel; and an analysis of radioisotope release dynamics. An alternative explanation for the bathtub shaped release curve has been arrived at and a rough release estimate made which confirms suspicions that the amount of radioactivity released into the environment was greater than that officially reported. (UK)

  10. The Chernobyl accident--an epidemiological perspective.

    Cardis, E; Hatch, M

    2011-05-01

    Twenty-five years have passed since radioactive releases from the Chernobyl nuclear accident led to the exposure of millions of people in Europe. Studies of affected populations have provided important new data on the links between radiation and cancer-particularly the risk of thyroid tumours from exposure to iodine isotopes-that are important not only for a fuller scientific understanding of radiation effects, but also for radiation protection. It is now well documented that children and adolescents exposed to radioiodines from Chernobyl fallout have a sizeable dose-related increase in thyroid cancer, with the risk greatest in those youngest at exposure and with a suggestion that deficiency in stable iodine may increase the risk. Data on thyroid cancer risks to other age groups are somewhat less definitive. In addition, there have been reported increases in incidence and mortality from non-thyroid cancers and non-cancer end points. Although some studies are difficult to interpret because of methodological limitations, recent investigations of Chernobyl clean-up workers ('liquidators') have provided evidence of increased risks of leukaemia and other haematological malignancies and of cataracts, and suggestions of an increase in the risk of cardiovascular diseases, following low doses and low dose rates of radiation. Further careful follow-up of these populations, including the establishment and long-term support of life-span study cohorts, could provide additional important information for the quantification of radiation risks and the protection of persons exposed to low doses of radiation. PMID:21396807

  11. Summary report on the post-accident review meeting on the Chernobyl accident

    After an Executive Summary which gives an overview of the accident at the Chernobyl nuclear reactor, the first section of the main INSAG report presents the understanding of INSAG members of the causes of the accident, concluding that it was the result of a remarkable range of human errors and violation of operating rules, in combination with specific reactor features which compounded and amplified the effects of the errors and led to the reactivity excursion. The second section presents the problem of radionuclide release from the damaged reactor, showing that there was an initial intense release associated with the destructive events in the accident, then the release rates fell over the next few days up to 7x1016 Bq/d five days after the accident initiation, and at that point the release rates began to increase and reached about 3x1017 Bq/d nine days after the accident initiation. There was then a drop in the radionuclide release to 4x1013 Bq/d and the release rates have continued to decline since that time. The next section describes the accident management at the site, fire-fighting, cleanup of the site and the entombment of the damaged unit. In the fourth section the radiation protection aspects of the accident, the radionuclide transfer through the environment, the exposure of members of the public pointing to the radionuclides iodine-131 and cesium-137 which entered the food-chains, the on-site and off-site emergency response, the decontamination and the health effects including both the early non-stochastic effects and the late stochastic ones are presented. Safety issues to be pursued in order to derive whatever safety lessons can be learned from the Chernobyl accident are considered in Section V. The next two sections present INSAG's observations, conclusions and recommendations based on the lessons learned so far from the accident and ranging from reactor operation to radiation protection and international co-operation in nuclear safety. Finally the

  12. Inhalation of radionuclides during agricultural work in areas contaminated as a result of the Chernobyl reactor accident

    Radionuclide concentrations have been determined inside and outside the cabs of tractors operated on soils that are typical of the 30 km exclusion zone around the Chernobyl nuclear power plant. It was found that when the total plutonium deposit exceeded 3.7 kBq m-2 and the 137Cs deposit exceeded 7.4 MBq m-2, the levels of these radionuclides in the operator's cabin could exceed the maximum permissible air concentrations. However, due to the seasonal nature of work, the quantities of these radionuclides inhaled would not exceed the annual limit on intake. Dose to the lungs caused by the inhalation of hot particles has been addressed by either including or neglecting spatial dose distribution. The levels of risk of carcinogenic changes in cells of lung tissue calculated according to each of the two approaches have been shown to be of the same order of magnitude. (author)

  13. Medical demographic consequences of the Chernobyl accident

    A demographic study was made of the population evacuated from the 30-km zone around the nuclear power plant and of the population living in areas over which the radioactive cloud passed and over which the plume was formed. For the farmers evacuated from 11,655 homes in the Chernobyl region, 7,000 new houses, built in the Kiev region, had already been provided within 5 months of the accident, and by the summer of 1987 another 5,000 houses were available. A study of the resettlement of the population carried out a year after the accident showed that more than 60% of those evacuated continued to live in the regions from which the evacuation had taken place; about 5% were resettled in other republics, and 20% within their own republic. (author). 7 figs, 2 tabs

  14. Observations on radioactivity from the Chernobyl accident

    A preliminary study of radioactivity from the Chernobyl accident for the Department of the Environment was started in June 1986 which involved taking on an opportunistic basis, samples of air, rain, grass and soil in the UK. This study was integrated into a programme of other investigations funded by the Departments of Health and Social Security and of Energy including measurements on people, in air, deposition and soil overseas, on deposition to buildings and the derivation where possible of parameters of interest in accident assessment. This report is a comprehensive account of all these initial investigations and presented in fulfilment of the Preliminary Study under DoE contract PECD 7/9/359. (author)

  15. Perinatal mortality after Chernobyl. - Excess perinatal deaths, stillborns and malformations in Germany, Europe and highly exposed regions of Germany and Europe after the Chernobyl reactor accident of April 1986

    In 1987, the year following the Chernobyl accident, perinatal mortality was significantly increased in Germany as well as in Poland. The numbers of excess perinatal deaths were 317 and 320, respectively. Monthly data from Germany, Poland and the region of Zhitomir, Ukraine, exhibit a significant association between perinatal mortality and the delayed caesium concentration in pregnant women with a time-lag of seven months. In addition to an increase in 1987, perinatal mortality in the most contaminated areas of Ukraine and Belarus show a second rise beginning in 1989 which can be related to the action of strontium. The cumulative effect from strontium outweighs the effect of caesium in 1987 by more than a factor of 10. Monthly data of malformation rates in newborn were only available for the State of Bavaria, Germany. No increase is observed in 1987 in the Bavarian average. But at the end of 1987, seven month after the highest caesium concentration in pregnant women in April and May 1987, a highly significant dependency of malformation rates on caesium soil contamination is found. There is a growing awareness of many lasting detrimental health consequences of the Chernobyl nuclear reactor eruption in large parts of central, eastern and northern Europe. A flexible synoptic spatial-temporal method based on logistic regression is suggested for the analysis of official national as well as district by district reproductive failure data. The main idea is to model a spatial-temporal annual or monthly data set by adjusting for country or region specific trend functions and either to test for local or global temporal jumps or broken sticks (change-points) associated with the years 1986 or 1987 or, alternatively, to test for a spatial effect of regionally stratified exposure or dosimetry data on reproductive outcome. In numerous official data sets of central, eastern, and northern European countries or regions absolute or relative increases of stillbirth proportions after

  16. Chernobyl, 17 after

    This information document takes stock on the Chernobyl accident effects, 17 years after the reactor accident. The domains concerned are: the Chernobyl power plant, the sanitary consequences of the accident in the most exposed countries, the Chernobyl environment and the polluted regions management, the Chernobyl accident consequences in France; Some data and technical sheets on the RBMK reactors and the international cooperation are also provided. (A.L.B.)

  17. Reviewing ecosystems affected by the fallout from the Chernobyl reactor accident with respect to the resulting population exposure

    The research project is intended to yield information on the current radiological situation resulting from the Chernobyl fallout. Environmental materials of particular interest are game, mushrooms, berries, and forest stands in the most heavily affected forest ecosystem of the Bavarian forest area called Bayerischer Wald. This area has been intensively monitored in the period from 1988 until 1994, so that the development up to the current radiological situation can be analysed. Activities under the research project will encompass: Measurement of the radioactive contamination of specimens of the game population in the Bodenmais forest area of 7 500 hectares. Measurement of seasonal variations of the radiocesium activity in various indicator plants of the food chain of the game population. Soil sampling and radioactivity measurement at 2 cm depth intervals. The measuring work will be carried out in two areas which have been earmarked for monitoring over the last eight years (B1 and B2). The measured results will be compared with earlier data, and long-term space and time-dependent information on the transfer of radiocesium in the forest ecosystem under review will be derived. (orig./CB)

  18. External dose assessment in the Ukraine following the Chernobyl accident

    Frazier, Remi Jordan Lesartre

    While the physiological effects of radiation exposure have been well characterized in general, it remains unclear what the relationship is between large-scale radiological events and psychosocial behavior outcomes in individuals or populations. To investigate this, the National Science Foundation funded a research project in 2008 at the University of Colorado in collaboration with Colorado State University to expand the knowledge of complex interactions between radiation exposure, perception of risk, and psychosocial behavior outcomes by modeling outcomes for a representative sample of the population of the Ukraine which had been exposed to radiocontaminant materials released by the reactor accident at Chernobyl on 26 April 1986. In service of this project, a methodology (based substantially on previously published models specific to the Chernobyl disaster and the Ukrainian population) was developed for daily cumulative effective external dose and dose rate assessment for individuals in the Ukraine for as a result of the Chernobyl disaster. A software platform was designed and produced to estimate effective external dose and dose rate for individuals based on their age, occupation, and location of residence on each day between 26 April 1986 and 31 December 2009. A methodology was developed to transform published 137Cs soil deposition contour maps from the Comprehensive Atlas of Caesium Deposition on Europe after the Chernobyl Accident into a geospatial database to access these data as a radiological source term. Cumulative effective external dose and dose rate were computed for each individual in a 703-member cohort of Ukrainians randomly selected to be representative of the population of the country as a whole. Error was estimated for the resulting individual dose and dose rate values with Monte Carlo simulations. Distributions of input parameters for the dose assessment methodology were compared to computed dose and dose rate estimates to determine which

  19. Examination of ecosystems affected by the Chernobyl reactor accident and assessment of resulting radiation exposure of the population

    Since 1988, within the scope of several research projects, in 7,000 samples of soil, plants, mushrooms and game from forest ecosystems, the 137Cs activity concentration was measured, in order to investigate the dynamics of the nuclide. The investigation sites are a spruce mountain forest near the village Bodenmais (Bavaria) and an oak forest close to Fuhrberg (Lower Saxony). In both forests, unfavourable location conditions cause a relativ high transfer of 137Cs into plants and game. Typifying for the 3 forest sites was the high intra- and interspecies variablilty of the 137Cs activity concentration. Even 14 years after the Chernobyl-fallout at the 3 investigation sites, the average 137Cs inventory, contained in the top 10 cm of soil was 56% and 93% in the top 20 cm. From 1987 till 1994, in the leaves of the investigated plant species the 137Cs activity concentration decreased significant, during the following years there was little change. The effective half life of 137Cs varies between -3 years for raspberry and -24 years for the fern Pteridium aquillinum, whereas most of the plant species show half lifes of about -5 years. In 2000, as usual mushrooms from the Bodenmais investigation site showed the highest 137Cs contaminations. The aggregated transfer factors (Tagg) for soil → plant and soil → flesh varied with several orders of magnitude. Tagg values for Soil autotroph plant species reached from 0,0001 m2.kg-1 to 0,41 m2.kg-1. While at the permanent study plots in Bodenmais and Fuhrberg the Tagg values were of comparable quantity, at Goettingen, they were lower than two orders of magnitude. For example Tagg for Cs-137 in wild boar from Bodenmais was 392 times higher than for wild boar from Goettingen. From 1987 till 2000, the 137Cs activity in roe-deer from Bodenmais varied according to the seasons, with highest values in autumn, and lowest values in spring. In consequence of the decrease of the 137Cs activity concentration in grazing plants, from 1987

  20. Environmental stress reactions following the Chernobyl accident

    The widespread public anxiety and pessimism about the Chernobyl accident appears to be out of all proportion to the radiation induced health effects. The concept of stress is invoked to explain the widespread damage to general health and well-being. Stress can be defined as the process by which adverse mental experiences have negative effects on bodily functions. The mechanism is physiological, mediated through the autonomic nervous system and the endocrinological system. The International Chernobyl Project study was conducted by the International Advisory Committee in 1990 and published by the IAEA in 1991. The study found significant differences between 'contaminated' and 'clean' areas for symptoms attributable to stress; 45% (30% in 'clean' areas) of the people believed that they had an illness due to radiation exposure. The level of general health was found to be low and almost all ailments were attributed by the population to radiation. These effects (confirmed by other studies) were compounded by poor public understanding of radiation; initial secrecy; subsequent lack of effective communication; and the collapse of the centralize political and economic systems. Distrust of 'authorities' is widespread. One important study using a regression method has shown that 'economic situation' and 'attitude to the future' are better predictors of stress symptoms than contamination level. 61 refs, 2 tabs

  1. The Chernobyl accident - impact on Western Europe

    The implications of the Chernobyl accident are outlined. For the USSR, 135,000 people had to be moved. Farming in these regions will cause difficult problems in the future. The contamination of 131I caused great problems in Western Europe the first month after the accident. The excess dose the first year after the accident was generally below 2 mSv. Over a 50-year period an increase over background of less than 1% is predicted. It is not possible to state if this irradiation has any health impact. Great problems were caused for the population in northern Scandinavia because of the reliance on reindeer breeding, hunting and fishing. Very few Lapps will, however, reach an effective dose equivalent of 5 mSv during 1986/1987. This is less than the natural background effective dose equivalent during a year for the average Swede. Therefore, the greatest problem seems to be the difficulty for the Lapps to sell their reindeer meat and lake fish. 40 refs.; 2 figs.; 11 tabs

  2. Impact on London of the Chernobyl accident

    The radiation levels in London following the Chernobyl accident have been measured and are reported. The sampling programme of atmospheric dusts, water and milk is detailed. A few other items, eg food and ships arriving at Tilbury and Sheerness were also tested. The counting techniques are given. The results show that at its peak the additional activity contributed by the inhalation of the debris probably increased the radiation dose to an individual in London by about 40% of the natural dose for that period. The increased activity in milk gave rise to an additional dose and may continue to do so. However, the radioactive debris from the fallout was much less in London than other parts of the UK. (U.K.)

  3. Health protection measures after the Chernobyl accident

    The article describes the nutritional measures introduced to protect health after the Chernobyl accident, and the associated costs. The toal value of the reindeer meat, mutton, lamb and goat meat saved as a result of such measures in 1987 amounted to approx. NOK 250 million. The measures cost approx. NOK 60 million. The resulting reduction in the radiation dose level to which the population was exposed was 450 manSv. In 1988, mutton/lamb and goat meat valued at approx. NOK 310 million was saved from contamination by similar measures, which cost approx. NOK 50 million. The resulting dose level reduction was approx. 200 manSv. The relationship (cost/benefit ratio) between the overall cost of the measures taken to reduce radioactivity levels in food and the dose level reduction achieved was acceptable. 11 refs

  4. Public relations and the Chernobyl accident

    In 1991-1993, a large-scale measuring programme was carried out in Germany to assess the radiation burden of the population in regions polluted due to the Chernobyl accident. The primary goal was to objectively inform the population about their actual radiation exposure, to reduce unjustified fears, and to enable countermeasures to be taken where appropriate. A comprehensive overview of the radiation situation was thus also obtained in the regions examined. Channels were sought and found in order to communicate with the more than 250 000 individuals involved in the programme as well as with scientific institutions and the public. Direct communication of the results to the persons examined by means of a certificate including a short explanation proved to be essential to create an atmosphere of trust. (P.A.)

  5. The observed and predicted health effects of the Chernobyl accident

    Due to poor design, operator error and the absence of an established Safety Culture, the worst accident in the history of nuclear power involving the Unit 4 RMBK reactor occurred at Chernobyl in the Ukraine in the early morning of 26 April 1986. This accident led to the contamination of large tracts of forest and agricultural land (in the former Soviet Union) and the evacuation of a large number of people. Thirty-one people died at the time of the accident or shortly afterwards, and 203 people were treated for the Acute Radiation Syndrome. From about 1990 a significant increase in the number of childhood thyroid cancers has been noted in Belarus and Ukraine. Because of the social, political and economic situation in the Soviet Union soon after the accident, the anxiety and stress induced in the general population has been enhanced to the point where it may well be the single most important indirect health effect of the accident. Contamination outside the former Soviet Union was largely confined to Europe, where it was extremely patchy and variable. Contamination in the rest of the Northern Hemisphere was insignificant. The health effects in the General Population in the Contaminated Regions in the former USSR and Europe, are predicted to be low and not discernible. However, there may be subgroups within, for example, the Liquidators, which if they can be identified and followed, may show adverse health effects. Health effects in the rest of the Northern Hemisphere will be inconsequential. (author) 38 refs., 1 tab., 1 fig

  6. Consequences of Chernobyl accident in Europe

    Full text: Among nuclides emitted from the destroyed Chernobyl reactor only radioiodine and radiocesium were of serious health concern. The amount of iodine-131 released in this catastrophe was about 180 times lower than during the total release of this nuclide from 77 nuclear weapon tests performed in remote areas in the record year of 1962, and the release of cesium-137 was only five times lower. However, the bulk of Chernobyl emission was confined in time to only twelve days, and its geographical dispersion was much smaller and closer to populated areas than that of nuclear tests debris. Only a small part of cesium-137 and cesium-134 from the Chernobyl reactor reached the Southern Hemisphere, via stratospheric transport routes. Therefore, radiation doses received by the population from the Chernobyl radionuclides was in the affected areas higher than from the nuclear tests fallout. In part of Europe the doses received by children in the thyroid gland from iodine-131 radiation were high enough to expect an increase in thyroid cancers. In the contaminated regions of Belarus, Ukraine and Russia the estimated thyroid doses in children could reach up to several thousand mSv. In a group of >100,000 persons evacuated during the first few weeks, the average thyroid dose in children under 3 years of age was about 1000 mSv, and in adults about 70 mSv. Between 1986 and 1995 about 700 thyroid cancers in children were reported from Belarus, Ukraine and Russia, most of which may be attributed to Chernobyl radiation. About 95% of these cancers are believed to be curable. The whole body dose from cloud passage, ground deposition and intake of cesium-137 and of other radionuclides was much smaller than thyroid doses, and do not pose a real risk to the population. The average lifetime (70 years) whole body doses in the most contaminated regions of Belarus ranged between 88 and 160 mSv, in Ukraine 84 and 120 mSv and in Russia 78 to 130 mSv. The average doses to 800

  7. Radioactive contamination characteristics in China following Chernobyl accident

    In the aftermath of Chernobyl nuclear reactor accident, the Environmental Radiation Surveillance Network of Ministry of Public Health of China has done monitoring on environmental samples to determine the contamination levels of radioactivity. Radionuclides, such as I-131, I-132, Cs-137, Cs-134 and Te-132, were found on surface of airplanes, which flew in domestic airlines between May 1-3, that means the radionuclides from Chernobyl accident already reached high altitude atmosphere over China, but the concentration was much lower than that in Europe. During the period of May 2-15, in most stations, radionuclides were found in different environmental samples, such as air, milk, vegetables, rain water, river and lake water, and sheep thyroid. Radioactivity levels of samples were higher in north part of China than in south. The amounts of radionuclides in all samples were well below the derived air concentrations and derived intake concentrations specified in the National Basic Health Standards for Radiological Protection. Thus, the public need not to take any precautions for the purpose of radiation protection

  8. Some considerations about the effects of population irradiation after the Chernobyl accident

    This thesis carried out with the help of CEA documents and statistical, historical and experimental studies intended to answer to some questions raised by the Chernobyl accident, concerning: risks induced by the reactor explosion in USSR and the neighbouring countries; possibility of similar catastrophe in France and countermeasures used by the authorities

  9. Analysis of the source term in the Chernobyl-4 accident

    The report presents the analysis of the Chernobyl accident and of the phenomena with major influence on the source term, including the chemical effects of materials dumped over the reactor, carried out by the Chair of Nuclear Technology at Madrid University under a contract with the CEC. It also includes the comparison of the ratio (Cs-137/Cs-134) between measurements performed by Soviet authorities and countries belonging to the Community and OECD area. Chapter II contains a summary of both isotope measurements (Cs-134 and Cs-137), and their ratios, in samples of air, water, soil and agricultural and animal products collected by the Soviets in their report presented in Vienna (1986). Chapter III reports on the inventories of cesium isotopes in the core, while Chapter IV analyses the transient, especially the fuel temperature reached, as a way to deduce the mechanisms which took place in the cesium escape. The cesium source term is analyzed in Chapter V. Normal conditions have been considered, as well as the transient and the post-accidental period, including the effects of deposited materials. The conclusion of this study is that Chernobyl accidental sequence is specific of the RBMK type of reactors, and that in the Western world, basic research on fuel behaviour for reactivity transients has already been carried out

  10. Chernobyl - what can natural scientists or physicians say to that accident?

    The public discussion meeting was intended to offer to the general public a platform for discussion of questions evoked by the Chernobyl reactor accident, and scientific information on what has happened there. The brief lectures therefore deal with the accident scenario as far as assessable at the time, and with the consequences to be expected for the Federal Republic of Germany, with the fallout situation in the Mainz area, and the atmospheric dispersion and transfer of air masses from Chernobyl to the FRG. The medical experts presented information on the radiation exposure of the population and the possible genetic risk. (DG)

  11. 25 years since Chernobyl nuclear accident

    Environmental and food radioactivity surveillance in Romania, begun since the early 60's, with 47 laboratories from National Environment Radioactivity Surveillance Network (NERSN) in the framework of Ministry of Environmental and the network of 21 Radiation Hygiene Laboratories (RHL) from centers and institutes of the Ministry of Public Health. The surveillance was conducted by global beta and alpha measurements, necessary to make some quick decisions as well as gamma spectrometry to detect high and low resolution profile accident. Thus the two networks together and some departmental labs recorded from the first moments (since April 30, 1986) the presence of the contaminated radioactive cloud originated from Ukraine, after the nuclear accident on 26 April 1986 at Chernobyl NPP, on the Romanian territory. NERSN followed up the radioactive contamination of air (gamma dose rate, atmospheric aerosols and total deposition), surface water, uncultivated soil, and spontaneous vegetation while the RHL monitored the drinking water and food. Early notification of this event allowed local and central authorities to take protective measures like: administration of stable iodine, advertisements in media on avoiding consumption of heavily contaminated food, prohibition of certain events that took place outdoors, interdiction of drinking milk and eating milk products for one month long. Most radionuclides, fission and activation products (22 radionuclides), released during the accident, have been determined in the environmental factors. A special attention was paid to radionuclides like Sr-90, I-131, Cs-134 and Cs-137, especially in aerosol samples, where the maximum values were recorded on Toaca Peak (Ceahlau Mountain) on May, the first, 1986: 103 Bq/m3, I-131, 63 Bq/m3, Cs-137. The highest value of I-131 in drinking water, 21 Bq/l, was achieved on May, the third, 1986 in Bucharest and in cow milk exceeded the value of 3000 Bq/l. For sheep milk some sporadic values exceeding 10

  12. Editorial: Thyroid cancer and the Chernobyl accident

    The accident at the Chernobyl power station nearly 10 years ago was unprecedented in the exposure of a very large population to high levels of fallout including high levels of isotopes of iodine, predominantly 131I. An increase in incidence of childhood thyroid cancer was first observed in 1990 in Belarus and in the Ukraine, and the first reports in the Western literature were published in 1992. At a symposium in Nagasaki in June 1994, the numbers of cases that had occurred between 1990 and 1993 in Belarus, a country with a population of just over 10 million, was reported to be 233, and in the heavily contaminated northern parts of the Ukraine, with a population of about 7 million, 36 cases occurred in the same period. To put these figures into perspective, the number of childhood thyroid cancers registered in England and Wales over a 30-year period was 154, an average of 5 cases per yr in a population of 50 million people, with about 10 million children under 15 yr of age. The initial reports of such a great increase in childhood thyroid cancers in the areas exposed to fallout from Chernobyl were at first greeted in the West with some skepticism. The latent period between exposure and development of thyroid cancer was surprisingly short, based on experience with thyroid carcinomas developing after external radiation to the neck. The reliability of the figures based on the pathological diagnosis was questioned because the cases had not been confirmed by Western pathologists, and because the known high frequency of papillary microcarcinoms in adults raised the possibility that the reported incidence was resulted form increased ascertainment and not a true increase in incidence. 14 refs

  13. Radioactive iodine-131 over Taiwan after the Chernobyl accident

    Two weeks after the Chernobyl Nuclear Power Plant accident, a substantial increase in radioactivity above normal background levels was observed in various samples taken in Taiwan, which is 7600 km from Chernobyl. The 131I concentrations in grass, rainwater, and milk were monitored continuously in succeeding weeks and correlations with weather conditions are discussed. Levels of radiation fallout over Taiwan due to the Chernobyl accident are much lower than the response levels recommended by local authorities and pose no danger to the public. (author)

  14. The Chernobylsk reactor accident

    The construction, the safety philosophy, the major reactor physical parameters of RBMK-1000 type reactor units and the detailed description of the Chernobylsk-4 reactor accident, its causes and conclusions, the efforts to reduce the consequences on the reactor site and in the surroundings are discussed based on different types of Soviet documents including the report presented to the IAEA by the Soviet Atomic Energy Agency in August 1986. (V.N.)

  15. The radiological situation in south Bavaria after the Chernobyl accident

    After the reactor accident at Chernobyl a radioactive cloud reached Bavaria on April 30th 1986 inducing activities in the air of 52 Bq iodine 131/m3 and 10 Bq cesium 137/m3 (measured in Munich on April 30th between 10am and 2pm). Further on, significant amounts of ruthenium 103, tellurium 132, iodine 132, iodine 133 and cesium 134 were found. Especially in the southern region of Bavaria the majority of the radioactivity in the air was washed out by heavy thundershowers and deposited on the ground. The local deposition was closely linked with the local precipitation rate between April 30th and May 2nd. The deposition of cesium 137 in Bavaria varied from less than 6000 to more than 40000 Bq/m2. This radioactive contamination of the environment adds a further radioactive exposure to man. The three major exposure pathways, direct radiation, inhalation, and ingestion, will be considered in this paper

  16. Consequences of the Chernobyl accident in Styria

    We present results which document the contamination of Styria (Southern part of Austria) immediately after and in the years following the Chernobyl accident. The radioactivity and distribution of radionuclides in aerosols, rain water, soil, vegetation, animals and various samples of food are described in great detail. One of the key results is that the highest levels of contamination were found in two districts (Liezen, Deutschlandsberg), and the deposition rates for Cs-137 were determined to be in the range from 3 to about 80 kBq/m2. Of particular interest are studies concerning the migration and distribution of radionuclides in soil, the uptake of radiocesium by the aquatic vegetation and the existence of radionuclides in the natural ecosystem up to this day. Effective dose equivalents due to incorporated radiocesium was estimated to be 252.2 μSv for the adult population of Graz (capital of Styria) over the four years follwing the fallout. (authors) 17 papers are presented and are of INIS scope

  17. Unbudgeted expenditure in chapter 1602, unbudgeted title 68112-2/3 of indemnification to be paid by the Federal Government to contribute to the compensation to be paid according to the General Guideline on Compensation for Losses as a consequence of the Chernobyl reactor accident

    Information by the Federal German Minister of Finance, approval of DM 125 mill. as an unbudgeted expensure, to be used for compensation of losses as a consequence of the Chernobyl reactor accident. Two thirds of the payments to be borne by the Federal Government, and one third by the Land government carrying through the compensation procedure. (HSCH)

  18. Chernobyl and the problem of international obligations regarding nuclear accidents

    This paper analyses the way nuclear law was put to the test by the Chernobyl accident - in particular international nuclear law - so as to propose a train of thought which might contribute to adopting and revising the legal system presently in force or even new orientations. It deals only with that part of nuclear law which concerns accidents and their consequences (NEA)

  19. Chernobyl accident and health: end of first tenth anniversary

    Materials on medical and social-psychological aspects, caused by the Chernobyl NPP accident are presented. Comparative evaluation of the morbidity cases, frequency of tumor formation, mortality among the accident liquidators and the public of various age in the Ukraine, Belarus and Russian Federation is given

  20. Information on economic and social consequences of the Chernobyl accident

    This ''Information on economic and social consequences of the Chernobyl accident'' was presented to the July 1990 session of the Economic and Social Council of the United Nations by the delegations of the Union of Soviet Socialist Republics, the Byelorussian Soviet Socialist Republic and the Ukrainian Soviet Socialist Republic. It presents the radiation situation, the medical aspects of the accident, the evacuation of the inhabitants from areas affected by radioactive contamination and their social welfare, the agro-industrial production and forestry in these areas, the decontamination operations, the scientific back-up for the work dealing with the consequences of the accident and the expenditure and losses resulting from the Chernobyl disaster

  1. Radioecological and dosimetric consequences of Chernobyl accident in France

    After ten years and the taking in account of numerous data, it can be affirmed that the dosimetric consequences of Chernobyl accident will have been limited in France. for the period 1986-2046, the individual middle efficient dose commitment, for the area the most reached by depositing is inferior to 1500 μSv, that represents about 1% of middle natural exposure in the same time. but mountains and forests can have more important surface activities than in plain. Everywhere else, it can be considered that the effects of Chernobyl accident are disappearing. the levels of cesium 137 are now often inferior to what they were before the accident. (N.C.)

  2. Radiation protection research and studies after the Chernobyl accident

    The effects on the environment of the Chernobyl Power Plant accident, which happened in the reactors unit 4, are analyzed. The aim of the study is to show the main fields of research and development to be considered, in order to improve the knowledge on public or local radiation protection. The following aspects of the problem are discussed: the long range atmospheric transfer, the environment monitoring, the problems related to the food chain transfers, the environment recovery and the estimation of the sanitary effects. The Chernobyl disaster confirms: the priority of special plans of action to protect the surrounding population; that the special plans of action must be followed by after-disaster actions, which take into account methods for the environment recovery; that the conventional systematic approach can not be satisfactorily applied to manage such a critical situation, and a new one must be developed. Moreover, the identification of the most exposed (population) groups, far from the nearby affected area, are to be considered

  3. Accident at the Chernobyl nuclear power plant and its consequences

    In the early morning of April 26, 1986, as the culmination of an almost incredible series of errors that began 24 hours earlier, Unit 4 of the Chernobyl nuclear complex, a so-called RBMK-1000 reactor, suffered the worst accident in the history of commercial nuclear power. There was an uncontrolled nuclear excursion, release of a large amount of energy, possibly comparable to hundreds of pounds of TNT, blowing the top off the reactor. There was no containment, in the traditional American sense, so the roof of the building was blown out, an unprecedented amount of radioactivity was released to the biosphere, and a graphite fire was ignited, which burned for days. The radiation that was released spread through Eastern Europe (the world first learned of it through Swedish observations), bringing with it both official and unofficial protests that the Soviet Union had made no announcement of the radiation release until they were, in effect, caught. In fact, after a few days, the Soviets seemed to recognize that nuclear safety is a matter of international concern, and became quite open in their search for cooperation. They invited officials of the International Atomic Energy Agency (IAEA) to visit the area and to fly over the plant, and agreed, in the end, to make a complete disclosure of the details of the accident at a special meeting of IAEA in Vienna, August 25 to 29, 1986. In preparation for that meeting they distributed a lengthy (400 pages) report on the event. This paper reviews this report

  4. Chernobyl

    The reactor accident in Chernobyl also had a memorable 1986 Spring for the region of Lake Constance. Salad had to be ploughed up in the vegetable fields, the feeding of cows with fresh grass was forbidden, and becquerel values played a decisive role in food purchases. Along with the measurement of radioactivity in rainwater, the authors began to take food and soil samples; hundreds of samples were tested in the laboratories of the University of Constance. They provided, in cooperation with public authorities, for the protection of the population against radiation, and explained, in numerous lectures, the significance of this incident to everyday life. Besides, they recorded recent scientific findings about the behaviour of radioactive substances in the environment. The book gives a summary of the findings. It also includes, besides a description of the events of May 1986 at Lake Constance, a presentation of the results of scientific investigations into Chernobyl's radioactivity. This is thus the first detailed account of the diverse effects of the reactor accident with respect to one particular region which, though more than 1500 km away, was surprisingly seriously affected, and which, owing to its special features - Lake Constance is Europe's most important drinking water reservoir -, is particularly endangered, in case of radioactive release. (orig./HP) With 2 separate tabs

  5. Brain damage in utero after Chernobyl accident

    Full text: The report presents research study results of neuropsychiatric consequences of the children exposed in utero, who were born just after the Chernobyl accident (between April 26, 1986 and February 26, 1987). The children were under investigation for three stages: in 1990-1992; 1994-1996; 2002-2004. We use the data on health state, IQ level tests and individual dose reconstruction data. First correlation between prenatal acute exposure after atomic bombing and intellectual level decrease was demonstrated by Japanese scientists. It is known that while the Chernobyl whole body irradiation doses are much lower than the Japanese doses, thyroid doses after the Chernobyl accident are significantly higher. During the first stage the five-year-old prenatally exposed children were under examination. The results showed much more somatic diseases and neurofunctional mental disorders. It was also established in this cohort that starting with the 0.3 Sv threshold dose thyroid-stimulating hormone (TSH) level grown along with fetal thyroid dose increase. Thereupon the radiation-induced malfunction of the thyroid-pituitary system was suggested as an important biological mechanism in the genesis of mental disorders in prenatally irradiated children. The epidemiological WHO project 'Brain Damage in Utero' (IPHECA) was implemented in the second stage. The examination of prenatally exposed children from the contaminated territories (555 kBq/m2 and more) resulted in an increased frequency of moderate mental retardation, emotional and behavioral disorders. Increasing of borderline nervous and psychological disorders of parents from the main group was higher than from the control. However it was rather hard to treat these results because individual dosimetric data were not available. Only in the third stage reconstruction of individual doses of children born to mothers evacuated from the Chernobyl exclusion zone was carried out at taking internal and external exposure. It was

  6. The consequences of the Chernobyl nuclear accident in Greece

    In this report the radioactive fallout on Greece from the Chernobyl nuclear accident is described. The flow pattern to Greece of the radioactive materials released, the measurements performed on environmental samples and samples of the food chain, as well as some estimations of the population doses and of the expected consequences of the accident are presented. The analysis has shown that the radiological impact of the accident in Greece can be considered minor. (J.K.)

  7. A documentation presented by the Land government of Baden-Wuerttemberg, on the impacts of the Chernobyl reactor accident and the measures taken. Vol. 1-3

    The first volume of the documentation starts with basic facts and data of environmental radioactivity and radiation exposure in general and then proceeds to discussions of the specific problems resulting from the reactor accident. The reactor accident scenario is described, and the impacts are explained, as well as measures taken by the EC, the German Federal Government, and the Land government of Baden-Wuerttemberg. The concept and strategies set up by the Land government for improving precautionary and emergency measures within the framework of disaster control are explained. The second and third volumes present measured data taken from April to August 28, 1986 (2nd volume) and from August 29, 1986 to end of February, 1987. The data measured in the various regions of the Land are arranged by government districts, administrative county, and date. (HP)

  8. Validity aspects in Chernobyl at twenty years of the accident

    For April 25, 1986 the annual stop of the unit 4 of the nuclear power plant of Chernobyl was programmed, in order to carry out maintenance tasks. This unit was equipped with a reactor of 1000 MW, type RBMK, developed in the former Soviet Union, this type of reactors uses graphite like moderator, the core is refrigerated with common water in boil, and the fuel is uranium enriched to 2%. Also it had been programmed to carry out, before stopping the operation of the power station, a test with one of the two turbogenerators, which would not affect to the reactor. However, the intrinsic characteristics of the design of the reactor and the fact that the operators disconnected intentionally several systems of security that had stopped the reactor automatically, caused a decontrolled increase of the power (a factor 1000 in 4 seconds), with the consequent fusion of the fuel and the generation of a shock wave, produced by the fast evaporation of the refrigeration water and caused by the interaction of the fuel fused with the same one. It broke the core in pieces and destroy the structure of the reactor building that was not resistant to the pressure. When being exposed to the air, the graphite of the moderator entered in combustion, while the radioactive material was dispersed in the environment. The radionuclides liberation was prolong during 10 days, and only it was stopped by means of the one poured from helicopters, of some 5000 tons of absorbent materials on the destroyed reactor, as long as tunnels were dug to carry out the cooling of the core with liquid nitrogen. Later on, the whole building of the damaged reactor was contained inside a concrete building. The immediate consequence of the accident was the death of 31 people, between operators of the nuclear power station and firemen. One of people died as consequence of the explosion and 30 died by cause of the irradiation, with dose of the order of 16 Gy. The liberated radioactive material was the entirety of the

  9. Health effects of the Chernobyl accident and special health care programmes. Report of the UN Chernobyl Forum Expert Group 'Health'

    Twenty years have passed since the worst nuclear reactor accident in the world occurred at the Chernobyl nuclear power plant in Ukraine. The radioactive contamination which resulted from the explosion and fire in the first few days spread over large areas of neighbouring Belarus and the Russian Federation, with most of the fallout in Belarus. While national and local authorities did not immediately disclose the scale of the accident, the mitigation measures, such as distribution of potassium iodine pills, food restriction, and mass evacuation from areas where the radioactive contamination was greatest, undoubtedly reduced the health impact of the radiation exposure and saved many lives. The accident caused severe social and economic disruption and had significant environmental and health impact. This was aggravated by the political and economical changes in the three affected states related to the break-down of the Soviet Union. In the aftermath of the accident the international scientific and medical community collaborated closely with national experts dealing with health effects of the accident in the affected countries. There is a substantial body of international collaborative projects on the situation, which should lead to advancement in radiation sciences. However, considerable speculation and disinformation remains about the possible health impact of the accident for the millions of affected people. To address the health, environmental and socioeconomic consequences of the Chernobyl accident, the United Nations in 2003 launched an Inter-Agency initiative, the Chernobyl Forum. The Forum's Secretariat, led by the International Atomic Energy Agency (IAEA), the World Health Organization (WHO), the United Nations Development Programme (UNDP), and several other international organizations collaborated with the governments of the affected countries. The purpose of the Chernobyl Forum was to review the consequences of the accident, issue technical reports and, based

  10. Incidence of legal abortion in Sweden after the Chernobyl accident

    The number of legal abortions in Sweden increased around the time of the Chernobyl accident, particularly in the summer and autumn of 1986. Although there was no recording of reasons for legal abortions, one might have suspected this increase to be a result of fear and anxiety after the accident. However, seen over a longer time perspective, the increase in the number of abortions started before and continued far beyond the time of the accident. There was also a simultaneous and pronounced increase in the number of births during the years subsequent to the accident. Therefore, it seems unlikely that fear of the consequences of radioactive fall-out after the Chernobyl accident resulted in any substantial increase of the number of legal abortions in Sweden

  11. Immediate medical consequences of nuclear accidents: lessons from Chernobyl

    The immediate medical response to the nuclear accident at the Chernobyl nuclear power station involved containment of the radioactivity and evacuation of the nearby population. The next step consisted of assessment of the radiation dose received by individuals, based on biological dosimetry, and treatment of those exposed. Medical care involved treatment of skin burns; measures to support bone marrow failure, gastrointestinal tract injury, and other organ damage (i.e., infection prophylaxis and transfusions) for those with lower radiation dose exposure; and bone marrow transplantation for those exposed to a high dose of radiation. At Chernobyl, two victims died immediately and 29 died of radiation or thermal injuries in the next three months. The remaining victims of the accident are currently well. A nuclear accident anywhere is a nuclear accident everywhere. Prevention and cooperation in response to these accidents are essential goals

  12. Report on the accident at the Chernobyl Nuclear Power Station

    This report presents the compilation of information obtained by various organizations regarding the accident (and the consequences of the accident) that occurred at Unit 4 of the nuclear power station at Chernobyl in the USSR on April 26, 1986. The various authors are identified in a footnote to each chapter. An overview of the report is provided. Very briefly the other chapters cover: the design of the Chernobyl nuclear station Unit 4; safety analyses for Unit 4; the accident scenario; the role of the operator; an assessment of the radioactive release, dispersion, and transport; the activities associated with emergency actions; and information on the health and environmental consequences from the accident. These subjects cover the major aspects of the accident that have the potential to present new information and lessons for the nuclear industry in general

  13. Radioactive waste management after NPP accident: Post-Chernobyl experience

    As a result of the Chernobyl NPP accident a very large amount of so-called 'Chernobyl waste' were generated in the territory of Belarus, which was contaminated much more than all other countries. These wastes relate mainly to two following categories: low-level waste (LLW) and new one 'Conventionally Radioactive Waste' (CRW). Neither regulations nor technology and equipment were sufficiently developed for such an amount and kind of waste before the accident. It required proper decisions in respect of regulations, treatment, transportation, disposal of waste, etc. (author)

  14. Radioactive fall-out in Norway after the Chernobyl accident

    During the fall-out from the atmosphere during the fifties and sixties, a system of local control of radioactive contamination of food was built up. (LORACON - LOcal RAdioactivity COntrol). The different Meat and Food Inspection Services were equipped with Geiger Mueller instruments. The system was in operation until late seventies. From 1977 there was no testing and calibration of the instruments. The development towards a reduction of the state of readiness was accelerated when the Norwegian Parliament decided that Norway should not establish any nuclear power plants (1979). Only the universities and special institutions as the National Institute of Radiation Hygiene and the Institute for Energy Technique were still able to analyse on radioactive isotopes. The confusion about how much radioactive fall-out from the Chernobyl reactor accident Norway received lasted for some weeks in Norway. Partially, this was due to the lack of instruments, but also many experts rejected the idea that an accident so far away might cause these amounts of fall-out consisted of Iodine and Cesium. The fall-out followed a very irregular pattern both nationally and locally with the mountain areas in Middle Norway most affected

  15. Database for a systems analytical approach to studying the medical aspects of the Chernobyl accident

    The main elements of the program data base were the all-Union distribution register and the SDACHA computer system (Chernobyl accident data system) which ensured reliable functioning of the PRIORRA expert system (acronym stands for ''taking of optimum decisions in the event of a radiation accident''). The development of criteria for the optimum selection of countermeasures follows three paths - medical, economic and social - and is based on a regulatory document entitled ''criteria for taking decisions or measures to protect the population in the event of a reactor accident''. (author). 1 ref., 3 figs

  16. Preliminary report about nuclear accident of Chernobylsk reactor

    The preliminary report of nuclear accident at Chernobyl, in URSS is presented. The Chernobyl site is located geographically and the RBMK type reactors - initials of russian words which mean high power pressure tube reactors are described. The conditions of reactor operation in beginning of accident, the events which lead to reactor destruction, the means to finish the fire, the measurements adopted by Russian in the accident location, the estimative of radioactive wastes, the meteorological conditions during the accident, the victims and medical assistence, the sanitary aspects and consequences for population, the evaluation of radiation doses received at small and medium distance and the estimative of reffered doses by population attained are presented. The official communication of Russian Minister Council and the declaration of IAEA general manager during a collective interview in Moscou are annexed. (M.C.K.)

  17. Ecological lessons from the Chernobyl accident.

    Bell, J N B; Shaw, G

    2005-08-01

    The Chernobyl nuclear accident in 1986 not only caused serious ecological problems in both the Ukraine and Belarus, which continue to the present day, but also contaminated a large part of the higher latitudes of the northern hemisphere. In this paper an overview is given of the latter problems in upland UK, where ecological problems still remain some 17 years after initial contamination. Following deposition of radiocaesium and radioiodine in May 1986, measurements of radioactivity in grass and soil indicated a rapidly declining problem as the radioiodine decayed and the radiocaesium became immobilised by attachment to clay particles. However, these studies, as well as the advice received by the Ministry of Agriculture, Fisheries and Food, were based on lowland agricultural soils, with high clay and low organic matter contents. The behaviour of radiocaesium in upland UK turned out to be dominated by high and persistent levels of mobility and bioavailability. This resulted in the free passage of radiocaesium through the food chain and into sheep. Consequently the Ministry banned the sale and movement of sheep over large areas of upland Britain, with bans remaining on some farms to the present day. Present day predictions suggest that these bans will continue in some cases for some years to come. The causes of radiocaesium mobility in upland areas have subsequently been the subject of intense investigation centred around vegetation and, in particular, soil characteristics. Soil types were identified which were particularly vulnerable in this respect and, where these coincided with high levels of deposition, sheep bans tended to be imposed. While much of the earlier work suggested that a low clay content was the main reason for continuing mobility, a very high organic matter content is now also believed to play a major role, this being a characteristic of wet and acidic upland UK soils. The overall message from this affair is the importance of a fundamental

  18. Simulation of atmospheric dispersion of radioactivity from the Chernobyl accident

    Measurements of airborne radioactivity over Europe, Japan, and the United States indicated that the release from the Chernobyl reactor accident in the Soviet Union on April 26, 1986 contained a wide spectrum of fission up to heights of 7 km or more within a few days after the initial explosion. This high-altitude presence of radioactivity would in part be attributable to atmospheric dynamics factors other than the thermal energy released in the initial explosion. Indications were that two types of releases had taken place -- an initial powerful explosion followed by days of a less energetic reactor fire. The Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory (LLNL) utilized three-dimensional atmospheric dispersion models to determine the characteristics of the source term (release) and the evolution of the spatial distributions of the airborne radioactivity as it was transported over Europe and subsequently over the northern hemisphere. This paper describes the ARAC involvement and the results of the hemispheric model calculations which graphically depict the extensive dispersal of radioactivity. 1 fig

  19. The accident at the Chernobyl' nuclear power plant and its consequences

    The material is taken from the conclusions of the Government Commission on the causes of the accident at the fourth unit of the Chernobyl' nuclear power plant and was prepared by a team of experts appointed by the USSR State Committee on the Utilization of Atomic Energy. It contains general material describing the accident, its causes, the action taken to contain the accident and to alleviate its consequences, the radioactive contamination and health of the population and some recommendations for improving nuclear power safety. 7 annexes are devoted to the following topics: water-graphite channel reactors and operating experience with RBMK reactors, design of the reactor plant, elimination of the consequences of the accident and decontamination, estimate of the amount, composition and dynamics of the discharge of radioactive substances from the damaged reactor, atmospheric transport and radioactive contamination of the atmosphere and of the ground, expert evaluation and prediction of the radioecological state of the environment in the area of the radiation plume from the Chernobyl' nuclear power station, medical-biological problems. A separate abstract was prepared for each of these annexes. The slides presented at the post-accident review meeting are grouped in two separate volumes

  20. Soil contamination with 90Sr in the near zone of the Chernobyl accident.

    Kashparov, V A; Lundin, S M; Khomutinin, Y V; Kaminsky, S P; Levchuk, S E; Protsak, V P; Kadygrib, A M; Zvarich, S I; Yoschenko, V I; Tschiersch, J

    2001-01-01

    Representative large-scale soil sampling on a regular grid of step width about 1 km was carried out for the first time in the near zone of the Chernobyl accident (radius 36 km). An integrated map of terrestrial 90Sr contamination density in the 30 km exclusion zone (scale 1:200,000) has been created from the analysed samples. Maps of the main agrochemical characteristics of the soils, which determine the fuel particle dissolution rates and the contamination of vegetation, were produced. The total contents of 90Sr on the ground surface of the 30 km zone in Ukraine (without the reactor site and the radioactive waste storages) was about 810 TBq (8.1 x 10(+14) Bq) in 1997, which corresponds to 0.4-0.5% of the Chernobyl reactor inventory at the time of the accident. This assessment is 3-4 times lower than previous estimates. PMID:11468820

  1. Consequences of the nuclear power plant accident at Chernobyl.

    Ginzburg, H M; Reis, E.

    1991-01-01

    The Chernobyl Nuclear Power Plant accident, in the Ukrainian Soviet Socialist Republic (SSR), on April 26, 1986, was the first major nuclear power plant accident that resulted in a large-scale fire and subsequent explosions, immediate and delayed deaths of plant operators and emergency service workers, and the radioactive contamination of a significant land area. The release of radioactive material, over a 10-day period, resulted in millions of Soviets, and other Europeans, being exposed to m...

  2. Twenty Two Years after Chernobyl Accident Medical Aspect

    Chernobyl accident is the most serious nuclear catastrophe in the recent era. About 600.000 victims intervene in this disaster. The most fatality was about one month after the accident 31 victims. The main cause was Acute Radiation Syndrome. After few weeks 115.000 persons evacuated from the contaminated areas with exposure dose from 0.07 to 2 Gy. The main Isotope exposure was iodine 131 and Cesium 137 with average exposure dose 7 and 10 mGy respectively

  3. Interview-survey of farmers. Experiences after the Chernobyl accident

    71 farm households in contaminated areas of Sweden were interviewed at visits to farms, where measurements of the contamination of pastures and fields had been made. The aim of the survey was to find out what remedial actions had been taken by the farmers, what their appreciation of the information from authorities was, how the Chernobyl accident had affected their situation, and if they were prepared to take similar actions in case of a new accident. 15 refs

  4. Trees as Filters of Radioactive Fallout from the Chernobyl Accident

    Brownridge, James D

    2011-01-01

    This paper is a copy of an unpublished study of the filtering effect of red maple trees (acer rubrum) on fission product fallout near Binghamton, NY, USA following the 1986 Chernobyl accident. The conclusions of this work may offer some insight into what is happening in the forests exposed to fallout from the Fukushima Daiichi Nuclear Plant accident. This posting is in memory of Noel K. Yeh.

  5. Lessons of the Chernobyl Nuclear Power Plant accident

    Insensitivity of radiation without measuring apparatus and health outcome observed in the atomic bomb survivors of Hiroshima and Nagasaki are major sources that make people fear the possible late effects of radiation exposure attributable to nuclear power plant accident. However, the health conditions of people in the last 20 years around Chernobyl indicated the necessity to review the risk assessment suggesting that effects of radiation exposure may considerably be different between the atomic bombing and nuclear power plant accident. (author)

  6. Remote medical consequences of Chernobyl NPP accident in Armenia

    In result of global radio-ecological disaster at the Chernobyl NPP in Armenia there has appeared a great 'risk group' of persons, who had participated in liquidation of the accident consequences. The results of medical observation of this cohort carried out in dynamics in Scientific Center of Radiation Medicine and Burns during 25 years are brought in the work

  7. Biological Effects 10 years after the Chernobyl NPS accident

    The radiological consequences of Chernobyl accident were analyzed. The mortality of infants in some towns in Poland was presented. The increase in the incidence of neoplasms, blood diseases and endocrine diseases infants was observed in 1986-1988. The increase in number of the Down syndrome during this time period was remarkable. Also the first notifications of neoplasms showed the trend to an increase

  8. The impact of the Chernobyl accident on Syria

    The radioactive releases from the Chernobyl accident reached Syria on 7 May 1986. Levels of radioactive contamination in milk, soil, grass, etc, were measured using gamma spectrometry. Population dose by a number of routes was calculated. Projected doses were below the emergency action levels. (author)

  9. The Chernobyl accident - did it affect pregnancy outcomes in Norway?

    The outcome of pregnancies in the county of Soer-Troendelag in Norway, during the 27 months preceding and 21 months after the Chernobyl accident has been analysed on the basis of time of conception. The analysis showed a significant decrease in the number of conceptions during the three months immediately after the accident (April - June 1986). This finding can be interpreted to mean fewer ''planned'' conceptions. The Chernobyl accident did not seem to have had any impact on the proportion of conceptions ending as spontaneous abortions or ectopic pregnancies. There was a significant drop in the proportion of pregnancies ending as induced abortions during the year after the accident compared with the year before. However, due to some variation during this year, it is difficult to draw any definite conclusions concerning the impact of the accident on induced abortions in this county. The proportion of pregnancies ending as births increased significantly during the year after the Chernobyl accident compared with the year before. 22 refs., 1 tab

  10. Irradiation of members of the general public from radioactive caesium following the Chernobyl reactor accident. Field studies in a highly contaminated area in the Bryansk region, Russia

    Thornberg, C

    2000-11-01

    From 1990 to 1999, estimations of the effective dose from external as well as internal irradiation from {sup 137}Cs and {sup 134}Cs were carried out for inhabitants in rural villages in the Bryansk region, Russia, highly contaminated due to the Chernobyl accident in 1986. The villages were situated about 180 km from the Chernobyl power plant and the deposition of {sup 137}Cs was in the range 0.9-2.7 MBq/m{sup 2}. Yearly expeditions were conducted in autumn by members of the Departments of Radiation Physics in Malmoe and Goeteborg, Institute of Radiation Hygiene, St. Petersburg and the the first 5 years also by the Norwegian Radiation Protection Authority. The dose levels and their change in time were estimated for various groups of the general public. The body burden of {sup 134,137}Cs and hence, the effective dose, was estimated from measurements of the urinary concentration of cesium radionuclides, together with direct measurements of the body content using a portable detector. The effective dose from external irradiation was estimated from measurements with thermoluminescent dosemeters worn by the participants during one month each year. In a special case study, the changes in biokinetics of {sup 137}Cs during pregnancy was investigated in a woman with an unintended intake of {sup 137}Cs via mushrooms from a highly contaminated forest in the area. During pregnancy there is an increased excretion of cesium resulting in a biological half-time of cesium which was 54% of the half-time before pregnancy. The ratio of the {sup 137}Cs concentration in breast milk (Bq/l) to that in the mother's body (Bq/kg) was 15% one month after the child was born. The body burden of {sup 137}Cs in the Russian individuals calculated from the concentration of {sup 137}Cs in urine showed a good agreement with the body burden estimated from in vivo measurements in the same individuals. Normalisation of the cesium concentration in the urine samples by the use of potassium or

  11. Irradiation of members of the general public from radioactive caesium following the Chernobyl reactor accident. Field studies in a highly contaminated area in the Bryansk region, Russia

    From 1990 to 1999, estimations of the effective dose from external as well as internal irradiation from 137Cs and 134Cs were carried out for inhabitants in rural villages in the Bryansk region, Russia, highly contaminated due to the Chernobyl accident in 1986. The villages were situated about 180 km from the Chernobyl power plant and the deposition of 137Cs was in the range 0.9-2.7 MBq/m2. Yearly expeditions were conducted in autumn by members of the Departments of Radiation Physics in Malmoe and Goeteborg, Institute of Radiation Hygiene, St. Petersburg and the the first 5 years also by the Norwegian Radiation Protection Authority. The dose levels and their change in time were estimated for various groups of the general public. The body burden of 134,137Cs and hence, the effective dose, was estimated from measurements of the urinary concentration of cesium radionuclides, together with direct measurements of the body content using a portable detector. The effective dose from external irradiation was estimated from measurements with thermoluminescent dosemeters worn by the participants during one month each year. In a special case study, the changes in biokinetics of 137Cs during pregnancy was investigated in a woman with an unintended intake of 137Cs via mushrooms from a highly contaminated forest in the area. During pregnancy there is an increased excretion of cesium resulting in a biological half-time of cesium which was 54% of the half-time before pregnancy. The ratio of the 137Cs concentration in breast milk (Bq/l) to that in the mother's body (Bq/kg) was 15% one month after the child was born. The body burden of 137Cs in the Russian individuals calculated from the concentration of 137Cs in urine showed a good agreement with the body burden estimated from in vivo measurements in the same individuals. Normalisation of the cesium concentration in the urine samples by the use of potassium or creatinine excretion was found to introduce systematic differences as well

  12. Chernobyl

    This book brings together a comprehensive history of the first 18 months of the accident at Chernobyl and the complete pictorial record of the disaster, including many photographs never seen in the West. It also gives a unique record of subsequent events in the USSR involving the evacuation and re-housing of a population of 135,000, the building of the 400,000 tonne concrete sarcophagus over the damaged reactor and the decontamination of the environment which may take years to complete. The human dimension of radiation injuries is recreated in the cast histories and hospital photographs of the firemen who brought the blaze under control. The problems of contamination of the food chain for various countries is included, and recommendations for safe levels of activity in milk are described

  13. Genetic consequences of the Chernobyl accident for Belarus republic

    Numerous studies have shown that a great number of residents in Belarus, Russia and the Ukraine were exposed to radiation due to radioactive nuclides ejected from the Chernobyl reactor, which increased genetic load, manifested in particular, as chromosome aberrations. The increase was registered for unstable and stable, chromatid and chromosome types of aberrations. Proceeding from the findings that the number of dicentric and ring chromosomes (which are the main indicator of radiation mutagenesis at chromosome level) was increasing simultaneously with the increase of other aberrations which are common for chemical mutagenesis and from the fact that actual mutation incidences exceeded the calculated figures for the doses obtained, one can not exclude the possibility that chromosome aberrations found in the population affected by the Chernobyl disaster are caused not only by ionizing radiation but also by various mutagens, and the doses based on physical dosimetry could be underestimated. It is quite obvious that the level of chromosome aberrations can be used as a biological indicator of harmful mutagenic effects on the organism. However, the method is not yet capable of (or only partially suited for) detecting the actual genetic risk even in the cases when aberrations are found in gametes, not in peripheral blood lymphocytes as usually done. The study of the dynamics of genetic losses, as spontaneous abortions and perinatal death due to inherited anomalies, and the study of the dynamics of malformed children births are probably the most reliable methods to determine genetic risk due to any mutagenic factor affecting the population, including ionizing radiation. This is related to the fact that there are a great sequence of events (gamete selection, preimplantation and embryonal death) occurring between gamete mutations (to say nothing about a somatic one) and births of children with congenital diseases. It is nearly impossible to count them and this leads to

  14. Irradiation of members of the general public from radioactive caesium following the Chernobyl reactor accident: Field studies in a highly contaminated area in the Bryansk region, Russia

    Thornberg, Charlotte

    From 1990 to 1998, estimations of the effective dose due to irradiation from 137Cs and 134Cs were carried out for inhabitants in rural villages in the Bryansk region, Russia. The villages, situated about 180 km from the Chernobyl power plant received deposition of 137Cs in the range 0.9-2.7 MBq m-2 due to the accident in 1986. The body burden of 137,134Cs was estimated from measurements of the urinary concentration of caesium radionuclides, together with in vivo measurements using a portable detector. The external effective dose was estimated from measurements with thermoluminescent (TL)-dosemeters worn by the participants during one month each year. In a case study, the changes in biokinetics of 137Cs during pregnancy was investigated in a woman with an unintended intake of 137Cs via mushrooms grown in the area. During pregnancy the biological half-time of caesium was 54% of that before pregnancy. The ratio of the 137Cs concentration in breast milk (Bq L-1) to that in the mother's body (Bq kg-1) was 15% one month after the child was born. The body burden of 137Cs in the Russian individuals calculated from urine samples showed a good agreement with the body burden estimated from in vivo measurements in the same individuals. Normalisation of the caesium concentration in the urine samples by the use of potassium or creatinine excretion introduced systematic differences and a larger spread in the calculated values of the 137Cs body burden as compared with calculations without normalisation. The yearly effective dose to inhabitants in the Russian villages varied between 1.2 and 2.5 mSv as a mean for all villages between 1991 and 1998 and the internal effective dose was 30-50% of the total effective dose. The external effective dose decreased on average 15% per year, while the internal effective dose varied, depending to a great extent on the availability of mushrooms. The cumulated effective dose for a 70-year period after the accident was calculated to be 100 m

  15. Cancer following the Chernobyl nuclear accident: what we have learned

    Full text: Twenty years later, the accident at the Chernobyl nuclear plant in Ukraine remains the largest of its kind. Ukraine and Belarus in particular were heavily contaminated, principally with radioiodine which concentrate in the thyroid gland. Before Chernobyl, little was known about, the risk of thyroid cancer in those exposed to radioiodine as children, although there were some reports based on exposed adults. A number of epidemiologic studies have since been conducted to evaluate populations in Chernobyl-exposed areas. These have provided valuable information about the risks of Iodine-131 to children. I will summarize these studies and the lessons the international scientific and medical community have learned from this research on Chernobyl. Finally, I will describe progress with a seminal project: the Belarus-American Study of Thyroid Cancer and Other Thyroid Diseases following the Chernobyl Accident. This collaborative effort has involved screening a cohort of approximately 12,000 individuals exposed as young persons at two year intervals for three consecutive cycles. This is the first study, cohort in design, to be based on individual, measured doses and thus can provide the best quantitative estimate of the dose-response relationship between Iodine-131 and risk of thyroid cancer

  16. Radioactivity levels of trees before and after the Chernobyl reactor accident as well as in vitro determinations of cesium to evaluate leaf uptake and deep zone distribution in adaxial leaf cuticles

    It was the aim of the study described here to investigate into radionuclide concentrations in various species of trees encountered in forests that are detectable over prolonged periods of time after the Chernobyl accident. Separate radionuclide measurements for the individual tree organs (leaves, needles and branches of different ages, wood, fruit and semen) permitted conclusions to be drawn as to the fate of the isotopes under investigation. A survey is given of the distribution of invading radionuclides, changes over time and their migration into newly grown parts of trees. The findings are evaluated in the context of measurements made in comparable samples obtained before the Chernobyl accident. (orig.)

  17. Childhood leukaemia in Romania and the Chernobyl accident

    Following the WHO recommendations, we focused our study on short-term consequence of the Chernobyl accident on childhood leukaemia. The present study was designed to show whether the frequency of leukaemia has increased during the time period following the nuclear accident. We studied the frequency of childhood leukaemia, its geographical distribution in Romania, and the possible changes of this distribution after the Chernobyl accident. For the period before the accident (1981-1985), the distribution of the cumulative mortality from leukaemia is shown. The mortality for the entire country was 13.54/100,000 for all age-groups (14.92 for the 0-4 years old age group, 15.68 for the 5-9, and 10.13 for 10-14). After the Chernobyl accident, the geographical distribution of cumulative mortality from childhood leukaemia has somewhat changed. The rate for the entire country was 13.24/100,000 (13.72 for 0-4 years old, 16.64 for 5-9 years old, and 9.83 for 10-14 years old). Four districts showed a greater increase of the mortality rate. The age distribution of the mortality in these districts during the two time periods, is shown. (author)

  18. Root causes of the Chernobyl accident: hindsight through years

    The objective of the article was not to evaluate the status of nuclear safety in this country. We wished to raise another question analysing the Chernobyl accident occurred in April 1986 is not the end in itself and the analysis must not be retrospective. The objective is to draw the normal for nuclear safety nowadays and in the future in order to prevent the very possibility of another accident entailing severe radiological consequences. In our opinion, discussions on any details of physical and thermohydraulic processes occurred in April 1986 can and even must be the matter of due consideration. There are all the reasons to state that no due conclusions were drawn in Ukraine further to the analysis of the Chernobyl accident causes

  19. The radioecological consequences of Chernobyl accident for fish

    The estimate of dynamics of radionuclides concentration in muscles of some game-fish from Kiev reservoir and likes in Bryansk region for period after Chernobyl accident was carried out. The concentration of 137Cs in fish has not exceeded the admissible concentration (600 Bq/kg ww) since 1993. The exceptions are the cooling-pond of Chernobyl NPP and Kozlanovskoe Lake where the concentration of 137Cs in fish's muscles exceeded the admissible level more than 5-6 times even in 1995. It was concluded that chronic irradiation of game-fish in water bodies outside 30-km zone would not affect the volume of fishing

  20. Radioactive fallout in Norway from the Chernobyl accident

    The Chernobyl accident had considerable consequences for Norway. Except for the areas in the former USSR, around Chernobyl some areas in Norway received fallout which gave the highest contamination levels. The natural and semi natural ecosystems will produce food products with high activity levels of radiocesium for several decennium. Cost-effective countermeasures were implemented, and they reduced the doses considerable, especially for critical groups. Doses received over the next 50 years will probably cause cancer in 500 persons. 63 refs., 5 figs., 6 tabs

  1. Contribution of Chernobyl accident to human contamination with strontium-90

    The Romanian surveys performed after the Chernobyl accident pointed out the environmental and diet contamination with 90 Sr at levels of one-two orders of magnitude higher than prior to the accident. Given the 90 Sr osteo-tropism we have been interested in its accumulation in the human teeth and bone. The search on 90 Sr accumulation in human teeth evidenced concentrations of 10.8 - 330 mBq/g Ca in milk teeth of young children born during 1986 - 1987 subsequent to Chernobyl. These values were 10-600 times higher than those obtained for permanent or deciduous teeth of all the other age groups or of the same age group born before Chernobyl. There was more 90 Sr activity concentration in ribs than in femur. The highest values of 90 Sr content (mBq/g Ca) were of 75-122 in ribs and 74-120 in femur for 7-10 years old group. These individuals were 0-3 years old during the period of greatest deposition. This age is by far the most critical years due to the heaviest uptake. Smaller concentration values were recorded for the age group older than 55, respectively of 3-20 in ribs and 3.3-10.2 in femur. Our data suggest that the Chernobyl accident did not lead to the increase of 90 Sr accumulation in adults. From the collective equivalent doses of 1500 manSv for bone surfaces and 680 manSv for active red marrow, a potential number of 4 radiation-induced fatal cancers in the studied population (5,2 mil.inh) has been estimated as attributable to Chernobyl accident

  2. Scientific decision of the Chernobyl accident problems (results of 1997)

    In the publication are summarized the basic results of the researches executed in 1997 in the framework of the 'Scientific maintenance of the decision of problems of the Chernobyl NPP accident consequences' of the State program of Republic of Belarus for minimization and overcoming of the Chernobyl NPP accident consequences on 1996-2000 on the following directions: dose monitoring of the population, estimation and forecast of both collective irradiation dozes and risks of radiation induced diseases; development and ground of the measures for increase of radiation protection of the population of Belarus during of the reducing period after the Chernobyl accident; study of influence of radiological consequences of the Chernobyl accident on health of people, development of methods and means of diagnostics, treatment and preventive maintenance of diseases for various categories of the victims; optimisation of the system of measures for preservation of health of the victim population and development of ways for increase of it effectiveness; creation of the effective both prophylactic means and food additives for treatment and rehabilitation of the persons having suffered after the Chernobyl accident; development of complex system of an estimation and decision-making on problems of radiation protection of the population living on contaminated territories; development and optimization of a complex of measures for effective land use and decrease of radioactive contamination of agricultural production in order to reduce irradiation dozes of the population; development of complex technologies and means of decontamination, treatment and burial of radioactive wastes; study of the radioisotopes behaviour dynamics in environment (air, water, ground), ecosystems and populated areas; optimization of the system of radiation ecological monitoring in the republic and scientific methodical ways of it fulfilling; study of effects of low doze irradiation and combined influences, search

  3. [Comparative analysis of the radionuclide composition in fallout after the Chernobyl and the Fukushima accidents].

    Kotenko, K V; Shinkarev, S M; Abramov, Iu V; Granovskaia, E O; Iatsenko, V N; Gavrilin, Iu I; Margulis, U Ia; Garetskaia, O S; Imanaka, T; Khoshi, M

    2012-01-01

    The nuclear accident occurred at Fukushima Dai-ichi Nuclear Power Plant (NPP) (March 11, 2011) similarly to the accident at the Chernobyl NPP (April 26, 1986) is related to the level 7 of the INES. It is of interest to make an analysis of the radionuclide composition of the fallout following the both accidents. The results of the spectrometric measurements were used in that comparative analysis. Two areas following the Chernobyl accident were considered: (1) the near zone of the fallout - the Belarusian part of the central spot extended up to 60 km around the Chernobyl NPS and (2) the far zone of the fallout--the "Gomel-Mogilev" spot centered 200 km to the north-northeast of the damaged reactor. In the case of Fukushima accident the near zone up to about 60 km considered. The comparative analysis has been done with respect to refractory radionuclides (95Zr, 95Nb, 141Ce, 144Ce), as well as to the intermediate and volatile radionuclides 103Ru, 106Ru, 131I, 134Cs, 137Cs, 140La, 140Ba and the results of such a comparison have been discussed. With respect to exposure to the public the most important radionuclides are 131I and 137Cs. For the both accidents the ratios of 131I/137Cs in the considered soil samples are in the similar ranges: (3-50) for the Chernobyl samples and (5-70) for the Fukushima samples. Similarly to the Chernobyl accident a clear tendency that the ratio of 131I/137Cs in the fallout decreases with the increase of the ground deposition density of 137Cs within the trace related to a radioactive cloud has been identified for the Fukushima accident. It looks like this is a universal tendency for the ratio of 131I/137Cs versus the 137Cs ground deposition density in the fallout along the trace of a radioactive cloud as a result of a heavy accident at the NPP with radionuclides releases into the environment. This tendency is important for an objective reconstruction of 131I fallout based on the results of 137Cs measurements of soil samples carried out at

  4. Medical experience: Chernobyl and other accidents

    A radiation accident can be defined as an involuntary relevant exposure of man to ionising radiation or radioactive material. Provided one of the ensuing criteria is met with at least one person involved in an excursion of ionising radiation and or radioactive material, the respective incident can be considered a radiation accident in accordance with ICRP, NCRP (US), and WHO: ≥0.25 Sv total body irradiation with lesions of the rapidly dividing tissues; ≥6 Sv cutaneous and local irradiation; ≥0.4 Sv local irradiation of other organ systems through external sources; incorporation equal to or in excess of more than half of the maximum permissible organ burden; and medical accidents meeting one of the above criteria. Several actions have been taken to categorise radiation accidents in order to learn from previous accidents in terms of both managerial and medical experience. For this presentation three approaches will be discussed concerning their relevance to the individual treatment and risk management. This will be obtained by applying three classification schemes to all known radiation accidents: 1. classification with respect to the accident mechanism, 2. classification concerning the radiation injury, and 3. classification concerning the extent of the accident. In a fourth chapter the efficacy of bone marrow transplantation will briefly be commented on based on the accumulated experience of about 400 radiation accidents world-wide. (author)

  5. Russian National Chernobyl Register as information and and analytical for Chernobyl accident medical consequences estimation

    The paper is devoted to using of the National Radiation and Epidemiology Register basic part, namely the Russian State Medical-Dosimetric Register of the people affected by the Chernobyl accident, to estimate the medical consequences of the accident. First part of article presents the common description and current state of Register. The estimation of medical consequences of the accident for clean-up workers is given in second part. The prognosis of radiation effects and definition of basic epidemiology factors to propose optimal medicalrehabilitation measures is discussed

  6. Internal dose assessment due to large area contamination: Main lessons drawn from the Chernobyl accident

    Andrasi, A. [KFKI Atomic Energy Research Inst., Budapest (Hungary)

    1997-03-01

    The reactor accident at Chernobyl in 1986 beside its serious and tragic consequences provided also an excellent opportunity to check, test and validate all kind of environmental models and calculation tools which were available in the emergency preparedness systems of different countries. Assessment of internal and external doses due to the accident has been carried out for the population all over Europe using different methods. Dose predictions based on environmental model calculation considering various pathways have been compared with those obtained by more direct monitoring methods. One study from Hungary and one from the TAEA is presented shortly. (orig./DG)

  7. Internal dose assessment due to large area contamination: Main lessons drawn from the Chernobyl accident

    The reactor accident at Chernobyl in 1986 beside its serious and tragic consequences provided also an excellent opportunity to check, test and validate all kind of environmental models and calculation tools which were available in the emergency preparedness systems of different countries. Assessment of internal and external doses due to the accident has been carried out for the population all over Europe using different methods. Dose predictions based on environmental model calculation considering various pathways have been compared with those obtained by more direct monitoring methods. One study from Hungary and one from the TAEA is presented shortly. (orig./DG)

  8. Down syndrome clusters in Germany after the Chernobyl accident

    In two independent studies using different approaches and covering West Berlin and Bavaria, respectively, highly significant temporal clusters of Down syndrome were found. Both sharp increases occurred in areas receiving relatively low Chernobyl fallout and concomitant radiation exposures. Only for the Berlin cluster was fallout present at the time of the affected meiosis, whereas the Nuremberg cluster preceded the radioactive contamination by 1 month. Hypotheses on possible causal relationships are compared. Radiation from the Chernobyl accident is an unlikely factor, because the associated cumulative dose was so low in comparison with natural background. Microdosimetric considerations would indicate that fewer than 1 in 200 oocyte nuclei would have experienced an ionizing event from Chernobyl radioactivity. Given the lack of understanding of what causes Down syndrome, other than factors associated with increased maternal age, additional research into environmental and infectious risk factors is warranted. 23 refs., 4 figs., 2 tabs

  9. Serious reactor accidents reconsidered

    The chance is determined for damage of the reactor core and that sequel events will cause excursion of radioactive materials into the environment. The gravity of such an accident is expressed by the source term. It appears that the chance for such an accident varies with the source term. In general it is valid that how larger the source term how smaller the chance is for it and vice versa. The chance for excursion is related to two complexes of events: serious damage (meltdown) of the reactor core, and the escape of the liberated radionuclides into the environment. The results are an order of magnitude consideration of the relation between the extent of the source term and the chance for it. From the spectrum of possible source terms three representative ones have been chosen: a large, a medium and a relative small source term. This choice is in accordance with international considerations. The hearth of this study is the estimation of the chance for occurrence of the three chosen source terms for new light-water reactors. refs.; figs.; tabs

  10. Source term and radiological consequences of the Chernobyl accident

    This report presents the results of a study of the source term and radiological consequences of the Chernobyl accident. The results two parts. The first part was performed during the first 2 months following the accident and dealt with the evaluation of the source term and an estimate of individual doses in the European countries outside the Soviet Union. The second part was performed after August 25-29, 1986 when the Soviets presented in a IAEA Conference in Vienna detailed information about the accident, including source term and radiological consequences in the Soviet Union. The second part of the study reconfirms the source term evaluated in the first part and in addition deals with the radiological consequences in the Soviet Union. Source term and individual doses are calculated from measured post-accident data, reported by the Soviet Union and European countries, microcomputer program PEAR (Public Exposure from Accident Releases). 22 refs

  11. Chernobyl nuclear accident: Effects on food. (Latest citations from the Food Science and Technology Abstracts database). Published Search

    The bibliography contains citations concerning studies and measurements of the radioactive contamination by the Chernobyl nuclear reactor accident of food and the food chain. The studies cover meat and dairy products, vegetables, fish, food chains, and radioactive contamination of agricultural farms and lands. (Contains 250 citations and includes a subject term index and title list.)

  12. Reports of the Chernobyl accident consequences in Brazilian newspapers

    The public perception of the risks associated with nuclear power plants was profoundly influenced by the accidents at Three Mile Island and Chernobyl Power Plants which also served to exacerbate in the last decades the growing mistrust on the 'nuclear industry'. Part of the mistrust had its origin in the arrogance of nuclear spokesmen and in the secretiveness of nuclear programs. However, press agencies have an important role in shaping and upsizing the public awareness against nuclear energy. In this paper we present the results of a survey in reports of some Brazilian popular newspapers on Chernobyl consequences, as measured by the total death toll of the accident, to show the up and down dance of large numbers without any serious judgment. (author)

  13. The Chernobyl accident: bibliography of the science literature

    Information about the scientific publications in 1986-1995 on the problems of consequences of the Chernobyl NPP accident is presented in the book. A significant, unique actual material about results of radiation influence on men, animals, vegetative world and other components of an environment is collected to the present of time. Radiation dozes are determined and combined influence of the both radiation and chemical factors is investigated, clinical epidemiological and genetic estimation of a condition of health of the population is given. Agriculture technologies for conditions of radioactive contamination are developed and used. Normative base for both decontamination works and radioactive wastes storage is created. These and other problems are reflected in the publications described in the collection. The following sections are available: Radiobiology and radioecology (1445 refs.); Radiation medicine (703 refs.); Agriculture radiology (194 refs.); Decontamination and radioactive wastes storage (86 refs.); Economic consequences of the Chernobyl NPP accident (36 refs.); Social and psychological problems (39 refs.)

  14. Aerial contamination agroecosystems following the accident at Chernobyl NPP

    The regularities of the aerial contamination of agricultural ecosystems are described in the early period after the Chernobyl NPP accident. The aerial contamination is shown to be caused by the development of the above-ground biomass of plants and fallout characteristics. A specific coefficient of primary retention varied between 0.7 and 1.89 for 131In and between 0.46 and 1.2 m2 kg-1 for 137Cs. The first half-life period varies from 9.7 to 13.4 days. The second period varies from 46.2 to 52.2 days. It has been found that parameters of aerial contamination from the Chernobyl accident well correlate with the results of observation in the period of global fallout

  15. Global risk of radioactive fallout after major nuclear reactor accidents

    Lelieveld, J.; KUNKEL, D.; M. G. Lawrence

    2012-01-01

    Major reactor accidents of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the cumulative, global risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents (the most severe ones on the International Nuclear Event Scale, INES 7), using particulate 137Cs and gaseous ...

  16. International Conference 'Twenty Years after Chernobyl Accident. Future Outlook'. Abstracts proceeding

    This conference concludes a series of events dedicated to the 20 anniversary of the Chernobyl accident and promote an effective implementation of the accumulated international experience in the following areas: Radiation protection of the population and emergency workers, and the environmental consequences of Chernobyl accident; Medical and public health response to radiation emergencies; Strengthening radiological emergency management of radiation accidents; Economic and legal aspects of radioactive waste management and nuclear power plants decommissioning; Radioactive waste management: Chernobyl experience; Nuclear power plant decommissioning: Chernobyl NPP; Transformation of the Chernobyl Sarcophagus into an ecologically safe system

  17. Summary report on the environmental monitoring around Tokai area following the accident at Chernobyl nuclear power plant

    An accident took place at the Chernobyl nuclear power plant in USSR in the early hours of 26 April 1986. The plant caught fire and some degree of reactor inventry was released to the environment. Following the accident, debris of the radioactivity from Chernobyl was detected in all the European countries and countermeasures were taken in some countries. In Japan, many kinds of radionuclides were detected in rain, airbone dust and other environmental samples from 3 May and ''Headquaters for Radioactivity Countermeasure'' was organized in the Japanese Government. Health and Safety Division at the Tokai Works, PNC, performed the environmental monitoring for the Chernobyl accident in addition to the statutory monitoring program. This report presents results of the environmental monitoring performed at Tokai Works. Furthermore, study on the environmental transfer parameters and preliminary estimation of the committed dose equivalent to the public around Tokai area are discussed. (author)

  18. Compendium of the Environmental Measurements Laboratory's research projects related to the Chernobyl nuclear accident

    Following the accident at the Chernobyl nuclear reactor power station in the USSR on April 26, 1986, the Environmental Measurements Laboratory (EML) initiated a number of research projects as follows: (1) selected sites in both the Deposition and Surface Air networks were alerted and their sampling protocols adjusted to accommodate the anticipated arrival times and activity concentrations of the Chernobyl debris; (2) a number of cooperative programs involving field work, sampling, analysis and data interpretation were set up with institutions and scientists in other countries; (3) EML's Regional Baseline Station at Chester, NJ, as well as the roof of the Laboratory in New York City, provided bases for sampling and measurements to study the radionuclide concentrations, radiation levels, physical characteristics and potential biological implications of the Chernobyl fallout on the northeastern United States; and (4) the resulting fallout from the Chernobyl accident provided an 'experiment of opportunity' in that it enabled us to study fresh fission product deposition using collection systems resurrected from the 1950's and 1960's for comparison with current state-of-the-art methodology. The 13 reports of this volume have been entered separately into the data base

  19. Compendium of the Environmental Measurements Laboratory's research projects related to the Chernobyl nuclear accident

    Volchok, H L; Chieco, N [comps.

    1986-10-01

    Following the accident at the Chernobyl nuclear reactor power station in the USSR on April 26, 1986, the Environmental Measurements Laboratory (EML) initiated a number of research projects as follows: (1) selected sites in both the Deposition and Surface Air networks were alerted and their sampling protocols adjusted to accommodate the anticipated arrival times and activity concentrations of the Chernobyl debris; (2) a number of cooperative programs involving field work, sampling, analysis and data interpretation were set up with institutions and scientists in other countries; (3) EML's Regional Baseline Station at Chester, NJ, as well as the roof of the Laboratory in New York City, provided bases for sampling and measurements to study the radionuclide concentrations, radiation levels, physical characteristics and potential biological implications of the Chernobyl fallout on the northeastern United States; and (4) the resulting fallout from the Chernobyl accident provided an 'experiment of opportunity' in that it enabled us to study fresh fission product deposition using collection systems resurrected from the 1950's and 1960's for comparison with current state-of-the-art methodology. The 13 reports of this volume have been entered separately into the data base.

  20. International programme on the health effects of the Chernobyl accident

    A memorandum of understanding between the WHO and the Ministry of Health of the USSR was signed in April 1990, calling for the development of a long-term international programme to monitor and mitigate the health effects of the Chernobyl accident. This report examines the scientific, organizational and financial aspects of the programme and describes the action taken by the WHO for its development

  1. Duodenal ulcer course in patients participated in Chernobyl accident response

    80 participants of Chernobyl accident response having duodenal ulcer exacerbation were examined. Their disease was the result of internal irradiation (due to ingestion of short-living radioisotopes) as well as other emergency factors. Data characterizing the specific course of duodenal ulcer in patients were presented. Conclusion was made on the expediency of microbiological and cytogenetic investigations with simultaneous assessment of the indices of somatic mutagenesis

  2. International programme on the health effects of the Chernobyl accident

    A memorandum of understanding between the WHO and the Ministry of Health of the USSR was signed in April 1990, calling for the development of a long-term international programme to monitor and mitigate the health effects of the Chernobyl accident. This document reports on progress made to date in terms of technical management and coordination and financial aspects of the programme. It also provides information on future activities and discusses related issues

  3. Radioecological and dosimetric consequences of the Chernobyl accident in France

    This study has as objective a survey of the radioecological and dosimetric consequences of the Chernobyl accident in France, as well as a prognosis for the years to come. It was requested by the Direction of Nuclear Installation Safety (DSIN) in relation to different organisms which effected measurements after this accident. It is based on the use of combined results of measurements and modelling by means of the code ASTRAL developed at IPSN. Various measurements obtained from five authorities and institutions, were made available, such as: activity of air and water, soil, processed food, agricultural and natural products. However, to achieve the survey still a modelling is needed. ASTRAL is a code for evaluating the ecological consequences of an accident. It allows establishing the correspondence between the soil Remnant Surface Activities (RSA, in Bq.m-2), the activity concentration of the agricultural production and the individual and collective doses resulting from external and internal exposures (due to inhalation and ingestion of contaminated nurture). The results of principal synthesis documents on the Chernobyl accident and its consequences were also used. The report is structured in nine sections, as follows: 1.Introduction; 2.Objective and methodology; 3.Characterization of radioactive depositions; 4;Remnant surface activities; 5.Contamination of agricultural products and foods; 6.Contamination of natural, semi-natural products and of drinking water; 7.Dosimetric evaluations; 8.Proposals for the environmental surveillance; 9.Conclusion. Finally, after ten years, one concludes that at present the dosimetric consequences of the Chernobyl accident in France were rather limited. For the period 1986-2046 the average individual effective dose estimated for the most struck zone is lower than 1500 μSv, which represents almost 1% of the average natural exposure for the same period. At present, the cesium 137 levels are at often inferior to those recorded before

  4. Psychosomatic health status of children exposed to the Chernobyl accident

    Korol, N. [Scientific Center for Radiation Medicine, Kiev (Ukraine); Shibata, Yoshisada; Nakane, Yoshibumi

    1998-12-01

    Childhood victims were investigated focussing on the psychosomatic disorders. The subjects were some of the 3834 children who evacuated from the Chernobyl zone to Kiev (evacuees) and 200 children who have been living in Kiev since prior to the accident (comparison group). A psychological test administered to 504 evacuees aged 12-14 years at the time of the accident and the comparison group indicated that the frequencies of neutroticism, high level of anxiety and conflicts were significantly higher in the evacuees than in the comparison group (p<0.001). Another psychological test administered at puberty to the 504 evacuees and 200 other evacuees exposed to the accident at 4-6 years of age indicated that the psycho-emotional portrait of evacuated teenagers significantly changed with time since the accident. The effects of the Chernobyl accident on the health of the vegetative dystonia observed in 1987-1990 and 1990-1995 were higher in the evacuees than in the comparison group, although they were not statistically significant. Furthermore, a significant (p<0.001) association of the vegetative dystonia with peptic and cardiovascular disorders was observed. The present study indicates that the vegetative dystonia is still highly prevalent among childhood victims and deems to support that the vegetative dystonia may be a precursor of several diseases such as cardiovascular and peptic disorders. It should be emphasized that a health promotion program to produce a change in psychological and social problems after the Chernobyl accident is necessary to decrease the health impact among Ukrainian people. (author)

  5. Psychosomatic health status of children exposed to the Chernobyl accident

    Childhood victims were investigated focussing on the psychosomatic disorders. The subjects were some of the 3834 children who evacuated from the Chernobyl zone to Kiev (evacuees) and 200 children who have been living in Kiev since prior to the accident (comparison group). A psychological test administered to 504 evacuees aged 12-14 years at the time of the accident and the comparison group indicated that the frequencies of neutroticism, high level of anxiety and conflicts were significantly higher in the evacuees than in the comparison group (p<0.001). Another psychological test administered at puberty to the 504 evacuees and 200 other evacuees exposed to the accident at 4-6 years of age indicated that the psycho-emotional portrait of evacuated teenagers significantly changed with time since the accident. The effects of the Chernobyl accident on the health of the vegetative dystonia observed in 1987-1990 and 1990-1995 were higher in the evacuees than in the comparison group, although they were not statistically significant. Furthermore, a significant (p<0.001) association of the vegetative dystonia with peptic and cardiovascular disorders was observed. The present study indicates that the vegetative dystonia is still highly prevalent among childhood victims and deems to support that the vegetative dystonia may be a precursor of several diseases such as cardiovascular and peptic disorders. It should be emphasized that a health promotion program to produce a change in psychological and social problems after the Chernobyl accident is necessary to decrease the health impact among Ukrainian people. (author)

  6. Belorussian population health state following the Chernobyl accident

    Environmental radioactivity peculiarities at the Belarussian territory resulted from the Chernobyl accident are analysed. Main risk systems for human health and trends of potential pathology formation are determined. Growth in the disease incidence in adults and especially in children is marked. It covers thyroid cancer (due to 131I intake in the early period of the accident), chronic neoplasms in hematopoietic and lymphatic systems, immune system, digestive system, cardiovascular and neuromental diseases. Attention is paid to the genetic radiation effects, pregnancy and delivery pathology. 2 tabs

  7. Material relating to the Chernobyl accident submitted by Belarus

    This material contains attachments provided by the Resident Representative of Belarus to the IAEA, who has requested that it be circulated to member states in connection with the First International Conference of the European Commission, Belarus, the Russian Federation and Ukraine on the consequences of the Chernobyl Accident held in Minsk held from 18 to 22 March 1996. The paper discusses the environmental and health effect of the accident and efforts made to assess and rehabilitate the environmental consequences. One of the obvious effect presented is a significant increase in incidence of thyroid cancer in children and adolescents

  8. Soviet medical response to the Chernobyl nuclear accident

    The nuclear accident at Chernobyl was the worst in the history of nuclear power. It tested the organized medical response to mass radiation casualties. This article reviews the Soviet response as reported at the 1986 postaccident review meeting in Vienna and as determined from interviews. The Soviets used three levels of care: rescue and first aid at the plant site; emergency treatment at regional hospitals; and definitive evaluation and treatment in Moscow. Diagnosis, triage, patient disposition, attendant exposure, and preventive actions are detailed. The United States would be well advised to organize its resources definitively to cope with future nonmilitary nuclear accidents

  9. Hygienic training of population being victims of the Chernobyl accident

    Study results on the role of social factors in formation of attitude to own health and its self-evaluation by the population of the regions, subjected to impact of the Chernobyl NPP accident. An extremely important component block is determined in the programs on hygienic training of the population being victims of the accident, namely, adequate information of the public on dose-effect dependencies, on radionuclide behaviour in the environmental objects, on possible measures for reduction of undesirable effects. Necessity is noted of transfer from universal programs of hygienic training to differential ones up to individual training

  10. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts

    Steinhauser, Georg, E-mail: georg.steinhauser@colostate.edu; Brandl, Alexander; Johnson, Thomas E.

    2014-02-01

    The environmental impacts of the nuclear accidents of Chernobyl and Fukushima are compared. In almost every respect, the consequences of the Chernobyl accident clearly exceeded those of the Fukushima accident. In both accidents, most of the radioactivity released was due to volatile radionuclides (noble gases, iodine, cesium, tellurium). However, the amount of refractory elements (including actinides) emitted in the course of the Chernobyl accident was approximately four orders of magnitude higher than during the Fukushima accident. For Chernobyl, a total release of 5300 PBq (excluding noble gases) has been established as the most cited source term. For Fukushima, we estimated a total source term of 520 (340–800) PBq. In the course of the Fukushima accident, the majority of the radionuclides (more than 80%) was transported offshore and deposited in the Pacific Ocean. Monitoring campaigns after both accidents reveal that the environmental impact of the Chernobyl accident was much greater than of the Fukushima accident. Both the highly contaminated areas and the evacuated areas are smaller around Fukushima and the projected health effects in Japan are significantly lower than after the Chernobyl accident. This is mainly due to the fact that food safety campaigns and evacuations worked quickly and efficiently after the Fukushima accident. In contrast to Chernobyl, no fatalities due to acute radiation effects occurred in Fukushima. - Highlights: • The environmental effects of Chernobyl and Fukushima are compared. • Releases of radionuclides from Chernobyl exceeded Fukushima by an order of magnitude. • Chernobyl caused more severe radiation-related health effects. • Overall, Chernobyl was a much more severe nuclear accident than Fukushima. • Psychological effects are neglected but important consequences of nuclear accidents.

  11. Report on the accident at the Chernobyl Nuclear Power Station

    This report presents the compilation of information obtained by various organizations regarding the accident (and the consequences of the accident) that occurred at Unit 4 of the nuclear power station at Chernobyl in the USSR on April 26, 1986. Each organization has independently accepted responsibility for one or more chapters. The specific responsibility of each organization is indicated. The various authors are identified in a footnote to each chapter. Very briefly the other chapters cover: the design of the Chernobyl nuclear station Unit 4; safety analyses for Unit 4; the accident scenario; the role of the operator; an assessment of the radioactive release, dispersion, and transport; the activities associated with emergency actions; and information on the health and environmental consequences from the accident. These subjects cover the major aspects of the accident that have the potential to present new information and lessons for the nuclear industry in general. The task of evaluating the information obtained in these various areas and the assessment of the potential implications has been left to each organization to pursue according to the relevance of the subject to their organization. Those findings will be issued separately by the cognizant organizations. The basic purpose of this report is to provide the information upon which such assessments can be made

  12. Chernobyl: Endless horror. Late effects of the reactor catastrophe

    Ten years after the accident, the people of Chernobyl are trying to live a normal life, but the problems resulting from the catastrophe have not been solved. Some of them are just starting to emerge. (orig.)

  13. International programme on the health effects of the Chernobyl accident

    Two years ago the World Health Assembly approved the establishment of the International Programme on the Health Effects of the Chernobyl Accident (IPHECA). The Programme, set up under the auspices of WHO, provides support to the health authorities in Belarus, the Russian Federation and the Ukraine in dealing with the aftermath of the accident, and is intended to serve as a unifying framework for all international health-related activities arising from the accident carried out in the three countries. This document outlines the Programme's objectives, structure, accomplishments and future plans. As a background, it also provides a brief overview of the accident and of its current and potential impact on health in the three countries. 5 figs, 1 tab

  14. Iodine releases from reactor accidents

    The airborne releases of iodine from water reactor accidents are small fractions of the available iodine and occur only slowly. However, in reactor accidents in which water is absent, the release of iodine to the environment can be large and rapid. These differences in release fraction and rate are related to the chemical states attained by iodine under the accident conditions. It is clear that neither rapid issue of blocking KI nor rapid evacuation of the surrounding population is required to protect the public from the radioiodine released in the event of a major water reactor accident

  15. Airborne and deposited radioactivity from the Chernobyl accident. A review of investigations in Finland

    Paatero, J. (Finnish Meteorogical Inst., Helsinki (Finland)); Haemeri, K. (Helsinki Univ., Dept. of Physics (Finland)); Jaakkola, T. (Helsinki Univ., Lab. of Radiochemistry (Finland)); Jantunen, M. (National Public Health Inst., Kuopio (Finland)); Koivukoski, J. (Ministry of the Interior, Rescue Dept., Government (Finland)); Saxen, R. (STUK Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2010-07-01

    The Chernobyl nuclear accident happened in the former Soviet Union on 26 April 1986. The accident destroyed one of the RBMK-1000 type reactors and released significant radioactive contamination into the environment. At first the emissions were transported north-westwards over Poland, the Baltic States, Finland, Sweden and Norway. During 27 April 1986 emissions were spreading to eastern-central Europe, southern Germany, Italy and Yugoslavia. Radioactivity mapping over Finland between 29 April and 16 May 1986 showed that the ground deposition in Finland covered southern and central parts of the country but had an irregular distribution. The highest (over 100 muR h-1 [1 muSv h-1]) contamination disclosed by the mapping was around the city of Uusikaupunki in western Finland and the city of Kotka in southeastern Finland. The Uusikaupunki region was an area of heavy fallout associated with the air mass that was located in the Chernobyl area at the time of the accident. The fallout pattern of reftractory nuclides, e.g. plutonium isotopes, had their spatial maximum in this region. Medical consequences in Finland were luckily mild, the most important symptoms being psychological ones. No increase in thyroid cancer or birth defect occurrence has been observed. The Chernobyl accident boosted the radioecological research which had already been calming down after the last atmospheric nuclear test in China in October 1980. Important new results concerning e.g. hot particles have been achieved. The most important effects of the accident in Finland were, however, the increase of public awareness of environmental issues in general and especially of nuclear energy. In Finland, the nuclear energy programme was halted until 2002 when the Parliament of Finland granted a licence to build the fifth nuclear reactor in Finland. (orig.)

  16. Epidemiological studies in Russia about the consequences of the Chernobyl APS accident

    Ryabzev, I.A. [Institute of Problem of Ecology and Evolution, Russian Academy of Sciences, Moscow (Russian Federation)

    1998-03-01

    The final purpose of all efforts to study and mitigate the consequences of the accident at the 4th reactor of the Chernobyl atomic power station (ChAPS) is protection of health of the people who were more or less exposed to radiation action. This situation has not analogs in terms of scale and character. Certain experience was accumulated earlier through the studies of biological and medical effects of atomic bombing in Hiroshima and Nagasaki, other radiation catastrophes, diagnostic and therapeutic application of radiation, and the control of health state of professionals in atomic industries. However, these experiences can be used just partially in the assessment and the forecast of possible negative after-effects of the Chernobyl accident for the present and future generations. The long-term irradiation of a lage number of population at low doses is to be considered the principal peculiarity of the Chernobyl accident. The medical activities are complicated significantly by the absence of verifiable individual dosimetric information, natural or forced migration of the population, insufficient development of radiation epidemiology, complicated social-economic situation in the country, and other factors which are inevitable at large-scaled catastrophes. Besides, many fundamental questions related to biological effects of action of low doses of ionizing radiation are still being studied. (J.P.N.)

  17. Some geochemical and environmental aspects of the Chernobyl nuclear accident

    Radionuclide fallout on Byelorussia in the first days after the accident was mainly dependent on the mass movement of air and rain. In cities, fallout was confined to regions with intensive industrial dust emissions, as well as to river valleys, where degassing of deep-seated zones through faults occurred side by side with evaporation. Radionuclide washout from upland territories can be related to secondary processes. After 5 a, radioactivity near the surface of the Earth had decreased due to the decay of shortlived isotopes and penetration of radionuclides deeper into the soil, although the major part still occurs at a depth of 1-5 cm. Bogs, peat-bog soils, aquifers with fluctuating groundwater levels, variable pH-Eh conditions and a high-biological activity all contribute to radionuclide migration. A part of the radionuclides is gradually removed from eluvial landscapes and accumulated in subareal landscapes (e.g. lakes, oxbow-lakes, water-storage basins). The Chernobyl debris is represented by the following: ''hot'' particles, pseudocolloids, aerosols and gaseous compounds. Two zones can be distinguished around the reactor differing in the ratio of ''hot'' particles and condensate fallout. A very important role is assigned to biological processes and organic matter, which cause the destruction of ''hot'' particles, the formation or organometallic complexes, and water migration of nuclides. After 300 and more years, the distribution of radionuclides in the landscape will have been determined by weathering, erosion and sedimentation which strongly depend on climatic conditions. Side by side with a gradual decay of Cs and Sr, an appreciable accumulation of 241Am, which is very mobile in landscapes, should be expected due to decaying 241Pu. (Author)

  18. The Chernobyl accident and the radiation protection of population (problems of safety)

    Tabachny, L.

    1994-12-31

    This paper is a comprehensive survey of the environmental consequences and of the impact on human populations, nine years after Chernobylsk-4 reactor accident. First, the paper recalls the immediate effects of the accident, which occurred on April 26, 1986, and the extend of the atmospheric, surface and ground water contamination. A detailed survey of gamma dosimetry has been carried out around the Ukrytie encasement which contains all main radioactive sources and materials of Unit 4. The Ukraine State Committee on Chernobyl Affairs was organized in 1990 for the planning and coordinating of all works for accident consequences liquidation and for the management of the population social defense program and compensation of victims and workmen. Up to day, about 200000 people was resettled from contaminated territories. This has raised several problems of housing, infrastructures, food supplying and so on. The accident health effects on population, such as organ diseases, psychic disturbances and general loss of health, are summarized. The paper focusses on the general lack of high qualified specialists of different science and manufacture branches and on the lack of pharmaceuticals, equipments etc during emergency situation. During the post accidental stage, a series of regulations and intervention levels for protecting the public to radiations exposure was introduced by the Health Ministry of USSR, and in 1991 the Conception of population safety inhabitancy in the contaminated territories as a result of Chernobyl accident was confirmed by the Supreme Soviet of Ukrainian SSR. (J.S.). 7 refs., 3 figs., 10 tabs., 2 appends.

  19. The Chernobyl accident and the radiation protection of population (problems of safety)

    This paper is a comprehensive survey of the environmental consequences and of the impact on human populations, nine years after Chernobylsk-4 reactor accident. First, the paper recalls the immediate effects of the accident, which occurred on April 26, 1986, and the extend of the atmospheric, surface and ground water contamination. A detailed survey of gamma dosimetry has been carried out around the Ukrytie encasement which contains all main radioactive sources and materials of Unit 4. The Ukraine State Committee on Chernobyl Affairs was organized in 1990 for the planning and coordinating of all works for accident consequences liquidation and for the management of the population social defense program and compensation of victims and workmen. Up to day, about 200000 people was resettled from contaminated territories. This has raised several problems of housing, infrastructures, food supplying and so on. The accident health effects on population, such as organ diseases, psychic disturbances and general loss of health, are summarized. The paper focusses on the general lack of high qualified specialists of different science and manufacture branches and on the lack of pharmaceuticals, equipments etc during emergency situation. During the post accidental stage, a series of regulations and intervention levels for protecting the public to radiations exposure was introduced by the Health Ministry of USSR, and in 1991 the Conception of population safety inhabitancy in the contaminated territories as a result of Chernobyl accident was confirmed by the Supreme Soviet of Ukrainian SSR. (J.S.). 7 refs., 3 figs., 10 tabs., 2 appends

  20. Radiological consequence of Chernobyl nuclear power accident in Japan

    Two years have elapsed since the accident in Chernobyl nuclear power station shocked those concerned with nuclear power generation. The effect that this accident exerted on human environment has still continued directly and indirectly, and the reports on the effect have been made in various countries and by international organizations. In Japan, about the exposure dose of Japanese people due to this accident, the Nuclear Safety Commission and Japan Atomic Energy Research Institute issued the reports. In this report, the available data concerning the envrionmental radioactivity level in Japan due to the Chernobyl accident are collected, and the evaluation of exposure dose which seems most appropriate from the present day scientific viewpoint was attempted by the detailed analysis in the National Institute of Radiological Sciences. The enormous number of the data observed in various parts of Japan were different in sampling, locality, time and measuring method, so difficulty arose frequently. The maximum concentration of I-131 in floating dust was 2.5 Bq/m3 observed in Fukui, and the same kinds of radioactive nuclides as those in Europe were detected. (Kako, I.)

  1. Radioactivity in the Baltic sea following the Chernobyl accident

    The brown alga Fucus vesiculosus L. has been used as a bioindicator for the investigation of the impact of the Chernobyl accident with respect to the spatial and temporal distribution of radionuclides in the Baltic sea. The investigations were performed in July 1986, about two months after the accident, and in August-September 1987. In July 1986 the gamma-emitting radionuclides Cs-134, Cs-137, Ru-103, Ru-106 and Ag-110m were detected in F. vesiculosus along the Swedish east, south and southwest coasts. The activity concentrations of Cs-137 varied from 600 Bq/kg dw at the northern most locality (Simpnaes) to 20-25 Bq/kg dw at the south east coast. In August-September 1987 the activity concentrations of radiocesium had increased with a factor 2-3 at most localities off the Swedish east coast, compared with the results from 1986. Regarding transuranics and Tc-99 the impact was small and we did not observe any increase of these radionuclides in the algae. The later effects of the radionuclide contamination in the Baltic Sea, primarily cesium, from Chernobyl were studied at one locality on the Swedish south coast from April 1987 to November 1988. A pronounced increase in the activity concentrations was observed during 1988 indicating an outflow of water, containing relatively higher levels of Chernobyl derived radionuclides, from the Baltic Sea. (au)

  2. Genital endometriosis rate dynamics before and after Chernobyl accident

    The necessity of endometriosis dynamics evaluation is caused by worse ecological situation on the area of Belarus. Genital endometriosis frequency was studied considering the outcomes of surgeries fulfilled in hospitals of Gomel, Mogilev and Vitebsk in 1981-1995. At this time 1254 women underwent an operation and 19% of patients (235 persons) were operated before the Chernobyl accident. In the first 5 years after the accident endometriosis frequency increased nearly 2 times. The next 5 years (1991-1995) the number of operated patients was 565, i.e. 45% from the whole number. Uterus was extirpated or amputated in 898 patients, ovaries at both sides were removed in 36 ones. As the analysis showed the endometriosis frequency grew in 2,5 times for last 15 years, the most significant increase of this pathology was observed during the first five years after the accident

  3. Evolution of regulation related to the Chernobyl accident

    The 'classical' pattern of radiological protection considers mostly the radiation factor. The choice of protective measures is governed by effective doses, both received and projected, also established and adopted intervention levels, respectively. The effectiveness of the countermeasures is measured by the value of an averted dose. The lessons learned from Chernobyl show that the above single-factor pattern of radiological protection is appropriate only at an acute post-accident phase. In that period (days and weeks after an accident) the radiation factor prevails and bas countermeasures are proceeded from prearranged intervention levels. At the next long-term phase (months, years after the accident) there is enough time for a human factor to come fully into force. This factor implies the psychological and social acceptance, by the public, of the countermeasures to be implemented. It implies the response of the public to their implementation, the reflection of the situation by mass media, the reaction of Legislative and Administrative Bodies too

  4. Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience

    The explosion on 26 April 1986 at the Chernobyl Nuclear Power Plant located just 100 km from the city of Kyiv in what was then the Soviet Union and now is Ukraine, and consequent ten days' reactor fire resulted in an unprecedented release of radiation and unpredicted adverse consequences both for the public and the environment. Indeed, the IAEA has characterized the event as the 'foremost nuclear catastrophe in human history' and the largest regional release of radionuclides into the atmosphere. Massive radioactive contamination forced the evacuation of more than 100,000 people from the affected region during 1986, and the relocation, after 1986, of another 200,000 from Belarus, the Russian Federation and Ukraine. Some five million people continue to live in areas contaminated by the accident and have to deal with its environmental, health, social and economic consequences. The national governments of the three affected countries, supported by international organizations, have undertaken costly efforts to remedy contamination, provide medical services and restore the region's social and economic well-being. The accident's consequences were not limited to the territories of Belarus, Russia and Ukraine but resulted in substantial transboundary atmospheric transfer and subsequent contamination of numerous European countries that also encountered problems of radiation protection of their populations, although to less extent than the three more affected countries. Although the accident occurred nearly two decades ago, controversy still surrounds the impact of the nuclear disaster. Therefore the IAEA, in cooperation with FAO, UNDP, UNEP, UNOCHA, UNSCEAR, WHO and The World Bank, as well as the competent authorities of Belarus, the Russian Federation and Ukraine, established the Chernobyl Forum in 2003. The mission of the Forum was - through a series of managerial and expert meetings to generate 'authoritative consensual statements' on the environmental consequences and

  5. Radionuclides contamination of fungi after accident on the Chernobyl NPP

    Zarubina, Nataliia E.; Zarubin, Oleg L. [Institute for Nuclear Research of National Academy of Sciense, 03680, pr-t Nauki, 47, Kiev (Ukraine)

    2014-07-01

    Accumulation of radionuclides by the higher fungi (macromycetes) after the accident on the Chernobyl atomic power plant in 1986 has been studied. Researches were spent in territory of the Chernobyl alienation zone and the Kiev region. Our research has shown that macromycetes accumulate almost all types of radionuclides originating from the accident ({sup 131}I, {sup 140}Ba /{sup 140}La, {sup 103}Ru, {sup 106}Ru, {sup 141}Ce, {sup 144}Ce, {sup 95}Nb, {sup 95}Zr, {sup 137}Cs and {sup 134}Cs). They accumulate the long-living {sup 90}Sr in much smaller (to 3 - 4 orders) quantities than {sup 137}Cs. We have established existence of two stages in accumulation of {sup 137}Cs by higher fungi after the accident on the Chernobyl NPP: the first stage resides in the growth of the concentration, the second - in gradual decrease of levels of specific activity of this radionuclide. Despite reduction of {sup 137}Cs specific activity level, the content of this radionuclide at testing areas of the 5-km zone around the Chernobyl NPP reaches 1,100,000 Bq/kg of fresh weight in 2013. We investigated dynamics of accumulation of Cs-137 in higher fungi of different ecological groups. One of the major factors that influence levels of accumulation of {sup 137}Cs by fungi is their nutritional type (ecological group). Fungi that belong to ecological groups of saprotrophes and xylotrophes accumulate this radionuclide in much smaller quantities than symbio-trophic fungi. As a result of the conducted research it has been established that symbio-trophic fungi store more {sup 137}Cs than any other biological objects in forest ecosystems. Among the symbio-trophic fungi species, species showing the highest level of {sup 137}Cs contamination vary in different periods of time after the deposition. It is connected with variability of quantities of these radio nuclides accessible for absorption at the depth of localization of the main part of mycelium of each species in a soil profile. Soil contamination

  6. Radionuclides contamination of fungi after accident on the Chernobyl NPP

    Accumulation of radionuclides by the higher fungi (macromycetes) after the accident on the Chernobyl atomic power plant in 1986 has been studied. Researches were spent in territory of the Chernobyl alienation zone and the Kiev region. Our research has shown that macromycetes accumulate almost all types of radionuclides originating from the accident (131I, 140Ba /140La, 103Ru, 106Ru, 141Ce, 144Ce, 95Nb, 95Zr, 137Cs and 134Cs). They accumulate the long-living 90Sr in much smaller (to 3 - 4 orders) quantities than 137Cs. We have established existence of two stages in accumulation of 137Cs by higher fungi after the accident on the Chernobyl NPP: the first stage resides in the growth of the concentration, the second - in gradual decrease of levels of specific activity of this radionuclide. Despite reduction of 137Cs specific activity level, the content of this radionuclide at testing areas of the 5-km zone around the Chernobyl NPP reaches 1,100,000 Bq/kg of fresh weight in 2013. We investigated dynamics of accumulation of Cs-137 in higher fungi of different ecological groups. One of the major factors that influence levels of accumulation of 137Cs by fungi is their nutritional type (ecological group). Fungi that belong to ecological groups of saprotrophes and xylotrophes accumulate this radionuclide in much smaller quantities than symbio-trophic fungi. As a result of the conducted research it has been established that symbio-trophic fungi store more 137Cs than any other biological objects in forest ecosystems. Among the symbio-trophic fungi species, species showing the highest level of 137Cs contamination vary in different periods of time after the deposition. It is connected with variability of quantities of these radio nuclides accessible for absorption at the depth of localization of the main part of mycelium of each species in a soil profile. Soil contamination by 137Cs is one of the principal abiotic influences on the accumulation of this radionuclide by fungi

  7. Transgenic plants are sensitive bioindicators of nuclear pollution caused by the Chernobyl accident

    Kovalchuk, I.; Kovalchuk, O. [Ivano-Frankivsk State Medical Academy (Ukraine)]|[Friedrich Miescher Inst., Basel (Switzerland); Arkhipov, A. [Chernobyl Scientific and Technical Center of International Research (Ukraine); Hohn, B. [Friedrich Miescher Inst., Basel (Switzerland)

    1998-11-01

    To evaluate the genetic consequences of radioactive contamination originating from the Nuclear reactor accident of Chernobyl on indigenous populations of plants and animals, it is essential to determine the rates of accumulating genetic changes in chronically irradiated populations. An increase in germline mutation rates in humans living close to the Chernobyl Nuclear Power Plant site, and a two- to tenfold increase in germline mutations in barn swallows breeding in Chernobyl have been reported. Little is known, however, about the effects of chronic irradiation on plant genomes. Ionizing radiation causes double-strand breaks in DNA, which are repaired via illegitimate or homologous recombination. The authors make use of Arabidopsis thaliana plants carrying a {beta}-glucuronidase marker gene as a recombination substrate to monitor genetic alterations in plant populations, which are caused by nuclear pollution of the environment around Chernobyl. A significant increase in somatic intrachromosomal recombination frequencies was observed at nuclear pollution levels from 0.1--900 Ci/km{sup 2}, consistent with an increase in chromosomal aberrations. This bioindicator may serve as a convenient and ethically acceptable alternative to animal systems.

  8. Transgenic plants are sensitive bioindicators of nuclear pollution caused by the Chernobyl accident

    To evaluate the genetic consequences of radioactive contamination originating from the Nuclear reactor accident of Chernobyl on indigenous populations of plants and animals, it is essential to determine the rates of accumulating genetic changes in chronically irradiated populations. An increase in germline mutation rates in humans living close to the Chernobyl Nuclear Power Plant site, and a two- to tenfold increase in germline mutations in barn swallows breeding in Chernobyl have been reported. Little is known, however, about the effects of chronic irradiation on plant genomes. Ionizing radiation causes double-strand breaks in DNA, which are repaired via illegitimate or homologous recombination. The authors make use of Arabidopsis thaliana plants carrying a β-glucuronidase marker gene as a recombination substrate to monitor genetic alterations in plant populations, which are caused by nuclear pollution of the environment around Chernobyl. A significant increase in somatic intrachromosomal recombination frequencies was observed at nuclear pollution levels from 0.1--900 Ci/km2, consistent with an increase in chromosomal aberrations. This bioindicator may serve as a convenient and ethically acceptable alternative to animal systems

  9. Radionuclides in macro algae at Monaco following the Chernobyl accident

    Samples of macro algae, Codmium tomentosum (green), Corallina mediterranea (red), Sphaerococcus coronopifolius (red) and Dictyota dichotoma (brown), were collected off Monaco during 1984 and 1988 and analysed for gamma-emitting radionuclides and transuranium elements. Due to the Chernobyl accident, increased radioactivity in the atmosphere at Monaco was recorded on 30 April 1986 with maximal activity concentrations on 2-3 May. The maximal activity concentrations in sea water occurred on 5-6 May and in the algae on 11 May. The decrease of activity concentrations can be described after May 11 as a single exponential relationship, where elimination rates for different radionuclides and different species specific to the environment can be calculated. The elimination rates thus observed correspond to mean residence times between 70 and 370 days corrected for physical decay. The concentration factors were also estimated and the highest values were found for 131I, 129Tem, and 110Agm and lowest for radiocesium and 140Ba. The red algae Sphaerococcus coronopifoius showed generally higher concentration factors than green and brown algae. Regarding transuranium elements, a theoretical contribution from the Chernobyl accident can be made but only 242Cm was detected in the algae above previous levels before the accident, due to the relatively small fallout of transuranics. (author) 23 refs.; 9 figs.; 4 tabs

  10. Public acceptance and assessment of countermeasures after the Chernobyl accident

    General Background. Previous studies confirmed that the main reason of the psychological stress after Chernobyl was a worry about radiation influence on personal health and health of children. This ''Chernobyl stress'' is typical ''information'' or emotional stress resulting from mass media information on radioactive contamination and exposure but not from direct personal visual or auditory and other impression for 5 million population. The population was not able to define the radiation danger by direct sensual perception without measuring equipment but was obliged to change their life-style and diet as a remedial action and to follow the radiation protection requirements and advices. Therefore the anxiety was related not only to information about the accident but also to implemental countermeasures, which changed the everyday life. The countermeasures became the first real sign of the accident. Methods. In 1988-1994 studies based on population interview of about 5 thousand residents and questionnaires were carried out on contaminated (15 - 40 Ci/km2) territories, adjacent and distant areas. The following information was used: population knowledge of protective measures; sources of information about radiation and level of trust; assessment of the effectiveness and reasons of non-satisfaction of the protection measures; compliance and involvement of population in countermeasures including effects of life-style changes and behavior; public opinion on priority for financial expenditure for mitigation of accident consequences

  11. Monitoring of congenital malformations in Belarus after the Chernobyl accident

    An investigation of over 21,000 embryos and fetuses from medically-induced abortions was conducted from 1980 through 1991 in the Republic of Belarus. More than half of the abortions studied were carried out after the Chernobyl nuclear accident, including 1176 from districts with 137Cs soil contamination levels over 0.6 TBq/km2 (15 Ci/km2). Congenital malformations (CM's) in 7325 newborn children also were analyzed. The data on these children were obtained from a genetic monitoring program. It was shown that in the 5 years after the Chernobyl accident the frequency of abnormal developments in aborted fetuses from contaminated areas was significantly higher than in aborted fetuses from Minsk, which was relatively uncontaminated. Additionally, the CM incidence in newborn children increased in Belarus compared to the CM incidences before the accident; the increase was most significant in the heavily contaminated areas. The increases were attributed primarily to CMS characterized by dominant mutations. These increases could have been partially caused by factors unrelated to radiation dose, including defective nourishment, chemical contaminants, and psychological stresses. A correlation between CM increase and the parents' dose has not been established. 17 refs., 6 tabs

  12. Speciation of radiocesium in atmospheric aerosol after the Chernobyl accident

    The aim of this analysis was to verify the hypothesis that physico-chemical forms of radiocesium in the fallout after the accident could depend on the transport conditions, including the distance of a sampling location from Chernobyl. From the results it is obvious that the prevailing form in all samples taken in the period of direct contamination was water-soluble radiocesium. It can be concluded from the presented results that physico-chemical forms of radiocesium in atmospheric aerosol and fallout after the nuclear power plant accident at Chernobyl as well as particulate size distribution can depend on the distance or the conditions of transport from a contamination source to a sampling location. The influence of the conditions of radiocesium transport could result in observed differences in the 137Cs penetration into soil profile in different locations and also in the found dependence on the resuspension factor for 137Cs on the level of its fallout in the period of NPP accident for different locations in Europe. (J.K.) 1 tab

  13. Dose contribution of 90Sr to the ingestion dose after the Chernobyl accident

    The exposure of the Austrian population due to 90Sr after the reactor accident at Chernobyl was estimated by measurement of the 90Sr-content in 131 food samples, 9 drinking water samples and 7 other samples. The samples were taken at different times after the accident to take into account changes in the activity content with time. In order to estimate the contri-bution of the reactor accident compared to 90Sr from the atomic bomb testing, also samples of the time before the incident were evaluated. Considering the average food consumption one obtains an weighted effective dose equivalent of 0,006mSv for the adult and 0,01mSv for the one year old child. For the infant the dose in first half year of his life amounts to 0,00006mSv if fed with woman milk, respectively 0,0009mSv if fed with infant food. Approximately half of the dose of 90Sr may be attributed to the reactor accident, the other half is attributable to 90Sr of the weapon testing. The dose in the second year after the accident amounts to approximately 70% of the dose in the first year of which 70% are caused by 90Sr from the weapons testing. 20 refs., 30 tabs., 10 figs. (Author)

  14. Food monitoring for radioactivity concentrations after the Chernobyl accident: Consequences for the citizen

    Radioactively contaminated food accounts for most of the radiation exposure after the Chernobyl reactor accident. Hence, food low in radiation will allow to kerb exposure. Precautions include a general identification of radioactivity contents in food commodities by industry and trade as well as preferential supply of pregnant women, nursing mothers and young children with low-activity food. Such food would have an acceptable level of 10 Bq Cs 137/kg. Private precautions are needed for as long as the government fails to initiate corresponding measures. (DG)

  15. Deposition of long-lived radionuclides after the Chernobyl accident in the forestal massif of Boreon

    After the reactor accident at Chernobyl, samples of soil, moss, lichen and fern were collected in the forest around the Vesubie valley in the South East fo France and analyzed by low energy photon and gamma spectrometry. Activity concentrations as high as 42.8, 9.4 and 3.8 kBq.m-2 were measured for 137Cs, 134Cs and 106Ru, respectively, in soil, in October 1988. 12Sb and 110mAg were also detected. The contamination was found to be the most important between 1400 and 1700 m altitude. (author) 9 refs.; 5 figs.; 2 tabs

  16. Cancer consequences of the Chernobyl accident: 20 years on

    Cardis, Elisabeth [International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon CEDEX 08 (France); Howe, Geoffrey [Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168th Street, Room 1104, New York, NY 10032 (United States); Ron, Elaine [Radiation Epidemiology Branch, Division of Epidemiology and Genetics, National Cancer Institute, Building EPS, MS 7238, Rockville, MD 20852 (United States)] (and others)

    2006-06-15

    26 April 2006 marks the 20th anniversary of the Chernobyl accident. On this occasion, the World Health Organization (WHO), within the UN Chernobyl Forum initiative, convened an Expert Group to evaluate the health impacts of Chernobyl. This paper summarises the findings relating to cancer. A dramatic increase in the incidence of thyroid cancer has been observed among those exposed to radioactive iodines in childhood and adolescence in the most contaminated territories. Iodine deficiency may have increased the risk of developing thyroid cancer following exposure to radioactive iodines, while prolonged stable iodine supplementation in the years after exposure may reduce this risk. Although increases in rates of other cancers have been reported, much of these increases appear to be due to other factors, including improvements in registration, reporting and diagnosis. Studies are few, however, and have methodological limitations. Further, because most radiation-related solid cancers continue to occur decades after exposure and because only 20 years have passed since the accident, it is too early to evaluate the full radiological impact of the accident. Apart from the large increase in thyroid cancer incidence in young people, there are at present no clearly demonstrated radiation-related increases in cancer risk. This should not, however, be interpreted to mean that no increase has in fact occurred: based on the experience of other populations exposed to ionising radiation, a small increase in the relative risk of cancer is expected, even at the low to moderate doses received. Although it is expected that epidemiological studies will have difficulty identifying such a risk, it may nevertheless translate into a substantial number of radiation-related cancer cases in the future, given the very large number of individuals exposed. (rev0009i.

  17. Accident on the Chernobyl nuclear power plant. Getting over the consequences and lessons learned

    The book is devoted to the 20 anniversary of the accident on the 4th Power Unit of the Chernobyl NPP. The power plant construction history, accident reasons, its consequences, the measures on its liquidation are represented. The current state of activity on the Chernobyl power unit decommission, the 'Shelter' object conversion into the ecologically safe system is described. The future of the Chernobyl NPP site and disposal zone is discussed

  18. Pathohistologic characteristics of gastric and duodenal mucosa in liquidators of Chernobyl accident with peptic duodenal ulcer

    Pathomorphological characteristics of gastric and duodenal mucosa associated with the dose of ionizing radiation at peptic duodenal ulcer in participants of the Chernobyl accident clean-up was determined. Our findings suggest that the doses of external irradiation exceeding 25 cGy (together with the other harmful effects of the Chernobyl accident) represent a danger of helicobacter infection development

  19. Environmental radioactivity measurements at BNL following the Chernobyl accident

    Measurements are reported of the concentrations at Berkeley in Gloucestershire of radioactivity in the air, rainwater, tap water, soil, herbage and fresh vegetables for the period 29 April 1986 to 15 May 1986, following the Chernobyl Power Station accident. Data for up to 18 gamma emitting isotopes are reported, together with some limited actinide-in-air measurements. Deposition velocities are calculated and an assessment is presented of the sensitivity of the techniques employed. Some data are also included on the gaseous composition of the cloud and the isotope dependent dose rate from deposition. (author)

  20. Remediation strategies for contaminated territories resulting from the Chernobyl accident

    The Directorate General for Environment of the European Commission has supported two projects on the issue of remediation strategies for contaminated territories resulting from the Chernobyl accident. The first one aimed at identifying and costing a set of additional countermeasures that would enable the reduction of the annual exposure of the inhabitants down to 1 mSv. The second one (still running) is developing a new rehabilitation approach based on the involvement of the local population in the decision taking process concerning the type of countermeasures to be applied (the ETHOS approach). (author)

  1. Primary disability of the Chernobyl Accident consequences liquidators

    The structure of courses of the primary invalidism of the Chernobyl accident consequences liquidators is studies. The main reasons of the loss of a capacity for work are blood circulation diseases (41.9%), neoplasms (19.9%), diseases of the nervous system and sense organs (9.7%), mental disorders (5.9%) and endocrine diseases (5.5%). The invalids distribution in the different regions and in different age groups according to the disease forms is analysed. The average durations of the diseases resulting in the primary invalidism are about 2.8 years. In average the illnesses began in the 3.1 years. 6 refs

  2. The Republic of Belarus: 9 years after the Chernobyl accident

    The analysis of a situation in a 9 years after the Chernobyl NPP accident is given. In accordance with the republic programme of overcoming of the catastrophe consequences the main attention is given to a wide scales medical and preventive work, increase of a quality of the medical aid, creation of conditions for normal activity on the contaminated territory, maintenance of all groups of the population by an objective information about radioecological condition and radiation protection. Scientific researches in the field of radiation medicine and agricultural radiology are executed. Development of means and methods of decontamination, both social psychological and social economical rehabilitation are carried out. 1 fig

  3. THE CHERNOBYL ACCIDENT AND HEALTH (TWO POINTS OF VIEW

    V. M. Shubik

    2011-01-01

    Full Text Available The article presents two alternative points of view on the relationship of health malfunctions after the Chernobyl accident with radiation effect or with the factors of non-radiation nature (social, stress, nutrition peculiarities, etc.. An analysis of literature data and results of author’s own research of radiosensitive indicators of immunity condition, having essential value for the immediate and long term consequences of radiation effect was done. Possible correlation between health malfunctions of the population living in the regions, contaminated by the radionuclides, and combined effect of radiation and factors of non-radiation nature is shown.

  4. Health hazards from radiocaesium following the Chernobyl nuclear accident

    The WHO Regional Office for Europe has organized a series of meetings to assess the health impact of the Chernobyl nuclear accident. Considering the long-term importance of radiocaesium a decision was made to examine carefully the following aspects of this radionuclide in Europe: rate of deposition; environmental pathways through soil, flora and fauna to humans; absorption, distribution, metabolism, and excretion in humans; estimated doses resulting from these exposures; and some consideration of the possible adverse health effects. This is a report from a working group studying the health implications of radiocaesium. Refs, figs and tabs

  5. Health consequences of the Chernobyl accident: a review

    Full text of publication follows: on April 26, 1996, the accident at Chernobyl nuclear power plant led to the release into the atmosphere of considerable quantities of radionuclides. Most contaminated regions were in the southern Belarus, northern Ukraine and Bryansk and Kaluga regions of Russia. Main population groups exposed to the radioactivity released during the accident were the personnel at the Chernobyl plant and the rescue teams present on-site during the first hours, the cleanup workers (numbering about 600000) who participated in the decontamination and cleaning operations in the 30 km zone around the site, the residents of the same zone who were evacuated (numbering about 115000) and the inhabitants of contaminated zones (≥1 Ci/km2). Dose and dose rate levels as well as exposure pathways differ from one population group to another. A review of scientific articles published in the international literature till 1998 has been carried out. Apart the 28 deaths due to acute radiation sickness which occurred in the personnel of the plant and rescue teams within several days or weeks after the accident, two main public health consequences of the Chernobyl accident have been observed. First an unprecedented epidemic of thyroid cancers was detected in children first in 1992 in Belarus then in the Ukraine and to a lesser extent in Bryansk region. The spontaneous incidence of these tumours was multiplied by 100 in most contaminated regions. Although the role of the accident in this epidemic is now recognised, questions are raised regarding the respective role of radioactive agents and other environmental or genetic factors, and its evolution in the future. Regarding other kinds of solid cancers and leukemia, no excess has been clearly demonstrated in the residents of contaminated areas nor in liquidators. Second, results of available epidemiological investigations show an increased risk of psychological distress in residents of highly contaminated areas

  6. Chernobyl

    Due to southeasterly wind and rainfall during the critical days after the Chernobyl accident, Norway got a substantial part of the cesium isotopes released. The radioactive fallout followed closely the rainfall and was mainly concentrated to some thin populated areas in the central parts of the country. This report summerize the results from a post-Chernobyl research program on aquatic and terrestrial ecosystems in contaminated areas. Pathways, processes and factors determining the Cs-137 concentration in soil, plant, water, fish and wild animal were investigated. 84 refs., 40 figs., 20 tabs

  7. Economic and social aspects of the Chernobyl accident in Finland

    After the Chernobyl accident at no stage did the radiation situation in Finland require actual protective action, such as taking shelter indoors or in civil defence shelters. Civil defence plans for emergency situations include a warning level at 200 μSv/h (population has to stay indoors) and an alarm level at 2000 μSv/h (populaiton has to seek shelter immediately). Both levels are 'at the latest' levels, given as guidance in case regional or local authorities have to make the decision. The highest confirmed gamma radiation reading in Finland was 5 μSv/h. During the first days of the Chernobyl fail-out it also became evident that no large scale restrictions for use of foodstuffs were needed in the Nordic countries. Various mitigating actions were adopted in the days and weeks following Chernobyl, but mostly in the form of recommendations. The situation in Finland can serve to explain the various types of mitigating actions considered, how they were adopted, and to some extent give information on how efficient and how expensive the mitigating actions were

  8. Evaluation of special safety features of the SNR-300 in view of the Chernobyl accident

    A comparison of those characteristics, which decisively influenced the accident in the RMBK-1000 reactor, with the safety features of SNR-300 has been performed. The conclusions of this comparison are presented in the present report. The SNR-300 is characterized by a stable reactivity behaviour and good controllability, whereas RBMK-1000 has an instable behaviour and complex spatial dependencies in the core. Among other points, design deficiencies in the protection and emergency shutdown systems were responsible for the Chernobyl accident. The protection and scram systems of the SNR-300 are unquestionably superior to those of the RBMK-1000 with regard to redundancy, diversity, degree of automation, separation of operational and safety-relevant tasks, protection against inadmissible interventions, effectiveness and safety reserves. Therefore, excursion accidents can be classified as hypothetical for SNR-300. Due to elementary physical properties, possible energy releases during hypothetical excursions are substantially lower for SNR-300 and would be controlled by the design of the primary system and containment systems. No damage limiting measures are provided in the RBMK-100 for excursion accidents. Finally, exothermal processes augmented the consequences of the accident in the RBMK-1000 and the long-lasting graphite fire intensified the release of radioactivity. In the SNR-300, however, inertisation of the containment, the steel plate lining and the floor troughs ensure that activity enclosure inside the containment after leakage or hypothetical excursion accident is not endangered by exothermal reactions. Further safety aspects are presented in the report, which can be linked with the accident in Chernobyl. In summary, it is obvious that the disadvantageous physical and technical features of the RBMK-1000 do either not exist in the SNR-300 or are covered by the safety design

  9. Estimated long term health effects of the Chernobyl accident

    Cardis, E. [International Agency for Research on Cancer, Lyon (France)

    1996-07-01

    Apart from the dramatic increase in thyroid cancer in those exposed as children, there is no evidence to date of a major public health impact as a result of radiation exposure due to the Chernobyl accident in the three most affected countries (Belarus, Russia, and Ukraine). Although some increases in the frequency of cancer in exposed populations have been reported ,these results are difficult to interpret, mainly because of differences in the intensity and method of follow-up between exposed populations and the general population with which they are compared. If the experience of the survivors of the atomic bombing of Japan and of other exposed populations is applicable, the major radiological impact of the accident will be cases of cancer. The total lifetime numbers of excess cancers will be greatest among the `liquidators` (emergency and recovery workers) and among the residents of `contaminated` territories, of the order of 2000 to 2500 among each group (the size of the exposed populations is 200,000 liquidators and 3,700,000 residents of `contaminated` areas). These increases would be difficult to detect epidemiologically against an expected background number of 41500 and 433000 cases of cancer respectively among the two groups. The exposures for populations due to the Chernobyl accident are different in type and pattern from those of the survivors of the atomic bombing of Japan. Thus predictions derived from studies of these populations are uncertain. The extent of the incidence of thyroid cancer was not envisaged. Since only ten years have lapsed since the accident, continued monitoring of the health of the population is essential to assess the public health impact.

  10. Development of information resources package for the Chernobyl accident and its consequences by INIS

    The Chernobyl accident was a global catastrophe that captured global attention and as such literature on the Chernobyl accident and its consequences is an important subject covered by the International Nuclear Information System (INIS) Database. The INIS Database contains about 21000 bibliographic records and 9000 full text documents on this subject from 1986 up to August 2006. Based on these extensive resources INIS released a DVD that contained bibliographic references and full text documents as well a bibliometric study of the Chernobyl references on the occasion of the International Conference entitled 'Chernobyl: Looking Back to Go Forwards' held in Vienna on 6 and 7 September 2005. Subsequently, INIS decided to release Revision 1 of the DVD in August 2006 for the twentieth anniversary of the Chernobyl accident with additional value added information sources. This paper briefly discusses the bibliometric parameters of the references, the contents of DVD and the activities undertaken to produce the Chernobyl information resources package

  11. Analysis of fluid-structure interaction and structural response of Chernobyl-4 reactor

    On April 26, 1986, an accident occurred at the Chernobyl-4 Nuclear Power Plant in the Soviet Union. A post accident meeting was held in Vienna during the week of August 25, 1986. In mid-July 1986, the DOE formed a team to analyze the accident, including experts from the national laboratories such as Argonne National Laboratory, Brookhaven National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest Laboratory. The goal was to assess the information's plausibility, provided analytical support to the US delegation during the post-accident review meeting and obtain a technical understanding of the accident. Detailed analyses of the team work are given in Ref. 1 (DOE, 1986). The accident at Chernobyl-4 occurred during the running of a test to determine a turbogenerator's ability to provide in-house emergency power after shutting off its steam supply. The accident was the result of a large, destructive power excursion. The major design related factor in the accident was the large positive void coefficient of reactivity. This feature, not present in the US reactors, means that an increase in power is likely to lead to an increase in reactivity which will further increase power, and finally result in the destructive accident. 5 refs., 11 figs

  12. Psychometric testing of children prenatally irradiated during the Chernobyl accident

    The investigation involved 50 children aged median 6 years and 6 months. The group was selected in view of the critical period for occurrence of radiation-related deviations in mental development (8-15 gestation weeks) and the period of maximum irradiation during the Chernobyl accident. Assessment of the individual exposure and analysis of possible impacts from non-radiation risk factors were based on guided parental history reports. The dose of accidental irradiation was determined using the radiological data for the country. A Bulgarian standardization of the Wechsler Intelligence Scale for Children (WISC-R) was used. The procedure includes 5 verbal and 5 nonverbal subtests. Results were compared with those from a countrywide control group of children (including a large city, a small town, a village). The analysis indicated higher mean IQ scores in the investigated children. The children were additionally studied by original tests for attention and gnosis-praxis functions using tactile and visual modalities. The tests included intra- and transmodal versions, bilateral simultaneous presentation of stimuli with verbal and nonverbal characteristics in applying analytical and global strategies. Comparisons were made with results for children in the same age range, who had been studied prior to the Chernobyl accident. The evidence surprisingly varied, taking into account the small size of the investigation group. A longitudinal follow-up of this population thus appears to be appropriate. (author)

  13. Consequences of the nuclear power plant accident at Chernobyl

    The Chernobyl Nuclear Power Plant accident, in the Ukrainian Soviet Socialist Republic (SSR), on April 26, 1986, was the first major nuclear power plant accident that resulted in a large-scale fire and subsequent explosions, immediate and delayed deaths of plant operators and emergency service workers, and the radioactive contamination of a significant land area. The release of radioactive material, over a 10-day period, resulted in millions of Soviets, and other Europeans, being exposed to measurable levels of radioactive fallout. Because of the effects of wind and rain, the radioactive nuclide fallout distribution patterns are not well defined, though they appear to be focused in three contiguous Soviet Republics: the Ukrainian SSR, the Byelorussian SSR, and the Russian Soviet Federated Socialist Republic. Further, because of the many radioactive nuclides (krypton, xenon, cesium, iodine, strontium, plutonium) released by the prolonged fires at Chernobyl, the long-term medical, psychological, social, and economic effects will require careful and prolonged study. Specifically, studies on the medical (leukemia, cancers, thyroid disease) and psychological (reactive depressions, post-traumatic stress disorders, family disorganization) consequences of continued low dose radiation exposure in the affected villages and towns need to be conducted so that a coherent, comprehensive, community-oriented plan may evolve that will not cause those already affected any additional harm and confusion

  14. Consequences of the nuclear power plant accident at Chernobyl

    Ginzburg, H.M.; Reis, E. (Health Resources and Services Administration, Rockville, MD (USA))

    1991-01-01

    The Chernobyl Nuclear Power Plant accident, in the Ukrainian Soviet Socialist Republic (SSR), on April 26, 1986, was the first major nuclear power plant accident that resulted in a large-scale fire and subsequent explosions, immediate and delayed deaths of plant operators and emergency service workers, and the radioactive contamination of a significant land area. The release of radioactive material, over a 10-day period, resulted in millions of Soviets, and other Europeans, being exposed to measurable levels of radioactive fallout. Because of the effects of wind and rain, the radioactive nuclide fallout distribution patterns are not well defined, though they appear to be focused in three contiguous Soviet Republics: the Ukrainian SSR, the Byelorussian SSR, and the Russian Soviet Federated Socialist Republic. Further, because of the many radioactive nuclides (krypton, xenon, cesium, iodine, strontium, plutonium) released by the prolonged fires at Chernobyl, the long-term medical, psychological, social, and economic effects will require careful and prolonged study. Specifically, studies on the medical (leukemia, cancers, thyroid disease) and psychological (reactive depressions, post-traumatic stress disorders, family disorganization) consequences of continued low dose radiation exposure in the affected villages and towns need to be conducted so that a coherent, comprehensive, community-oriented plan may evolve that will not cause those already affected any additional harm and confusion.

  15. Global risk of radioactive fallout after nuclear reactor accidents

    Lelieveld, J.; KUNKEL, D.; M. G. Lawrence

    2011-01-01

    Reactor core meltdowns of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents, using particulate 137Cs and gaseous 131I as proxies for the fallout. It appears that previously the occurrence of ma...

  16. The nature of reactor accidents

    Reactor accidents are events which result in the release of radioactive material from a nuclear power plant due to the failure of one or more critical components of that plant. The failures, depending on their number and type, can result in releases whose consequences range from negligible to catastrophic. By way of examples, this paper describes four specific accidents which cover this range of consequence: failure of a reactor control system, loss of coolant, loss of coolant with impaired containment, and reactor core meltdown. For each a possible sequence of events and an estimate of the expected frequency are presented

  17. Monitoring on influence of Soviet chernobyl accident on environment of some regions of China

    This paper reports the monitoring results of some environmental samples from Gansu provinces and Qinshan aera of Zhejiang Province and the cities of Beijing, Shenyang and Baotou after the Soviet Chernobyl reactor accident. The samples collected included air, fallout, rain water, reservoir water, plants and soil and the wipping samples of international and domestic airlines were also measured. Analyese were made by using low background Ge(Li) γ spectrometer with anti-coincident shield and by radiochemical methods for 89Sr, 90Sr and Pu contents in some samples. The results indicate that the radioactive cloud released from the Chernobyl accident arrived to Beijing area on May 2, 1986. Generally speaking, the concentration of radioactive cloud in north China was greater than that in south China. Fission products were found in wipping samples taken from airplanes flying over Europe and Asia. The radioactivity level of the samples taken from European air-line was considerably higher than that from Asian airline. The main fission products found in different samples were as follows: 131I, 137Cs, 134Cs, 103Ru and 132Te, 132I. The ratio of 137Cs to 134Cs was about 2. The partial effective dose equivalent commitment of preliminary estimation to the public in Beijing area from the accident was 11.3 μSv. The contribution of the external exposure was 7.9 μSv. The contribution of the internal exposure was 3.4 μSv

  18. Radioactive Waste Management In The Chernobyl Exclusion Zone - 25 Years Since The Chernobyl Nuclear Power Plant Accident

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures

  19. RADIOACTIVE WASTE MANAGEMENT IN THE CHERNOBYL EXCLUSION ZONE - 25 YEARS SINCE THE CHERNOBYL NUCLEAR POWER PLANT ACCIDENT

    Farfan, E.; Jannik, T.

    2011-10-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures

  20. Core-melting accidents in Chernobyl and Harrisburg

    This publication deals with the essences of the reactor accident in Chernobylsk and the conclusions to be drawn from these with regard to reactor safety. Therein the technical differences between the reactor types in the West and the East play an important role. Also attention is spent to the now generally accepted philosophy that by simplification and making use of proven technologies, a further deminishing of the risks can be achieved step by step. In ch.'s 2 and 4 the origin and course of the accidents in respectively Chernobylsk and Harrisburg are analyzed; in the analysis of the Chernobylsk accident also date have been used which were provided by the Sovjet-Union, supplied with results of studies of the U.S. Department of Energy (DOE). In ch. 3 this information is compared with the insights which have grown at KEMA about these on the base of reactor physical and thermohydraulic considerations and of computer calculations reproducing the course of the accident. An important question is if, and if so: to which extent, an accident such as the one in Chernobylsk also can take place in the West. In order to answer that question as accurate as possible the consequences of core meltings accidents and the risk for such an accident taking place are pursued. In ch. 6 the legal frameworks are indicated by which the risk may be limited and by which eventually yet occurring damage may be arranged. Ch. 7 finally deals with the lessons which the accidents in Chernobylsk and Harrisburg have learnt us and with the possible consequences of these for the further application of nuclear power in the Netherlands. (H.W.). 105 refs.; 42 figs.; 17 refs

  1. Thyroid cancer in children living near Chernobyl. Expert panel report on the consequences of the Chernobyl accident

    In January 1992, the Radiation Protection Research Action formed a panel of thyroid experts in order to evaluate the current situation concerning reported increased rates of thyroid cancer in children living in the neighbourhood of Chernobyl, where the reactor accident occurred on April 26 1986 and resulted in widespread radioactive contamination over large areas of Belarus, Russia, Ukraine. Studies of the Atom Bomb survivors in Japan have revealed that the incidence of leukemia starts to increase some five years after exposure. For Chernobyl accident health consequences are now becoming evident. Thyroid cancer has already been observed in children. Iodine 131 was seen to pose a specific hazard because it is taken up by the body and concentrated in the thyroid gland. At a dose of 5 Gy to the childhood thyroid about 4000 thyroid cancers per 100000 children exposed can be anticipated. An essential component of the verification of this observation is the study of the pathology of the lesions, which derived from four cell types: follicular cells, C cells, lymphoid cells and connective tumor cells. All distant metastases are lung metastases. Measures to be considered for the prevention of the development of thyroid cancer in a radiation-exposed population include correction of iodine deficiency by iodine prophylaxis and suppression of TSH. There are three methods of diagnosis: ultrasound imaging, thyroid scanning, fine needle aspiration performed by skilled personnel. For the therapy total or near-total thyroidectomy is regarded as the treatment of choice. Radioactive iodine can be used to treat lymph node and distant metastases which take up iodine after a total thyroidectomy. Thyroid hormone replacement should be carried out with TSH suppressive doses of L-Thyroxine. 45 refs., 1 annexe

  2. The French-German initiative for Chernobyl: programme 3: Health consequences of the Chernobyl accident

    - Goals: The main objectives of the health programme are collection and validation of existing data on cancer and non cancer diseases in the most highly contaminated regions of Ukraine, Russia and Belarus, common scientific expertise on main health indicators and reliable dosimetry, and finally communication of the results to the scientific community and to the public. - General Tasks: 1- Comparison between high and low exposed regions, 2- Description of trends over time, 3- Consideration of specific age groups. This methodological approach is applied on Solid cancer incidence and leukaemia incidence in different regions in Ukraine, Belarus and Russia, With a special focus on thyroid cancer in young exposed ages. - Thyroid cancer: Those exposed in very young ages continue to express a relatively high excess of thyroid cancer even though they have now reached the age group 15-29. Those exposed as young adults show a small increase, at least partly due to better screening conditions - Leukemia: Description of leukemia trends for various age groups show no clear difference between exposed and unexposed regions when focusing on those exposed at very young ages. The rates of childhood leukemia before and after the accident show no evidence of any increase (oblasts in Belarus over 1982-1998). - Specific studies: Incidence of congenital malformations in Belarus; Infant mortality and morbidity in the most highly contaminated regions; Potential effects of prenatal irradiation on the brain as a result of the Chernobyl accident; Nutritional status of population living in regions with different levels of contamination; Dosimetry of Chernobyl clean-up workers; Radiological passports in contaminated settlements. - Congenital malformations: As a national register was existing since the 1980's and gives the possibility to compare trends before and after the accident, results of congenital malformations describe large results collected over Belarus, There is no evidence of a

  3. 20 years after Chernobyl Accident. Future outlook. National Report of Ukraine

    The scale of the Chernobyl catastrophe - the most severe man made nuclear accident in the history of mankind - is well known to both scientists and politicians worldwide. The basic causes of the catastrophe were as follows: Conduction an incompletely and incorrectly prepared electrical experiment; The low professional level of operators, and of the NPP management and the officials of the Ministry of Electrification as a whole in the area of NPP safety; Insufficient safety level of the graphite-uranium reactor RBMK-1000; Constructive faults RBMK-1000; Personnel mistakes. The report describes and reviews the actions of the governments of the USSR, Ukraine, and the Verkhovna Rada of Ukraine; the activities of scientists in elimination of the accident consequences; and elimination of the additional experience gained over the past years. Mistakes made during these activities are highlighted

  4. Validity aspects in Chernobyl at twenty years of the accident; Aspectos vigentes en Chernobyl a veinte anos del accidente

    Arredondo, C. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: cas@nuclear.inin.mx

    2006-07-01

    For April 25, 1986 the annual stop of the unit 4 of the nuclear power plant of Chernobyl was programmed, in order to carry out maintenance tasks. This unit was equipped with a reactor of 1000 MW, type RBMK, developed in the former Soviet Union, this type of reactors uses graphite like moderator, the core is refrigerated with common water in boil, and the fuel is uranium enriched to 2%. Also it had been programmed to carry out, before stopping the operation of the power station, a test with one of the two turbogenerators, which would not affect to the reactor. However, the intrinsic characteristics of the design of the reactor and the fact that the operators disconnected intentionally several systems of security that had stopped the reactor automatically, caused a decontrolled increase of the power (a factor 1000 in 4 seconds), with the consequent fusion of the fuel and the generation of a shock wave, produced by the fast evaporation of the refrigeration water and caused by the interaction of the fuel fused with the same one. It broke the core in pieces and destroy the structure of the reactor building that was not resistant to the pressure. When being exposed to the air, the graphite of the moderator entered in combustion, while the radioactive material was dispersed in the environment. The radionuclides liberation was prolong during 10 days, and only it was stopped by means of the one poured from helicopters, of some 5000 tons of absorbent materials on the destroyed reactor, as long as tunnels were dug to carry out the cooling of the core with liquid nitrogen. Later on, the whole building of the damaged reactor was contained inside a concrete building. The immediate consequence of the accident was the death of 31 people, between operators of the nuclear power station and firemen. One of people died as consequence of the explosion and 30 died by cause of the irradiation, with dose of the order of 16 Gy. The liberated radioactive material was the entirety of the

  5. On the enhancements of backtracking methodologies achieved since the Chernobyl accident

    Full text: In the morning of 28 April 1986 radioactive contamination was detected on workers leaving the night shift at a Swedish nuclear power plant. That triggered an immediate exchange and analysis of filters exposed in nearby Stockholm at a station that was part of a network run by the Swedish Defence Research Institute to detect debris from nuclear explosions. In a few minutes it was clear from this analysis that the high concentration of radionuclides was due to a reactor accident that had recently occurred somewhere in the south-western Soviet Union. In the evening the Soviet authorities confirmed that there had been a severe accident at Chernobyl in Ukraine three days before in the early hours of 26 April. The Swedish localization was done by an automatic trajectory routine that in this case actually worked quite well. Dating the event from the measured ratios of the iodine isotopes actually pinpointed Chernobyl as the most probable site for the accident. But this was nothing that could be truly counted on as in more complex meteorological situations one would need to apply true dispersion models that also take vertical motion into account. Utilization of the today's geo-temporal resolution of analysis wind fields would provide the required backtracking accuracy even for regions where the average distance between nuclear power plants, or any other potential source of pollution, is much shorter than between the nuclear power plants in Ukraine. This paper presents a comparison of the methodologies applied in 1986 with those available today in the field of air pollution modelling. In particular the backtracking methodology implemented at the Provisional Technical Secretariat (PTS) to the Preparatory Commission of the Comprehensive Nuclear Test-Ban Treaty (CTBT) is described and validated for the Chernobyl case in order to elucidate today's capabilities in source localization by atmospheric transport modelling methods. (author)

  6. The effect of Chernobyl accident on the development of non malignant diseases

    The early medical complications of Chernobyl accident include post radiation disease, which were diagnosed in 134 subjects affected by ionizing radiation. 28 persons died during the first 100 days after the event. The increase occurrence of coronary heart disease, endocrine, haematological, dermatological and other diseases were observed after disaster in the contaminated territories. We also discussed the impact of ionizing radiation from Chernobyl accident on pregnancy and congenital defects occurrence. Changes following the Chernobyl accident, as the inhabitants migration from contaminated regions, political and economic conversions, led to depression, anxiety, and even to '' epidemic '' of mental diseases. Increased suicide rate, car accidents, alcohol and drug abuse have been observed in this population. Nowadays vegetative neurosis is more often diagnosed in Ukrainian children. Epidemiological studies were conducted on the ionising radiation effect on the health and on the dose of received radiation after Chernobyl accident face numerous problems as the absence of reliable data regarding diseases in the contaminated territories.(authors)

  7. RADIOLOGICAL AND MEDICAL CONSEQUENCES OF THE CHERNOBYL ACCIDENT

    V. G. Bebeshko

    2012-01-01

    Full Text Available From the position of a 25-years’ experience to overcome the health effects of Chernobyl the dynamics of the radiation environment, the first summarizing at the international level (1988, the results of completed research and practical monitoring are analyzed. Cohort of acute radiation syndrome (ARS survivors under medical observation at the S.I. "Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine" is the largest. Within the 25 years the functional state of the major organs and body systems, and metabolic homeostasis for this category of persons were studied, a comprehensive assessment of their health, mental and physical performance were given, and risk factors and peculiarities of stochastic and non-stochastic pathology courses were identified, as well as a system of rehabilitation patients after ARS was developed. ARS survivors are suffering from chronic diseases of internal organs and systems (from 5-7 to 10-12 diagnoses at the same time. A correlation between acute radiation effects and specific HLA phenotypes were revealed. The dynamics of the immune system recovery after irradiation was studied. The role and prognostic value of telomere length and programmed cell death of lymphocytes in the formation of the cellular effects of ionizing radiation were determined for the first time. Differences between spontaneous and radiation-induced acute myeloid leukemias were found. Dose-dependent neuropsychiatric, neurophysiological, neuropsychological and neuroimaging deviations were identified after irradiation at doses above 0.3 Sv. It was shown that the lymphocytes of Chernobyl clean-up workers with doses 350 – 690 mGy can induce "the bystander effect" in the non-irradiated cells even after 19 years after exposure. The rates of cancer incidence and mortality of victims, the lessons and key problems to be solved in the third decade after the Chernobyl accident are considered.

  8. Effects of the Chernobyl accident on public perceptions of nuclear plant accident risks

    Assessments of public perceptions of the characteristics of a nuclear power plant accident and affective responses to its likelihood were conducted 5 months before and 1 month after the Chernobyl accident. Analyses of data from 69 residents of southwestern Washington showed significant test-retest correlations for only 10 of 18 variables--accident likelihood, three measures of impact characteristics, three measures of affective reactions, and hazard knowledge by governmental sources. Of these variables, only two had significant changes in mean ratings; frequency of thought and frequency of discussion about a nearby nuclear power plant both increased. While there were significant changes only for two personal consequences (expectations of cancer and genetic effects), both of these decreased. The results of this study indicate that more attention should be given to assessing the stability of risk perceptions over time. Moreover, the data demonstrate that experience with a major accident can actually decrease rather than increase perceptions of threat

  9. Radiocesium in migratory bird species in northern Ireland following the Chernobyl accident

    Radioactive fallout arising form the nuclear reactor accident at Chernobyl on 26 April 1986 reached Northern Ireland in early May and was deposited in rain. However, the subsequent contamination of food supplies in Northern Ireland were well below national and international levels at which any action would be considered necessary and presented no risks to health. In addition to the direct contamination of food supplies with radionuclides in the form of fallout following the Chernobyl incident another potential source of radioactive contamination entering the human food chain was through the arrival of migratory species of game birds. Each autumn and winter many thousands of birds migrate to Northern Ireland from Northern and Eastern Europe and some of these could have been contaminated as a result of being directly affected by the fallout from Chernobyl. The purpose of this work was to examine the extend of radionuclide contamination in such species and a number of samples were obtained for analyses during the autumn/winter periods in 1986/87 and 1987/88. The results obtained are outlined below. 5 refs., 3 tabs

  10. The accident at the Chernobyl' nuclear power plant and its consequences. Pt. 1. General material

    The report contains a presentation of the Chernobyl' nuclear power station and of the RBMK-1000 reactor, including its principal physical characteristics, the safety systems and a description of the site and of the surrounding region. After a chronological account of the events which led to the accident and an analysis of the accident using a mathematical model it is concluded that the prime cause of the accident was an extremely improbable combination of violations of instructions and operating rules committed by the staff of the unit. Technical and organizational measures for improving the safety of nuclear power plants with RBMK reactors have been taken. A detailed description of the actions taken to contain the accident and to alleviate its consequences is given and includes the fire fighting at the nuclear power station, the evaluation of the state of the fuel after the accident, the actions taken to limit the consequences of the accident in the core, the measures taken at units 1, 2 and 3 of the nuclear power station, the monitoring and diagnosis of the state of the damaged unit, the decontamination of the site and of the 30 km zone and the long-term entombment of the damaged unit. The measures taken for environmental radioactive contamination monitoring, starting by the assessment of the quantity, composition and dynamics of fission products release from the damaged reactor are described, including the main characteristics of the radioactive contamination of the atmosphere and of the ground, the possible ecological consequences and data on the exposure of plant and emergency service personnel and of the population in the 30 km zone around the plant. The last part of the report presents some recommendations for improving nuclear power safety, including scientific, technical and organizational aspects and international measures. Finally, an overview of the development of nuclear power in the USSR is given

  11. Chernobyl nuclear power plant accident and thyroid cancer in children

    Since August 1991, six surveys have been made on thyroid cancer in children in Ukraine and Belorussia. The results were compared with those for Hiroshima A-bomb survivors. Children with thyroid cancer were characterized as having the following: (1) frequent occurrence of thyroid cancer; (2) extremely short latency period; (3) poorly differentiated papillary adenocarcinoma; (4) frequent occurrence within the thyroid gland; (5) the association of fibrosis, lymphocyte infiltration, and proliferation of follicular epithelial cells; (6) frequent occurrence of sclerosing variant of papillary cancer associated with fibrosis and lymphocyte infiltration, especially in heavily exposed areas. These findings were supposed to be attributable to Chernobyl nuclear power plant accident. No data has been available on infantile thyroid cancer in Hiroshima A-bomb survivors because of the following reasons: (1) acute death from acute radiation injury, leukemia and cancer other than thyroid cancer; (2) few survey on thyroid cancer during the first 10 years after exposure; (3) the lack of surgical data on thyroid cancer. In the case of Chernobyl survivors, there were few acute death cases; I-131 seemed to have damaged specifically the thyroid gland; heavily exposed areas corresponded to areas with low iodine intake; pediatric thyroid gland is sensitive to I-131, leading to the possibility that infantile thyroid cancer may have been induced by I-131. (N.K.)

  12. Radioactivity in fungi in Slovenia, Yugoslavia, following the Chernobyl accident

    Caesium (137Cs and 134Cs) concentrations in higher fungi (Basidiomycetes) from Slovenia, north-west Yugoslavia, are reported following the Chernobyl accident. Special attention was paid to the Cortinariaceae, already known as Cs accumulators. The highest levels were found in Cortinarius armillatus, C. traganus (both inedible species) and Rozites caperata. The median concentration of sup(137,124)Cs in R. caperata from over 40 sampling sites was about 22 kBq/kg dry weight. High levels were also found in Xerocomus badius and Laccaria amethystina. From the 137Cs/134Cs ratios, which reflect the depth of the mycelium and the excess 137Cs from historic pre-Chernobyl fallout, it may be surmised that radiocaesium levels in certain species will probably increase further next year and subsequently as Cs migrates down the soil profile. In addition, sup(110m)Ag was found at concentrations up to 500 Bq/kg dry weight in certain species known to be Ag accumulators, particularly Agaricaceae and Lycoperdaceae. (author)

  13. Consequences of the Chernobyl accident for reindeer husbandry in Sweden

    Gustaf Åhman

    1990-09-01

    Full Text Available Large parts of the reindeer hearding area in Sweden were contaminated with radioactive caesium from the Chernobyl fallout. During the first year after the accident no food with activity concentrations exceeding 300 Bq/kg was allowed to be sold in Sweden. This meant that about 75% of all reindeer meat produced in Sweden during the autumn and winter 1986/87 were rejected because of too high caesium activités. In May 1987 the maximum level for Cs-137 in reindeer, game and fresh-water fish was raised to 1500 Bq/kg. During the last two year, 1987/88 and 1988/89, about 25% of the slaughtered reindeer has had activities exceeding this limit. The effective long-time halflife or radiocaesium in reindeer after the nuclear weapon tests in the sixties was about 7 years. If this halflife is correct also for the Chernobyl fallout it will take about 35 years before most of the reinder in Sweden are below the current limit 1500 Bq/kg in the winter. However, by feeding the animals uncontaminated food for about two months, many reindeer can be saved for human consumption.

  14. Immunological status of different categories of population after Chernobyl accident

    Investigation of immune status of the victims of the Chernobyl Nuclear Power Plant (NPP) accident irradiated in different doses was performed. Acute postradiation immunodeficiency in heavily exposed persons was changed in 6-24 months to the 5-7 year period of restitution and the latter was succeeded by normalization of CD3+, CD+, CD11+ cell count and serum IgG and IgA content in certain patients, while the others revealed immunologic deficiency of the mixed type. HLA-antigenic combinations connected to the increased radiosensitivity were found out. Elaboration of in vitro tests for surface antigens expression in response to thymic peptides allowed to make adequate immunocorrection if needed. (author)

  15. Antenatal exposure following the Chernobyl accident: neuropsychiatric aspects

    Ten years follow-up investigation of intellectual development of 250 persons from Belarus exposed in utero following the Chernobyl accident and a control group of 250 persons from non- and slightly contaminated regions has been conducted. Neuropsychiatry and psychological examinations were performed among persons of both groups at the age of 6-7, 0-12, and 15-16 years. Mean antenatal external dose among persons of exposed group is 10 ± 13 mGy, maximal dose - 91 mGy. No statistically significant correlation was found in exposed group between individual thyroid dose as well as individual antenatal external dose and IQ at the age of 6-7 years, 10-12 years, and 15-16 years

  16. Cancer effects of radiation exposure from the Chernobyl accident

    The WHO Expert Groups on Health reviewed a UNSCEAR 2000 report, more recent peer-reviewed scientific literature and scientific meeting presentations, reports and statistics prepared by National authorities. The outcome of this study are scientific consensus on health impact from radiation to date and identification of research gaps. Recommendations for health care programmes 20 years after: No clearly demonstrated increase in the incidence of cancers (other than thyroid) that can be attributed to radiation from the accident. Increases in incidence of cancers have been reported, but no association with radiation dose much of the increase appears to be due to other factors, including improvements in diagnosis, reporting and registration. Recent findings indicate a possible doubling of leukaemia risk among Chernobyl liquidators above 100 mGy and an increase in the incidence of pre-menopausal breast cancer in the very most contaminated districts, which appear to be related to radiation dose. These need to be further investigated

  17. Health consequences of Chernobyl. 25 years after the reactor catastrophy

    The report is an evaluation of studies indicating health effects as a consequence of the reactor catastrophe in Chernobyl. The most exposed population include the cleaning personnel (liquidators), the population evacuated from the 30 km zone, the populations in highly contaminated regions in Russia, Belarus and Ukraine, the European population in lass contaminated regions. The following issues are discussed: the liquidators, infant mortality, genetic and teratogenic damages, thyroid carcinoma and other thyroid diseases, carcinogenic diseases and leukemia, other diseases following the Chernobyl catastrophe.

  18. Transplantation of bone marrow in victims of the Chernobyl accident

    Bone marrow transplants were carried out in 13 patients suffering from acute irradiation sickness after the Chernobyl accident. Only blood relations of the patients were used as donors. The number of bone marrow cells transplanted must be at least 2x108 per kilogram of recipient weight. The experience of the present bone marrow transplants has shown defects in clinical methods of early diagnosis (during the first 7-10 days after exposure) of acute radiation injuries to the skin, intestine and lungs which are incompatible with survival. Another problem with bone marrow transplants for patients suffering from acute radiation sickness is to determine to what extent the depression of marrow activity is irreversible. Spontaneous regeneration of myelopoiesis was observed 22-30 days after exposure in patients who had received doses of 7-9 Gy. A lapse of this order before the onset regeneration is therefore, in principle, compatible with survival under the conditions of modern support therapy. Thus, the belief that prolonged acute radiation pancytopenia which is incompatible with survival starts already at doses of 5-6 Gy is evidently incorrect, at least for the relatively low exposure dose rates experienced by this group of victims. The results of bone marrow transplants in victims of the Chernobyl accident suggest that, in future, the following rules should be observed in transplanting human bone marrow to victims of acute radiation sickness: (1) Only HLA-identical transplants should be carried out; and (2) HLA-identical bone marrow transplants should be carried out only in patients who have received whole body doses of gamma radiation of 9.0 Gy or more. (author). 1 tab

  19. Radioecological impact of the Chernobyl accident on continental aquatic ecosystems

    The pooling of knowledge on water, sediments, aquatic plants and fish allowed an evaluation report to be drawn up on the impact of Chernobyl accident and to extract data on the mechanisms in the transfer of certain radionuclides in rivers and lakes. The radioactivity is related to the level of deposits, essentially, in wet form. Differences in radioactivity levels are noted owing to the distance from Chernobyl, the atmospheric streams and pluviometric conditions. The most commonly detected radionuclides are: 131I, 132Te, 134+137Cs, 103+106Ru, 110m Ag and, to a lesser degree, 89Sr and 90Sr. Very quickly, 137Cs becomes dominant. The peak of radioactivity in rivers occurred very soon after the accident. It was of short duration and the decrease in radioactivity was very quick due to dilution. In lakes, this decay was much slower. In sediment, the radioactivity varied in time owing either to new deposits or to the migration of those deposits downstream in the river basins. The radionuclides present in fallout can be quickly detected using aquatic plant. In certain areas, the concentration of 137Cs increased 200-fold in a few hours. In fish, the presence of 134+137Cs, 103+106Ru, 110m Ag and 90Sr are noted. The only radionuclide of which fixing dynamics can be followed is 137Cs. River fish was only subjected to water and food with a high radioactivity for a very short time and their 137Cs concentration remained constantly low. The effective half-life of 137Cs observed in situ for fish is from 100 to 200 days. For lacustrine fish, we observe differences in radiocontamination, according to the regions (from 48,000 Bq.kg-1 w.w., in Sweden, to 110 in the North of Corsica or the Netherlands), in lakes (in Northern Italy, 137Cs concentrations in fish are higher in small lakes), and species

  20. Radionuclide concentration from peat burning after the Chernobyl accident

    We have studied the radionuclide concentrations in byproducts and releases from a 30 MW peat-burning power plant in central Sweden. The plant is located in an area that received high levels of radioactive fall-out from the Chernobyl accident. After the accident at Chernobyl, the plant carried out a test run before the beginning of the normal running season. Samples of peat and ash were collected during a 2 month period and were studied in order to ascertain whether radiation protection was necessary for workers handling the peat and byproducts. In spite of the high ground contamination of radionuclides (20-80 kBq/M2) of the peat, the radionuclide concentration in the peat was only about 1 kBq/kg (and half of this one year later). This is due to the process in which the top 50 cm layer of peat is continously mixed and turned over. Samples of fly ash from different parts of the plant, analysed using gamma-ray spectroscopy, were found to have activity concentrations of 10-50 kBq/kg Cs-137, while the activity concentrations of bottom ash was 4-10 kBq/kg. During the winter of 1984-85 the average level of Cs-137 in the flyash was 340 Bq/kg. Condensed water from the chimney did not contain any measurable amounts of Cs-137. Emission measurements of the gases in the chimney gave rather high activity concentrations of Cs-137. The maximum value of 70 kBq/kg was probably due to the ease with which caesium escapes during heating. No special radiation steps were found to be necessary

  1. Development of a method for the retrospective reconstruction of the thyroid dose for children in Belarus after the reactor accident of Chernobyl by determination of the 129I-concentration in soil

    About four years after the reactor accident of Chernobyl, a pronounced rise in childhood thyroid gland cancer was registered throughout the republic of Belarus. It was soon understood that most likely the shortlived radioiodine isotope 131I was responsible for this effect. As there were only a few direct measurements performed to measure the iodine activity in thyroids, other methods had to be developed to reconstruct the thyroid dose of those children who suffered from thyroid cancer. First approaches to this task were performed by the determination of caesium deposition densities on ground which were correlated to a few available measurements of 131I in soil samples. But soon it had to be realized that this approach was not appropriate for a consistent retrospective dose reconstruction due to the patchy depositions patterns and the different release and transport mechanisms between caesium and iodine. For a new approach it was suggested to determine the 129I concentration in soil by introducing a newly developed extraction procedure that produces samples which can be measured for 129I by means of Accelerator Mass-spectrometry (AMS). Both techniques were sequentially applied to soil samples taken during two successive field-expeditions to Belarus. They are discussed in detail in this thesis. To assess the thyroid dose the concentration of 131I in soil was then determined using the assumption of a constant release and transport ratio between 129I and 131I. The inferred 131I deposition densities on ground were used as input data to a radiological food-chain model and an average integrated thyroid dose to certain age groups of various resistance areas were calculated for the main exposure path of milk ingestion. An intercomparison between this new approach and the results of direct thyroid activity measurements was performed. In addition to these two approaches two others were applied for comparison. The first one was based on the generalization of a correlation

  2. Leukaemia and lymphoma in Belarus after Chernobyl accident

    Full text: As it was known Belarus is the country mostly affected by the Chernobyl disaster. The content of incorporated Cs-137 in tissues and Sr-90 in bones of exposed people of Belarus has increased several times. Long - live bone marrow doses per person was expected as: 8.8 mSv in Belarus, 2,8 mSv in Ukraine and 1,0 mSv in Russia. That why it was believed that one of the adverse effects of the Chernobyl radiation would be the increase of leukaemia and lymphoma incidence rates among the population (first of all among the children) of Belarus. Registration of leukaemia and lymphoma has been compulsory in Belarus since 1988 by the special training team at the Research Institute of Haematology. The information includes the name and address of the patients, age, date and place of diagnosis, ICD-number of the diagnosis, and diagnostic method (biopsy, autopsy, myelogram, immunohistochemical method used ect.). It was established that before the Chernobyl accident (1979 - 1985 ) the incidence rates of the child leukaemia was 4,16+0,22; after the accident: in 1986-1992 - 4,35 = 0,08; in 1993-2001 - 3,35 = 0,18 per 100.000 children, aged 0-14 years. Among the adult population of Belarus (aged 15-90) during the periods of 1979-85, 1986 - 92, and 1993 - 1999 correspondingly: 2,8, 3,24 and 2,94%ooo (p<0,05); for Chll and Chml - 6,10; 8,12 and 8,21%ooo; for MM - 1,44; 1,86 and 2,30%ooo; for lymphomas - 2,84; 4,07; 5,22%ooo; for HL - 3,11; 3,46 and 3,18%ooo. So, we found no suggestion an increase in risk of child leukaemia after Chernobyl. It's hardly possible to attribute child leukaemia and lymphoma incidence rate only to the level of the radionuclide contamination territory. At the same time, some preliminary our date allow to anticipate that the incidence rates correlate rather with levels of chemical pollution in the atmosphere and its compounds. Adults demonstrate a more significant increase of hemoblastoses morbidity after Chernobyl disaster in comparison with children

  3. Consequences of the Chernobyl accident in France. Thematic sheets; Les consequences de l'accident de Tchernobyl en France. Fiches thematiques

    NONE

    2006-07-01

    This document proposes a set of commented maps, graphs and drawings which illustrate and describe various consequences of the Chernobyl accident in France, such as air contamination (scattering of radioactive particles emitted by the reactor explosion by the wind over thousands of kilometres, evolution of air contamination between April 30 and May 5 1986), ground deposits (influence of rain, heterogeneity of these deposits), contamination of farm products (relationship between the accident date and the deposit characteristics, variable decrease rate of contamination, faster decrease of farm product contamination that caesium radioactive decay since 1987, particular cases of some more sensitive products), health effects (low doses received by the French population, concerns about thyroid cancers)

  4. Economic consequences of the Chernobyl accident in Norway in 1986 and 1987

    In the accident consequence assessment (ACA) area there is extensive cooperation between the Nordic countries (Denmark, Finland, Norway, and Sweden), performed within the Nordic Safety Program, and partially funded by the Nordic Council of Ministers, via the Nordic Liaison Committee for Atomic Energy. One of the 17 projects in the ACA-related program area is concerned with the economic consequences of the Chernobyl accident in Finland, Norway, and Sweden. This paper is limited to describing conditions in Norway. There are areas in Norway where the Chernobyl fallout is >100 kBq/m2, and the total amount of radiocesium deposited over Norway is estimated by the National Institute for Radiation Hygiene to be 6% of the radiocesium released from the reactor. The areas where ground concentrations are highest are mostly in sparsely populated mountain areas. These areas are, however, important in connection with several nutritional pathways, notably, sheep, goats, reindeer, and freshwater fish. The purpose of this paper is to summarize information on mitigating actions and economic consequences of the deposited radioactive materials to Norwegian agriculture in the 1986-87 and 1987-88 slaughtering periods

  5. NGU's follow-up after the Chernobyl accident and their utilitarian value in future preparedness

    The report describes how the Geological Survey of Norway (NGU) organized and made public its fallout survey after the Chernobyl accident. NGU's view on their future share in Norwegian radiation protection preparedness and monitoring is expressed

  6. Health of the population having suffered after the Chernobyl NPP accident

    Are given the results of researches carried out in Belarus in 1996 on the following directions: study of influence of radiological consequences of the Chernobyl accident on health of the people; development of methods and means of diagnostics, treatment and preventive maintenance of diseases at various categories of victims; development and introduction in practice of effective methods of preventive maintenance and treatment of diseases of both mother and child in conditions of influence of the Chernobyl accident consequences; study of genetic consequences caused by the Chernobyl NPP accident and development of effectual measures of their prevention; creation of effective preventive means and food additives for treatment and rehabilitation of the persons having suffered after the Chernobyl accident; optimization of system of measures for health saving of the having suffered population and development of ways of increase of its efficiency

  7. A compendium of the measurements related to the Chernobyl nuclear accident

    Results of radiation measurements performed in Belgium after the Chernobyl accident are presented. Contamination of air, soil, milk, grass, fruit, vegetables and water is studied. The committed effective dose equivalents for the population are estimated. (MCB)

  8. Prevalence of bronchopulmonary pathology in the participants of Chernobyl Nuclear Power Plant accident response

    Epidemiologic examination of the participants of the Chernobyl accident response is performed. Fact of acute effect of the Chernobyl aerosol inhalation on respiratory organs is found. Prevalence of bronchopulmonary diseases in participants of accident response is almost 2 times higher than that in reference group. Further program of investigations includes the hospital stage and the preventive measures at prehospital stage under ambulatory conditions. Assessments of the efficiency of performed treatment - prophylactic measures and their economic benefit are made

  9. The Chernobyl Accident 20 Years On: An Assessment of the Health Consequences and the International Response

    Baverstock, Keith; Williams, Dillwyn

    2006-01-01

    Background The Chernobyl accident in 1986 caused widespread radioactive contamination and enormous concern. Twenty years later, the World Health Organization and the International Atomic Energy Authority issued a generally reassuring statement about the consequences. Accurate assessment of the consequences is important to the current debate on nuclear power. Objectives Our objectives in this study were to evaluate the health impact of the Chernobyl accident, assess the international response ...

  10. The international conference ''one decade after Chernobyl: Summing up the consequences of the accident''

    An International Conference entitled ''One decade after Chernobyl: Summing up the consequences of the accident'' was held at the Austria Center Vienna from 8 to 12 April 1996, the aim being to seek a common and conclusive understanding of the nature and magnitude of the consequences of the Chernobyl accident. The Conference was attended by 845 participants and observers from 71 countries and 20 organizations and covered by 208 journalists from 31 countries and two organizations

  11. Bone marrow transplantation after the Chernobyl nuclear accident

    On April 26, 1986, an accident at the Chernobyl nuclear power station in the Soviet Union exposed about 200 people to large doses of total-body radiation. Thirteen persons exposed to estimated total-body doses of 5.6 to 13.4 Gy received bone marrow transplants. Two transplant recipients, who received estimated doses of radiation of 5.6 and 8.7 Gy, are alive more than three years after the accident. The others died of various causes, including burns (the cause of death in five), interstitial pneumonitis (three), graft-versus-host disease (two), and acute renal failure and adult respiratory distress syndrome (one). There was hematopoietic (granulocytic) recovery in nine transplant recipients who could be evaluated, six of whom had transient partial engraftment before the recovery of their own marrow. Graft-versus-host disease was diagnosed clinically in four persons and suspected in two others. Although the recovery of endogenous hematopoiesis may occur after exposure to radiation doses of 5.6 to 13.4 Gy, we do not know whether it is more likely after the transient engraftment of transplanted stem cells. Because large doses of radiation affect multiple systems, bone marrow recovery does not necessarily ensure survival. Furthermore, the risk of graft-versus-host disease must be considered when the benefits of this treatment are being weighed

  12. Long term health effects in Sweden from the Chernobyl accident

    The morning of 28 April 1986 was the beginning of an intensive period of radiation protection work in Sweden. During that morning the Chernobyl accident became known in the western world through the detection of radioactive contamination in Sweden and at the Forsmark nuclear power plant in particular. The environmental consequences of the fallout have been studied in various research projects. The effects on agriculture in Sweden was mainly limited to the first year after the accident. The long term effects are instead seen in products from the semi-natural ecosystems: in moose, roedeer, reindeer, mushrooms and fish from lakes in areas with a high deposition of radioactive caesium. High concentrations of 137Cs in reindeer meat in combination with an estimated effective ecological half-life of about 4 years, will cause problems for reindeer husbandry in the most contaminated parts for many years to come. In moose, roedeer and mushrooms, the ecological half-lives are very long and in some compartments seem to approach the physical half-life of 137Cs. 22 refs, 3 figs

  13. Radiobiological problems concerning grazing animals following the Chernobyl accident

    Chernobyl accident took place on April 26 1986, which was the beginning of the grazing season, when there was not enough fodder on the farms and the cattle was grazed on the open territory. Therefore grazing animal-breeding was the most radioactively affected branch. The consumption of contaminated fodder and surface contamination with radioactive precipitation caused the accumulation of considerable ingested doses in the organisms of animals (up to 1 GY). Radioactive damage caused to the thyroid by the selective accumulation of radioiodine (mainly 131I) is of particular attention. Cumulative doses of thyroid irradiation in mammals were much higher than for the other organs. Thus, in cows during their grazing on the contaminated pastures outside 30-km zone the ratio of ingested doses of the thyroid and whole body was 130:1 and more, therefore, radiation effects could have a certain negative effect, concerning the agricultural animals in the zone of accidental release influence. Accumulated ingested doses in the thyroid of cows on the contaminated territory in a number of cases caused the complete destruction of the thyroid (doses above 600 Gy), which provided the loss of milk productivity and reproductive qualities of the animals. Lower doses caused the functional disturbances, which in most cases have been levelled during the years after the accident

  14. Proceedings of the 6rd Radiobiological conference with international participation dedicated to 20th anniversary of nuclear accident in Chernobyl, 2006

    Scientific conference deals with problems in radiobiology, photobiology and radio-environmental sciences. Some papers deal with the historical aspects development of reactor accidents (Chernobyl NPP and NPP A-1 Jaslovske Bohunice) as well as history of nuclear sciences in former Czechoslovakia. Proceedings contain forty-seven papers

  15. Chernobyl nuclear accident: Effects on food. April 1986-November 1989 (Citations from the Food Science and Technology Abstracts data base). Report for April 1986-November 1989

    This bibliography contains citations concerning studies and measurements of the radioactive contamination by the Chernobyl nuclear reactor accident of food and the food chain. The studies cover meat and dairy products, vegetables, fish, food chains, and radioactive contamination of agricultural farms and lands. (This updated bibliography contains 108 citations, 43 of which are new entries to the previous edition.)

  16. Chernobyl nuclear accident: effects on foods. April 1986-October 1988 (Citations from the Food Science and Technology Abstracts data base). Report for April 1986-October 1988

    This bibliography contains citations concerning studies and measurements of the radioactive contamination of the Chernobyl nuclear reactor accident of food and food chains. The studies cover meat and dairy products, vegetables, fish, food chains, and radioactive contamination of agricultural farms and lands. (Contains 65 citations fully indexed and including a title list.)

  17. Lessons learned and evaluation of the impact from the Chernobyl accident

    The impact on society of the Chernobyl accident is assessed. The situation prior to Chernobyl with respect to regulations of radiation protection against the consequences of a major accident is considered. The development of the recommendations and regulations issued by the CEC for the Maximum Permitted Levels of different reactions to the accident are examined and some data on the average individual effective dose equivalents estimated in a number of countries are reported. Finally some main problems concerning the information of the public and the preparedness for possible future accidents are also summarized. (author)

  18. Liability problems arising from nuclear reactor accidents

    In case of damage to health or property, it has always been approved legal tradition in all highly developed legal systems to perform compensation for damage in money. This principle also applies to damage caused by nuclear accidents. In the F.R.G., care has been taken at a very early stage to provide for appropriate liability provisions to afford financial security to the extent required by the special hazards involved in the peaceful use of atomic energy. Recent events have shown that the legal provisions available are appropriate and practicable. Citizens affected will receive fair compensation for damage. The Federal Administrative Office so far counted 30.392 applications for compensation in compliance with section 38, sub-sec. (2) Atomic Energy Act. Up to June 16, 1986, payments for compensation of losses amounted to DM 38.7 millions. By accepting the claims for compensation the State provides protection for German nationals and persons of equal rank. A limitation to DM one billion for compensation for damage caused by nuclear energy seems to be appropriate also in the light of the Chernobyl reactor accident. (orig./HP)

  19. North Wales Group report on the effects of the Chernobyl accident

    A report is presented by the North Wales Group concerning the sequence of events affecting North Wales and the identification of the residual problems following contamination from the Chernobyl accident. The first part of the report attempts to establish a time scale for radiation restrictions applicable in North Wales and the size of the areas which are involved. Part two deals with national arrangements to handle incidents like Chernobyl and examines the wider field of international arrangements. A review is given of events as seen by the affected community following the Chernobyl accident. (U.K.)

  20. The French-German initiative for Chernobyl: programme 3: Health consequences of the Chernobyl accident

    Tirmarche, M. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Radiological Protection and Human Health Div. (DRPH), Radiobiology and Epidemiology Dept., 92 - Fontenay-aux-Roses (France); Kellerer, A.M. [Munchen Univ., Strahlenbiologisches Institut (Germany); Bazyka, D. [Chornobyl Center (CC), Kiev regoin (Ukraine)

    2006-07-01

    - Goals: The main objectives of the health programme are collection and validation of existing data on cancer and non cancer diseases in the most highly contaminated regions of Ukraine, Russia and Belarus, common scientific expertise on main health indicators and reliable dosimetry, and finally communication of the results to the scientific community and to the public. - General Tasks: 1- Comparison between high and low exposed regions, 2- Description of trends over time, 3- Consideration of specific age groups. This methodological approach is applied on Solid cancer incidence and leukaemia incidence in different regions in Ukraine, Belarus and Russia, With a special focus on thyroid cancer in young exposed ages. - Thyroid cancer: Those exposed in very young ages continue to express a relatively high excess of thyroid cancer even though they have now reached the age group 15-29. Those exposed as young adults show a small increase, at least partly due to better screening conditions - Leukemia: Description of leukemia trends for various age groups show no clear difference between exposed and unexposed regions when focusing on those exposed at very young ages. The rates of childhood leukemia before and after the accident show no evidence of any increase (oblasts in Belarus over 1982-1998). - Specific studies: Incidence of congenital malformations in Belarus; Infant mortality and morbidity in the most highly contaminated regions; Potential effects of prenatal irradiation on the brain as a result of the Chernobyl accident; Nutritional status of population living in regions with different levels of contamination; Dosimetry of Chernobyl clean-up workers; Radiological passports in contaminated settlements. - Congenital malformations: As a national register was existing since the 1980's and gives the possibility to compare trends before and after the accident, results of congenital malformations describe large results collected over Belarus, There is no evidence of a

  1. The Chernobyl reactor accident and its effects

    The paper explains the geographic distribution of the maximum values measured, the nuclide composition of immissions, the time-related deposition of I-131 on grass, and the time-related concentrations of I-131 and Cs-137 in milk. Radiological evaluations are presented, especially with regard to the full lifetime dose to be expected. (DG)

  2. Features of respiratory organs diseases in participants of the Chernobyl accident response, program of their treatment and rehabilitation

    The results of examination of 100 persons being residents of the Vladimir and Ryazan' regions who participated in the Chernobyl accident response are discussed. The conclusion is made that chronic bronchopulmonary pathology in participants of the Chernobyl accident response takes place 10 years later the accident. The program of treatment-prophylactic measures for response participants is developed. Efficiency of this program is shown

  3. CARNSORE: Hypothetical reactor accident study

    Two types of design-basis accident and a series of hypothetical core-melt accidents to a 600 MWe reactor are described and their consequences assessed. The PLUCON 2 model was used to calculate the consequences which are presented in terms of individual and collective doses, as well as early and late health consequences. The site proposed for the nucelar power station is Carnsore Point, County Wexford, south-east Ireland. The release fractions for the accidents described are those given in WASH-1400. The analyses are based on the resident population as given in the 1979 census and on 20 years of data from the meteorological stations at Rosslare Harbour, 8.5 km north of the site. The consequences of one of the hypothetical core-melt accidents are described in detail in a meteorological parametric study. Likewise the consequences of the worst conceivable combination of situations are described. Finally, the release fraction in one accident is varied and the consequences of a proposed, more probable ''Class 9 accident'' are presented. (author)

  4. Some aspects of thyroid system status in persons exposed to the Chernobyl accident

    The thyroid system status estimation held in post-accidental period dynamics among 7868 children evacuated from the 30-km Chernobyl zone and resident now in Slavutich city (Cs-137 contaminated area), among contaminated regions permanent residents, among native kievites and evacuated from 30-km zone. The thyroid pathology incidence dependence on residence place during Chernobyl Accident and after that was revealed. The immune-inflammatory thyroid disorders are characteristic for 30-km zone migrants, goitre different forms - for the radionuclides contaminated territories residents. No thyroid function abnormalities frequency confidential increase was registered during the research activities run. The total serum cholesterol level application unavailability is revealed in Chernobyl accident survivors thyroid hormones metabolic effects estimation. Data concerning Chernobyl accident consequences cleaning up participants (CACCP) presented additionally. (author)

  5. Chernobyl fantasy

    Several versions of technical reasons of Chernobyl accident, which have received a wide resonance in mass-media, and are seemed as reasonable for most public without any special education in reactor's physics, are discussed. Probable reasons of its origination are analysed, and its scientific groundlessness is shown

  6. INTERNATIONAL ASSESSMENTS OF IMPACTS OF THE CHERNOBYL ACCIDENT: THE CHERNOBYL FORUM (2003–2005 AND UNSCEAR (2005–2008

    M. I. Balonov

    2015-09-01

    Full Text Available Radiological consequences of the accident at the Chernobyl NPP were recently revisited by the UN Chernobyl Forum (2003-2005 and UNSCEAR (2005-2008. For the first time environmental impacts were considered in detail, including radioactive contamination of terrestrial and aquatic environments, application and effectiveness of countermeasures and effects on biota. Updated dosimetric data were presented for more than half a million of emergency and recovery operation workers, about 100 million inhabitants of the three most affected countries, Belarus, the Russian Federation and Ukraine, and for 500 million inhabitants of other European countries. Several hundred of the emergency workers received high radiation doses; of whom 28 persons died in 1986 due to acute radiation sickness. Children at the time of the accident, who drank milk with high levels of radioactive iodine, received high doses to the thyroid. Since early 1990s there was the dramatic increase in thyroid cancer incidence among them. Also in 1990s there was some increase of leukaemia in most exposed workers. The UN Chernobyl Forum concluded that severe social and economic depression of the affected regions and associated psychological problems of the general public and the workers had become the most significant problem. The vast majority of the population need not live in fear of serious health consequences from the Chernobyl accident.

  7. A first assessment of the psychic and social effects of the Chernobyl accident

    A synthesis has been made of a series of surveys carried out in Ukraine in 1992 and 1993 on the psychic and social consequences of the Chernobyl accident, within the framework of the ''Evaluation programme of the consequences of the Chernobyl nuclear accident'' of the Commission of the European communities. The main results demonstrate the strength of the post-accident dynamics of the accident, more than 7 years later. Some 3 millions people were directly affected in their everyday life by the post-accident management which resulted in many perverse effects on the social and psychic levels. Economically, each year, financing of the post-accident management system requires nearly 1/6 of the Ukraine budget. Politically speaking, Chernobyl is still a major stake for the various actors of the institutional transition process underway since the disappearance of the soviet system. The article shows the systemic complexity of the local situation and the many explanatory factors (physical, sanitary, political, cultural, historical) at the origin of the post-accident dynamics. A systemic modelling of the interactions between these factors is presented. It makes it possible to better define the contributions of both accident and post-accident stages to the process that has led to the present situation. It shows out the close connections between the different accident stages and the need, from the very beginning of an accident, to take into account the mid-and long-term consequences arising from the accident management. (author). 11 refs., 3 figs

  8. Psychological and social impacts of post-accident situations: lessons from the Chernobyl accident

    This paper presents the main features, from the psychological and social points of view, of the post-accident situation in the contaminated areas around Chernobyl. This is based on a series of surveys performed in the concerned territories of the CIS republics. The high level of stress affecting a large segment of the population is related to the perception of the situation by those living in a durably contaminated environment but also to the side-effects of some of the countermeasures adopted to mitigate the radiological consequences or to compensate the affected population. The distinction between the accident and the post-accident phase is enlarged to take into account the various phases characterizing the dynamics of the social response. Although the size of the catastrophe as well as the economic and political conditions that were prevailing at the time and after the accident have resulted in a maximal intensity of the reactions of the population, many lessons can be drawn for the management of potential post-accident situations. (author)

  9. Radiation risk in Republics Belarus after Chernobyl accident

    under observation by the year 2004. The obtained results conform to the other authors' conclusions (Malko M.V., 2001, 2003). In the framework of the ICRP model it's shown that a maximum possible influence of the radiation contamination factor can't be a source of the actually registered carcinogenic risk. In this connection, an analysis of the ecological hazard non-radiation components is of importance. By now, the scientific community has achieved the understanding of the fact that a chemical pollution risk can be compared with a risk of the radiation contamination even in the regions mostly suffered from the accident at the Chernobyl atomic power station. Furthermore, under a combined influence of a complex of factors, there is a risk of a nonlinear enhancement of the adverse effects. In this connection, an urgent problem appeared consisting of the new approach elaboration on the evaluation of the technogenic environment contamination, under which an influence of different adverse factors would be expressed in comparable values, suitable for their comparative analysis. This problem solving refers first of all to the decision making optimization at the safety arrangements planning on the contaminated territories. (author)

  10. Studies of severe accidents in light-water reactors

    From 10 to 12 November 1986 some 80 delegates met under the auspices of the CEC working group on the safety of light-water reactors. The participants from EC Member States were joined by colleagues from Sweden, Finland and the USA and met to discuss the subject of severe accidents in LWRs. Although this seminar had been planned well before Chernobyl, the ''severe-accident-that-really-happened'' made its mark on the seminar. The four main seminar topics were: (i) high source-term accident sequences identified in PSAs, (ii) containment performance, (iii) mitigation of core melt consequences, (iv) severe accident management in LWRs. In addition to the final panel discussion there was also a separate panel discussion on lessons learned from the Chernobyl accident. These proceedings include the papers presented during the seminar and they are arranged following the seminar programme outline. The presentations and discussions of the two panels are not included in the proceedings. The general conclusions and directions following from these two panels were, however, considered in a seminar review paper which was published in the March 1987 issue of Nuclear Engineering International

  11. Standards for reactor accident cases

    The Committee on Standards for reactor accident cases in the Netherlands published its recommendations to the Minister of Health. Maximum permissible quantities of radiation and radionuclide intake are presented for adults and children as well as pregnant women. Exposure limit standards for the whole body as well as specific organs and other parts are given. Also considered is the contamination of cattle and cows' milk. The standards are compared with those of the ICRP and the English Medical Research Council

  12. Examination of persons connected with the Chernobyl accident

    In 1990, seventy-four persons (46 Children and 28 adults) from various villages in Ukrainia and Byelorussia, radiation exposed from Chernobyl accident, were examined in the Federal Office of Health in co-operation with the Federal Office of Radiation Protection in Germany. In the Project were included persons who want a medical examination or in the case of children which presents a consens of legal representation. In no cases clinical findings were attributed to radiation directly. Clinical findings mainly were chronical infections, required dental treatments and unspecific symptoms in the abdominal region. Single haematological deviation from normal show no connection to the official surveyed contaminated settlements. In our endocrinological program we found only one case in reference to a hyperthyreosis. Chromosomal analysis of peripheral lymphocytes showed in some case an elevated number of dicentrics, but no differences has been found between people living in surveyed contaminated and surveyed control settlements. Whole body counting of the examined persons showed low incorporation of radiocaesium with a connection to the level of official values for caesium surface contamination of the persons residence. (orig.)

  13. Radiocesium in lichens and reindeer after the Chernobyl accident

    K. Rissanen

    1990-09-01

    Full Text Available After the Chernobyl accident the sampling and measuring program of the Finnish Centre for Radiation and Nuclear Safety was intensified both for surveillance and research purposes. The deposition pattern of radionuclides was more complicated than from the global fallout after the nuclear weapons tests. The radioactive deposition was very unevenly distributed in Lapland, as also in the rest of Finland. Fortunately, the amounts of deposition in Lapland were only about one-tenth of the corresponding amount of deposition in southern Finland. In 1986-87 the mean concentration of Cs-137 in lichens and in reindeer meat increased to about the same level as in 1972-73 or to about 30 per cent of the maximum levels found in 1964-65 after the nuclear weapons tests. The activity concentrations in reindeer tissues vary according to season. In winter, reindeer eat considerable amounts of lichens with high radiocesium concentrations. In summer, lichens are replaced by other forage such as leaves from trees, green plants, etc. The ratio of Cs-137 concentration in reindeer meat between summer and winter is about 0.2. The mean concentration of Cs-137 in meat for consumption from the slaughtering period 1986-87 was 720 Bq/kg fresh weight. After that time concentrations started decreasing since no new fallout was deposited.

  14. Radiological impact of the Chernobyl accident in EEC countries

    The results are presented of an evaluation of the impact of radioactive substances escaped during the Chernobyl accident, on the population in EEC countries. The results have been processed from data provided by all member countries and relate to the most dangerous radionuclides namely 131I, 134Cs and 137Cs. The population was divided into three groups: one-year olds, 10 year olds and adults. Assessed were external whole-body irradiation by the radioactive cloud and material deposited on the body surface, and internal irradiation with regard to the human food chain. The irradiation of the thyroid was assessed separately. As for 131I, the most endangered group were the infants with the exception of Italy where 10 year olds were the most affected group. Values calculated for the individual countries are given of the effective dose equivalent for the first year, the dose equivalent for the thyroide, the dose commitment in the first year, the collective effective dose equivalent and the collective dose equivalent for the thyroid gland. Measures taken to reduce the irradiation of the population (restrictions on distribution and consumption of milk, dairy products and leafy vegetables, feeding cattle with preserved feeds, etc.) reduced the collective dose equivalent by a mere 5% and the collective dose equivalent for the thyroid by 26%. (E.S.). 3 tabs

  15. Estimation Of 137Cs Using Atmospheric Dispersion Models After A Nuclear Reactor Accident

    Simsek, V.; Kindap, T.; Unal, A.; Pozzoli, L.; Karaca, M.

    2012-04-01

    Nuclear energy will continue to have an important role in the production of electricity in the world as the need of energy grows up. But the safety of power plants will always be a question mark for people because of the accidents happened in the past. Chernobyl nuclear reactor accident which happened in 26 April 1986 was the biggest nuclear accident ever. Because of explosion and fire large quantities of radioactive material was released to the atmosphere. The release of the radioactive particles because of accident affected not only its region but the entire Northern hemisphere. But much of the radioactive material was spread over west USSR and Europe. There are many studies about distribution of radioactive particles and the deposition of radionuclides all over Europe. But this was not true for Turkey especially for the deposition of radionuclides released after Chernobyl nuclear reactor accident and the radiation doses received by people. The aim of this study is to determine the radiation doses received by people living in Turkish territory after Chernobyl nuclear reactor accident and use this method in case of an emergency. For this purpose The Weather Research and Forecasting (WRF) Model was used to simulate meteorological conditions after the accident. The results of WRF which were for the 12 days after accident were used as input data for the HYSPLIT model. NOAA-ARL's (National Oceanic and Atmospheric Administration Air Resources Laboratory) dispersion model HYSPLIT was used to simulate the 137Cs distrubition. The deposition values of 137Cs in our domain after Chernobyl Nuclear Reactor Accident were between 1.2E-37 Bq/m2 and 3.5E+08 Bq/m2. The results showed that Turkey was affected because of the accident especially the Black Sea Region. And the doses were calculated by using GENII-LIN which is multipurpose health physics code.

  16. Environmental radioactivity and dose evaluation in Taiwan after the Chernobyl accident

    A substantial increase in fission product activity was observed in various environmental samples taken in Taiwan after the Chernobyl accident. The concentration of long-lived fission products in air above ground, precipitation, grass, vegetation and milk were monitored in the next 7 wk. The individual effective dose equivalent committed by the first year of exposure and intake following the accident were evaluated. Average individual doses for the population in Taiwan are estimated at 0.9 microSv due to global fallout from the Chernobyl accident. This value is lower than that reported in neighboring countries in the Far East and poses no increased health impact to the public in Taiwan

  17. Radioactivity in surface air and precipitation in Japan after the Chernobyl accident

    Radioactive plumes from the Chernobyl reactor accident first passed over Japan on 3 May 1986. Measurements of 103Ru, 131I and 137Cs in rainfall and airborne dust collected at Chiba near Tokyo show that, in fact, at least two or more kinds of plume arrived during May. Their altitudes were calculated to be about 1500 m in early May and 6300 m in late May. Radionuclides detected in 33 precipitation samples collected by the network of radiation monitoring stations from 1 to 22 May were 7Be, 89Sr, 90Sr, 95Zr, 95Nb, 103Ru, 106Ru, sup(110m)Ag, 125Sb, sup(129m)Te, 131I, 132Te, 132I, 134Cs, 136Cs, 137Cs, 140Ba, 140La, 141Ce and 144Ce. The radiation was characterized by higher levels of the volatile nuclides, such as 103Ru, 132Te, 131I and 137Cs, than fallout levels in nuclear weapons testing, and by activity ratios of 0.48 and 14 for, respectively, 134Cs/137Cs and 89Sr/90Sr, as on 26 April. the fallout activity was higher in Northwestern Japan, the average depositions of 90Sr and 137Cs in Japan from 1 May (or 30 April) to 22 May being 1.4 Bq m-2 and 95 Bq m-2, inventories which are 14 and 550 times higher than the pre-Chernobyl values. (author)

  18. Environmental radioactivity in the soil of the Republic of Korea one decade after the Chernobyl accident

    During Chernobyl accident a large amount of radionuclides were released into atmosphere and added to atmospheric nuclide inventory from weapons tests. In early May of 1986 in South Korea, radioactivities such as 1-131 and Cs-137 were detected in surface air and rain water. That indicated that Chernobyl debris spreaded to far Eastern Asia. In the present time, the long-lived radionuclides have been deposited on the soil of Korean peninsular resulted from Chernobyl accident as well as from atmospheric nuclear weapon tests. Meanwhile, it has been reported that isotopic properties in fallout differ significantly, depending on their origin. Several studies have reported that plutonium isotopic ratio, Pu-238 to Pu-239,240 in particular, in fallout originated from Chernobyl accident was quite different from the ratio in global fallout from nuclear tests and burnup of SNAP-9A satellite using Pu-238 as energy sources. As soil, in terrestrial environment, is a principal reservoir of man-made radionuclides, a study on isotopic characteristic in soil can give some information on how Chernobyl accident is effecting on Korean environment. In this study, the vertical inventory of radionuclides, Pu-238, Pu-239,240 and Cs-137, and their isotopic ratios in soils were investigated to estimate the contribution of Chernobyl derived-nuclides to Korean environment

  19. Knowledge resources on the Chernobyl accident and its consequences in the INIS Database

    Literature on the Chernobyl accident and its consequences is an important subject covered by the International Nuclear Information System (INIS) Database. The INIS Database contains 19872 bibliographic records and 8400 full text documents on this subject from 1986 up to 04/2005. A bibliometric study of these records was made to generate statistical summaries that characterise, in general terms, the intellectual content of the records and the nature of the records in terms of its major bibliographic attributes. Environmental aspects and human health constitute the two dominant subjects with a respective contribution of 49% and 38%. The rest is evenly divided among legal aspects, reactor safety and socio-economic impacts of the accident. The three countries that are most affected by the accident, namely Ukraine, Russian Federation and Belarus contributed 44% of the total input. 57% of the literature analysed are conference papers and reports while 25% are journal articles. Most of the documents were written in English (47%) and in Russian (36%). Seven percent of the publications were written in German. (author)

  20. One decade after Chernobyl: Summing up the consequences of the accident

    This summary is the results of the International Conference ''One decade after Chernobyl''. It includes topics on initial responses, radioactive releases, absorbed radiation doses and health effects, socio-economic impacts as well as safety of RBMK type reactors

  1. Risks of insufficient information communication during the post-accident period of the Chernobyl accident

    The modified psychological climate and increased social-psychological pressure in the population, affected as a result of the Chernobyl accident, emerged partially because of insufficient information provided to the population with respect to the radiation and ecological conditions. Such situation resulted in development of chronic psychological stress in the majority of the population residing on the affected areas. The post-accidental stress, which appeared in many people, is characterized by its extraordinary stability. Up to 74% of the affected population were subjected to stress. In 1986 the depressing condition of anxiety was observed in 50% of those examined. By 1998 this number increased up to 76%. Aggravation of health condition still remains in the center of anxiety reasons for the majority of those examined, when in the areas contaminated greater the number of those anxious is much higher than in others. Besides, the urban population is more concerned in unsatisfactory solution of the problem of liquidation of the Chernobyl accident consequences, than village inhabitants (88,5 and 79,70/o accordingly). Noteworthy, that 43% of the urban population and only 25,20/6 of the village settlers is concerned in small efficiency of rehabilitation activities on the radioactive contaminated territories. Respondents-women 86,1%) are more anxious than men 84,2%). Besides, almost three quarters of the respondents 74,5%) for last three years became more anxious for their future and future of their children, which leads to greater worries. At the same time it is necessary to take into account, that 7 of the respondents expressed apathy and indifference to everything, and at 75% have the feeling of hopelessness. Another negative tendency exposed in the population, affected by the Chernobyl accident is the reduction of trust to the authorities and governmental bodies, reduction of satisfaction by the activity of local authorities. Only 60,6% of the interrogated

  2. Environmental consequences of the Chernobyl accident and their remediation: 20 years of experience

    The Chernobyl Forum was organized by the United Nations to examine the health and environmental effects of the accident at the Chernobyl Nuclear Power Station Unit Number 4. This paper is concerned with the environmental effects, including human exposure, as determined by the Expert Group on Environment. The accident on 26 April 1986 resulted in the release of a large amount of radioactive materials over a period of ten days. These materials were deposited throughout Europe (and to a minor extent throughout the remainder of the northern hemisphere) with the three more affected countries being Belarus, the Russian Federation and Ukraine. The more important radionuclides from a human dosimetric standpoint were 131I, 134Cs and 137Cs, with half-lives of 8 d, 2 a and 30 a, respectively. More than five million persons lived on territories in these three countries judged to be contaminated at >37 kBq/m2. Many countermeasures were employed to mitigate the effects of the accident, with the main focus being on urban and agricultural areas. The collective effective dose to the residents of the contaminated territories is estimated to be about 55 000 man Sv; the collective thyroid dose is estimated to be 1.6 x 106 man Gy. Effects on non-human biota were observed that ranged from minor to lethal; a notable effect was the killing of a pine forest near the accident site. The current increase in the number and diversity of species in the most contaminated area is due to the absence of human pressure. The current shelter over the damaged reactor was constructed under time pressure, and it has significant leakage or airborne radionuclides and inflow of rainwater. The immediate waste management practices were chaotic and remediation is needed. It is planned to build an NSC structure over the top of the existing structure and to eventually dismantle the damaged reactor. This will put additional pressure on waste management, including the need for a new site for geologic disposal of

  3. The health status of Chernobyl nuclear power plant accident liquidators in Latvia

    The accident at the Chernobyl Nuclear Power Plant (NPP) in 1986 is so far the largest nuclear accident, and has created a new problem for nuclear medicine. This accident has also become a problem for Latvia due to the more than 6000 residents who participated in the clean-up works at Chernobyl. The aim of our study was to assess the health status of Chernobyl NPP accident liquidators, in comparison with a male control group in Latvia. We have examined the health of 2512 Chernobyl clean-up workers (males between age of 35-55 with documented and biologically estimated doses of received ionising radiation). For comparison of morbidity, we used a control group consisting of 3887 employees of the Ministry of Internal Affairs (males of the same age groups). The morbidity of Chernobyl NPP accident clean-up workers was generally higher than of control group. The highest contribution to morbidity in each age group of liquidators was from digestive, musculosceletal, nervous system and circulatory system diseases, as well as from mental disorders. (author)

  4. Thyroid gland state in persons of Kiev region after Chernobyl accident at the Chernobyl Nuclear Power Plant

    After Chernobyl accident, the growth of thyroid pathology, particularly the children's thyroid cancer, has been noted in Kiev Region. Reconstruction of exposure doses on thyroid gland is one of the major problems on liquidation of medical effects of the Chernobyl accident. While accessing the dose load it is necessary to take into account not only iodine-131 contribution to the radiation load, but also that of other iodine short-living radionuclides as well as radionuclides of other chemical elements inhalated or swallowed into the organism. Analysis of pathological involvement of the thyroid gland is to be performed with regard for the state of other organs and systems, i.e. on the entire organism level, thyroid gland playing the leading role in its functioning

  5. Health status and follow-up of the Chernobyl Nuclear Power Plant accident liquidators in Latvia

    The accident at the Nuclear Power Plant in Chernobyl create a new problem for health professionals in Latvia due to the fact that 6475 inhabitants (mainly healthy and men of reproductive age) of Latvia took part in clear-up works in Chernobyl within the period 1986-1991. Chernobyl clear-up workers were exposed γ-radiation and they also incorporated radionuclides. The doses documented for the clear-up workers are variable; they are estimated to be between 0.01-0.5 Gy although the specialists working on the precision of received doses think that they could be even 2 or 3 times higher. The aim of this work is to evaluate the health status of liquidators investigating them on a long-term basis: to create the correct system of health status evaluation of Chernobyl clear-up workers, to improve the register of Chernobyl clear-up workers and of their children, to analyze the data about the incidence of different diseases and mortality gained from follow-ups, to evaluate health status and clinical picture within the period of time, to work out and use adequate methods of treatment. Chernobyl clear-up workers more often than the control group suffer from diseases of the nervous, the endocrine and the metabolic and immune system. They also have higher rate of incidence for diseases of digestive and respiratory system and for diseases of bones, muscles and connective tissue higher rates of accidents and suicides. Now, ten years after the accident there are Chernobyl clear-up workers who are chronically ill and their health status is expected to be worse in the next few years. Regular follow-up and medical examination of Chernobyl clear-up workers and their children should be carried out every year. Regular rehabilitation of Chernobyl clear-up workers should be provided by the government

  6. Global risk of radioactive fallout after major nuclear reactor accidents

    J. Lelieveld

    2012-05-01

    Full Text Available Major reactor accidents of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the cumulative, global risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents (the most severe ones on the International Nuclear Event Scale, INES 7, using particulate 137Cs and gaseous 131I as proxies for the fallout. Our results indicate that previously the occurrence of INES 7 major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a major reactor accident of any nuclear power plant worldwide, more than 90% of emitted 137Cs would be transported beyond 50 km and about 50% beyond 1000 km distance before being deposited. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human exposure due to deposition are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in West Europe and South Asia, where a major reactor accident can subject around 30 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  7. Down syndrome time-clustering in January 1987 in Belarus: link with the Chernobyl accident? : Down syndrome after Chernobyl

    Zatsepin, Ivan; VERGER, Pierre; Robert-Gnansia, Elisabeth; Gagnière, Bertrand; Tirmarche, Margot; Khmel, Rostislav; Babicheva, Irina; Lazjuk, Gennady

    2007-01-01

    International audience The Chernobyl accident (April 26, 1986) exposed a large part of the Belarus population to ionizing radiation. We analyzed the time trends of Down syndrome (DS) in Belarus to evaluate whether either brief exposure at high dose rates during the plume passage or continuous exposure at low doses and dose rates of the residents of contaminated areas had any detectable impact on DS prevalence at birth. DS data came from the Belarus National Registry of Congenital Malformat...

  8. The consequences of the Chernobyl nuclear accident in Greece - Report No. 2

    In this report a realistic estimate of the radioactive fallout on Greece from the Chernobyl nuclear accident is described. The measurements performed on environmental samples and samples of the food chain, as well as some realistic estimations for the population doses and the expected consequences of the accident are presented. The analysis has shown that the radiological impact of the accident in Greece can be considered minor. (J.K.)

  9. Radiation protection survey of research and development activities initiated after the Chernobyl accident. Review report

    The compilation of research and development activities in the various fields of radiation protection in OECD Member countries which have been undertaken or planned specifically to address open questions arising from the Chernobyl reactor accident experience shows a potential for international cooperative arrangements and/or coordination between national programmes. Both the preliminary review of the answers, which only cover a part of the relevant activities in OECD Member countries, and a computerized literature search indicate that the multidisciplinarity of the research area under consideration will call for special efforts to efficiently implement new models and new quantitative findings from the different fields of activity to provide an improved basis for emergency management and risk assessment. Further improvements could also be achieved by efforts to initiate new activities to close gaps in the programmes under way, to enhance international cooperation, and to coordinate the evaluation of the results. This preliminary review of the answers of 17 Member countries to the questionnaire on research and development activities initiated after the Chernobyl accident is not sufficient as a basis for a balanced decision on those research areas most in need for international cooperation and coordination. It may however serve as a guide for the exploration of the potential for international cooperative arrangements and/or coordination between national programmes by the CRPPH. Even at this preliminary stage, several specific activities are proposed to the NEA/OECD by Member countries. Whole body counting and the intercomparison of national data bases on the behaviour of radionuclides in the environment did attract most calls for international cooperation sponsored by the NEA

  10. Concentration of radiocaesium in grain following the Chernobyl accident

    Radioactivity measurements and dose assessments in Hungary after the Chernobyl accident have shown that the consumption of baker's ware contributes significantly to the internal dose of man. Flour and bread have been contaminated mainly due to radiocaesium deposition onto the of cereals at the end of April and beginning of May, 1986. Because of the different seasonal and growing conditions of biomass, the interception fraction of the standing winter wheat became higher than that of the summer wheat. Therefore, the contribution of grain to the internal dose was relatively high in Hungary where near to 90 per cent of flour and bread is produced from winter wheat in comparison with other countries. The average concentration of 137Cs in winter grain harvested in summer 1986 was 32 Bq/kg with a range of 11-140 Bq/kg. The bran contained almost half of the total radiocaesium of the grain with about 20 per cent of the weight. The 40K concentration of grain was 149 Bq/kg. The 137Cs concentration in white bread commonly used in Hungary was 22 Bq/kg in average. The concentrations found in bread samples from the whole country showed a high variation due to the uneven deposition of radioactive substances. The 137Cs concentration in winter grain was 0.0075±0.0017 Bq/kg normalized to 1 Bq/m2 deposition density. The 137 Cs concentration in grain harvested in 1987 or later became less than 1 Bq/kg. It suggests that the root uptake of radiocaesium by cereals must be very small. The per caput committed effective dose equivalent due to consumption of baker's ware was estimated as 50 micro-Sv. (author)

  11. Interventions after serious reactor accidents

    Manifold and promising approaches to active measures to be taken during accidents were studied hypothetically at the HTR which already has outstanding inherent safety properties in respect of afterheat removal. Based on incident scenarios prepared for hypothetical air inleakage incidents, in particular into the core of the HTR module reactor, many and various peripheral conditions for intervention possibilities could be studied. In addition, intervention possibilities appropriate for the respective incidents were examined as to their feasibility and consequences to be expected after their application. From these studies suggestions were derived for verifying experiments. (orig./HP) With 66 refs., 24 tabs., 79 figs

  12. Measurements of the Chernobyl accident fallout in Israel and the assessment of the radiation doses to the population

    Israel is located approximately 2000 km southeast of Chernobyl. The fallout from the accident in Chernobyl reactor no. 4 on April 26, 1986 arrived in Israel on the night of May 2nd. Following the accident, studies of the radiological effects were initiated by many countries some of them many thousands of kilometers away. These studies can be characterized by three periods: a) First months following the accident - Measurements were taken to assess the immediate impact and to propose countermeasures that would reduce doses incurred by the population. b) First years following the accidents - Measurements were taken to validate that radioecological effects are well below any regulatory limits, from both the fallout radioactivity in the country and import of food coming from other affected areas. c) The last years (e.g. 1990-1995) - Measurements were taken within the regular program of environmental radioactivity surveillance. In this paper we have compiled the results of the studies in Israel which have followed the three phases mentioned above. Assessment of the accumulated potential radiation doses to the population in Israel was made based on the results of those measurements covered in the three phases, considering the various possible pathways

  13. Measures taken to improve the safety of nuclear power plants in the USSR after the Chernobyl accident

    The Soviet delegation to the IAEA experts' meeting (August 25-29, 1986) presented information on the Chernobyl Nuclear Power Plant accident and its consequences. Using data obtained through August 1, 1986, this information contained the results of an investigation into the causes of the accident as well as a description and preliminary analysis of the effectiveness of the immediate steps taken to limit and eliminate its consequences. Subsequent efforts were channeled in the following directions: (1) Continuing operations to eliminate the accident's consequences including: (a) completing the design and construction of a protective cover (sarcophagus) to reliably protect the environment from radioactivity and the introduction of radioactive matter from the destroyed unit; (b) further decontamination of the Chernobyl Nuclear Power Plant site and inhabited areas within the affected zone; and (c) carrying out required sanitary and medical measures to ensure the safety of the population and to protect their health. (2) Development and implementation of longitudinal studies of the long-term consequences of the accident. (3) Development of introduction of measures to increase the safety of working nuclear power stations. (4) Examination of plans for the future development of the nuclear power industry and prospects for increasing its safety level, including: conceptual development of a new generation of nuclear reactors; and expansion of scientific investigation into all aspects of safety assessment and safety assurance in the nuclear power industry. The present report examines the progress of studies along these lines and the conclusions which have been drawn

  14. Accident analysis in research reactors

    With the sustained development in computer technology, the possibilities of code capabilities have been enlarged substantially. Consequently, advanced safety evaluations and design optimizations that were not possible few years ago can now be performed. The challenge today is to revisit the safety features of the existing nuclear plants and particularly research reactors in order to verify that the safety requirements are still met and - when necessary - to introduce some amendments not only to meet the new requirements but also to introduce new equipment from recent development of new technologies. The purpose of the present paper is to provide an overview of the accident analysis technology applied to the research reactor, with emphasis given to the capabilities of computational tools. (author)

  15. Thirty years after the Chernobyl accident: What lessons have we learnt?

    Beresford, N A; Fesenko, S; Konoplev, A; Skuterud, L; Smith, J T; Voigt, G

    2016-06-01

    April 2016 sees the 30(th) anniversary of the accident at the Chernobyl nuclear power plant. As a consequence of the accident populations were relocated in Belarus, Russia and Ukraine and remedial measures were put in place to reduce the entry of contaminants (primarily (134+137)Cs) into the human food chain in a number of countries throughout Europe. Remedial measures are still today in place in a number of countries, and areas of the former Soviet Union remain abandoned. The Chernobyl accident led to a large resurgence in radioecological studies both to aid remediation and to be able to make future predictions on the post-accident situation, but, also in recognition that more knowledge was required to cope with future accidents. In this paper we discuss, what in the authors' opinions, were the advances made in radioecology as a consequence of the Chernobyl accident. The areas we identified as being significantly advanced following Chernobyl were: the importance of semi-natural ecosystems in human dose formation; the characterisation and environmental behaviour of 'hot particles'; the development and application of countermeasures; the "fixation" and long term bioavailability of radiocaesium and; the effects of radiation on plants and animals. PMID:27018344

  16. Cohort formation for epidemiological study of medical consequences of the Chernobyl accident

    Belarus State Registry of the Chernobyl-affected population contains information about 276 000 residents of the Republic of Belarus exposed due to the Chernobyl NPP accident. Evidently, the population who lived in the evacuation zone was exposed mostly to radiation and also people participating in the liquidation of the Chernobyl accident consequences (emergency workers) within this zone in early post accident period of the catastrophe. Taking into account this criterion, we singled out the group out of all data files including all people who stayed in the evacuation zone not later than on May 31, 1986. The total number of the group made up 39 548 people including 4251 people who were under 18 at the moment of the accident. By preliminary estimation the number of person-years taking into account the deceased and left out of observation made up at the beginning of 2007- 735 600. During the period since 1986 there was detected 2671 cases of malignant tumors in the cohort and among people who were children and adolescents in 1986 there was registered 106 cases of malignant tumors (82% -thyroid cancer). Among 7483 of the deceased, malignant tumors is the cause of death at 1260 people. At present the real number of alive and remained subjects under observation makes up 25359 people including 2321 people who were under 18 at the moment of the accident. This group will form the base for further prospective research aiming at assessment of medical consequences of the Chernobyl NPP accident. (author)

  17. Particle size distribution of radioactive aerosols after the Fukushima and the Chernobyl accidents

    Following the Fukushima accident, a series of aerosol samples were taken between 24th March and 13th April 2011 by cascade impactors in the Czech Republic to obtain the size distribution of 131I, 134Cs, 137Cs, and 7Be aerosols. All distributions could be considered monomodal. The arithmetic means of the activity median aerodynamic diameters (AMADs) for artificial radionuclides and for 7Be were 0.43 and 0.41 μm with GDSs 3.6 and 3.0, respectively. The time course of the AMADs of 134Cs, 137Cs and 7Be in the sampled period showed a slight decrease at a significance level of 0.05, whereas the AMAD pertaining to 131I increased at a significance level of 0.1. Results obtained after the Fukushima accident were compared with results obtained after the Chernobyl accident. The radionuclides released during the Chernobyl accident for which we determined the AMAD fell into two categories: refractory radionuclides (140Ba, 140La 141Ce, 144Ce, 95Zr and 95Nb) and volatile radionuclides (134Cs, 137Cs, 103Ru, 106Ru, 131I, and 132Te). The AMAD of the refractory radionuclides was approximately 3 times higher than the AMAD of the volatile radionuclides; nevertheless, the size distributions for volatile radionuclides having a mean AMAD value of 0.51 μm were very close to the distributions after the Fukushima accident. -- Highlights: • AMADs after the Fukushima and Chernobyl accidents in the Czech Rep. were determined. • The mean value of AMADs of the monitored nuclides from the NPP Fukushima was 0.43 μm. • Nuclides from the NPP Chernobyl fell into two categories – refractory and volatile. • The mean value of AMADs of volatile nuclides from the NPP Chernobyl was 0.51 μm. • AMADs of volatile nucl. from the NPP Chernobyl were 3× smaller than of the refractory radionuclides

  18. Radiocaesium activity concentrations in Potatoes in Croatia after the Chernobyl accident

    In the paper are summarized the results of systematic investigations of 137 Cs and 134 Cs activity concentrations in potatoes (Solanum tuberosum) for the post-Chernobyl period in the Republic of Croatia. Potatoes are very important foodstuff in Croatia, the average annual consumption being about 40 kg per person. Due to a comparatively high contribution of the ingestion doses to the total dose received by population after the exposure to nuclear fallout, a reliable prognosis of the expected ingestion doses is of utmost importance. The ingestion dose strongly depends on the consumption of various types of foodstuffs, and related activity concentrations of respective radionuclides in those foodstuffs, which themselves usually depend upon the transfer from fallout. In addition, a reliable prediction of the expected ingestion dose received by consumption of a particular foodstuff requires the detailed knowledge of decreasing behaviour of activity concentrations in the environment and respective foodstuffs. The correlation between 137 Cs activity concentrations in fallout and potatoes, has been found to be very good, the correlation coefficient being r2=0.88 with P(t) < 0.001 for 17 degrees of freedom. As the radiocaesium levels in potatoes decreased exponentially, the mean residence time of 137 Cs in potatoes was estimated by fitting the measured activity concentrations to the exponential curve. The mean residence time was found to be 6.3 ± 0.8 years, the standard deviation being estimated by the Monte Carlo simulations. The initial observed 134 Cs:137 Cs activity ratio in potatoes has been found to be quite variable, but slightly lesser than theoretically predicted value of 0.5, calculated by applying the known inventory of these radionuclides in the Chernobyl reactor to the equation for the differential radioactive decay. This can be explained by presence of the pre-Chernobyl 137 Cs in soil that originated from nuclear fallout. As in other environmental samples, 134

  19. Cs137 and Sr90 dietary intake and urinary excretion for children, after the Chernobyl accident

    Since the accident from Chernobyl, an important number of studies were focused on the effects of the accident but, nine years after the accident, we still don't know enough about its impact on public health and environment. A major problem after the Chernobyl accident was to asses the effects of the irradiation for different age groups, especially for children. Our group measured Cs137 and Sr90 dietary intake and urinary excretion for children of different ages (between 4 and 12 years), at different time intervals after the accident. From the intake data, a trend of the annually committed effective doses was deduced. The paper presents the dose values for different age groups, as well as the balance of the intake and excretion, given as the 'observed ratio'. (author)

  20. Clinically observed effects in individuals exposed to radiation as a result of the Chernobyl accident

    The Chernobyl accident resulted in an unprecedented total number of 237 individuals who were suspected of suffering from acute radiation sickness (ARS). All patients had been exposed either as personnel at the reactor or as liquidators (rescue workers) in the first days after the accident. The diagnosis was confirmed in 134 cases. Of these, 41 had mild (Grade I) ARS; one additional patient is still disputed; all survived. Fifty patients had Grade II ARS, of whom one died. Seven patients out of 22 with Grade III ARS died. Of the most severely affected 21 patients, who suffered from Grade IV ARS, all but one died despite intensive treatment. Among the Grade IV ARS patients, gastrointestinal damage and radiation skin burns were the most common complicating factors. In the last ten years, nine of the ARS patients and five of the non-confirmed cases have died. Their deaths do not relate to the original severity of ARS and are, in the majority of cases, probably not directly attributable to the radiation exposure. To improve care for the victims of such exposures, a number of issues need to be addressed, such as: The reasons for the failure of the treatment of bone marrow transplantation made available to the most severely affected patients; immediate diagnosis and alternative modes of treatment; the best strategy for the medical management of the acutely exposed radiation accident victim in the future in view of new developments; and the quality of life of the surviving patients. It was realized almost immediately that from the medical point of view the persons acutely exposed as a result of an accident on this scale are difficult to manage, since specialized centres have a capacity for only a few patients. The experience gained from these patients has provided additional information about the mechanisms of acute radiation injury. 37 refs, 4 figs, 6 tabs

  1. Fifteen years after the accident at the Chernobyl nuclear power plant. Lessons learned

    Fifteen years has passed on this year since accident at the Chernobyl Nuclear Power Plant had formed on April 26, 1986. From before or after the accident, the world experienced a number of changes. On August, 1986, USSR carried out a report on the accident at an international conference on the accident at Chernobyl held at Wien. Outlines of the report are described in a report of IAEA INSAG (INSAG-1). After then, various facts hidden in the USSR report at this time have appeared. Then, INSAG revised previous INSAG-1 and published INSAG-7 re-evaluated on technical meanings of the accident on 1992, which became so-called finished issue on technical analysis and evaluation on causes and progresses of the accident. To correctly understand lessons on the accident, it must be begun from correct understanding of its real facts. It is widely recognized that its actual and fundamental reason was slight or neglect on safety found at whole of nuclear development and applications in USSR and shorts of safety culture such as emptiness of technology and regulation brought by them, relaxation of working rule, and so on, which were only the largest lesson on the Chernobyl accident. (G.K.)

  2. Radiation health consequences after the accident of Chernobyl Nuclear Power Plant

    The sources of divergences in health consequences assessment after Chernobyl accident have been discussed. The average data about the cancer incidence in Poland have been presented. On that background the frequency of thyroid cancer, being considered as a result of iodine radionuclides exposure after Chernobyl accident in May 1986, have been performed. The great geographic differences in cancer incidence have been underlined. The observed differences between the selected group of people of different age and sex have been also discussed. 14 refs, 11 tabs, 3 figs

  3. Chernobyl nuclear accident revealed from the 7010 m Muztagata ice core record

    TIAN LiDe; YAO TanDong; WU GuangJian; LI Zhen; XU BaiQing; LI YueFang

    2007-01-01

    The total activity variation with depth from a 41.6 m Muztagata ice core drilled at 7010 m,recorded not only the 1963 radioactive layer due to the thermonuclear test,but also clearly the radioactive peak released by the Chernobyl accident in 1986.This finding indicates that the Chernobyl nuclear accident was clearly recorded in alpine glaciers in the Pamirs of west China,and the layer can be potentially used for ice core dating in other high alpine glaciers in the surrounding regions.

  4. Twenty years' application of agricultural countermeasures following the Chernobyl accident: lessons learned

    The accident at the Chernobyl NPP (nuclear power plant) was the most serious ever to have occurred in the history of nuclear energy. The consumption of contaminated foodstuffs in affected areas was a significant source of irradiation for the population. A wide range of different countermeasures have been used to reduce exposure of people and to mitigate the consequences of the Chernobyl accident for agriculture in affected regions in Belarus, Russia and Ukraine. This paper for the first time summarises key data on countermeasure application over twenty years for all three countries and describes key lessons learnt from this experience. (review)

  5. Psychological studies of children affected by the Chernobyl accident made during their stay in Cuba

    This study evaluates the psychological, medical and social effects of the Chernobyl accident on children who live in the Chernobyl area. 404 children were studied in the age group of 11 to 17 years who spent the holidays in Cuba. The special objective of the study was to estimate in the light of the accident their personal characteristics, their mental health and their psychosocial adaptation. Different psychological tests were performed and the data were evaluated and compared with similar research carried out by other research groups. 12 refs

  6. V.A. Baraboj. Chernobyl: ten years later. Medical consequences of radiation accidents

    Review of the book - Chernobyl: ten years later. Medical consequences of radiation accidents (Kiev, Chernobylinterinform, 1996) by V.A. Baraboj - is presented. The book is based on experimental data obtained by author and available data of other scientists. It is shown that experiments on rats irradiation demonstrate the same combination of symptoms as persons participated in Chernobyl accident response. Attention is paid to the dosimetric, genetic, phenotypic features of exposed persons. Contributions of chemical hazardous pollutants and psychoemotional stress to the general pattern were also accounted. The importance of the book for specialists and public is accentuated

  7. Twenty years' application of agricultural countermeasures following the Chernobyl accident: lessons learned

    Fesenko, S V [International Atomic Energy Agency, 1400 Vienna (Austria); Alexakhin, R M [Russian Institute of Agricultural Radiology and Agroecology, 249020 Obninsk (Russian Federation); Balonov, M I [International Atomic Energy Agency, 1400 Vienna (Austria); Bogdevich, I M [Research Institute for Soil Science and Agrochemistry, Minsk (Belarus); Howard, B J [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LAI 4AP (United Kingdom); Kashparov, V A [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Street 7, Chabany, Kiev Region 08162 (Ukraine); Sanzharova, N I [Russian Institute of Agricultural Radiology and Agroecology, 249020 Obninsk (Russian Federation); Panov, A V [Russian Institute of Agricultural Radiology and Agroecology, 249020 Obninsk (Russian Federation); Voigt, G [International Atomic Energy Agency, 1400 Vienna (Austria); Zhuchenka, Yu M [Research Institute of Radiology, 246000 Gomel (Belarus)

    2006-12-15

    The accident at the Chernobyl NPP (nuclear power plant) was the most serious ever to have occurred in the history of nuclear energy. The consumption of contaminated foodstuffs in affected areas was a significant source of irradiation for the population. A wide range of different countermeasures have been used to reduce exposure of people and to mitigate the consequences of the Chernobyl accident for agriculture in affected regions in Belarus, Russia and Ukraine. This paper for the first time summarises key data on countermeasure application over twenty years for all three countries and describes key lessons learnt from this experience. (review)

  8. Clinical peculiarities of the brain damage in the liquidators of the Chernobyl accident

    Investigation into the features of the brain damage by the liquidators of the Chernobyl accident has become an urgent issue of today due to a number of circumstances. According to the classical concept dominating radiobiology until recently, the brain being composed of highly - differentiated nerve cells, present a radioresistant structure responsive to radiation injury induced by high and very high radiation doses (10000 rem and higher) only. The results of clinical examinations given to the Chernobyl accident recovery workers at Kiev Institute of Neurosurgery, Academy of Medical Sciences of Ukraine, show that even the so - called ''small - dose'' radiation, when consumed continuously, produces neurological sings of brain damage. 6 figs

  9. National report: United Kingdom. Chernobyl - the aftermath. What can the industry learn from the accident

    The author points out that the nuclear industry has suffered a serious blow by the Chernobyl accident and asks the questions: Will nuclear power recover, and how, and when will it recover. The author states why in his opinion nuclear power will recover essentially, and reasons in terms of the future energy scene, national attitudes, and public opinion. The technical lessons from the Chernobyl accident are also evaluated. The conclusion is that the biggest single task facing the nuclear industry is that which concerns public perception. Effective communication is therefore very important

  10. A cytogenetic follow-up of some highly irradiated victims of the Chernobyl accident

    A follow-up of 10 highly irradiated men, mostly reactor crew, from the Chernobyl accident is described. Their pre-accident medical conditions and relevant medical status approximately 10-13 y later are listed. A comparison is made between estimates of their average whole-body penetrating radiation doses derived from several biological parameters. First estimates were based on their presenting severity of prodromal sickness, early changes in blood cell counts and dicentric chromosome aberrations in lymphocytes. In three cases ESR measurements on tooth enamel were also made. Retrospective dosimetry using FISH translocations was attempted 10-13 y later. This showed good agreement for those patients with the lower earlier dose estimates, up to about 3 Gy. For the others, extending up to about 12 Gy, the translocations indicated lower values, suggesting that in these cases translocations had somewhat declined. Repeated chromosomal examinations during the follow-up period showed an expected decline in dicentric frequencies. The pattern of decline was bi-phasic with a more rapid first phase, with a half-life of ∼4 months followed by a slower decline with half-lives around 2-4 y. The rapid phase persisted for a longer time in those patients who had received the highest doses. 10-13 y later dicentric levels were still above normal background, but well below the translocation frequencies. (authors)

  11. Analysis of radiocaesium in the Lebanese soil one decade after the Chernobyl accident

    Fallout from the Chernobyl reactor accident due to the transport of a radioactive cloud over Lebanon in the beginning of May 1986 was studied 12 years after the accident for determining the level of 137Cs concentration in soil. Gamma spectroscopy measurements were performed by using coaxial high sensitivity HPGe detectors. More than 90 soil samples were collected from points uniformly distributed throughout the land of Lebanon in order to evaluate their radioactivity. The data obtained showed a relatively high 137Cs activity per surface area contamination, up to 6545 Bq m-2 in the top soil layer 0-3 cm. The average activity of 137Cs in the top soil layer 0-3 cm in depth was 59.7 Bq kg-1 dry soil ranging from 15 to 119 Bq kg-1 dry soil. The horizontal variability was found to be about 45% between the sampling sites. The depth distribution of total 137Cs activity in soil showed an exponential decrease. Estimation of the annual effective dose due to external radiation from 137Cs contaminated soil for selected sites gave values ranging from 19.3 to 91.6 μSv y-1

  12. Chernobyl, 16 years later

    This document on the Chernobyl site evolution is constituted around four main questions. What about the future of the Chernobyl site, the damaged reactor and the ''sarcophagus'' constructed around the reactor? What about the sanitary consequences of the accident on the liquidators asked to blot out the radiation and the around people exposed to radiation? What about the contaminated land around the power plant and their management? Concerning the France, what were the ''radioactive cloud'' sanitary consequences? (A.L.B.)

  13. Thyroid cancer in Belarus after Chernobyl: International thyroid project. International Programme on the Health Effects of the Chernobyl Accident

    The Chernobyl accident has demonstrated what was always known but perhaps has not been as fully acknowledged as it might, namely that national or other geographical boundaries are no defence against radioactive fallout. Much (some 2.2 millions) of the approximately 10 million population of Belarus have been, and are still being, exposed to the radiation resulting from the accident. The most obvious adverse effect of the radiation is on the condition of the thyroid system in children. Now, only just over eight years after the accident, we are experiencing an increase in childhood thyroid cancer which is particularly marked in those closest to the site of the accident. In young children thyroid cancer is an extremely rare condition and thus although at present the numbers of cases (more than 250 since the accident) is not large in absolute terms it is a sufficiently important development to capture the interest of the international medical and scientific community and to give rise to considerable apprehension as to the future development of the outbreak. Although this increase in thyroid cancer has not been definitively attributed to the Chernobyl accident, and indeed a major aim of this project is to elucidate the cause of the cancer, the fact of the exposure of the population of Belarus to the isotopes of iodine at the time of accident, and what we have learned from the experience in the Marshall Islands following the testing of the first hydrogen bomb on Bikini Atoll lead us to consider the accident as the most likely cause of the increase. Belarus is a relatively small and newly independent country. By any standards the Chernobyl accident was a technological disaster of enormous proportions causing damage to the environment over vast land areas. Necessarily it must be a major concern for us and an issue to be considered in the planning of our future. Its impact on the future health of our nation must be assessed as objectively and dispassionately as possible and

  14. Implications of the accident at Chernobyl for safety regulation of commercial nuclear power plants in the United States: Volume 1, Main report: Final report

    This report was prepared by the Nuclear Regulatory Commission (NRC) staff to assess the implications of the accident at the Chernobyl nuclear power plant as they relate to reactor safety regulation for commercial nuclear power plants in the United States. The facts used in this assessment have been drawn from the US fact-finding report (NUREG-1250) and its sources. The general conclusions of the document are that there are generic lessons to be learned but that no changes in regulations are needed due to the substantial differences in the design, safety features and operation of US plants as compared to those in the USSR. Given these general conclusions, further consideration of certain specific areas is recommended by the report. These include: administrative controls over reactor regulation, reactivity accidents, accidents at low or zero power, multi-unit protection, fires, containment, emergency planning, severe accident phenomena, and graphite-moderated reactors

  15. Implications of the accident at Chernobyl for safety regulation of commercial nuclear power plants in the United Sates: Volume 2, Appendix - Public comments and their disposition: Final report

    This report was prepared by the Nuclear Regulatory Commission (NRC) staff to assess the implications of the accident at the Chernobyl nuclear power plant as they relate to reactor safety regulation for commercial nuclear power plants in the United States. The facts used in this assessment have been drawn from the US fact-finding report(NUREG-1250) and its sources. The general conclusions of the document are that there are generic lessons to be learned but that no changes in regulations are needed due to the substantial differences in the design, safety features and operation of US plants as compared to those in the USSR. Given these general conclusions, further consideration of certain specific areas is recommended by the report. These include: administrative controls over reactor regulation, reactivity accidents, accidents at low or zero power, multi-unit protection, fires, containment, emergency planning, severe accident phenomena, and graphite-moderated reactors

  16. Theories of radiation effects and reactor accident analysis

    Muckerheide's paper was a public breakthrough on how one might assess the public health effects of low-level radiation. By the organization of a wealth of data, including the consequences of Hiroshima and Nagasaki but not including Chernobyl, he was able to conclude that present radioactive waste disposal and cleanup efforts need to be much less arduous than forecast by the U.S. Department of Energy, which, together with regulators, uses the linear hypothesis of radiation damage to humans. While the linear hypothesis is strongly defended and even recommended for extension to noncarcinogenic pollutants, exploration of a conservative threshold for very low level exposures could save billions of dollars in disposing of radioactive waste, enhance the understanding of reactor accident consequences, and assist in the development of design and operating criteria pertaining to severe accidents. In this context, the authors discuss the major differences between design-basis and severe accidents. The authors propose that what should ultimately be done is to develop a regulatory formula for severe-accident analysis that relates the public health effects to the amount and type of radionuclides released and distributed by the Chernobyl accident. Answers to the following important questions should provide the basis of this study: (1) What should be the criteria for distinguishing between design-basis and severe accidents, and what should be the basis for these criteria? (2) How do, and should, these criteria differ for older plants, newer operating plants, type of plant (i.e., gas cooled, water cooled, and liquid metal), advanced designs, and plants of the former Soviet Union? (3) How safe is safe enough?

  17. Fallout from Chernobyl [Letters to the editor

    Six brief letters discuss the possible health effects of fallout from the Chernobyl reactor accident including an increase in thyroid cancer in children in Belarus, chromosomal abnormalities in workers from Latvia who cleared up the Chernobyl accident site, an increased trisomy 21 in Berlin but a lack of increased childhood leukaemia incidence in Greece. (UK)

  18. Fallout from Chernobyl [Letters to the editor

    Williams, E.D. (Addenbrooke' s Hospital, Cambridge (United Kingdom)); Abelin, T.; Egger, M. (Bern Univ. (Switzerland)) (and others)

    1994-11-12

    Six brief letters discuss the possible health effects of fallout from the Chernobyl reactor accident including an increase in thyroid cancer in children in Belarus, chromosomal abnormalities in workers from Latvia who cleared up the Chernobyl accident site, an increased trisomy 21 in Berlin but a lack of increased childhood leukaemia incidence in Greece. (UK).

  19. Global risk of radioactive fallout after nuclear reactor accidents

    J. Lelieveld

    2011-11-01

    Full Text Available Reactor core meltdowns of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents, using particulate 137Cs and gaseous 131I as proxies for the fallout. It appears that previously the occurrence of major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a core melt of any nuclear power plant worldwide, more than 90% of emitted 137Cs would be transported beyond 50km and about 50% beyond 1000 km distance. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human deposition exposure are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in southern Asia where a core melt can subject 55 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  20. One decade after Chernobyl. Summing up the consequences of the accident. Proceedings of an international conference

    The consequences attributed to the disastrous accident that occurred at the Chernobyl nuclear power plant on 26 April 1986 have been subjected to extensive scientific examination; however, they are still viewed with widely differing perspectives. It is fitting then that, ten years after the accident, the European Commission (EC), the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) should jointly sponsor an international conference to review the consequences of the accident and to seek a common and conclusive understanding of their nature and magnitude. The International Conference on One Decade after Chernobyl: Summing up the Consequences of the Accident was held at the Austria Center, Vienna, on 8-12 April 1996. Refs, figs, tabs

  1. Female reproductive function in areas affected by radiation after the Chernobyl power station accident

    Kulakov, V. I.; Sokur, T. N.; Volobuev, A. I.; Tzibulskaya, I. S.; Malisheva, V. A.; Zikin, B. I.; Ezova, L. C.; Belyaeva, L. A.; Bonartzev, P. D.; Speranskaya, N. V.; Tchesnokova, J. M.; Matveeva, N. K.; Kaliznuk, E. S.; Miturova, L. B.; Orlova, N. S.

    1993-01-01

    This paper reports the results of a comprehensive survey of the effects of the accidental release of radiation caused by the accident at the Chernobyl nuclear power station in April 1986. The accident and the resulting release of radiation and radioactive products into the atmosphere produced the most serious environmental contamination so far recorded. We have concentrated on evaluating the outcomes and health risks to women, their reproductive situation, and consequences for their progeny. ...

  2. Effects on environment and humans of accident of Chernobyl nuclear power plant

    The USSR experts have reported the results of their works on the effects of the Chernobyl plant's accident at IAEA meeting in August. Plant staffs and fire men with acute radiation syndrome were hospitalized and treated with special care including bone marrow transplantation. Whole population (135,000) within the area of 30 km radius from the plant evacuated during a few days after the accident. Collective dose to this population was estimated as 1.6 x 106 person rem. (author)

  3. Recalculation of thyroid doses after the Chernobyl accident in a iodine deficient area

    The thyroid doses were estimated in Poland shortly after the Chernobyl accident with assumption of stable iodine consumption for the reference man and areas with ''standard'' stable iodine consumption. These estimates are not representative for southern part of Poland which is known as the iodine deficient area. Therefore the thyroid doses were recalculated based on the real and differentiated stable iodine intakes for people groups of different age without and with thyroid blockade after the accident. (author). 11 refs, 10 figs, 3 tabs

  4. Internal radiation doses of people in Finland after the Chernobyl accident

    After the reactor accident in Chernobyl radionuclides carried by airstreams reached Finland on April 27, 1986. The radioactive cloud spread over central and southern Finland and to a lesser extent over northern Finland. In Helsinki the maximum radionuclide concentrations in air were measured in late evening of April 28. The radioactive cloud remained over Finland only a short time and within a few days the radionuclide concentrations in the air decreased to one-hundredth of the maximum values. Most radionuclides causing deposition were washed down by local showers, resulting in very uneven deposition of radionuclides on the ground. In a addition minor amounts of radioactivity were deposited on Mav 10-12. For internal and external dose estimations Finland was divided into five fallout regions (1-5) according to the increasing 137Cs surface activity. At first, the short-lived radionuclides as well as 134Cs and 137Cs contributed to the external dose rate. Only the long-lived isotopes, 134Cs and especially 137Cs, later determined the external dose rates. The regions and corresponding dose rates and deposition categories on October 1, 1987, are shown.To estimate the total dose of the Finnish population from the radionuclides originating at Chernobyl the effective external and internal doses were calculated; the external doses were estimated using the data given. Groups of Finnish people representing the five fallout regions were whole-body counted annually during 1986-1990. The results of these measurements and those of the reference group were used to estimate the internal body burdens and radiation doses from 134Cs and 137Cs to the population

  5. Results of measurements of internal contamination of persons caused by the Chernobyl accident

    A preliminary summary is presented of c.a. 140 measurements of internal radioactive contamination, motivated by the Chernobyl accident, in Dutch persons, by the Radiological Service TNO, Arnhem and the Institute for Radiopathology and Radiation Protection, Leiden, the Netherlands. 4 figs.; 3 tabs

  6. Ground deposition of long-lived gamma emitters in Poland from the Chernobyl accident

    Activity composition was measured for the soil contaminated with the fallout from the Chernobyl accident. Soil samples were collected at various areas of Poland. A map showing the 137Cs deposit distribution was drawn for the most contaminated southern part of Poland. 9 refs., 5 figs. (author)

  7. Results of special radiation measurements resulting from the Chernobyl accident and regional analysis of environmental radioactivity

    This report of the SCPRI exposes an interpretation of the results concerning the monitoring of the environmental radioactivity in France following Chernobyl accident. Atmospheric dusts, milk and milk products, vegetables, water and various beverages are analyzed. More than 1500 additional food samples are presented. Regional analysis of radioactivity and human gamma-spectrometric investigations are included

  8. Investigations of radioactivity level variations in Armenia after the Chernobyl accident

    The problem of radioactive pollution of biosphere has been acquiring a special topicality after nuclear weapon testing and NPP-induced accidents that have already brought to global pollution of the Earth with radioactive substances. One of visual examples of regional radioactive pollution is dispersion of emissions all over the territory of Central Europe after the Chernobyl accident, which aftermaths impacted Armenia, as well. Monitoring investigations in the Ararat Valley showed a precise peak of gross radioactivity of atmospheric fallout in 1986 - the year of Chernobyl accident. Gross mean annual radioactivity was established 1783 10 7 Bq/KXm 2 yr. Later, a sharp fall in the activity was observed. Mostly, radioactive fallout consisted of short-lived radionuclides. Measurements for 1986-1987 showed that gross β-radioactivity level in soils amounted to 977-1022 Bq/KXg, repeated measurements in 1991 allowed establishing 640-656 Bq/KXg. A precise indicator of radioactive emissions that reached Armenia after the Chernobyl accident was a short-lived radionuclide 134 Cs (T1/2=2.07 yr) identified in soils. Measurements made 2 years later showed half as much decay of 134 Cs, and in some points established were its traces only. 137 Cs/134 Cs ratio in varied 1.4 to 1.8 in atmospheric fallout and 2.1 to 33.4 in soils. Thus, monitoring investigations evidence a regional character of Chernobyl emission dispersion, this being proved by investigations of radioactivity level variations in Armenia, too

  9. Consequences of Chernobyl accident for Poland: Retrospective assessment after 10 years

    The regional contamination in Poland after Chernobyl accident has been presented. On this base the biological and medical consequences have been discussed. The neonatal mortality as well as cancer frequency for selected regional population in Poland have been analysed during the last decade. 10 figs, 20 tabs

  10. Assesment of radioactive pollution of environment 10 years after Chernobyl accident. Pt. 2. Pollution in Poland

    Authors describe radioactive pollution in Poland resulting from Chernobyl accident. Several cases of misinformation immediately after the disaster are described. Surface waters, soil and food contamination is described in detail. Authors discuss the measures that should be undertaken in order to provide proper monitoring and efficient protection in the case if similar disaster would happen again

  11. Pathmorphological investigation of pulmonary infections complications in persons dying from acute radiation sickness after Chernobyl accident

    Lungs of 27 persons who participated in liquidation of Chernobyl accident and died from acute radiation sickness were studied histologically. Pulmonary infections were found, including invasion of viral, bacterial and fungal agents. Being depended on hematopoietic function the inflammatory reactions were areactive during postirradiation aplasia and became typical within the recovery beginning

  12. The information psychological periodization of the Chernoby'l NPP accident information in the mass media

    The activity of mass media reflecting the Chernobyl' accident in 1986-1991 has been surveilled. The information (radio, television, press conferences) given at this period was devided into seven classification periods. The analysis of the information and its assessment in each period was demonstrated. 6 refs

  13. Intervention during late phase of the Chernobyl accident in Belarus: Gained experience and future strategy

    Various measures, introduced to reduce external and internal radiation doses of inhabitants of territories contaminated by the Chernobyl accident, are described. Average annual doses are given. It is concluded that while factors such as reduction of psychoemotional tension need to be explored, risk coefficients for chronic exposure at low doses should be specified. (author)

  14. Level of health of cleaners taking part in the Chernobyl accident consequences

    During the period of 1986-1988 about 3,000 Moldova citizens took part in Chernobyl NPP accident consequences elimination. In this article the level of morbidity, disability and mortality among Chernobyl accident consequences liquidation participants is analyzed. As a result of analysis of medical documentation and statistical data was revealed that the sickness rate among disaster fighters 2,3 times higher than general sickness rate of the population in Moldova. Disability in this category is at average of 73 per cent as opposed to the overall index for the population of Moldova - 4,4%, this means it is 17 times higher. Mortality among the participants of the accident at Chernobyl NPP is 6 times higher of general data. The participants of the breakdown elimination of Chernobyl accident consequences are equal in their right with the participants and invalids of war and with the disabled workers. Medical and social security of this group is regulated by the legislation of the Republic of Moldova

  15. Functional state of peripheral blood circulation in invalid victims of Chernobyl accident

    Rheographic and thermographic study of the extremities as well as biochemical study of cholesterol and beta-lipoprotein level were performed in 208 persons who had become invalids during the Chernobyl accident clean-up and have cardiovascular, neurological, endocrine diseases

  16. Effects of the Chernobyl accident on radioactivity in Swedish reindeer

    Fallout radiocesium is effectively transferred to reindeer and the transfer is highly dependent on the season. The reduction of radiocesium from the soil-pasture-reindeer ecosystem has occurred with a higher rate after the Chernobyl fallout than after the nuclear weapons tests. Effective countermeasures have helped to prevent contamination of reindeer meat intended for human consumption. Nevertheless, the fallout from Chernobyl will probably remain a problem for reindeer husbandry in the contaminated parts of Sweden for a least 20 more years. 6 refs., 2 figs

  17. Emergency planning practices and criteria in the OECD countries after the Chernobyl accident

    This critical review has been prepared at the request of the Committee on Radiation Protection and Public Health (CRPPH), on the basis of information collected from Member countries on their emergency planning practices and criteria, and on changes being considered as a consequence of the Chernobyl accident. This information was officially provided to the Secretariat in response to a questionnaire. Other material has also been used, such as official papers describing national practices and reports presented at meetings organised by the NEA. In these cases the sources are given in the list of references. The information in this report reflects the situation in the Member countries at the end of 1987 and it might well be that additional changes were introduced in the emergency planning practices and criteria of several countries after the answers were sent to the Secretariat. It should also be noted that several of the questions were mainly relevant to nuclear power reactor operations. However, the basic philosophy for emergency planning is general, i.e. radiological criteria, emergency organisation, medical assistance, information to the public, etc., and applies in similar ways to different emergencies. Therefore, the information in the report should be valid for different types of radiological emergencies, although emphasis is placed in the report is on nuclear power reactor emergencies. For non-nuclear power Member countries the information refers mainly to plans to cope with other types of radiation emergencies, and to emergencies of a transboundary origin. Finally, the information covers only the off-site part of emergency planning, apart from some reflections in Chapter 1 on on-site emergency planning and the measures taken at nuclear facilities to prevent an accident or mitigate its consequences

  18. Fright from Chernobyl; Skremselet fra Tsjernobyl

    2011-07-01

    Research on nuclear power be defined through catastrophes, said Norwegian experts. The worst of them throwing after 25 years still an equally long and dark shadow. 25 years since the Chernobyl accident. The article has fact boxes on the three major reactor accidents, Chernobyl with RBMK reactor; Three Mile Island with PWR and BWR reactor at Fukushima. Points out the danger by untrained personnel deal with risky situations. (AG)

  19. The Chernobyl accident is the greatest social ecological and technological catastrophe in a human history. Chapter 4

    The lessons of the Chernobyl tragedy for mankind are shown. Ecological consequences of the accident are described. It is given the analysis of social and psychological consequences of the Chernobyl accident - change of a mode of life of the people on the contaminated territories, a development post-catastrophe processes, a migration moods of the population, an aggravation of a demographic situation. Problems of an administrative activity on the contaminated territories are discussed and measures for decrease of the Chernobyl accident consequences are offered. 51 refs., 7 tabs

  20. Health effects of the Chernobyl accident and special health care programmes. Report of the UN Chernobyl Forum Expert Group 'Health' (EGH). Working draft

    This report has been prepared by three WHO expert committees convened under auspices of the Chernobyl Forum's Expert Group 'Health' (EGH), and by WHO staff. It provides an updated assessment of the health consequences of the Chernobyl accident, and follows a detailed report on this topic published by the United Nations Scientific Committee on the Effects of Atomic Radiation in 2000 (UNSCEAR, 2000). The accident occurred at the Chernobyl nuclear power plant in northern Ukraine on April 26, 1986 and released large amounts of radioactivity, primarily radioactive isotopes of caesium and iodine. These releases contaminated large areas of Belarus, the Russian Federation and Ukraine and other countries to a lesser extent, These releases exposed sizable populations to internal and external radiation doses. The Chernobyl accident caused the deaths of 30 power plant employees and firemen within a few days or weeks (including 28 deaths that were due to radiation exposure). In addition, about 240,000 recovery operation workers (also called 'liquidators' or 'clean-up workers') were called upon in 1986 and 1987 to take part in major mitigation activities at the reactor and within the 30-km zone surrounding the reactor. Residual mitigation activities continued on a relatively large scale until 1990. All together, about 600,000 persons (civilian and military) have received special certificates confirming their status as liquidators, according to laws promulgated in Belarus, the Russian Federation, and Ukraine (UNSCEAR, 2000). In addition, massive releases of radioactive materials into the atmosphere brought about the evacuation of about 116,000 people from areas surrounding the reactor during 1986, and the relocation, after 1986, of about 220,000 people from what are at this time three independent republics of the former Soviet Union: Belarus, the Russian Federation, and Ukraine. Vast territories of those three republics were contaminated to a substantial level. The population of

  1. The rehabilitation strategies in agriculture in the long term after the Chernobyl NPP accident

    The experience gained in the aftermath of the severe radiation accidents shows that in the case of large-scaled radionuclide contamination the limitation of internal radiation doses to people by means of restoration of agricultural lands is more realistic than reduction of levels of external irradiation. Therefore, the problems connected with the optimal restoration strategies of agricultural land subjected to radioactive contamination after the Chernobyl accident are of crucial importance. The justification of the approach for the estimation of the effectiveness of countermeasure strategies in the long term after the Chernobyl accident, based on the classification of farms by contamination density and risk of the exceeding of radiological standards, restricting the use of agricultural products, is presented. For each class of the farms the ranking of rehabilitation options and the time periods when their application would be of importance are given. Comparative analysis of the rehabilitation strategies, which are different in their effectiveness and cost, is provided. (author)

  2. Statistical processing of natality data for the Czech Republic before and after the Chernobyl accident

    All available data regarding natality in Czechoslovakia (or the Czech Republic) before and after the Chernobyl accident are summarized. Data from the databases of the Czech Statistical Office and of the State Office for Nuclear Safety were used to analyze natality and mortality of children in the Czech Republic and to evaluate the relationship between the level of contamination and the change in the sex ratio at time of birth that was observed in some areas in November of 1986. Although the change in the ratio of newborn boys-to-girls ratio was statistically significant, no direct relationship between that ratio and the level of contamination was found. Statistically significant changes in the sex ratio also occurred in Czechoslovakia (or in the Czech Republic) in the past, both before and after the accident. Furthermore, no statistically significant changes in the rate of stillbirths and multiple pregnancies were observed after the Chernobyl accident

  3. Incidence of developmental abnormalities among human fetuses in different regions of Belarus after the chernobyl accident

    The incidence of developmental abnormalities (DA) among 5 to 12-week human embryos collected in Minsk during abortions before the Chernobyl' accident was compared to that in Minsk, Mogilev, and southeastern districts of Gomel' and Mogilev oblasts before and after the accident. The incidence of DA among human embryos from the most radionuclide-contaminated rural regions of Belarus exceeds that of the control group and of the urban population after the Chernobyl' accident by a factor of 1.5 - 2. The mutagenic effect of irradiation is the most probable cause of the increased DA frequency. These data suggest that recording of DA in embryos obtained by medical abortions is a new promising approach to the monitoring of genetic consequences of irradiation in human populations

  4. Malignant neoplasms on the territories of Russia damaged owing to the Chernobyl accident

    The work presents the results of descriptive analysis of development of onco epidemiological situation in six of the most polluted regions owing to the Chernobyl accident in 1981-1994. The growth of malignancies incidence is marked in all territories as well as in the Russian Federation as a whole. The most adverse tendencies have been revealed in the Bryansk, Orel, Ryazan regions. It is marked that the formation of a structure, levels and trends of the malignancies incidence has been occurring under influence of a complex of factors usual up to the accident. The analysis of the data from the specialized cancer-register evidences that the incidence of thyroid malignancies is actively growing in the population of the Bryansk region. The probability of connection of growth of the thyroid cancer incidence in children of the Bryansk region with the Chernobyl accident is reasonably high, but should be confirmed through the application of methods of analytical epidemiology

  5. Pathology of respiratory organs in persons participated in the Chernobyl NPP accident response

    Results of investigations, performed by the personnel of Pulmonology Institute of the Ministry of Health of Russian Federation, on the respiratory organs pathology resulted from the Chernobyl accident in persons participated in the accident response are presented. The studies were carried out in cooperation with French colleagues. Attention was paid to the problems of environmental contamination due to the accident pathology resulted from the acute exposure and delayed effects, specific features of the respiratory organs diseases, and programs of treatment and rehabilitation as well

  6. RETRAC, Reactor Core Accident Simulation

    1 - Description of program or function: The RETRAC code uses a set of coupled neutron point-kinetics equations and thermal-hydraulic conservation laws to simulate nuclear reactor core behaviour under transient or accident conditions. The reactor core is represented by single equivalent unit cells composed of three regions: fuel, clad, and moderator (coolant). 2 - Method of solution: At each time step, core thermal power is calculated by solving a set of six delayed neutron group kinetics equations with adjusted reactivity feedbacks. The numerical resolution is performed by using the Runge-Kutta-Gill method. The externally inserted reactivity is specified in the input data file, whereas Doppler, fuel, clad, and water temperature reactivity feedbacks are calculated by the code itself. Core cooling is treated as a homogeneous one-dimensional fluid flow through a representative unit cell composed of three successive regions: fuel, clad, and coolant. Several flow regime models are considered for both single- and two-phase states of the coolant. The conservation laws are solved by the method of characteristics coupled with an implicit finite difference scheme to ensure stability and convergence of the numerical algorithm. Validation tests of the RETRAC code were performed by using the International Atomic Energy Agency 10-MW benchmark cores, for protected transients. Further assessment studies are in progress using experimental data. 3 - Restrictions on the complexity of the problem: The RETRAC code uses steady-state thermal-hydraulic correlations. Their use is not always justified, but it seems to be quite useful in quasi-steady cases such as as loss-of-flow transients

  7. [Nuclear-power-plant accidents: thyroid cancer incidence and radiation-related health effects from the Chernobyl accident].

    Schlumberger, Martin; Le Guen, Bernard

    2012-01-01

    Following the Chernobyl accident, enormous amounts of radioisotopes were released in the atmosphere and have contaminated surrounding populations in the absence of rapid protective countermeasures. The highest radiation doses were delivered to the thyroid gland, and the only direct consequence of radiation exposure observed among contaminated population is the increased incidence of thyroid cancers among subjects who were children in 1986 and who lived at that time in Belarus, Ukraine or Russia. PMID:22920877

  8. Studies of radiological consequences on the reports of Chernobyl accident

    1) Relation of radiation related quantities such as radioactivity, exposure, absorbed dose, dose equivalent, effective dose equivalent and radiation protection standards were explained as easy as a beginner could understand. 2) Using published data including IAEA data in the report 'One Decade After Chernobyl (Summary of the Conference Results, 1996)' and some reports, outline of explosion, exposure dose and radiation effects which gave to the human body were briefly described and some rational ways for understanding the data were shown. (author)

  9. Chernobyl: a documentary story

    This account of the Chernobyl disaster of April 1986 is based on interviews with many of the participants. Realising that the Chernobyl accident was to have a massive impact on the USSR and the world, the author felt impelled to travel to the designated danger zone around the reactor, to live there and to interview firemen, first-aid workers, party and government officials and local media representatives. The result is a variety of vivid eyewitness accounts that are unprecedented in their detail and frankness. These accounts show why the author considers the Chernobyl accident to be the most important event in the Soviet Union since World War II. The book, itself a product of glasnost, reveals how the Chernobyl accident was viewed from inside the Soviet Union. (author)

  10. Iodine release characteristic in reactor accidents

    The author describes the chemical behavior for the iodine release from the fuel element in nuclear reactor accidents, partition coefficient in the water and air and the release characteristic in time. The research of the iodine release was suggested

  11. Retrospection of Chernobyl nuclear accident for decision analysis concerning remedial actions in Ukraine

    It is considered the efficacy of decisions concerning remedial actions when of-site radiological monitoring in the early and (or) in the intermediate phases was absent or was not informative. There are examples of such situations in the former Soviet Union where many people have been exposed: releases of radioactive materials from 'Krasnoyarsk-26' into Enisey River, releases of radioactive materials from 'Chelabinsk-65' (the Kishtim accident), nuclear tests at the Semipalatinsk Test Site, the Chernobyl nuclear accident etc. If monitoring in the early and (or) in the intermediate phases is absent the decisions concerning remedial actions are usually developed on the base of permanent monitoring. However decisions of this kind may be essentially erroneous. For these cases it is proposed to make retrospection of radiological data of the early and intermediate phases of nuclear accident and to project decisions concerning remedial actions on the base of both retrospective data and permanent monitoring data. In this Report the indicated problem is considered by the example of the Chernobyl accident for Ukraine. Their of-site radiological monitoring in the early and intermediate phases was unsatisfactory. In particular, the pasture-cow-milk monitoring had not been made. All official decisions concerning dose estimations had been made on the base of measurements of 137Cs in body (40 measurements in 135 days and 55 measurements in 229 days after the Chernobyl accident). For the retrospection of radiological data of the Chernobyl accident dynamic model has been developed. This model has structure similar to the structure of Pathway model and Farmland model. Parameters of the developed model have been identified for agricultural conditions of Russia and Ukraine. By means of this model dynamics of 20 radionuclides in pathways and dynamics of doses have been estimated for the early, intermediate and late phases of the Chernobyl accident. The main results are following

  12. Light-water reactor accident classification

    The evolution of existing classifications and definitions of light-water reactor accidents is considered. Licensing practice and licensing trends are examined with respect to terms of art such as Class 8 and Class 9 accidents. Interim definitions, consistent with current licensing practice and the regulations, are proposed for these terms of art

  13. Light-water reactor accident classification

    Washburn, B.W.

    1980-02-01

    The evolution of existing classifications and definitions of light-water reactor accidents is considered. Licensing practice and licensing trends are examined with respect to terms of art such as Class 8 and Class 9 accidents. Interim definitions, consistent with current licensing practice and the regulations, are proposed for these terms of art.

  14. The Chernobyl accident 20 years on: an assessment of the health consequences and the international response.

    Baverstock, Keith; Williams, Dillwyn

    2007-01-01

    Twenty years after the Chernobyl accident the WHO and the International Atomic Energy Authority issued a reassuring statement about the consequences. Our objectives in this study were to evaluate the health impact of the Chernobyl accident, assess the international response to the accident, and consider how to improve responses to future accidents. So far, radiation to the thyroid from radioisotopes of iodine has caused several thousand cases of thyroid cancer but very few deaths; exposed children were most susceptible. The focus on thyroid cancer has diverted attention from possible nonthyroid effects. The international response to the accident was inadequate and uncoordinated, and has been unjustifiably reassuring. Accurate assessment in future health effects is not currently possible in the light of dose uncertainties, current debates over radiation actions, and the lessons from the late consequences of atomic bomb exposure. Because of the uncertainties from and the consequences of the accident, it is essential that investigations of its effects should be broadened and supported for the long term. The United Nations should initiate an independent review of the actions and assignments of the agencies concerned, with recommendations for dealing with future international-scale accidents. These should involve independent scientists and ensure cooperation rather than rivalry. PMID:17680126

  15. Long-term assessment of contaminated articles from the Chernobyl reactor

    The Chernobyl accident caused a release of radioactive materials from the reactor into the environment. This event contaminated people, their surroundings and their personal property, especially in the zone around the reactor. Among the affected individuals were British students who were studying in Minsk and Kiev at the time of the Chernobyl accident. These students were exposed to external and internal radiation, and the individuals' articles of clothing were contaminated. The primary objective of this study was to analyze a sample of this contaminated clothing 20 years after the accident using three different detectors, namely, a BP4/4C scintillation detector, a Min-Con Geiger-Müller tube detector and a high-purity germanium (HPGe) detector. The clothing articles were initially assessed and found not to be significantly contaminated. However, there were several hot spots of contamination in various regions of the articles. The net count rates for these hot spots were in the range of 10.00 ± 3.16 c/s to 41.00 ± 6.40 c/s when the BP4/4C scintillation detector was used. The HPGe detector was used to identify the radionuclides present in the clothing, and the results indicated that the only active radionuclide was 137Cs because of this isotope's long half-life. - Highlights: • The study highlights the effect of radionuclide half-life on the uncertainty of the pollution measurement. • Most of the observed radionuclides 20 years ago have now disappeared due the decay effect. • The study shows improvements in radiation detectors by detecting very low activities of isotopes not measured 20 years ago

  16. 17 years after the Chernobyl' accident: problems and decisions. Proceedings of the International scientific and practical conference

    The book contains proceedings of the scientific conference on difference medical and biological problems of consequences of the Chernobyl NPP accident, as well as on the problems of rehabilitation of the contaminated territories and ecosystems

  17. Clinical and paraclinical aspects of children's health ten years after the Chernobyl accident

    These investigations are devoted to the problem of medical consequences of Chernobyl catastrophe to the children's population of Ukraine. Concerning different reports, Chernobyl accident negatively influenced to the children health indexes. Astonishing fact is that among children under radiation action only 2,1% have no functional deflexions (I group of health) and 28% have chronical diseases with frequent aggravation. Our previous investigation in children evacuated from 30 km zone showed unfavourable changes in immune system. We have shown the data of investigation carried out in the frames of National Program ''Children of Chernobyl''. We have studied the morbidity, some immune functional characteristics and metabolism indexes in 2700 children aged 0-15 years, continually living within radiation contaminated territories. The results were compared with the control indexes, obtained during examination of 980 children from relatively ''clean'' regions. 15 refs, 5 figs, 1 tab

  18. Implications of the Fukushima Accident on Research Reactor Safety

    Preliminary findings of Fukushima accident show that there is no evidence of major human errors as in previous accidents in the nuclear power industry, namely, Three Mile Island (USA) and Chernobyl (Soviet Union), and that the initiating event, a natural catastrophe of extraordinary magnitude, caused a long term loss of the normal power supply producing the failure of each defence-in depth barriers with the final release of radioactive material to the atmosphere. It is worth noticing that the direct damage caused in Japan by the earthquake and tsunami far exceeded any damage caused by the accident at the nuclear plant. In the light of this event the question whether safety systems of research reactors will cope with this type of scenarios arises. The objective of this works is to present an overview of the current practice commonly used in the safety analysis in research reactors and to assess the capability to mitigate conditions from a beyond-design-basis event like the one occurred at Fukushima power plant. (author)

  19. Genetic aftermath of the Chernobyl accident in the populations of Byelorus zones

    Since the Chernobyl nuclear accident, various long-term surveys have been made on congenital malformations, abnormal embryos and fetuses, multiple congenital malformations and others in Byelorus zones. This report introduces the outcome of these surveys. Legal abortuses at the gestation of 5-12 weeks and newborns were reviewed for teratogenetic and mutagenic analyses. Approximately 50 kinds of abnormal diseases were observed in legal abortuses; urogenital system disease was the most common, followed by gastrointestinal and neurological diseases. There was no significant difference in malformation frequency in legal abortuses in Minsk and Gomel before and after the Chernobyul accident. There was neither specific teratogenetic effect nor fetus growth that was thought to be attributed to radiation exposure directly due to the Chernobyl accident. However, the incidence (per 1000 deliveries) of children born with obligatory registered malformations was increased in all Byelorus zones. This tendency was noticeable especially in the newborn born in the zone of cesium-137 of 15 Ci/km2 (555 kBq/m2), which was much more than that expected by the ICRP. The correlation between some congenital malformations and ionizing radiation has been shown only indirectly by an increase in dominant hereditary abnormality in the contaminated areas. Further collection of materials, registration and statistical analysis will provide more reliable information to evaluate genetic aftermath of the Chernobyl accident objectively. (N.K.)

  20. Health effects after the Chernobyl accident in Bulgaria: review of studies

    Full text: The current analysis is designed to address concern about possible health effects in Bulgaria following the Chernobyl accident (CA). The results of descriptive studies are analyzed for the period 1981-1996 and 1981-2003 on malignant diseases of lymph and haemopoietic system and thyroid cancer (TC) respectively. Analyses of the risk of TC in consequence of CA for analytical studies are based on detailed thyroid gland's dose of exposure. Comparative investigations are based on number of patients with surgery operation. Discussed are the results of studies among children received prenatal radiation exposure at the time of the CA. Overall, in none of the studies doesn't prove a significant increase in the malignant diseases of the hemopoietic system incidence as well as in leukemia that could be attributed to the Chernobyl accident. No increase in the leukemia incidence among children was registered. The descriptive and analytical studies reviewed doesn't prove CA as a risk factor for TC incidence. The number of congenital anomalies did not show a statistically significant increase in relation to the nuclear accident. It doesn't prove any influence of CA upon development of the chosen children's groups learning abilities. Exposure of Bulgarian population after the Chernobyl accident is not a risk factor increased incidence rate in oncohematological diseases and TC in our country

  1. Chernobyl and the media

    The way the media reported the Chernobyl nuclear reactor accident was discussed at a day seminar in Birmingham in July. Contributors were from the Forsmark nuclear power station in Sweden where the disaster was first noticed, the International Atomic Energy Agency, the Russian film industry, French TV and SCRAM. Personal experiences and opinions of Chernobyl and the media were discussed. The approach in West Germany, France, Finland and the United Kingdom is compared. (UK)

  2. Thyroid cancer in children and adolescents of Belarus irradiated as a result of Chernobyl accident: status and prediction

    Thyroid cancer incidence in the human population of Belarus irradiated in childhood for the period passed after the Chernobyl accident is analysed and potential perspectives for development of disease incidence in exposed population during life span. Thyroid cancer cases in children and adolescents of Belarus irradiated due to the Chernobyl accident are predicted using the additive model with modified parameters. Predicted values are shown to be in good agreement with the actual data on thyroid cancer cases in children aged 0-6

  3. RADIATION SITUATION ON THE TERRITORY OF THE OREL REGION AFFECTED BY THE RADIOACTIVE CONTAMINATION DUE TO THE CHERNOBYL ACCIDENT

    G. L. Zakharchenko

    2015-09-01

    Full Text Available The paper presents the results of radiation situation monitoring on the territory of the Orel region after the accident at the Chernobyl NPP. Actions of the sanitary epidemiological authority for the emergency response management, actions of the region administration for the population protection from the overexposure are analyzed. Data on morbidity of the liquidators of Chernobyl accident and region inhabitants, living on the contaminated territories, is presented.

  4. Consequences of the Chernobyl accident in Russia: search for effects of radiation exposure in utero using psychometric tests

    Psychometric indicators for mental development of children in towns distinguished by radioactive contamination resulting from the Chernobyl accident are studied. Using some radiological information obtained after the Chernobyl accident, values of expected intelligence quotient (IQ) reduction have been assessed as a result of brain exposure in utero due to various components of dose. Comparing the results of examinations in Novozybkov, Klintsy and Obninsk, no confident evidence has been obtained that radiation exposure of the developing brain exerts influence on indicators for mental development

  5. International programme on the health effects of the Chernobyl accident (IPHECA). 'Epidemiological registry' Pilot project. Reconstruction of absorbed doses from external exposure of the population living in areas of Russia contaminated as a result of the accident at the Chernobyl nuclear power plant

    In order to carry out epidemiological research on the influence of radiation factors on the health of people living in centres of population areas contaminated as a result of the Chernobyl accident, a knowledge of the amount of external and internal exposure to the thyroid gland and the whole body is crucial. After seven years of the Chernobyl accident, an attempt was made to reconstruct the complete dynamic picture of radioactive contamination of Russian territory, taking into consideration current data on the temporal behavior of the source of accidental radionuclide emissions from the reactor where the accident occurred, meteorological conditions at the time, detailed measurements of cesium 137 fall-out density on CIS territory, air exposure dose rate measurements. Such an approach will enable to determine absorbed doses in centers of population, where radiation parameters were not measured at all. 17 refs, 6 figs, 6 tabs, 1 map

  6. Pregnancy outcome in Finland after the Chernobyl accident

    The explosion at the Chernobyl nuclear power plant caused radioactive fallout in Finland in April-May 1986. The fallout was unevenly distributed geographically, and accordingly, the country was divided into 3 fallout zones. Whole-body radioactivity measurements of randomly chosen persons showed that the regional differences prevailed throughout the following 2 years. Data for legal abortions, registered congenital malformations as well as preterm births and stillbirths of malformed children were collected. The corresponding expected figures were obtained from statistics for 1984 and 1985. No differences in the expected/observed rates of the above parameters were detected

  7. Studies of radiological consequences on the reports of Chernobyl accident

    Asano, Takeyoshi [Research Institute for Advanced Science and Technology, Osaka Prefecture Univ., Sakai, Osaka (Japan)

    1999-09-01

    1) Relation of radiation related quantities such as radioactivity, exposure, absorbed dose, dose equivalent, effective dose equivalent and radiation protection standards were explained as easy as a beginner could understand. 2) Using published data including IAEA data in the report 'One Decade After Chernobyl (Summary of the Conference Results, 1996)' and some reports, outline of explosion, exposure dose and radiation effects which gave to the human body were briefly described and some rational ways for understanding the data were shown. (author)

  8. Scientists help children victims of the Chernobyl reactor accident. Report on project phase 1 and annex to the report on phase 1: 1.4.1993 - 31.3.1996

    The bilateral project of Belarus and Germany was commissioned on 1.04.1993 and is placed under the scientific guidance of the Gemeinschaftsausschuss Strahlenforschung. In the framework of the project part devoted to ''therapy and medical training'', covering the period from 1.04.1993 until 31.03.1996, all in all 99 children from Belarus suffering from advanced-stage tumors of the thyroid received a special radio-iodine therapy in Germany. In about 60% of the children complete removal of the tumor was achieved. Another task of the project was to train over the reporting period 41 doctors and physicists from Belarus in the fields of nuclear medical diagnostic evaluation and therapy of thyroid tumors. The project part ''biological dosimetry'' was to investigate the role of micronuclei in peripheral lymphocytes, and whether their presence in the lymphocytes permits to derive information on the radiation dose received even several years after the reactor accident. The scientists also examained the role of the micronuclei in follow-up examinations of the radio-iodine therapy. Further studies used the relatively large number of tumors in the children, as compared to the literature available until the accident, to examine whether there are specific mutation patterns to be found in tumot suppressor genes (p-53) in thyroid tumors which might be used as indicators revealing radiation-induced onset of tumor growth. The project part ''retrospective dosimetry and risk analysis'' was in charge of detecting information answering the question of whether the release of I-131, suspected to be critical nuclide, really was the cause of enhanced incidence of thyroid tumors in the children. The project part ''coordination and examination center at Minsk'' was to establish and hold available the support required by the GAST project participants. (orig./CB)

  9. Lessons learnt from clean-up of urban area after Chernobyl accident

    The accident at Chernobyl NPP showed that huge territories including densely populated areas can be exposed to contamination as a result of unforeseen circumstances. The Chernobyl accident forced reconsidering of many regulations in the field of population protection and was a powerful incentive to development of many applied sciences. In 1992-1996, an international team of scientists carried out investigations on ECP-4 project 'Strategies of Decontamination'. Including of an independent sub-project 'Urban environment and countermeasures' into the project of French-German initiative on Chernobyl 'Radioecology' was the extension of work on study of urban environment contamination. The aim of the projects ware to synthesize the large body of experimental data received during elimination of the consequences of the Chernobyl accident and in the course of special studies carried out in former USSR and later in Ukraine, Belarus and Russia, and prediction on this basis of radionuclide behavior in the urban environment. In 2003 the EMRAS (Environmental Modelling for Radiation Safety) project was organized by the International Atomic Energy Agency (IAEA). The Urban Remediation Working Group of the EMRAS has focused on the assessment of the effectiveness of countermeasures employed in urban settings after releases of radioactivity. This review considers results of principally Ukrainian, Russian, and Belarus researchers who worked on these projects. Over the 20-year period a number of publications have reviewed the effectiveness of countermeasures, particularly those used after the Chernobyl accident. The general principles of radiological protection are based on radiation doses, intervention levels and effective countermeasures. Decontamination of densely built-up cities constructed of various building materials with total surface area significantly exceeding the administrative city area is an extremely difficult task. In the Late-Phase Response, 'classical' radiological

  10. Analysis of medicostatistical data to assess the genetic and teratogenic effects of the Chernobyl accident

    Analysis of the official medicodemographic statistical data (provided by the Ukrainian Ministry of Health) revealed variations in the mean rates of congenital developmental defects (CDD) before 1987 (1985-1986) and in the period of 1987-1989 in all the areas irrespective of a degree of contamination with radionuclides (i.e. variations are determined by the time factor rather than by the irradiation factor). According to the medical statistical data, the rates of CDD and spontaneous abortions varied within a wide range, making it difficult to assess probable mutagenic and teratogenic effects of the Chernobyl accident. Medicostatistical data on spontaneous abortions understated the actual rates 2-3-fold, therefore they were not recommended for assessment of mutagenic effects of the Chernobyl accident

  11. The effects on the thyroid of exposed populations following the Chernobyl accident

    The release of radio-iodine during the nuclear accident at Chernobyl appears to have caused a rise in thyroid anomalies, including cancer, in the exposed population. Uncertainty about the extent of this increase is causing the population some anxiety. A WHO symposium of Soviet and other scientists met to see whether a more precise assessment could be made of the effects of the Chernobyl accident on thyroid disorders. They established that a long-term, large-scale epidemiological study should be initiated: the required dosimetric data already exist, and the collection of the relevant health data should begin. To ensure the comparability of all these data, the affected Soviet republics should collaborate closely. More training for Soviet researchers and health care workers, as well as greater collaboration with foreign scientists, should maximize their capacity to launch a successful study and set up the most appropriate health care programmes

  12. Soil to plant transfer of radiocesium: application to the Chernobyl accident

    Radiocesium contamination of different annual crops, due to the Chernobyl accident, was systematically studied in two experimental agricultural farms in North Greece for the years 1987, 1988 and 1989. For the first three years after the Chernobyl accident it was generally observed that radiocesium contamination of almost all the annual crops appears to be time independent, the differences lying within the experimental error. Transfer Factors, relating radiocesium deposition to contamination of crops were found to be for cereals about 0.01, one order of magnitude smaller than those deduced from field experiments in Northern European Countries, mainly due to different soil characteristics. The results are also discussed in the framework of the UNSCEAR's empirical model and the corresponding parameters are deduced. (author)

  13. Chernobyl in the French mass media 14 years after the accident

    The author presents how the mass media have dealt with the fourteenth anniversary of the Chernobyl accident. Nowadays Chernobyl epitomizes the hazards of nuclear energy. Public opinion has become extremely sensitive to topics concerning human health. This sensitivity is due to previous important affairs such as the scandal of the tainted blood, the mad cow disease or the syndrome of the Balkan war. Most media have broadened the debate to the sanitary impact of nuclear activities. The hyper-mediatization of the legal case of a man prosecuting the French state for no having taken adequate measures when the radioactive cloud spread over France, has given the feeling that French authorities have always wrongly minimized the consequences of the accident. (A.C.)

  14. Thyroid cancer incidence in adult population of Belarus (25 years after the Chernobyl accident)

    There have been obtained principally new data evidencing of high radiosensitivity of thyroid gland in adult population to the effect of ionizing radiation due to the Chernobyl accident that resulted in multiple increase of thyroid cancer incidence rates in Belarus. The paper demonstrates fast dynamics of incidence among individuals exposed to 131I and a number of other isotopes in adult age as well as short latent period of exposure effect manifestation. After the Chernobyl accident Belarus has the highest thyroid cancer incidence rate in adult population. The most significant incidence is observed in population living in regions close to nuclear power plant and in clean-up workers. At that female population was affected to the greatest extend. (authors)

  15. Does the exposure from the Chernobyl accident associate with cancer deaths in Greece?

    Exposure of the population occurs via three main pathways: external irradiation from material deposited on the ground, inhalation of airborne material and ingestion of contaminated foodstuffs. The population dose associated with these exposure pathways was evaluated just for one year, i.e. the first year after the Chernobyl accident (May 1986 - April 1987) for the following reasons: (i) the specific activities of I-131, Ru-103 and Cs-134 + Cs-137 in air were peaked on May 5-6,1986. A month later, the specific activities of the above radionuclides in air declined by a factor of 1000 reaching the level of 1 mBq/m3 or lower, (ii) the specific activity of the long-lived Cs-137, which remained until today, significantly decreased in the foodstuffs a year after the Chernobyl accident, i.i. by a factor of 1000. (author)

  16. Clinical effects of chronic low doses irradiation (11 years after Chernobyl accident)

    Estimation of clinical effects of influence low doses of irradiation as the result of the Chernobyl accident on the human organism is presented in this report. The results of the investigations are concerning to changings in different organs and systems of inhabitants of the contamination territories and among clean-up workers. Increasing of morbidity of digestive and nervous systems is notified. Increase of thyroid cancer, chronic thyroidities and hypothyreouses is resisted in clean-up workers in dynamic observation. Highly morbidity of bronchopulmonal system and blood circulation system is revealed. High level of compensative and adaptive reactions of immune and hemopoietic systems is notified. Excesses of leukemias and lymphomas in inhabitants of the contamination territories is not demonstrated but tendency for increasing quantity cases of oncohematological diseases (leukemias, lymphomas, MDS) among clean-up workers IV-VII 1986 are absent. A dynamic of health state of children injured as a result of Chernobyl accident is characterized with continues negative tendencies. (author)

  17. Signs of autoimmune thyroiditis in children and juveniles affected by the Chernobyl accident

    The content of antibodies to human thyroid microsomal antigen was investigated to evaluate the possible appearance of autoimmune thyroiditis in children and juveniles living in the areas of Kaluga region affected by the Chernobyl accident. The percentage of positive sera varied from 4.8% to 1.2% over seven years. There is a significant difference in the frequency of antibody appearance between persons affected by radioactive iodine and those not affected. A greater quantity of the positive sera was recorded in the area with highest level of radioactive contamination. It is suggested that the elevated rate of autoimmune thyroiditis signs in children and juveniles is one of the consequences of the Chernobyl accident. (Author)

  18. The level of 137Cs concentration in Greek soils one decade after the Chernobyl accident

    One of the most serious consequences of the Chernobyl accident was the greatest radioactive contamination of the biosphere including the soil cover. It is well known that a soil analysis is a principal systematic method to estimate the radioactivity level in the particular area since deposition pattern is determined by measuring activity in grass and soil. The aim of the present work is first to identify the level of the existing 137Cs contamination over Greece ten years after the Chernobyl accident. Secondly, a comparison between the 1986 137Cs - distribution and the present measured one in more - less the same areas of Greece, has been attempted. The 40k (0.0118% of natural K) concentration in soils as ratio 137Cs/ 40k has been, examined, even this ratio is not as constant in biological systems as the ratio Sr/Ca

  19. International programme to mitigate the health effects of the Chernobyl accident: Establishment of an international centre

    In April 1990, an agreement was signed between the WHO and the USSR Ministry of Health to set up a long-term international programme to assist the populations affected by the Chernobyl accident, as well as to increase the body of scientific knowledge about radiation effects. This report outlines the contents of the agreement and describes the action taken by the WHO to implement the programme

  20. Characteristics of border nervous-mental disorders for victims connected with the Chernobyl' NPP accident

    It is revealed that border nervouse-mental disorders for victims connected with the Chernobyl' NPP accident are the most widely spread diseases. Their specific features are the following: prevalence of the disorders from asthenic and psycho-organic circles; relatively small positive dynamics in the cause of treatment; uniformity in symptoms, which do not depend on psychological characteristics of a person. Particular efforts should be concentrated on developing psychosocial programs for rendering the victims help. 3 refs

  1. The effect of Chernobyl accident on the development of malignant diseases - situation after 20 years

    The accident that occurred at the Chernobyl Nuclear Power Plant in 1986, released large quantities of radionuclides - among them radioiodine - into the atmosphere, thereby raising public concerns about its influence on thyroid structure and function, especially the development of malignancy. There were even reports about 700 deaths due to thyroid carcinoma in Russian Federation, Ukraine and Belarus, resulting from the accident. In this review we discussed the incidence of thyroid cancer in different parts of the world, especially in heavily contaminated countries, as Ukraine and Belarus, and the possible link between radioisotope activity in the thyroid and the development of malignancy. The study carried out in Minsk showed 40-fold increase of the incidence of thyroid cancer in the years 1986 - 1994, in comparison to the period 1977- 1985. An increase of the incidence of thyroid cancer has generally been observed in many countries after the Chernobyl accident. We focused on the factors that may have an influence on this phenomenon, especially diagnostic tests, health care, social and environmental factors, like iodine level in water and soil. The results of molecular biology studies, e.g. RET translocation in carcinoma type RET/PTC1 in elderly and RET/PTC3 in children, and expression Ax1 and Gas6 in children were reviewed as well. We also mentioned other thyroid diseases, like nodular goitre, cysts, the disturbance of thyroid function and autoimmunity, possibly linked to the radiation after Chernobyl accident. Data obtained from the regions near Chernobyl showed no increased risk of other types of malignancy (leukaemia, Hodgkin's and non Hodgkin's lymphoma) in 1986 - 1996. In this article the epidemiology of thyroid diseases in Poland was also reviewed

  2. Contaminants in food chains of arctic ungulates: what have we learned from the Chernobyl accident?

    The Chernobyl accident of 1986 caused radioactive contamination of widespread areas of reindeer pasture in Scandinavia. Reindeer (Rangifer tarandus) are especially exposed to radioactive fallout due to their winter diet, of which lichens are an important part. Much knowledge about the transfer of radiocaesium to reindeer, and via reindeer meat to man, was accumulated by intense scientific investigations, undertaken during the 1960s and 1970s, following nuclear weapons testing. Various ways to reduce the transfer of radiocaesium to animals and humans were also developed during this time. Much of the older knowledge proved to be of great value in the attempts to determine potential consequences of the Chernobyl accident and to suggest possible ways to ameliorate the effects of contamination. After Chernobyl, not only did reindeer prove to be a problem; many other food products originating from natural and semi-natural ecosystems were found to accumulate significant amounts of radiocaesium. Intense scientific work has produced new knowledge about the role of ungulates in the transfer of nutrients and contaminants within these systems. Different measures, like providing uncontaminated feed, use of caesium binders, altering the time of slaughter have been used with good results to minimize the transfer of radiocaesium to animals grazing natural pastures. The high cost of countermeasures has enforced consideration of cost against risk, which may also be of general interest with respect to other forms of pollution. Information, introduction of countermeasures and so forth would be more efficient in case a similar accident were to happen again. The Chernobyl accident is an obvious example of how human failures when dealing with a modern technical system can have global consequences and also be a potential threat to what we like to think of as the unspoiled wilderness of the Arctic

  3. Whole body measurements of subjects who have ingested radioactive materials from the accident at Chernobyl

    Iodine-131 in the thyroid was the most significant nuclide that was detected in subjects monitored by the Australian Radiation Laboratory who might have been exposed by the Chernobyl nuclear accident. The estimated intake of I-131 by subjects ranged from 0.4 to 12 kBq, with a weighted committed dose equivalent (thyroid) of between 0.006 and 0.17 mSv. Whole-body monitoring data is presented for all subjects

  4. Re-evaluation of internal exposure from the Chernobyl accident to the Czech population

    Malatova, I.; Skrkal, J. [National Radiation Protection Institute, Srobarova (Czech Republic)

    2006-07-01

    Doses from internal and external exposure due to the Chernobyl accident to the Czech population were estimated early in 1986. Later on, with more eimental results, doses from internal exposure were calculated more precisely. The initial predictions were rather conservative leading thus to higher doses than it appeared one year later. Monitoring of the environment, food chain and monitoring of internal contamination has been performed on the whole territory of the country since 1986 up to present time and has thus enabled reevaluation of the original estimates and also prediction of doses in future. This paper is focused mainly on evaluation of in vivo measurements of people. Use of the sophisticate software I.M.B.A. Professional Plus led to new estimation of committed effective doses and calculated inhalation intakes of radionuclides lead to estimation of content of radionuclides in the air. Ingestion intakes were also evaluated and compared with estimates from the results of measurements of food chain. Generally, the doses from the Chernobyl accident to the Czech population were low; however, as a few radionuclides have been measurable in environment, food chain and human body (137 Cs up to present), it is a unique chance for studying behaviour of radionuclides in the biosphere. Experience and conclusions which follow from the monitoring of the Chernobyl accident are unique for running and development of monitoring networks. Re evaluation of internal doses to the Czech population from the Chernobyl accident, using alternative approach, gave generally smaller doses than original estimation; still, the difference was not significant. It was shown that the doses from inhalation of 131 I and 137 Cs were greater than originally estimated, whereas doses from ingestion intake were lower than the originally estimated ones. (authors)

  5. Organism natural resistance in the liquidators 10 years after Chernobyl accident

    The study involved 95 liquidators (residents of Kyiv and Kyiv region) 10 years after Chernobyl accident clean-up. Leukocyte count was estimated using a generally accepted technique, the amount of large granule-containing lymphocytes (LGL) was determined in the blood smears, natural killer activity was evaluated with radiometric technique. Complex treatment with intravascular laser irradiation and Enterosgel enterosorbent administration increases LGL amount, which provides antitumor and anti-infection protection of the organism

  6. Sexual and psychological aspects of health status of men who participated in the Chernobyl accident aftermath

    The paper deals with results of a ten years medical follow-up of 188 men aged 21 to 55 years who participated in liquidation of Chernobyl accident consequences. Survey of patients included physical examination, echography of urogenital organs, semen and prostatic secretions analysis, bacterial inoculation of prostate secretion, hormone studies, sexological questionnaire. Sexual dysfunctions were diagnosed in 38 % of men. It was found that sexual dysfunction occur against the background of neurotic disorders that accompany vegetative dysfunctions.

  7. Ergonomic (human factors) problems in design of NPPs. A review of TMI and Chernobyl accidents

    The general principle of ergonomic in design of NPPs is given and some causes of TMI and Chernobyl accidents from the view point of human factor engineering are reviewed. The paper also introduces some Ergonomic problems in design, operation and management of earlier NPPs. Some ergonomic principles of man-machine systems design have been described. Some proposals have been suggested for improving human reliability in NPPs

  8. Re-evaluation of internal exposure from the Chernobyl accident to the Czech population

    Doses from internal and external exposure due to the Chernobyl accident to the Czech population were estimated early in 1986. Later on, with more experimental results, doses from internal exposure were calculated more precisely. The initial predictions were rather conservative leading thus to higher doses than it appeared one year later. Monitoring of the environment, food chain and monitoring of internal contamination has been performed on the whole territory of the country since 1986 up to present time and has thus enabled reevaluation of the original estimates and also prediction of doses in future. This paper is focused mainly on evaluation of in vivo measurements of people. Use of the sophisticate software I.M.B.A. Professional Plus led to new estimation of committed effective doses and calculated inhalation intakes of radionuclides lead to estimation of content of radionuclides in the air. Ingestion intakes were also evaluated and compared with estimates from the results of measurements of food chain. Generally, the doses from the Chernobyl accident to the Czech population were low; however, as a few radionuclides have been measurable in environment, food chain and human body (137 Cs up to present), it is a unique chance for studying behaviour of radionuclides in the biosphere. Experience and conclusions which follow from the monitoring of the Chernobyl accident are unique for running and development of monitoring networks. Re evaluation of internal doses to the Czech population from the Chernobyl accident, using alternative approach, gave generally smaller doses than original estimation; still, the difference was not significant. It was shown that the doses from inhalation of 131 I and 137 Cs were greater than originally estimated, whereas doses from ingestion intake were lower than the originally estimated ones. (authors)

  9. Hydrological aspects of radionuclide migration in water bodies following the Chernobyl accident

    The variety of secondary effects determining migration processes stands out as the main specific feature of the radioactive contamination of water bodies following the Chernobyl accident. Of these the paper highlights the transformation processes of the various physico-chemical forms of radioactive fallout products as observed in catchment areas and water bodies, such processes taking place in different geochemical and hydrological conditions depending on the landscape. The following are considered: dynamics of physico-chemical forms of radioactive fallout, changes in the contamination pattern of soils and water-body bed sediments following the accident and - as a result of runoff formation in these areas - the radioactive contamination regime of the Pripyat and Dnieper rivers between 1986 and 1990. The paper presents experimental data for evaluating retention factors for waterborne migration of Chernobyl radionuclides in surface washout, via seepage waters in soils, in silt solutions of bed sediments and via transport of suspensions in rivers and reservoirs. It also considers the different approaches to evaluating these parameters and the field research methods. We consider the methods used in field studies of washout mechanisms and mass transfer parameters for water-soluble, exchangeable forms of radionuclides and contaminated particles of soil and bed sediments in runoff and floodplain flows, and provide data on the kinetics of these processes. We also analyse the observed processes of flow purification through sedimentation, and the role of catchment-area and river-channel load in the transport and deposition of radionuclides such as 137Cs, 90Sr and total Pu. The paper provides transport and accumulation balances for Chernobyl radionuclides in the large reservoirs of the Dnieper Cascade. It also takes a close look at the specifics of 90Sr migration in Dnieper river water systems following the Chernobyl accident, comparing them with the specifics of 90Sr

  10. Radioactive contamination of food and forage in SR Serbia after the Chernobyl accident

    The results of some important radionuclide contents evaluation in food and forage in Serbia after the Chernobyl accident are presented. The results indicate that the distribution of the radionuclides was not uniform and that three main zones of radioactive contamination could be established. The sheep breeding and the cattle breeding was the most endangered, while alfalfa and oleaceous plant were the most endangered among plant cultures (author)

  11. Cesium-137 urinary excretion by northeastern (Pordenone) Italian people following the Chernobyl nuclear accident

    To estimate the radiological consequences in humans due to the Chernobyl nuclear accident (5 May 1986), we have determined both the 137Cs concentration in food and the 137Cs daily urinary excretion on 198 residents of the Pordenone area. The resulting experimental data have been compared with those estimated from the International Commission on Radiological Protection Publication 10A model (ICRP 1971) using a suitable dietary intake, and they were found to be in reasonable agreement

  12. Immunological status in participants of Chernobyl accident clean-up with chronic bronchitis

    Immunological status in participants of Chernobyl accident clean-up with chronic bronchitis was investigated. Patients had more tension elements of immune system at increased level of obstruction. Adaptive reaction in the liquidators was formed on lower level of organism reaction and imbalance in immune competence subsystems developed. This phenomenon is a negative prognostic sign of more serious disease and can cause invalidation of the patients

  13. Proceedings of the first international conference 'The radiological consequences of the Chernobyl accident'

    Five main objectives were assigned to the EC/CIS scientific collaborative programme: improvement of the knowledge of the relationship between doses and radiation-induced health effects; updating of the arrangements for off-site emergency management response (shot- and medium term)in the even of a future nuclear accident; assisting the relevant CIS Ministries alleviate the consequences of the Chernobyl accident, in particular in the field of restoration of contaminated territories; elaboration of a scientific basis to definite the content of Community assistance programmes; updating of the local technical infrastructure, and implementation of a large programme of exchange of scientists between both Communities. The topics addressed during the Conference mainly reflect the content of the joint collaborative programme: environmental transfer and decontamination, risk assessment and management, health related issues including dosimetry. The main aims of the Conference are to present the major achievements of the joint EC/CIS collaborative research programme (1992-1995) of the consequences of the Chernobyl accident, and to promote an objective evaluation of them by the international scientific community. The Conference is taking place close to the 10th anniversary of the accident and we hope it will contribute to more objective communication of the health and environmental consequences of the Chernobyl accident, and how these may be mitigated in future. The Conference is expected to be an important milestone in the series of meetings which will take place internationally around the 10th anniversary of the nuclear accident. It also provides a major opportunity for all participants to become acquainted with software developed within the framework of the collaborative programme, namely: Geographical Information Systems displaying contamination levels and dose-commitments; Decision Support Systems for the management of contaminated territories; Decision Support Systems for

  14. Radiological evaluation of an agricultural field in the Chernobyl accident area

    The vicinity of the Chernobyl Nuclear Power Plant, where happened the most serious nuclear accident seen by mankind a decade ago, renders the opportunity to carry out concrete scientific researches about post conditions of a nuclear accident. To evaluate the radiological situation of a field formally used for agriculture, inside the Exclusion Zone (30 Km zone around Chernobyl Nuclear Power Plant) a field exercise was organized by the Ukrainian Radiation Training Centre. To develop a radiological evaluation of a field it is necessary taking into consideration the nature of the sampling site and what are the tasks to be worked out to accomplish the aims of the evaluation. In a case of evaluation of external dose, measurements of dose rate, gamma flux and beta surface contamination are the principal surveys. The present radioactive contamination in the Exclusion Zone is mostly determined by 137Cs, 90Sr and transuranium radionuclides. It should be noted that on the contaminated area, ten years passing after Chernobyl accident, the dose-rate is formed by 137Cs contamination and beta flux is due to 137Cs + 90Sr. in this report the techniques of measurement dose rate, beta flux and density of contamination of 137Cs have been discussed

  15. Chernobyl

    This report relates the Chernobylsk accident, why following a succession of technical malfunctions and human errors, reactor no. 4 of the Chernobylsk nuclear power plant explodes on April 26. 1986. Radioactive dust, aerosols and gases (including caesium and iodine) are ejected into atmosphere. The regions worst hit are in the immediate vicinity of the plant, but deposits are very uneven, producing a leopard spot type of pattern. Propelled by easterly winds, the radioactive cloud disperses increasingly, scattering deposits over the whole of Europe. At the beginning of May, the cloud arrives in France. the eastern portion of the country is most strongly affected. Ground, water and agriculture are contaminated by caesium deposits in Belarus, Ukraine and Russian Federation. About the contamination in France, ground contamination is slight, fourteen years later, however, it is still detectable. Relative to the impact on health in the vicinity of Chernobylsk plant, it is hard to assess this impact. Among children in Southern Belarus, the number of thyroid cancers has risen one hundred-fold. In France, the doses delivered represents generally less than 1% of the average annual dose from radioactivity of natural origin. But some of the doses received were higher. Today, the protective sarcophagus covering the damaged reactor is fragile. Reactor no.3, still in operation, continues to pose a risk but the shutdown is provided for december 2000. (N.C.)

  16. Experience in therapy of persons affected at the Chernobyl accident and direct outcomes of disease

    The paper is concerned with the results of therapy of 115 patients with acute radiation syndrome after the Chernobyl accident. The chief methods of the effective therapy of bone marrow syndrome are antimicrobial drugs and fresh donor platelet mass transfusions. Homopoietic stem cell transplantation (allogenetic bone marrow or embryonic hepatocytes) is indicated and effective in a very limited number of patients in accident irradiation. Severe β-burns of the skin remain an unsolved problem as a result of their spreading. Organizational principles of therapy of a great number of patients with acute radiation syndrome in a specialized hospital were described

  17. Cs137 transfer from mother to embryos in the first three years after the Chernobyl accident

    The kinetics of the transfer of radionuclides from mother to embryo is still a matter- to be solved. After the Chernobyl accident, we had the possibility to study the transfer of Cs137 from mother to embryo, in the case of a continuous and variable Cs137 intake of the mother. The study was carried on for a period of three years after the accident. Our group performed also measurements of transfer from mother to embryo, in the case of a continuous, prolonged, but rather constant intake. The results of this study will be presented in future papers. (author)

  18. The role of the United States Food Safety and Inspection Service after the Chernobyl accident

    The Food Safety and Inspection Service (FSIS) of the United States Department of Agriculture (USDA) inspects domestic and imported meat and poultry food products to assure the public that they are safe, wholesome, not economically adulterated and properly labeled. The Service also monitors the activities of meat and poultry plants and related activities in allied industries, and establishes standards and approves labels for meat and poultry products. As part of its responsibility, shortly after the Chernobyl accident occurred, FSIS developed a plan to assess this accident's impact on domestically produced and imported meat and poultry

  19. Dynamics of the immune system state in the residents of Kiev after the Chernobyl accident

    After the Chernobyl accident, decrease in cytotoxic activity of natural cytotoxic cells (NCC) and antibody-dependent cytotoxic cells (ABDCC) of the peripheral blood, disturbance of regulatory T-lymphocytes subpopulations balance, increase of the amount of lymphoid immature cells in blood serum, increase of M, G, and A immunoglobulins levels, decrease of the amount of saliva secretory A immunoglobulin were revealed. The most prominent changes of reactivity were observed during the first two years after the accident, the values (except for NCC) became normal by 1990. In vitro experiments revealed the possibility to stimulate NCC functional activity with immunomodulators having different action

  20. Social, economic, institutional and political impact in Romania of the Chernobyl accident

    The Romanian society, on a whole had been profoundly impressed by the Chernobyl accident. This fact has been mainly owed to: the values of radioactive contamination on the territory of Romania, these exceeded the local radioactive background considerably; the inherent proximity to the place of accident; some elliptical and over-estimated official statements spread about through radio and TV. There have been strong and various pressures, from the highest state dignitaries to profiteers of the new raised emergency. They claimed for preferential actions concerning protective measures at theirs particular residences or demanding prophylactic substances in unjustified quantities or imperiously asked for being internally monitored at the whole-body counter facilities

  1. The Chernobyl accident: EPR dosimetry on dental enamel of children

    The radiation dose on tooth enamel of children living close to Chernobyl has been evaluated by EPR. The sample preparation was reduced to a minimum of mechanical steps to remove a piece of enamel. A standard X-ray tube at low energy was used for additive irradiation. The filtration effect of facial soft tissue was taken into account. The radiation dose for a group of teeth slightly exceeds the annual dose, whereas for another group the dose very much exceeds the annual dose. Since the higher dose is found in teeth whose enamel have much lower EPR sensitivity to the radiation, it can be suggested that for these teeth the native signal could alter the evaluation of the smaller radiation signal

  2. Monstrosities - an outcome of Chernobyl?

    In the western parts of Turkey, which have been particularly hard hidden by the radioactive fallout from the Chernobyl reactor accident, an extremely high number of malformations in newborns have been recorded. There is reason to attribute this to the high radioactivity level measured in this region after the accident. But most radiation experts refuse to accept any connection between the miscarriages or malformation and the reactor accident. (orig./HP)

  3. Reflections on liability and radiological or nuclear accidents: the accidents at Goiania, Forbach, three mile Island and Chernobyl

    On the basis of the lessons learned today from, amongst others, the radiological accidents of Goiania in 1987 and Forbach in 1991, as well as the nuclear accident at Three Miles Island (T.M.I.) in 1979, this article tries to make a distinction between problems of liability linked, on the one hand, to the sanctioning of the absence of prevention implied by the occurrence of non-stochastic effects and, on the other hand, to the judicial sanctioning of the failure of precautionary measures taken, as regard stochastic effects. Lastly, over and above the type of damage compensated, liability also gives rise to some thoughts, in light of the experience of Chernobyl, about the impact of modes of compensation on the management of post-accident situations in areas affected over the long term by persisting contamination and the radiological risk associated with it. (N.C.)

  4. One decade after Chernobyl: Summing up the consequences of the accident. Poster presentations

    The consequences attributed to the disastrous accident that occurred at the Chernobyl nuclear power plant on 26 April 1986 have been subjected to extensive scientific examination; however, they are still viewed with widely differing perspectives. It is fitting then that, ten years after the accident, the European Commission (EC), the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) should jointly sponsor an international conference to review the consequences of the accident and to seek a common and conclusive understanding of their nature and magnitude. The International Conference on One Decade after Chernobyl: Summing up the Consequences of the Accident was held at the Austria Center, Vienna, on 8-12 April 1996. To facilitate the discussions of the Conference, background papers were prepared for the Technical Symposium by teams of scientists from around the world, who collaborated over a period of months to ascertain, consolidate and present the current state of knowledge in six key areas: clinically observed effects; thyroid effects; long term health effects; other health related effects; consequences for the environment; and the consequences in perspective: prognosis for the future. A background paper on the social, economic, institutional and political impact of the accident was prepared by Belarus, the Russian Federation and Ukraine. The conclusions of the Forum on Nuclear Safety Aspects served as a background paper on this topic

  5. One decade after Chernobyl: Summing up the consequences of the accident. Poster presentations

    The consequences attributed to the disastrous accident that occurred at the Chernobyl nuclear power plant on 26 April 1986 have been subjected to extensive scientific examination; however, they are still viewed with widely differing perspectives. It is fitting then that, ten years after the accident, the European commission (EC), the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) should jointly sponsor an international conference to review the consequences of the accident and to seek a common and conclusive understanding of their nature and magnitude. The International Conference on One Decade after Chernobyl: Summing up the Consequences of the Accident was held at the Austria Center, Vienna, on 8-12 April 1996. To facilitate the discussions of the Conference, background papers were prepared for the Technical Symposium by teams of scientists from a round the world, who collaborated over a period of months to ascertain, consolidate and present the current state of knowledge in six key areas: clinically observed effects; thyroid effects; long term health effects; other health related effects; consequences for the environment; and the consequences in perspective: prognosis for the future. A background paper on the social, economic, institutional and political impact of the accident was prepared by Belarus, the Russian Federation and Ukraine. The conclusions of the Forum on Nuclear Safety Aspects served as a background paper on this topic. Refs, figs, tabs

  6. Whole-body 137Cs and 137Cs levels in the Greek population following the 1986 Chernobyl accident

    One of the consequences of the reactor accident at Chernobyl was the contamination of foodstuffs with 134Cs and 137Cs. Whole-body measurements were carried out over a four year period to determine the committed effective dose to the Greek population from internal contamination with 134Cs and 137Cs. The mean 50 year committed effective dose in residents of Ioannina was found to be 495 μSv for men, 330 μSv for women and 300 μSv for children. Measurements on subjects living in other parts of Greece showed that the average level of internal contamination over the country was about 10% higher than Ioannina, resulting in a 4.5 kSv collective effective dose to the Greek population. (author)

  7. The importance of feeding rate for the accumulation of radioactive caesium in fish after the Chernobyl accident

    The accumulation of radioactive caesium in roach (Rutilus rutilus) and perch (Perca fluviatilis) was studied in a Swedish forest lake which was heavily contaminated in spring 1986 with fallout from the reactor accident in Chernobyl. During the whole growing season of 1986, the diet, feeding rate and Cs-137 activity in the food (zooplankton) were monitored simultaneously. The activities in small perch were about twice as high as in small roach, although their diet was very similar. This can be explained solely by differences in feeding rates and metabolic activity. By accounting for these factors, the accumulation rate of radioactive caesium in fish during the first growing season after contamination of the lake could be predicted with a simple box model, with feeding rate as one of the most important regulating factors. (au) (23 refs.)

  8. Effective doses committed in Bucharest area due to Cs-137 and Sr-90 intake 9 years after the Chernobyl accident

    On the 26th of April, 1986, a major accident occurred at the fourth reactor of the Chernobyl nuclear power plant, in Ukraine. The meteorological conditions lead to important fallout over our country. The most important radionuclides carried by the radioactive plume over Romania were I131, Cs134, Cs131 and Sr90. After the decay of I131, and of the other short-lived radionuclides, Cs137 and Sr90 remained the most important contaminants on the Romanian territory. The principal route of intake for these two radionuclides is considered to be the ingestion of contaminated foods. Therefore, we have measured Cs137 and Sr90 content in dietary intake for a group of adult subjects. The data for dietary intake were used to determine the effective doses committed annually, with the dose factors recommended by ICRP 67. (author)

  9. Morbidity of Chernobyl Nuclear Power Plant Accident Clean - up Workers with Oncological Diseases from 1990 to 2004

    The world's largest ever radiation accident involving a nuclear reactor occurred on 26 April 1986 at the Chernobyl nuclear power plant (CNPP). More than 6 000 Latvian inhabitants worked to clean-up CNPP accident in 1986-1991. The duration of accident clean-up workers exposure was from few weeks to 6 months, including external as well as internal radiation. The estimated external radiation doses were 0,01-0,5 Gy. Latvian CNPP accident clean-up workers State register was created on the basis of the Center of Occupational and Radiological medicine of P. Stradins Clinical University hospital in 1994 but examination of clean-up workers was started in 1986. Our aim was to analyse oncological morbidity in clean-up workers in comparison with oncological morbidity in Latvian men population. Materials and methods. For analysis of oncological morbidity in NPP accident clean-up workers, the data of Latvian CNPP accident clean-up workers State Register were used. The group for investigation includes 4053 males what were examined regularly (in average 1600 persons every year) from 1998 to 2004. From these groups of clean-up workers we have revealed 177 persons with oncological diseases over the observation period. Among them only two women but others were men. We have used for the comparison of oncological morbidity data of Latvian Cancer registry and Central bureau of statistics. Summary morbidity with oncological diseases and morbidity with oncological diseases of prostata, stomach, lungs and thyroid for men who have taken part in clean-up works were analysed. Oncological morbidity in age group 35-69 years over the observation period 1998-2004 were compared With age-matched non-exposed population morbidity. Results and discussion. In the structure of oncological morbidity of the Chernobyl accident clean-up workers over the period 1990-2004 in the first place was lung cancer, in the second place -stomach cancer, in the third place -prostate cancer. CNPP clean-up worker's common

  10. Evaluation of the long-rang dispersion of radionuclides from the Chernobyl accident

    The atmospheric dispersion models have been developed to predict and minimize the radiological damage for the surrounding environment since the Chernobyl accident. There are many nuclear power plants in the region of Northeast Asia. It is necessary to develop a long-range atmospheric dispersion model for the radiological emergency preparedness against a nuclear accident. From this viewpoint, a Lagrangian particle model named L.A.D.A.S.(Long-range Accident Dose Assessment System) was initially developed for the evaluation the long-range dispersion in Korea since 2001. The model designed to estimate air concentrations and dry deposition as well as wet deposition at distances up to some thousands of kilometers from the source point in a horizontal direction. The validation study of the model was firstly performed by comparing the measured values of E.T.E.X. exercise. The developed model was also applied to simulate the movements of the radioactive materials at the Chernobyl accident. An intercomparison and validation study among the long-range models was performed through the A.T.M.E.S.(Atmospheric Transport Model Evaluation Study) project under auspices of the IAEA/W.M.O. (world meteorological organization) in 1992. As a consequence of A.T.M.E.S., it was observed that in a real emergency case, under conditions of urgency and stress, many of the models would have had different results. So, one of the main recommendations was the launch of a long-range atmospheric tracer experiment in conditions as close as possible to those which could be found in a real emergency case, with the advantage of a complete knowledge of the source term. In this study, numerical simulations were carried out to estimate the concentration distributions of 137Cs. The calculated results agreed well with them by Chernobyl accident. In conclusion, a three dimensional Lagrangian particle model named L.A.D.A.S. was developed to evaluate the characteristics of a long-range atmospheric dispersion

  11. Research activities about the radiological consequences of the Chernobyl NPS accident and social activities to assist the sufferers by the accident

    The 12th anniversary is coming soon of the accident at the Chernobyl nuclear power station in the former USSR on April 26, 1986. Many issues are, however, still unresolved about the radiological impacts on the environment and people due to the Chernobyl accident. This report contains the results of an international collaborative project about the radiological consequences of the Chernobyl accident, carried out from November 1995 to October 1997 under the research grant of the Toyota foundation. Collaborative works were promoted along with the following 5 sub-themes: 1) General description of research activities in Russia, Belarus and Ukraine concerning the radiological consequences of the accident. 2) Investigation of the current situation of epidemiological studies about Chernobyl in each affected country. 3) Investigation of acute radiation syndrome among inhabitants evacuated soon after the accident from the 30 km zone around the Chernobyl NPS. 4) Overview of social activities to assist the sufferers by the accident in each affected country. 5) Preparation of special reports of interesting studies being carried out in each affected country. The 27 papers are indexed individually. (J.P.N.)

  12. The Chernobyl accident 20 years on: an assessment of the health consequences and the international response O acidente de Chernobyl 20 anos depois: avaliação das conseqüências e resposta internacional

    Keith Baverstock; Dillwyn Williams

    2007-01-01

    Twenty years after the Chernobyl accident the WHO and the International Atomic Energy Authority issued a reassuring statement about the consequences. Our objectives in this study were to evaluate the health impact of the Chernobyl accident, assess the international response to the accident, and consider how to improve responses to future accidents. So far, radiation to the thyroid from radioisotopes of iodine has caused several thousand cases of thyroid cancer but very few deaths; exposed chi...

  13. Serious accidents on boiling water reactors (BWR)

    This short document describes, first, the specificities of boiling water reactors (BWRs) with respect to PWRs in front of the progress of a serious accident, and then, the strategies of accident management: restoration of core cooling, water injection, core flooding, management of hydrogen release, depressurization of the primary coolant circuit, containment spraying, controlled venting, external vessel cooling, erosion of the lower foundation raft by the corium). (J.S.)

  14. Contaminants in food chains of arctic ungulates: what have we learned from the Chernobyl accident?

    Birgitta Åhman

    1998-03-01

    Full Text Available The Chernobyl accidenr of 1986 caused radioactive contamination of widespread areas of reindeer pasture in Scandinavia. Reindeer {Rangifer tarandus are especially exposed to radioactive fallout due to their wintet diet, of which lichens are an important part. Much knowledge about the transfer of radiocaesium to reindeer, and via reindeer meat to man, was accumulated by intense scientific investigations, undertaken during the 1960s and 1970s, following nuclear weapons testing. Various ways to reduce the transfer of radiocaesium to animals and humans were also developed during this time. Much of the older knowledge proved to be of great value in the attempts to determine potential consequences of the Chernobyl accident and to suggest possible ways to ameliorate the effects of contamination. After Chernobyl, not only did reindeer prove to be a problem; many other food products originating ftom natural and semi-natural ecosystems were found to accumulate significant amounts of radiocaesium. Intense scientific work has produced new knowledge about the role of ungulates in the transfer of nutrients and contaminants within these systems. Different measures, like providing uncontaminated feed, use of caesium binders, altering the time of slaughter have been used with good results to minimize the transfer of radiocaesium to animals grazing natural pastures. The high cost of countermeasures has enforced consideration of cost against risk, which may also be of general interest with respect to other forms of pollution. Information, introduction of countermeasures and so forth would be more efficient in case a similar accident were to happen again. The Chernobyl accident is an obvious example of how human failures when dealing with a modern technical system can have global consequences and also be a potential threat to what we like to think of as the unspoiled wilderness of the Arctic.

  15. The radioecological consequences of the Kyshtym and Chernobyl radiation accidents for forest ecosystems

    Following the Urals and Chernobyl accidents 60 to 90% of the radioactive fallout was retained by the above-ground part of forest stands. In the Urals the period for semi-removal of contamination from crowns ranged from 6 to 8 months, compared to around one month in the Chernobyl region - due to different seasonal conditions during the fallout period. The bulk of the dose burden in woody plants' critical organs built up over one to six months. The minimum lethal dose for pine tree needles in the Urals was around 50 Gy, and 25 Gy for the apical meristem; the corresponding figures for Chernobyl were 100 Gy and 25-30 Gy. At lower doses we observed morphological disturbances, reduced growth and suppressed reproductive capability in pines. The resistance to radioactive contamination of deciduous forest was 10-20 times greater than that of conifers. We studied the irradiation doses of the different groups of organisms living in the various forest storeys, and the effects of irradiation (changes in species composition, prevalence and productivity) in communities of herbaceous plants and soil invertebrates. Specific examples are given to highlight the secondary changes in these communities stemming from radiation damage in species sensitive to radioactive contamination. We studied the dynamics of dispersion and migration of the long-lived radionuclides 90Sr and 137Cs in the various components of the biogeocenoses and in the network of geochemically interconnected forest landscapes, and their content in forestry produce. Some six to ten years after the deposition of radioactive fallout in forest ecosystems the radionuclides were more or less evenly spread throughout the soil-woody plant system. Thus, overall 90Sr content in the arboreal storey amounts to 1-2% in coniferous forests, and 5-10% in deciduous forests (Urals accident), while the corresponding figures for 137Cs (Chernobyl accident) are 2 to 3 times higher. (author)

  16. Estimating radiation doses from reactor accidents

    In order to plan for emergency response to reactor accidents involving large radiation releases, it is necessary to determine the medical resources, such as diagnostic laboratory tests, hospital facilities and convalescent care, needed to care for a large population exposed to radiation. A determination of the needed medical resources is difficult because of the widely varying sensitivity humans exhibit to radiation exposure and because of the large number of assumptions involved in predicting radiation dispersion. This paper demonstrates a simple method for approximating medical needs in response to a severe reactor accident. The method requires a model for radiation dispersion from the accident and data for population distribution surrounding the reactor. With this information, tables developed in this paper may be used to project medical needs. The needs identified by this methodology may be compared against the actual medical resources of nearby communities to determine the size of the area impacted

  17. Post-processing activities after Chernobyl accident in Ukraine and lesson learned to the response Fukushima Dai-ichi accident

    After the accident of Chernobyl NPP no.4 1986, various activities including the construction of the shelter, prevention of the release of radioactive dust and liquid from the shelter, monitoring the condition of the damaged core, and disposal of radioactive waste have been implemented in the Chernobyl site for mitigating the nuclear and radioactive risks of damaged nuclear facilities, and the reducing radiation dose of working personnel. The construction of new shelter started for the decommissioning of the damaged unit no.4. facility. For reducing the radiation dose to the inhabitants from the contaminated land and feedstuff, the countermeasures including the set of the exclusive zone and permissible level of radionuclide in the foodstuff have been conducted for the countrywide. These activities include many valuable information about how to recover the condition of the site and maintain the social activities after the severe accident of NPP, and it would be important to learn the above activities in conducting the post-processing activities on the Fukushima-Daiichi accident successfully. (author)

  18. Tumour markers in Chernobyl accident recovery workers in the late post-accident period

    Tumour markers (TM) are base plasma proteins with a carbohydrate component, produced by various types of tumor cells. 84 male liquidators aged from 30 to 50 y.o. were examined in the clinic of All-Russian Center of Emergency and Radiation Medicine in September 1994-April 1995. External irradiation exposure amongst liquidators varied from 2 to 30 sGr. TM concentration in serum and plasma were determined by conventional ELISA methods (CEA. AFP, CA19-9. PSA, NSE). The first (control) group was composed of liquidators with no GI tract pathology. The second group consisted of 28 liquidators with irradiation - induced cytogenetical disturbances in peripheral blood lymphocytes. The third group consisted included 28 liquidators with chronic GI tract diseases. In control group, levels of CA 19-9, CEA and AFP amounted to 4.7± 0.4 U/ml, 2.4± 0.8mg/ml, 2.1± 0.2 IU/ml, correspondingly. The CA 19-9 level has been shown to increase statistically significantly in the second (14.5±1.5 U/ml) and in the third group (17.8± 1.2 U/ml). A simultaneous elevation of CA 19-9 and CEA was found in 7.1% of the liquidators of the third group, the CA 19-9 level changes ranging from 63 to 708 U/ml. The mean value of PSA in all three groups remained within the discrimination concentration limits and amounted to 2.5± 0.4 U/ml. Concentration of NSE was equal to 29.9± 7.2 mg/ml in all three groups. Based on the data on frequencies of the tumour marker elevation, a group of 6 was selected.This group required a detailed dynamic examination because of the problem of remote consequences of the effect of complex factors of the Chernobyl Atomic Station accident upon its victims. (author)

  19. Chernobyl, 14 years later

    This report draws an account of the consequences of Chernobyl accident 14 years after the disaster. It is made up of 8 chapters whose titles are: 1) Some figures about Chernobyl accident, 2) Chernobyl nuclear power plant, 3)Sanitary consequences of Chernobyl accident, 4) The management of contaminated lands, 5) The impact in France of Chernobyl fallout, 6) International cooperation, 7) More information about Chernobyl and 8) Glossary

  20. Radioecological and dosimetric consequences of Chernobyl accident in France; Consequences radioecologiques et dosimetriques de l`accident de Tchernobyl en France

    Renaud, Ph.; Beaugelin, K.; Maubert, H.; Ledenvic, Ph

    1997-12-31

    After ten years and the taking in account of numerous data, it can be affirmed that the dosimetric consequences of Chernobyl accident will have been limited in France. for the period 1986-2046, the individual middle efficient dose commitment, for the area the most reached by depositing is inferior to 1500 {mu}Sv, that represents about 1% of middle natural exposure in the same time. but mountains and forests can have more important surface activities than in plain. Everywhere else, it can be considered that the effects of Chernobyl accident are disappearing. the levels of cesium 137 are now often inferior to what they were before the accident. (N.C.)