WorldWideScience

Sample records for chernobyl nuclear power

  1. Chernobyl and nuclear power in the USSR

    International Nuclear Information System (INIS)

    Marples, D.R.

    1987-01-01

    Drawing extensively upon Soviet newspapers and journals, Soviet television and radio reports, records in the Krasnyi Arkhib (Red Archive) and contacts with workers involved in the building of the Chernobyl plant, the author provides the first detailed account of the Soviet nuclear power industry and of the nature, impact and consequences of the Chernobyl accident of late April 1986. The author raises the key questions: are Soviet nuclear power plants inherently unsafe, and what impact will the Chernobyl accident have on the Soviet nuclear energy program and on nuclear power development throughout the world?

  2. Chernobyl lesson and the nuclear power prospects

    International Nuclear Information System (INIS)

    Bilegan, Iosif

    2002-01-01

    At sixteen years from the disaster which made the commercial power reactor nr. 4 of the Chernobyl NPP known worldwide, the radiation effects and the consequences are still vivid. A basic statement is to be underlined, namely, the Chernobyl event was not an accident in a nuclear power plant being in an industrial, commercial state of operation but an accident following an experiment done on the reactor. Lack of professionalism, of nuclear safety culture, the outrageous violation of basic rules and regulations, established for the unit operation, represent some of the causes originating the Chernobyl disaster. One of the most unfair consequences enhanced by an incorrect mass media information and political manipulation was the ensuing antinuclear media campaign. The paper quotes recent monographs and United Nations Documents showing how the facts were distorted to render arguments and support for various political, economical or humanistic goals. Thus, over more than 15 years due to the hard controversies and irrational campaigns on a global scale the nuclear power was discredited. Practically, all the nuclear power plant constructions were either delayed or cancelled. Moreover, some governments have sustained even closing the existing nuclear stations. The author asks himself rhetorically whether somebody has considered and quantified the immense losses produced by such unmotivated policy or else the additional damage and abuse caused to our home planet by the additional burning of fossil fuels to replace the nuclear fuel burning in nuclear power plants. The paper ends by mentioning the environmental advantages and economic efficiency of that clean energy source which is the nuclear power

  3. International measures for supporting the Ukraine in decommissioning Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Wolf, J.

    2006-01-01

    The destruction of Block 4 of the Ukranian nuclear power plant in Chernobyl on 26 April 1986 was the largest and most momentous accident in the civil use of nuclear energy. Its far-reaching and lasting ecological, heath-related and economic effects confronted the then Soviet and later the Ukraine with grave problems. Particularly after the dissolution of the Eastern Bloc and the emergence of information about the safety shortcomings of RBMK-type (Chernobyl-type) reactors the Western states pressed for the decommissioning of these reactors. At the G7 summit in Naples in 1994 the Ukraine was offered an action plan of support if it were willing to close down Chernobyl nuclear power plant. This initiative led to the signing on 20 December 1995 of a Memorandum of Understanding on the Closure of Chernobyl Nuclear Power Plant between the G7 states, the European Commission and the Ukraine. It contained an assurance by President Kuchma that Chernobyl nuclear power plant would be closed by the year 2000

  4. Nuclear power plants management from Chernobyl

    International Nuclear Information System (INIS)

    Blanc, P.

    1996-01-01

    The Three mile island and Chernobyl accidents developed a change for the operation and management of nuclear power plants. The present articles studies the state of the art the management of NPPs, the foundation of INPO and WANO and the future of operation in NPPs

  5. Consequences and countermeasures in a nuclear power accident: Chernobyl experience.

    Science.gov (United States)

    Kirichenko, Vladimir A; Kirichenko, Alexander V; Werts, Day E

    2012-09-01

    Despite the tragic accidents in Fukushima and Chernobyl, the nuclear power industry will continue to contribute to the production of electric energy worldwide until there are efficient and sustainable alternative sources of energy. The Chernobyl nuclear accident, which occurred 26 years ago in the former Soviet Union, released an immense amount of radioactivity over vast territories of Belarus, Ukraine, and the Russian Federation, extending into northern Europe, and became the most severe accident in the history of the nuclear industry. This disaster was a result of numerous factors including inadequate nuclear power plant design, human errors, and violation of safety measures. The lessons learned from nuclear accidents will continue to strengthen the safety design of new reactor installations, but with more than 400 active nuclear power stations worldwide and 104 reactors in the Unites States, it is essential to reassess fundamental issues related to the Chernobyl experience as it continues to evolve. This article summarizes early and late events of the incident, the impact on thyroid health, and attempts to reduce agricultural radioactive contamination.

  6. Radioactive Waste Management In The Chernobyl Exclusion Zone - 25 Years Since The Chernobyl Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Farfan, E.; Jannik, T.

    2011-01-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures

  7. Radioactive waste management in the Chernobyl exclusion zone: 25 years since the Chernobyl nuclear power plant accident.

    Science.gov (United States)

    Oskolkov, Boris Y; Bondarkov, Mikhail D; Zinkevich, Lubov I; Proskura, Nikolai I; Farfán, Eduardo B; Jannik, G Timothy

    2011-10-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities in the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste-related problems in Ukraine and the Chernobyl Exclusion Zone and, in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program.

  8. Future of nuclear power after Chernobyl

    International Nuclear Information System (INIS)

    Asselstine, J.K.

    1987-01-01

    If nuclear power plants are to have a future in the US, existing plants must demonstrate a safe and accident-free operation, the public must perceive that the Nuclear Regulatory Commission (NRC) is independent and objective, safety corrections must make operating plants more reliable, and the US must develop an acceptable way to dispose of high-level radioactive wastes. Focusing on safe operation and public confidence in the NRC, the author examines the consequences of the Chernobyl accident and compares public opinion reactions with those following the Three Mile Island accident. He notes the recent NRC decisions have been counterproductive to the nuclear industry, but that other countries have demonstrated that the goal of safe nuclear power is achievable. The NRC will have to increase the level of public participation in the regulatory process if it hopes to restore its former level of credibility

  9. Nuclear power debate and public opinion in Belarus: From Chernobyl to Ostrovets.

    Science.gov (United States)

    Novikau, Aliaksandr

    2017-04-01

    The Belarusian government's decision of the last decade to build a nuclear power plant near the city of Ostrovets, in northern Belarus, has proven to be controversial, resulting in a great deal of debate about nuclear energy in the country. The debate was inevitably shaped by the traumatic event that affected Belarus - the Chernobyl nuclear accident of 1986. The Belarusian authorities have consistently promoted a positive view of nuclear energy to the population in order to overcome the so-called 'Chernobyl syndrome' and deliberately shaped nuclear risk communication. As a result, the issue of trust remains crucial in all nuclear debates in Belarus.

  10. Radiological consequence of Chernobyl nuclear power accident in Japan

    International Nuclear Information System (INIS)

    Uchiyama, Masafumi; Nakamura, Yuji; Kankura, Takako; Iwasaki, Tamiko; Fujimoto, Kenzo; Kobayashi, Sadayoshi.

    1988-03-01

    Two years have elapsed since the accident in Chernobyl nuclear power station shocked those concerned with nuclear power generation. The effect that this accident exerted on human environment has still continued directly and indirectly, and the reports on the effect have been made in various countries and by international organizations. In Japan, about the exposure dose of Japanese people due to this accident, the Nuclear Safety Commission and Japan Atomic Energy Research Institute issued the reports. In this report, the available data concerning the envrionmental radioactivity level in Japan due to the Chernobyl accident are collected, and the evaluation of exposure dose which seems most appropriate from the present day scientific viewpoint was attempted by the detailed analysis in the National Institute of Radiological Sciences. The enormous number of the data observed in various parts of Japan were different in sampling, locality, time and measuring method, so difficulty arose frequently. The maximum concentration of I-131 in floating dust was 2.5 Bq/m 3 observed in Fukui, and the same kinds of radioactive nuclides as those in Europe were detected. (Kako, I.)

  11. Radiation management and health management at the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Okazaki, Ryuji; Kubo, Tatsuhiko; Tateishi, Seiichiro

    2014-01-01

    This paper describes the measures taken by the Chernobyl nuclear power plant since the accident in April 1986 to date, compares them with the situation of the current Fukushima nuclear accident, and introduces the contents of the authors' visit and coverage in October 2013, including the report of radiation damage. At the Chernobyl site, a new sarcophagus is under construction since 2012. The health care of the workers working at the new and old sarcophaguses of the Chernobyl nuclear power plant is carried out at a national level of Ukraine, which is an important management for decommissioning work. Health diagnosis is also applied to the workers in the new sarcophagus, and radiation-related disease is not reported at present. The number of the persons who died from acute radiation exposure diseases after the accident was 28. It was reported that chronic lymphocytic leukemia (CLL) appeared significantly when the radiation exceeded 100 mSv. The workers who wish to work at the Chernobyl nuclear power plant must pass the test and obtain national qualifications, and then they are able to work for the first time. In the check-in medical control, about half of applicants were rejected. Workers who work at the new sarcophagus are subject to comprehensive health management under the Ukrainian law. There were 58 people who reached annual exposure dose limit of 20 mSv or more among 7,529 people, the cause of which may be the work at the areas of high radiation dose. Even in Fukushima, it is important to perform high quality management based on centralized medical examination, and to further analyze the effects of low-dose exposure to radiation. (A.O.)

  12. 15 years after Chernobyl. Nuclear power and climate change?

    International Nuclear Information System (INIS)

    Schneider, M.

    2001-04-01

    Fifteen years after two massive explosions and a subsequent fire released a giant radioactive cloud into the atmosphere over the Chernobyl nuclear power plant located in what used to be the USSR, 388 farms with 230,000 sheep in Wales, England and Scotland are still subject to restriction orders. The contamination levels stand at several hundred Becquerels of cesium per kilogram of meat, too much to be consumed by human beings. The sheep have to be moved for some time to low or non-contaminated pastures in order to allow the bodies to loose some of their radioactivity before they can be slaughtered. For many countries the 1986 Chernobyl catastrophe came a public turning point for the future of nuclear energy. (author)

  13. Reassessing Nuclear Power: The Fallout from Chernobyl. Worldwatch Paper 75.

    Science.gov (United States)

    Flavin, Christopher

    The Chernobyl nuclear plant explosion on April 26, 1986, was the world's most serious nuclear power accident to date. This document examines the accident's impact on the world from a variety of perspectives. The first major section of the book provides a step-by-step account of the accident itself, beginning with the special testing that…

  14. IAEA Director General expresses satisfaction with shutdown of Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    2000-01-01

    Full text: The Director General of the International Atomic Energy Agency (IAEA), Mohamed ElBaradei, today expressed his satisfaction with the decision of the Government of Ukraine to close the Chernobyl nuclear power plant on 15 December in response to concerns about the safety of the plant. He said he very much appreciated the Ukrainian Government's commitment to maintain high levels of safety at nuclear facilities in Ukraine, which he described as being in line with the high international priority attached to the safety of nuclear facilities. The Director General noted that the year 2001 will mark the 15th anniversary of the nuclear accident in unit 4 at Chernobyl, which had a significant impact on life, health and the environment in Ukraine, Belarus and the Russian Federation and prompted concerns in other countries about the effects of radiation. Since the Chernobyl accident the Agency has assisted, and will continue to assist, Ukraine and the other affected countries, in overcoming the consequences of the accident and enhancing the safe and reliable operation of other nuclear power plants. In the case of Ukraine, the Director General said the Agency intends to assist in the development of an integrated approach to planning, management, and implementation of the decommissioning of units 1 to 3 of the Chernobyl plant as well as in the management of radioactive waste at the plant. More generally, the IAEA is helping Ukraine to strengthen the effectiveness of its nuclear regulatory regime. Since the accident at Chernobyl the IAEA has significantly expanded its nuclear safety programme. It has facilitated the negotiation of a convention on the safety of nuclear installations and other international agreements in the areas of notification and assistance in the case of nuclear accidents, liability and waste management. It has expanded the corpus of international safety standards and put into place an enhanced system of safety review missions to Member States. The

  15. Report on the accident at the Chernobyl Nuclear Power Station

    International Nuclear Information System (INIS)

    1987-01-01

    This report presents the compilation of information obtained by various organizations regarding the accident (and the consequences of the accident) that occurred at Unit 4 of the nuclear power station at Chernobyl in the USSR on April 26, 1986. The various authors are identified in a footnote to each chapter. An overview of the report is provided. Very briefly the other chapters cover: the design of the Chernobyl nuclear station Unit 4; safety analyses for Unit 4; the accident scenario; the role of the operator; an assessment of the radioactive release, dispersion, and transport; the activities associated with emergency actions; and information on the health and environmental consequences from the accident. These subjects cover the major aspects of the accident that have the potential to present new information and lessons for the nuclear industry in general

  16. Problems and necessary conditions of the safe shut down and decommissioning of Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Umanets, M.

    1996-01-01

    The paper discusses the following issues: current situation in the nuclear power complex of Ukraine; Analyses of the current safety status at nuclear power units in Ukraine; analysis of violations in the NPPs performance; situation at Chernobyl nuclear power plant

  17. Regulation of nuclear power in the UK after Chernobyl

    International Nuclear Information System (INIS)

    Ryder, E.A.

    1987-01-01

    The essential philosophy underlying safe nuclear power in the UK is to establish a safe design and then monitor the manufacture, construction, commissioning, operation and maintenance to ensure that the safe design intent is not violated either deliberately or unintentionally. In the UK any commercial nuclear installation must have a nuclear site licence. The Nuclear Installations Inspectorate (NII) is the agency responsible for granting licences and ensuring the safe design and operation of the installation by the licensee. The way in which the NII does this for the 27 licensed sites that it regulates in the UK is explained. This covers plant assessment and site inspection. Following the accident at Chernobyl the NII reviewed the way in which it regulates nuclear power in the UK. Some changes in specific areas were recommended but no changes in the general philosophy were considered necessary. (UK)

  18. World nuclear developments after Chernobyl

    International Nuclear Information System (INIS)

    Rippon, S.

    1987-01-01

    1986 will inevitably go down in history as the year of Chernobyl, the consequences of which must be delays in and even withdrawals from the development of nuclear power. On the credit side, the Soviet Union has done a rapid and remarkable job in sealing the damaged reactor and rehabilitating the station and the area while improving the safety of its total program. Equally effective has been the response of the IAEA. In terms of nuclear power's claim as a major source of energy, nothing has changed as a result of Chernobyl. 15% of the world's electricity is now produced from nearly 400 power reactors. In comparison with any other energy form nuclear energy must rank high in terms of economy, safety and environmental effects. What has changed is the public perception of nuclear power, and the effort world-wide which will need to be made to restore public confidence

  19. The accident at the Chernobyl' nuclear power plant and its consequences

    International Nuclear Information System (INIS)

    1986-08-01

    The material is taken from the conclusions of the Government Commission on the causes of the accident at the fourth unit of the Chernobyl' nuclear power plant and was prepared by a team of experts appointed by the USSR State Committee on the Utilization of Atomic Energy. It contains general material describing the accident, its causes, the action taken to contain the accident and to alleviate its consequences, the radioactive contamination and health of the population and some recommendations for improving nuclear power safety. 7 annexes are devoted to the following topics: water-graphite channel reactors and operating experience with RBMK reactors, design of the reactor plant, elimination of the consequences of the accident and decontamination, estimate of the amount, composition and dynamics of the discharge of radioactive substances from the damaged reactor, atmospheric transport and radioactive contamination of the atmosphere and of the ground, expert evaluation and prediction of the radioecological state of the environment in the area of the radiation plume from the Chernobyl' nuclear power station, medical-biological problems. A separate abstract was prepared for each of these annexes. The slides presented at the post-accident review meeting are grouped in two separate volumes

  20. Forest and Chernobyl: forest ecosystems after the Chernobyl nuclear power plant accident: 1986-1994

    International Nuclear Information System (INIS)

    Ipatyev, V.; Bulavik, I.; Baginsky, V.; Goncharenko, G.; Dvornik, A.

    1999-01-01

    This paper reports basic features of radionuclide migration and the prediction of the radionuclide redistribution and accumulation by forest phytocoenoses after the Chernobyl Nuclear Power Plant (CNPP) accident. The current ecological condition of forest ecosystems is evaluated and scientific aspects of forest management in the conditions of the large-scale radioactive contamination are discussed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Chernobyl and status of nuclear power development in the USSR

    International Nuclear Information System (INIS)

    Gagarinskii, A.Yu.

    1989-01-01

    The Chernobyl accident has seriously affected development of the USSR nuclear power program. But it has not eliminated the basic prerequisites for nuclear power development in the USSR which are: - resources and consumption territorial disproportions; - large share of oil and gas in electricity generation; - negative ecological aspects of coal plants; - high power industry development rate. At the same time it has aggravated the old problems and has given rise to some new-ones of which the most important are: - increased safety requirements; rise in costs; longer construction schedules; public opinion. On the whole for further safe development of nuclear power a detailed analysis of the Chernobyl accident is required, including studies of long-term accident consequences and measures of their mitigation and elimination. A necessary condition for NPP operation to be continued would also be development and rapid implementation of technical approaches which would permit to eliminate the design shortcomings in the RBMK NPPs both operating and those under construction. At the same time we have to ensure their competitiveness with other energy sources and possibility of expansion of their applications. The problem of public opinion should be emphasised. After the Chernobyl accident we have faced a social phenomenon which is quite new in this country. There is almost no site where the population was not opposed to NPP construction. For us these problems are especially difficult as we have had no experience of this kind of interactions with the public. We are planning and begin to realize a program basing on the current world experience. This program includes primarily a wide series of publications on the problems of nuclear energy its ecologic and economic advantages as compared with conventional and alternative energy sources,, using all cur-rent media. Centers of public information discussion clubs, exhibitions etc are being organized. In particular, our Institute has

  2. Chernobyl and status of nuclear power development in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Gagarinskii, A Yu [I.V. Kurchatov Institute of Atomic Energy, Kurchatov Square, 123182 Moscow (Russian Federation)

    1989-07-01

    The Chernobyl accident has seriously affected development of the USSR nuclear power program. But it has not eliminated the basic prerequisites for nuclear power development in the USSR which are: - resources and consumption territorial disproportions; - large share of oil and gas in electricity generation; - negative ecological aspects of coal plants; - high power industry development rate. At the same time it has aggravated the old problems and has given rise to some new-ones of which the most important are: - increased safety requirements; rise in costs; longer construction schedules; public opinion. On the whole for further safe development of nuclear power a detailed analysis of the Chernobyl accident is required, including studies of long-term accident consequences and measures of their mitigation and elimination. A necessary condition for NPP operation to be continued would also be development and rapid implementation of technical approaches which would permit to eliminate the design shortcomings in the RBMK NPPs both operating and those under construction. At the same time we have to ensure their competitiveness with other energy sources and possibility of expansion of their applications. The problem of public opinion should be emphasised. After the Chernobyl accident we have faced a social phenomenon which is quite new in this country. There is almost no site where the population was not opposed to NPP construction. For us these problems are especially difficult as we have had no experience of this kind of interactions with the public. We are planning and begin to realize a program basing on the current world experience. This program includes primarily a wide series of publications on the problems of nuclear energy its ecologic and economic advantages as compared with conventional and alternative energy sources,, using all cur-rent media. Centers of public information discussion clubs, exhibitions etc are being organized. In particular, our Institute has

  3. The Chernobyl Nuclear Power Plant accident: ecotoxicological update

    Science.gov (United States)

    Eisler, R.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    2003-01-01

    The accident at the Chernobyl, Ukraine, nuclear reactor on 26 April 1986 released large amounts of radiocesium and other radionuclides into the environment, contaminating much of the northern hemisphere, especially Europe. In the vicinity of Chernobyl, at least 30 people died, more than 115,000 others were evacuated, and consumption of milk and other foods was banned because of radiocontamination. At least 14,000 human cancer deaths are expected in Russia, Belarus, and the Ukraine as a direct result of Chernobyl. The most sensitive local ecosystems, as judged by survival, were the soil fauna, pine forest communities, and certain populations of rodents. Elsewhere, fallout from Chernobyl significantly contaminated freshwater and terrestrial ecosystems and flesh and milk of domestic livestock; in many cases, radionuclide concentrations in biological samples exceeded current radiation protection guidelines. Reindeer (Rangifer tarandus) in Scandinavia were among the most seriously afflicted by Chernobyl fallout, probably because their main food during winter (lichens) is an efficient absorber of airborne particles containing radiocesium. Some reindeer calves contaminated with 137Cs from Chernobyl showed 137Cs-dependent decreases in survival and increases in frequency of chromosomal aberrations. Although radiation levels in the biosphere are declining with time, latent effects of initial exposure--including an increased frequency of thyroid and other cancers--are now measurable. The full effect of the Chernobyl nuclear reactor accident on natural resources will probably not be known for at least several decades because of gaps in data on long-term genetic and reproductive effects and on radiocesium cycling and toxicokinetics.

  4. Consequences of the nuclear power plant accident at Chernobyl

    International Nuclear Information System (INIS)

    Ginzburg, H.M.; Reis, E.

    1991-01-01

    The Chernobyl Nuclear Power Plant accident, in the Ukrainian Soviet Socialist Republic (SSR), on April 26, 1986, was the first major nuclear power plant accident that resulted in a large-scale fire and subsequent explosions, immediate and delayed deaths of plant operators and emergency service workers, and the radioactive contamination of a significant land area. The release of radioactive material, over a 10-day period, resulted in millions of Soviets, and other Europeans, being exposed to measurable levels of radioactive fallout. Because of the effects of wind and rain, the radioactive nuclide fallout distribution patterns are not well defined, though they appear to be focused in three contiguous Soviet Republics: the Ukrainian SSR, the Byelorussian SSR, and the Russian Soviet Federated Socialist Republic. Further, because of the many radioactive nuclides (krypton, xenon, cesium, iodine, strontium, plutonium) released by the prolonged fires at Chernobyl, the long-term medical, psychological, social, and economic effects will require careful and prolonged study. Specifically, studies on the medical (leukemia, cancers, thyroid disease) and psychological (reactive depressions, post-traumatic stress disorders, family disorganization) consequences of continued low dose radiation exposure in the affected villages and towns need to be conducted so that a coherent, comprehensive, community-oriented plan may evolve that will not cause those already affected any additional harm and confusion

  5. Main lessons based on the Chernobyl nuclear power plant accident liquidation experience

    International Nuclear Information System (INIS)

    Vasil'chenko, V.N.; Nosovskij, A.V.

    2006-01-01

    The authors review the main lessons of the Chernobyl nuclear power plant accident and the liquidation of its consequences in the area of the nuclear reactors safety operation, any major accident management, liquidation accident consequences criteria, emergency procedures, preventative measures and treatment irradiated victims, the monitoring methods etc. The special emphasis is put on the questions of the emergency response and the antiaccidental measures planning in frame of international cooperation program

  6. Could a 'Chernobyl' nuclear disaster happen here?

    International Nuclear Information System (INIS)

    Van Heerden, A.

    1986-01-01

    At 1.23 a.m. (Soviet European Time) on Saturday 26 April 1986 an accident occurred in reactor number four of the Chernobyl Nuclear Power-Station in the Ukrainian Soviet Socialist Republic. The hydrogen in the core of the reactor exploded while the reactor was being shut down for routine maintenance, and a cloud of radioactivity was blasted high into the atmosphere. The radioactive plume drifted north-westwards to Sweden where, on 28 April, a radiation detector at the Forsmark nuclear complex gave the first public warning of the Chernobyl disaster. South Africa possesses one nuclear power-station, at Koeberg some 30 kilometres north of Cape Town. Is Koeberg safe? Could a Chernobyl-style disaster occur here? The difference in design between the Chernobylsk-4 reactor and Koeberg reactor is discussed. Differences in the design of the two power-stations preclude the same type of accident from happening at Koeberg. The chances of an accident affecting the environment seriously remain remote, given a design philosophy which includes minimising the possibility of an accident, containing it should it happen, and pre-planning the emergency response in case it cannot be contained. That, in a nutshell, is why we believe Koeberg will never become a 'Chernobyl'

  7. The safety problems of the nuclear power. The lessons of Chernobyl

    International Nuclear Information System (INIS)

    Prister, B.S.; Klyuchnikov, A.A.; Shestopalov, V.M.; Kukhar', V.P.

    2013-01-01

    The problems of nuclear safety as a complex system are considered. It is shown that the reliability and safety of a nuclear power plant determined does not only reliable structures of the main equipment and qualification of the staff, but especially strict compliance with the priorities of the Security over the economic, political and other factors. Failure to observe this principle has become a real cause of several accidents in the global nuclear power industry, accompanied by the release of radionuclides into the environment. The lessons of Chernobyl remain unlearned, what confirmed the accident at the Fukushima-1 in Japan. The most important of these is the readiness to respond and protect the public, not only from radiation, but also from a psychological stress. For specialists in the field of nuclear and radiation safety, radiobiology, ecology, environment, agriculture, graduates and university students

  8. Report on the accident at the Chernobyl Nuclear Power Station

    International Nuclear Information System (INIS)

    1987-12-01

    This report presents the compilation of information obtained by various organizations regarding the accident (and the consequences of the accident) that occurred at Unit 4 of the nuclear power station at Chernobyl in the USSR on April 26, 1986. Each organization has independently accepted responsibility for one or more chapters. The specific responsibility of each organization is indicated. The various authors are identified in a footnote to each chapter. Very briefly the other chapters cover: the design of the Chernobyl nuclear station Unit 4; safety analyses for Unit 4; the accident scenario; the role of the operator; an assessment of the radioactive release, dispersion, and transport; the activities associated with emergency actions; and information on the health and environmental consequences from the accident. These subjects cover the major aspects of the accident that have the potential to present new information and lessons for the nuclear industry in general. The task of evaluating the information obtained in these various areas and the assessment of the potential implications has been left to each organization to pursue according to the relevance of the subject to their organization. Those findings will be issued separately by the cognizant organizations. The basic purpose of this report is to provide the information upon which such assessments can be made

  9. Chernobyl coverage: how the US media treated the nuclear industry

    International Nuclear Information System (INIS)

    Friedman, S.M.; Gorney, C.M.; Egolf, B.P.

    1992-01-01

    This study attempted to uncover whether enough background information about nuclear power and the nuclear industries in the USA, USSR and Eastern and Western Europe had been included during the first two weeks of US coverage of the Chernobyl accident so that Americans would not be misled in their understanding of and attitudes toward nuclear power in general. It also sought to determine if reporters took advantage of the Chernobyl accident to attack nuclear technology or the nuclear industry in general. Coverage was analysed in five US newspapers and on the evening newscasts of the three major US television networks. Despite heavy coverage of the accident, no more than 25% of the coverage was devoted to information on safety records, history of accidents and current status of nuclear industries. Not enough information was provided to help the public's level of understanding of nuclear power or to put the Chernobyl accident in context. However, articles and newscasts generally balanced use of pro- and anti-nuclear statements, and did not include excessive amounts of fear-inducing and negative information. (author)

  10. Clinicoelectrocardiographic assessment of the CVS condition in rescuers at the Chernobyl Nuclear Power Station

    International Nuclear Information System (INIS)

    Metlyaeva, N.A.; Nadezhina, N.M.

    1991-01-01

    Cardiovascular system state was assessed in rescuers of various age groups (107 men 44% - 24-39 years old, 39% - 40-49 years old, 17% - 50-63 years old) at the Chernobyl Nuclear Power Plant. All the rescuers were subjected to external uniform low dose γ-radiation (up to 50 rem). A high percent of hyperternsion was detected in rescuers aged up to 39 years old resulting from strong psychoemotional tension and radiophobia in the course of the Chernobyl accident response. Data on the affect of external low dose γ-radiation on cardiovascular system were not established

  11. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident.

    Science.gov (United States)

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert

    2014-08-01

    Sweden received about 5 % of the total release of (137)Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of (137)Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of (137)Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of (137)Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with the

  12. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert

    2014-01-01

    Sweden received about 5 % of the total release of "1"3"7Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of "1"3"7Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of "1"3"7Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of "1"3"7Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with the lowest

  13. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert [Uppsala University, Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala (Sweden)

    2014-08-15

    Sweden received about 5 % of the total release of {sup 137}Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of {sup 137}Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of {sup 137}Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of {sup 137}Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with

  14. Chernobyl

    International Nuclear Information System (INIS)

    1986-01-01

    This leaflet has been prepared by the Central Electricity Generating Board. Following the accident at Chernobyl nuclear power station in the Soviet Union people are concerned about the safety of the UK's nuclear power stations. This leaflet explains that Chernobyl is unlike any nuclear station operating or planned in the UK and under the CEGB's stringent safety rules it could not have been built in the UK. The leaflet explains what happened at Chernobyl and compares the RBMK design and British reactors. The bodies concerned with reactor safety are noted. The containment of radioactivity and emergency procedures are explained. The PWR design for Sizewell-B is stated to be much safer than the RBMK Chernobyl design. (UK)

  15. Worst accident in the world. Chernobyl: the end of the nuclear dream

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N; Lean, G; Leigh, D; McKie, R; Pringle, P; Wilson, A

    1986-01-01

    This is the full story of Chernobyl, before, during and after the reactor accident in April 1986. The scene is set at Chernobyl in the Ukraine. The nature of radioactivity, the risks and the health hazards posed by radioactivity and the world-wide nuclear energy scene are then discussed, followed by the particular nuclear situation in Russia. This includes the background to the nuclear power industry in Russia - its history, personnel and management, and ultimately the building of the Chernobyl nuclear power plant. The accident itself is then explained, minute by minute. The consequences, both short-term and long-term, on the immediate area and the rest of Europe are discussed. These are the medical effects on humans, the effects on the environment and the effect on the nuclear policies of the whole world.

  16. Nuclear power news no 38

    International Nuclear Information System (INIS)

    1986-01-01

    The following matters are treated: What happened at the Chernobyl accident? - The Russian graphite reactor - a comparison with light water reactors. - The Soviet program for nuclear power. - Serious organizational unsatisfactory state of things at the nuclear power plants of Soviet. - Graphite reactors of the nuclear power program of the world. - The radioactive fallout in Sweden after Chernobyl. - The risks involved in radioactive radiation - an experts conception

  17. Fire fighting at Chernobyl and fire protection at UK nuclear power stations

    International Nuclear Information System (INIS)

    Bindon, F.J.L.

    1987-01-01

    The fire fighting measures undertaken by the fire crews at the Chernobyl reactor accident are described. This information highlights the need to develop engineering equipment which will give a far greater degree of personnel protection to fire crews and others in radiological accidents. The British position on fire protection at nuclear power stations is outlined. The general levels of radiation exposure which would be used as a guide to persons in the vicinity of a radiation accident are also given. (UK)

  18. Chernobyl today. Impressions and informations from a visit to the nuclear power plant in July 1995

    International Nuclear Information System (INIS)

    Kraemer, J.

    1996-01-01

    A visit to Chernobyl by Western experts was organized within the 1995 Nuclear Technology Conference. The region, which had been evacuated after the reactor accident in the Chernobyl-4 nuclear generating unit on April 26, 1986, now again offers employment to some 15,000 people. 120 scientific organizations are conducting studies in the protected zone. No indications of any consequences of the accident can be seen in the natural environment. As the manager of the power plant put it: 'This is a good region to live in.' In order to maintain this standard of living, the agencies responsible in Ukraine plan to repair unit 2, which has been down because of a fire in the turbine building since 1991, resynchronize it with the power grid, and run it up until 2002. Unit 1 is to be decommissioned in 1998; unit 3, in 2001. The biggest problem on site is the stability of the sarcophagus around unit 4. (orig./UA) [de

  19. Accident on the Chernobyl nuclear power plant. Getting over the consequences and lessons learned

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Prister, B.S.

    2006-01-01

    The book is devoted to the 20 anniversary of the accident on the 4th Power Unit of the Chernobyl NPP. The power plant construction history, accident reasons, its consequences, the measures on its liquidation are represented. The current state of activity on the Chernobyl power unit decommission, the 'Shelter' object conversion into the ecologically safe system is described. The future of the Chernobyl NPP site and disposal zone is discussed

  20. The Chernobyl murder. The nuclear Goulag

    International Nuclear Information System (INIS)

    Tchertkoff, W.

    2006-01-01

    The authors of this book are the Chernobyl victims of the 26 April 1986 nuclear accident: millions of poor farmers, contaminated young mothers and children which eat every days radionuclides; ''Liquidators'', sacrificed to stop the fire of the power plants; invalids and also doctors and scientists which refuse the nuclear lobby. This book presents the two Byelorussian scientists which have risk their career and their health to help the contaminated populations. This book takes stock on the today nuclear policy and becomes alarm in seeing the development of the nuclear program in many countries. (A.L.B.)

  1. Health status and follow-up of the Chernobyl Nuclear Power Plant accident liquidators in Latvia

    International Nuclear Information System (INIS)

    Curbakova, E.; Dzerve, B.; Eglite, M.; Frickausa, I.; Zvagule, T.

    1996-01-01

    The accident at the Nuclear Power Plant in Chernobyl create a new problem for health professionals in Latvia due to the fact that 6475 inhabitants (mainly healthy and men of reproductive age) of Latvia took part in clear-up works in Chernobyl within the period 1986-1991. Chernobyl clear-up workers were exposed γ-radiation and they also incorporated radionuclides. The doses documented for the clear-up workers are variable; they are estimated to be between 0.01-0.5 Gy although the specialists working on the precision of received doses think that they could be even 2 or 3 times higher. The aim of this work is to evaluate the health status of liquidators investigating them on a long-term basis: to create the correct system of health status evaluation of Chernobyl clear-up workers, to improve the register of Chernobyl clear-up workers and of their children, to analyze the data about the incidence of different diseases and mortality gained from follow-ups, to evaluate health status and clinical picture within the period of time, to work out and use adequate methods of treatment. Chernobyl clear-up workers more often than the control group suffer from diseases of the nervous, the endocrine and the metabolic and immune system. They also have higher rate of incidence for diseases of digestive and respiratory system and for diseases of bones, muscles and connective tissue higher rates of accidents and suicides. Now, ten years after the accident there are Chernobyl clear-up workers who are chronically ill and their health status is expected to be worse in the next few years. Regular follow-up and medical examination of Chernobyl clear-up workers and their children should be carried out every year. Regular rehabilitation of Chernobyl clear-up workers should be provided by the government

  2. Health status and follow-up of the Chernobyl Nuclear Power Plant accident liquidators in Latvia

    Energy Technology Data Exchange (ETDEWEB)

    Curbakova, E; Dzerve, B; Eglite, M; Frickausa, I; Zvagule, T [Centre of Occupational and Radiological Medicine of P. Stradins State clinical Hospital, Riga (Latvia)

    1996-07-01

    The accident at the Nuclear Power Plant in Chernobyl create a new problem for health professionals in Latvia due to the fact that 6475 inhabitants (mainly healthy and men of reproductive age) of Latvia took part in clear-up works in Chernobyl within the period 1986-1991. Chernobyl clear-up workers were exposed {gamma}-radiation and they also incorporated radionuclides. The doses documented for the clear-up workers are variable; they are estimated to be between 0.01-0.5 Gy although the specialists working on the precision of received doses think that they could be even 2 or 3 times higher. The aim of this work is to evaluate the health status of liquidators investigating them on a long-term basis: to create the correct system of health status evaluation of Chernobyl clear-up workers, to improve the register of Chernobyl clear-up workers and of their children, to analyze the data about the incidence of different diseases and mortality gained from follow-ups, to evaluate health status and clinical picture within the period of time, to work out and use adequate methods of treatment. Chernobyl clear-up workers more often than the control group suffer from diseases of the nervous, the endocrine and the metabolic and immune system. They also have higher rate of incidence for diseases of digestive and respiratory system and for diseases of bones, muscles and connective tissue higher rates of accidents and suicides. Now, ten years after the accident there are Chernobyl clear-up workers who are chronically ill and their health status is expected to be worse in the next few years. Regular follow-up and medical examination of Chernobyl clear-up workers and their children should be carried out every year. Regular rehabilitation of Chernobyl clear-up workers should be provided by the government.

  3. Nuclear power in the Ukraine: Problems and prospects

    International Nuclear Information System (INIS)

    Nigmatullin, N.R.

    1995-01-01

    Nuclear power production in the Ukraine started in 1977 with the startup of the first 1000-MW power-generating unit at the Chernobyl nuclear power plant. During the period from 1977 to 1989 sixteen power-generating units with a total electric capacity of 14,880 MW were put into operation at five nuclear power plants: ten VVER-1000, two VVER-440, and four RBMK-1000. As a result of the accident in 1986 in the fourth power-generating unit and the fire in 1991 in the second power-generating unit of the Chernobyl nuclear power plant, these units are no longer operating. Therefore the total installed nuclear power plant capacity is 12,880 MW. Moreover, the construction of three more power-generating units with VVER-1000 reactors is almost completed at three nuclear power plants - Zaporozh'e, Roven, and Khmel'nitsk. These units are not in operation because of the moratorium announced by the Supreme Council of Ukraine. In connection with the Council's decision, the Chernobyl nuclear power plant should have been shut down in 1993

  4. Nuclear power: restoring public confidence

    International Nuclear Information System (INIS)

    Arnold, L.

    1986-01-01

    The paper concerns a one day conference on nuclear power organised by the Centre for Science Studies and Science Policy, Lancaster, April 1986. Following the Chernobyl reactor accident, the conference concentrated on public confidence in nuclear power. Causes of lack of public confidence, public perceptions of risk, and the effect of Chernobyl in the United Kingdom, were all discussed. A Select Committee on the Environment examined the problems of radioactive waste disposal. (U.K.)

  5. Nuclear power in British politics

    International Nuclear Information System (INIS)

    Pocock, R.F.

    1987-01-01

    The paper concerns the subject of nuclear power in British politics in 1986. The policies of the major political parties towards nuclear power are briefly outlined, along with public attitudes to nuclear energy, Chernobyl, and the rise of the anti-nuclear campaigners. (UK)

  6. Chernobyl: the final warning

    International Nuclear Information System (INIS)

    Gale, R.P.; Hauser, Thomas.

    1988-01-01

    Following the Chernobyl accident in 1986, a book has been written with firstly an introduction to the basic principles and development of nuclear power, followed by a brief review of previous nuclear power plant accidents and then a short account of the Chernobyl accident itself. The main text of the book however contains the personal story of Dr. Robert Peter Yale, head of the Bone Marrow Transplant Unit at the UCLA Medical Center in Los Angeles who travelled to Russia six times to help the victims of the Chernobyl accident. The final part of the book discusses the safety of nuclear power and the dangers of the proliferation of nuclear weapons. (U.K.)

  7. Immediate medical consequences of nuclear accidents: lessons from Chernobyl

    International Nuclear Information System (INIS)

    Gale, R.P.

    1987-01-01

    The immediate medical response to the nuclear accident at the Chernobyl nuclear power station involved containment of the radioactivity and evacuation of the nearby population. The next step consisted of assessment of the radiation dose received by individuals, based on biological dosimetry, and treatment of those exposed. Medical care involved treatment of skin burns; measures to support bone marrow failure, gastrointestinal tract injury, and other organ damage (i.e., infection prophylaxis and transfusions) for those with lower radiation dose exposure; and bone marrow transplantation for those exposed to a high dose of radiation. At Chernobyl, two victims died immediately and 29 died of radiation or thermal injuries in the next three months. The remaining victims of the accident are currently well. A nuclear accident anywhere is a nuclear accident everywhere. Prevention and cooperation in response to these accidents are essential goals

  8. The Chernobyl accident and the Spanish nuclear power plants. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-11-15

    On the morning of April 26, 1986, Unit 4 of the Chernobyl Nuclear Power Plant (Ukraine, USSR) suffered an accident of the greatest magnitude among those which have taken place in nuclear energy installations employed for peaceful uses. The accident reached a degree of severity unknown up to now in nuclear energy generating plants, both with respect to the loss of human lives and the effects caused to the neighboring population (as well as to other nations within a wide radius of radioactivity dispersal), and also with respect to the damage caused in the nuclear plant itself. In the light of the anxiety created internationally, the USSR State Committee for the Utilization of Atomic Energy prepared a report (1), based on the conclusions of the Governmental Commission entrusted to study the causes of the accident, which was presented at the international meeting of experts held at the International Atomic Energy Agency (IAEA) headquarters in Vienna from August 25 to 29, 1986. The present technical report has been prepared by the Spanish nuclear power plants within the framework of UNIDAD ELECTRICA, S.A. (UNESA) - the Association of Spanish electric utilities - in collaboration with EMPRESARIOS AGRUPADOS, S.A. The report reflects the utilities' analyses of the causes and consequences of the accident and, based on similarities and differences with Spanish plants under construction and in operation, intends to: a. Evaluate the possibility of an accident with similar consequences occurring in a Spanish plant b. Identify possible design and operation modifications indicated by the lessons learned from this accident.

  9. The Chernobyl accident and the Spanish nuclear power plants. Technical report

    International Nuclear Information System (INIS)

    1986-11-01

    On the morning of April 26, 1986, Unit 4 of the Chernobyl Nuclear Power Plant (Ukraine, USSR) suffered an accident of the greatest magnitude among those which have taken place in nuclear energy installations employed for peaceful uses. The accident reached a degree of severity unknown up to now in nuclear energy generating plants, both with respect to the loss of human lives and the effects caused to the neighboring population (as well as to other nations within a wide radius of radioactivity dispersal), and also with respect to the damage caused in the nuclear plant itself. In the light of the anxiety created internationally, the USSR State Committee for the Utilization of Atomic Energy prepared a report (1), based on the conclusions of the Governmental Commission entrusted to study the causes of the accident, which was presented at the international meeting of experts held at the International Atomic Energy Agency (IAEA) headquarters in Vienna from August 25 to 29, 1986. The present technical report has been prepared by the Spanish nuclear power plants within the framework of UNIDAD ELECTRICA, S.A. (UNESA) - the Association of Spanish electric utilities - in collaboration with EMPRESARIOS AGRUPADOS, S.A. The report reflects the utilities' analyses of the causes and consequences of the accident and, based on similarities and differences with Spanish plants under construction and in operation, intends to: a. Evaluate the possibility of an accident with similar consequences occurring in a Spanish plant b. Identify possible design and operation modifications indicated by the lessons learned from this accident

  10. After Chernobyl

    International Nuclear Information System (INIS)

    Midden, C.J.H.; Verplanken, B.

    1986-11-01

    This report discusses a number of effects of the Chernobyl-accident on public opinion about nuclear power. The analysis is based on a comparison of a survey conducted shortly after Chernobyl and a number of measurements in the Netherlands between 1982 and 1986. The conclusions can be summarized as follows: Attitudes towards nuclear power and especially towards building new stations have become much more negative after the disaster in Chernobyl. Although a majority of the population now wants to close existing nuclear power stations, there appears strong support for continuation of nuclear research. The structure of the nuclear debate has not changed fundamentally. Supporters and opponents have kept the same demographic characteristics. The arguments which distinguish them have not changed, except that the expectation of a serious accident has an increased impact on attitudes. A majority of the population felt the information after the accident not sufficient. Since 1982 attitudes towards coal also have become more negative, mainly as a consequence of the higher visibility of effects of acid rain. (Auth.)

  11. After Chernobyl - Consequences for energy policy, nuclear safety, radiation and environmental protection. Report of the Expert Group for Nuclear Safety and the environment

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Chapter B contains a report on the current situation with regard to international nuclear power development, nuclear safety programmes. Swedish emergency preparedness planning, and the phasing out of nuclear power. Chapter C explains the causes of the Chernobyl accident and its course and effects in the Soviet Union. The chapter also contains a summary of earlier reactor accidents, a comparison between the Chernobyl reactor and Swedish reactors, and a discussion of the conclustions that can be drawn with respect to the Swedish reactor safety programme. Chapter D begins with an account of certain basic concepts related to radioactive substances and radiation, our radiological environment, and the effects of radiation. Then follows an account of the risks of nuclear power, and in particular the effects of the Chernobyl accident in Sweden. The Expert Group urges that careful consideration be given to the question of further reinforcement of and other measures concerning preparedness for nuclear power accidents on the basis of the material now available, including the evaluation of emergency operations after the Chernobyl accident. Twelve nuclear power blocks now in operation may be used insofar as safety criteria permit. The Expert Group presents the conditions for and consequences of some alternative, faster phase-out schedules. Chapter E begins with an account of the available substitutes for nuclear power. Different phase-out schedules are then presented. The chapter closes with an estimate of the consequences for the national economy. In Chapter F the Expert Group present a description of risks and environmental problems in relation to the alternative phase-out schedules. (authors).

  12. Nuclear power in Japan

    International Nuclear Information System (INIS)

    Kishida, J.

    1990-01-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations

  13. Nuclear power in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, J [Japan Research Institute, Ltd., Tokyo (Japan)

    1990-07-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations.

  14. Nuclear energetics and public opinion after decade Chernobyl

    International Nuclear Information System (INIS)

    Gagarinskij, A.Yu.; Gagarinskaya, I.V.

    1996-01-01

    Analysis of changes in public opinion during the period after the Chernobyl accident is given. It is noted that under the conditions of economical crisis the ecological problems were set aside to the periphery of the public attention in Russia. However in view of some specialists certain positive changes in nuclear power developments took place. Decisions on construction of new power units, completion of conserved NPPs, etc. started to be realized. It is noted that establishment of relations between nuclear specialists and journalists, parliament members and representatives of regional public organizations is most important at the current stage

  15. Nuclear power: a year of incongruities

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    An increase in nuclear power production in 1986, 5% ahead of 1985's record production, must be weighted against the April 1986 accident at the Soviet nuclear reactor at Chernobyl, the worst accident in the history of commercial nuclear power

  16. The Chernobyl nuclear accident and its consequences

    International Nuclear Information System (INIS)

    1986-01-01

    An AAEC Task Group was set up shortly after the accident at the Chernobyl Nuclear Power Plant to monitor and evaluate initial reports and to assess the implications for Australia. The Task Group issued a preliminary report on 9 May 1986. On 25-29 August 1986, the USSR released details of the accident and its consequences and further information has become available from the Nuclear Energy Agency of OECD and the World Health Organisation. The Task Group now presents a revised report summarising this information and commenting on the consequences from the Australian viewpoint

  17. Is nuclear power and alternative?

    International Nuclear Information System (INIS)

    Lejon, E.

    1996-01-01

    In this chapter of the book author deals with the historical background for the nuclear energy power. Some statistical data about nuclear power stations as well as on radioactive wastes are given. The Chernobyl catastrophe is described. Author thinks that nuclear energy is not safe and it has no perspective in future

  18. Chernobyl, 14 years later

    International Nuclear Information System (INIS)

    2000-01-01

    This report draws an account of the consequences of Chernobyl accident 14 years after the disaster. It is made up of 8 chapters whose titles are: 1) Some figures about Chernobyl accident, 2) Chernobyl nuclear power plant, 3)Sanitary consequences of Chernobyl accident, 4) The management of contaminated lands, 5) The impact in France of Chernobyl fallout, 6) International cooperation, 7) More information about Chernobyl and 8) Glossary

  19. Establishment of nuclear safety regulatory regime in Ukraine. Lessons of Chernobyl

    International Nuclear Information System (INIS)

    Smyshlyaev, A.

    1996-01-01

    The issue of safety of Ukraine's Nuclear Power Plants attracts a particular attention world-wide, and the reasons for that are clearly understood: the memories of the Chernobyl tragedy happened in 1986 will possess the minds of people of the world for years. The international community is aware that the political changes and transient economy crisis the former Soviet Union States are facing today, make the resolution of nuclear facilities safety problems less possible. Nevertheless, the understanding and perception of safety policy in Ukraine underwent drastic changes after the Chernobyl accident, and the policy pursued by the Ukraine's safety authority contributes to turning the changes into good practices

  20. Chernobyl, 12 years later

    International Nuclear Information System (INIS)

    1998-04-01

    This report draws an account of the consequences of Chernobyl accident 12 years after the disaster. It is made up of 7 chapters whose titles are: 1) Some figures about Chernobyl accident, 2) The Chernobyl nuclear power plant, 3)Sanitary consequences of Chernobyl accident, 4) The management of contaminated lands, 5) The impact in France of Chernobyl fallout, 6) The Franco-German cooperation, and 7) Glossary

  1. Soviet medical response to the Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    Linnemann, R.E.

    1987-01-01

    The nuclear accident at Chernobyl was the worst in the history of nuclear power. It tested the organized medical response to mass radiation casualties. This article reviews the Soviet response as reported at the 1986 postaccident review meeting in Vienna and as determined from interviews. The Soviets used three levels of care: rescue and first aid at the plant site; emergency treatment at regional hospitals; and definitive evaluation and treatment in Moscow. Diagnosis, triage, patient disposition, attendant exposure, and preventive actions are detailed. The United States would be well advised to organize its resources definitively to cope with future nonmilitary nuclear accidents

  2. The accident at the Chernobyl' nuclear power plant and its consequences. Pt. 1. General material

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains a presentation of the Chernobyl' nuclear power station and of the RBMK-1000 reactor, including its principal physical characteristics, the safety systems and a description of the site and of the surrounding region. After a chronological account of the events which led to the accident and an analysis of the accident using a mathematical model it is concluded that the prime cause of the accident was an extremely improbable combination of violations of instructions and operating rules committed by the staff of the unit. Technical and organizational measures for improving the safety of nuclear power plants with RBMK reactors have been taken. A detailed description of the actions taken to contain the accident and to alleviate its consequences is given and includes the fire fighting at the nuclear power station, the evaluation of the state of the fuel after the accident, the actions taken to limit the consequences of the accident in the core, the measures taken at units 1, 2 and 3 of the nuclear power station, the monitoring and diagnosis of the state of the damaged unit, the decontamination of the site and of the 30 km zone and the long-term entombment of the damaged unit. The measures taken for environmental radioactive contamination monitoring, starting by the assessment of the quantity, composition and dynamics of fission products release from the damaged reactor are described, including the main characteristics of the radioactive contamination of the atmosphere and of the ground, the possible ecological consequences and data on the exposure of plant and emergency service personnel and of the population in the 30 km zone around the plant. The last part of the report presents some recommendations for improving nuclear power safety, including scientific, technical and organizational aspects and international measures. Finally, an overview of the development of nuclear power in the USSR is given

  3. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    International Nuclear Information System (INIS)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

    2009-01-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning

  4. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

    2009-11-09

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  5. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2009-09-30

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  6. Nuclear power and public opinion in Russia

    International Nuclear Information System (INIS)

    Kaurov, G.A.

    1995-01-01

    The attitude of the Russian (Soviet) society towards nuclear power and nuclear technology has changed over the years, depending on political, social and economic processes. Three periods of the relationship between the Russian society and nuclear power can be distinguished. The first period began in the early 1940s and finished in April 1986, when the Chernobyl disaster occurred. It was the period of vigorous development of the nuclear industry in the USSR. During this period the population unconditionally supported the development of this branch of the industry. The second period lasted from 1986 to 1991. The paper analyses the attitude towards nuclear power of the Soviet society as a whole and of separate social groups during the period of 'glasnost' (openness) and during the disintegration period. It is pointed out that the Chernobyl syndrome and the consequent anti-nuclear trends were used in the struggle for power. The third period extends from 1991 to the present. The paper analyses the causes of the positive changes in the public towards nuclear power which have been evident from sociological surveys. (author)

  7. Neutrophil and lymphocyte dose curves in whole-body relatively homogeneous human γ-irradiation (on the basis of the materials of the accident at the Chernobyl Nuclear Power Station)

    International Nuclear Information System (INIS)

    Konchalovskij, M.V.; Baranov, A.E.; Solov'ev, V.Yu.

    1991-01-01

    The experience in a study of regularties of the bone marrow syndrome in persons exposed to rather homogeneous γ-beam irradiation during the accident at the Chernobyl Nuclear Power Station (127 cases) were summed up. Hematological data were processed by computer, and emperic dose curves of neutrophils and lymphocytes were obtained within the range of 0.5-12 Gy by regressive analysis. New data were obtained on the nature of a course of a granulocyte recovery phase at a dose level over 5 Gy. Some features of the time course of lymphocytes in persons exposed to radiation during the accident at the Chernobyl Nuclear Power Station, were considered

  8. Nuclear power - status and development 1986/87

    International Nuclear Information System (INIS)

    Lingjaerde, R.O.

    1987-10-01

    A review og the present global position of nuclear power is given. Topics as nuclear power in developing countries, operation experience for the Super Phenix reactor, and the long-term consequences of the Chernobyl reactor accident are briefly dealt with

  9. Chernobyl silences

    International Nuclear Information System (INIS)

    Grandazzi, G.; Lemarchand, F.

    2006-01-01

    20 years after the Chernobyl nuclear power plant explosion, this book presents the sanitary and ecological actuality of the accident, with direct testimonies translated from russian. It is also a reflexion of women and political men, scientists, philosophers and artists on the changes induced by Chernobyl on the information dissemination and the future of the accident. (A.L.B.)

  10. Nuclear emergency planning and response in the Netherlands after Chernobyl

    International Nuclear Information System (INIS)

    Bergman, L.J.W.M.; Kerkhoven, I.P.

    1989-01-01

    After Chernobyl an extensive project on nuclear emergency planning and response was started in the Netherlands. The objective of this project was to develop a (governmental) structure to cope with accidents with radioactive materials, that can threaten the Dutch community and neighbouring countries. The project has resulted in a new organizational structure for nuclear emergency response, that differs on major points from the existing plans and procedures. In this paper an outline of the new structure is given. Emphasis is placed on accidents with nuclear power plants

  11. Industrial Complex for Solid Radwaste Management at Chernobyle Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ahner, S.; Fomin, V. V.

    2002-02-26

    In the framework of the preparation for the decommissioning of the Chernobyl Nuclear Power Plant (ChNPP) an Industrial Complex for Solid Radwaste Management (ICSRM) will be built under the EC TACIS Program in the vicinity of ChNPP. The paper will present the proposed concepts and their integration into existing buildings and installations. Further, the paper will consider the safety cases, as well as the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper will provide information on the status of the interim design and the effects of value engineering on the output of basic design phase. The paper therefor summarizes the design results of the involved design engineers of the Design and Process Providers BNFL (LOT 1), RWE NUKEM GmbH (LOT 2 and General) and INITEC (LOT 3).

  12. The Chernobyl syndrome

    International Nuclear Information System (INIS)

    Marshall, W.

    1986-01-01

    The nuclear industry has failed in its communication with the public in the past. This failure has affected public reaction to the Chernobyl disaster. It has also alerted the nuclear industry to this failure and it will concentrate efforts to get the nuclear message over more effectively. At the moment the nuclear industry and the public interpret the same statements in different ways. This was evident after the Chernobyl accident. The author explains that the industry can only restore public confidence in nuclear power by being open, honest and speaking in terms that lay people can understand. (UK)

  13. International nuclear law in the 25 years between Chernobyl and Fukushima and beyond

    International Nuclear Information System (INIS)

    Selma Kus

    2011-01-01

    This paper is dedicated both to legal developments since the accident at the Chernobyl nuclear power plant 25 years ago and possible legal implications of the accidents at Fukushima Daiichi which occurred after Japan was struck by a devastating earthquake on 11 March 2011. Following the accident at Three Mile Island in 1979 and at Chernobyl in 1986, Fukushima will be remembered as the third major accident in the history of civilian nuclear power reactors. Yet Chernobyl was and remains the worst trauma in this history as a result of which nuclear developments slowed down significantly. Eventually, the industry emerged as a safer and stronger technology, particularly because the 25 years between Chernobyl and Fukushima were marked by an exceptional national and international commitment to nuclear safety and emergency preparedness so as to prevent accidents and minimise potential damages, if such occur. From a legal point of view it is safe to say that the nuclear industry is one of the most strictly regulated. However, it is equally safe to say that there is no zero risk technology and that accidents can happen. For several weeks after the tragic events in Japan the world's focus turned - justifiably so - to the Fukushima Daiichi nuclear power units. It was nevertheless astonishing to observe that the real tragedy, the terrible loss of lives, swept away villages, and the chaos following the breakdown of all kinds of infrastructure were treated as a sideshow compared with the dramatic images of explosions at the Fukushima Daiichi units and helicopters trying to drop seawater into the spent fuel pools. The live broadcasting of accidents might present one of the first lessons to be learnt in our Internet and 24-hour news channel era which did not exist at the time of Chernobyl. The international legal community will also face challenges as the accident has put 25 years of international co-operation and international nuclear law-making to its first serious test. The

  14. Nuclear energy in Switzerland after Chernobyl - theses of SVA

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In its theses on nuclear energy after Chernobyl, the Swiss Association for Atomic Energy (SVA) - in which all Swiss organizations promoting the safe use of nuclear energy co-operate - has summarized the most important arguments for further peaceful uses of atomic energy. The SVA theses will contribute to an evaluation of riks associated with nuclear energy in the discusssions of future energy sources following Chernobyl

  15. Chernobyl: Lessons in nuclear liability

    International Nuclear Information System (INIS)

    Kwaczek, A.S.; Mooney, S.; Kerr, W.A.

    1990-01-01

    Chernobyl dumped significant quantities of radioactive fallout as far as 1,300 miles away, causing severe economic loss in nations stretching from Sweden to Greece. It cost innocent sheep growers in Wales, fishermen in Switzerland, reindeer-dependent Laplanders in Norway, dairymen in Sweden and Austria, and cheese makers in Greece. European nations have calculated costs from deposition of nuclear materials in the hundreds of millions report the authors. The accident at chernobyl and the European experience with the consequences can offer several insights relevant to the US commercial nuclear industry, the authors note: (1) the aggregate effect of such an accident is extremely large and unpredictable; (2) adequate disaster planning can significantly reduce costs and ease the disruption; and (3) the experience raises questions about the adequacy of the nation's nuclear insurance and liability programs. given the number of commissioned nuclear reactors today, the present scheme would provide financial compensation of approximately $7 billion per incident. Depending on the circumstances, the authors say this may not be sufficient

  16. The post Chernobyl society

    International Nuclear Information System (INIS)

    Xenofontov, Ion.

    2011-01-01

    The disaster from the nuclear power plant in Chernobyl that took place on April 26, 1986 is considered to be the worst ecologic disaster in Europe during the entire nuclear power producing history (estimated on the highest level, the seventh). The disaster had an poisonous impact on people's health and ambitions, it also gave birth to a new vision on the impact of the human factor on the universe. The post Chernobyl society is an alarming sign as regarding the human surviving perspectives, and a violent lesson on the 'global biography'. (author)

  17. Radioactive release during nuclear accidents in Chernobyl and Fukushima

    Science.gov (United States)

    Nur Ain Sulaiman, Siti; Mohamed, Faizal; Rahim, Ahmad Nabil Ab

    2018-01-01

    Nuclear accidents that occurred in Chernobyl and Fukushima have initiated many research interests to understand the cause and mechanism of radioactive release within reactor compound and to the environment. Common types of radionuclide release are the fission products from the irradiated fuel rod itself. In case of nuclear accident, the focus of monitoring will be mostly on the release of noble gases, I-131 and Cs-137. As these are the only accidents have been rated within International Nuclear Events Scale (INES) Level 7, the radioactive release to the environment was one of the critical insights to be monitored. It was estimated that the release of radioactive material to the atmosphere due to Fukushima accident was approximately 10% of the Chernobyl accident. By referring to the previous reports using computational code systems to model the release rate, the release activity of I-131 and Cs-137 in Chernobyl was significantly higher compare to Fukushima. The simulation code also showed that Chernobyl had higher release rate of both radionuclides on the day of accident. Other factors affecting the radioactive release for Fukushima and Chernobyl accidents such as the current reactor technology and safety measures are also compared for discussion.

  18. Content of 137Cs in organism of commercial wild ungulate animals procured on the alienation area of Chernobyl nuclear power plant

    Directory of Open Access Journals (Sweden)

    A. V. Gulakov

    2005-10-01

    Full Text Available Data of 14-years research of the content and distribution of radionuclide 137Cs in wild animals in the zone of Chernobyl nuclear power-station are presented. Essential fluctuations of the 137Cs content in the muscle tissue for the period of supervision are noted. Results of the research have the great practical value for the hunting facilities on the radioactively polluted territories.

  19. Risks of potential accidents of nuclear power plants in Europe

    NARCIS (Netherlands)

    Slaper H; Eggink GJ; Blaauboer RO

    1993-01-01

    Over 200 nuclear power plants for commercial electricity production are presently operational in Europe. The 1986 accident with the nuclear power plant in Chernobyl has shown that severe accidents with a nuclear power plant can lead to a large scale contamination of Europe. This report is focussed

  20. International Conference 'Twenty Years after Chernobyl Accident. Future Outlook'. Abstracts proceeding

    International Nuclear Information System (INIS)

    Anon

    2006-01-01

    This conference concludes a series of events dedicated to the 20 anniversary of the Chernobyl accident and promote an effective implementation of the accumulated international experience in the following areas: Radiation protection of the population and emergency workers, and the environmental consequences of Chernobyl accident; Medical and public health response to radiation emergencies; Strengthening radiological emergency management of radiation accidents; Economic and legal aspects of radioactive waste management and nuclear power plants decommissioning; Radioactive waste management: Chernobyl experience; Nuclear power plant decommissioning: Chernobyl NPP; Transformation of the Chernobyl Sarcophagus into an ecologically safe system

  1. Chernobyl and the media

    Energy Technology Data Exchange (ETDEWEB)

    Dibdin, T.

    The way the media reported the Chernobyl nuclear reactor accident was discussed at a day seminar in Birmingham in July. Contributors were from the Forsmark nuclear power station in Sweden where the disaster was first noticed, the International Atomic Energy Agency, the Russian film industry, French TV and SCRAM. Personal experiences and opinions of Chernobyl and the media were discussed. The approach in West Germany, France, Finland and the United Kingdom is compared.

  2. Chernobyl and the media

    International Nuclear Information System (INIS)

    Dibdin, T.

    1987-01-01

    The way the media reported the Chernobyl nuclear reactor accident was discussed at a day seminar in Birmingham in July. Contributors were from the Forsmark nuclear power station in Sweden where the disaster was first noticed, the International Atomic Energy Agency, the Russian film industry, French TV and SCRAM. Personal experiences and opinions of Chernobyl and the media were discussed. The approach in West Germany, France, Finland and the United Kingdom is compared. (UK)

  3. Analysis of the accident in the second power-generating unit of the Chernobyl nuclear power plant caused by inadequate makeup of the reactor cooling loop

    International Nuclear Information System (INIS)

    Vasil'chenko, V.N.; Kramerov, A.Ya.; Mikhailov, D.A.

    1995-01-01

    The accident in the second power-generating unit of the Chernobyl nuclear power plant on October 11, 1991 was the result of unauthorized connection of the TG-4 turbogenerator, which was shut down for repairs, into the grid (in the off-design asynchronous engine mode), and this resulted in a serious fire in the machine room and subsequent failure of systems which are important for safety and which ensure the design mode of reactor cooling: These were primarily failures of the feed and emergency feed pumps and failure of the BRU-B control valve, which regulates steam release during cooling

  4. Abundance of adult ticks (Acari: Ixodidae) in the Chernobyl nuclear power plant exclusion zone.

    Science.gov (United States)

    Movila, A; Deriabina, T; Morozov, A; Sitnicova, N; Toderas, I; Uspenskaia, I; Alekhnovici, A

    2012-08-01

    The Chernobyl nuclear disaster resulted in contamination of vast areas in Europe. To date, there is little knowledge about the effects of radioactive contamination on tick species. We sampled ticks from vegetation and large-sized wild mammals belonging to orders Carnivora and Artiodactyla at sites with 0.76, 1.91, and 4.50 mSv/hr ionizing radiation background values in the Polesky State Radio-Ecological Reserve of the Chernobyl nuclear disaster zone in spring 2010. Altogether, 122 questing ticks were collected from vegetation. Among collected ticks, Dermacentor reticulatus (Fabricius) was, by far, the most abundant species (99.2%), followed by Ixodes ricnus (L.) (0.8%), which was collected only at the 0.76 mSv/hr site. The average sex ratio female∶male was 2.9∶1.0. In parallel with the present study, we examined 3 Sus scrofa (L.), 2 Nyctereutes procyonoides (Gray), and 1 Alces alces (L.) at the 4.50 mSv/hr site; 96 D. reticulatus ticks were found on 2 N. procyonoides specimens. The mean density and the intensity of infestation were 16 ticks per animal and 48 ticks per infested animal, respectively. Future investigations are warranted to further characterize the role of various tick vectors, vertebrate reservoirs, and diversity of tick-borne pathogens in the Chernobyl exclusion zone.

  5. Chernobyl, 14 years later; Tchernobyl, 14 ans apres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This report draws an account of the consequences of Chernobyl accident 14 years after the disaster. It is made up of 8 chapters whose titles are: (1) Some figures about Chernobyl accident, (2) Chernobyl nuclear power plant, (3)Sanitary consequences of Chernobyl accident, (4) The management of contaminated lands, (5) The impact in France of Chernobyl fallout, (6) International cooperation, (7) More information about Chernobyl and (8) Glossary.

  6. Debate on the Chernobyl disaster: on the causes of Chernobyl overestimation.

    Science.gov (United States)

    Jargin, Sergei V

    2012-01-01

    After the Chernobyl accident, many publications appeared that overestimated its medical consequences. Some of them are discussed in this article. Among the motives for the overestimation were anti-nuclear sentiments, widespread among some adherents of the Green movement; however, their attitude has not been wrong: nuclear facilities should have been prevented from spreading to overpopulated countries governed by unstable regimes and regions where conflicts and terrorism cannot be excluded. The Chernobyl accident has hindered worldwide development of atomic industry. Today, there are no alternatives to nuclear power: nonrenewable fossil fuels will become more and more expensive, contributing to affluence in the oil-producing countries and poverty in the rest of the world. Worldwide introduction of nuclear energy will become possible only after a concentration of authority within an efficient international executive. This will enable construction of nuclear power plants in optimally suitable places, considering all sociopolitical, geographic, geologic, and other preconditions. In this way, accidents such as that in Japan in 2011 will be prevented.

  7. Nuclear power - the Hydra's head

    Energy Technology Data Exchange (ETDEWEB)

    Bunyard, P

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead.

  8. Disaster policy and nuclear liability: insights from post-Chernobyl agriculture in the United Kingdom

    International Nuclear Information System (INIS)

    Kerr, W.A.; Kwaczek, A.S.; Mooney, S.

    1989-01-01

    The recent events at Chernobyl have again brought the issues of nuclear safety to the forefront of the nuclear power debate. Fortunately, our experience with such incidents has been very limited, but it is important to learn as much as possible from such events so as to minimize the cost and effect of any other nuclear incidents, be they small or large. Much of the discussion about the possible effects of nuclear incidents has centered around the human cost in terms of health. While this is undoubtedly of paramount concern, the effect of the release of radiation from Chernobyl on the agricultural resource base in Europe can provide valuable insights on how to reduce the costs associated with the contamination of agricultural areas. This article outlines some of the lessons that can be learned using the livestock-raising industry in northern Wales as an example

  9. Disaster policy and nuclear liability: Insights from post-Chernobyl agriculture in the United Kingdom

    Science.gov (United States)

    Kerr, William A.; Kwaczek, Adrienne S.; Mooney, Sian

    1989-09-01

    The recent events at Chernobyl have again brought the issues of nuclear safety to the forefront of the nuclear power debate. Fortunately, our experience with such incidents has been very limited, but it is important to learn as much as possible from such events so as to minimize the cost and effect of any other nuclear incidents, be they small or large. Much of the discussion about the possible effects of nuclear incidents has centered around the human cost in terms of health. While this is undoubtedly of paramount concern, the effect of the release of radiation from Chernobyl on the agricultural resource base in Europe can provide valuable insights on how to reduce the costs associated with the contamination of agricultural areas. This article outlines some of the lessons that can be learned using the livestock-raising industry in northern Wales as an example.

  10. Proceedings of the 21. Autumn School of Polish Radiation Research Society '' Chernobyl - 20 years after. Contamination of food and the environment and health effects. Nuclear power industry: for and against ''

    International Nuclear Information System (INIS)

    Pachocki, K.

    2006-01-01

    21. Autumn Schools of the Polish Radiation Research Society held in 2006 '' Chernobyl - 20 years after. Contamination of food and the environment and health effects '' consisted of 35 lectures and scientific contributions. All aspects concerning accident in the Chernobyl NPP: technical, environmental, medical (direct and prolonged, as well) and safety problems were presented and discussed. Perspectives for the development of the nuclear power industry in Poland were also shown

  11. Nuclear Security Summit and Workshop 2015: Preventing, Understanding and Recovering from Nuclear Accidents lessons learned from Chernobyl and Fukushima

    Science.gov (United States)

    2016-09-01

    Workshop 2015 "Preventing, Understanding and Recovering from Nuclear Accidents"--lessons learned from Chernobyl and Fukushima Distribution Statement...by the factor to get the U.S. customary unit. “Preventing, Understanding and Recovering from Nuclear Accidents” – lessons learned from Chernobyl ...and Fukushima NUCLEAR SECURITY SUMMIT & WORKSHOP 2015 2 Background The 1986 Chernobyl and the 2011 Fukushima accidents provoked world-wide concern

  12. Nuclear catastrophes and their consequences. 30 years after Chernobyl, 5 years after Fukushima; Nukleare Katastrophen und ihre Folgen. 30 Jahre nach Tschernobyl, 5 Jahre nach Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Liebert, Wolfgang; Gepp, Christian; Reinberger, David (eds.)

    2016-07-01

    The book on nuclear catastrophes covers the following issues: A historical oversight on nuclear power; two catastrophic reactor accidents: Chernobyl and Fukushima; presentation of important experiences on the radiological consequences of the severe accidents; regulatory reactions in Europe as a consequence of Fukushima; beyond Chernobyl and Fukushima: fundamental problems with nuclear energy.

  13. Chernobyl's other legacy

    International Nuclear Information System (INIS)

    Hohenemser, C.; Renn, O.

    1988-01-01

    A number of accounts of the Chernobyl accident argue that governments and the public were overwhelmed by the transnational impact of the accident, and that their response was in some sense irrational or exaggerated. This article describes the essential features of what is now known about the radiation release at Chernobyl, its world-wide dispersion, the resulting exposures, and the expected health consequences. With this basis the fallout exposure is related to changes in public attitudes about nuclear power, to the extent of protective action achieved, and to the level commitment to nuclear power in several countries. This analysis allows a number of questions to be posed, as follows: 1. Were shifts in public opinion related to the level of exposure, and if so, what does this suggest? 2. Were protective actions, as measured by radiation exposure averted (dose savings), proportional to the danger posed? 3. Were protective actions related to the change in public attitudes toward nuclear power? 4. Was a country's degree of commitment to nuclear energy, as measured by the nuclear share of electricity generation, a factor in its response to the Chernobyl accident? Analysis of these questions, which is largely based on data for the Western democracies, suggests that, with some significant exceptions, both public and government responses were surprisingly rational in that they were proportional to the public's level of exposure. This finding speaks in turn to the central importance of public information in fashioning a response to risky technology. 41 notes, 6 figures, 4 tables

  14. Nuclear power - the Hydra's head

    International Nuclear Information System (INIS)

    Bunyard, Peter.

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead. (UK)

  15. Real and mythical consequences of Chernobyl accident

    International Nuclear Information System (INIS)

    Osmachkin, V.S.

    1999-01-01

    This presentation describes the public Unacceptance of Nuclear Power as a consequence of Chernobyl Accident, an accident which was a severest event in the history of the nuclear industry. It was a shock for everybody, who has been involved in nuclear power programs. But nobody could expect that it was also the end romantic page in the nuclear story. The scale of the detriment was a great, and it could be compared with other big technological man-made catastrophes. But immediately after an accident mass media and news agencies started to transmit an information with a great exaggerations of the consequences of the event. In a report on the Seminar T he lessons of the Chernobyl - 1' in 1996 examples of such incorrect information, were cited. Particularly, in the mass media it was declared that consequences of the accident could be compared with a results of the second world war, the number of victims were more than hundred thousand people, more than million of children have the serious health detriments. Such and other cases of the misconstruction have been called as myths. The real consequences of Chernobyl disaster have been summed on the International Conference 'One decade after Chernobyl' - 2, in April 1996. A very important result of the Chernobyl accident was a dissemination of stable unacceptance of the everything connected with 'the atom'. A mystic horror from invisible mortal radiation has been inspired in the masses. And from such public attitude the Nuclear Power Programs in many countries have changed dramatically. A new more pragmatic and more careful atomic era started with a slogan: 'Kernkraftwerk ? Nein, danke'. No doubt, a Chernobyl accident was a serious technical catastrophe in atomic industry. The scale of detriment is connected with a number of involved peoples, not with a number of real victims. In comparison with Bhopal case, earthquakes, crashes of the airplanes, floods, traffic accidents and other risky events of our life - the Chernobyl is

  16. Red alert. The worldwide dangers of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J

    1986-01-01

    The book 'Red Alert' considers the problems and hazards of nuclear power. The politics behind the nuclear power programmes in the United Kingdom and other countries are examined, along with the sequence of events in Britain which led to the building of the Magnox and Advanced Gas-Cooled nuclear reactors. Health hazards of radiation, radioactive waste management, nuclear weapons programmes, and radiation accidents including the Chernobyl accident, are also discussed. (U.K.).

  17. Radiological risks and public acceptance of nuclear power

    International Nuclear Information System (INIS)

    Osmachkin, Vitaly

    2001-01-01

    This presentation deals with: Nuclear Power Progress and Anti-nuclear Movement; Real Medical Consequences of the Chernobyl Accident; radiation protection Linear-Non-Threshold Concept as a main feature of ICRP-60 recommendations; irradiation effects in cells; future of nuclear energy -in restoration public trust in its safety and effectiveness

  18. Public and media attitudes to nuclear power in Italy

    International Nuclear Information System (INIS)

    Belelli, U.

    1988-01-01

    A study carried out by the Italian Electricity Board on the public acceptability of nuclear power, is reported. The question was examined in two ways. A sociological analysis was carried out with the aim of understanding the behaviour of public opinion. The results revealed that individual attitudes towards nuclear power are based on cost-benefit evaluations assessed in terms of social parameters by an instinctive rather than a rational process. Secondly press articles before and after the Chernobyl accident were analysed in terms of both the message being communicated and the quality of the technical content. Characteristics of the press coverage were more stress on nuclear safety after Chernobyl leading to greater opposition to nuclear power in general, a tendency for comment to dominate over factual information and no proper evaluation of the technical content. The major overall conclusions drawn are the need for international cooperation to address the social implications of the nuclear question, and for effective communication of information on power plant safety both to expert social and political bodies and, in a popular version, to the general public. (U.K.)

  19. Can we dispense with nuclear power. [Federal Republic of Germany]. Koennen wir auf Kernenergie verzichten

    Energy Technology Data Exchange (ETDEWEB)

    Frewer, H; Braun, W; Freiberger, S; Martin, J

    1986-01-01

    The aims of energy policy, which consist in safeguarding energy supply while using nuclear power as one source of energy, are discussed in an interview (H. Frewer, Managing Director of Kraftwerk Union 'KWU'). The safety of German nuclear power plants is illustratively compared with the safety of nuclear power plants in the USSR, especially the reactor at Chernobyl (Braun and Freiberger, KWU). A further contribution deals with the propagation of the radioactive plume after the accident at Chernobyl (Martin, KWU).

  20. Chernobyl: fifteen years later

    International Nuclear Information System (INIS)

    Gonzalez, Abel J.; )

    2001-01-01

    On Saturday 26 April 1986, an accident which was to have global repercussions occurred at Unit 4 of the Chernobyl nuclear power plant in Ukraine. The accident involved the largest short term release from a single source of radioactive materials to the atmosphere ever recorded. The debate about the consequences of the accident of Chernobyl became a real saga, probably one of the most extensive controversial history of the modern technological era. There was a general concern among the population regarding the health consequences of such releases and the safety of nuclear facilities. (author)

  1. Radiation Exposure and Thyroid Cancer Risk After the Fukushima Nuclear Power Plant Accident in Comparison with the Chernobyl Accident

    International Nuclear Information System (INIS)

    Yamashita, S.; Takamura, N.; Ohtsuru, A.; Suzuki, S.

    2016-01-01

    The actual implementation of the epidemiological study on human health risk from low dose and low-dose rate radiation exposure and the comprehensive long-term radiation health effects survey are important especially after radiological and nuclear accidents because of public fear and concern about the long-term health effects of low-dose radiation exposure have increased considerably. Since the Great East Japan earthquake and the Fukushima Daiichi Nuclear Power Plant accident in Japan, Fukushima Prefecture has started the Fukushima Health Management Survey Project for the purpose of long-term health care administration and medical early diagnosis/treatment for the prefectural residents. Especially on a basis of the lessons learned from the Chernobyl accident, both thyroid examination and mental health care are critically important irrespective of the level of radiation exposure. There are considerable differences between Chernobyl and Fukushima regarding radiation dose to the public, and it is very difficult to estimate retrospectively internal exposure dose from the short-lived radioactive iodines. Therefore, the necessity of thyroid ultrasound examination in Fukushima and the intermediate results of this survey targeting children will be reviewed and discussed in order to avoid any misunderstanding or misinterpretation of the high detection rate of childhood thyroid cancer. (authors)

  2. Safety culture in nuclear power enterprise

    International Nuclear Information System (INIS)

    Zou Zhengyu; Su Luming

    2008-01-01

    The International Atomic Energy Agency (IAEA) introduced the concept of safety culture when analyzing the Chernobyl accident. Safety culture has now been widely accepted and practiced by nuclear enterprise in the world. As an important safeguard for nuclear safety, safety culture has become the core of nuclear power enterprise and entitled as the soul of nuclear enterprise. This paper analyzes the three levels of safety culture and describes its three developing phases. (authors)

  3. Post-Chernobyl emergency planning

    International Nuclear Information System (INIS)

    1986-01-01

    This report is the result of a study ordered by the Swedish Nuclear Power Inspectorate and the National Swedish Institute of Radiation Protection to evaluate the measurements taken in Sweden in response to the Chernobyl accident. The enquiry was also given the task of suggesting improvements of the nuclear accidents emergency planning and other activities relevant to nuclear accidents. Detailed accounts are given of the course of events in Sweden at the Chernobyl accident and the steps taken by central or local authorities are discussed. Several alterations of the emergency planning are proposed and a better coordination of the affected organizations is suggested. (L.E.)

  4. On PA of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Present state of things relating to the nuclear power generation are described first, focusing on the Chernobyl accident, power control test, old-wave and new-wave antinuclear movements, move toward elimination of nuclear power plants, and trend in government-level argument concerning nuclear power generation. Then the importance of public relations activities for nuclear power generation is emphasized. It is stressed that information should be supplied positively to the public to obtain public understanding and confidence. Various activities currently made to promote public relations for nuclear power generation are also outlined, focusing on the improvement in the nuclear power public relations system and practical plans for these activities. Activities for improvement in the public relations system include the organization of public relations groups, establishment and effective implementation of an overall public relations plan, training of core workers for public relations, and management of the public relations system. Other practical activities include the encouragement of the public to come and see the power generation facilities and distribution of pamphlets, and use of the media. (N.K.)

  5. Chernobyl: the long shadow

    International Nuclear Information System (INIS)

    Park, C.C.

    1989-01-01

    Chernobyl: the Long Shadow offers a balanced review of what happened there, why and how it happened, and what the main lessons and implications of the accident are. It looks back on events during and after the disaster, in particular reviewing how it and the radiation fallout were dealt with in different countries, and looks forward to how the incident might affect the nuclear power industry around the world. The book explores the significance of the accident within the Soviet Union, considers its impact on public confidence in nuclear power, and reviews what improvements are necessary in emergency planning throughout the rest of the world. It is written from an inter-disciplinary perspective; based on detailed scientific research, which is described in non-specialist terms, it considers themes like attitudes to nuclear power and political reactions to the accident itself. It sets the Chernobyl accident into a proper context, and will appeal to students and teachers of geography, environmental science, international politics, nuclear physics, and to anyone interested in current affairs and environmental problems. (author)

  6. Chernobyl - Could it happen here? [videorecording

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-07-01

    Following the accident at the Soviet nuclear power station at Chernobyl in April 1986, the CEGB produced this video which has now been updated in the light of the information provided by the Soviets at the International Atomic Energy Agency Conference in Vienna. At this conference it was made clear that the Chernobyl accident would have been impossible in any nuclear reactor operational outside the USSR. This video explains why. It examines the main reasons for the failure of the reactor at Chernobyl and the two fundamental design flaws which resulted in the sequence of events leading up to the accident. It shows how British reactors have built-in protection to compensate for failure in any part of the system, and how the reactors are tolerant to operator error. The programme also explains the safety standards and regulations which are enforced in CEGB nuclear power stations and the rigorous training that reactor operators have to undergo.

  7. The Chernobyl murder. The nuclear Goulag; Le crime de Tchernobyl. Le goulag nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Tchertkoff, W

    2006-07-01

    The authors of this book are the Chernobyl victims of the 26 April 1986 nuclear accident: millions of poor farmers, contaminated young mothers and children which eat every days radionuclides; ''Liquidators'', sacrificed to stop the fire of the power plants; invalids and also doctors and scientists which refuse the nuclear lobby. This book presents the two Byelorussian scientists which have risk their career and their health to help the contaminated populations. This book takes stock on the today nuclear policy and becomes alarm in seeing the development of the nuclear program in many countries. (A.L.B.)

  8. Application of TREECS (trademark) to Strontium 90 for Borschi Watershed near Chernobyl, Ukraine

    Science.gov (United States)

    2012-08-01

    near Chernobyl , Ukraine by Mark S. Dortch PURPOSE: The Training Range Environmental Evaluation and Characterization System (TREECS™) (http... Chernobyl Nuclear Power Plant, Ukraine. At this site, TREECS™ was used as a modeling tool to predict the fate of radionuclides. This application also...Web site noted above. Borschi watershed is located 3 km south of the Chernobyl Nuclear Power Plant (Figure 1). Radio- strontium-90, 90Sr, which is a

  9. Chernobyl

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The article summarizes the current controversial discussions in the public about the utilisation of nuclear energy in the F.R.G., which has gained so much emotional impetus after the Chernobyl reactor accident. The accident scenario and the causes of the disaster are outlined in order to show the difference between facts and conditions there, and design and conditions in our country, especially with regard to the LWRs. The main reason launching the disaster, it is said, lies in non-observance of orders and operating instructions; the article underlines the system of design features and instructions that has been established, and multiply checked, for reactor stations in the F.R.G., in order to prevent undue interference with the design-based safety equipment. Due to the high safety standard of the nuclear power plants in the F.R.G., Chernobyl cannot be used as an argument against further utilisation of nuclear energy in the F.R.G. (HSCH) [de

  10. Is nuclear power at the end of the rope. 3. Rev. and enlarged ed. Atomkraft am Ende

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, J; Hirsch, H; Paul, R; Weidmann, B; Pelster, M; Wallenschus, M

    1986-01-01

    The Chernobyl disaster has been a terrible confirmation of all warnings and worries spoken out by anti-nuclear groups of the population. Their core statement in debates on nuclear power already before the Chernobyl accident has been: Nuclear power has reached the end of the rope, for ecological reasons and for reasons of energy policy. This argument is now shown to be true by the analyses and research results presented by the book. Nuclear hazards will remain non-managable, and there is enough reason to doubt the economic efficiency of nuclear electricity. Nuclear power subsists by the sheer political and economic power of the nuclear lobby. The book in hand is the third revised and enlarged edition, presenting topical information on the Chernobyl MCA collected by scientists and journalists who are engaged in the anti-nuclear movement. Basic and exciting facts are given of topics such as: Worldwide crisis of the nuclear industry; history of the German nuclear power programme; the power of the electric utilities; Harrisburg and the latest safety studies; hazards of 'normal operation'; the big risk of the Wackersdorf plant and the illusion of 'ultimate disposal'.

  11. Status of the organs of the digestive system in employees of the Chernobyl nuclear power plant engaged in recovery work after the accident

    International Nuclear Information System (INIS)

    Yaimenko, L.; Moroz, G.Z.; Sobchuk, Y.A.

    1995-01-01

    This work deals with the status of the digestive system in employees of the Chernobyl nuclear power plant engaged in recovery work after the accident. Morphological and functional changes suffered by the digestive organs on exposure to ionizing radiation in doses leading to the development of acute radiation sickness are described. The effect of small doses ionizing radiation on the human body is indicated too. (O.L.). 15 refs., 1 tab

  12. The Chernobyl effect

    International Nuclear Information System (INIS)

    Opp, K.D.; Roehl, W.

    1990-01-01

    In what way and to what extent does an event like the Chernobyl reactor accident influence the citizen's attitudes and political commitment. This book evolves a number of theses on these questions dealing above all with the determinants of political protest. Two investigations are presented in order to verify those theses: in 1982 and 1987 (some nine months after the Chernobyl reactor accident), the same persons were interviewed. In addition, representative surveys in the Federal Republic of Germany are analysed, in order to assess in general the impact of Chernobyl. From the contents: explanation model for political protest; Chernobyl effect: effect of critical events on the mobilization of political protest; discontent with nuclear energy use, political alienation and protest; internal incentives for protest: norms, readiness for aggression, and entertainment quality of protest; resources as determinants of political protest; sanctions and protest; social nets and political protest; verification of a central model of political protest, and problems encountered by research. Appendix: investigation plan and random sampling of the panel of nuclear power opponents. (orig./HP) [de

  13. Fukushima Nuclear Accident, the Third International Severe Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Rashad, S.M.

    2013-01-01

    Japan is the world's third largest power user. Japan's last remaining nuclear reactor shutdown on Saturday 4 Th of May 2012 leaving the country entirely nuclear free. All of 50 of the nation's operable reactors (not counting for the four crippled reactors at Fukushima) are now offline. Before last year's Fukushima nuclear disaster, the country obtained 30% of its energy from nuclear plants, and had planned to produce up to 50% of its power from nuclear sources by 2030. Japan declared states of emergency for five nuclear reactors at two power plants after the units lost cooling ability in the aftermath of Friday 11 March 2011 powerful earthquake. Thousands of (14000) residents were immediately evacuated as workers struggled to get the reactors under control to prevent meltdowns. On March 11 Th, 2011, Japan experienced a sever earthquake resulting in the shutdown of multiple reactors. At Fukushima Daiichi site, the earthquake caused the loss of normal Ac power. In addition it appeals that the ensuing tsunami caused the loss of emergency Ac power at the site. Subsequent events caused damage to fuel and radiological releases offsite. The spent fuel problem is a wild card in the potentially catastrophic failure of Fukushima power plant. Since the Friday's 9.0 earthquake, the plant has been wracked by repeated explosions in three different reactors. Nuclear experts emphasized there are significant differences between the unfolding nuclear crisis at Fukushima and the events leading up to the Chernobyl disaster in 1986. The Chernobyl reactor exploded during a power surge while it was in operation and released a major cloud of radiation because the reactor had no containment structure around to. At Fukushima, each reactor has shutdown and is inside a 20 cm-thick steel pressure vessel that is designed to contain a meltdown. The pressure vessels themselves are surrounded by steel-lined, reinforced concrete shells. Chernobyl disaster was classified 7 on the International

  14. Nuclear electric power safety, operation, and control aspects

    CERN Document Server

    Knowles, J Brian

    2013-01-01

    Assesses the engineering of renewable sources for commercial power generation and discusses the safety, operation, and control aspects of nuclear electric power From an expert who advised the European Commission and UK government in the aftermath of Three Mile Island and Chernobyl comes a book that contains experienced engineering assessments of the options for replacing the existing, aged, fossil-fired power stations with renewable, gas-fired, or nuclear plants. From geothermal, solar, and wind to tidal and hydro generation, Nuclear Electric Power: Safety, Operation, and Control Aspects ass

  15. Changing world of nuclear power

    International Nuclear Information System (INIS)

    Godlewski, N.Z.; Payne, J.; Tompkins, B.

    1987-01-01

    Efforts to integrate the Washington meetings of the American Nuclear Society and the Atomic Industrial Forum included joint plenary sessions and combined criticism of DOE actions regarding the selection of a second repository for radioactive wastes. The meetings also looked beyond the Chernobyl accident to point out that some countries can no longer reject nuclear power, but the industry must develop post-accident plans for plants in order to reduce risks. Speakers warned against over-reacting and the need to keep emergency planning flexible. Other speakers concluded that the Chernobyl design was not so much at fault as the decision to build larger versions of the standardized design. The pursuit of excellence in plant design and performance, the need to resolve regulatory problems involving the inclusion of nuclear plants in utility rate bases, and the economics of low-level waste disposal, were other topics covered

  16. International cooperation on technical support for regulation of safety-related activities on the transformation of the destroyed Chernobyl Nuclear Power Plant Power Unit into an ecologically safe system

    International Nuclear Information System (INIS)

    Groniov, G.; Kondratiev, S.; Kutina, L.; Bachner, D.; Kuechler, L.; Denver, D.

    2010-01-01

    The world's most severe nuclear accident destroyed the fourth unit at the Chernobyl nuclear power plant in 1986. In the six months following the accident, a localizing building was erected over the unit to contain the nuclear materials and provide support services for managing the destroyed reactor. Since 1997, an international project which includes both urgent measures for stabilization and safety upgrading as well as long-term measures for transforming the facility into an ecologically safe system has been under way. This paper discusses an important aspect of this project which has been the cooperation amongst the technical support organizations of the Ukrainian regulatory authorities and the technical support from international organizations. (author)

  17. Oil and nuclear power: the dynamic interrelationship

    International Nuclear Information System (INIS)

    Stauffer, T.

    1987-01-01

    The impact of changing oil prices on the economic case for nuclear power and the political viability of the nuclear industry is reviewed. The case for nuclear energy is less obvious currently on the grounds of safety (following the Chernobyl accident), need (because of slower economic growth and energy conservation) and rationale (the cost advantage is no longer obvious). Nuclear power and oil prices are shown to be interrelated because the competitive economics of each is affected by the other. The competitive balance between the two changes. The use of nuclear power helps to keep oil prices down. However, if oil is cheap, nuclear power is less favourable economically. Some facts and figures are used to illustrate this paradox. (U.K.)

  18. Chernobyl: The end of the nuclear dream

    International Nuclear Information System (INIS)

    Hawkes, N.; Lean, G.; Leigh, D.; Mc Kie, R.; Pringle, P.; Wilson, A.

    1987-01-01

    Chernobyl - once the name of an obscure Soviet nuclear plant in the Ukraine - has become a global household word because of the April 1986 explosion that destroyed one of its reactors and spread radioactive fallout over most of the northern hemisphere. A September 1986 study from the Lawrence Livermore Laboratory revealed that this disaster released as much radioactivity into the soil, air, and water as all the nuclear tests and bombs exploded since the 1940s. In this book by a team of correspondents from the London Observer, all the essential information is given: a description of Chernobyl town and its nuclear plant; a vivid account of the events surrounding the accident, in which many people acted heroically; the delays in reporting the disaster; the problems of evacuating people and of coping with the injured; the reactions in the Soviet Union and around the world; and the immediate and possible longterm effects of the release of so much radioactivity

  19. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  20. Chernobyl

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This documentary report tries to give an answer, beyond the current reporting during the last months - including the VDI Nachrichten - how to judge somewhat surely the reasons of the accident and its procession according to the report of the USSR and the international discussion. Subjects: Sequence of events and causes leading to the accident in the nuclear power plant of Chernobyl; dimension and consequences of the radioactive precipitations in West-Germany; foundations of nuclear fission; structure and security systems of Sovjet reactor lines and comparisons with German nuclear power plants; licensing procedure and continual control of the German plants; moral responsibility of the peaceful use of nuclear energy; nuclear phase out and its consequences, and at last data and facts about the use of renewable sources of energy. (orig./GL) [de

  1. Implications of the accident at Chernobyl for safety regulation of commercial nuclear power plants in the United States: Volume 1, Main report: Final report

    International Nuclear Information System (INIS)

    1989-04-01

    This report was prepared by the Nuclear Regulatory Commission (NRC) staff to assess the implications of the accident at the Chernobyl nuclear power plant as they relate to reactor safety regulation for commercial nuclear power plants in the United States. The facts used in this assessment have been drawn from the US fact-finding report (NUREG-1250) and its sources. The general conclusions of the document are that there are generic lessons to be learned but that no changes in regulations are needed due to the substantial differences in the design, safety features and operation of US plants as compared to those in the USSR. Given these general conclusions, further consideration of certain specific areas is recommended by the report. These include: administrative controls over reactor regulation, reactivity accidents, accidents at low or zero power, multi-unit protection, fires, containment, emergency planning, severe accident phenomena, and graphite-moderated reactors

  2. [Aspects of aetiology of neuro-psychic disorders in male liquidators of Chernobyl nuclear power accident consequences].

    Science.gov (United States)

    Skavysh, V A

    2009-01-01

    The author considered aetiology of neuro-psychic disorders in liquidators of Chernobyl nuclear power accident consequences, demonstrated scientific value of studying the liquidators cohort, as they were protected from internal radiation factors and reside on radiation "pure" territories. External radiation doses in those liquidators vary from 16 cGy to 18.7 +/- 10.8 cGy, according to the author. Catamnesis enabled to doubt radiation aetiology of psychic organic syndrome revealed in 1991-1994 by clinical and instrumental studies among 53.6% of 213 male examinees. According to the author, prolonged over 1-2 months external radiation of low dose could not cause health deterioration in adult males. Diagnosed psychic organic syndrome and vascular encephalopathy in some cases could have alcohol aetiology. This conclusion is not extrapolated to the whole liquidators cohort.

  3. Environmental hazards and nuclear power phaseout

    International Nuclear Information System (INIS)

    Guck, R.

    1989-01-01

    The paper analyses the radiation exposure of the population during normal operation and in the wake of accidents at nuclear power plants, and discusses hypothetic accidents. It also judges the additional radiation exposure of the population from nuclear energy, investigates forest decline and radioactivity, as well as radioactive waste disposal and underground storage. In the upshot, nuclear power after and in spite of Chernobyl still remains an important option and an ecologically reasonable possibility for safeguarding the fundamental needs of the five billion people now living, and those further billions to be added in the decades to come. (orig./HSCH) [de

  4. Radiation Exposure and Thyroid Cancer Risk After the Fukushima Nuclear Power Plant Accident in Comparison with the Chernobyl Accident.

    Science.gov (United States)

    Yamashita, S; Takamura, N; Ohtsuru, A; Suzuki, S

    2016-09-01

    The actual implementation of the epidemiological study on human health risk from low dose and low-dose rate radiation exposure and the comprehensive long-term radiation health effects survey are important especially after radiological and nuclear accidents because of public fear and concern about the long-term health effects of low-dose radiation exposure have increased considerably. Since the Great East Japan earthquake and the Fukushima Daiichi Nuclear Power Plant accident in Japan, Fukushima Prefecture has started the Fukushima Health Management Survey Project for the purpose of long-term health care administration and medical early diagnosis/treatment for the prefectural residents. Especially on a basis of the lessons learned from the Chernobyl accident, both thyroid examination and mental health care are critically important irrespective of the level of radiation exposure. There are considerable differences between Chernobyl and Fukushima regarding radiation dose to the public, and it is very difficult to estimate retrospectively internal exposure dose from the short-lived radioactive iodines. Therefore, the necessity of thyroid ultrasound examination in Fukushima and the intermediate results of this survey targeting children will be reviewed and discussed in order to avoid any misunderstanding or misinterpretation of the high detection rate of childhood thyroid cancer. © World Health Organisation 2016. All rights reserved. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  5. After Chernobyl. Consequences for energy policy, nuclear safety, radiation protection and environment protection. Efter Tjernobyl. Konsekvenser foer energipolitik, kaernsaekerhet, straalskydd och miljoeskydd

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The basic problems of the safety of nuclear power have been elucidated. The cause of the Chernobyl accident and its effects are discussed. The impact of this accident on the evaluation of Swedish nuclear safety is dealt with, and recommendations concerning increased safety when nuclear power accidents take place in other countries are presented. The environmental and economic consequences of early decommissioning of the Barsebaeck power plant are discussed as well as the general aspects of nuclear power phaseout in Sweden.

  6. SUBSTANTIAL AND STRUCTURAL COMPONENTS OF THE MENTAL STATUS OF THE PERSONS WHO HAVE RECEIVED SMALL DOSES OF RADIATION DURING LIGUIDATION OF THE ACCIDENT AT THE CHERNOBYL NUCLEAR POWER PLANT

    Directory of Open Access Journals (Sweden)

    О. V. Baranova

    2012-01-01

    Full Text Available In the article the peculiarities of ideas about the catastrophe at the Chernobyl nuclear power plant disaster at the persons who have suffered from radiation during liquidation of the accident’s consequences. View of the accident was considered as a key element of a person’s mind, in particular the adaptive. There were 30 persons, who took part in the research – participants of Chernobyl disaster’s liquidation, veterans of division of an extra risk. The subjective assessment of mental health at persons who survived in Chernobyl disaster was defined; personal properties of victims were revealed; interrelations between personal properties and subjective assessment of mental health were established. It is possible to assume that in process of moving away from the moment of the accident the content of view of Chernobyl disaster shows concentration of the person on experience of mental health and the personal potential.

  7. Structural aspects of the Chernobyl accident

    International Nuclear Information System (INIS)

    Murray, R.C.; Cummings, G.E.

    1988-01-01

    On April 26, 1986 the world's worst nuclear power plant accident occurred at the Unit 4 of the Chernobyl Nuclear Power Station in the USSR. This paper presents a discussion of the design of the Chernobyl Power Plant, the sequence of events that led to the accident and the damage caused by the resulting explosion. The structural design features that contributed to the accident and resulting damage will be highlighted. Photographs and sketches obtained from various worldwide news agencies will be shown to try and gain a perspective of the extent of the damage. The aftermath, clean-up, and current situation will be discussed and the important lessons learned for the structural engineer will be presented. 15 refs., 10 figs

  8. Nuclear technology and reactor safety engineering. The situation ten years after the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1996-01-01

    Ten years ago, on April 26, 1986 the most serious accident ever in the history of nuclear tgechnology worldwide happened in unit 4 of the nuclear power plant in Chernobyl in the Ukraine, this accident unveiling to the world at large that the Soviet reactor design lines are bearing unthought of safety engineering deficits. The dimensions of this reactor accident on site, and the radioactive fallout spreading far and wide to many countries in Europe, vividly nourished the concern of great parts of the population in the Western world about the safety of nuclear technology, and re-instigated debates about the risks involved and their justification. Now that ten years have elapsed since the accident, it is appropriate to strike a balance and analyse the situation today. The number of nuclear power plants operating worldwide has been growing in the last few years and this trend will continue, primarily due to developments in Asia. The Chernobyl reactor accident has pushed the international dimension of reactor safety to the foreground. Thus the Western world had reason enough to commit itself to enhancing the engineered safety of reactors in East Europe. The article analyses some of the major developments and activities to date and shows future perspectives. (orig.) [de

  9. Nuclear safety after Three Mile Island and Chernobyl

    International Nuclear Information System (INIS)

    Ballard, G.M.

    1988-01-01

    This book contains the proceedings on nuclear safety after Three Mile island and Chernobyl. Topics covered include: Design for safety; Man-machine interaction; Source terms and consequence; and accident response

  10. Simulation of {sup 137}Cs transport and deposition after the Chernobyl Nuclear Power Plant accident and radiological doses over the Anatolian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, V.; Pozzoli, L.; Unal, A.; Kindap, T., E-mail: kindap@itu.edu.tr; Karaca, M.

    2014-11-15

    The Chernobyl Nuclear Power Plant (CNPP) accident occurred on April 26 of 1986, it is still an episode of interest, due to the large amount of radionuclides dispersed in the atmosphere. Caesium-137 ({sup 137}Cs) is one of the main radionuclides emitted during the Chernobyl accident, with a half-life of 30 years, which can be accumulated in humans and animals, and for this reason the impacts on population are still monitored today. One of the main parameters in order to estimate the exposure of population to {sup 137}Cs is the concentration in the air, during the days after the accident, and the deposition at surface. The transport and deposition of {sup 137}Cs over Europe occurred after the CNPP accident has been simulated using the WRF-HYSPLIT modeling system. Four different vertical and temporal emission rate profiles have been simulated, as well as two different dry deposition velocities. The model simulations could reproduce fairly well the observations of {sup 137}Cs concentrations and deposition, which were used to generate the ‘Atlas of Caesium deposition on Europe after the Chernobyl accident’ and published in 1998. An additional focus was given on {sup 137}Cs deposition and air concentrations over Turkey, which was one of the main affected countries, but not included in the results of the Atlas. We estimated a total deposition of 2–3.5 PBq over Turkey, with 2 main regions affected, East Turkey and Central Black Sea coast until Central Anatolia, with values between 10 kBq m{sup −2} and 100 kBq m{sup −2}. Mean radiological effective doses from simulated air concentrations and deposition has been estimated for Turkey reaching 0.15 mSv/year in the North Eastern part of Turkey, even if the contribution from ingestion of contaminated food and water is not considered, the estimated levels are largely below the 1 mSv limit indicated by the International Commission on Radiological Protection. - Highlights: • Chernobyl Nuclear Power Plant accident

  11. Nuclear power in Russia: Status and developments trends

    International Nuclear Information System (INIS)

    Grarinski, A. Yu.

    1994-01-01

    27 June 1954 saw the birth of nuclear power in the Soviet Union when a 5 MWe plant went into operation. The second reference point falls on 26 April 1986. Since then the fate of nuclear energy in the Soviet Union has been transformed once again: ft is now clear the Chernobyl did not entirely bury the notion of building nuclear p0wer stations. There are even signs that the leaders of the new states, as well as the general public, are beginning to see some of benefits of continuing with nuclear power programmes

  12. The social impact of the Chernobyl disaster

    International Nuclear Information System (INIS)

    Marples, D.R.

    1988-01-01

    The book entitled the 'Social impact of the Chernobyl disaster' examines the aftermath of the reactor accident, using information culled from a fact-finding visit to the USSR in 1987, and from a wide variety of Soviet source materials. The subject is discussed under the following topic headings:-the cause of the Chernobyl accident, the victims of Chernobyl, the environmental impact, the economic and political repercussions, and the nuclear power debate. (U.K.)

  13. Nuclear power and the private sector

    International Nuclear Information System (INIS)

    Miller, D.J.

    1989-01-01

    The world scene is sketched in which nuclear power already contributes 600 Mtce/year to world energy but where public attitudes in the developed world have become largely hostile. This is despite the proven technology of nuclear power, its safety record (Chernobyl notwithstanding) and its environmentally benign aspects. The United Kingdom government's determination to ensure a continuing role for nuclear power in a privatized electricity supply industry is seen against this background. The structure of the British nuclear power industry undoubtedly presents difficulties for privatization but solutions are available and precedents for private sector nuclear power exist in other countries. Private sector operators will be required to meet the exacting standards set by the independent licensing authority but in view of the public concern redoubled efforts and new approaches will be necessary in public persuasion. Waste disposal is another issue which may have implications for the acceptability of nuclear power in the public sector. Finally, the prospects for investment in new nuclear plant by private generation companies are examined. (U.K.)

  14. 10th anniversary of Chernobyl

    International Nuclear Information System (INIS)

    Hayes, Roger

    1995-01-01

    Every issue has its defining event. There is no doubt that the single word which now embodies that difficult-to express unease felt by many people about nuclear power is Chernobyl. In this sense, April 26 1996 will be far more than an anniversary, just as Chernobyl was far more than a very serious accident which was nonetheless largely localised in its effects. It will be used by those who wish to the industry - the professional campaigners in the Green movement - and those who see an opportunity to sell newspapers or TV programmes - the professional exaggerators - to spread that unease as far as possible. The British Nuclear Industry Forum, which consists of seventy member companies at the heart of nuclear power in the UK, has convened a Task Force, with an international membership, in an attempt to make sure that we are ready for the anniversary, and to respond to the tactics of the opposition in as effective a way as possible. This paper outlines the general principles which have so far emerged from our discussions. There are two guiding principles to our approach. The first is that no matter how good a story is about Chernobyl, it is still a bad story. But secondly, this anniversary will be big news whether we like it or not, so we must make the best of it. In this sense the event brings with it opportunities to remind people of positive messages, on fuel diversity, on environment, and on Western efforts to help to improve the safety standards of the nuclear industry in the region, and the health of the people near Chernobyl. This leads to a position for the campaign which might appear paradoxical. We must be proactive but low-profile. We simply cannot afford to keep quiet and let the wildest claims about the effects of Chernobyl be spouted unchallenged. This does not simply mean generating responses to stories once they have been published. It means analysing press coverage of previous anniversaries to understand how the media are likely to treat it; it means

  15. Response to the Chernobyl accident in Japan

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The worst nuclear accident in history happened at No.4 unit of the Chernobyl Atomic Power Station in USSR. Since the Chernobyl accident, a number of measures have been introduced in many countries, including the reconsideration of programs for construction and operation of nuclear power plants. In Japan, the press and television first reported the accident on April 29. The next day, all the relevant governmental agencies began to collect and analyze information in order to prepare possible countermeasures. The Nuclear Safety Commission issued a statement covering three points: 1) the radioactive substances released by the accident will have virtually no influence on the health of people in Japan, 2) a Special Committee on the Chernobyl Atomic Power Station Accident will be established, and 3) the Soviet government must provide all detailed information about the accident as soon as it is available. On April 30, the Committee on Radioactivity decided to increase radioactivity observations by the Science and Technology Agency, the Defence Agency, and the Meteorological Agency. On the same day, the Ministry of International Trade and Industry set up a survey committee for the Chernobyl accident with the responsibility of collecting and analyzing information about the accident. A review is also made in this article as to how the Japanese media reported the accident and how people reacted on reading the newspapers and watching TV on the accident. (Nogami, K.)

  16. The Chernobyl and Fukushima Daiichi nuclear accidents and their tragic consequences

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    On April 26, 1986, the Unit 4 of the RBMK nuclear power plant of Chernobyl, in Ukraine, went out of control during a test at low-power, leading to an explosion and fire. The reactor building was totally demolished and very large amounts of radiation were released into the atmosphere for several hundred kilometres around the site including the nearby town of Pripyat. The explosion leaving tons of nuclear waste and spent fuel residues without any protection and control totally contaminating the entire area. Several hundred thousand people were affected by the radiation fall out. The radioactive cloud spread across Europe affecting most of the Northern, Central and Eastern European countries. Some areas of southern Switzerland, of northern Italy as well as western France were subject to radioactive contamination. The initiative of the G7 countries to launch and important programme for the closure of some Soviet built nuclear plants was accepted by several donor countries. A team of engineers was established wi...

  17. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Steinhauser, Georg, E-mail: georg.steinhauser@colostate.edu; Brandl, Alexander; Johnson, Thomas E.

    2014-02-01

    The environmental impacts of the nuclear accidents of Chernobyl and Fukushima are compared. In almost every respect, the consequences of the Chernobyl accident clearly exceeded those of the Fukushima accident. In both accidents, most of the radioactivity released was due to volatile radionuclides (noble gases, iodine, cesium, tellurium). However, the amount of refractory elements (including actinides) emitted in the course of the Chernobyl accident was approximately four orders of magnitude higher than during the Fukushima accident. For Chernobyl, a total release of 5300 PBq (excluding noble gases) has been established as the most cited source term. For Fukushima, we estimated a total source term of 520 (340–800) PBq. In the course of the Fukushima accident, the majority of the radionuclides (more than 80%) was transported offshore and deposited in the Pacific Ocean. Monitoring campaigns after both accidents reveal that the environmental impact of the Chernobyl accident was much greater than of the Fukushima accident. Both the highly contaminated areas and the evacuated areas are smaller around Fukushima and the projected health effects in Japan are significantly lower than after the Chernobyl accident. This is mainly due to the fact that food safety campaigns and evacuations worked quickly and efficiently after the Fukushima accident. In contrast to Chernobyl, no fatalities due to acute radiation effects occurred in Fukushima. - Highlights: • The environmental effects of Chernobyl and Fukushima are compared. • Releases of radionuclides from Chernobyl exceeded Fukushima by an order of magnitude. • Chernobyl caused more severe radiation-related health effects. • Overall, Chernobyl was a much more severe nuclear accident than Fukushima. • Psychological effects are neglected but important consequences of nuclear accidents.

  18. Why Russia still wants nuclear power

    International Nuclear Information System (INIS)

    Perera, J.

    1993-01-01

    Despite a recent explosion at the Tomsk uranium reprocessing plant in Siberia, and the aftermath of the Chernobyl accident, support for nuclear power is still firm in Russia. The Russian nuclear industry employs around two million people and their employment security is one of the chief factors in support of the nuclear power industry despite its safety record. The other major reason is energy shortages. Despite huge natural deposits of petroleum and gas, electric power shortages are widespread. Eighty per cent of Russia's electric power comes from oil-fired power stations, but oil supplies are unreliable. Production is dropping and, at the same time, an increasing proportion of the oil produced is exported to earn foreign currency. The concerns of environmental groups may have to be shelved, until Russia's infrastructure is efficient enough to maintain power supplies reliably. (UK)

  19. Dangerous dream: Nuclear power. With an attached short dictionary of terms in nuclear energy. Der gefaehrliche Traum: Atomkraft. Mit kleinem Lexikon der Atom-Energie

    Energy Technology Data Exchange (ETDEWEB)

    Paul, R

    1986-01-01

    After Chernobyl: Necessary basic knowledge and information, data on safety hazards and risks, sketches of all German nuclear power plants and brief accounts of incidents reported so far, consequences of the Chernobyl and Harrisburg accidents for man and the environment, emergency control plans. With an attached short dictionary of terms in nuclear energy.

  20. Nuclear power in Italy

    International Nuclear Information System (INIS)

    Santarossa, G.

    1990-01-01

    As is known to most of this audience in November of 1987 a referendum determined a rejection of nuclear power in Italy. The referendum may be taken into consideration here as a large scale experiment which offers points of interest to this conference and problems to be aware of, in approaching a severe confrontation with the public. To give a synopsis of the Italian perspective I will examine: first the public acceptance in the situation before Chernobyl, then the most disturbing and sensitive factors of Chernobyl's consequences; how the opposition to nuclear energy worked with the support of most media and the strong pressures of an anti-nuclear political party, the syllogism of the opponents and the arguments used, the causes of major weakness of the defenders and how a new perception of nuclear risk was generated in the public. I will come to the topic of utility acceptance by mentioning that ENEL, as the National Utility, in its role is bound to a policy of compliance with Government decisions. It is oriented today to performance of feasibility studies and development of requirements for the next generation of reactors in order to maintain an updated proposal for a future recovery of the nuclear option. I will then try to identify in general terms the factors determining the future acceptance of nuclear power. They will be determined in the interdisciplinary area of politics, media and public interactions with the utilities the uses of the technology are forced to follow, by political constraints, two main directives: working only in new projects to achieve, if possible, new safety goals

  1. Nuclear power in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Santarossa, G [ENEA, Rome (Italy)

    1990-07-01

    As is known to most of this audience in November of 1987 a referendum determined a rejection of nuclear power in Italy. The referendum may be taken into consideration here as a large scale experiment which offers points of interest to this conference and problems to be aware of, in approaching a severe confrontation with the public. To give a synopsis of the Italian perspective I will examine: first the public acceptance in the situation before Chernobyl, then the most disturbing and sensitive factors of Chernobyl's consequences; how the opposition to nuclear energy worked with the support of most media and the strong pressures of an anti-nuclear political party, the syllogism of the opponents and the arguments used, the causes of major weakness of the defenders and how a new perception of nuclear risk was generated in the public. I will come to the topic of utility acceptance by mentioning that ENEL, as the National Utility, in its role is bound to a policy of compliance with Government decisions. It is oriented today to performance of feasibility studies and development of requirements for the next generation of reactors in order to maintain an updated proposal for a future recovery of the nuclear option. I will then try to identify in general terms the factors determining the future acceptance of nuclear power. They will be determined in the interdisciplinary area of politics, media and public interactions with the utilities the uses of the technology are forced to follow, by political constraints, two main directives: working only in new projects to achieve, if possible, new safety goals.

  2. Medical lessons learned from chernobyl relative to nuclear detonations and failed nuclear reactors.

    Science.gov (United States)

    Dallas, Cham E

    2012-12-01

    The Chernobyl disaster in 1986 involved the largest airborne release of radioactivity in history, more than 100 times as much radioactivity as the Hiroshima and Nagasaki atomic bombs together. The resulting emergency response, administrative blunders, and subsequent patient outcomes from this large-scale radiological disaster provide a wealth of information and valuable lessons for those who may find themselves having to deal with the staggering consequences of nuclear war. Research findings, administrative strategies (successful and otherwise), and resulting clinical procedures from the Chernobyl experience are reviewed to determine a current utility in addressing the appropriate protocols for a medical response to nuclear war. As various myths are still widely associated with radiation exposure, attention is given to the realities of a mass casualty medical response as it would occur with a nuclear detonation.

  3. Operational safety of nuclear power plants

    International Nuclear Information System (INIS)

    Tanguy, P.

    1987-01-01

    The operational safety of nuclear power plants has become an important safety issue since the Chernobyl accident. A description is given of the various aspects of operational safety, including the importance of human factors, responsibility, the role and training of the operator, the operator-machine interface, commissioning and operating procedures, experience feedback, and maintenance. The lessons to be learnt from Chernobyl are considered with respect to operator errors and the management of severe accidents. Training of personnel, operating experience feedback, actions to be taken in case of severe accidents, and international cooperation in the field of operational safety, are also discussed. (U.K.)

  4. International Chernobyl project

    International Nuclear Information System (INIS)

    1991-01-01

    The film documents the work of the radiation experts of 8 international organizations in the area around the damaged Chernobyl nuclear power plant. During this evaluation, radiation measurements and medical examinations of the population were carried out and samples of soil, water, plants and food taken

  5. What is nuclear power in Japan?

    Science.gov (United States)

    Suzuki, Toshikazu

    2011-03-01

    The aggressive use of such non-fossil energy as the atomic energy with high power density and energy production efficiency is an indispensable choice aiming at the low-carbon society. There is a trial calculation that the carbon dioxide emission of 40000 ton can be suppressed by nuclear power generation by one ton of uranium. The basis of nuclear research after the Second World War in Japan was established by the researchers learnt in Argonne National Laboratory. In 2010, NPPs under operation are 54 units and the total electric generating power is 48.85GW. The amount of nuclear power generation per person of the people is 0.38kW in Japan, and it is near 0.34kW of the United States. However, the TMI accident and the Chernobyl disaster should have greatly stagnated the nuclear industry of Japan although it is not more serious than the United States. A lot of Japanese unconsciously associate a nuclear accident with the atomic bomb. According to the investigation which Science and Technology Agency carried out to the specialist in 1999, ``What will be the field where talent should be emphatically sent in the future?'' the rank of nuclear technology was the lowest in 32 fields. The influence of the nuclear industry stagnation was remarkable in the education. The subject related to the atomic energy of a university existed 19 in 1985 that was the previous year of the Chernobyl disaster decreased to 7 in 2003. In such a situation, we have to rely on the atomic energy because Japan depends for 96% of energy resources on import. The development of the fuel reprocessing and the fast breeder reactor has been continued in spite of a heavy failure. That is the only means left behind for Japan to be released from both fossil fuel and carbon dioxide.

  6. Prospects of nuclear power in the USSR after the Chernobyl accident

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoj, N.; Asmolov, V.

    1993-01-01

    Nuclear power is an integral part of the USSR power industry. At present, about 12% of the country's electricity is produced by nuclear power plants, saving about 70 million tons per year of equivalent fossil fuel. The FEC analysis reveals that any acceptable solution of the energy supply problem and limitation hazardous ecological effects cannot be achieved without appropriate development of nuclear energy capacities, with the necessary safety levels ensured. The thorough comparative analysis of nuclear power development in the USSR, taking into account the economic factors and ecological consequences of power development shows that nuclear power capacity has to be systematically increased - up to 56 million kW by the year 2000, and 95-150 million kW by 2010. The main condition for this expansion is the enhanced nuclear power safety. This development has to be competitive with the ecologically acceptable coal power plants operating in the european part of the country. (authors)

  7. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  8. Assessment of the radionuclide composition of "hot particles" sampled in the Chernobyl nuclear power plant fourth reactor unit.

    Science.gov (United States)

    Bondarkov, Mikhail D; Zheltonozhsky, Viktor A; Zheltonozhskaya, Maryna V; Kulich, Nadezhda V; Maksimenko, Andrey M; Farfán, Eduardo B; Jannik, G Timothy; Marra, James C

    2011-10-01

    Fuel-containing materials sampled from within the Chernobyl Nuclear Power Plant (ChNPP) Unit 4 Confinement Shelter were spectroscopically studied for gamma and alpha content. Isotopic ratios for cesium, europium, plutonium, americium, and curium were identified, and the fuel burn-up in these samples was determined. A systematic deviation in the burn-up values based on the cesium isotopes in comparison with other radionuclides was observed. The studies conducted were the first ever performed to demonstrate the presence of significant quantities of 242Cm and 243Cm. It was determined that there was a systematic underestimation of activities of transuranic radionuclides in fuel samples from inside of the ChNPP Confinement Shelter, starting from 241Am (and going higher) in comparison with the theoretical calculations.

  9. One year after Chernobyl - the world has changed

    International Nuclear Information System (INIS)

    1987-06-01

    The importance of the Chernobyl accidents for the antiatomic movement and nuclear power in Austria and other European countries is outlined. In the same number there several other very short contributions (without authors) whose content is indicated by the headings: The mentality of the proponents (of nuclear power). The callousness of the proponents. The feigned play of the atomic lobby shocks the Austrian public. West Germany on the march to an atomic state. First success against Wackersdorf (fuel reprocessing plant in West Germany). Temelin -the czechoslovakian Chernobyl/Cattenom- on the Austrian border. 5 figs., 1 tab. (qui)

  10. Reports of the Chernobyl accident consequences in Brazilian newspapers

    International Nuclear Information System (INIS)

    Vicente, Roberto; Oliveira, Rosana Lagua de

    2009-01-01

    The public perception of the risks associated with nuclear power plants was profoundly influenced by the accidents at Three Mile Island and Chernobyl Power Plants which also served to exacerbate in the last decades the growing mistrust on the 'nuclear industry'. Part of the mistrust had its origin in the arrogance of nuclear spokesmen and in the secretiveness of nuclear programs. However, press agencies have an important role in shaping and upsizing the public awareness against nuclear energy. In this paper we present the results of a survey in reports of some Brazilian popular newspapers on Chernobyl consequences, as measured by the total death toll of the accident, to show the up and down dance of large numbers without any serious judgment. (author)

  11. Long-term therapy for polymorphic mental disorders in liquidators of the consequences of the accident at the Chernobyl nuclear power plant

    Directory of Open Access Journals (Sweden)

    V. N. Krasnov

    2012-01-01

    Full Text Available The paper gives the results of a long-term comparative therapeutic study of a large cohort of more than 500 liquidators of the consequences of the accident at the Chernobyl nuclear power plant in 1986. The patients were followed up (and periodically treated at hospital 5 years or more, usually 10—15 years. The study confirmed mainly the cerebrovascular nature of disorders following the pattern seen in moderate psychoorganic syndrome. Therapy with cerebroprotective agents having vascular vegetotropic properties could yield certain therapeutic results and, to some extent, preserve social functioning capacity in these patients.

  12. Chernobyl: the political fall-out

    International Nuclear Information System (INIS)

    Edwards, R.

    1986-01-01

    The attitude to nuclear power of the major political parties in the United Kingdom is examined following the reactor accident at Chernobyl. In particular the Government policy, which is to reaffirm its commitment to nuclear energy, and that of the Labour opposition policy, which may be not to build any more nuclear power stations, are discussed. However, the Labour party policy is still open to debate and may be changed before the next general election. The Scottish and Welsh Nationalist parties and the Greens are all anti-nuclear. (U.K.)

  13. French lessons in nuclear power

    International Nuclear Information System (INIS)

    Valenti, M.

    1991-01-01

    In stark contrast to the American atomic power experience is that of the French. Even the disaster at Chernobyl in 1986, which chilled nuclear programs throughout Western Europe, did not slow the pace of the nuclear program of the state-owned Electricite de France (EDF), based in Paris. Another five units are under construction and are scheduled to be connected to the French national power grid before the end of 1993. In 1989, the EDF's 58 nuclear reactors supplied 73 percent of French electrical needs, a higher percentage than any other country. In the United States, for example, only about 18 percent of electrical power is derived from the atom. Underpinning the success of nuclear energy in France is its use of standardized plant design and technology. This has been an imperative for the French nuclear power industry since 1974, when an intensive program of nuclear power plant construction began. It was then, in the aftermath of the first oil embargo, that the French government decided to reduce its dependence on imported oil by substituting atomic power sources for hydrocarbons. Other pillars supporting French nuclear success include retrofitting older plants with technological or design advances, intensive training of personnel, using robotic and computer aids to reduce downtime, controlling the entire nuclear fuel cycle, and maintaining a comprehensive public information effort about the nuclear program

  14. Compendium of the Environmental Measurements Laboratory's research projects related to the Chernobyl nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Volchok, H L; Chieco, N [comps.

    1986-10-01

    Following the accident at the Chernobyl nuclear reactor power station in the USSR on April 26, 1986, the Environmental Measurements Laboratory (EML) initiated a number of research projects as follows: (1) selected sites in both the Deposition and Surface Air networks were alerted and their sampling protocols adjusted to accommodate the anticipated arrival times and activity concentrations of the Chernobyl debris; (2) a number of cooperative programs involving field work, sampling, analysis and data interpretation were set up with institutions and scientists in other countries; (3) EML's Regional Baseline Station at Chester, NJ, as well as the roof of the Laboratory in New York City, provided bases for sampling and measurements to study the radionuclide concentrations, radiation levels, physical characteristics and potential biological implications of the Chernobyl fallout on the northeastern United States; and (4) the resulting fallout from the Chernobyl accident provided an 'experiment of opportunity' in that it enabled us to study fresh fission product deposition using collection systems resurrected from the 1950's and 1960's for comparison with current state-of-the-art methodology. The 13 reports of this volume have been entered separately into the data base.

  15. Volumes of radionuclide into the basins of water while the accident at the Chernobyl nuclear power station and a specifics of radiation situation development in the post-accidents periods

    International Nuclear Information System (INIS)

    Standritchuk, O.Z.; Maksin, V.I.; Goncharuk, V.V.

    1996-01-01

    There was stated total content of radionuclide pollution, rejected to the environment in consequence of the accident at the Chernobyl nuclear power station, specifics of qualitative and quantitative change which supposes the division of post-accident period into five conventional post-accident periods. There were given the data about the levels of main fragmentation radionuclide activity in river water, atmospheric precipitation and sewage of the objects of sanitary treatment in May 1986. According to these data there were estimated the volumes of radioactive pollution rejection to the Kiev basins of water (1.56 centre dot 10 10 Ku, that is equal to 144,57 kg of radionuclides or 3,67 % of their mass in reactor) and their going into the Dnieper river. There was shown an interconnection of all season state of water basins which are near to Chernobyl nuclear power station, with specific development of radiation situation in them after the accident. There was proposed a probated variant of improvement of the traditional technology of drinking water preparation from the open water source within 1-2 post-accident periods

  16. Chernobyl: getting to the heart of the matter

    International Nuclear Information System (INIS)

    North, Richard.

    1996-01-01

    In the second of two linked articles on the aftermath of the Chernobyl nuclear reactor accident of 1986, the author explores the effects on local agriculture and the health of populations affected by the contamination from the fall-out, especially children. Agriculture around Chernobyl has resumed, with workers moving back from the cities to areas where radiation doses are similar to parts of Cornwall. Concern continues about the safety of milk from cows grazing contaminated grass and eating local mushrooms. The largest risk to children's health is not birth deformaties, but leukaemia, possibly in part due to iodine deficiency in their diet prior to contamination. Concern also continues about keeping power supplies going in areas heavily dependent on nuclear power. Reactor safety issues remaining operational RBMK reactors and the sarcophagus around Chernobyl-4 itself have yet to be resolved. (UK)

  17. Nuclear power in our societies

    International Nuclear Information System (INIS)

    Fardeau, J.C.

    2011-01-01

    Hiroshima, Chernobyl, Fukushima Daiichi are the well known sad milestones on the path toward a broad development of nuclear energy. They are so well known that they have blurred certainly for long in a very unfair way the positive image of nuclear energy in the public eye. The impact of the media appetite for disasters favours the fear and puts aside all the achievements of nuclear sciences like nuclear medicine for instance and all the assets of nuclear power like the quasi absence of greenhouse gas emission or its massive capacity to produce electricity or heat. The unique solution to enhance nuclear acceptance is the reduction of the fear through a better understanding of nuclear sciences by the public. (A.C.)

  18. Nuclear electric power plants. [Journal, in Russian]. Atomnye elektricheskie stantsii

    Energy Technology Data Exchange (ETDEWEB)

    Voronin, L M [ed.

    1980-01-01

    Separate articles are concerned with experience gained in the planning, exploitation, and adjustment of nuclear power plants with channel reactors. An examination is made of measures to be taken for assuring equipment reliability for nuclear power plants during the planning stage. Also examined is the experience gained in the operation of the pilot plants of the Kursk and Chernobyl' nuclear power plants, and the Bilibin nuclear thermal electric power plant. Considerable attention is given to the reprocessing and disposal of radioactive waste, the quality control of metal ducts in nuclear power plants, and the development of methods and means of controlling technological processes and equipment. The journal is intended for engineering-technical personnel of power plants, power supply administrations, adjustment, repair, and planning organizations.

  19. Chernobyl and Fukushima. Similarity and dissimilarity in their cause and outcome

    International Nuclear Information System (INIS)

    Shibata, Yoshisada

    2011-01-01

    We compared the two worst nuclear accidents rated INES 7, which occurred at the Chernobyl and the Fukushima Daiichi Nuclear Power Plants. Although the human errors underlie both accidents, the respective causes differed. The accident at Chernobyl was caused by the experiment which resulted in increase in criticality and activity leading to a powerful steam explosion and fire that released a significant fraction of core material into the environment, while that at Fukushima Daiichi was due to the damage to the backup power and containment systems caused by the destructive tsunami waves triggered by the 2011 earthquake off the Pacific coast of Tohoku. The physical health effects of the Chernobyl accident demonstrated so far in general population around Chernobyl are thyroid diseases including cancer in those exposed to the accident in their childhood. The long-term program monitoring for at least 30 years the health conditions of all Fukushima residents will be introduced. (author)

  20. Monitoring of radioactivity in the environs of Finnish nuclear power stations in 1986

    International Nuclear Information System (INIS)

    Ilus, E.; Sjoeblom, K.L.; Aaltonen, H.; Klemola, S.; Arvela, H.

    1987-06-01

    Results of the environmental programmes monitoring radioactivity around the Finnish nuclear power stations in 1986 are reported. After the end of April the fallout nuclides from the Chernobyl accident predominated in all samples taken from the environs of the two power stations Loviisa and Olkiluoto. Radionuclides originating from the Finnish power stations were detected mainly in samples taken from the aquatic environment. The concentrations of the locally discharged nuclides were very low in comparison with the fallout nuclides and their impact on the radiation doses of the population was insignificant. Both nuclear power stations are situated in the main fallout area in Finland. The results of these large monitoring programmes give a good picture of the behaviour of the Chernobyl fallout in the specific areas in Finland

  1. The Italian debate on nuclear energy in the post Chernobyl age

    International Nuclear Information System (INIS)

    Cantone, M.C.; Sturloni, G.

    2006-01-01

    Full text of publication follows: Italy entered with enthusiasm into the production of nuclear energy for civil use at the end of 50. By 1966 - with an overall output of 3.9 billions kWh - Italy had become the fourth world producer of electricity generated by nuclear reactions, the second one in Europe after Great Britain. Chernobyl's 1986 disaster, which so much shook public opinion all over Europe, had particularly important economic and political consequences in Italy. In a controversial referendum, held in November 1987, Italian citizens voted for the repeal of three laws which promoted the installation of nuclear power plants on the Italian soil and the participation of ENEL (National Institution for the Electrical Energy) to plant constructions abroad. The 1987 referendum was interpreted by the Italian government as an opposition to nuclear power generation - the following year, the four Italian plants (Garigliano, Latina, Trino Vercellese, Caorso) ceased their activity and plans to build new plants were abandoned. This decision marked the ruin of Italian research on nuclear energy, that in the 30 had known a glorious era thanks to Enrico Fermi works. As the 20. Anniversary of Chernobyl's accident is drawing near, the University of Milan and ICS-research group (Innovations in Communication of Science) at SISSA, Trieste, have decided to analyse jointly the reasons which brought Italy to give up its nuclear energy production. In the present scenario of controversies concerning the development of science and technology, in which European countries exchange experiences of best practice to involve the public in decision making processes, Italy reaction to Chernobyl accident can indeed be considered paradigmatic in that it anticipated crucial risks governance issues in today relationship between science and society. The research project draws on methodologies used in media studies and on socio linguistic analysis, as developed by risk perception and risk

  2. Nuclear power in crisis: Politics and planning for the nuclear state

    International Nuclear Information System (INIS)

    Blowers, A.; Pepper, D.

    1987-01-01

    The Chernobyl disaster has intensified the whole debate on the nuclear power industry. There is currently great public concern about the way the industry is regulated, about the siting of nuclear facilities, including the dumping of nuclear waste, and about the alleged secretiveness of the industry. This book examines these and many other important aspects of the industry worldwide and provides much important original research. It focuses in particular on the political processes which control the industry, on waste disposal and on the social impact

  3. 30 years After the Chernobyl Nuclear Accident: Time for Reflection and Re-evaluation of Current Disaster Preparedness Plans.

    Science.gov (United States)

    Zablotska, Lydia B

    2016-06-01

    It has been 30 years since the worst accident in the history of the nuclear era occurred at the Chernobyl power plant in Ukraine close to densely populated urban areas. To date, epidemiological studies reported increased long-term risks of leukemia, cardiovascular diseases, and cataracts among cleanup workers and of thyroid cancer and non-malignant diseases in those exposed as children and adolescents. Mental health effects were the most significant public health consequence of the accident in the three most contaminated countries of Ukraine, Belarus, and the Russian Federation. Timely and clear communication with affected populations emerged as one of the main lessons in the aftermath of the Chernobyl nuclear accident.

  4. Progress summary of the Chernobyl accident

    International Nuclear Information System (INIS)

    Iddekinge, F.W. van

    1986-01-01

    Based on two IAEA documents (the report of the USSR State Committee on the Utilization of Atomic Energy named 'The accident at the Chernobyl nuclear power plant and its consequences' prepared for the IAEA Experts Meeting held in Vienna on 25-29 August, 1986 and the INSAG (International Nuclear Safety Advisory Group) summary report on the Post-accident review meeting on the Chernobyl accident, drawn up in Vienna from August 30 until September 5, 1986, this publication tries to present a logic relation between the special features of the RMBK-1000 LWGR, the cause of the accident, and the technical countermeasures. (Auth.)

  5. Nuclear power's burdened future

    International Nuclear Information System (INIS)

    Flavin, C.

    1987-01-01

    Although governments of the world's leading nations are reiterating their faith in nuclear power, Chernobyl has brought into focus the public's overwhelming feeling that the current generation of nuclear technology is simple not working. Despite the drastic slowdown, however, the global nuclear enterprise is large. As of mid-1986, the world had 366 nuclear power plants in operation, with a generating capacity of 255,670 MW. These facilities generate about 15% of the world's electricity, ranging from 65% in France to 31% in West Germany, 23% in Japan, 16% in the United States, 10% in the Soviet Union, and non in most developing nations. Nuclear development is clearly dominated by the most economically powerful and technologically advanced nations. The United States, France, the Soviet Union, Japan, and West Germany has 72% of the world's generating capacity and set the international nuclear pace. The reasons for scaling back nuclear programs are almost as diverse as the countries themselves. High costs, slowing electricity demand growth, technical problems, mismanagement, and political opposition have all had an effect. Yet these various factors actually form a complex web of inter-related problems. For example, rising costs usually represent some combination of technical problems and mismanagement, and political opposition often occurs because of safety concerns or rising costs. 13 references

  6. Ensuring radiation safety during construction of the facility ''Ukrytie'' and restoration of unit 3 of the Chernobyl nuclear power station

    International Nuclear Information System (INIS)

    Belovodsky, L.F.; Panfilov, A.P.

    1997-01-01

    On April 26, 1986, an accident at the fourth power unit of the Chernobyl NPS (ChNPS) destroyed the reactor core and part of the power unit building, whereby sizeable amounts of radioactive materials, stored in reactor at operation, were released into the environment, and there were also highly active fragments of fuel elements and pieces of graphite from reactor spread on ChNPS site near to safety block. Information on the accident at ChNPS, including its cause and consequences, was considered at special meeting, conducted by IAEA on August 25-29, 1986, in Vienna. In final report of International Advisory Group for Nuclear Safety (IAGNS), prepared by results of meeting activities, the main stages of the accident effects elimination (AEE) immediately on the station site according to the data, received before August 1, 1986, were discussed. In 1987-1990 the published materials on the later period of AEE, completed by building ''Ukrytie'' installation at the fourth power unit of ChNPS

  7. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  8. Nuclear power and health. The implications for health of nuclear power production

    International Nuclear Information System (INIS)

    1994-01-01

    Nuclear power production is, in principle, a safe technology when practised in accordance with the well established and very strict national and international rules and regulations. Yet management failures have occurred, resulting in injuries to personnel and, occasionally, escape of radioactive material. Such events may cause potential health problems, affecting physical, mental and social well-being. Public concern still tends to concentrate on nuclear-power-related facilities, yet the public's desire for a reduction in environmental pollution has led to increased demand for the development and use of low-waste or non-waste energy technologies. Nuclear energy production is one such technology, which has become established and well developed, particularly in highly industrialized countries. This was recognized by the WHO Regional Office for Europe as early as the 1970s, and led to a series of scientific working groups to discuss the most urgent issues related to the impact on health of the generation of electrical power by means of nuclear energy. Five major meetings took place between 1975 and 1985, resulting in five publications (1 - 5) covering various aspects of particular concern to the general public (and thus also to national authorities) such as handling plutonium, managing high-level radioactive waste, and preparing for accidental releases of radioactive material. The first such publication was issued in 1977. All five books were based on the collective knowledge and experience of groups of experts, and were published following the meetings of the respective working groups. The project was initiated at the request and with the support of the Government of Belgium, to study and discuss the effects of the nuclear power industry on people and the environment. The project served two objectives. First, it assisted Member States in developing the capacity to understand the public health implications of the widespread use of nuclear power. Second, it

  9. Physical dosimetry and biological indicators of carcinogenic risk in a cohort of persons exposed to unhealthy ecological factors following the Chernobyl Nuclear Power Plant accident.

    Science.gov (United States)

    Orel, V E; Tereschenki, V M; Czyatkovskaya, N N; Mazepa, M G; Buzunov, V A

    1998-01-01

    The April 1986 Chernobyl Nuclear Power Plant accident caused ecological changes in the Ovruch State forests in the Zhytomir oblast in the Ukraine. The highest radioactivity existed in moss, followed by the pine-forest substrate and soil. During 1984-1985, the pine needles were primarily surface contaminated, whereas during 1986-1988, they were contaminated secondarily. Radioactivity in air was highest (1.07+/-0.185 Bq/l) during dry and sunny weather and when trees were felled; the lowest levels (0.196+/-0.044 Bq/l) occurred during periods of stable snow coverage. Between 1987 and 1989 (i.e., after the Chernobyl accident), the caesium levels in forestry employees exceeded by 13.9-fold the average levels found in the Ukrainian Polessje population. Ovruch forest guards and woodcutters had the highest effective equivalent doses of radiation, and they therefore exhibited the highest carcinogenic risk.

  10. Chernobyl and the safety of nuclear reactors in OECD countries

    International Nuclear Information System (INIS)

    1987-01-01

    This report assesses the possible bearing of the Chernobyl accident on the safety of nuclear reactors in OECD countries. It discusses analyses of the accident performed in several countries as well as improvements to the safety of RBMK reactors announced by the USSR. Several remaining questions are identified. The report compares RBMK safety features with those of commercial reactors in OECD countries and evaluates a number of issues raised by the Chernobyl accident

  11. Chernobyl today and compared to other disasters

    International Nuclear Information System (INIS)

    Lindner, L.

    2000-01-01

    The disaster in Unit 4 of the nuclear power plant of Chernobyl, now Ukraine, occurred fourteen years ago. Although much has been written about the accident, the public still has no proper yardstick by which to assess realistically the risk involved. This is true not only with respect to nuclear power plants of the type found in Germany and almost anywhere in the western world, but also in relation to non-nuclear disasters, which tend to be accepted by the public much more readily. As far as the number of persons killed or injured is concerned, the scope of the Chernobyl disaster turned out to be smaller than, or at least comparable to, other disasters. This is true even in comparison with other power generation technologies, for instance, accidents in coal mining or dam bursts. Even major railway accidents, airplane crashes, or the large number of people regularly killed in road traffic, are soon forgotten by the media. (orig.) [de

  12. Radiation exposure and breast cancer: lessons from Chernobyl.

    Science.gov (United States)

    Ogrodnik, Aleksandra; Hudon, Tyler W; Nadkarni, Prakash M; Chandawarkar, Rajiv Y

    2013-04-01

    The lessons learned from the Chernobyl disaster have become increasingly important after the second anniversary of the Fukushima, Japan nuclear accident. Historically, data from the Chernobyl reactor accident 27 years ago demonstrated a strong correlation with thyroid cancer, but data on the radiation effects of Chernobyl on breast cancer incidence have remained inconclusive. We reviewed the published literature on the effects of the Chernobyl disaster on breast cancer incidence, using Medline and Scopus from the time of the accident to December of 2010. Our findings indicate limited data and statistical flaws. Other confounding factors, such as discrepancies in data collection, make interpretation of the results from the published literature difficult. Re-analyzing the data reveals that the incidence of breast cancer in Chernobyl-disaster-exposed women could be higher than previously thought. We have learned little of the consequences of radiation exposure at Chernobyl except for its effects on thyroid cancer incidence. Marking the 27th year after the Chernobyl event, this report sheds light on a specific, crucial and understudied aspect of the results of radiation from a gruesome nuclear power plant disaster.

  13. Nuclear power for the next generation. Proceedings. Kernenergie fuer die naechste Generation. Berichte

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The Chernobyl reactor accident was just the last but not the only occasion that threw out the question of whether nuclear power generation has reached its peak, or probably already is on the decline, or whether there will be new chances for nuclear energy on the power market. The answer to these questions depends on a variety of factors, among which the development of demand for energy, and especially electrical energy, certainly is the decisive factor. The summarizing statements published in the proceedings in hand have been written in January 1986, i.e. before the Chernobyl reactor accident; but they still are relevant, as the long-term problems of energy policy persist, and nuclear energy has to tackle the same problems as before.

  14. Measurement of the whole-body 137Cs in residents around the Chernobyl Nuclear Power Plant

    International Nuclear Information System (INIS)

    Morita, N.; Takamura, N.; Ashizawa, K.; Shimasaki, T.; Yamashita, S.; Okumura, Y.

    2005-01-01

    To understand the current situation of internal radiation exposure in the population around the Chernobyl Nuclear Power Plant (CNPP), we examined the 137 Cs body burden in six residents of Belarus, Ukraine and Russia in 2002 and 2004 using the whole-body counter (WBC) at Nagasaki Univ. (Japan). The data were compared with those of our previous study performed in 1993-1994 using the same method. In 2002 and 2004, peaks of 137 Cs were detected in two residents from Gomel, which was heavily contaminated by the CNPP accident, one from Minsk (Belarus) and one from Kiev (Ukraine), but another resident from Minsk showed no 137 Cs peaks. The results of the present study suggests that residents around the CNPP are still exposed to chronic 137 Cs internal irradiation, probably due to the daily consumption of contaminated domestic foods, but the risk of any disease by the irradiation is quite low. Long-term follow-up of WBC around the CNPP is useful and may contribute to radiation safety regulation together with a reduction of unnecessary radio-phobia for the residents. (authors)

  15. Space Nuclear Power Public and Stakeholder Risk Communication

    Science.gov (United States)

    Dawson, Sandra M.; Sklar, Maria

    2005-01-01

    The 1986 Challenger accident coupled with the Chernobyl nuclear reactor accident increased public concern about the safety of spacecraft using nuclear technology. While three nuclear powered spacecraft had been launched before 1986 with little public interest, future nuclear powered missions would see significantly more public concern and require NASA to increase its efforts to communicate mission risks to the public. In 1987 a separate risk communication area within the Launch Approval Planning Group of the Jet Propulsion Laboratory was created to address public concern about the health, environmental, and safety risks of NASA missions. The lessons learned from the risk communication strategies developed for the nuclear powered Galileo, Ulysses, and Cassini missions are reviewed in this paper and recommendations are given as to how these lessons can be applied to future NASA missions that may use nuclear power systems and other potentially controversial NASA missions.

  16. Chernobyl nuclear catastrophe and the high risk potential for mental retardation

    International Nuclear Information System (INIS)

    Holowinsky, I.Z.

    1993-01-01

    The nuclear explosion at Chernobyl nuclear reactor on April 26, 1986, continues to have wide political, social, and medical ramifications. Hot debris from the Chernobyl reactor covered an area of more than 5,000 square kilometers with nearly 20 million curies of radionuclides. Eleven regions with a population of nearly 17 million people, of whom 2.5 million were children below the age of 5 years, suffered some degree of radioactive contamination. These children are currently of elementary school age. One of the tragedies of the explosion is that thousands of these children are at high risk for mental retardation and learning disorders

  17. Karyopathological traits of thyrocytes and exposure to radioiodines in Belarusian children and adolescents following the accident at the Chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Nadyrov, Eldar; Rozhko, Alexander; Nikonovich, Sergey [Republican Research Center for Radiation Medicine and Human Ecology, Gomel (Belarus); Kravtsov, Viacheslav; Aleksanin, Sergey [EMERCOM of Russia, Nikiforov Russian Centre of Emergency and Radiation Medicine, St. Petersburg (Russian Federation); Mabuchi, Kiyohiko; Hatch, Maureen [National Cancer Institute, Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Rockville, MD (United States); Nakamura, Nori [Radiation Effects Research Foundation, Hiroshima (Japan)

    2012-05-15

    The Belarus-American (BelAm) thyroid study cohort consists of persons who were 0-18 years of age at the time of exposure to radioactive iodine fallout from the 1986 Chernobyl nuclear power plant accident and who have undergone serial thyroid screenings with referral for fine-needle aspiration biopsy (FNAB) using standardized criteria. We investigated thyrocyte nuclear abnormalities in cytological samples from FNABs in 75 BelAm subjects with single and multiple thyroid nodules and 47 nodular goiter patients from Leningrad, Russia, unexposed to Chernobyl fallout. Nuclear abnormalities examined included internuclear chromosome bridges and derivative nuclei with broken bridges (i.e., ''tailed'' nuclei), which are formed from dicentric and ring chromosomes and thus may be cellular markers of radiation exposure. Among subjects with single-nodular goiter, thyrocytes with bridges were present in 86.8% of the exposed BelAm cohort compared with 27.0% of unexposed controls. The average frequency of thyrocytes with bridges and with tailed nuclei was also significantly higher in the BelAm subjects than in controls. Among subjects with multinodular goiters, thyrocytes with bridges were present in 75.7% of exposed BelAm patients compared with 16.7% of unexposed controls; thyrocytes with tailed nuclei were observed in all of the BelAm subjects but in only 40% of controls, and the mean frequencies of bridges and tailed nuclei were significantly higher in the exposed group. Unusually, long bridges were detected in 29% of BelAm patients with single-nodular goiters and 35% of those with multinodular goiters, while no such abnormalities were observed among patients from the Leningrad region. In the exposed subjects from BelAm, we also found positive correlations between their estimated dose of Iodine-131 from Chernobyl fallout and the frequency of tailed nuclei (p = 0.008) and bridges (p = 0.09). Further study is needed to confirm that these phenomena represent

  18. Karyopathological traits of thyrocytes and exposure to radioiodines in Belarusian children and adolescents following the accident at the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Nadyrov, Eldar; Rozhko, Alexander; Nikonovich, Sergey; Kravtsov, Viacheslav; Aleksanin, Sergey; Mabuchi, Kiyohiko; Hatch, Maureen; Nakamura, Nori

    2012-01-01

    The Belarus-American (BelAm) thyroid study cohort consists of persons who were 0-18 years of age at the time of exposure to radioactive iodine fallout from the 1986 Chernobyl nuclear power plant accident and who have undergone serial thyroid screenings with referral for fine-needle aspiration biopsy (FNAB) using standardized criteria. We investigated thyrocyte nuclear abnormalities in cytological samples from FNABs in 75 BelAm subjects with single and multiple thyroid nodules and 47 nodular goiter patients from Leningrad, Russia, unexposed to Chernobyl fallout. Nuclear abnormalities examined included internuclear chromosome bridges and derivative nuclei with broken bridges (i.e., ''tailed'' nuclei), which are formed from dicentric and ring chromosomes and thus may be cellular markers of radiation exposure. Among subjects with single-nodular goiter, thyrocytes with bridges were present in 86.8% of the exposed BelAm cohort compared with 27.0% of unexposed controls. The average frequency of thyrocytes with bridges and with tailed nuclei was also significantly higher in the BelAm subjects than in controls. Among subjects with multinodular goiters, thyrocytes with bridges were present in 75.7% of exposed BelAm patients compared with 16.7% of unexposed controls; thyrocytes with tailed nuclei were observed in all of the BelAm subjects but in only 40% of controls, and the mean frequencies of bridges and tailed nuclei were significantly higher in the exposed group. Unusually, long bridges were detected in 29% of BelAm patients with single-nodular goiters and 35% of those with multinodular goiters, while no such abnormalities were observed among patients from the Leningrad region. In the exposed subjects from BelAm, we also found positive correlations between their estimated dose of Iodine-131 from Chernobyl fallout and the frequency of tailed nuclei (p = 0.008) and bridges (p = 0.09). Further study is needed to confirm that these phenomena represent consequences of

  19. Influence the technogenic disaster at radionuclide contaminated Chernobyl zone on transgeneration changes of plants

    International Nuclear Information System (INIS)

    Rashydov, N.

    2017-01-01

    Some of the territories have naturally increased level of radiation as areas of native radioecological anomalies, but others were polluted as a result of nuclear weapon testing, nuclear waste leakage, and nuclear power plants disasters, such as Chernobyl nuclear power plant (CNPP) and Fukushima. Eventually, the large areas have been strong contaminated with radioactivity isotopes for long term. Despite more than thirty years aftermath the explosion of the CNPP accident, the problems coming from the high radionuclide contamination of the environment and the effects of chronic radiation on living organisms still remain relevant. Because the recent tragedy at the Fukushima Nuclear Power Plant in Japan is chillingly reminiscent of the world's worst nuclear disaster at Chernobyl, Ukraine in 1986. Our research addressing the effects of chronic ionizing radiation on plants, the ongoing success of plants adaptation and transgeneration changes in radio-contaminated Chernobyl area was revealed. The focus our investigation is on a role of the small dose chronic radiation due to plant biodiversity processes because it is a common adverse environmental toxicology factor. In order to characterize proteomes of plants adapting to biodiversity at radio-contaminated Chernobyl area we established non-radioactive and radio-contaminated experimental fields.

  20. THE PREVENTION PROGRAMS OF PHYSICAL REHABILITATION FOR CHERNOBYL DISASTER SURVIVORS

    OpenAIRE

    G.V. Korobeynikov; V.U. Drojjin

    2013-01-01

    The purpose of the study: approbation of the prevention program of physical rehabilitation for Chernobyl disaster survivors in lifestyle aspects. Sixty persons who were disaster survivors and workers of Chernobyl Nuclear Power Plant aged 32-60 have rehabilitation during 21 days. The complex of training prevention programs of physical and psycho-emotional rehabilitation methods was elaborated. The study of efficacy of training prevention programs among Chernobyl disaster survivors. The results...

  1. Summary of Chernobyl followup research activities

    International Nuclear Information System (INIS)

    1992-06-01

    In NUREG-1251, ''Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States,'' April 1989, the NRC staff concluded that no immediate changes in NRC's regulations regarding design or operation of US commercial reactors were needed; however, it recommended that certain issues be considered further. NRC's Chernobyl followup research program consisted of the research tasks undertaken in response to the recommendations in NUREG-1251. It included 23 tasks that addressed potential lessons to be learned from the Chernobyl accident. This report presents summaries of NRC's Chernobyl followup research tasks. For each task, the Chernobyl-related issues are indicated, the work is described, and the staff's findings and conclusions are presented. More detailed reports concerning the work are referenced where applicable. This report closes out NRC's Chernobyl followup research program as such, but additional research will be conducted on some issues as needed. The report includes remarks concerning significant further activity with respect to the issues addressed

  2. Implications of the accident at Chernobyl for safety regulation of commercial nuclear power plants in the United Sates: Volume 2, Appendix - Public comments and their disposition: Final report

    International Nuclear Information System (INIS)

    1989-04-01

    This report was prepared by the Nuclear Regulatory Commission (NRC) staff to assess the implications of the accident at the Chernobyl nuclear power plant as they relate to reactor safety regulation for commercial nuclear power plants in the United States. The facts used in this assessment have been drawn from the US fact-finding report(NUREG-1250) and its sources. The general conclusions of the document are that there are generic lessons to be learned but that no changes in regulations are needed due to the substantial differences in the design, safety features and operation of US plants as compared to those in the USSR. Given these general conclusions, further consideration of certain specific areas is recommended by the report. These include: administrative controls over reactor regulation, reactivity accidents, accidents at low or zero power, multi-unit protection, fires, containment, emergency planning, severe accident phenomena, and graphite-moderated reactors

  3. The case for the UK nuclear power industry and the implications of its closure

    International Nuclear Information System (INIS)

    Locke, D.H.; Caley, J.R.

    1987-04-01

    The Chernobyl accident has produced calls for a moratorium on further nuclear power development and construction in the UK or, in the extreme, a phasing out of existing nuclear power stations. Some suggestions as to how to counteract these demands have been collected using published information wherever possible. (author)

  4. Public and political attitudes to nuclear power in Sweden

    International Nuclear Information System (INIS)

    Wikdahl, C.-E.; Swedish Atomic Forum)

    1988-01-01

    The first important decisions about a large nuclear programme in Sweden were taken in the early 1960s without any political opposition at all. The first signs of an anti-nuclear movement were seen in 1972, and at the general election in 1976 nuclear power was for the first time the main political issue. It remained so until 1980, when Parliament, after a referendum, decided to phase out nuclear power not later than the year 2010. After that decision, political interest in nuclear power evaporated, but returned again after the Chernobyl accident in April 1986. Both the decision in Parliament in 1980 and the Government's bill of May 1987 put Sweden in an unique position. Public attitudes and the political situation in Sweden are examined. (author)

  5. Chernobyl: exclusive investigation. How the French nuclear lobby buries the truth in contaminated areas. The After-Chernobyl or 'Living happy' in contaminated area

    International Nuclear Information System (INIS)

    2006-01-01

    According to the results of this inquiry, the CEPN (study centre on assessment of protection in the nuclear sector) has been created by the main actors of the nuclear industrial sector (EFG, Cogema, CEA and IRSN) and is at the origin of the ETHOS and CORE projects. Moreover, these projects have been financed by public funds. It also shows that the FNSEA (farmer trade union) has been allied to the French nuclear lobby for the distribution probably contaminated and radioactive foodstuff. It evokes the case of Belarus researcher who denounced such contamination and the misappropriation of international funds, and who was sent to jail. It comments the collaboration between the French nuclear sector and the Belarus regime, denounces how the truth about Chernobyl has been hidden, the cynical results of the ETOS program which would imply the consumption of contaminated foodstuff in France in case of nuclear accident. Some proposals are made: to dismantle the CEPN, to stop the participation of French organisations to the CORE and FARMING programs, creation of an independent commission on the consequences of the Chernobyl accident, and so on. For the authors, phasing out nuclear is the only solution o avoid a new Chernobyl

  6. Nuclear Power Plant Control and Instrumentation activities in Finland

    International Nuclear Information System (INIS)

    Haapanen, P.; Wahlstroem, B.

    1990-01-01

    Finland has achieved some remarkable achievements in nuclear power production. Existing four plants have some of the best operating records in the world - high capacity factors, low occupational doses and short refuelling outages. Although public opinion was strongly turned against nuclear power after Chernobyl accident, and no decisions for new nuclear plants can be made before next elections in 1991, the nuclear option is still open. Utility companies are maintaining readiness to start new construction immediately after a positive political decision is made. One important component of the good operation history of the Finnish nuclear power plants is connected to the continuous research, development, modification and upgrading work, which is proceeding in Finland. In the following a short description is given on recent activities related to the I and C-systems of the nuclear power plants. (author). 2 tabs

  7. Chernobyl and the problem of international obligations regarding nuclear accidents

    International Nuclear Information System (INIS)

    Strohl, P.

    1988-01-01

    This paper analyses the way nuclear law was put to the test by the Chernobyl accident - in particular international nuclear law - so as to propose a train of thought which might contribute to adopting and revising the legal system presently in force or even new orientations. It deals only with that part of nuclear law which concerns accidents and their consequences (NEA) [fr

  8. Status report on nuclear power - information from STN databases

    International Nuclear Information System (INIS)

    Prinz, H.

    1995-01-01

    The worldwide future of nuclear power as seen about 25 years ago is presented based on a literature search in the INIS database. The role of nuclear power today, after TMI and Chernobyl, in energy supplies and in combating the greehouse effect is evaluated by literature searches in STN databases (e.g. INIS, ETDE, COMPENDEX, CA, ULIDAT, INSPEC). An evaluation is given of the different information contents of bibliographic databases such as INIS and pure information databases such as NLDB. (orig./HP)

  9. Chernobyl and its consequences

    International Nuclear Information System (INIS)

    Ettemeyer, R.

    1986-01-01

    The accident of 26 April 1986 in Chernobyl with the immense activity release was a catastrophe which took many victims and will still take many. This fact should not be hidden. This brochure represents an attempt to reflect the poor information from Chernobyl in a generally understandable manner and to assess them. Its goal is especially to make clear why even in maximum accidents in German nuclear power plants there is no danger to the population. The effects of the radioactive substances released after the accident in Chernobyl on Germany are described and put into relation. All presentations and descriptions were kept as models and were simplified and are therefore incomplete. This brochure was not meant to be an educational book; it only tries to respond to the questions raised by the accident in Chernobyl in the minds of non-professionals thus taking away the fear and strengthening the confidence in the safety of German reactors. (orig.) [de

  10. Safety in nuclear power plants

    International Nuclear Information System (INIS)

    Koeberlein, K.

    1987-01-01

    In nuclear power plants large amounts of radioactive fission products ensue from the fission of uranium. In order to protect the environment, the radioactive material is confined in multiple 'activity barriers' (crystal matrix of the fuel, fuel cladding, coolant boundary, safety containment, reactor building). These barriers are protected by applying a defense-in-depth concept (high quality requirements, protection systems which recognize and terminate operational incidents, safety systems to cope with accidents). In spite of a favorable safety record of German nuclear power plants it is obvious - and became most evident by the Chernobyl accident - that absolute safety is not achievable. At Chernobyl, however, design disadvantages of that reactor type (like positive reactivity feedback of coolant voiding, missing safety containment) played an important role in accident initiation and progression. Such features of the Russian 'graphite-moderated pressure tube boiling water reactor' are different from those of light water reactors operating in western countries. The essential steps of the waste management of the nuclear fuel cycle ('Entsorgung') are the interim storage, the shipment, and the reprocessing of the spent fuel and the final repository of radioactive waste. Reprocessing means the separation of fossil material (uranium, plutonium) from radioactive waste. Legal requirements for radiological protection of the environment, which are identical for nuclear power plants and reprocessing plant, are complied with by means of comprehensive filter systems. Safety problems of a reprocessing plant are eased considerably by the fact that system pressures, process temperatures and energy densities are low. In order to confine the radioactive waste from the biosphere for a very long period of time, it is to be discarded after appropriate treatment into the deep geological underground of salt domes. (orig./HP) [de

  11. Psychological lessons of Chernobyl

    International Nuclear Information System (INIS)

    Abramova, V.N.

    1989-01-01

    Up to the time of the disaster, the Chernobyl Nuclear Power Plant was regarded as one of the best in the USSR, and the city of Pripyat, housing the plant's staff, was rightly called one of the most comfortable. Also, the psychological climate of the plant provided no causes for worry. This was a worked-in team, composed of seasoned and knowledgeable experts. How can one then explain the events that happened in such an unlikely place. Isn't there a danger that the situation will repeat itself? The author considers the question and other psychological aspects of the Chernobyl incident

  12. Chernobyl versus Basic Law

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, G W

    1986-01-01

    The author discusses the terms 'remaining risk to be accepted' and 'remainder of the aggregate risk', and explains the line of action to be adopted in compliance with the Constitution in order to respond to the event at Chernobyl: The Constitution demands maximum acceptable limits to be defined as low as possible. The author discusses the various dose estimations and the contradictions to be observed in this context. He states that the Chernobyl accident has done most harm to our legal system, as the basic right of freedom from injury has been ploughed under with the radioactivity that covered the soil after the Chernobyl accident. But, he says, a positive effect is that the idea of abandoning nuclear power as too dangerous a technology has gained more widespread acceptance. (HSCH).

  13. Chernobyl versus Basic Law?

    International Nuclear Information System (INIS)

    Sauer, G.W.

    1986-01-01

    The author discusses the terms 'remaining risk to be accepted' and 'remainder of the aggregate risk', and explains the line of action to be adopted in compliance with the Constitution in order to respond to the event at Chernobyl: The Constitution demands maximum acceptable limits to be defined as low as possible. The author discusses the various dose estimations and the contradictions to be observed in this context. He states that the Chernobyl accident has done most harm to our legal system, as the basic right of freedom from injury has been ploughed under with the radioactivity that covered the soil after the Chernobyl accident. But, he says, a positive effect is that the idea of abandoning nuclear power as too dangerous a technology has gained more widespread acceptance. (HSCH) [de

  14. Nuclear power: safety and prospects

    International Nuclear Information System (INIS)

    Miniere, D.

    2012-01-01

    Despite the Fukushima accident new countries are willing to use nuclear power and as a nuclear accident somewhere is a nuclear accident everywhere, all countries are concerned with nuclear safety. A big association that would gather all the national Safety Authorities would be an efficient tool to promote and improve safety at the world scale and may be the unique available tool as no country would let a foreign authority to drive its own nuclear industry. An important lesson from Fukushima and Chernobyl accidents is that the signature of a big nuclear accident is not the number of casualties (it will always be limited) but the importance of the radioactive contamination. The question is how to make this long-term and long-range contamination impossible to happen, it is the mission of nuclear safety. (A.C.)

  15. Return to Chernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Nosovsky, Anatolij

    1995-09-01

    Despite the catastrophic accident at the Chernobylsk 4 reactor in 1986, the Ukraine is currently expanding its nuclear industry. The government is committed to increasing the share of nuclear output to 40% of the country`s electric power and the Chernobyl plant is included in this plan. All the Chernobyl reactors were closed down at the time of the accident, but units 1, 2 and 3 had all been restarted after safety modifications by December 1987. A fire in the turbine hall of unit 2 in 1991 resulted in the closure of that reactor and precipitated a political decision to close the entire plant by 1993. The economic consequences of such action and the safe operation of the remaining two reactors led, however, to the reversal of that decision. Work is now far advanced on unit 2 for a restart in 1996 and the management wants to upgrade all three reactors according to IAEA guidelines. Nevertheless, the question of closure of the Chernobyl plant remains in the air. A conditional acceptance of closure by 2000 has been made by the Ukraine provided the shortfall in power is taken up by a new gas-fired station. International finance is being sought for decommissioning, for urgent action on the decaying sarcophagus of unit 4, and for the gas-fired plant. Closure of the plant, given the social upheaval of the accident and recent political events, could contribute to the health of the Ukrainian national psyche. (UK).

  16. Return to Chernobyl

    International Nuclear Information System (INIS)

    Nosovsky, Anatolij.

    1995-01-01

    Despite the catastrophic accident at the Chernobylsk 4 reactor in 1986, the Ukraine is currently expanding its nuclear industry. The government is committed to increasing the share of nuclear output to 40% of the country's electric power and the Chernobyl plant is included in this plan. All the Chernobyl reactors were closed down at the time of the accident, but units 1, 2 and 3 had all been restarted after safety modifications by December 1987. A fire in the turbine hall of unit 2 in 1991 resulted in the closure of that reactor and precipitated a political decision to close the entire plant by 1993. The economic consequences of such action and the safe operation of the remaining two reactors led, however, to the reversal of that decision. Work is now far advanced on unit 2 for a restart in 1996 and the management wants to upgrade all three reactors according to IAEA guidelines. Nevertheless, the question of closure of the Chernobyl plant remains in the air. A conditional acceptance of closure by 2000 has been made by the Ukraine provided the shortfall in power is taken up by a new gas-fired station. International finance is being sought for decommissioning, for urgent action on the decaying sarcophagus of unit 4, and for the gas-fired plant. Closure of the plant, given the social upheaval of the accident and recent political events, could contribute to the health of the Ukrainian national psyche. (UK)

  17. World after Chernobyl. What does the nuclear accident mean to us. Vaerlden efter Tjernobyl. Vad betyder kaernkraftsolyckan foer oss

    Energy Technology Data Exchange (ETDEWEB)

    Sjoequist, E; Eckered, T

    1986-01-01

    The reactor accident in Chernobyl on April 26 1986 is described, and in particular, the dissemination of information about the accident in Sweden and abroad. The authors also discuss the health impact to people in Sweden from the reactor accident, and the implications for the future of nuclear power.

  18. Chernobyl - consequences and conclusions

    International Nuclear Information System (INIS)

    1986-10-01

    The Chernobyl accident has taught mankind very plainly that nuclear energy bears a deadly potential and thus is to be ranked as a key problem of future decisions in the sector of power engineering. Decisions to be taken in future have to be seen in the context of the ecological, economic, and social needs. The statements given reflect the FEST's opinion on nuclear energy and the biological, economic, political, and ethical implications. (DG) [de

  19. Chernobyl and the consequences

    International Nuclear Information System (INIS)

    Raestrup, R.; Kundke, J.

    1986-01-01

    The brochure contains the texts of a broadcasting series with the following subjects: 1) Brighter than a thousand suns - what happened at Chernobyl; 2) Radical assault on the genetic material - the effect of radiation; 3) It's the dose that counts - slight radiation and human health; 4) Nuclear fallout - contamination levels of water, soil and air; 5) Safety against bombing - how safe are German nuclear power plants; 6) Practical advice for consumers. (HP) [de

  20. 10 blows that stopped nuclear power

    International Nuclear Information System (INIS)

    Komanoff, C.

    1991-01-01

    The author describes these 10 blows in chronological order, 1973 through 1981, namely: (1) Arab Oil Embargo; (2) India Explodes a Bomb; (3) NRC replaces AEC; (4) Fire at Browns Ferry; (5) General Electric and NRC Engineers switch Sides; (6) Amory Lovins Recasts the Energy Debate; (7) The Seabrook Occupation; (8) The Three Mile Island Accident; (9) Federal Reserve Tightens the Money Supply; and (1) Pacific Gas and Electric Co. Gets it Backwards at Diablo Canyon. he stops there, not including the Washington Public Power Supply fiasco and the Chernobyl disaster, feeling nuclear expansion was essentially foreclosed without them. Further, he feels nuclear power seems fated to be forever at the mercy of forces beyond its control

  1. International Conference 'Twenty Years after Chernobyl Accident. Future Outlook'. Abstracts proceeding; Myizhnarodna konferentsyiya 'Dvadtsyat' rokyiv Chornobil's'koyi katastrofi. Poglyad u majbutnje'. Zbyirka tez

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2006-07-01

    This conference concludes a series of events dedicated to the 20 anniversary of the Chernobyl accident and promote an effective implementation of the accumulated international experience in the following areas: Radiation protection of the population and emergency workers, and the environmental consequences of Chernobyl accident; Medical and public health response to radiation emergencies; Strengthening radiological emergency management of radiation accidents; Economic and legal aspects of radioactive waste management and nuclear power plants decommissioning; Radioactive waste management: Chernobyl experience; Nuclear power plant decommissioning: Chernobyl NPP; Transformation of the Chernobyl Sarcophagus into an ecologically safe system.

  2. Nuclear power and the environment

    International Nuclear Information System (INIS)

    Mackerron, Gordon; Berkhout, Frans

    1990-01-01

    The environmental effects of nuclear power discussed in this paper are specifically the effects of radiation on human populations, either directly or through the food chain. Controlling the environmental effects of nuclear power has two dimensions, waste management and safety. Regulatory controls aim to keep the risk of death due to man-made radiation down to what is thought to be an acceptable level; the background to the establishing of such levels is examined. The scale of the nuclear industry is outlined. In industrial countries with nuclear power, with the possible exception of the USA and USSR which have extensive nuclear weapons programmes, most radioactive wastes arise in the civil nuclear fuel cycle; medical, research and industrial users of nuclear materials produce the rest. The extreme variety of materials included in radioactive wastes is highlighted. Approaches to the management of different kinds of radioactive waste are discussed; the particular problems associated with reactor decommissioning are considered. The enormous potential harm of serious accidents at nuclear power plants through a release of large quantities of radionuclides into the environment has been a dominant influence in the design of reactors. The accidents at Three Mile Island and Chernobyl underline the need for careful examination of management issues as well as design and operational failures. Finally, the catastrophic effects of a full scale nuclear war are briefly considered within the context of nuclear proliferation and international security. (UK)

  3. Swiss operating experience: availability and post-Chernobyl upgrading

    International Nuclear Information System (INIS)

    Wenger, H.

    1988-01-01

    Switzerland started its era of nuclear power with the foundation stone for the country's first nuclear power unit (Beznau-1) onSeptember 6, 1965. Up to that date, Switzerland was the classic country for hydropower, negligible amounts of electricity being produced by fossil-fuelled plants. Today, nuclear accounts for close to 40 % of Swiss total electricity generation. Whwn credits for lifetime capacity factors of each individual plant are combined, Switzerland tops the world list for light water reactor performance over many years. The Chernobyl reactor type RBMK-1000 has very little in common with the light water reactors operating in Switzerland, so one would certainly not expect any direct influence on Swiss plant design, operation or maintenance as an immediate consequence of the accident. Some important safety measures against severe accidents are currently being implemented. These measures were not a direct outcome of the Chernobyl accident and were already in discussion quite some time before. With this action, the proper position of nuclear power to meet the ever increasing demand for electricity in Switzerland will hopefully again find greater public acceptance. 1 tab

  4. Tracking the cloud from Chernobyl

    International Nuclear Information System (INIS)

    ApSimon, Helen; Wilson, Julian

    1986-01-01

    In the aftermath of the accident at Chernobul nuclear power station, many scientists are studying how the radionuclides from the reactor's core dispersed across Europe and became deposited on the ground. A group in the Department of Mechanical Engineering at Imperial College have developed a computer model, MESOS, specifically to study the transport of pollutants in the atmosphere over very large distances. In the past, this model has been used to study the potential consequences of hypothetical accidents at nuclear power plants in neighbouring countries. Now it has been used to estimate where the radioactivity from Chernobyl went. The Chernobyl model is explained and some estimates from the MESOS model are presented. By comparing the model estimates with observations a full assessment of the environmental consequences of the accident will be possible. It should be possible to find out the way in which pollutants travel long distances, how they are deposited on the ground and their transport through food chains. (U.K.)

  5. Chernobyl explosion bombshell

    International Nuclear Information System (INIS)

    Martin, S.; Arnott, D.

    1988-01-01

    It is suggested that the explosion at the Chernobyl-4 reactor in April 1986 was a nuclear explosion. The evidence for this is examined. The sequence of events at Chernobyl is looked at to see if the effects were like those from a nuclear explosion. The question of whether a United Kingdom reactor could go prompt critical is discussed. It is concluded that prompt criticality excursions are possible, but the specific Chernobyl sequence is impossible. (UK)

  6. Processing and analysis of commercial satellite image data of the nuclear accident near Chernobyl, U.S.S.R

    International Nuclear Information System (INIS)

    Sadowski, F.G.; Covington, S.J.

    1987-01-01

    Advanced digital processing techniques were applied to Landsat-5 Thematic Mapper (TM) data and SPOT high-resolution visible (HRV) panchromatic data to maximize the utility of images of a nuclear power plant emergency at Chernobyl in the Soviet Ukraine. The results of the data processing and analysis illustrate the spectral and spatial capabilities of the two sensor systems and provide information about the severity and duration of the events occurring at the power plant site

  7. Process of public attitudes toward nuclear power generation

    International Nuclear Information System (INIS)

    Shimooka, Hiroshi

    1993-01-01

    The Japanese public attitudes toward nuclear power generation had become negative year by year. After the Chernobyl accident, a percentage of the unfavorable respondent toward nuclear power generation has dramatically increased, and a new type of anti-nuclear movement has been observed. On the basis of our public opinion polls, the reason for this increase was found to be primarily decrease of sense of usefulness rather than increase of sense of nueasiness about nuclear safety. Particularly, social factors (change of life style, progress of civilian consciousness, credibility of the existing institutional system etc.) have influence on the attitude of either pro or anti-nuclear. Based on the above observation, we have inferred that process of the public attitudes has two flows arising from the above social factors, one is the usefulness and the other is the easiness about nuclear safety, and have formulated a model representing the process of public attitudes toward nuclear power. (author)

  8. Safety policy for nuclear power development

    International Nuclear Information System (INIS)

    Uchida, Hideo

    1987-01-01

    The report discusses various aspects of the safety policy for nuclear power development in Japan. Nuclear power development over three decades in Japan has led to operating performance which is highly safe and reliable. This has been appreciated internationally. Discussed here is the Japanese basic safety policy for nuclear power development that is essential first to design, manufacture and construction using high technology. The current careful quality assurance and reliable operation management by skilled operators are relied upon, on the basis of the fact that measures to prevent abnormal events are given first priority rather than those to mitigate consequences of abnormal events or accidents. Lessons learned from accidents and failures within or outside Japan such as the TMI accident and Chernobyl accident have been reflected in the improvement of safety through careful and thorough examinations of them. For further improvement in nuclear safety, deliberate studies and investigations on severe accidents and probabilistic safety assessment are considered to be important. Such efforts are currently being promoted. For this purpose, it is important to advance international cooperation and continue technical exchanges, based on operation experience in nuclear power stations in Japan. (Nogami, K.)

  9. Technical and scientific support of nuclear power development in Belarus

    International Nuclear Information System (INIS)

    Mikhalevich, A.

    2007-01-01

    In the end of 1986 the construction of the first NPP in Belarus was stopped after Chernobyl accident but investigations in the nuclear field were continued. Recently the decision about nuclear power development has been accepted again. Therefore at present technical and scientific support of managerial, administrative and organisational decisions and activities in this sphere is of great importance. (author)

  10. Contamination and radiation exposure in Germany following the accident at the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Ettenhuber, E.; Winkelmann, I.; Ruehle, H.R.; Bayer, A.; Wirth, E.; Haubelt, R.; Koenig, K.

    1997-01-01

    The radioactive substances released following the accident at the Chernobyl nuclear power plant were distributed by atmospheric transport over large parts of Europe. Due to dry and wet deposition processes, soil and Plants were contaminated. The ''radioactive cloud'' was first monitored on the 29th of April by near surface measurement stations; by the 30th of April the whole of southern Germany was affected. The contaminated air then spread out in both westerly and northerly directions, resulting in increased airborne radioactivity over the entire country within the following days. Airborne radionuclides were deposited on soil and plants in dry form as well as by precipitation. Locally varying deposits resulted from different activity concentrations in aerosols and very large differences in the intensity of precipitation during the passage of contaminated air masses. Rain fails were particularly heavy in Germany during the time the cloud was passing, especially south of the Danube where on average 2,000 to 50,000 Bq of Cs-137 was deposited per square meter on soil, and in some cases even as much as 100,000 Bq per square meter

  11. Contamination and radiation exposure in Germany following the accident at the Chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ettenhuber, E; Winkelmann, I; Ruehle, H R [Bundesamt fuer Strahlenschutz, Berlin (Germany); Bayer, A; Wirth, E; Haubelt, R; Koenig, K [Bundesamt fuer Strahlenschutz, Muenchen (Germany)

    1997-09-01

    The radioactive substances released following the accident at the Chernobyl nuclear power plant were distributed by atmospheric transport over large parts of Europe. Due to dry and wet deposition processes, soil and Plants were contaminated. The ``radioactive cloud`` was first monitored on the 29th of April by near surface measurement stations; by the 30th of April the whole of southern Germany was affected. The contaminated air then spread out in both westerly and northerly directions, resulting in increased airborne radioactivity over the entire country within the following days. Airborne radionuclides were deposited on soil and plants in dry form as well as by precipitation. Locally varying deposits resulted from different activity concentrations in aerosols and very large differences in the intensity of precipitation during the passage of contaminated air masses. Rain fails were particularly heavy in Germany during the time the cloud was passing, especially south of the Danube where on average 2,000 to 50,000 Bq of Cs-137 was deposited per square meter on soil, and in some cases even as much as 100,000 Bq per square meter. 2 refs, 3 figs, 1 tab.

  12. Since Chernobyl: A World of Difference.

    Science.gov (United States)

    Clamp, Alice

    1991-01-01

    This article chronicles the international collaboration behind the technological review and the subsequent upgrading of operational safety procedures at Soviet-designed nuclear power plants within the Soviet Union and various Eastern European countries in the aftermath of the tragedy at Chernobyl. (JJK)

  13. Nuclear power in eastern and central Europe. Background paper

    International Nuclear Information System (INIS)

    Myers, L.C.

    1993-11-01

    The breakup of the former Soviet Union and other political changes in eastern and central Europe have opened up the area to closer scrutiny than was previously possible. Because of the accident at Chernobyl, nuclear power is one of the subjects that western nations have had a great deal of interest in exploring. The former Soviet Union designed and/or helped build more than 60 civilian reactors in the region. Most of these reactors follow one of two distinctly different designs: the VVER, or pressurized water reactor series; and the RBMK, which is a graphite-moderated, multi-channel reactor (the so-called Chernobyl type). In addition, there are two fast-breeder reactors and four graphite-moderated boiling water reactors for combined heat and power in operation in Russia. These last two designs are not widely distributed and so are not discussed in detail in this report. As noted above, the safety of Soviet-designed reactors has been of great concern around the world since the catastrophic events at Chernobyl in 1986. This paper will briefly describe the technology involved. It will also examine the main safety concerns, both technical and organizational, associated with each reactor type. In addition, the paper will review the nuclear power programs in the new countries emerging from the former Soviet Union and its satellites and discuss the international efforts underway to address the most pressing problems. (author). 1 tab

  14. Nuclear power in eastern and central Europe. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Myers, L C [Library of Parliament, Ottawa, ON (Canada). Science and Technology Div.

    1993-11-01

    The breakup of the former Soviet Union and other political changes in eastern and central Europe have opened up the area to closer scrutiny than was previously possible. Because of the accident at Chernobyl, nuclear power is one of the subjects that western nations have had a great deal of interest in exploring. The former Soviet Union designed and/or helped build more than 60 civilian reactors in the region. Most of these reactors follow one of two distinctly different designs: the VVER, or pressurized water reactor series; and the RBMK, which is a graphite-moderated, multi-channel reactor (the so-called Chernobyl type). In addition, there are two fast-breeder reactors and four graphite-moderated boiling water reactors for combined heat and power in operation in Russia. These last two designs are not widely distributed and so are not discussed in detail in this report. As noted above, the safety of Soviet-designed reactors has been of great concern around the world since the catastrophic events at Chernobyl in 1986. This paper will briefly describe the technology involved. It will also examine the main safety concerns, both technical and organizational, associated with each reactor type. In addition, the paper will review the nuclear power programs in the new countries emerging from the former Soviet Union and its satellites and discuss the international efforts underway to address the most pressing problems. (author). 1 tab.

  15. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Schaefer, A.

    1990-01-01

    I want to give some ideas on the situation of public and utility acceptance of nuclear power in the Federal Republic of Germany and perhaps a little bit on Europe. Let me start with public perception. I think in Germany we have a general trend in the public perception of technology during the last decade that has been investigated in a systematic manner in a recent study. It is clear that the general acceptance of technology decreased substantially during the last twenty years. We can also observe during this time that aspects of the benefits of technology are much less reported in the media, that most reporting by the media now is related to the consequences of technologies, such as negative environmental consequences. hat development has led to a general opposition against new technological projects, in particular unusual and large. That trend is related not only to nuclear power, we see it also for new airports, trains, coal-fired plants. here is almost no new technological project in Germany where there is not very strong opposition against it, at least locally. What is the current public opinion concerning nuclear power? Nuclear power certainly received a big shock after Chernobyl, but actually, about two thirds of the German population wants to keep the operating plants running. Some people want to phase the plants out as they reach the end-of-life, some want to substitute newer nuclear technology, and a smaller part want to increase the use of nuclear power. But only a minority of the German public would really like to abandon nuclear energy

  16. Radioactive fallout from the Chernobyl nuclear reactor accident

    International Nuclear Information System (INIS)

    Beiriger, J.M.; Failor, R.A.; Marsh, K.V.; Shaw, G.E.

    1987-08-01

    This report describes the detection of fallout in the United States from the Chernobyl nuclear reactor accident. As part of its environmental surveillance program, Lawrence Livermore National Laboratory maintained detectors for gamma-emitting radionuclides. Following the reactor accident, additional air filters were set out. Several uncommon isotopes were detected at the time the plume passed into the US

  17. Radiation monitoring using imaging plate technology: A case study of leaves affected by the Chernobyl nuclear power plant and JCO criticality accidents

    Directory of Open Access Journals (Sweden)

    Kimura Shinzo

    2006-01-01

    Full Text Available This paper describes the use of a photostimulable phosphor screen imaging technique to detect radioactive contamination in the leaves of wormwood (Artemisia vulgaris L and fern (Dryopteris filix-max CL. Schoff plants affected by the Chernobyl nuclear power plant accident. The imaging plate technology is well known for many striking performances in two-dimensional radiation detection. Since imaging plate comprises an integrated detection system, it has been extensively applied to surface contamination distribution studies. In this study, plant samples were collected from high- and low-contaminated areas of Ukraine and Belarus, which were affected due to the Chernobyl accident and exposed to imaging technique. Samples from the highly contaminated areas revealed the highest photo-stimulated luminescence on the imaging plate. Moreover, the radio nuclides detected in the leaves by gamma and beta ray spectroscopy were 137Cs and 90Sr, respectively. Additionally, in order to assess contamination, a comparison was also made with leaves of plants affected during the JCO criticality accident in Japan. Based on the results obtained, the importance of imaging plate technology in environmental radiation monitoring has been suggested.

  18. The future of nuclear power

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO 2 ) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  19. Attitude of public opinion to nuclear power, and reasons of prejudiced position towards it

    International Nuclear Information System (INIS)

    Vishnevs'kij, Yi.M.; Trofimenko, A.P.

    1998-01-01

    A review of events which have led to the public opposition to nuclear power is given. Arguments of 'Greens' and social structure of this movement are exposed. INIS Database was used for finding the main directions of works in nuclear power in the World and for their comparison with such directions in thermal power field. The results obtained demonstrate that the 'Greens' strongly exaggerate the nuclear hazards and do not pay due attention to environmental pollution from fossil-fuel power plants. Attitude of the population in Ukraine to nuclear power after Chernobyl accident is analysed and actions for public opinion balancing are proposed

  20. Vertical Distribution and Estimated Doses from Artificial Radionuclides in Soil Samples around the Chernobyl Nuclear Power Plant and the Semipalatinsk Nuclear Testing Site

    Science.gov (United States)

    Taira, Yasuyuki; Hayashida, Naomi; Tsuchiya, Rimi; Yamaguchi, Hitoshi; Takahashi, Jumpei; Kazlovsky, Alexander; Urazalin, Marat; Rakhypbekov, Tolebay; Yamashita, Shunichi; Takamura, Noboru

    2013-01-01

    For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP) and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides (241Am, 134Cs, 137Cs, and 60Co) were detected in surface soil around CNPP, whereas seven artificial radionuclides (241Am, 57Co, 137Cs, 95Zr, 95Nb, 58Co, and 60Co) were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991). These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public. PMID:23469013

  1. Vertical distribution and estimated doses from artificial radionuclides in soil samples around the Chernobyl nuclear power plant and the Semipalatinsk nuclear testing site.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Taira

    Full Text Available For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS, the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides ((241Am, (134Cs, (137Cs, and (60Co were detected in surface soil around CNPP, whereas seven artificial radionuclides ((241Am, (57Co, (137Cs, (95Zr, (95Nb, (58Co, and (60Co were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991. These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP, and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public.

  2. Vertical distribution and estimated doses from artificial radionuclides in soil samples around the Chernobyl nuclear power plant and the Semipalatinsk nuclear testing site.

    Science.gov (United States)

    Taira, Yasuyuki; Hayashida, Naomi; Tsuchiya, Rimi; Yamaguchi, Hitoshi; Takahashi, Jumpei; Kazlovsky, Alexander; Urazalin, Marat; Rakhypbekov, Tolebay; Yamashita, Shunichi; Takamura, Noboru

    2013-01-01

    For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP) and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides ((241)Am, (134)Cs, (137)Cs, and (60)Co) were detected in surface soil around CNPP, whereas seven artificial radionuclides ((241)Am, (57)Co, (137)Cs, (95)Zr, (95)Nb, (58)Co, and (60)Co) were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991). These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public.

  3. After Chernobyl. Possibilities of phasing out nuclear power in Sweden

    International Nuclear Information System (INIS)

    1987-01-01

    According to the currently applicable Parliamentary decision, the phasing out of nuclear power in Sweden must be completed by the year 2010. The National Energy Administration has analyzed the following questions. If it were to become evident that operating several or all of the Swedish nuclear power plants entailed serious risks, what possibilities would there be of phasing them out in the short term or over a longer period. And what would the consequences be with regard to the national economy and the environment? First we report the consequences of a rapid phase-out. Here, it is assumed that several or all nuclear plants would be taken out of operation within a period of two years. Available compensatory resources would be limited to more intensive utilization of existing hydropower, back-pressure plants, combined power and heating plants and oil-fired plants. The second alternative is a phase-out in ten years. Moreover, a case is discussed in which phase-out is planned and implemented from 1987 to 2005. Such a plan would provide industry more time to adjust, while a number of alternative techniques and fuels could be used to replace nuclear power. The consequences of the different phase-out alternatives can be described only within a framework of certain assumptions regarding the worldwide development. Important factors here include fuel prices and economic trends. Environmental restrictions comprise another important prerequisite

  4. Chernobyl - and then?

    International Nuclear Information System (INIS)

    Sjoestroem, Ulla

    1990-01-01

    The report describes how the different parties of the nuclear debate react to, and deal with, the information that arises on the issue, i.e. the process that leads to decision making. After the Chernobyl accident, a public enquiry was made, to form a base for decisions regarding the future energy policy of Sweden, including the phasing-out of nuclear power. The differing interpretations and uses of the results of this enquiry are studied, in the hope to clarify and separate factual and value-based appreciations of different energy policy alternatives

  5. Clinical aspects of the health disturbances in Chernobyl Nuclear Power Plant accident clean-up workers (liquidators) from Latvia.

    Science.gov (United States)

    Eglite, M E; Zvagule, T J; Rainsford, K D; Reste, J D; Curbakova, E V; Kurjane, N N

    2009-06-01

    The health status of some 6,000 workers from Latvia who went to clean-up the Chernobyl Nuclear Power Plant (CNPP) site following the explosion on 26 April 1986 has been analyzed. The data on these workers have been recorded in the Latvian State Register of Occupational disease patients and people exposed to ionizing radiation due to Chernobyl NPP accident (Latvian State Register) that was established in 1994. From these data, estimates have been made of external ionizing radiation to which these workers were exposed together with observations on the impact of exposure to heavy metals (especially lead and zinc) and radioactive isotopes released during the reactor 'meltdown'. These factors along with psycho-emotional and social-economic stresses account for a marked excess of mortality and morbidity in the group of CNPP accident clean-up workers compared with that of the non-exposed normal Latvian population adjusted for age and sex. The number of diseases or conditions in the CNPP accident clean-up workers has progressively risen from an average of 1.3 in 1986 to 10.9 in 2007. This exceeds for the Latvian population when adjusted for age and sex. The most serious conditions affect the nervous, digestive, respiratory, cardiovascular, endocrine (especially thyroid) and immunological systems. While the morbidity associated with diseases of the respiratory and digestive systems has decreased in recent years that in the other systems is increasing. In recent years, there has been an increased occurrence of cancers affecting the thyroid, prostate and stomach. Clinical and laboratory investigations suggest that surviving CNPP accident clean-up workers exhibit signs of immuno-inflammatory reactions causing premature aging with evidence of autoimmune diseases and immunological deficiencies or abnormalities. It is suggested that the CNPP accident clean-up workers may have a specific syndrome, the 'Chernobyl post-radiation neurosomatic polypathy', due to sustained oxidant

  6. Nuclear Power after Fukushima

    International Nuclear Information System (INIS)

    Bigot, B.

    2011-01-01

    On 11 March 2011 Japan suffered an earthquake of very high magnitude, followed by a tsunami that left thousands dead in the Sendai region, the main consequence of which was a major nuclear disaster at the Fukushima power station. The accident ranked at the highest level of severity on the international scale of nuclear events, making it the biggest since Chernobyl in 1986. It is still impossible to gauge the precise scope of the consequences of the disaster, but it has clearly given rise to the most intense renewed debates on the nuclear issue. Futuribles echoes this in the 'Forum' feature of this summer issue which is entirely devoted to energy questions. Bernard Bigot, chief executive officer of the technological research organization CEA, looks back on the Fukushima disaster and what it changes (or does not change) so far as the use of nuclear power is concerned, particularly in France. After recalling the lessons of earlier nuclear disasters, which led to the development of the third generation of power stations, he reminds us of the currently uncontested need to free ourselves from dependence on fossil fuels, which admittedly involves increased use of renewables, but can scarcely be envisaged without nuclear power. Lastly, where the Fukushima disaster is concerned, Bernard Bigot shows how it was, in his view, predominantly the product of a management error, from which lessons must be drawn to improve the safety conditions of existing or projected power stations and enable the staff responsible to deliver the right response as quickly as possible when an accident occurs. In this context and given France's high level of dependence on nuclear power, the level of use of this energy source ought not to be reduced on account of the events of March 2011. (author)

  7. Results of in vivo monitoring of the witnesses of the Chernobyl accident (invited paper)

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    2000-01-01

    About 1500 people were involved in emergency operations on 26-27 April 1986 at the site of the Chernobyl Nuclear Power Plant. They worked in different working conditions and were exposed to aerosols of different characteristics. The Chernobyl accident was the first accident in which, when the reactor core was destroyed, aerosol of the dispersed spent nuclear fuel became a significant source of internal and external exposure for a large group of people. Detailed information on the properties of the Chernobyl aerosol for the first post-accident period is absent. Therefore, results of in vivo monitoring of the witnesses of the Chernobyl accident can be an important source of information for assessing the radiological properties of the Chernobyl aerosol. (author)

  8. Lessons taught by the Chernobyl accident

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    On nuclear development, it is natural that safety is the most important condition. However, when occurring an accident in spite of earnest efforts on safety pursuit, it is essential for a technical developer to absorb some lessons from its contents as much as possible and show an attitude to use thereafter. The Chernobyl accident brought extraordinarily large damage in the history of nuclear technology development. Therefore, the edition group of the Japan Society of Atomic Energy introduced opinions of three groups of the Society (that is, groups on reactor physics, nuclear power generation, and human-machine system research) with some description on cause analysis of the accident and its result and effect. And, here was also shown four basic difference on design between RMBK type reactor in Chernobyl and LWR type reactor supplied in Japan. (G.K.)

  9. Psychological Aid to the Children Who Suffered from the Chernobyl Catastrophe.

    Science.gov (United States)

    Garnets, O. N.; And Others

    This document considers the problems faced by the children and adolescents who were affected by the 1986 accident at the Chernobyl nuclear power plant in the Ukraine. It discusses problems with psycho-physical, social, and spiritual development. It is noted that the Chernobyl children do not form a homogeneous population, but can be divided into…

  10. One year after Chernobyl

    International Nuclear Information System (INIS)

    1987-04-01

    It is now one year since the accident which destroyed the fourth unit of the Chernobyl nuclear power station in the Ukrainian Soviet Socialist Republic. Its principal cause was a flagrant disregard by operating personnel of well-established operating rules and procedures, which placed Unit 4 in an unstable state. This booklet reviews some aspects of what had already been done before the accident, and what has taken place since. It describes, in particular, the Agency's programmes in the field of nuclear safety

  11. Role of nuclear power in Ukraine

    International Nuclear Information System (INIS)

    Vyshnevskyi, I.M.

    2005-01-01

    Nuclear power of Ukraine commenced from Chernobyl NPP, where the first unit was put into operation at 1977. At present in Ukraine there are 4 running NPPs with a total installed capacity 11880 MW where more than 40 % of electricity is generated. Elaborated Atomic Energy Strategy Development for the period till 2030 after the commissioning of two new units in 2004 foresees to keep the total installed capacity around 14000 MW. Analysis on the maintenance of such level and the solution of other problems, related to nuclear energy is carried out. Among them: nuclear fuel cycle, handling of radioactive wastes, decommissioning and others. Thus nuclear energy plays and will play the important role to ensure the electricity generation in Ukraine

  12. Chernobyl: before and after. Information sheet No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Devine, J [comp.

    1986-01-01

    Complied in June 1986 the information sheet lists title, authors, and journal details and gives brief details of all relevant published articles. Part 1 concerns material relevant before the accident in April 1986 - the construction, design and safety of the Chernobyl RBMK nuclear power station (20 references). Part 2 lists articles published after the accident concerning the impact of the disaster on safety in the nuclear power industry (23 references).

  13. Analysis of the possibility of isolation of radioactive wastes of Chernobyl nuclear power plant into the deep drills of the Korosten crystalline rocks

    International Nuclear Information System (INIS)

    Shestopalov, V.; Kedrovsky, O.; Shishits, I.

    1996-01-01

    The aim of the offered research: - investigation and proving the possibility to isolate the radioactive wastes (RAW), that were created as a result of the Chernobyl accident, its operation, and shutting down, by placing the wastes into the chinks of the depth up to 4 km. The chinks are supposed to be made in the crystalline rocks of the Korosten massif located near of the Chernobyl NPP. - developing of the basis of the technology and fulfilling the designing work for isolation the RAW in the deep chinks. The basic aims of the researches of the project are the following : Finding out the location of a suitable place. The Ukraine plate's territory (having non-deep occurrences of the crystalline rocks that are minimally subjected to the tectonic destroying), near of the Chernobyl NPP, would be investigated. To solve the problem , the decoding of the aero- and space-photos, geophysical and indicating works, testing drilling of non-deep chinks, and testing works in it have to be done. So, during of the carrying out the project , the following points would be developed: - the geological grounds for creating the RAW isolating system in the deep chinks (taking the conditions at the Nuclear Power Plant), - the best design of the deep chink, - the technology of isolating the RAW in the deep chinks, - the requirements on the monitoring, - the estimations of the ecological safety and efficiency of the chink type systems for RAW isolating

  14. Nuclear power in Russia: status, problems, prospects

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoy, N.

    1992-01-01

    To solve the problem of atomic bomb, a powerful nuclear industrial complex has been established in the Soviet Union. This complex has developed a high scientific and engineering potential and enlisted the best science and engineering experts. Strict administration, rigid discipline in execution and operation, to secrecy limiting both internal and external interactions were typical of the complex which presented a state within the state with the inside divide by rigid barriers and protected from the outside by iron curtain. When the atomic bomb was designed and tested the search for a field of application for the nuclear potential available was started: nuclear power plants, nuclear power facilities for submarines and ships, nuclear aircraft and rocket engines, space nuclear facilities. Such were the conditions of forming the nuclear power in USSR. But this nuclear military complex has failed to prevent the Chelyabinsk accident which involved considerable radiological effects. The national industry could not adopt quickly the work style established in a nuclear complex and relative high technologies because of low educational and technical level and poor technological discipline. The results are known: the Chernobyl accident coincided in time with the beginning of the reconstruction of the System, the result of which was this accident. This paper describes the current status of the nuclear park, shows the problems of safety, maintenance, retrofitting, reconstruction or decommissioning. Statistical data on nuclear power in the power production program are also given

  15. The safety of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Do nuclear power plants present an unjustifiable risk Can there be confidence in their safety The Uranium Institute invited a group of senior safety experts from eight different Western countries operating different types of reactors to provide an authoritative explanation for non-specialists of the basic principles of reactor safety, their application and their implications. The report presents the group's opinion on the level of safety achieved in the Western nuclear power plants with which the authors are directly familiar. Although many of the points made may well also be true for non-Western reactors, the report does not cover them except where specifically stated. It does describe and discuss the causes of the Chernobyl disaster. It does not compare nuclear power with other fuels, nor does it deal with its benefits, since however great the benefits from the peaceful use of nuclear power, and its own advantages over other fuels, they could not compensate for lack of safety. The conclusion reached is that the risk associated with electricity production at nuclear power plants can be kept very low. Proper use of the extensive knowledge available today can guarantee operation of nuclear power plants at very high safety levels, carrying very low risks, both to health and of contamination of the environment: risks that are continually lowered by upgrading existing plants and their operation, and by the design of future power plants. (author).

  16. Nuclear power indices and safety

    International Nuclear Information System (INIS)

    Bennet, L.L.; Fizher, D.; Nechaev, A.

    1987-01-01

    Problems discussed at the IAEA International Conference on nuclear power indices and safety held in Vienna from 28 September to 2 October, 1987 are considered. Representatives from 40 countries and 12 international organizations participated in the conference. It is marked that by the end of this century nuclear power plant capacities in developing countries will increase by more than twice. In developed countries increase of installed capacity by 65 % is forecasted. It is stressed that competently constructed and operated NPPs will be successfully competing with coal-fueled power plants in the majority of the world regions. Much attention was paid to reports on measures taken after Chernobyl' accident and its radiation effects on people helth. It is shown that parallel with fundamental theoretical studies on NPP safety as a complex engineering system much attention is paid to some problems of designing and operation of such facilities. Fuel cycle problems, radioactive waste and spent fuel storage and disposal in particular, are considered

  17. Has the exit from nuclear energy failed? Why nuclear power should not be surrendered; Energiewende gescheitert? Warum auf Kernkraft nicht verzichtet werden sollte

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, Hans

    2017-07-01

    The author describes and discusses the issues incidents and accidents and nuclear power plants, electric power supply, the actual status of nuclear power in Germany, alternative energy sources, the anthropogenic greenhouse effect, the controversial discussion of the greenhouse effect, solar energy, wind energy, the German exit from nuclear energy, the nuclear accidents in three Miles Island, Chernobyl and Fukushima, the final disposal of radioactive wastes - dismantling - interim-storage - site selection, waste processing using fast breeder reactors and transmutation, status of radioactive waste disposal in Germany.

  18. Technical and institutional safety features of nuclear power plants in Brazil

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1986-01-01

    This work reports technical, political and institutional safety features of nuclear power plants in Brazil. It is mainly concerned with reactor accidents and personnel safety. The three mile Island and Chernobyl accidents are also discussed and taken as examples. (A.C.A.S.)

  19. Hematopoietic cell infusion for the treatment of nuclear disaster victims: new data from the Chernobyl accident.

    Science.gov (United States)

    Klymenko, Sergiy V; Belyi, David A; Ross, Joel R; Owzar, Kouros; Jiang, Chen; Li, Zhiguo; N Minchenko, Janna; N Kovalenko, Aleksandr; Bebeshko, Volodymyr G; J Chao, Nelson

    2011-08-01

    To present previously unavailable data on the use of stem cell administration to aid recovery of victims of the Chernobyl disaster. On 26 April 1986, an accident at Unit 4 of the Chernobyl Nuclear Power Plant took place during the planned test of one of the safety systems. The diagnosis of acute radiation syndrome (ARS) was confirmed in 134 individuals exposed to high levels of radiation. There were nine patients heretofore unreported in the scientific literature who underwent intraosseous injections of allogeneic bone marrow cells in Kyiv. Transplantation was associated with significantly shortened time to recovery of granulocyte and platelet counts in these patients. While current guidelines would certainly include the use of cytokines, these data provide an indication of the effectiveness of stem cell transplant to treat victims of radiation exposure.

  20. Nuclear power for sustainable development. Current status and future prospects

    International Nuclear Information System (INIS)

    Adamantiades, A.; Kessides, I.

    2009-01-01

    Interest in nuclear power has been revived as a result of volatile fossil fuel prices, concerns about the security of energy supplies, and global climate change. This paper describes the current status and future plans for expansion of nuclear power, the advances in nuclear reactor technology, and their impacts on the associated risks and performance of nuclear power. Advanced nuclear reactors have been designed to be simpler and safer, and to have lower costs than currently operating reactors. By addressing many of the public health and safety risks that plagued the industry since the accidents at Three Mile Island and Chernobyl, these reactors may help break the current deadlock over nuclear power. In that case, nuclear power could make a significant contribution towards reducing greenhouse gas emissions. However, significant issues persist, fueling reservations among the public and many decision makers. Nuclear safety, disposal of radioactive wastes, and proliferation of nuclear explosives need to be addressed in an effective and credible way if the necessary public support is to be obtained. (author)

  1. 'The star called Wormwood': the cause and effect of the Chernobyl catastrophe

    International Nuclear Information System (INIS)

    Knorre, H.

    1992-01-01

    The explosion of the Chernobyl nuclear power station in 1986 astounded the world. It was shocking not just because of the technical failure - unfortunately such things happen from time to time - but as a social and political failure. The Chernobyl catastrophe undermined and exposed the false, vicious and inhumane Soviet totalitarian system. The Chernobyl explosion initiated the disintegration of the corrupt Communist regime - a regime which had been deemed unshakeable in the USSR. (author)

  2. Investigations on Health Conditions of Chernobyl Nuclear Power Plant Accident Recovery Workers from Latvia in Late Period after Disaster

    Directory of Open Access Journals (Sweden)

    Reste Jeļena

    2016-10-01

    Full Text Available The paper summarises the main findings on Chernobyl Nuclear Power Plant (CNPP accident recovery workers from Latvia and their health disturbances, which have been studied by the authors during the last two decades. Approximately 6000 persons from Latvia participated in CNPP clean-up works in 1986–1991. During their work period in Chernobyl they were exposed to external as well as to internal irradiation, but since their return to Latvia they were living in a relatively uncontaminated area. Regular careful medical examinations and clinical studies of CNPP clean-up workers have been conducted during the 25 years after disaster, gathering knowledge on radiation late effects. The aim of the present review is to summarise the most important information about Latvian CNPP clean-up worker health revealed by thorough follow-up and research conducted in the period of 25 years after the accident. This paper reviews data of the Latvian State Register of Persons Exposed to Radiation due to CNPP Accident and gives insight in main health effects found by the researchers from the Centre of Occupational and Radiological Medicine (Pauls Stradiņš Clinical University Hospital and Rīga Stradiņš University in a number of epidemiological, clinical, biochemical, immunological, and physiological studies. Latvian research data on health condition of CNPP clean-up workers in the late period after disaster indicate that ionising radiation might cause premature ageing and severe polymorbidity in humans.

  3. Effects of the Chernobyl accident on public perceptions of nuclear plant accident risks

    International Nuclear Information System (INIS)

    Lindell, M.K.; Perry, R.W.

    1990-01-01

    Assessments of public perceptions of the characteristics of a nuclear power plant accident and affective responses to its likelihood were conducted 5 months before and 1 month after the Chernobyl accident. Analyses of data from 69 residents of southwestern Washington showed significant test-retest correlations for only 10 of 18 variables--accident likelihood, three measures of impact characteristics, three measures of affective reactions, and hazard knowledge by governmental sources. Of these variables, only two had significant changes in mean ratings; frequency of thought and frequency of discussion about a nearby nuclear power plant both increased. While there were significant changes only for two personal consequences (expectations of cancer and genetic effects), both of these decreased. The results of this study indicate that more attention should be given to assessing the stability of risk perceptions over time. Moreover, the data demonstrate that experience with a major accident can actually decrease rather than increase perceptions of threat

  4. The peculiarities of formation of circulatory system pathology of evacuated adult population exposed to ionizing radiation on thyroid gland after the accident at the Chernobyl Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Kapustinskaia O.A.

    2014-11-01

    Full Text Available The aim of the research - analysis of the structure and dynamics of the morbidity among eva¬cuated population, the peculiarities of pathogenesis of the most widespread forms of circulatory system (CS pathology in the remote period after the accident at the Chernobyl Nuclear Power Plant. Materials and methods. Three groups of persons evacuated from Chernobyl zone of alienation were researched: persons aged 10-17 (6517 persons, 18-39 (496 persons, 40-60 (458 persons. The data on the individual radiation doses which affected thyroid gland were selected at the State Register of Ukraine on persons affected by the Chernobyl disaster. Morbidity rate was estimated per 103 man-year for 5-years periods of monitoring. The main results: Time from the moment of Chernobyl accident affected the formation of morbidity structure of evacuated population. It was fixed two peaks of morbidity incidence - initial and in 12 years. The most essential changes in CS morbidity of evacuated population were fixed 26 years later mainly in cere¬brovascular diseases. The coronary artery disease takes the first place in the morbidity structure. Significant dif¬ferences were detected at age-specific aspect. The evacuated adult population aged 18-39 years was the most vulnerable for the development of CS diseases. Adverse health effects confirmed the necessity of further research of CS morbidity with the differentiation of doses affected thyroid gland.

  5. Chernobyl Nuclear Catastrophe and the High Risk Potential for Mental Retardation.

    Science.gov (United States)

    Holowinsky, Ivan Z.

    1993-01-01

    This report considers potential effects of the 1986 nuclear explosion at the Chernobyl (Ukraine) nuclear reactor. Approximately 17 million people, of whom 2.5 million were below the age of 5, are thought to have suffered some radioactive contamination. Many of these children are at high risk for mental retardation and learning disorders.…

  6. Chernobyl: closure by 2000

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Discussions on the future of the Chernobyl nuclear plant between the Ukrainian government, the Group of Seven Industrial nations (GT) and the European Union (EU) are summarized. At the G7 meeting, a timetable for the closure of the entire station by 2000 was presented by Ukrainian officials. The timetable depends on financial commitments from Western governments. Without these, the project would take 10 to 15 years. Following this meeting, which took place on 16-17th May 1995. EU finance ministers authorized release of a ECU 85 million loan. On 23 May, the European Parliament's Committee on Research, Technology and Energy held a public hearing on the Chernobyl station. The primary topic was a feasibility study on the clean-up of Chernobyl 4 and plans for the sarcophagus. Other matters discussed included the effect of the delays and indecision in settling the plants's future. Safety improvements being made to other RBMKs were not being carried out at Chernobyl because of the expected closure. The replacement of the power now supplied to the Ukraine by the Chernobyl reactors is also an issue. The solution favoured by the Ukraine is to being on-line three VVER-1000s that are currently close to completion. Western governments find this solution difficult to accept, however. (UK)

  7. Implications of the Chernobyl accident for Protective Action Guidance

    International Nuclear Information System (INIS)

    Miller, Charles W.; Pepper, Andrea J.

    1989-01-01

    The accident that occurred at Unit 4 of the nuclear power station at Chernobyl in the Union of Soviet Socialist Republics on April 26, 1986, was the worst accident in the history of nuclear power. Thirty-one workers and emergency personnel died and more than 200 site personnel were hospitalized as a result of this event Approximately 135,000 persons within 30 km around the reactor were evacuated, and radioactive debris was spread throughout the Northern Hemisphere. There was much public concern generated around the world, and an increased risk of fatal cancel in the world's population is possible as a result of exposure to Chernobyl fallout (USNRC, 1987a). Since the time the Chernobyl accident occurred, many authoritative studies have been published, e.g. USNRC, 1987a. In these studies, differences in design between commercial U.S. reactors and the RBMK pressure-tube reactor at Chernobyl have been emphasized, e.g. USNRC, 1987b. While significant differences in design do exist between these reactors, we believe there are still significant lessons to be learned from the Chernobyl accident for U.S. reactors. The purpose of this paper is to summarize some of the major lessons to be learned related to protective action guidance. The Illinois Department of Nuclear Safety (IDNS) has identified three areas related to protective action guidance for food and water where implications can be drawn from Chernobyl for the U.S.: (1) uniformity of Protective Action Guides (PAGs), (2) incompleteness of U.S. PAGs, and (3) international communications. Following the Chernobyl accident, a variety of protective actions were undertaken by various nations. Furthermore, these actions were initiated, modified, and terminated at different times in different places and, in some instances, were applied on a local or regional basis rather than a national basis (Goldman et al., 1987). One result of this differing application of PAGs was the generation of considerable confusion among decision

  8. Experience from the MTO program at the Forsmark nuclear power plant

    International Nuclear Information System (INIS)

    Rollenhagen, C.; Andersson, O.

    1996-01-01

    Within the nuclear industry there are two events which have had a significant impact on the way of thinking and attitudes to safety, although in different ways. The TMI accident at Harrisburg, USA put the focus on the man-machine interface, the way of working and attitudes to safety. The accident at Chernobyl focused on safety management and safety culture. After the Chernobyl accident, safety culture (IAEA INSAG-4) became a commonly used concept which included an overall perspective on safety and an understanding of the interaction between man, technology and organizational matters (MTO). As a result of this understanding, the MTO concept was introduced at the Forsmark nuclear power plant already in 1988 and is today a conceptual way of thinking which is well integrated in the line organization. One of the purposes of this paper is to present some of the work that has been done at Forsmark nuclear power plant under the heading of MTO, both in the past and more recently. (author) 4 figs., 2 tabs

  9. The Chernobyl case: its repercussions on the International System on Civil Liability for Nuclear Damages

    International Nuclear Information System (INIS)

    Gonzalez Guadarrama, J.L.

    1992-01-01

    With the discovery of the Nuclear Energy the world has been development her life the present investigation is based in the accident of the one of the most important Nuclear Power Plant in the world, situated in the Union of Socialist Sovietic Republics. The Nuclear Power Plant of Chernobyl. Us found in the investigation what not exist one legislation agree with the needs of development of the actual world in matter of the liability civil in case of the nuclear accidents. Found only the Convention of the Vienna. the Convention of the Brussels the which only cover the transportation the Nuclear substances in ships and others transportation medios. The complementary a the convention of the Paris and actually The Communication in case of the nuclear accidents and radiological accidents. In the present work think what the Community International haven the needs of created one legislation with character international what can help a the many countries what have Nuclear Power Plants, on all for protection of the her habitants. The International Atomic Energy Agency together with the International Justice Court and the United Nations Organization (U.N.O.) aplicated the law in matter of the nuclear accidents derivates of the liability responsibility in the use of the Nuclear Plants for elaboration the Electrical Energy or for Investigation in matter the nuclear energy both with identical responsibility civil in case the nuclear accident. (Author)

  10. Radiation health effects. Experience from Chernobyl to Fukushima

    International Nuclear Information System (INIS)

    Sekitani, Yui; Takamura, Noboru; Yamashita, Shunichi

    2012-01-01

    The accident at the Chernobyl Nuclear Power Plant in 1986 led to a high level of radioactive contamination over wide area in Europe. High radiation-dose exposure to 134 power plant staff and emergency personnel resulted in acute radiation syndrome. The internal radiation exposure by radioactive iodine-131 caused operated thyroid cancer among more than 6000 children at the time of the accident until 2010. The low dose irradiation by radioactive cesium-137 continues even today, and evacuation and relocation proved a deeply traumatic experience to many people. Since the Chernobyl accident, WHO and IAEA have established a global assistance system to strengthen the activities related to radiation emergency medical preparedness and response network. Fukushima Daiichi Nuclear Power Plant accident in 2011 has also caused many people to evacuate, and great suffering, hardship, and anxiety to the residents of Fukushima Prefecture. Therefore the Fukushima Prefectural Government is now conducting the 'The Fukushima Health Management Survey' to alleviate residents' concerns about radiation and to facilitate suitable healthcare in the future. It is necessary to continue scientific research around Chernobyl and provide accurate information on radiation health effects not only to the Fukushima residents but also toward all over the world. (author)

  11. 30 years life with Chernobyl, 5 years life with Fukushima. Health consequences of the nuclear catastrophes of Chernobyl and Fukushima; 30 Jahre Leben mit Tschernobyl, 5 Jahre Leben mit Fukushima. Gesundheitliche Folgen der Atomkatastrophen von Tschernobyl und Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, Angelika; Rosen, Alex

    2016-02-15

    The IPPNW report on health consequences of the nuclear catastrophes of Chernobyl and Fukushima covers the following issues: Part.: 30 years life with Chernobyl: Summarized consequences of Chernobyl, the accident progression, basic data of the catastrophe, estimation of health hazards as a consequence of the severe accident of Chernobyl, health consequences for the liquidators, health consequences for the contaminated population, mutagenic and teratogenic effects. Part B: 5 years life with Fukushima: The start of the nuclear catastrophe, emissions and contamination, consequences of the nuclear catastrophe on human health, thyroid surveys in the prefecture Fukushima, consequences of the nuclear catastrophe on the ecosystem, outlook.

  12. Community emergency response to nuclear power plant accidents: A selected and partially annotated bibliography

    International Nuclear Information System (INIS)

    Youngen, G.

    1988-10-01

    The role of responding to emergencies at nuclear power plants is often considered the responsibility of the personnel onsite. This is true for most, if not all, of the incidents that may happen during the course of the plant's operating lifetime. There is however, the possibility of a major accident occurring at anytime. Major nuclear accidents at Chernobyl and Three Mile Island have taught their respective countries and communities a significant lesson in local emergency preparedness and response. Through these accidents, the rest of the world can also learn a great deal about planning, preparing and responding to the emergencies unique to nuclear power. This bibliography contains books, journal articles, conference papers and government reports on emergency response to nuclear power plant accidents. It does not contain citations for ''onsite'' response or planning, nor does it cover the areas of radiation releases from transportation accidents. The compiler has attempted to bring together a sampling of the world's collective written experience on dealing with nuclear reactor accidents on the sate, local and community levels. Since the accidents at Three Mile Island and Chernobyl, that written experience has grown enormously

  13. Community emergency response to nuclear power plant accidents: A selected and partially annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Youngen, G.

    1988-10-01

    The role of responding to emergencies at nuclear power plants is often considered the responsibility of the personnel onsite. This is true for most, if not all, of the incidents that may happen during the course of the plant`s operating lifetime. There is however, the possibility of a major accident occurring at anytime. Major nuclear accidents at Chernobyl and Three Mile Island have taught their respective countries and communities a significant lesson in local emergency preparedness and response. Through these accidents, the rest of the world can also learn a great deal about planning, preparing and responding to the emergencies unique to nuclear power. This bibliography contains books, journal articles, conference papers and government reports on emergency response to nuclear power plant accidents. It does not contain citations for ``onsite`` response or planning, nor does it cover the areas of radiation releases from transportation accidents. The compiler has attempted to bring together a sampling of the world`s collective written experience on dealing with nuclear reactor accidents on the sate, local and community levels. Since the accidents at Three Mile Island and Chernobyl, that written experience has grown enormously.

  14. Accident at the Chernobyl nuclear power plant, october 1991: facts and causes

    International Nuclear Information System (INIS)

    Ptashkin, A.V.; Fedorenko, G.M.

    2006-01-01

    An account is given of the unique accident caused by a spontaneous switching of a 330 kV breaker and a full voltage energizing of the practically stand-still non-excited 500 MW turbine generator N 4 at Chernobyl NPP. The subsequent asynchronous mode of operation resulted in a severe non-reparable damage, hydrogen explosion, fault at the terminals and a fire induced collapse of a machine-hall roof. The analysis has shown that, although the accident was aggravated by a number of casual factors, the main cause of its gravity stems from the ignorance of the probability of a non-sanctioned regime of the asynchronous run of the generator, a mistake committed at the stage of the conceptual development of the typical projects of relay and protection systems of large power blocs

  15. Nuclear power plants: Results of recent safety analyses

    International Nuclear Information System (INIS)

    Steinmetz, E.

    1987-01-01

    The contributions deal with the problems posed by low radiation doses, with the information currently available from analyses of the Chernobyl reactor accident, and with risk assessments in connection with nuclear power plant accidents. Other points of interest include latest results on fission product release from reactor core or reactor building, advanced atmospheric dispersion models for incident and accident analyses, reliability studies on safety systems, and assessment of fire hazard in nuclear installations. The various contributions are found as separate entries in the database. (DG) [de

  16. Genetic effects and reparation of single-stranded DNA breaks in Arabidopsis thaliana populations growing in the vicinity of the Chernobyl Nuclear Power Station

    International Nuclear Information System (INIS)

    Abramov, V.I.; Sergeeva, S.A.; Ptitsyna, S.N.; Semov, A.B.; Shevchenko, V.A.

    1992-01-01

    The genetic effects and efficiency of repair of single-stranded DNA breaks in natural populations of Arabidopsis growing within a thirty-kilometer zone of the Chernobyl Nuclear Power Station were studied. A direct relationship was found between the level of radioactive contamination and the frequency of embryonal lethal mutations in the Arabidopsis populations studied. A decrease in the efficiency of reparation of single-stranded DNA breaks was found in Arabidopsis plants growing in the contaminated sites. The level of efficiency of DNA reparation was dependent on the duration for which the Arabidopsis population had been growing in the contaminated sites and on the degree of radioactive contamination of the sites. 9 refs., 4 tabs

  17. The French nuclear power programme and energy policy in France

    International Nuclear Information System (INIS)

    Carle, R.

    1988-01-01

    After briefly describing the Chernobyl reactor accident and its consequences in Western Europe, especially its psychological effects, the French nuclear energy programme is presented in detail. The role of standardization and education as well as of construction time and cost is pointed out. Moreover, the results of the programme are given including extension of the capable French nuclear power industry, economical and ecological benefits. Future measures such as increase of the flexibility of nuclear power plants, improved fuel management, reduction of personnel radiation doses and employment of advanced reactors (the reactor system N4) will facilitate French efforts to free the country from mineral oil and coal imports. (author)

  18. Chernobyl

    International Nuclear Information System (INIS)

    Collier, J.G.; Davies, L.M.

    1986-09-01

    On April 26th 1986, the worst accident in the history of commercial nuclear power generation occurred at the Chernobyl Nuclear Power Station some 60 miles north of Kiev in the Ukraine. This article describes the sequence of events that occurred and the consequences of the accident. There was extensive damage to the Unit 4 reactor and the building which housed it. Some 31 people have died as a result of the accident either directly or as a result of receiving lethal radiation doses. A significant release of fission products occurred, contaminating land around the station and requiring the evacuation of around 135,000 people from their homes. The radioactive cloud generated over many days was carried by winds to all parts of Europe where there was a varying degree of public concern. The contamination resulted in restrictions on the consumption of meat and vegetables. The latent health effects may not be statistically significant when viewed against the normal mortality rate over the next 40 years. (author)

  19. THE PREVENTION PROGRAMS OF PHYSICAL REHABILITATION FOR CHERNOBYL DISASTER SURVIVORS

    Directory of Open Access Journals (Sweden)

    G.V. Korobeynikov

    2013-02-01

    Full Text Available The purpose of the study: approbation of the prevention program of physical rehabilitation for Chernobyl disaster survivors in lifestyle aspects. Sixty persons who were disaster survivors and workers of Chernobyl Nuclear Power Plant aged 32-60 have rehabilitation during 21 days. The complex of training prevention programs of physical and psycho-emotional rehabilitation methods was elaborated. The study of efficacy of training prevention programs among Chernobyl disaster survivors. The results showed the improvement of psycho-emotional status and normalization of cardiovascular vegetative regulation after training prevention programs in Chernobyl disasters survivors. The studies show that the preventive programs for Chernobyl disaster survivors in lifestyle aspects had the high effect. This displays the decrease of tempo of aging and the improving of physical and psychological health status of Chernobyl disaster survivors during preventive course.

  20. Thai Nuclear Power Program

    International Nuclear Information System (INIS)

    Namwong, Ratanachai

    2011-01-01

    The Electricity Generating Authority of Thailand (EGAT), the main power producer in Thailand, was first interested in nuclear power as an electricity option in 1967 when the electricity demand increased considerably for the first time as a result of the economic and industrial growth. Its viability had been assessed several times during the early seventies in relation to the changing factors. Finally in the late 1970s, the proceeding with nuclear option was suspended for a variety of reasons, for instance, public opposition, economic repercussion and the uncovering of the indigenous petroleum resources. Nonetheless, EGAT continued to maintain a core of nuclear expertise. During 1980s, faced with dwindling indigenous fossil fuel resources and restrictions on the use of further hydro as an energy source, EGAT had essentially reconsidered introducing nuclear power plants to provide a significant fraction to the long term future electricity demand. The studies on feasibility, siting and environmental impacts were conducted. However, the project was never implemented due to economics crisis in 1999 and strong opposition by environmentalists and activists groups. The 1986 Chernobyl disaster was an important cause. After a long dormant period, the nuclear power is now reviewed as one part of the solution for future energy supply in the country. Thailand currently relies on natural gas for 70 percent of its electricity, with the rest coming from oil, coal and hydro-power. One-third of the natural gas consumed in Thailand is imported, mainly from neighbouring Myanmar. According to Power Development Plan (PDP) 2007 rev.2, the total installed electricity capacity will increase from 28,530.3 MW in 2007 to 44,281 MW by the end of plan in 2021. Significantly increasing energy demand, concerns over climate change and dependence on overseas supplies of fossil fuels, all turn out in a favor of nuclear power. Under the current PDP (as revised in 2009), two 1,000- megawatt nuclear

  1. Chernobyl - a Canadian technical perspective

    International Nuclear Information System (INIS)

    Snell, V.G.; Howieson, J.Q.

    1987-01-01

    On April 26, 1986, the Number 4 reactor at the Chernobyl Nuclear Power Station in the Soviet Union suffered a severe accident which destroyed the reactor core and led to a loss of life. The four reactors at this station are of the RBMK-1000 type - boiling-light-water cooled, graphite moderated, vertical pressure-tube reactors, each generating 1000 MW of electricity through two turbines. AECL has carefully studied the accident, and the design of Chernobyl, to see if anything has been overlooked in the CANDU design. This report reviews the results of that study, in particular the relevant features of the Chernobyl design which exacerbated the accident, and compares them to the CANDU 600 design. A number of issues (the sign of the void coefficent and the pressure-tube design) have also been given some international prominence in the post-Chernobyl analysis; these are discussed in this report and shown to be irrelevant to the CANDU design. Finally this report describes the subjects identified for further design follow-up in Canada

  2. Chernobyl: A first-hand account

    International Nuclear Information System (INIS)

    Voina, V.

    1990-01-01

    The author, living in Moscow at the time, was traveling by night train to visit family in Kiev at the time of the chernobyl accident. He recalls a passenger in his compartment asking if anyone had noticed in the morning press about the explosion in Chernobyl. In Kiev, about 50 mi from Chernobyl by air, he noted on arrival that everyone was calm - the city quiet with no rumors or gossip. He contrasts this with the world being alert, in despair, full of alarm. On failure to reach old friends by phone, he thought they had left the city for at least 4-day vacations - May 1 and 2 holidays plus Saturday and Sunday. He continues to recount the life as usual situation aided and abetted by the governments lack of information and misinformation on the perilously dangerous radioactivity and extent of the disaster. He notes friends showing him a January 1986 copy of Izvestia with an article about the Chernobyl unit, several months before, being named winner in a competition among all nuclear power stations in the USSR

  3. Chernobyl': in the past, now and in the future

    International Nuclear Information System (INIS)

    Kopchinskij, G.A.; Shtejnberg, N.A.

    2011-01-01

    The main feature of this book is that it shows, perhaps for the first time, the true role of the workers at Chernobyl Nuclear Power Plant in the origin of the 1986 accident and the reduction of its consequences. Significant consideration is given in this book to revealing the causes and the lessons of this tragedy. The authors of the book are nuclear power engineers having significant experience in the nuclear power plant operation, management of nuclear power industry and regulation of its safety. The book is addressed to a wide range of readers, particularly those with a role in ensuring prevention and overcoming consequences of technological and natural disasters. It may be specially useful to those having a connection with the nuclear power industry.

  4. Emotional consequences of nuclear power plant disasters.

    Science.gov (United States)

    Bromet, Evelyn J

    2014-02-01

    The emotional consequences of nuclear power plant disasters include depression, anxiety, post-traumatic stress disorder, and medically unexplained somatic symptoms. These effects are often long term and associated with fears about developing cancer. Research on disasters involving radiation, particularly evidence from Chernobyl, indicates that mothers of young children and cleanup workers are the highest risk groups. The emotional consequences occur independently of the actual exposure received. In contrast, studies of children raised in the shadows of the Three Mile Island (TMI) and Chernobyl accidents suggest that although their self-rated health is less satisfactory than that of their peers, their emotional, academic, and psychosocial development is comparable. The importance of the psychological impact is underscored by its chronicity and by several studies showing that poor mental health is associated with physical health conditions, early mortality, disability, and overuse of medical services. Given the established increase in mental health problems following TMI and Chernobyl, it is likely that the same pattern will occur in residents and evacuees affected by the Fukushima meltdowns. Preliminary data from Fukushima indeed suggest that workers and mothers of young children are at risk of depression, anxiety, psychosomatic, and post-traumatic symptoms both as a direct result of their fears about radiation exposure and an indirect result of societal stigma. Thus, it is important that non-mental health providers learn to recognize and manage psychological symptoms and that medical programs be designed to reduce stigma and alleviate psychological suffering by integrating psychiatric and medical treatment within the walls of their clinics.Introduction of Emotional Consequences of Nuclear Power Plant Disasters (Video 2:15, http://links.lww.com/HP/A34).

  5. Chernobyl record. The definitive history of the Chernobyl catastrophe

    International Nuclear Information System (INIS)

    Mould, R.F.

    2000-01-01

    The contents of Chernobyl Record have taken 14 years to compile and this period of time was necessary to enable information to be released from Soviet sources, measurements to be made in the environment, for estimation of radiation doses and for follow-up of the health of population groups which had been exposed. This time frame also includes the 10th anniversary conferences and the completion of joint projects of the European Commission, Ukraine, Belarus and the Russian Federation. It has also enabled me to visit the power plant site, Chernobyl town and Pripyat relatively soon after the accident and also some 10 years later: December 1987 and June 1998. Without such visits some of the photographs in this Record could not have been obtained. Information is also contained in these pages of comparisons of various aspects of the Chernobyl accident with data from the Three Mile Island accident in the USA in 1979, the Hiroshima and Nagasaki atomic bombs, the highly contaminated Techa river area in the Urals in Russia and the accident in Tokaimura, Japan in 1999. The first two chapters are introductory in that they describe terminology which is necessary for an understanding of the remaining chapters. Chapters 3-6 describes the early events: including those leading up to the explosion and then what followed in the immediate aftermath. Chapters 7-8 describe the Sarcophagus and the past and future of nuclear power for electricity generation, including the future of the Chernobyl power station. Chapters 9-11 consider the radiation doses received by various populations, including liquidators, evacuees and those living on contaminated territories: and the contamination of milk by 131 I, and the contamination of other parts of the food chain by 137 Cs. Chapters 12-14 describe the environmental impact of the accident, as does chapter 11. Chapters 15-18 detail the long-term effects on health, including not only the incidence of cancer, but also of non-malignant diseases and

  6. Chernobyl: A series of mistakes

    International Nuclear Information System (INIS)

    Brunner, E.; Janssen, K.H.; Sontheimer, M.

    1986-01-01

    Chernobyl - does it mark the beginning of the end of nuclear energy. Or is it just a spectacular accident as the one at Harrisburg in 1979. Six months after the disaster in the Ukraine released the terrible radiation clouds, the article in hand starts a series intended to draw a balance: deadly experiments in an April night - damage all over Europe that sums up to billions - the Brokdorf nuclear power plant said to be the safest in the world. (orig.) [de

  7. The Chernobyl accident

    International Nuclear Information System (INIS)

    Berg, J.O.; Christensen, G.; Lingjaerde, R.; Smidt Olsen, H.; Wethe, P.I.

    1986-10-01

    In connection with the Chernobyl accident the report gives a description of the technical features of importance to the accident, the course of events, and the estimated health hazards in the local environment. Dissimilarities in western and Sovjet reactor safety philosophy are dealt with, as well as conceivable concequences in relation to technology and research in western nuclear power programmes. Results of activity level measurements of air and foodstuff, made in Norway by Institute for Energy Technology, are given

  8. The safety of RMBK reactors 10 years after Chernobyl

    International Nuclear Information System (INIS)

    Lederman, L.

    1996-01-01

    In April 1986 the Unit 4 of Chernobyl NPP was destroyed in the worst accident in history of commercial nuclear power. Unit 4 started operation in 1983 and was a RBMK nuclear power plant (NPP). Over the years, three generations of reactors have emerged which have significant differences, particularly with respect to the safety provisions built into their design. The electric power of the RBMK reactors is 1000 MW(e) except for Ignalina whose power is 1500 MW(e). development of the Kursk Unit 5, currently under construction, has led to many design changes hence it can be thought of as a fourth generation. The first generation units (Leningrad-l and -2, Kursk-1 and Chernobyl-l and -2) designed and built before 1982 when new standards on the design and construction of Nuclear Power Plants (NPPs) OPB-82 were introduced in the Soviet Union. Since then other units have designed and constructed in accordance to these requirements. The safety standards in the U were revised again in 1988 (OPB-88). Since the Chernobyl accident a considerable amount of work has been carried out by Ru designers and PTSMK operators to improve RBMK reactor safety and to eliminate the causes o accident. As a result, major design modifications and operational changes have been implemented. However, safety concerns remain, particularly related to first generation units. In the framework of a Programme on PTSMK safety initiated by the IAEA in 1992, a total of 58 safety issues related to seven topical areas were identified. The issues related to the six design areas were further ranked according to their perceived impact on plant safety. Safety issues connected to operational areas, particularly those related to ensuring that a high safety culture is an underlying basis for operation, were considered very important. It was stressed that all efforts should be made to implement the related recommendations along with d modifications (author)

  9. The safety of RMBK reactors 10 years after Chernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Lederman, L [International Atomic Energy Agency, Vienna (Austria)

    1996-12-01

    In April 1986 the Unit 4 of Chernobyl NPP was destroyed in the worst accident in history of commercial nuclear power. Unit 4 started operation in 1983 and was a RBMK nuclear power plant (NPP). Over the years, three generations of reactors have emerged which have significant differences, particularly with respect to the safety provisions built into their design. The electric power of the RBMK reactors is 1000 MW(e) except for Ignalina whose power is 1500 MW(e). development of the Kursk Unit 5, currently under construction, has led to many design changes hence it can be thought of as a fourth generation. The first generation units (Leningrad-l and -2, Kursk-1 and Chernobyl-l and -2) designed and built before 1982 when new standards on the design and construction of Nuclear Power Plants (NPPs) OPB-82 were introduced in the Soviet Union. Since then other units have designed and constructed in accordance to these requirements. The safety standards in the U were revised again in 1988 (OPB-88). Since the Chernobyl accident a considerable amount of work has been carried out by Ru designers and PTSMK operators to improve RBMK reactor safety and to eliminate the causes o accident. As a result, major design modifications and operational changes have been implemented. However, safety concerns remain, particularly related to first generation units. In the framework of a Programme on PTSMK safety initiated by the IAEA in 1992, a total of 58 safety issues related to seven topical areas were identified. The issues related to the six design areas were further ranked according to their perceived impact on plant safety. Safety issues connected to operational areas, particularly those related to ensuring that a high safety culture is an underlying basis for operation, were considered very important. It was stressed that all efforts should be made to implement the related recommendations along with d modifications (author).

  10. Nuclear atlas. After Chernobyl: Nuclear energy between fear and hope. Figures - facts - background information. Der Atomatlas. Nach Tschernobyl: Kernenergie zwischen Angst und Hoffnung. Zahlen - Fakten - Hintergruende

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, M; Schmidt, A

    1986-01-01

    Chernobyl has become the catchword that reveals the profound difference of opinions among experts and the population on the issue of nuclear energy. In the many discussions in the public media and elsewhere after the Chernobyl accident, technical terms and scientific terminology and analytic data have been used that induced a feeling of helplessness in the general public, simply because people are not familiar with this terminology and subject. What does 'radioactivity' really mean. What damage to health is done by ionizing radiation. Who finds his way through the muddle of measuring units for radiation, such as rem, Becquerel, or Curie. How does a nuclear power plant work. What kind of reactors are operating in Europe. How safe are they. Where are they. What is a reprocessing plant. These are only a few of the many questions the book answers. The information is intended for the general reader, and supplemented by numerous illustrations, maps, tables and graphs.

  11. The lesson of the Chernobyl disaster

    International Nuclear Information System (INIS)

    Milhaud, G.

    1991-01-01

    On april 26, 1986 a major nuclear disaster took place at 1 h 24 min local time, destroying the fourth reactor of the Chernobyl plant. Five years later the consequences of the disaster are still not fully known. Nevertheless the long term future of nuclear energy in the world is uncertain. Questions need to be answered by observing hard facts if emotional attitudes are not to prevail over reality. The reactor and its core were destroyed by an explosion, causing two radioactive jet emissions of iodine 131, followed by caesium 137. Both elements are mainly incorporated in the body via food. The Chernobyl disaster was a consequence of inadequate safety regulations and human error. Enforcement of strict regulations are likely to be highly effective in preventing a further catastrophe. However, governments should consider another possibility. What would be the consequences for public health if a terroristic act deliberately destroyed a nuclear power station

  12. After Chernobyl

    International Nuclear Information System (INIS)

    Wirth, H.J.

    1989-01-01

    The Chernobyl accident mobilized profound anxieties in many people, which subsequently were repressed again and played down with the aid of the known psychological mechanisms. The authors trace the anxiety, and the resistance against it, and pose the question of whether we are at all capable of learning to think along new lines. From the contents: 10 theses on Chernobyl 1986 (Anders, G.); Anxiety, apathy and new thinking (Richter, H.-E.); On the Germans' particular way of dealing with existential threats (Wirth, H.-J.); Appeasement and delusion - small and big flights from powerlessness (Leithaeuser, T.); Socio-psychological theses on the consequences of nuclear energy (Clemenz, M.); Psychological arguments in the discussion about Chernobyl (Kettner, M.); Relationship between fear and technology (Brede, K.); Inhumanity of technology (Spangenberg, N.); Psychology of nuclear addiction (Bauriedl, T.); Nature or technology - search of the wizard's apprentice for lost salvation (Bastian, T./Hilger, M.); Living under a nuclear threat - significance of existential fear experienced during childhood (Boehnke, K., et al.); Survey of, and psychoanalytical reflections on, poisoned childhood (Petri, H.); On knowing, feeling, and experience after Chernobyl (Thiel, W.); Sociopsychological aspects of the staging of politics as a state spectacle fit for the media (Fuechner, H.). (orig./HP) [de

  13. Accidental internal exposure of all groups of Chernobyl nuclear power plant employees

    International Nuclear Information System (INIS)

    Goussev, I.A.; Moissev, A.A.; Evtichiev, V.I.

    1996-01-01

    Accidental internal exposure of Chernobyl NPP employees has started from April, 1986 and it was found to be decreased to pre-accident level at the end of 1987. Significant number of people from all groups of staff and temporary employees were measured using whole body counters situated in Clinical Department of the Institute of Biophysics, which has represented the main body for medical assistance and expertise in these people including those, who suffered from acute radiation syndrome as well as the people engaged in all kinds of works at Chernobyl NPP site. Technical characteristics of the equipment and techniques used to assess the internal exposure are given. (author)

  14. Chernobyl and Fukushima nuclear accidents: what has changed in the use of atmospheric dispersion modeling?

    International Nuclear Information System (INIS)

    Benamrane, Y.; Wybo, J.-L.; Armand, P.

    2013-01-01

    The threat of a major accidental or deliberate event that would lead to hazardous materials emission in the atmosphere is a great cause of concern to societies. This is due to the potential large scale of casualties and damages that could result from the release of explosive, flammable or toxic gases from industrial plants or transport accidents, radioactive material from nuclear power plants (NPPs), and chemical, biological, radiological or nuclear (CBRN) terrorist attacks. In order to respond efficiently to such events, emergency services and authorities resort to appropriate planning and organizational patterns. This paper focuses on the use of atmospheric dispersion modeling (ADM) as a support tool for emergency planning and response, to assess the propagation of the hazardous cloud and thereby, take adequate counter measures. This paper intends to illustrate the noticeable evolution in the operational use of ADM tools over 25 y and especially in emergency situations. This study is based on data available in scientific publications and exemplified using the two most severe nuclear accidents: Chernobyl (1986) and Fukushima (2011). It appears that during the Chernobyl accident, ADM were used few days after the beginning of the accident mainly in a diagnosis approach trying to reconstruct what happened, whereas 25 y later, ADM was also used during the first days and weeks of the Fukushima accident to anticipate the potentially threatened areas. We argue that the recent developments in ADM tools play an increasing role in emergencies and crises management, by supporting stakeholders in anticipating, monitoring and assessing post-event damages. However, despite technological evolutions, its prognostic and diagnostic use in emergency situations still arise many issues. -- Highlights: • Study of atmospheric dispersion modeling use during nuclear accidents. • ADM tools were mainly used in a diagnosis approach during Chernobyl accident. • ADM tools were also used

  15. Eastern Europe's nuclear power. Buying peace of mind

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The use of nuclear power to generate electricity is much more widely used in Eastern Europe than it is generally in the West. When these countries were part of the centrally planned economies of the former Soviet Union, many vast reactors were constructed and commissioned. Since the Chernobyl accident in 1986, and following political independence from Russia, many of these huge reactors are under threat of closure. The energy situation in Eastern Europe is acute. The break down of the old order has left individual countries struggling to maintain a power supply. While the debate over the safety, or otherwise, of these giant nuclear power plants continues, there is a continuing dialogue in the West about how to pay for safety improvements to bring these reactors up to international standards of safety. (UK)

  16. Chernobyl - A chronicle of difficult weeks [videorecording

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-07-01

    The film demonstrates how authorities and volunteers dealt with the accident at the nuclear power plant at Chernobyl in the Ukraine. The efforts to get the fire under control, to take care of patients with radiation injuries, and to evacuate about 100,000 inhabitants of the area, are shown.

  17. Electricite de France nuclear power plant information activities in the education system

    International Nuclear Information System (INIS)

    Pollier, Pierre M.

    1989-01-01

    Since the Chernobyl accident in April 1986, public opinion in France has changed considerably. Four national surveys carried out over the last two-and-a-half years have shown significant decreases in public approval of nuclear energy (43 percent in October 1988). However, there is no current structured opposition to nuclear power plants. The French public takes nuclear power for granted, but prefers solar energy. It is aware that nuclear power will play an important role in energy supply and that EDF did not build more plants than necessary. It has confidence in the French technique (75 percent), in EDF ability to operate nuclear power plants without serious incidents (55 percent), and in the ability of EDF engineers to deal with a serious accident (50 percent) even though they believe a serious accident could occur (75 percent). However, the situation created by the Chernobyl accident resulted in changes to the EDF information policy. EDF undertook extensive information programs on nuclear power and energy matters during the first years of the program 1975 to 1983), and followed them by a period of less extensive information focussed on electricity. Relations around the nuclear power plant sites between EDF and the public, elected representatives and the media, which had always been close, were reinforced. Information packages were prepared and distributed. Contacts with Textbook Publishers have enabled fruitful exchanges of information, especially during visits to nuclear facilities (power plants, fuel enrichment plants, operating simulators). Remarkable results have been seen in the textbooks concerned. Films, usually videocassettes, are loaned out free of charge. Lectures are a channel of information frequently used by schools since they are free, fit well into the program of some grades, and do not take up too much of the students' time. Visits are considered to be an Excellent Source of Information. Many local initiatives have been taken by plants and schools

  18. Electricite de France nuclear power plant information activities in the education system

    Energy Technology Data Exchange (ETDEWEB)

    Pollier, Pierre M [Electricite de France, Engineering and Construction Division, Sites-Environnment-Information Branch, Information and Communication Section, 22-30, avenue de Wagram, 75008, Paris (France)

    1989-07-01

    Since the Chernobyl accident in April 1986, public opinion in France has changed considerably. Four national surveys carried out over the last two-and-a-half years have shown significant decreases in public approval of nuclear energy (43 percent in October 1988). However, there is no current structured opposition to nuclear power plants. The French public takes nuclear power for granted, but prefers solar energy. It is aware that nuclear power will play an important role in energy supply and that EDF did not build more plants than necessary. It has confidence in the French technique (75 percent), in EDF ability to operate nuclear power plants without serious incidents (55 percent), and in the ability of EDF engineers to deal with a serious accident (50 percent) even though they believe a serious accident could occur (75 percent). However, the situation created by the Chernobyl accident resulted in changes to the EDF information policy. EDF undertook extensive information programs on nuclear power and energy matters during the first years of the program 1975 to 1983), and followed them by a period of less extensive information focussed on electricity. Relations around the nuclear power plant sites between EDF and the public, elected representatives and the media, which had always been close, were reinforced. Information packages were prepared and distributed. Contacts with Textbook Publishers have enabled fruitful exchanges of information, especially during visits to nuclear facilities (power plants, fuel enrichment plants, operating simulators). Remarkable results have been seen in the textbooks concerned. Films, usually videocassettes, are loaned out free of charge. Lectures are a channel of information frequently used by schools since they are free, fit well into the program of some grades, and do not take up too much of the students' time. Visits are considered to be an Excellent Source of Information. Many local initiatives have been taken by plants and schools

  19. A Comparative Analysis of the Impact of the IAEA Cooperation Instruments in the Field of Nuclear Safety to Deal with the Fukushima Daiichi Accident vis-a-vis the Chernobyl Accident

    International Nuclear Information System (INIS)

    Da Silva Simões, V.

    2016-01-01

    On 26 April 1986, an explosion at Unit 4 at the Chernobyl nuclear power plant released a very large amount of radioactive material into the atmosphere. According to the conclusions raised at the “International Forum on Chernobyl´s Nuclear Safety Aspects” held in Vienna from 1 to 3 April 1996, two important causes of the accident were that: “there were significant deficiencies in the design of the reactor – in particular of its shutdown system – and operating procedures were severely violated at the time of the accident” and “there was a lack of safety culture in the organizations responsible for operation and for control: important safety weaknesses had been recognized long before the accident occurred but were not remedied.” Only thanks to the discovery of an increase in environmental radioactivity in Nordic countries the international community was informed about the accident. On 11 March 2011, as one of the consequences of the tsunami waves generated by the Great East Japan Earthquake off the Pacific coast of Japan, the Fukushima Daiichi nuclear power plant accident took place. In his statement to the “International Conference on Chernobyl: Twenty-Five Years On - Safety for the Future” the International Atomic Energy Agency Director General, Mr. Yukiya Amano, pointed out “Chernobyl led to a great step forward in international cooperation in the field of nuclear safety. We now have four safety conventions, two Codes of Conduct, fundamental safety principles and a body of globally recognised IAEA Safety Standards.” [ ] “An international coordinated response system, with the IAEA's Incident and Emergency Centre at its heart, is now in place.” [ ] “We also have an IAEA peer review system, based on the Agency's Safety Standards.” But Mr. Amano also recognized that “despite the great progress made in the last 25 years, more needs to be done to ensure that a ''Safety First'' approach becomes fully

  20. The Chernobyl NPP decommissioning: Current status and alternatives

    International Nuclear Information System (INIS)

    Mikolaitchouk, H.; Steinberg, N.

    1996-01-01

    After the Chernobyl accident of April 26, 1986, many contradictory decisions were taken concerning the Chernobyl nuclear power plant (NPP) future. The principal source of contradictions was a deadline for a final shutdown of the Chernobyl NPP units. Alterations in a political and socioeconomic environment resulted in the latest decision of the Ukrainian Authorities about 2000 as a deadline for a beginning of the Chernobyl NPP decommissioning. The date seems a sound compromise among the parties concerned. However, in order to meet the data a lot of work should be done. First of all, a decommissioning strategy has to be established. The problem is complicated due to both site-specific aspects and an absence of proven solutions for the RBMK-type reactor decommissioning. In the paper the problem of decommissioning option selection is considered taking into account an influence of the following factors: relevant legislative and regulatory requirements; resources required to carry out decommissioning (man-power, equipment, technologies, waste management infrastructure, etc.); radiological and physical status of the plant, including structural integrity and predictable age and weather effects; impact of planned activities at the destroyed unit 4 and within the 30-km exclusion zone of the Chernobyl NPP; planed use of the site; socio-economic considerations

  1. Nuclear power: Public opinion in social crisis

    International Nuclear Information System (INIS)

    Gagarinski, A.

    1995-01-01

    Nuclear power in Russia found itself in new conditions, if compared with first five years after Chernobyl. It is coming out of the technology crisis from 1986 and the political crisis of 1991, going deeper and deeper in the hard economic crisis, when the nuclear power plants receive about 10 percent of payments for electricity, produced and supplied to the customers. Economic crisis forms the public attitude about nuclear power under conditions, different from opinion formed during the previous decades, when energy supply was considered practically free of charge. These realities have moved ecological problems to the periphery of public conscience. This was, in particular, shown with all evidence during the parliamentary elections in Russia in 1993, when the Russian 'Green Party' had not achieved any seats in the State Duma. This is also confirmed by sociological polls of Russians done in the last two years. It seems, however, that change of priorities in public opinion had increased attention to the problems of environment in the nearest future are as inevitable, as the forthcoming Russia's and Its nearest neighbours getting out of the state of economic fail down. In these conditions the possibility of nuclear power development will be determined not only by economic factors, but also by the factor of public confidence. The progress in the development of public information programme in the field of nuclear power, if compared with the first years after Chernobyl, is evident. Several governing and coordinating structures exist and work in Russia (Department of Minatom, Inter-departmental Council for information and public relations, similar Department in Rosenergoatom Concern), regional public information centres, special services at many nuclear science and industry enterprises. Similar system works in Ukraine and is being established in Kazakhstan. In antinuclear Belarus, where, nevertheless, the objective need of nuclear power is already reflected in the national

  2. Nuclear power - economics and safety

    International Nuclear Information System (INIS)

    Jones, P.

    1989-01-01

    The market for steam coal is largely related to its use in electricity production and here it has to compete with hydrocarbon fuels, renewable sources and nuclear power. The criteria for fuel choice by utilities are partly economic, partly environmental, partly questions of convenience and fuel supply diversity, and partly a reaction to public and political pressures. The relative importance attached to these factors and even perceptions of the factors themselves differ from country to country and utility to utility so that there is no universal consensus on the ''right balance'' of alternative means of generation. Some countries like France and Belgium are heavily committed to nuclear power while others like Australia are committed to coal. Most have no overwhelming commitment to any one source and operate a mixture of plants, although some like Sweden and Austria have decided either to phase out or not to operate nuclear plants. The net result is that there are now some 400 nuclear reactors in operation in 26 countries with over 200 under construction or planned. However, nuclear power's future prospects were not helped by the Three Mile Island and Chernobyl accidents. Coal has also suffered over concerns about gaseous emissions, acid rain and the effects of mining operations. Nuclear critics worry about the disposal of radioactive wastes whilst critics of coal use (and fossil/wood-fuel) worry about global climatic effects of carbon dioxide and nitrogen oxides. This paper looks at some of the facts about nuclear power and its future prospects and how they are likely to affect coal demand. It is concluded that coal does not face an easy future. (author)

  3. The enduring lessons of Chernobyl

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2005-01-01

    The major impacts of the Chernobyl accident fall into three categories: the physical impacts, in terms of health and environmental effects; the psycho-social impacts on the affected populations; and the influence of the accident on the nuclear industry worldwide. The physical impacts mark Chernobyl as the site of the most serious nuclear accident in history. The explosions that destroyed the Unit 4 reactor core released a cloud of radionuclides that contaminated large areas of Belarus, Russia and Ukraine. Hundreds of thousands of workers participated in efforts to mitigate the consequences of the accident, and many of these individuals were exposed to substantial radiation doses. The psycho-social impacts were also devastating. Over 100 000 people were evacuated immediately after the accident, and the total number of evacuees from severely contaminated areas eventually reached 350 000 people. While these resettlements helped to reduce the collective dose of radiation, it was deeply traumatic for those involved. The third impact I mentioned is the enormous influence of the Chernobyl accident on the nuclear industry. A decade earlier, the accident at Three Mile Island had already cast doubt on the ability of nuclear power plant operators to prevent severe accidents. Chernobyl had far greater impact; the accident emblazoned itself on public consciousness as proof positive that nuclear safety was an oxymoron. Some countries decided to reduce or terminate further construction of nuclear facilities, and the expansion of nuclear capacity came to a near standstill. It has taken nearly two decades of strong safety performance to repair the industry's reputation. From the time of the accident, the IAEA has been continuously involved in technical assistance and research projects to mitigate the environmental and health consequences in affected areas. Since 1990, more than $15 million has been disbursed through the IAEA technical cooperation programme on a broad range of these

  4. Experimental study of radioactive aerosols in the vicinity of the Chernobyl Nuclear Power Plant

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Kudrjashov, V.P.; Mironov, V.P.

    1999-01-01

    Study of radioactive aerosols in the relocation zone and in the populated areas have been carried out for a number of years. The experiments on modelling resuspension were performed while conducting agricultural work. Nuclear track radiography and alpha spectrometry with radiochemical extraction of plutonium were used as analytical methods for the determination of the transuranium elements contents. The distributions of radioactive particles were obtained as to activity and sizes. Specific activity of 'hot particles' increases with decreasing diameter. In aerosols selected at a distance of more than 10 km from the Chernobyl NPP pure fuel particles with sizes of more than 5 μm were not found. The activity of the finely dispersed fraction of aerosols, which is more dangerous when inhaled by the organism, is comparable with a total activity of large particles

  5. The USSR nuclear power: Expectation of renaissance

    International Nuclear Information System (INIS)

    Gagarinski, A.; Ponomarev-Stepnoi, N.

    1992-01-01

    When the Soviet specialists presented the data on the causes and consequences of the largest world nuclear accident to the world community in 1986 and even in a year after the Chernobyl catastrophe, they kept certain optimism concerning continuous steady implementation of the nuclear power projects in this country. However five post Chernobyl years have shown that the installed capacities of the Soviet NPPs increased only by 5GW. Basing on the most optimistic current estimations it can be said that by the turn of the century the total NPP capacity will not have reached even a third of 190 GW to which the Soviet nuclear program, adopted in the beginning of the 80s, was oriented. It should be pointed out that the cause of reduction in the program was not only canceling of the orders for new NPP construction but also stopped construction works even at the final stage of NPP erection. In the whole, research works, construction and extension of NPP were interrupted on 39 sites of total capacity 109 GW. Not going into a detailed analysis of the causes of this situation, it should be pointed out that deep economical and ecological prerequisites for maintenance and further development of the nuclear component in the fuel and energy balance of this country not only did not vanish but rather are growing in time in the forecasted economic situation

  6. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Last year, 2000, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 172 259 MWe and an aggregate gross capacity of 181 642 MWe were in operation (31.12.2000; 215 plants, 180 067 MWe (gross), 172 259 MWe (net)). One unit, i.e. Temelin in the Czech Republic went critical for the first time and started test operation after having been connected to the grid. Temelin adds about 981 MWe (gross) and 912 MWe (net) to the electricity production capacity. Three units, Hinkley Point A1 and A2 in United Kingdom, and Chernobyl 3 in the Ukraine have been shut down during the year 2000. This means a loss of 1534 MWe gross capacity and 1420 MWe net capacity. Last year, 12 plants (31.12.2000: 11 plants) were under construction in Romania, Russia, Slovakia, the Czech Republic and the Ukraine, that is only in east european countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129 188 MWe and an aggregate net capacity of 123 061 MWe (31.12.2000: 144 plants, 128 613 MWe (gross), 122 627 MWe (net)). Net electricity production in 2000 in the EU amounts to approx. 818.8 TWh, which means a share of 35 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 76 per cent in France, 74 per cent in Lithuania, 57 per cent in Belgium and 47 per cent in the Ukraine. Nuclear power also provides an noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e. g. Italy, Portugal and Austria. (orig.) [de

  7. Mulching as a countermeasure for crop contamination within the 30 km zone of Chernobyl Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yera, T.S.; Vallejo, R.; Tent, J.; Rauret, G.; Omelyanenko, N.; Ivanov, Y.

    1999-01-01

    The effect of mulch soil cover on crop contamination by 137 Cs was studied within the 30 km zone of Chernobyl Nuclear Power Plant. Experiments were performed with oats (Avena sativa) over a three year period. In 1992 soil surface was covered by a plastic net. In 1993 two straw mulch treatments were applied at a dose rate of 200 g m -2 using 137 Cs contaminated and clean straw, respectively. A similar mulch treatment was applied in 1994, and two mulch doses of clean straw were tested. Protection of the soil with a plastic net significantly increased crop yield and reduced crop contamination. When clean straw was used as a mulch layer, a significant decrease of about 30--40% in 137 Cs activity concentration was observed. Mulching with 137 Cs contaminated straw did not reduce crop contamination, probably due to an increase in soil available 137 Cs released from the contaminated mulch. Mulching has been shown to be an effective treatment both for reducing 137 Cs plant contamination and improving crop yield. Therefore, it can be considered as a potential countermeasure in a post-accident situation

  8. Composition of Radioactive Aerosols in the Shelter Construction of the Chernobyl Nuclear Power Plant in 2000-2015

    Science.gov (United States)

    Ogorodnikov, B. I.

    2018-06-01

    The results of the physicochemical studies of radioactive aerosols inside and outside the Shelter construction at the Arch construction stage of the Chernobyl Nuclear Power Plant (ChNPP) in 2000-2015 were presented. The dominant isotopes were shown to be cesium, strontium, americium, plutonium, and uranium. They are carried by disperse particles of 2-7 μm. In subreactor rooms, in particular, 012/7, the composition of aerosols is affected by the erosion of the fuel-containing mass formed in 1986. Submicron cesium carrier aerosols appear as a result of evaporation and condensation during fires and welding works. Radiocesium is a well-soluble component of aerosols, while plutonium isotopes are not readily soluble components. In several rooms, the contents of radon, thoron, and their daughter products exceeded the permissible values. In April-June 2011, the intake of radionuclides from the accident at the Japanese Fukushima-1 NPP, which had AMAD of 0.5 μm, was detected and tracked using Petryanov multilayer filters. The productivity of filtration units under the dusty conditions in the exclusion zone of ChNPP and in fogs and haze was investigated. Hydrophilic prefilters with 7-10 μm fibers were recommended.

  9. Is the nuclear power an ethic alternative for the development?

    International Nuclear Information System (INIS)

    Bilegan, Constantin Iosif; Chirica, Teodor

    1999-01-01

    Is the nuclear power an ethical alternative for the development of the energy sector? This is the question the authors try to answer. Nuclear power is subject to constant attacks from different opponent groups. They have managed to make negative public opinion, especially after the Chernobyl accident, which tends to minimise the important of that alternative. Unfortunately, nuclear professionals are also the subjects of that propaganda and even some of us are pessimistic about the future of our sector. The public will accept nuclear power if the producer guarantees that he is able to meet three conditions for the electricity supply: generation without risks for public or the environment, as cost-effective as possible and with high availability. In order to keep the confidence of general public for nuclear power, the authors, with total openness, compared the up-to-date power alternatives. The conclusion is, that for the next future, to avoid the global heating effect and to meet the constrains for a 'cleaner world', the humanity must to rely on nuclear power, besides other cleaner conventional alternatives, as ethical sources of energy. (authors)

  10. Economic aspects of the social rehabilitation of nuclear power

    International Nuclear Information System (INIS)

    Gitel'man, L.D.; Ratnikov, B.E.

    1992-01-01

    This article highlights the state of affairs regarding nuclear power in Russia at this time in the post-Chernobyl era. environmentalists and others are leveling criticisms at nuclear power stating that nuclear plants should be shutdown and preservation can offset the demands for electricity. The authors are advised to examine a new consensus for developing nuclear power, which could form the basis of a new program of social rehabilitation, and not a singular rejection of constructing new nuclear power plants. Public acceptance of nuclear power can be obtained only by resolving contradictions and by harmonizing the interests of all social groups and of all subjects of economic relationships, which in one way or another are connected to the financing and functioning of nuclear power plants (the local population, personnel, energy users, regional energy organizations, and local government). A strategy oriented to overall acceptance of nuclear power should consider intra area factors and also external economic environments: the choice of nuclear power plant location on the basis of careful and independent expertise with the use of rigid social-economic criteria and a sharp increase in the attention to human factors. Important features in changes in the economic environments are the transition to a marketplace economy, the reorientation of budget expenditures to social goals, and the expansion of regional economic independence. This requires a significant strengthening of the regional control of electrification and the creation of corresponding economic mechanisms

  11. Environmental risks of power generation from fossil fuels and nuclear facilities

    International Nuclear Information System (INIS)

    Probert, D.; Tarrant, C.

    1989-01-01

    The nuclear power industry, when considered via statistical arguments, is far less dangerous than the average 'man in the street' in the UK perceives it to be. To support this assertion, an elementary analysis of the risk factors associated with commonplace hazards (e.g. road accidents and smoking) is presented. The radiological risks resulting from the Chernobyl nuclear power station accident, even in the most badly affected areas of the UK and at the times of highest intensity, were much less than those due to natural background radiation. Radioactive elements occur naturally in coal and are released as a result of combustion into the UK environment via flue gases and ash in significantly greater amounts than those from nuclear power stations. (author)

  12. Emergency preparedness lessons from Chernobyl

    International Nuclear Information System (INIS)

    Martin, J.B.

    1987-09-01

    Emergency preparedness at nuclear power plants in the US has been considerably enhanced since the Three Mile Island accident. The Chernobyl accident has provided valuable data that can be used to evaluate the merit of some of these enhancements and to determine the need for additional improvements. For example, the USSR intervention levels of 25 rem and 75 rem for evacuation are contrasted with US Environmental Protection Agency protective action guides. The manner in which 135,000 persons were evacuated from the 30-km zone around Chernobyl is constrasted with typical US evacuation plans. Meteorological conditions and particulate deposition patterns were studied to infer characteristics of the radioactive plume from Chernobyl. Typical plume monitoring techniques are examined in light of lessons learned by the Soviets about plume behavior. This review has indicated a need for additional improvements in utility and government emergency plans, procedures, equipment, and training. 12 refs., 1 fig., 2 tabs

  13. Nuclear power plant control and instrumentation activities in Finland

    International Nuclear Information System (INIS)

    Haapanen, P.; Wahlstroem, B.

    1992-01-01

    Finland has remarkable achievements in nuclear power. The existing four plants have some of the best operating records in the world - high capacity factors, low occupational doses and short refuelling outages. Public opinion was strongly turned against nuclear power after Chernobyl accident, and the previous government decided not to allow for the construction of a fifth nuclear unit during its period of reign. The opposition has however slowly been diminishing. According to the latest polls the opinion is almost balanced. Finnish power companies are going to file an application for a decision-in-principle to build a new plant to the new government appointed in April 1991. A readiness to start new construction project immediately after a positive political decision is made has been maintained during the intermediate period. Continuous research, development, modification and upgrading work provide important components of the good operational history of the Finnish nuclear power plants. Efforts have also been devoted to identifying possible new problems arising from the use of distributed digital C and I technology. The following a short description is summarizing recent activities related to the C and I-systems of the nuclear power plants. (author). 3 tab

  14. The Nuclear Power Revival in Eastern Europe

    International Nuclear Information System (INIS)

    Bayou, Celine

    2007-01-01

    Far from traumatized by the April 1986 Chernobyl accident, the Central and Eastern European countries as well as the CIS are showing a growing interest in nuclear energy: this choice may be explained by increased energy demands and safer supply requirements but also by the battle against global warming. In effect, commitments made on limiting greenhouse gas emissions (particularly for the EU new member states) are becoming increasingly important as these countries return to growth. Thus, nuclear power seems to be a partial but secure means of not endangering the latter while adopting a more respectful stance vis-a-vis the environment. Thus, each country is coming out in favour of the civilian use of nuclear power: Russia has been reviving its nuclear program over the last few years, while countries obliged to close their decrepit or Soviet style power stations (Bulgaria, Slovakia, Lithuania, Slovenia, Armenia) have projects to build new ones. Those who possess reactors (the Czech Republic, Hungary, Romania, the Ukraine) are endeavouring to increase their potential, those which had hitherto no civilian nuclear facilities are now planning to build them (Belarus, Albania) or are contributing to projects in neighbouring countries (Estonia, Latvia, Poland). Within this context, the anti-nuclear argument has difficulty in finding a voice in the East

  15. Attitudes towards nuclear power in Sweden: a history of ups and downs

    International Nuclear Information System (INIS)

    Sokolowski, E.

    1994-01-01

    A brief description of Swedish nuclear program is given. The emphasis is stressed on the controversy aspects which haunted and paralyzed Swedish energy policy since early seventies. The political polarization and the TMI core-melt accident created instability in public opinion which led to announcing an advisory referendum in early 1980. The outcome of the referendum was 38.7% for the anti-nuclear line, 58.0% for a long term phase-out, and 3.3% blanks. After the referendum the energy issue faded into the background until the Chernobyl accident in April 1986 when a new wave of anti-nuclear sentiment swept over the country. But now public opinion recovered much faster than the politician had foreseen. The following facts contributed to that: electricity costs and unemployment had risen dramatically; the Chernobyl reactor had no relevance for the Swedish nuclear plants; nuclear power had met competition as a risk factor in opinion polls -only natural gas got a lower ranking. The politicians responded to the opinion change with a compromise: the early phase-out proposal was withdrawn in return for a development fund for renewable energy sources (bio-mass). Public acceptance of nuclear power culminated in 1990. After that there has again been a steady decline. As a whole, the future of the Swedish nuclear power program is uncertain. Yet in favour of it are the following: the new burdens on the economy due to the present recession; the lack of environmentally and economically acceptable alternatives; continued familiarization and education, together with improvement of safety. (I.P.)

  16. Chernobyl, 17 after

    International Nuclear Information System (INIS)

    2003-04-01

    This information document takes stock on the Chernobyl accident effects, 17 years after the reactor accident. The domains concerned are: the Chernobyl power plant, the sanitary consequences of the accident in the most exposed countries, the Chernobyl environment and the polluted regions management, the Chernobyl accident consequences in France; Some data and technical sheets on the RBMK reactors and the international cooperation are also provided. (A.L.B.)

  17. JPRS Report, Nuclear Developments

    National Research Council Canada - National Science Library

    1991-01-01

    Partial Contents: Medium Range Missiles, Rocket Engine, Nuclear Submarine, Nuclear Reactor, Nuclear Inspection, Nuclear Weapons, Transfer Technology, Scud, Safety, Nuclear Power, Chernobyl Trial, ,CHemical Weapons...

  18. Medical and radioecological consequences of the Chernobyl catastrophe in Western Europe

    International Nuclear Information System (INIS)

    Frenzel, Ch.; Llengfelder, E.

    2016-01-01

    Full text: The catastrophe at the unit 4 of the Chernobyl Nuclear Power Plant in the Ukrainian SSR which occurred on 26 April 1986, was the most serious accident in the history of nuclear industry and the civil use of nuclear energy until this time. Initial explosions destroyed the reactor completely. During about 10 days, large amounts of radioactive material were released to the western part of Soviet Union as well as to all European countries. 25 years later in March 2011, the next nuclear disaster at a level of INES 7 occurred at the Fukushima Daiichi Site in Japan, where 4 reactor units were destroyed by explosions and nuclear melt down processes. Compared with Chernobyl, a larger amount of radioactivity was released in Fukushima. After Chernobyl, the majority of the radionuclide depositions affected the CIS countries. Due to continuously changing of wind directions and weather conditions during the 10 days of release of radioactivity, the radionuclide distribution and deposition was very inhomogeneous not only in the CIS countries, but even at far distances as in Germany, Scandinavia , the north of Scotland and many other countries. The former Secretary-General of the United Nations, Kofi Annan, has repeatedly placed particular emphasis on the fact that millions of people continue to be directly affected by the consequences of the Chernobyl accident, including acute suffering and continuing health disorders, and that this disaster is a matter of global concern. The most affected countries by the extent of radionuclide deposition show since years the incidence of cancer and other disorders of thyroid as well as many other serious health effects. After Chernobyl, nuclear disasters will happen again – as has been verified in Fukushima - in one of the more than 440 nuclear power stations worldwide. Most of them are located in areas with a population density several fold greater than in the case of Chernobyl. If we do not know the past, we will not be able to

  19. Nuclear power systems: Their safety

    International Nuclear Information System (INIS)

    Myers, L.C.

    1993-01-01

    Mankind utilizes energy in many forms and from a variety of sources. Canada is one of a growing number of countries which have chosen to embrace nuclear-electric generation as a component of their energy systems. As of August 1992 there were 433 power reactors operating in 35 countries and accounting for more than 15% of the world's production of electricity. In 1992, thirteen countries derived at least 25% of their electricity from nuclear units, with France leading at nearly 70%. In the same year, Canada produced about 16% of its electricity from nuclear units. Some 68 power reactors are under construction in 16 countries, enough to expand present generating capacity by close to 20%. No human endeavour carries the guarantee of perfect safety and the question of whether or not nuclear-electric generation represents an 'acceptable' risk to society has long been vigorously debated. Until the events of late April 1986, nuclear safety had indeed been an issue for discussion, for some concern, but not for alarm. The accident at the Chernobyl reactor in the USSR has irrevocably changed all that. This disaster brought the matter of nuclear safety back into the public mind in a dramatic fashion. This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents which have occurred to date. (author). 7 refs

  20. Chernobyl record. The definitive history of the Chernobyl catastrophe

    Energy Technology Data Exchange (ETDEWEB)

    Mould, R.F

    2000-07-01

    The contents of Chernobyl Record have taken 14 years to compile and this period of time was necessary to enable information to be released from Soviet sources, measurements to be made in the environment, for estimation of radiation doses and for follow-up of the health of population groups which had been exposed. This time frame also includes the 10th anniversary conferences and the completion of joint projects of the European Commission, Ukraine, Belarus and the Russian Federation. It has also enabled me to visit the power plant site, Chernobyl town and Pripyat relatively soon after the accident and also some 10 years later: December 1987 and June 1998. Without such visits some of the photographs in this Record could not have been obtained. Information is also contained in these pages of comparisons of various aspects of the Chernobyl accident with data from the Three Mile Island accident in the USA in 1979, the Hiroshima and Nagasaki atomic bombs, the highly contaminated Techa river area in the Urals in Russia and the accident in Tokaimura, Japan in 1999. The first two chapters are introductory in that they describe terminology which is necessary for an understanding of the remaining chapters. Chapters 3-6 describes the early events: including those leading up to the explosion and then what followed in the immediate aftermath. Chapters 7-8 describe the Sarcophagus and the past and future of nuclear power for electricity generation, including the future of the Chernobyl power station. Chapters 9-11 consider the radiation doses received by various populations, including liquidators, evacuees and those living on contaminated territories: and the contamination of milk by {sup 131}I, and the contamination of other parts of the food chain by {sup 137}Cs. Chapters 12-14 describe the environmental impact of the accident, as does chapter 11. Chapters 15-18 detail the long-term effects on health, including not only the incidence of cancer, but also of non

  1. Behaviour of Chernobyl fallout radionuclides deposited on peat and urban surfaces in Finland

    International Nuclear Information System (INIS)

    Reponen, A.

    1992-10-01

    In the thesis the impact of the Chernobyl nuclear reactor accident on Finland was studied in three aspects: (1) the areal distribution of Chernobyl fallout in Finland was determined by measuring peat samples, (2) the behaviour of fallout radionuclides was investigated in the combustion of peat in power plants, and (3) the removal rates of fallout radionuclides on urban surfaces were resolved

  2. Nuclear Power Project in Thailand

    International Nuclear Information System (INIS)

    Namwong, Ratanachai

    2011-01-01

    The Electricity Generating Authority of Thailand (EGAT), the main power producer in Thailand, was first interested in nuclear power as an electricity option in 1967 when the electricity demand increased considerably for the first time as a result of the economic and industrial growth. Its viability had been assessed several times during the early seventies in relation to the changing factors. Finally in the late 1970s, the proceeding with nuclear option was suspended for a variety of reasons, for instance, public opposition, economic repercussion and the uncovering of the indigenous petroleum resources. Nonetheless, EGAT continued to maintain a core of nuclear expertise. During 1980s, faced with dwindling indigenous fossil fuel resources and restrictions on the use of further hydro as an energy source, EGAT had essentially reconsidered introducing nuclear power plants to provide a significant fraction to the long term future electricity demand. The studies on feasibility, siting and environmental impacts were conducted. However, the project was never implemented due to economics crisis in 1999 and strong opposition by environmentalists and activists groups. The 1986 Chernobyl disaster was an important cause. After a long dormant period, the nuclear power is now reviewed as one part of the solution for future energy supply in the country. Thailand currently relies on natural gas for 70 percent of its electricity, with the rest coming from oil, coal and hydro-power. One-third of the natural gas consumed in Thailand is imported, mainly from neighbouring Myanmar. According to Power Development Plan (PDP) 2007 rev.2, the total installed electricity capacity will increase from 28,530.3 MW in 2007 to 44,281 MW by the end of plan in 2021. Significantly increasing energy demand, concerns over climate change and dependence on overseas supplies of fossil fuels, all turn out in a favor of nuclear power. Under the current PDP (as revised in 2009), two 1,000- megawatt nuclear

  3. Nuclear power in societal flux. The renewal of nuclear power in Finland in the context of global concern over energy security

    International Nuclear Information System (INIS)

    Litmanen, Tapio

    2010-01-01

    This paper will address nuclear power's relationship with societal flux. The history of nuclear power indicates that this type of technology is unusually to societal flux. Instability in nuclear power's societal status is created by the ambiguous nature of the technology itself, changing public opinion, the fluidity of political judgments, the flow of cultural meanings attaching to nuclear power and the unpredictability of media processing. Even though the risks of nuclear technology are highly regulated by the companies themselves and by the state and public administration, it remains capable of inflaming political debate and igniting controversy. One public opinion survey after another reveals how divisive nuclear power is. Unlike most other industrial activities nuclear power decision-making involves extraordinary levels of political consideration, societal processing and cultural valuation by stakeholders and the media. In order to illustrate the idea of societal flux, the paper will deal with major shifts in Finnish nuclear power policy since the 1950s, focusing particularly, however, on changes between 1986-2010. The recent changes in the country's nuclear power policy prove interesting having proceeded from a phase of rejection during the period 1986-1993, to a revival between 1994-2002 and renewal between 2002-2009. The rejection period ended in 1993 during which time the Parliament of Finland had rejected the further construction of nuclear power plants in the wake of the Chernobyl accident. In less than a decade, however, nuclear power policy changed. The revival period ended in 2001 as Parliament ratified a Decision in Principle for the final disposal of spent nuclear fuel and in 2002 for the construction of a new nuclear power plant unit, Olkiluoto 3. Characteristic of the ongoing renewal period is that in 2008-2009 the nuclear industry submitted three further applications for the construction of new NPP units. Thus Finland today has acquired a

  4. The renaissance of Italian nuclear power

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Cassuto, A.

    2010-01-01

    In the fifties Italy was an advanced country in terms of nuclear electricity but as a consequence of the Chernobyl accident Italy changed drastically its energy policy and closed definitely all its nuclear plants. Now in order to be less dependent on energy imports and to reduce its CO 2 emission, Italy has changed its mind and welcomes nuclear power in its future energy mix. The aim is to reach the following contributions for the production of electricity in 2030: 50% from fossil fuels, 25% from renewable energies and 25% from nuclear energy (13.000 MWe) and with a first reactor operating in 2020. The main actors of the renaissance of nuclear power in Italy are: -) ENEL (the second electricity producer in Europe), -) SOGIN, a company that is mainly in charge of the dismantling of nuclear plants, -) ENEA a state agency for the development of new technologies, energy and sustainable development, and -) companies working in the nuclear industry like ANSALDO. Various collaboration agreements have been signed between ENEL and EDF or between ENEA and CEA concerning staff training, nuclear safety or radioactive waste management. The main difficulties of this renaissance of the nuclear energy are to get the agreement of the national and local populations as well as that of the political class that is strongly marked by a division in 2 wings. (A.C.)

  5. Evaluation investigation 'Chernobyl'

    International Nuclear Information System (INIS)

    Wall Bake, D.A. van den; Geut, L.; Zorn, G.W.H.

    1986-01-01

    This report is an evaluation of the attitude of the Dutch government in response to the Chernobyl accident. It deals with measures taken by the government in order to minimize the (possible) effects, apparent shortcomings and how one has dealt with them, measures which can be taken at least by the Netherlands in case of a reactor accident given the presence of dozens of nuclear power plants in Europe. Good and less good aspects of the temporary organization are noted and some general recommendations are given. (Auth.)

  6. Experimental study of radioactive aerosols in the vicinity of the Chernobyl Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Kudrjashov, V.P.; Mironov, V.P

    1999-12-01

    Study of radioactive aerosols in the relocation zone and in the populated areas have been carried out for a number of years. The experiments on modelling resuspension were performed while conducting agricultural work. Nuclear track radiography and alpha spectrometry with radiochemical extraction of plutonium were used as analytical methods for the determination of the transuranium elements contents. The distributions of radioactive particles were obtained as to activity and sizes. Specific activity of 'hot particles' increases with decreasing diameter. In aerosols selected at a distance of more than 10 km from the Chernobyl NPP pure fuel particles with sizes of more than 5 {mu}m were not found. The activity of the finely dispersed fraction of aerosols, which is more dangerous when inhaled by the organism, is comparable with a total activity of large particles.

  7. Chernobyl: the actual facts and consequences

    International Nuclear Information System (INIS)

    Schmitt, Pierre

    2011-01-01

    In a first part, a Power Point presentation explains the technical reasons of the Chernobyl accident and recalls the environmental and health consequences on a short, middle and long term. In a second part, the author analyses the treatment by the media in France and shows how the population has been manipulated by nuclear opponents with the active complicity of some media

  8. The biotic sample bank of Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    Li Yu; Min Rui; Cai Jianming

    2006-01-01

    Objective: To built a simple and easy biologic sample bank from irradiated people in nuclear accident, for the long time research of biological effect of low dose ionization radiation on people. Methods: The blood sample is fixed on a piece of filter paper rand sealed up in plastic bottle for keeping, blood sample scribble on glass lice, fixed and dyed as routine clinic examination, and still, reserve a slice of hair of the examined people. Results: Having built a biologic sample bank which from 1162 human body. The samples are come from 958 liquidators of Chernobyl nuclear accident, 46 people in other nuclear accident and 158 people as control groups. It is also having much information details. Conclusions: If the biologic sample bank is combined with the modern bimolecular technique, maybe have much meaningful for the theory and practice of radiobiology. (authors)

  9. Technical and institutional safety features of nuclear power plants in Brazil. Aspectos tecnicos e institucionais da seguranca dos reatores nucleares no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, L P [Sociedade Brasileira de Fisica, Rio de Janeiro, RJ (Brazil)

    1986-01-01

    This work reports technical, political and institutional safety features of nuclear power plants in Brazil. It is mainly concerned with reactor accidents and personnel safety. The three mile Island and Chernobyl accidents are also discussed and taken as examples. (A.C.A.S.).

  10. The Importance of Reliable Nuclear Power For Energy Supply

    International Nuclear Information System (INIS)

    Blix, Hans

    1989-01-01

    The severe accident at Chernobyl in 1986 caused a setback in public acceptance of nuclear power practically everywhere in the world. In some countries, the media even give the impression that nuclear power is on the way out worldwide, because of concerns about safety, radioactive waste disposal, and the risk of proliferation of nuclear weapons. Let me give you a more accurate picture of the situation. At the beginning of this year there were about 430 nuclear power reactors in operation in 26 countries around the world and they produced more than 16% of the world's electric energy. That amount of electricity is equal to the total amount of electric energy that was produced in the world in 1956. I mention this because, when we concentrate on the problems which nuclear power is facing, we tend to forget that among all the major energy sources? coal, oil, gas, hydro and nuclear- it is nuclear which has experienced the fastest rise in relative importance for the global energy supply. Its contribution to global energy supply has increased from just under 1% in 1974 to about 5% in 1987. On the positive side we can note the continuation of strong nuclear power programmes with construction starts in France and Japan, the start of construction at Sizewell B, which marks a new departure for nuclear power in the United Kingdom, and the orders for the Korean units 11 and 12

  11. Twenty years of providing information on nuclear power. The experience of EDF

    International Nuclear Information System (INIS)

    Durr, M.; Ansel, P.; Chaussade, J.P.; Haller, P.; Hezard, L.; Hue, L.

    1995-01-01

    In France, the anti-nuclear protest movement became a real problem after 1968, as new sites were sought. Initially, information on nuclear power involved communication by the entities responsible for building the plants. Once Government officials and politicians overcame their initial hesitation, their support, which underscores the continuity of France's energy policy, came to play a major role in the public acceptance of nuclear power. Electricite de France (EDF) then had to master the art of informing and communicating with the public. The change in the parliamentary majority in 1981 did not call into question the nuclear programme, and new plants were commissioned with relative ease. The situation changed dramatically with the Chernobyl disaster. It therefore became vital to establish an efficient structure for crisis communications, and transparency became crucial. The focus shifted from launching new plants to operating existing facilities and restoring public confidence. While not neglecting the general public, the emphasis was on certain strategic segments of the population, notably teachers and health care professionals. Advertising campaigns are today aimed at certain segments of the public, whose opinion could well shift in favour of nuclear power. Lastly, EDF, as power plant operator, has to realize the importance of providing information on nuclear waste. Starting from a strategic policy of informing politicians and senior decision makers, in 1974 EDF began to focus on providing information that would 'educate' the public. This information was issued via technicians who had no specific training in communications techniques. In addition to the need to explain and justify its projects, EDF had to adopt a policy of transparency, and to dispense with the esoteric language of specialists and their preference for secrecy. After Chernobyl, EDF's managers made communications with the 'outside world' an integral part of their jobs. Nuclear information became a

  12. Fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    1992-01-01

    The Code on Design (Safety Series 50-C-D (Rev. 1)) within the NUSS (Nuclear Safety Standards) programme of the IAEA points out the necessity of measures for protecting plant items which are important to safety against fires of internal and external origin. Experience of the past two decades in the operation of nuclear power plants and modern analysis techniques confirm that fire may be a real threat to nuclear safety and should receive adequate attention from the beginning of the design process throughout the life of the plant. Within the framework of the NUSS programme, a Safety Guide on fire protection had therefore been developed to enlarge on the general requirements given in the Code. Since its first publication in 1979, there has been considerable development in protection technology and analysis methods and after the Chernobyl accident it was decided to revise the existing Guide. The present Safety Guide is intended to advise designers, safety assessors and regulators on the concept of fire protection in the design of nuclear power plants and on recommended ways of implementing the concept in some detail in practice. Figs, 1 tab

  13. Innovative Modelling Approach of Safety Culture Assessment in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ahn, N.

    2016-01-01

    A culture is commonly defined as the shared set of norms and values that govern appropriate individual behavior. Safety culture is the subset of organizational culture that reflects the general attitude and approaches to safety and risk management. While safety is sometimes narrowly defined in terms of human death and injury, we use a more inclusive definition that also considers mission loss as a safety problem and is thus applicable to nuclear power plants and missions. The recent accident reports and investigations of the nuclear power plant mission failures (i.e., TMI, Chernobyl, and Fukushima) point to safety cultural problems in nuclear power plants. Many assessment approaches have been developed by organizations such as IAEA and INPO based on the assessment of parameters at separate levels — individuals, groups, and organizations.

  14. Prevalence of bronchopulmonary pathology in the participants of Chernobyl Nuclear Power Plant accident response

    International Nuclear Information System (INIS)

    Antonov, N.S.; Yakushin, S.P.; Stulova, O.Yu.; Zajtseva, O.Yu.; Stroev, E.A.

    1998-01-01

    Epidemiologic examination of the participants of the Chernobyl accident response is performed. Fact of acute effect of the Chernobyl aerosol inhalation on respiratory organs is found. Prevalence of bronchopulmonary diseases in participants of accident response is almost 2 times higher than that in reference group. Further program of investigations includes the hospital stage and the preventive measures at prehospital stage under ambulatory conditions. Assessments of the efficiency of performed treatment - prophylactic measures and their economic benefit are made [ru

  15. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts.

    Science.gov (United States)

    Steinhauser, Georg; Brandl, Alexander; Johnson, Thomas E

    2014-02-01

    The environmental impacts of the nuclear accidents of Chernobyl and Fukushima are compared. In almost every respect, the consequences of the Chernobyl accident clearly exceeded those of the Fukushima accident. In both accidents, most of the radioactivity released was due to volatile radionuclides (noble gases, iodine, cesium, tellurium). However, the amount of refractory elements (including actinides) emitted in the course of the Chernobyl accident was approximately four orders of magnitude higher than during the Fukushima accident. For Chernobyl, a total release of 5,300 PBq (excluding noble gases) has been established as the most cited source term. For Fukushima, we estimated a total source term of 520 (340-800) PBq. In the course of the Fukushima accident, the majority of the radionuclides (more than 80%) was transported offshore and deposited in the Pacific Ocean. Monitoring campaigns after both accidents reveal that the environmental impact of the Chernobyl accident was much greater than of the Fukushima accident. Both the highly contaminated areas and the evacuated areas are smaller around Fukushima and the projected health effects in Japan are significantly lower than after the Chernobyl accident. This is mainly due to the fact that food safety campaigns and evacuations worked quickly and efficiently after the Fukushima accident. In contrast to Chernobyl, no fatalities due to acute radiation effects occurred in Fukushima. © 2013.

  16. Monitoring of radioactivity in the environs of Finnish nuclear power stations in 1987

    International Nuclear Information System (INIS)

    Sjoeblom, K.-L.; Klemola, S.; Ilus, E.; Arvela, H.; Blomqvist, L.

    1989-06-01

    Results of the environmental programmes for monitoring radioactive contamination around Finnish nuclear power plants in 1987 are reported. Fallout from the Chernobyl accident, which took place in April 1986, was still dominating the artificial radiation situation in Finland. Thus, large amounts of 137 Cs and other long-lived fallout nuclides predominated in the environmental samples taken in the vicinity of nuclear power plants. The extremely small airborne releases from Finnish nuclear power plants were almost totally covered by fallout nuclides. The somewhat higher aquatic releases were easier to distinguish, and it was possible to follow their spread in the marine environment. The contribution of locally discharged nuclides to radiation doses of the population was insignificant

  17. Emergency response and nuclear risk governance. Nuclear safety at nuclear power plant accidents

    International Nuclear Information System (INIS)

    Kuhlen, Johannes

    2014-01-01

    The present study entitled ''Emergency Response and Nuclear Risk Governance: nuclear safety at nuclear power plant accidents'' deals with issues of the protection of the population and the environment against hazardous radiation (the hazards of nuclear energy) and the harmful effects of radioactivity during nuclear power plant accidents. The aim of this study is to contribute to both the identification and remediation of shortcomings and deficits in the management of severe nuclear accidents like those that occurred at Chernobyl in 1986 and at Fukushima in 2011 as well as to the improvement and harmonization of plans and measures taken on an international level in nuclear emergency management. This thesis is divided into a theoretical part and an empirical part. The theoretical part focuses on embedding the subject in a specifically global governance concept, which includes, as far as Nuclear Risk Governance is concerned, the global governance of nuclear risks. Due to their characteristic features the following governance concepts can be assigned to these risks: Nuclear Safety Governance is related to safety, Nuclear Security Governance to security and NonProliferation Governance to safeguards. The subject of investigation of the present study is as a special case of the Nuclear Safety Governance, the Nuclear Emergency governance, which refers to off-site emergency response. The global impact of nuclear accidents and the concepts of security, safety culture and residual risk are contemplated in this context. The findings (accident sequences, their consequences and implications) from the analyses of two reactor accidents prior to Fukushima (Three Mile Iceland in 1979, Chernobyl in 1986) are examined from a historical analytical perspective and the state of the Nuclear Emergency governance and international cooperation aimed at improving nuclear safety after Chernobyl is portrayed by discussing, among other topics, examples of &apos

  18. Nuclear power in our societies; Le nucleaire dans nos societes

    Energy Technology Data Exchange (ETDEWEB)

    Fardeau, J.C.

    2011-07-01

    Hiroshima, Chernobyl, Fukushima Daiichi are the well known sad milestones on the path toward a broad development of nuclear energy. They are so well known that they have blurred certainly for long in a very unfair way the positive image of nuclear energy in the public eye. The impact of the media appetite for disasters favours the fear and puts aside all the achievements of nuclear sciences like nuclear medicine for instance and all the assets of nuclear power like the quasi absence of greenhouse gas emission or its massive capacity to produce electricity or heat. The unique solution to enhance nuclear acceptance is the reduction of the fear through a better understanding of nuclear sciences by the public. (A.C.)

  19. Twenty years' application of agricultural countermeasures following the Chernobyl accident: lessons learned

    International Nuclear Information System (INIS)

    Fesenko, S V; Alexakhin, R M; Balonov, M I; Bogdevich, I M; Howard, B J; Kashparov, V A; Sanzharova, N I; Panov, A V; Voigt, G; Zhuchenka, Yu M

    2006-01-01

    The accident at the Chernobyl NPP (nuclear power plant) was the most serious ever to have occurred in the history of nuclear energy. The consumption of contaminated foodstuffs in affected areas was a significant source of irradiation for the population. A wide range of different countermeasures have been used to reduce exposure of people and to mitigate the consequences of the Chernobyl accident for agriculture in affected regions in Belarus, Russia and Ukraine. This paper for the first time summarises key data on countermeasure application over twenty years for all three countries and describes key lessons learnt from this experience. (review)

  20. Exploding Chernobyl myths

    International Nuclear Information System (INIS)

    Arnott, D.

    1991-01-01

    Misconceptions about the way thermal reactors really work, and the use of misleading terminology, have allowed the western nuclear industry to claim that the accident at the RBMK (water cooled, graphite moderated) type reactor at Chernobyl would not be possible in western type pressurized water reactors. The author contends that control of thermal reactors is only possible because a small but consistent fraction of the secondary neutrons are delayed. If the delayed neutron reaction is overridden by the prompt neutron reaction, control is irretrievably lost and a nuclear explosion, such as at Chernobyl, results. Parallels between the PWR and RBMK are drawn. The consequences of the Chernobyl explosion are discussed and the question is asked: can any combination of circumstances, however improbable, produce a prompt neutron explosion in any western reactors? (UK)

  1. Nuclear Energy Law after Chernobyl

    International Nuclear Information System (INIS)

    Cameron, P.; Hancher, L.; Kuhn, W.

    1988-01-01

    This publication contains a serie of presentations on effects of the accident at Chernobyl from a legal viewpoint and the actions taken at the international and the national level. They illustrate the scope and seriousness of the challenges posed by an accident having a substantial impact on a large number of countries. Some papers deal with the Chernobyl accident itself, while others examine the current legislative and regulatory context, highlighting particular problem areas (NEA) [fr

  2. What Needs to be Changed based on Lessons Learned from Chernobyl

    International Nuclear Information System (INIS)

    Abramova, V. N.

    2016-01-01

    aspect, cognitive and operational structures and formalized notation about personnel regulation activity. The researches have shown that individual psychological data of Chernobyl NPP personnel, which could be a direct cause of wrong actions and lead to the accident, were not differ from another nuclear power plant personnel ones. Analysis of psychological aspects of Chernobyl accident and investigation of plant personnel motivation changes in the accident consequences elimination environment confirm the necessity to develop concept of careful relation to worker. It is necessary to develop psychological support methodology to form human capital both in two aspects: professional personality formation and human resource management. The history asks the following questions: have the Chernobyl lessons been learned? Are our contemporaries and next generation ready to provide safety in the nuclear power plants? The terrorist attacks, military actions in the states who have nuclear power plants makes more complex problem of nuclear power plant, all mankind safety. (author)

  3. Radioactive fallout from the Chernobyl nuclear reactor accident

    International Nuclear Information System (INIS)

    Beiriger, J.M.; Failor, R.A.; Marsh, K.V.; Shaw, G.E.

    1987-01-01

    Following the accident at the nuclear reactor at Chernobyl, in the Soviet Union on April 26, 1986, we performed a variety of measurements to determine the level of the radioactive fallout on the western United States. We used gamma-spectroscopy to analyze air filters from the areas around Lawrence Livermore National Laboratory (LLNL), California, and Barrow and Fairbanks, Alaska. Milk from California and imported vegetables were also analyzed. The levels of the various fission products detected were far below the maximum permissible concentration levels

  4. After Chernobyl

    International Nuclear Information System (INIS)

    Mould, R.F.

    1987-01-01

    ''After Chernobyl'' is an outline account of interesting information on the evacuation and relocation of the population within a 30 km zone around the power plant, of decontamination efforts' of the entombment of the reactor and of the firemen of Chernobyl, not all of whom survived. (author)

  5. Energy supply, nuclear power, and the international energy situation

    International Nuclear Information System (INIS)

    Pierer, H. von

    1991-01-01

    The Chernobyl accident has greatly intensified the readiness for international cooperation on problems of reactor safety and for exchanges of operating experience. That accident was more than a regional event. If all psychological and political consequences are taken into account, its international significance is apparent. In principle, it demonstrated not the lack of safety of nuclear power plants generally, but rather that of the Soviet RBMK reactor line, which would not have been licensed in any Western country because of its inherent unsafety. In the long run, the worldwide acceptance of nuclear power can be regained and stabilized only by an open dialog and by international exchanges of experience. The pronounced growth of the world's population requires energy policy to think beyond national frontiers. The rising energy requirement permits of no other decision than to exploit all technically feasible and economically viable as well as ecologically tolerable sources of energy. This includes nuclear power as well as solar energy. (orig.) [de

  6. The consequences of the Chernobyl nuclear accident in Greece

    International Nuclear Information System (INIS)

    1986-07-01

    In this report the radioactive fallout on Greece from the Chernobyl nuclear accident is described. The flow pattern to Greece of the radioactive materials released, the measurements performed on environmental samples and samples of the food chain, as well as some estimations of the population doses and of the expected consequences of the accident are presented. The analysis has shown that the radiological impact of the accident in Greece can be considered minor. (J.K.)

  7. Nuclear power: An evolving scenario

    International Nuclear Information System (INIS)

    ElBaradei, Mohamed

    2004-01-01

    The past two years have found the IAEA often in the spotlight - primarily because of our role as the world's 'nuclear watchdog', as we are sometimes referred to on the evening news. The most visible, and often controversial, peaceful nuclear application is the generation of electricity, the focus of this article largely from a European perspective. At the end of last year there were 440 nuclear power units operating worldwide. Together, they supply about 16% of the world's electricity. That percentage has remained relatively steady for almost 20 years. Expansion and growth prospects for nuclear power are centred in Asia. Of the 31 units under construction worldwide, 18 are located in India, Japan, South Korea and China, including Taiwan. Twenty of the last 29 reactors to be connected to the grid are also in the Far East and South Asia. That is probably more active construction than most Europeans would guess, given how little recent growth has occurred in the West. For Western Europe and North America, nuclear construction has been a frozen playing field - the last plant to be completed being Civaux-2 in France in 1999. That should raise a question: with little to no new construction, how has nuclear power been able to keep up with other energy sources, to maintain its share of electricity generation? Interestingly enough, the answer is tied directly to efforts to improve safety performance. The accident at Chernobyl in 1986 prompted the creation of the World Association of Nuclear Operators (WANO), and revolutionized the IAEA approach to nuclear power plant safety. Some analysts believe the case for new nuclear construction in Europe is gaining new ground, for a number of reasons: efforts to limit greenhouse gas emissions and reduce the risk of climate change; security of energy supply; Comparative Public Health Risk; different set of variables when choosing Each country's and region energy strategy. Looking to the future, certain key challenges are, of direct

  8. Chernobyl - an evaluation of health hazards. 3. enl. and rev. ed.

    International Nuclear Information System (INIS)

    Huber, E.E.; Dersee, T.; Iwert, B.

    1986-01-01

    The pamphlet abstracted contains some general information about the radiation hazards and health risks of nuclear power plants. The consequences of the Chernobyl reactor accident are dealt with by way of summarizing the events and by evaluating the health risks and damage the public should be prepared for. This topical report is completed by a popular presentation of the risks of nuclear power and by definitions of the major terms and measuring units. (DG) [de

  9. Twenty years nuclear power sector in Bulgaria - an attempt at striking a balance

    International Nuclear Information System (INIS)

    Shervashidze, N.

    1994-01-01

    The advantages of nuclear power and the mistakes that cause the opposition against it on the example of the history of the Bulgarian nuclear power sector are considered in a polemical manner. Four WWER 440/230 and two WWER 1000 units have been put into operation in Kozloduj NPP in the period 1974 - 1993. Before 1991, however, safety operation criteria were compromised numerous times and the atmosphere of secrecy, self-complacency and the series of absurdities about the Chernobyl accident were clearly used by the opponents of nuclear energy. Now the attitude towards nuclear power is changing for the better. Much progress has been made in recovering the nuclear power sector under complicated economic and political conditions. The role of NPP as an anti-inflation factor, an element providing the national security, a stimulator of industry and infrastructure, and an ecological salvation factor, is stressed. (I.M.)

  10. Twenty years nuclear power sector in Bulgaria - an attempt at striking a balance

    Energy Technology Data Exchange (ETDEWEB)

    Shervashidze, N

    1994-12-31

    The advantages of nuclear power and the mistakes that cause the opposition against it on the example of the history of the Bulgarian nuclear power sector are considered in a polemical manner. Four WWER 440/230 and two WWER 1000 units have been put into operation in Kozloduj NPP in the period 1974 - 1993. Before 1991, however, safety operation criteria were compromised numerous times and the atmosphere of secrecy, self-complacency and the series of absurdities about the Chernobyl accident were clearly used by the opponents of nuclear energy. Now the attitude towards nuclear power is changing for the better. Much progress has been made in recovering the nuclear power sector under complicated economic and political conditions. The role of NPP as an anti-inflation factor, an element providing the national security, a stimulator of industry and infrastructure, and an ecological salvation factor, is stressed. (I.M.).

  11. Observations on the Chernobyl Disaster and LNT.

    Science.gov (United States)

    Jaworowski, Zbigniew

    2010-01-28

    The Chernobyl accident was probably the worst possible catastrophe of a nuclear power station. It was the only such catastrophe since the advent of nuclear power 55 years ago. It resulted in a total meltdown of the reactor core, a vast emission of radionuclides, and early deaths of only 31 persons. Its enormous political, economic, social and psychological impact was mainly due to deeply rooted fear of radiation induced by the linear non-threshold hypothesis (LNT) assumption. It was a historic event that provided invaluable lessons for nuclear industry and risk philosophy. One of them is demonstration that counted per electricity units produced, early Chernobyl fatalities amounted to 0.86 death/GWe-year), and they were 47 times lower than from hydroelectric stations ( approximately 40 deaths/GWe-year). The accident demonstrated that using the LNT assumption as a basis for protection measures and radiation dose limitations was counterproductive, and lead to sufferings and pauperization of millions of inhabitants of contaminated areas. The projections of thousands of late cancer deaths based on LNT, are in conflict with observations that in comparison with general population of Russia, a 15% to 30% deficit of solid cancer mortality was found among the Russian emergency workers, and a 5% deficit solid cancer incidence among the population of most contaminated areas.

  12. Generic implications of the Chernobyl accident

    International Nuclear Information System (INIS)

    Sege, G.

    1989-01-01

    The US Nuclear Regulatory Commission (NRC) staff's assessment of the generic implications of the Chernobyl accident led to the conclusion that no immediate changes in the NRC's regulations regarding design or operation of US commercial reactors are needed. However, further consideration of certain issues was recommended. This paper discusses those issues and the studies being addressed to them. Although 24 tasks relating to light water reactor issues are identified in the Chernobyl follow-up research program, only four are new initiatives originating from Chernobyl implications. The remainder are limited modifications of ongoing programs designed to ensure that those programs duly reflect any lessons that may be drawn from the Chernobyl experience. The four new study tasks discussed include a study of reactivity transients, to reconfirm or bring into question the adequacy of potential reactivity accident sequences hitherto selected as a basis for design approvals; analysis of risk at low power and shutdown; a study of procedure violations; and a review of current NRC testing requirements for balance of benefits and risks. Also discussed, briefly, are adjustments to ongoing studies in the areas of operational controls, design, containment, emergency planning, and severe accident phenomena

  13. Dynamics of the immune status in the Chernobyl liquidators in the remote period

    International Nuclear Information System (INIS)

    Salivonchik, A.P.; Mel'nov, S.B.

    2011-01-01

    The population of Belarus is being exposed to an irradiation because of the Chernobyl disaster. Forming of the distant effects of an irradiation much depends on a condition of immune system. Accumulation of data, studying liquidators' of disaster state of health allow to establish new laws.The research of liquidators' of disaster immunological status at the Chernobyl Nuclear Power Plant 1986–1987 during the distant period, 2008–2010. (authors)

  14. East/West cooperation on the safety of USSR-designed nuclear power stations

    International Nuclear Information System (INIS)

    Spencer, P.H.

    1991-01-01

    In the aftermath of the accident at the Chernobyl nuclear power station in the Soviet Union, nuclear power plant operators throughout the world came together in May 1989 to form the World Association of Nuclear Operators (WANO). When it became clear that the operators of plants of an early design supplied by the USSR needed assistance in the upgrading of the safety of these units, WANO was uniquely placed to assist and facilitate in this. In July 1990, WANO took the decision to form a special project to assist the operators of the VVER 440/230 plants in their efforts to increase the safety standards for these units. The work performed by this special project team is described

  15. Photography and nuclear catastrophe. The visual representation of the occurrences in Hiroshima/Nagasaki and Chernobyl

    International Nuclear Information System (INIS)

    Buerkner, Daniel

    2014-01-01

    The dissertation project seeks to analyse the photographic positions that deal with the atomic bomb attacks on Hiroshima and Nagasaki and the accident of the nuclear power plant in Chernobyl. This focus includes press photographs of the events as well as artistic, documentary and touristic images that take an approach towards the disasters often years after and hereby form iconographic or material references to the events. The study reveals central strategies for photographic images of atomic catastrophes, be they of military or civil nature. It is the inability to visualize non-visible nuclear rays or the complexity of processes on an atomic level that has turned out to be crucial. This incapacity of making images, a paradigm of invisibility, substantially coins the cultural role of the events. The question of how a society deals with these abstract potentials of nuclear technology has turned out to be always anew of high relevance in regard to ecological, social and technological policies of images.

  16. Health consequences of Chernobyl: the New York Academy of Sciences publishes an antidote to the nuclear establishment's pseudo-science.

    Science.gov (United States)

    Katz, Alison Rosamund

    2010-01-01

    In February 2010, the New York Academy of Sciences published the most complete and up-to-date collection of evidence, from independent, scientific sources all over the world, on the health and environmental consequences of the Chernobyl accident. For 24 years, through a high-level, internationally coordinated cover-up of the world's most serious industrial accident, the nuclear lobby has deprived the world of a unique and critically important source of scientific information. The International Atomic Energy Agency (IAEA), mouthpiece of the nuclear establishment, has coordinated the cover-up through the dissemination and imposition of crude pseudo-science. Regrettably, the World Health Organization, a U.N. agency on which the world's people rely for guidance, is subordinate to the IAEA in matters of radiation and health, has participated in the cover-up, and stands accused of non-assistance to populations in danger. The new book on Chernobyl makes available huge amounts of evidence from independent studies undertaken in the affected countries, unique and valuable data that have been ignored by the international health establishment. This comprehensive account of the full dimensions of the catastrophe reveals the shameful inadequacy of current international assistance to the affected populations. It also demonstrates, once more, that future energy options cannot include nuclear power.

  17. [The bioelectric activity of the brain in dyscirculatory encephalopathy and arterial hypertension developed in the Chernobyl nuclear disaster liquidators].

    Science.gov (United States)

    Podsonnaia, I V; Efremushkin, G G; Zhelobetskaia, E D

    2012-01-01

    The long-term effects of the ionizing radiation on the bioelectric brain activity in the Chernobyl nuclear disaster liquidators with discirculatory encephalopathy and arterial hypertension were studied. We examined 195 male patients, aged from 30 to 65 years, with the clinical presentations of discirculatory encephalopathy, using electroencephalography: 105 patients were liquidators of the Chernobyl nuclear disaster (the main group) and 90 patients had no radiation anamnesis (the comparison group). It has been found that the development of discirculatory encephalopathy in liquidators of the Chernobyl nuclear disaster is mainly associated with the dysfunction of diencephalic and cortical structures. The specificity of the neurofunctional brain abnormalities in liquidators with discirculatory encephalopathy is characterized by the predominance of the low-amplitude and low-frequency alpha-activity or by the lack of alpha-rhythm and by its substitution for the high-frequency beta-rhythm with the presence of theta- and delta-activity and by the more significant flatness of the alpha-rhythm zonation. The presence of the radiation factor in the past history is correlated with the failure of the bioelectric brain activity in the alpha band (r=0.42) that increases risk of abnormal changes by a factor of 10 (pChernobyl nuclear disaster in the post-radiation period during the development of discirculatory encephalopathy and arterial hypertension.

  18. Twenty years' application of agricultural countermeasures following the Chernobyl accident: lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, S V [International Atomic Energy Agency, 1400 Vienna (Austria); Alexakhin, R M [Russian Institute of Agricultural Radiology and Agroecology, 249020 Obninsk (Russian Federation); Balonov, M I [International Atomic Energy Agency, 1400 Vienna (Austria); Bogdevich, I M [Research Institute for Soil Science and Agrochemistry, Minsk (Belarus); Howard, B J [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LAI 4AP (United Kingdom); Kashparov, V A [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Street 7, Chabany, Kiev Region 08162 (Ukraine); Sanzharova, N I [Russian Institute of Agricultural Radiology and Agroecology, 249020 Obninsk (Russian Federation); Panov, A V [Russian Institute of Agricultural Radiology and Agroecology, 249020 Obninsk (Russian Federation); Voigt, G [International Atomic Energy Agency, 1400 Vienna (Austria); Zhuchenka, Yu M [Research Institute of Radiology, 246000 Gomel (Belarus)

    2006-12-15

    The accident at the Chernobyl NPP (nuclear power plant) was the most serious ever to have occurred in the history of nuclear energy. The consumption of contaminated foodstuffs in affected areas was a significant source of irradiation for the population. A wide range of different countermeasures have been used to reduce exposure of people and to mitigate the consequences of the Chernobyl accident for agriculture in affected regions in Belarus, Russia and Ukraine. This paper for the first time summarises key data on countermeasure application over twenty years for all three countries and describes key lessons learnt from this experience. (review)

  19. The enduring lessons of Chernobyl. International conference of the Chernobyl Forum, 6 September 2005, Vienna, Austria

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2005-01-01

    The April 1986 accident at the Chernobyl nuclear power plant remains a defining moment in the history of nuclear energy. The lessons of this tragedy are interwoven with a recurrent theme: namely, the importance of international cooperation. With its recently released document - entitled 'Chernobyl's Legacy' - the Chernobyl Forum has solidly reinforced that theme. The major impacts of Chernobyl fall into three categories: the physical impacts, in terms of health and environmental effects; the psychological and social impacts on the affected populations; and the influence of the accident on the nuclear industry worldwide. The physical impacts mark Chernobyl as the site of the most serious nuclear accident in history. The explosions that destroyed the Unit 4 reactor core released a cloud of radionuclides that contaminated large areas of Europe and, in particular, Belarus, the Russian Federation and Ukraine. Hundreds of thousands of people were exposed to substantial radiation doses, including workers from all three of these countries who participated in efforts to mitigate the consequences of the accident. The definitive numbers compiled in the Chernobyl Forum report are sobering: the 50 emergency rescue workers who died from acute radiation syndrome and related illnesses; the 4000 children and adolescents who contracted thyroid cancer - 9 of whom also died; and the hundreds of thousands of hectares of cropland, forests, rivers and urban centres that were contaminated by environmental fallout. But as severe as these impacts were, the situation was made even worse by conflicting information and vast exaggerations - in press coverage and pseudo-scientific accounts of the accident - reporting, for example, fatalities in the tens or hundreds of thousands. The psychological and social impacts were also devastating. Over 100 000 people were immediately evacuated, and the total number of evacuees from contaminated areas eventually reached 350 000. While some of these

  20. Chernobyl's legacy: Health, environmental and socio-economic impacts and recommendations to the Governments of Belarus, the Russian Federation and Ukraine. The Chernobyl Forum

    International Nuclear Information System (INIS)

    Kinly, D. III

    2005-09-01

    Nearly 20 years after the Chernobyl nuclear power plant (NPP) accident, many questions remained unanswered regarding the health, environmental, and socio-economic consequences of the disaster. The individuals and countries most affected had yet to obtain a clear scientific consensus on the impact of the accident and authoritative answers to outstanding questions. To fill this void and to promote better understanding and improved measures to deal with the impacts of the accident, the Chernobyl Forum was established in 2003. The Chernobyl Forum is an initiative of the IAEA, in cooperation with the WHO, UNDP, FAO, UNEP, UN-OCHA, UNSCEAR, the World Bank and the governments of Belarus, the Russian Federation and the Ukraine. The Forum was created as a contribution to the United Nations' ten-year strategy for Chernobyl, launched in 2002 with the publication of Human Consequences of the Chernobyl Nuclear Accident - A Strategy for Recovery. To provide a basis for achieving the goal of the Forum, the IAEA convened an expert working group of scientists to summarize the environmental effects, and the WHO convened an expert group to summarize the health effects and medical care programmes in the three most affected countries. The information presented in this document and in the two full expert group reports has been drawn from scientific studies undertaken by the IAEA, WHO, UNSCEAR and numerous other authoritative bodies. In addition, UNDP has drawn on the work of eminent economists and policy specialists to assess the socio-economic impact of the Chernobyl accident, based largely on the 2002 UN study as above

  1. Chernobyl's legacy: Health, environmental and socio-economic impacts and recommendations to the Governments of Belarus, the Russian Federation and Ukraine. The Chernobyl Forum

    Energy Technology Data Exchange (ETDEWEB)

    Kinly, D III [International Atomic Energy Agency, Division of Public Information, Vienna (Austria)

    2005-09-01

    Nearly 20 years after the Chernobyl nuclear power plant (NPP) accident, many questions remained unanswered regarding the health, environmental, and socio-economic consequences of the disaster. The individuals and countries most affected had yet to obtain a clear scientific consensus on the impact of the accident and authoritative answers to outstanding questions. To fill this void and to promote better understanding and improved measures to deal with the impacts of the accident, the Chernobyl Forum was established in 2003. The Chernobyl Forum is an initiative of the IAEA, in cooperation with the WHO, UNDP, FAO, UNEP, UN-OCHA, UNSCEAR, the World Bank and the governments of Belarus, the Russian Federation and the Ukraine. The Forum was created as a contribution to the United Nations' ten-year strategy for Chernobyl, launched in 2002 with the publication of Human Consequences of the Chernobyl Nuclear Accident - A Strategy for Recovery. To provide a basis for achieving the goal of the Forum, the IAEA convened an expert working group of scientists to summarize the environmental effects, and the WHO convened an expert group to summarize the health effects and medical care programmes in the three most affected countries. The information presented in this document and in the two full expert group reports has been drawn from scientific studies undertaken by the IAEA, WHO, UNSCEAR and numerous other authoritative bodies. In addition, UNDP has drawn on the work of eminent economists and policy specialists to assess the socio-economic impact of the Chernobyl accident, based largely on the 2002 UN study as above.

  2. The distribution of iodine in the vicinity of nuclear power plants: the impossibility of ''banalizing'' nuclear power

    International Nuclear Information System (INIS)

    Duchene, F.; Ferrand, V.

    1998-01-01

    Despite the controversial dimension of civilian nuclear facilities, the recent distribution of iodine in the vicinity of nuclear power plants in France brought little response from the populations concerned. Could it be that nuclear power plants today are looked upon as ordinary factories by those who live near them? Could it be that the risks they incur have become 'banal'? A qualitative survey conducted in the area around the Bugey nuclear power plant, near Lyons, has provided food for further thought on the matter. The building of the plant in 1965 brought about profound changes in the host territory which has gone from a rural way of life to the era of industry and peri-urbanization. Yet the isolation in which employees of the facility were long seen to live, or the considerable amounts of tax it provides, particularly to the village which hosted it, have meant that the nuclear site has always kept its own particular status, despite the creation of chemicals industries in the surrounding area. The Chernobyl accident was a blow to the reassuring discourse thus for exuded by the EDF The testimony of the local people reveals the construction of different forms of 'symbolic protection', which were themselves to be shattered by the iodine distribution operation. By 'backing' focused communication rather than information, EDF merely sustained the confusion surrounding an industrial facility that remains somewhat out of the ordinary. (authors)

  3. First steps of Poland in the nuclear power industry

    International Nuclear Information System (INIS)

    Guidez, J.

    2010-01-01

    Poland appears as a new-comer in the domain of nuclear power but in fact previous projects of nuclear power plants existed but were abruptly stopped in the afterwards of Chernobyl. Today almost 90% of the electricity produced in Poland comes from the combustion of coal and lignite. In january 2009 the Polish government decided to include nuclear power in the energy mix with an aim of a 15% share of the electricity production in 2030 and with the first nuclear plant operating in 2020. The path toward this aim is marked out as following. 2009-2010: drawing up of the legal frame, creation of the nuclear safety authority, drawing up of the list of potential sites, and launching of the public debate. 2011-2013: selection of the first site, of the pool of investors, of the reactor technology and the signature of the contract for the first plant. 2014-2015: obtention of the administrative agreements, elaboration of the technical project. 2016-2020: construction of the plant. The polish public opinion favours nuclear energy and there is a kind of competition between different regions to home nuclear power plants. In 2010 Poland signed various collaboration agreements with the Usa, France and South-Korea. Polish authorities are studying the pros and cons of the EPR (EDF - Areva), ABWR (GE/Hitachi) and AP1000 (Westinghouse) reactors. (A.C.)

  4. The accident of Chernobyl

    International Nuclear Information System (INIS)

    1986-10-01

    RBMK reactors (reactor control, protection systems, containment) and the nuclear power plant of Chernobyl are first presented. The scenario of the accident is given with a detailed chronology. The actions and consequences on the site are reviewed. This report then give the results of the source term estimation (fision product release, core inventory, trajectories, meteorological data...), the radioactivity measurements obtained in France. Health consequences for the French population are evoked. The medical consequences for the population who have received a high level of doses are reviewed [fr

  5. FAPIG's activities for public acceptance of nuclear energy. Analytical results of questionnaire executed at organized visits to nuclear power stations

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao

    1999-01-01

    FAPIG organizes a visit to nuclear power station in every November. It is an object that visitors acquire the correct knowledge of nuclear power by looking at the various facilities in the nuclear power stations. The paper showed the analytical results of questionnaire executed at organized visits to the Kashiwazaki-Kariwa nuclear power station. The visitors were 18 women. The questionnaire was carried out by the same problems before and after seminar and a conducted tour. Their impressions and opinions and the changes are analyzed. The speakers used easy words, video, OHP, pamphlet and experimental equipment. These means showed very good results to visitors. The seminar had very large effect on just recognition of safety and need of it. The change of answer proved from 3 to 6 of need and from 0 to 7 of safety of it. Nine members indicated good understanding of seminar content. The interested items in the seminar were measurement of radiation, effects of radiation, reason of decreasing average life, Chernobyl accident, difference between nuclear power and atomic bomb and nuclear power dose not generate carbon dioxide and recycle plutonium after nuclear fission of uranium. (S.Y.)

  6. Radioactive contamination of aquatic ecosystems following the Chernobyl accident

    International Nuclear Information System (INIS)

    Kryshev, I.I.

    1995-01-01

    The dynamics of radioactive contamination of aquatic ecosystems (1986-1990) is considered on the basis of observational data in the near and distant zones of the Chernobyl fallout (the Chernobyl Nuclear Power Plant (CNPP) cooling pond, the Pripyat River, the Dnieper reservoirs, and the Kopor inlet of the Gulf of Finland). Radionuclide accumulation in aquatic biota is analyzed. The results obtained indicate that the radioecological conditions in the water bodies under investigation were in a state of non-equilibrium over a long period of time following the Chernobyl accident. Reduction in the 137 Cs concentration proceeded slowly in most of the aquatic ecosystems. The effect of trophic levels which consisted of increased accumulation of radiocaesium by predatory fish was observed in various parts of the contaminated area. (author)

  7. Considerations on nuclear safety in France, two years after Chernobyl

    International Nuclear Information System (INIS)

    Bregeon, L.; Droulers, Y.; Chesnel, A.; Merle, J.P.; Lenain, R.

    1988-10-01

    In the first part of the paper, we shall briefly describe the three different categories of actions decided on in the wake of Chernobyl: 1. Research and development: physical phenomena and design features implicated in the accident 2. Measures concerning all nuclear installations 3. Measures specific to pressurized water reactors. In the second part, we shall give more detailed results of an initial re-assessment of PWR reactivity accidents

  8. Geographic information systems for the Chernobyl decision makers in Ukraine

    International Nuclear Information System (INIS)

    Palko, S.; Glieca, M.; Dombrowski, A.

    1997-01-01

    Following numerous national and international studies conducted on the overall impact of the 1986 Chernobyl nuclear power plant disaster, decision-makers of the affected countries have oriented their efforts on environmental clean-up and population safety. They have focused on activities leading to a better understanding of radionuclide contamination and to the development of effective environmental rehabilitation programs. Initial developments involved the use of domestic USSR technologies consisting of mainframe IBM computers and DEC minicomputers. Later, personal computers with imported software packages were introduced into the decision-making process. Following the breakup of the former USSR, the Ministry of Chernobyl was created in Ukraine in 1991. One of the Ministry's mandate was the elimination of the environmental after-effects of the Chernobyl disaster

  9. Nuclear power - help or extermination. The splendours and miseries of energetics development

    International Nuclear Information System (INIS)

    Hrynkiewicz, A.; Kolenda, Z.

    1986-01-01

    This report has been published soon after a Chernobyl accident. The authors try to answer the following questions: why nuclear power is and will continue be an increasingly widely used source of energy and what is the nuclear risk. In the same time they want to call our attention on the dangerous consequences of the more and more intensive development of conventional energetics based on the combustion, in particular, of coal. The energetic situation in Poland they analysed too. (M.F-W)

  10. Incorporation of severe accidents in the licensing of nuclear power plants

    International Nuclear Information System (INIS)

    Alvarenga, Marco Antonio Bayout; Rabello, Sidney Luiz

    2011-01-01

    Severe accidents are the result of multiple faults that occur in nuclear power plants as a consequence from the combination of latent failures and active faults, such as equipment, procedures and operator failures, which leads to partial or total melting of the reactor core. Regardless of active and latent failures related to the plant management and maintenance, aspects of the latent failures related to the plant design still remain. The lessons learned from the TMI accident in the U.S.A., Chernobyl in the former Soviet Union and, more recently, in Fukushima, Japan, suggest that severe accidents must necessarily be part of design-basis of nuclear power plants. This paper reviews the normative basis of the licensing of nuclear power plants concerning to severe accidents in countries having nuclear power plants under construction or in operation. It was addressed not only the new designs of nuclear power plants in the world, but also the design changes in plants that are in operation for decades. Included in this list are the Brazilian nuclear power plants, Angra-1, Angra-2, and Angra-3. This paper also reviews the current status of licensing in Brazil and Brazilian standards related to severe accidents. It also discusses the impact of severe accidents in the emergency plans of nuclear power plants. (author)

  11. Incorporation of severe accidents in the licensing of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Marco Antonio Bayout; Rabello, Sidney Luiz, E-mail: bayout@cnen.gov.b, E-mail: sidney@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN) Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Severe accidents are the result of multiple faults that occur in nuclear power plants as a consequence from the combination of latent failures and active faults, such as equipment, procedures and operator failures, which leads to partial or total melting of the reactor core. Regardless of active and latent failures related to the plant management and maintenance, aspects of the latent failures related to the plant design still remain. The lessons learned from the TMI accident in the U.S.A., Chernobyl in the former Soviet Union and, more recently, in Fukushima, Japan, suggest that severe accidents must necessarily be part of design-basis of nuclear power plants. This paper reviews the normative basis of the licensing of nuclear power plants concerning to severe accidents in countries having nuclear power plants under construction or in operation. It was addressed not only the new designs of nuclear power plants in the world, but also the design changes in plants that are in operation for decades. Included in this list are the Brazilian nuclear power plants, Angra-1, Angra-2, and Angra-3. This paper also reviews the current status of licensing in Brazil and Brazilian standards related to severe accidents. It also discusses the impact of severe accidents in the emergency plans of nuclear power plants. (author)

  12. Expert evaluation and prediction of the radioecological state of the environment in the area of the radiation plume from the Chernobyl' nuclear power station (aquatic ecosystems)

    International Nuclear Information System (INIS)

    1986-01-01

    On the basis of experimental data on radionuclide distribution in the components of the aquatic ecosystems within and outside the 30 km zone around the Chernobyl power plant after the reactor accident the exposure doses for aquatic organisms in the area of the radiation plume have been estimated. In the Kiev reservoir the predicted exposure doses for most aquatic organisms do not exceed 0.1-1.0 mrad/h, in the river Pripyat' the exposure doses for fish are about 50 mrad/h and in the cooling pond of the Chernobyl power station the highest exposure doses, up to 5 rad/h in a number of locations were registered

  13. Preliminary nuclear power reactor technology qualitative assessment for Malaysia

    International Nuclear Information System (INIS)

    Shamsul Amri Sulaiman

    2011-01-01

    Since the worlds first nuclear reactor major breakthrough in December 02, 1942, the nuclear power industry has undergone tremendous development and evolution for more than half a century. After surpassing moratorium of nuclear power plant construction caused by catastrophic accidents at Three-mile island (1979) and Chernobyl (1986), today, nuclear energy is back on the policy agendas of many countries, both developed and developing, signaling nuclear revival or nuclear renaissance. Selection of suitable nuclear power technology has thus been subjected to primary attention. This short paper attempts to draw preliminary technology assessment for the first nuclear power reactor technology for Malaysia. Methodology employed is qualitative analysis collating recent finding of tnb-kepco preliminary feasibility study for nuclear power program in peninsular malaysia and other published presentations and/or papers by multiple experts. The results suggested that pressurized water reactor (PWR) is the prevailing technology in terms of numbers and plant performances, and while the commercialization of generation IV reactors is remote (e.g. Not until 2030), generation III/ III+ NPP models are commercially available on the market today. Five (5) major steps involved in reactor technology selection were introduced with a focus on introducing important aspects of selection criteria. Three (3) categories for the of reactor technology selection were used for the cursory evaluation. The outcome of these analyses shall lead to deeper and full analyses of the recommended reactor technologies for a comprehensive feasibility study in the near future. Recommendations for reactor technology option were also provided for both strategic and technical recommendations. The paper shall also implore the best way to select systematically the first civilian nuclear power reactor. (Author)

  14. Environmental assessment of the Chernobyl releases in China

    International Nuclear Information System (INIS)

    Zunsu, H.

    1988-01-01

    Since Chernobyl accident, China has rapidly developed a program of emergency preparedness for nuclear accidents that the institute of radiation protection assumes the responsibility together with other institutions. For the nuclear power plants in Qinshan and in Daya Bay, a series of emergency preparedness, including the investigation of conditions and feasibility of some principal protective measures are being carried out. The research program includes atmospheric transfer and dispersion, modelling analysis of accident consequence assessment and development of a computer software system for accident consequence prediction. The strategy of China is to well organize all resources and to broaden the international cooperation. The drafting of national emergency regulations and technical guides and the establishment of specialized technical teams are in progress. In China, the accident consequence assessment is based on the specialist experiences from transfer of radioactive effluents in the atmosphere, in water and in ecological system. On May 1986 environmental assessment of the Chernobyl releases in China and environmental monitoring were carried out. Radio-nuclides released from the Chernobyl accident were detectable in all parts of country but the concentrations were very low. The results of the environmental monitoring have been presented. 7 figs., 11 tabs. (author)

  15. On symbiotic nuclear power: a test for feasibility of comprehensive national energy policy of Japan

    International Nuclear Information System (INIS)

    Tanaka, Y.

    1994-01-01

    This paper examines ambivalent attitudes of the Japanese toward nuclear power and shows that despite great benefits nuclear power plants may bring to local governments and people, the Japanese have become more sensitive to risks of nuclear related facilities than to their benefits in a post Chernobyl period. In this light, the usefulness and limitations of economic incentives are analyzed. Third, the importance of particular institutional arrangements is discussed with respect to development 'symbiotic' schemes for nuclear power plants and people in neighboring communities. These 'symbiotic' schemes have dual purposes: to make a wider and more flexible use of the site space for developing local industries, and to raise the quality of life by improving the socio-economic infrastructure and social welfare. 6 refs., 1 fig

  16. Nuclear Issues in a Non-nuclear Country Media

    International Nuclear Information System (INIS)

    Latek, S.

    2002-01-01

    The absence of nuclear power program in a given country does not mean that the nuclear option is not discussed. Greenhouse effect is a global phenomenon, thus each and every factor enabling the reduction of CO 2 emissions has to be examined. Not a single NPP is in operation in Poland and this will be so for the nearest dozen years. But the discussion over political decisions to delay the possible NPP construction beyond 2020 continues. In the country whose electricity in 95% comes from coal, the clean (from the greenhouse effect viewpoint) nuclear power makes an attractive solution for many experts. This paper presents Polish debates on the electricity production environmental impacts, which are followed by the media. Unfortunately, a favorite subject of Polish media is still Chernobyl accident, but presented in an exaggerated and often untrue way. This one-sided fear campaign has been interrupted recently by a publication calling the reports on Chernobyl victims a biggest bluff of XX century. This paper presents some examples of nuclear campaigns in the media, e.g. the issues of depleted uranium ammunition, Temelin NPP commissioning and the transit of fresh nuclear fuel for this facility through Poland, radiation accident in one of Polish hospitals, possible terrorist attacks on nuclear facilities, UNSCEAR report on Chernobyl accident health impacts. It remains to be seen how the hundreds of publications appearing each week will shape public attitudes towards nuclear power in Poland. (author)

  17. Public Acceptance on Nuclear Power: A Strategic Need to Shift to 5Ps (Politicians, Policy Makers, Professionals, Public and Press) Acceptance on Nuclear Power

    International Nuclear Information System (INIS)

    Dato Syed Ahmad Idid, S.N. K. A.-I.

    2015-01-01

    Business should not be as usual in formulating strategies and plans to enhance awareness regarding the benefits of nuclear power as an option for energy mix. Although, presently 435 nuclear power reactors in operation in 30 countries are delivering cost competitive electricity to consumers, creating significant job, investment and business opportunities, supporting enterprises, contributing significantly to these nations economic growth, however these positive impacts and benefits have not be sufficiently transmitted to the various stakeholders and population, who have until recently only received unbalanced views and news from an uninformed press. Negative and generally unbalanced press coverage of isolated nuclear incidents and accidents such as TMI, Chernobyl and most recently Fukushima has resulted in public protests to nuclear power, contributing to several nuclear power programmes being delayed or not able to take off. This situation is further exacerbated by uninformed politicians and policy makers who have the influence but were not able to harness their positions to assure the public due to lack of knowledge regarding the economic and social benefits of nuclear power. As the challenges to the nuclear industry presently also include ageing nuclear professionals, lack of updates regarding business and financing opportunities to business and financing professionals, thus the benefits of career, business and financing opportunities must also be disseminated to these Professionals. This paper aims to highlight the fundamental need to expand present Public Awareness Programme to become the 5Ps (Politicians, Policy makers, Professionals, Public and Press) Awareness Programme on Nuclear Power. (author)

  18. Comments on the seismic safety of nuclear power plants in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Tarics, A G [29 Winward Road, Belvedere, CA 94920 (United States); Kelly, J M [Earthquake Engineering Research Center, University of California, Berkeley, CA (United States); Csorba, E M [Technical University Vienna, Vienna (Austria)

    2001-03-01

    After the break-up of the Soviet Union, ten countries in Eastern Europe inherited Soviet-designed nuclear power plants which were constructed without adequate provisions to resist earthquake-generated lateral forces. An earthquake at their locations could seriously damage these plants and could result in Chernobyl-like consequences on the environment. There is an ongoing program to reinforce these plants using conventional piecemeal methods. A newly developed seismic protection strategy called 'base isolation' or 'seismic isolation', widely used in the United States to retrofit existing buildings, is recommended as an economical, technically superior, and more effective solution - where applicable - to make these nuclear power plants capable of resisting seismic forces. (author)

  19. Comments on the seismic safety of nuclear power plants in Eastern Europe

    International Nuclear Information System (INIS)

    Tarics, A.G.; Kelly, J.M.; Csorba, E.M.

    2001-01-01

    After the break-up of the Soviet Union, ten countries in Eastern Europe inherited Soviet-designed nuclear power plants which were constructed without adequate provisions to resist earthquake-generated lateral forces. An earthquake at their locations could seriously damage these plants and could result in Chernobyl-like consequences on the environment. There is an ongoing program to reinforce these plants using conventional piecemeal methods. A newly developed seismic protection strategy called 'base isolation' or 'seismic isolation', widely used in the United States to retrofit existing buildings, is recommended as an economical, technically superior, and more effective solution - where applicable - to make these nuclear power plants capable of resisting seismic forces. (author)

  20. Three Mile Island, Bhopal and Chernobyl: causes and consequences

    International Nuclear Information System (INIS)

    Jovanovich, J.

    2003-01-01

    Since 1970's worldwide criticisms of nuclear power have been so strong that in many countries nuclear power has been outlawed. At Kyoto, scientists and politicians working together have designed a Protocol where the role of nuclear power in reducing CO2 emissions was completely ignored. One of the reasons for this, probably the most important one, is the general perception that nuclear power is unacceptably dangerous and that world can live without it. Both perceptions are, of course, incorrect. Some twenty years ago, as a physicist, not being part of 'nuclear establishment', I became interested in these two issues. Since then, as explained in a number of my publications, I have come to a firm conclusion that (a) nuclear power on the world scale is an essential energy source, whether we like it or not, and (b) that nuclear power is a very safe technology, probably the safest of all technologies the modem industrialized world has. To illustrate this last statement, in this paper I compare causes and consequences of two largest nuclear accidents, TMI and Chernobyl, with Bhopal accident, probably the largest accident that chemical technology has ever produced. (author)

  1. Modelling of radioactive fallout in the vicinity of Chernobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Israel, Y.A.; Petrov, V.N.; Severov, D.A.

    1988-03-01

    Deposition of radioactive products escaping into the atmosphere for a long time from the Chernobylsk-4 reactor resulting in residual radioactive contamination of the region at a distance of up to 100 km from the nuclear power plant is considered. The suggested model may be used for estimation of the possible scope of nuclear danger in the regions of nuclear power plants and creation of conditions ensuring safety of the population at possible accidents. The following topics are developed: height of elevation and conditions of radionuclide transfer in the atmosphere; dynamics of release and dispersive composition of radioactive products; calculations of radiation levels at a close trace [fr

  2. One decade after Chernobyl: summing up the consequences of the acci dent

    International Nuclear Information System (INIS)

    McEwan, A.C.

    1996-01-01

    Over the past year a series of international conferences have been held to review the effects and impact of the nuclear accident at the Chernobyl nuclear power plant on 26 April 1986. A conference sponsored by the IAEA, European Commission and WHO was held at the Austria Centre, Vienna over 8-12 April 1996, and brought together more than 800 scientists and government officials in the fields of radiation safety and nuclear energy. The conference reviewed the scientific, medical, environmental, social and political issues involved in assessing Chernobyls's impact. It is clear the effects of the accident have given rise to social and economic impacts which are of greater significance than radiation exposure. A question posed at the conclusion of the review of the last decade was : What policies and measures can now be developed by the most affected countries for the public and for the Chernobyl plant to take into account both the present radiological risk and the economic, social and psychological impacts of the accident and to yield the most benefit?

  3. The short life radionuclides in meat after the nuclear accident in Chernobyl

    International Nuclear Information System (INIS)

    Smelcerovic, M.; Popovic, D.; Djuric, G.

    1992-01-01

    The paper presents the results of identification and short life radionuclides (I-131, Te (I)-132, Cs-136, Ce-141, 144, Ru-103, 106, Ba(La)-140, Zr-95, Nb-95, Mo-99, Sb-125) mass activities evaluation in meat (lamb, rabbit, game) after the nuclear accident in Chernobyl in 1986. (author)

  4. Dynamics of 137Cs in the forests of the 30-km zone around the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Mamikhin, S.V.; Tikhomirov, F.A.; Shcheglov, A.I.

    1997-01-01

    Dynamics of the 137 Cs content in the components of the forests in the 30-km zone around the Chernobyl nuclear power plant (NPP) in 1986-1994 are associated mainly with such factors as the size of radioactive particles in the fallout, ecosystem humidification and soil type, tree age. The influence of particle size was especially noticeable between 1986-1987 and was displayed by low biological availability of radionuclides in the near part of the zone (within the 10-km radius circle around the NPP) in comparison with more distant regions (within the 30-km radius circle). Later, the expression of this influence decreased and transfer factor (the ratio of 137 Cs content in overground phytomass to the soil contamination density) became approximately the same for all plots with similar ecological and fallout characteristics. Humidity of landscape and soil type determined the velocity of radionuclide vertical migration in the soil and 137 Cs biological availability. These parameters were maximum for the hydromorphic soils of wet landscapes enriched in organic substance and poor clayey minerals. Differences of 137 Cs accumulation in overground phytomass of trees caused by tree age are displayed in the higher 137 Cs concentration in structural parts of young trees as compared with old ones

  5. Standby after the Chernobyl accident

    International Nuclear Information System (INIS)

    1987-09-01

    The report is an investigation concerning strandby and actions by SKI (Swedish Nuclear Power Inspectorate) and SSI (National Institute of Radiation Protection) due to the Chernobyl reactor accident. It consists of a final report and two appendices. The final report is divided into two parts: 'I: Facts' and 'II: Analyzes'. 'Facts': The Swedish model for information: radio, press. Basic knowledge about ionizing radiation in the society. Resources for information. Need for information. Message forms for information. Announcements from the authorities in TV, radio, press, meeting, advertisements. Statements concerning the reactor accident and its consequences in Swedish mass media. How did the public recieve the information? 'Analyzis': Information responsibilities and policies. SSI information activities concerning radiologic accidents, conditions, methods and resources. Ditto for SKI, Swedish National Food Administration and the National Board of Agriculture. Appendix I: Information from authorities in the press three weeks after the Chernobyl accident: The material and the methods. The acute phase, the adoptation phase, the extension of the persective. What is said about the authorities in connection with Chernobyl? Appendix II: The fallout from Chernobyl, the authorities and the media coverage: The nationwide, regional and local coverage from radio and television. Ditto from the press. Topic and problem areas in reporting. Instructions from the authorities in media. Contribution in the media from people representing the authorities. Fallout in a chronologic perspective. (L.F.)

  6. Chernobyl and Fukushima nuclear accidents: what has changed in the use of atmospheric dispersion modeling?

    Science.gov (United States)

    Benamrane, Y; Wybo, J-L; Armand, P

    2013-12-01

    The threat of a major accidental or deliberate event that would lead to hazardous materials emission in the atmosphere is a great cause of concern to societies. This is due to the potential large scale of casualties and damages that could result from the release of explosive, flammable or toxic gases from industrial plants or transport accidents, radioactive material from nuclear power plants (NPPs), and chemical, biological, radiological or nuclear (CBRN) terrorist attacks. In order to respond efficiently to such events, emergency services and authorities resort to appropriate planning and organizational patterns. This paper focuses on the use of atmospheric dispersion modeling (ADM) as a support tool for emergency planning and response, to assess the propagation of the hazardous cloud and thereby, take adequate counter measures. This paper intends to illustrate the noticeable evolution in the operational use of ADM tools over 25 y and especially in emergency situations. This study is based on data available in scientific publications and exemplified using the two most severe nuclear accidents: Chernobyl (1986) and Fukushima (2011). It appears that during the Chernobyl accident, ADM were used few days after the beginning of the accident mainly in a diagnosis approach trying to reconstruct what happened, whereas 25 y later, ADM was also used during the first days and weeks of the Fukushima accident to anticipate the potentially threatened areas. We argue that the recent developments in ADM tools play an increasing role in emergencies and crises management, by supporting stakeholders in anticipating, monitoring and assessing post-event damages. However, despite technological evolutions, its prognostic and diagnostic use in emergency situations still arise many issues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Chernobyl. Review of consequences after years

    International Nuclear Information System (INIS)

    Koeteles, Gy.J.

    1996-01-01

    Ten years after the nuclear power plant accident in Chernobyl the experts and the public turned again their attentions to the lesson leaned. Several international and national conferences were held to summarize data and to draw conclusions. The present review is based on this experience including that of the Hungarian scientists with special attention to the extent of contamination, early and late health effects and further problems. (author). 17 refs., 2 figs., 5 tabs

  8. Observations on the Chernobyl Disaster and LNT

    Science.gov (United States)

    Jaworowski, Zbigniew

    2010-01-01

    The Chernobyl accident was probably the worst possible catastrophe of a nuclear power station. It was the only such catastrophe since the advent of nuclear power 55 years ago. It resulted in a total meltdown of the reactor core, a vast emission of radionuclides, and early deaths of only 31 persons. Its enormous political, economic, social and psychological impact was mainly due to deeply rooted fear of radiation induced by the linear non-threshold hypothesis (LNT) assumption. It was a historic event that provided invaluable lessons for nuclear industry and risk philosophy. One of them is demonstration that counted per electricity units produced, early Chernobyl fatalities amounted to 0.86 death/GWe-year), and they were 47 times lower than from hydroelectric stations (∼40 deaths/GWe-year). The accident demonstrated that using the LNT assumption as a basis for protection measures and radiation dose limitations was counterproductive, and lead to sufferings and pauperization of millions of inhabitants of contaminated areas. The projections of thousands of late cancer deaths based on LNT, are in conflict with observations that in comparison with general population of Russia, a 15% to 30% deficit of solid cancer mortality was found among the Russian emergency workers, and a 5% deficit solid cancer incidence among the population of most contaminated areas. PMID:20585443

  9. Chernobyl: Chronicle of difficult weeks [videorecording

    Energy Technology Data Exchange (ETDEWEB)

    Volodymyr, S

    1987-07-01

    1. Chernobyl : chronicle of difficult weeks. Shevchenko's film crew was the first in the disaster zone following the meltdown of the core of the Chernobyl nuclear power plant in 1986. They shot continuously for more than three months. Portions of the film are exposed with white blotches - a radiation leakage. The film demonstrates how authorities and volunteers dealt with the accident, shows the efforts to get the fire under control, to take care of patients with radiation injuries, and to evacuate about 100,000 inhabitants of the area. 2. The BAM zone : permanent residents. The Baikal-Amur Mainline (BAM) railroad in Siberia is called the longest monument to the stagnation of the Brezhnev years. The film shows the lives and fates of the people in contrast to the marches and songs praising the project.

  10. The safety of nuclear power plants in Eastern Europe

    International Nuclear Information System (INIS)

    Hoehn, J.; Niehaus, F.

    1997-01-01

    Nuclear power plant operators and nuclear organizations from the West and from the East cooperate at many levels. The G7 and G24 nations have taken it upon themselves to improve the safety of Eastern nuclear power plants. The European Union has launched support programs, i.e. Technical Assistance to the Commonwealth of Independent States (Tacis) and Pologne-Hangrie: Aide a la Reconstruction Economique (Phare), and founded the European Bank for Reconstruction and Development. The countries of Central and Eastern Europe operate nuclear power plants equipped with VVER-type pressurized water reactors and those equipped with RBMK-type reactors. The safety of these two types of plants is judged very differently. Among the VVER plants, a distinction is made between the older and the more recent 440 MWe lines and the 1000 MWe line. Especially the RBMK plants (Chernobyl-type plants) differ greatly as a function of location and year of construction. Even though they do not meet Western safety standards and at best can be backfitted up to a certain level, it must yet be assumed that they will remain in operation to the end of their projected service lives for economic reasons. (orig.) [de

  11. Analysis of policy alternatives on the public acceptance of nuclear power plant in Korea

    International Nuclear Information System (INIS)

    Choi, Young-Sung; Lee, Byong-Whi

    1995-01-01

    Public acceptance has become an important factor in nuclear power program particularly after Chernobyl accident and recent rapid democratization in Korea. A method reflecting public opinions in order to improve public acceptance is to find out the public preference values for its policy alternatives. In this study, the conjoint analysis was applied to find out the quantitative values of public preferences for twelve policy alternatives to support communities surrounding nuclear power plants in Korea. To implement the analysis, questionnaires of trade-off matrix form were mailed to the science teachers of middle or high school through-out the country who had the experience of visiting nuclear power plant. The quantitative preference values for potential policy alternatives were estimated, which made it possible to forecast the effectiveness of each option. It was revealed that the improvement of reactor safety 100 times and the establishment of civilian monitoring system for nuclear safety would be two best options to improve public acceptance of nuclear power in Korea. (author)

  12. Expedition to the 30-km Chernobyl Exclusion Zone and the Utilization of its Experience in Education and Communication

    International Nuclear Information System (INIS)

    Aszodi, Attila; Yamaji, Bogdan; Silye, Judit; Pazmandi, Tamas

    2006-01-01

    Between May 28 - June 4, 2005, under the organization of the Hungarian Nuclear Society (HNS) and the Hungarian Young Generation Network (HYGN) - which operates within the framework of the HNS - a scientific expedition visited the Chernobyl Nuclear Power Plant and the surrounding exclusion zone. The participants were young Hungarian nuclear professionals supervised by more experienced experts. The main scientific goals of the expedition were the followings: Get personal experiences in a direct way about the current status of the Chernobyl Power Plant and its surroundings, the contamination of the environment and about the doses. Gather information about the state of the shut down power plant and the shelter built above the damaged 4. unit. Training of young nuclear experts by performing on site measurements. The Hungarian expedition successfully achieved its objectives by performing wide-range of environmental and dosimetric measurements and collecting numerous biological and soil samples. Within the 30-km exclusion zone the influence of the accident occurred 20 years ago still could be measured clearly; however the level of the radioactivity is manageable in most places. The dosimetric measurements showed that no considerable exposure occurred among the members of the expedition. The analysis of samples has been started at the International Chernobyl Center in Slavutich. During the expedition not only environmental sampling and in-situ measurements were carried out but it was also well documented with photos and video recordings for educational, training and PR purposes. A documentary TV film was recorded during the expedition. The first-hand knowledge acquired during the expedition helps the authentic communication of the accident and its present-day consequences, which is especially important in 2006, 20 years after the Chernobyl accident. Since Ukraine and Hungary are neighbor countries the media constantly discuss the accident, the consequences and the risks of

  13. Compensation for the damage caused by the Chernobyl disaster

    International Nuclear Information System (INIS)

    Joirysch, A.; Supataeva, O.

    1993-01-01

    The teachings of the accident at the nuclear power plant of Chernobyl clearly showed that the existing rules of Russian legislation cannot handle the problems in respect of civil liability for nuclear damage. This paper describes how the Soviet State and Soviet law tried to cope with the question of compensation for damage to human health and property in a special legal situation, due to the lack of any particular legislation covering this area and to the fact that the USSR is a Party neither to the Vienna nor the Paris Convention. In 1991 a law of the Russian Federation 'On the social protection of citizens who suffered as a consequence of the Chernobyl disaster' established a State system of services and compensation for such damage and the procedure for financing was laid down by a ministerial letter. 4 refs

  14. Simulation of ¹³⁷Cs transport and deposition after the Chernobyl Nuclear Power Plant accident and radiological doses over the Anatolian peninsula.

    Science.gov (United States)

    Simsek, V; Pozzoli, L; Unal, A; Kindap, T; Karaca, M

    2014-11-15

    The Chernobyl Nuclear Power Plant (CNPP) accident occurred on April 26 of 1986, it is still an episode of interest, due to the large amount of radionuclides dispersed in the atmosphere. Caesium-137 ((137)Cs) is one of the main radionuclides emitted during the Chernobyl accident, with a half-life of 30years, which can be accumulated in humans and animals, and for this reason the impacts on population are still monitored today. One of the main parameters in order to estimate the exposure of population to (137)Cs is the concentration in the air, during the days after the accident, and the deposition at surface. The transport and deposition of (137)Cs over Europe occurred after the CNPP accident has been simulated using the WRF-HYSPLIT modeling system. Four different vertical and temporal emission rate profiles have been simulated, as well as two different dry deposition velocities. The model simulations could reproduce fairly well the observations of (137)Cs concentrations and deposition, which were used to generate the 'Atlas of Caesium deposition on Europe after the Chernobyl accident' and published in 1998. An additional focus was given on (137)Cs deposition and air concentrations over Turkey, which was one of the main affected countries, but not included in the results of the Atlas. We estimated a total deposition of 2-3.5 PBq over Turkey, with 2 main regions affected, East Turkey and Central Black Sea coast until Central Anatolia, with values between 10 kBq m(-2) and 100 kBq m(-2). Mean radiological effective doses from simulated air concentrations and deposition has been estimated for Turkey reaching 0.15 mSv/year in the North Eastern part of Turkey, even if the contribution from ingestion of contaminated food and water is not considered, the estimated levels are largely below the 1 mSv limit indicated by the International Commission on Radiological Protection. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Chernobyl 2015

    International Nuclear Information System (INIS)

    Jouette, Isabelle

    2015-01-01

    After having recalled the Chernobyl accident process and consequences for the power station buildings, and also the emergency interventions to cover the reactor and avoid that the molten core reaches underground waters, the author proposes a brief overview of the consequences at the international level in the field of nuclear safety with the emergence of a culture of safety which has been applied in other industrial sectors, with the improvement of the quality of transmitted information, and with the lessons learned about the efficiency of early ingestion of iodine pills. The author evokes the construction of a containment arch to dismantle the whole installation, comments the various results published on health consequences and gives some explanations about their discrepancy

  16. Phasing out nuclear power, the swedish experience

    International Nuclear Information System (INIS)

    Fredriksson, Y.

    2000-01-01

    This article presents the chronological steps in the phasing-out of nuclear energy in Sweden. In 1980 a consultative referendum was held and it was decided that: i) no further expansion of nuclear capacity beyond the 12 reactors in operation or already under construction, ii) all nuclear power plants should be decommissioned by the year 2010. In 1988, as a consequence of the Chernobyl nuclear accident, the Swedish parliament decided that one reactor should be closed down in 1995 and a second in 1996. In 1991 the parliament proposed a new energy program for a 5 year period. The main measure was a huge financial support for increasing energy efficiency and for developing environmental sound technologies. At the same time the parliament repealed the 1991 decision of closing 1 reactor in 1995 and made the phase-out process dependent on the results of the new energy policy. In 1994 a parliamentary Commission was appointed to estimate the results of 1991 energy policy. The results were meager and disappointing so the Commission considered that a number of objectives (the climate issue, employment, welfare and competitiveness) remained unresolved if all nuclear power generation should be phased out by 2010. However, the Commission also considered it important to start the phasing-out process at an early stage and stated that one reactor could be closed down without noticeably affecting the power balance. The Barsebaeck reactor is to be closed before the end of november 1999. (A.C.)

  17. Medical and biological aspects of the Chernobyl nuclear accident influence on the population of the Republic of Moldova

    International Nuclear Information System (INIS)

    Koretskaya, L.; Bahnarel, I.; Cechirlan, N.

    2007-01-01

    Complete test of publication follows. Stress factors action on the population health evaluation, especially on the emergency workers remains on e of the most important problems of the contemporary medicine. In this line the Chernobyl nuclear accident (CNA) that look place on the 26th April 1986 at the Chernobyl Nuclear Power Station (CNPS) is an eloquent example. Radioactive substances produced in the result of CNA fell out in a significant part of the Europe, including the Republic of Moldova territory, affecting more than 5,000,000 persons. In CNA consequences liquidation participated a lot of military staff including a great number of reservists. Lack of previous experience in the field (it was the first large-scale nuclear accident) made it impossible to prepare specially trained personnel for CNA limitation and liquidation. Consequently a lot of military staff even from the first days presented to medical authorities with a gamma of symptoms, which were henceforth characterized as somatic diseases after detailed investigations. Ionizing radiation influence on the health status of the participants in diminishing of consequences of the Chernobyl nuclear accident (PDCCNA) evaluation is difficult enough and so calls for an ample multilateral study applying modern diagnostic techniques. Large studies were yet conducted in the Russian Federation, the Ukraine and the Republic of Belarus. Acquired data suggests the existence of noticeable deteriorating effect of ionizing radiation produced secondary to CNA with the increased incidence of health status disturbances in affected population. Approximately 3500 inhabitants from the Republic of Moldova took part in the Chernobyl nuclear accident consequences liquidation. Study objective comprises the determination of clinical, immunological and cytogenetic features in PDCCNA from the Republic of Moldova and their descendants. Between 1996 and 2005 period 850 patients - participants in removal of consequences of Chernobyl

  18. Medical and biological aspects of the Chernobyl nuclear accident influence on the population of the Republic of Moldova

    International Nuclear Information System (INIS)

    Coretchi, L.S.; Bahnarel, I.N.

    2007-01-01

    Complete text of publication follows. Stress factors action on the population health evaluation, especially on the emergency workers remains one of the most important problems of the contemporary medicine. In this line the Chernobyl nuclear accident (CNA) that took place on the 26th April 1986 at the Chernobyl nuclear power station (NPS) is an eloquent example. Radioactive substances produced in the result of CNA fell out in a significant part of the Europe, including the Republic of Moldova territory, affecting more than 5,000,000 persons. In CNA consequences liquidation participated a lot of military staff including a great number of reservists. Lack of previous experience in the field (it was the first large-scale nuclear accident) made it impossible to prepare specially trained personnel for CNA limitation and liquidation. Consequently a lot of military staff even from the first days presented to medical authorities with a gamma of symptoms, which were henceforth characterized as somatic diseases after detailed investigations. Ionizing radiation influence on the health status of the participants in diminishing of consequences of the Chernobyl nuclear accident (PDCCNA) evaluation is difficult enough and so calls for an ample multilateral study applying modern diagnostic techniques. Large studies were yet conducted in the Russian Federation, the Ukraine and the Republic of Belarus. Acquired data suggests the existence of noticeable deteriorating effect of ionizing radiation produced secondary to CNA with the increased incidence of health status disturbances in affected population. Approximately 3500 inhabitants from the Republic of Moldova took part in the Chernobyl nuclear accident consequences liquidation. Study objective comprises the determination of clinical, immunological and cytogenetic features in PDCCNA from the Republic of Moldova and their descendants. Between 1996 and 2005 period 850 patients - participants in removal of consequences of Chernobyl

  19. Elimination of nuclear power in Italy - Consequences and future; Avveckling av kaernkraften i Italien - Konsekvenser och framtid

    Energy Technology Data Exchange (ETDEWEB)

    Mascanzoni, D

    1995-08-01

    The report describes how the elimination of nuclear power has affected power production, industry and education in Italy. A referendum after the Chernobyl accident led to the phase-out, after 20 years of operation. The most important consequence has been to loss of competence in an area where Italy has been advanced for several years. Industry, in particular, has lost most of its competence, and universities have lost most of the students in reactor technology. Dependence on foreign energy supply is highest among the industrialized countries. The future for nuclear power is also discussed, changes in the political climate can make room for a return of nuclear power. 22 refs, 4 figs.

  20. The medical implications of nuclear power plant accidents

    International Nuclear Information System (INIS)

    Tyror, J.G.; Pearson, G.W.

    1989-11-01

    This paper examines the UK position regarding the potential for an accident at a nuclear power plant, the safeguards in place to prevent such an accident occurring and the emergency procedures designed to cope with the consequences should one occur. It focuses on the role of the medical services and examines previous accidents to suggest the nature and likely scale of response that may need to be provided. It is apparent that designs of UK nuclear power stations are robust and that the likelihood of a significant accident occurring is extremely remote. Emergency arrangements are, however, in place to deal with the eventuality should it arise and these incorporate sufficient flexibility to accommodate a wide range of accidents. Analysis of previous nuclear accidents at Windscale, Three Mile Island and Chernobyl provide a limited but valuable insight into the diversity and potential scale of response that may be required. It is concluded that above all, the response must be flexible to enable medical services to deal with the wide range of effects that may arise. (author)

  1. Chernobyl'-92. Reports of the 3. All-Union scientific and technical meeting on results of accident effect elimination at the Chernobyl' NPP. V. 1. Radiation monitoring. Migration of radionuclides in natural environment. Part 1

    International Nuclear Information System (INIS)

    Senin, E.V.

    1992-01-01

    Section Radiation monitoring comprises: atlas of area radioactive contamination as a result of the Chernobyl' nuclear power station accident, state of computerized radiation control system, hydrological monitoring, radiation situation in different areas, problems of radioactive monitoring and protection of water objects, methods for determining radionuclides content, radiochemical mechanisms of radionuclide migration mobility of the Chernobyl' effluents, the results of investigations into migration of radionuclides in soils, landscapes, bottom depositions, in the soil-plant chain

  2. Total nuclear phaseout. 30 years after Chernobyl. What still has to be done; Alle aussteigen. 30 Jahre nach Tschernobyl. Was noch zu tun ist

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-03-15

    The brochure of the German Federal Environment Ministry on the necessity of total nuclear phaseout 30 years after Chernobyl discusses the following issues that still have to be done: Search for a final repository in deep rocks, building of a steel dome for Chernobyl and the roadmap for nuclear phaseout.

  3. Unique Chernobyl Cranes for Deconstruction Activities in the New Safe Confinement - 13542

    International Nuclear Information System (INIS)

    Parameswaran, N.A. Vijay; Chornyy, Igor; Owen, Rob; Schmieman, Eric; Kedrowski, Dan

    2013-01-01

    The devastation left behind from the Chernobyl nuclear power plant (ChNPP) Unit 4 accident which occurred on April 26, 1986 presented unparalleled technical challenges to the world engineering and scientific community. One of the largest tasks that are in progress is the design and construction of the New Safe Confinement (NSC). The NSC is an engineered enclosure for the entire object shelter (OS) that includes a suite of process equipment. The process equipment will be used for the dismantling of the destroyed Chernobyl Nuclear Power Plant (ChNPP) Unit. One of the major mechanical handling systems to be installed in the NSC is the Main Cranes System (MCS). The planned decontamination and decommissioning or dismantling (D and D) activities will require the handling of heavily shielded waste disposal casks containing nuclear fuel as well as lifting and transporting extremely large structural elements. These activities, to be performed within the NSC, will require large and sophisticated cranes. The article will focus on the unique design features of the MCS for the D and D activities. (authors)

  4. Unique Chernobyl Cranes for Deconstruction Activities in the New Safe Confinement - 13542

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, N.A. Vijay [Bechtel Systems and Infrastructure, Inc. (United States); Chornyy, Igor [Chernobyl NPP-SIP-PMU (Ukraine); Owen, Rob [PaR Systems, Inc. (United States); Schmieman, Eric [Battelle Memorial Institute (United States); Kedrowski, Dan

    2013-07-01

    The devastation left behind from the Chernobyl nuclear power plant (ChNPP) Unit 4 accident which occurred on April 26, 1986 presented unparalleled technical challenges to the world engineering and scientific community. One of the largest tasks that are in progress is the design and construction of the New Safe Confinement (NSC). The NSC is an engineered enclosure for the entire object shelter (OS) that includes a suite of process equipment. The process equipment will be used for the dismantling of the destroyed Chernobyl Nuclear Power Plant (ChNPP) Unit. One of the major mechanical handling systems to be installed in the NSC is the Main Cranes System (MCS). The planned decontamination and decommissioning or dismantling (D and D) activities will require the handling of heavily shielded waste disposal casks containing nuclear fuel as well as lifting and transporting extremely large structural elements. These activities, to be performed within the NSC, will require large and sophisticated cranes. The article will focus on the unique design features of the MCS for the D and D activities. (authors)

  5. The message of Chernobyl

    International Nuclear Information System (INIS)

    Berman, Morris

    1986-01-01

    Public attitudes towards the accident at Chernobyl in April 1986 are discussed. Although affected by the radioactive fallout from Chernobyl, people in West Germany were still prepared to vote, only 3 months later, for political parties who would not change the nuclear situation, not for the 'Greens' who would. The whole issue is seen as a question of values and alternatives. (UK)

  6. Belarus is a 'touchstone' for public acceptance of nuclear power energy

    International Nuclear Information System (INIS)

    Mikhalevich, A.A.

    1994-01-01

    The economy of the Republic of Belarus which become an independent state at the end of 1991 is in strained circumstances because of the shortage of its own energetic resources, and the deficit of generating electric capacities. Th real way out of an energetic crisis is the development of own nuclear power as it is in Central and Eastern Europe. Besides, Belarus has suffered most that all other states as a result of the Chernobyl accident, located out of its borders. About a quarter of its population and lands are on the territory contaminated with radionuclides. That's why the author emphasised that formation of public opinion is a key problem when deciding about the construction of nuclear power plants in Berlarus. 3 refs., 3 tabs., 1 fig

  7. Chernobyl, 13 years after

    International Nuclear Information System (INIS)

    Regniault-Lacharme, Mireille; Metivier, Henri

    1999-04-01

    This is an annual report, regularly issued by IPSN, that presents the ecological and health consequences of the Chernobyl Nuclear Accident. The present status of the Chernobyl Nuclear Plant, which Ukraine engaged to stop definitively in year 2000, is summarized. The only reactor unit now in operation is Chernobylsk-3 Reactor which poses two safety questions: evolution of cracks in part of the tubing and behaviour of the pressure tubes. Although, some improvements in the RBMK reactor types were introduced, problems remain that make IPSN to stress the requirement of stopping this NPP completely. In the contaminated territories surrounding Chernobyl incidence rate of infant thyroid cancers continues to grow, reaching values 10 to 100 times higher than the natural rate. In France the IPSN analyzed 60,000 records carried out in 17 sites during May 1986 and April 1989. It was estimated that the individual dose received during 60 years (1986-2046) by the inhabitants of the most affected zone (eastern France) is lower than 1.5 mSv, a value lower than 1% of the natural cosmic and telluric radioactivity exposure for the same period. For the persons assumed to live in the most attacked forests (from eastern France) and nourishing daily with venison and mushrooms the highest estimate is 1 mSv a year. Concerning the 'hot spots', identified in mountains by IPSN and CRIIRAD, the doses received by excursionists are around 0.015 mSv. For an average inhabitant of the country the dose piled up in the thyroid due to iodine-131 fallout is estimated to 0.5-2 mSv for an adult and 6.5-16 mSv for an infant. These doses are 100 to 1000 times lower than the ones to which the infants living in the neighbourhood of Chernobyl are exposed to. The contents of the report is displayed in the following six chapters: 1. Chernobyl in some figures; 2. The 'sarcophagus' and the reactors of the Chernobyl NPP; 3. Health consequences of the Chernobyl accident;. 4. The impact of Chernobyl fallout in France

  8. The transfer of 137Cs and 90Sr to dairy cattle fed fresh herbage collected 3.5 km from the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Beresford, N.A.; Gashchak, S.; Lasarev, N; Arkhipov, A.; Chyorny, Y.; Astasheva, N.; Arkhipov, N.; Mayes, R.W.; Howard, B.J.; Baglay, G.; Loginova, L.; Burov, N.

    2000-01-01

    A study conducted during summer 1993 to determine the bioavailability and transfer of 137 Cs and 90 Sr to dairy cattle from herbage collected from a pasture contaminated by particulate fallout is described. The study pasture was located 3.5 km from the Chernobyl nuclear power plant. The true absorption coefficient (A t ) determined for 137 Cs (0.23) was considerably lower than previous estimates for radiocaesium incorporated into vegetation by root uptake. It is likely that the low dry matter digestibility of the diet and the potential presence of 137 Cs associated with adherent soil-associated fuel particles contributed to this low bioavailability. The A t value determined for 90 Sr (0.27) did not indicate a reduced bioavailability. It is suggested that the current and previous calcium status of the animals was the controlling influence on the transfer of 90 Sr from the diet to milk

  9. Problems and prospects of nuclear power plants construction

    Directory of Open Access Journals (Sweden)

    Pergamenshhik Boris Klimentyevich

    2014-02-01

    Full Text Available 60 years ago, in July 1954 in the city of Obninsk near Moscow the world's first nuclear power plant was commissioned with a capacity of 5 MW. Today more than 430 nuclear units with a total capacity of almost 375000 MW are in operation in dozens of the countries worldwide. 72 electrical power units are currently under construction, 8 of them are located in the Russian Federation. There will be no alternative to nuclear energy in the coming decades. Among the factors contributing to the construction of nuclear power plants reckon limited fossil fuel supply, lack of air and primarily carbon dioxide emissions. The holding back factors are breakdown, hazard, radioactive wastes, high construction costs and long construction period. Nuclear accidents in the power plant of «Three-Mile-Island» in the USA, in Chernobyl and in Japan have resulted in termination of construction projects and closure of several nuclear power plants in the Western Europe. The safety systems have become more complex, material consumption and construction costs have significantly increased. The success of modern competing projects like EPR-1600, AP1000, ABWR, national ones AES-2006 and VVER-TOI, as well as several others, depends not only on structural and configuration but also on construction and technological solutions. The increase of the construction term by one year leads to growth of estimated total costs by 3—10 %. The main improvement potentials include external plate reinforcement, pre-fabricated large-block assembly, production and installation of the equipment packages and other. One of the crucial success factors is highly skilled civil engineers training.

  10. National radiological emergency response to the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Dela Rosa, Alumanda M.

    2011-01-01

    The Fukushima nuclear power plant accident occurred on March 11, 2011, when two natural disasters of unprecedented strengths, an earthquake with magnitude 9 followed one hour later by a powerful tsunami struck northeastern Japan and felled the external power supply and the emergency diesel generators of the Fukushima Daiichi nuclear power station, resulting in a loss of coolant accident. There were core meltdowns in three nuclear reactors with the release of radioactivity estimated to be 1/10 of what was released to the environment during the Chernobyl nuclear power plant accident in April 1986. The Fukushima nuclear accident tested the capability of the Philippine Nuclear Research Institute (PNRI) and the National Disaster Risk Reduction and Management Council (NDRRMC) in responding to such radiological emergency as a nuclear power plant accident. The PNRI and NDRRMC activated the RADPLAN for possible radiological emergency. The emergency response was calibrated to the status of the nuclear reactors on site and the environmental monitoring undertaken around the site and off-site, including the marine environment. This orchestrated effort enabled the PNRI and the national agencies concerned to reassure the public that the nuclear accident does not have a significant impact on the Philippines, both on the health and safety of the people and on the safety of the environment. National actions taken during the accident will be presented. The role played by the International Atomic Energy Agency as the central UN agency for nuclear matters will be discussed. (author)

  11. Medical features of the radiological accident in Chernobyl

    International Nuclear Information System (INIS)

    Oliveira, A.R. de

    1987-01-01

    The main medical features concerning the recent nuclear accident occurred in Chernobyl power station is summarized. The first measures taken by the Soviet medical authorities to minimize the effects of ionizing radiation on the victims are briefly commented on. The specialized laboratory analyses and therapeutic procedures adopted by the physicians during the course of the acute phase of the major syndromes are also discussed. (author) [pt

  12. The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities.

    Science.gov (United States)

    Scherb, Hagen; Voigt, Kristina

    2011-06-01

    Ever since the discovery of the mutagenic properties of ionizing radiation, the possibility of birth sex odds shifts in exposed human populations was considered in the scientific community. Positive evidence, however weak, was obtained after the atomic bombing of Japan. We previously investigated trends in the sex odds before and after the Chernobyl Nuclear Power Plant accident. In a pilot study, combined data from the Czech Republic, Denmark, Finland, Germany, Hungary, Norway, Poland, and Sweden between 1982 and 1992 showed a downward trend in the sex odds and a significant jump in 1987, the year immediately after Chernobyl. Moreover, a significant positive association of the sex odds between 1986 and 1991 with Chernobyl fallout at the district level in Germany was observed. Both of these findings, temporality (effect after exposure) and dose response association, yield evidence of causality. The primary aim of this study was to investigate longer time periods (1950-2007) in all of Europe and in the USA with emphasis on the global atmospheric atomic bomb test fallout and on the Chernobyl accident. To obtain further evidence, we also analyze sex odds data near nuclear facilities in Germany and Switzerland. DATA AND STATISTICAL METHODS: National gender-specific annual live births data for 39 European countries from 1975 to 2007 were compiled using the pertinent internet data bases provided by the World Health Organization, United Nations, Council of Europe, and EUROSTAT. For a synoptic re-analysis of the period 1950 to 1990, published data from the USA and from a predominantly western and less Chernobyl-exposed part of Europe were studied additionally. To assess spatial, temporal, as well as spatial-temporal trends in the sex odds and to investigate possible changes in those trends after the atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities, we applied ordinary linear logistic regression. Region-specific and eventually changing spatial

  13. Ukrainian 'greens' and nuclear power

    International Nuclear Information System (INIS)

    Sappa, Nikolai

    1993-01-01

    At the First Constituent Congress of the Ukrainian Ecology Association 'Zelenyj svit' started in 1989 under antinuclear banners the as an organization of 'greens'. Since a great many of the Ukrainian citizens shared the attitude of the 'greens' to the Chernobyl accident, we faced the problem to stand our ground at least on our 'territory', i,e. the towns-NPP satellites. It is this factor that specified the urgent tasks for our activities at the regional level, carried out in cooperation with public relations services at the NPP. He arranged giving lectures in these towns, sent the public relations services all kind of information which sight be of use for efficient work, and performed sociological studies, which included: i) clearing up the attitude of the public to different aspects of nuclear energy industry, the level of public knowledge concerning the problem involved, ii) finding the channels and most preferable forms of disseminating information on nuclear power, and iii) developing recommendations for NPP administration and public relations services. He started our work three years ago. it may be noted that at the end of the last year there was a conference in Kiev 'The power industry of independent Ukraine and ecology', held by the Union of power engineers and Z elenyj svit . It is rather significant that at this conference, for the first time in the history of the ecological movement in the Ukraine, the 'greens' have admitted the possibility of having a creative dialogue with power engineers on nuclear power problems. Re consider it to be a serious progress in the perception of our opponents may be noted that at the end of the last year there was a conference in Kiev T he power industry of independent Ukraine and ecology , held by the Union of power engineers and Z elenyj svit . It is rather significant that at this conference, for the first time in the history of the ecological movement in the Ukraine, the 'greens' have admitted the possibility of having

  14. Ukrainian 'greens' and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Sappa, Nikolai [Nuclear Public Relations Agency, Ukrainian Science Centre, ' Kharkiv Institute of Physics and Technology' , 310108, Kharkiv (Ukraine)

    1993-07-01

    At the First Constituent Congress of the Ukrainian Ecology Association 'Zelenyj svit' started in 1989 under antinuclear banners the as an organization of 'greens'. Since a great many of the Ukrainian citizens shared the attitude of the 'greens' to the Chernobyl accident, we faced the problem to stand our ground at least on our 'territory', i,e. the towns-NPP satellites. It is this factor that specified the urgent tasks for our activities at the regional level, carried out in cooperation with public relations services at the NPP. He arranged giving lectures in these towns, sent the public relations services all kind of information which sight be of use for efficient work, and performed sociological studies, which included: i) clearing up the attitude of the public to different aspects of nuclear energy industry, the level of public knowledge concerning the problem involved, ii) finding the channels and most preferable forms of disseminating information on nuclear power, and iii) developing recommendations for NPP administration and public relations services. He started our work three years ago. it may be noted that at the end of the last year there was a conference in Kiev 'The power industry of independent Ukraine and ecology', held by the Union of power engineers and {sup Z}elenyj svit{sup .} It is rather significant that at this conference, for the first time in the history of the ecological movement in the Ukraine, the 'greens' have admitted the possibility of having a creative dialogue with power engineers on nuclear power problems. Re consider it to be a serious progress in the perception of our opponents may be noted that at the end of the last year there was a conference in Kiev {sup T}he power industry of independent Ukraine and ecology{sup ,} held by the Union of power engineers and {sup Z}elenyj svit{sup .} It is rather significant that at this conference, for the first time in the history of the ecological movement in the Ukraine, the 'greens' have

  15. Acceptance of nuclear power in Germany: A long-term perspective

    International Nuclear Information System (INIS)

    Schulz, R.

    2006-01-01

    20 years ago, in July 1986, a few months after the Chernobyl accident, the renowned nuclear physicist Heinz Maier-Leibnitz published his book 'Lernschock Tschernobyl', in which he attempted a rational assessment of the risk involved in the utilisation of nuclear energy. He conceded that decisions made by government and industry are never purely rational and thus cannot be justified purely on rational grounds. In a democracy, the will and emotions of the people must be taken into account as well. In the case of atomic power, Heinz Maier-Leibniz viewed these emotions as 'fear of unknown, invisible radiation and fear of serious if rare accidents'. (orig.)

  16. Proteomic analysis of mature soybean seeds from the Chernobyl area suggests plant adaptation to the contaminated environment.

    Science.gov (United States)

    Danchenko, Maksym; Skultety, Ludovit; Rashydov, Namik M; Berezhna, Valentyna V; Mátel, L'ubomír; Salaj, Terézia; Pret'ová, Anna; Hajduch, Martin

    2009-06-01

    The explosion in one of the four reactors of the Chernobyl Nuclear Power Plant (CNPP, Chernobyl) caused the worst nuclear environmental disaster ever seen. Currently, 23 years after the accident, the soil in the close vicinity of CNPP is still significantly contaminated with long-living radioisotopes, such as (137)Cs. Despite this contamination, the plants growing in Chernobyl area were able to adapt to the radioactivity, and survive. The aim of this study was to investigate plant adaptation mechanisms toward permanently increased level of radiation using a quantitative high-throughput proteomics approach. Soybeans of a local variety (Soniachna) were sown in contaminated and control fields in the Chernobyl region. Mature seeds were harvested and the extracted proteins were subjected to two-dimensional gel electrophoresis (2-DE). In total, 9.2% of 698 quantified protein spots on 2-D gel were found to be differentially expressed with a p-value Chernobyl soil conditions was proposed. Our results suggest that adaptation toward heavy metal stress, protection against radiation damage, and mobilization of seed storage proteins are involved in plant adaptation mechanism to radioactivity in the Chernobyl region.

  17. The Chernobyl accident and its consequences.

    Science.gov (United States)

    Saenko, V; Ivanov, V; Tsyb, A; Bogdanova, T; Tronko, M; Demidchik, Yu; Yamashita, S

    2011-05-01

    The accident at the Chernobyl nuclear power plant was the worst industrial accident of the last century that involved radiation. The unprecedented release of multiple different radioisotopes led to radioactive contamination of large areas surrounding the accident site. The exposure of the residents of these areas was varied and therefore the consequences for health and radioecology could not be reliably estimated quickly. Even though some studies have now been ongoing for 25 years and have provided a better understanding of the situation, these are yet neither complete nor comprehensive enough to determine the long-term risk. A true assessment can only be provided after following the observed population for their natural lifespan. Here we review the technical aspects of the accident and provide relevant information on radioactive releases that resulted in exposure of this large population to radiation. A number of different groups of people were exposed to radiation: workers involved in the initial clean-up response, and members of the general population who were either evacuated from the settlements in the Chernobyl nuclear power plant vicinity shortly after the accident, or continued to live in the affected territories of Belarus, Russia and Ukraine. Through domestic efforts and extensive international co-operation, essential information on radiation dose and health status for this population has been collected. This has permitted the identification of high-risk groups and the use of more specialised means of collecting information, diagnosis, treatment and follow-up. Because radiation-associated thyroid cancer is one of the major health consequences of the Chernobyl accident, a particular emphasis is placed on this malignancy. The initial epidemiological studies are reviewed, as are the most significant studies and/or aid programmes in the three affected countries. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights

  18. The study of the dynamics of migration main radiologically significant isotopes in the near and far field Chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bondarkov, M.; Bondarkov, D.; Maksymenko, A. [Chornobyl Center for Nuclear Safety, Radioactive Waste and Radioecology (Ukraine); Zheltonozhskaya, M.; Zheltonozhsky, V. [Institute for nuclear research (Ukraine)

    2014-07-01

    The study of the migration of {sup 90}Sr, {sup 137}Cs, {sup 241}Am and Pu isotopes in soil near Chernobyl nuclear power plant area, as well as the Chernigov region, Ukraine is described. Experiments were conducted using a semiconductor spectrometry and radiochemical separation of isotopes needed. The experimental data obtained were processed using a mathematical model that takes into account in convective component (fit parameter V-- linear velocity of radionuclide movement dependent upon soil moisture) and diffusive one (fit parameter D- diffusion coefficient) migration of isotopes. The parameter values in V and D of migration, in turn, allow us to estimate halftime of decontamination top five-centimeter layer of soil. The results obtained in this paper halftime of decontamination for the various isotopes and their comparison with those obtained by us and by other authors in the past 10-20 years, confirms the trend previously noticed by a significant speeding migration Radiostrontium compared with Radiocesium. It is shown that for all the types studied soils in the late phase of Chernobyl accident halftime of decontamination of the top 5 - cm soil layer for radiostrontium, and for radioactive cesium in the order of magnitude or more greater than the period of the physical half-life of the radionuclide that is, matching in the late phase of the accident change the exposure dose of radiation is mainly determined by the physical decay of the radionuclide. According to the estimated periods decontamination upper soil horizons of different migration mobility of radionuclides in soils exclusion zone reduced in number: {sup 90}Sr> {sup 137}Cs> {sup 241}Am ≥ {sup 238-240}Pu, migration mobility of isotopes of transuranic elements is very low. Document available in abstract form only. (authors)

  19. On the main causes and circumstances of the Chernobyl accident

    International Nuclear Information System (INIS)

    Shteinberg, N.

    1992-01-01

    The main causes are described of the Chernobyl accident, the discussion of which seems to be finished. It is shown that important actual parameters of the reactor differed adversely from the project; this fact had not been taken into account in operational instructions and therefore it could not be known to the operators. Further, the general causes of the Chernobyl accident are pointed out. A major cause is the still non-existing fundamental law and, consequently, lack of definition of responsibilities (it will, above all, be necessary to set out indivisible responsibility of the plant operator for nuclear safety). At present all participants in nuclear power engineering share responsibility. Another cause of the accident can be seen in insufficient quality assurance resulting from the fact that the Soviet regulatory body has not all the necessary powers and the independence. Closely connected with this is the fact that the role of the human factor is overemphasized and operational experience is not included in design modifications. In general, insufficient safety culture as defined by INSAG can be stated. 6 figs., 4 refs

  20. Health consequences of Chernobyl disaster in Europe in general and in Norway in particular. Literature review and ecological study.

    OpenAIRE

    Fedorov, Roman

    2012-01-01

    Health costs of Chernobyl disaster are still not clear.Main goal of this paper therefore is to investigate health consequences of Chernobyl disaster in Europe (outside the former Soviet Union) as a whole and in Norway in particular as one of the second high contaminated areas after those in the immediate vicinity of the Chernobyl nuclear power plant. To do that literature review and ecological study with the Incidence rate ratios analysis are conducted. As a result hypothesis about increased...

  1. Information on nuclear energy in France during and after Chernobyl

    International Nuclear Information System (INIS)

    Desgraupes, P.

    1991-01-01

    In France, the CHERNOBYL accident created a confidence crisis about nuclear energy. This crisis affected the entire population and its results can still be seen today in the many debates about the direction of the electronuclear program. The restoration of confidence had to involve the installation of a complete and permanent communications network between the nuclear institution and the population. All types of actions which have a unique objective: to make the general public aware of nuclear energy, how it works, the men that operate it, the real impact it has on the environment, its real risks and the procedure to be followed in case of an accident. This is a long term effort which requires permanent mobilization of nuclear professionals, a training effort on the part of educational organizations, media and the medical professions, and a strong involvement of local communities and associations. For this purpose, new structures and new information tools were implemented in France, with the emphasis on information transparency and pluralism

  2. Investigation on Conversion of I-Graphite from Decommissioning of Chernobyl NPP into a Stable Waste Form Acceptable for Long Term Storage and Disposal

    International Nuclear Information System (INIS)

    Zlobenko, Borys; Fedorenko, Yriy; Yatzenko, Victor; Shabalin, Borys; Skripkin, Vadim

    2016-01-01

    For Ukraine, the main radiocarbon ( 14 C) source is irradiated graphite from Chernobyl Nuclear Power Plant. The ChNPP is a decommissioned nuclear power station about 14 km northwest of the city of Chernobyl, and 110 km north of Kyiv. The ChNPP had four RBMK reactor units. The commissioning of the first reactor in 1977 was followed by reactor No. 2 (1978), No. 3 (1981), and No.4 (1983). Reactors No.3 and 4 were second generation units, whereas Nos.1 and 2 were first-generation units. RBMK is an acronym for ''High Power Channel-type Reactor'' of a class of graphite-moderated nuclear power reactor with individual fuel channels that uses ordinary water as its coolant and graphite as its moderator. The combination of graphite moderator and water coolant is found in no other type of nuclear reactor

  3. Perception of risk and subjective health among victims of the Chernobyl disaster

    NARCIS (Netherlands)

    Havenaar, J. M.; de Wilde, E. J.; van den Bout, J.; Drottz-Sjöberg, B. M.; van den Brink, W.

    2003-01-01

    Several studies have demonstrated that the nuclear power plant accident at Chernobyl in 1986 had a strong impact on the subjective health of the inhabitants in the surrounding regions and that the majority of these health complaints appear to be stress-related. An epidemiological survey among the

  4. Peculiarities of family doctors' medical assistance for persons with 'Chernobyl syndrome'

    International Nuclear Information System (INIS)

    Margine, Le.; Tintiuc, D.; Grejdeanu, T.; Margine, Lu.; Badan, V.

    2012-01-01

    Medical and social protection and rehabilitation of patients with 'Chernobyl syndrome' is provided by legislation of the Republic of Moldova, which is reflected in a comprehensive action plan for rehabilitation and protection of this category of citizens. This plan includes such medical activities as detailed medical ambulatory and stationary examination, purchase prescription drugs, annual sanatorium treatment, annual compensation recovery in the value of 2 average monthly salaries for health improvement. The role of family doctors' medical assistance for persons suffered due to the accident at the Chernobyl Nuclear Power Plant is very important in this plan implementation.

  5. Chernobyl bibliography

    International Nuclear Information System (INIS)

    Carr, F. Jr.; Mahaffey, J.A.

    1989-09-01

    The purpose of the DOE/OHER Chernobyl Database project is to create and maintain an information system to provide usable information for research studies related to the nuclear accident. The system is the official United States repository for information about the Chernobyl accident and its consequences, and currently includes an extensive bibliography and diverse radiological measurements with supporting information. PNL has established two resources: original (not summarized) measurement data, currently about 80,000 measurements, with ancillary information; and about 2,200 bibliographic citations, some including abstracts. Major organizations that have contributed radiological measurement data include the Washington State Department of Social and Health Services; United States Environmental Protection Agency (domestic and foreign data); United States Nuclear Regulatory Commission; Stone ampersand Webster; Brookhaven National Laboratory; Commissariat A L'energie Atomique in France; Ministry of Agriculture, Fisheries, and Food in the United Kingdom; Japan National Institute of Radiological Sciences; and the Finnish Centre For Radiation and Nuclear Safety (STUK). Scientists in Australia, Austria, Belgium, Canada, China, Denmark, England, Federal Republic of Germany, Finland, France, Ireland, Italy, Japan, the Netherlands, Romania, Scotland, Spain, Sweden, Switzerland, United States, Wales, and Yugoslavia have made contributions. Bibliographic materials have been obtained from scientists in the above countries that have replied to requests. In addition, literature searches have been conducted, including a search of the DOE Energy Database. The last search was conducted in January, 1989. This document lists the bibliographic information in the DOE/OHER Chernobyl Database at the current time

  6. Chernobyl bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Carr, F. Jr.; Mahaffey, J.A.

    1989-09-01

    The purpose of the DOE/OHER Chernobyl Database project is to create and maintain an information system to provide usable information for research studies related to the nuclear accident. The system is the official United States repository for information about the Chernobyl accident and its consequences, and currently includes an extensive bibliography and diverse radiological measurements with supporting information. PNL has established two resources: original (not summarized) measurement data, currently about 80,000 measurements, with ancillary information; and about 2,200 bibliographic citations, some including abstracts. Major organizations that have contributed radiological measurement data include the Washington State Department of Social and Health Services; United States Environmental Protection Agency (domestic and foreign data); United States Nuclear Regulatory Commission; Stone Webster; Brookhaven National Laboratory; Commissariat A L'energie Atomique in France; Ministry of Agriculture, Fisheries, and Food in the United Kingdom; Japan National Institute of Radiological Sciences; and the Finnish Centre For Radiation and Nuclear Safety (STUK). Scientists in Australia, Austria, Belgium, Canada, China, Denmark, England, Federal Republic of Germany, Finland, France, Ireland, Italy, Japan, the Netherlands, Romania, Scotland, Spain, Sweden, Switzerland, United States, Wales, and Yugoslavia have made contributions. Bibliographic materials have been obtained from scientists in the above countries that have replied to requests. In addition, literature searches have been conducted, including a search of the DOE Energy Database. The last search was conducted in January, 1989. This document lists the bibliographic information in the DOE/OHER Chernobyl Database at the current time.

  7. Chernobyl - state of the art; Chernobyl - o estado da arte

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Daiane C.B. de; Vicente, Roberto; Rostelato, Maria Elisa C.M.; Borges, Jessica F.; Tiezzi, Rodrigo; Peleias Junior, Fernando S.; Souza, Carla D.; Rodrigues, Bruna T.; Benega, Marcos A.G.; Souza, Anderson S. de; Silva, Thais H. da, E-mail: dcsouza@ipen.br, E-mail: rvicente@ipen.br, E-mail: elisaros@ipen.br, E-mail: rtiezzi@ipen.br, E-mail: carladdsouza@yahoo.com.br, E-mail: marcosagbenega@ipen.br, E-mail: bteigarodrigues@gmail.com, E-mail: thaishunk@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    This article aims to analyze what has been done so far in relation to damage caused by the accident and the state of art in Chernobyl, as well as the impact on radiation protection applied safety nuclear power plants. In the first part of the work a data survey was done through a bibliographic review and the in the second part data was collected during a visit, in June 2013 at the crash site, when was observed dose values in the affected areas and the works of repairs that have been made in the sarcophagus and surroundings as well as in official reports available through active international bodies. The main results indicate significant improvements in radiation protection systems.

  8. Nuclear and radioactivity

    International Nuclear Information System (INIS)

    2000-01-01

    Among the industrial risks of nuclear facilities, the nuclear risk is often associated to the Chernobyl accident. This paper presents the nuclear major risk in a french PWR type power plant, with consequences on the personnel, the surrounding population and the environment. (A.L.B.)

  9. Chernobyl's legacy: Health, environmental and socio-economic impacts and recommendations to the Governments of Belarus, the Russian Federation and Ukraine. The Chernobyl Forum: 2003-2005. Second revised version

    International Nuclear Information System (INIS)

    Kinly, D. III

    2006-04-01

    Nearly 20 years after the Chernobyl nuclear power plant (NPP) accident, many questions remained unanswered regarding the health, environmental, and socio-economic consequences of the disaster. The individuals and countries most affected had yet to obtain a clear scientific consensus on the impact of the accident and authoritative answers to outstanding questions. To fill this void and to promote better understanding and improved measures to deal with the impacts of the accident, the Chernobyl Forum was established in 2003. The Chernobyl Forum is an initiative of the IAEA, in cooperation with the WHO, UNDP, FAO, UNEP, UN-OCHA, UNSCEAR, the World Bank and the governments of Belarus, the Russian Federation and the Ukraine. The Forum was created as a contribution to the United Nations' ten-year strategy for Chernobyl, launched in 2002 with the publication of Human Consequences of the Chernobyl Nuclear Accident - A Strategy for Recovery. To provide a basis for achieving the goal of the Forum, the IAEA convened an expert working group of scientists to summarize the environmental effects, and the WHO convened an expert group to summarize the health effects and medical care programmes in the three most affected countries. The information presented in this document and in the two full expert group reports has been drawn from scientific studies undertaken by the IAEA, WHO, UNSCEAR and numerous other authoritative bodies. In addition, UNDP has drawn on the work of eminent economists and policy specialists to assess the socio-economic impact of the Chernobyl accident, based largely on the 2002 UN study as above

  10. Chernobyl's legacy: Health, environmental and socio-economic impacts and recommendations to the Governments of Belarus, the Russian Federation and Ukraine. The Chernobyl Forum 2003-2005. Second revised version

    Energy Technology Data Exchange (ETDEWEB)

    Kinly, D III [International Atomic Energy Agency, Division of Publication Information, Vienna (Austria)

    2006-04-15

    Nearly 20 years after the Chernobyl nuclear power plant (NPP) accident, many questions remained unanswered regarding the health, environmental, and socio-economic consequences of the disaster. The individuals and countries most affected had yet to obtain a clear scientific consensus on the impact of the accident and authoritative answers to outstanding questions. To fill this void and to promote better understanding and improved measures to deal with the impacts of the accident, the Chernobyl Forum was established in 2003. The Chernobyl Forum is an initiative of the IAEA, in cooperation with the WHO, UNDP, FAO, UNEP, UN-OCHA, UNSCEAR, the World Bank and the governments of Belarus, the Russian Federation and the Ukraine. The Forum was created as a contribution to the United Nations' ten-year strategy for Chernobyl, launched in 2002 with the publication of Human Consequences of the Chernobyl Nuclear Accident - A Strategy for Recovery. To provide a basis for achieving the goal of the Forum, the IAEA convened an expert working group of scientists to summarize the environmental effects, and the WHO convened an expert group to summarize the health effects and medical care programmes in the three most affected countries. The information presented in this document and in the two full expert group reports has been drawn from scientific studies undertaken by the IAEA, WHO, UNSCEAR and numerous other authoritative bodies. In addition, UNDP has drawn on the work of eminent economists and policy specialists to assess the socio-economic impact of the Chernobyl accident, based largely on the 2002 UN study as above.

  11. Chernobyl's legacy: Health, environmental and socio-economic impacts and recommendations to the Governments of Belarus, the Russian Federation and Ukraine. The Chernobyl Forum 2003-2005. Second revised version

    International Nuclear Information System (INIS)

    Kinly, D. III

    2006-04-01

    Nearly 20 years after the Chernobyl nuclear power plant (NPP) accident, many questions remained unanswered regarding the health, environmental, and socio-economic consequences of the disaster. The individuals and countries most affected had yet to obtain a clear scientific consensus on the impact of the accident and authoritative answers to outstanding questions. To fill this void and to promote better understanding and improved measures to deal with the impacts of the accident, the Chernobyl Forum was established in 2003. The Chernobyl Forum is an initiative of the IAEA, in cooperation with the WHO, UNDP, FAO, UNEP, UN-OCHA, UNSCEAR, the World Bank and the governments of Belarus, the Russian Federation and the Ukraine. The Forum was created as a contribution to the United Nations' ten-year strategy for Chernobyl, launched in 2002 with the publication of Human Consequences of the Chernobyl Nuclear Accident - A Strategy for Recovery. To provide a basis for achieving the goal of the Forum, the IAEA convened an expert working group of scientists to summarize the environmental effects, and the WHO convened an expert group to summarize the health effects and medical care programmes in the three most affected countries. The information presented in this document and in the two full expert group reports has been drawn from scientific studies undertaken by the IAEA, WHO, UNSCEAR and numerous other authoritative bodies. In addition, UNDP has drawn on the work of eminent economists and policy specialists to assess the socio-economic impact of the Chernobyl accident, based largely on the 2002 UN study as above

  12. Basic recognition on safety of nuclear electric power generation

    International Nuclear Information System (INIS)

    Miyazaki, Keiji

    1995-01-01

    The safety of nuclear electric power generation is not to inflict radiation damage on public. Natural radiation is about 1 mSv every year. As far as the core melting on large scale does not occur, there is not the possibility of exerting serious radiation effect to public. The way of thinking on ensuring the safety is defense in depth. The first protection is the prevention of abnormality, the second protection is the prevention of accidents, and the third protection is the relaxation of effect. As design base accidents, the loss of coolant accident due to the breakdown of inlet pipings of reactors and the breaking of fine tubes in steam generators are included. The suitability of location is evaluated. As the large scale accidents of nuclear power stations in the past, Chernobyl accident and Three Mile Island accident are explained. The features of the countermeasures to the accident in Mihama No. 2 plant are described. The countermeasures to severe accidents, namely accident management and general preventive maintenance are explained. The background of the nonconfidence feeling to nuclear electric power generation and the importance of opening information to public are shown. (K.I.)

  13. Health hazards from radiocaesium following the Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    1987-01-01

    The WHO Regional Office for Europe has organized a series of meetings to assess the health impact of the Chernobyl nuclear accident. Considering the long-term importance of radiocaesium a decision was made to examine carefully the following aspects of this radionuclide in Europe: rate of deposition; environmental pathways through soil, flora and fauna to humans; absorption, distribution, metabolism, and excretion in humans; estimated doses resulting from these exposures; and some consideration of the possible adverse health effects. This is a report from a working group studying the health implications of radiocaesium. Refs, figs and tabs

  14. Ecological and toxicological aspects of the partial meltdown of the Chernobyl nuclear power plant reactor

    Science.gov (United States)

    Eisler, Ronald; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    the partial meltdown of the 1000-MW reactor at Chernobyl, Ukraine, on April 26, 1986, released large amounts of radiocesium and other radionuclides into the environment, causing widespread radioactive contamination of Europe and the former Soviet Union.1-7 At least 3,000,000 trillion becquerels (TBq) were released from the fuel during the accident (Table 24.1), dwarfing, by orders of magnitude, radiation released from other highly publicized reactor accidents at Windscale (U.K.) and three-Mile Island (U.S.)3,8 The Chernobyl accident happened while a test was being conducted during a normal scheduled shutdown and is attributed mainly to human error.3

  15. Should Estonia have a nuclear power station?(Part 1)

    International Nuclear Information System (INIS)

    Frey, T.

    1992-01-01

    In developing countries the problem of energy supply can be of paramount importance. Estonia, however, being the small country of a small nation, has to take into account special considerations before deciding on the possible introduction of nuclear electricity. Should another disaster like that of Chernobyl take place on Estonian territory, the whole nation might perish. Therefore, those scientists who place national interests above all have been active looking for alternative sources of energy. The present paper discusses the situation in Northern Europe and draws the readers' attention to the still unsolved problem of nuclear waste disposal. The paper emphasises the fact that the Fifth Estonian Conference on Ecology regarded nuclear energy as entirely unacceptable for Estonia and declared its full support for the decision taken by the Estonian Government not to consider the application of nuclear power in Estonia before the year 2000. (author). 8 figs

  16. Risk perception of the public living in vicinity of nuclear power plant

    International Nuclear Information System (INIS)

    Li Xiaojuan; Hou Changsong; Wang Chunyan; Liu Ying; Sun Quanfu; Yu Ningle; Li Ningning; Zhou Rihui; Zhuang Jiayi

    2008-01-01

    Objective: To investigate the attitude toward and perception of the risk of nuclear power plant among the public residing in vicinity of nuclear power plant, as well as the related factors. Methods: A face-to-face interview on perceived radiation risks was conducted among 1408 individuals in Liangyungang City, Jiangsu Province, where the Tianwan nuclear power plant was under construction. The four groups was defined according to the distance between the residence of the subjects and the Tianwan nuclear power plant: <4 km, 4- 8 km, 8-30 km and 30-50 km. A was used to collect information on education, working history, religion, perception of major industries hazards especially nuclear power plant, and major factors may influence their perceptions. Ordinal logistic regression model was used to analyze the data. Results: About 91.18% of the interviewee heard about the nuclear power plant, 35.36% of them had knowledge about Chernobyl nuclear power plant accident, 71.05% of them believed that the nuclear power plant had no negative effects on environments, 37.03% of them believed that the nuclear energy was safe, 74.27% of them believed that it was necessary for China to develop nuclear energy, 63.29% of them supported the construction of the nuclear power plant in local area. Ordinal logistic regression analysis revealed that the higher education, higher family annual income, male, economic benefits from the nuclear power plant construction, and trust in local government having competency to handling emergencies were positive factors; otherwise, impression on nuclear power plant of bad influences on environment and health were negative factors. An inverted U-shaped with a right tailing relationship between negative attitudes toward nuclear power plant and distance to the plant was found. Conclusions: Education, gender, family annual income and expectation of economic benefit returns were the major factors influencing the perception of and attitudes toward nuclear power

  17. Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience. Report of the Chernobyl Forum Expert Group 'Environment'

    International Nuclear Information System (INIS)

    2008-01-01

    The explosion on 26 April 1986 at the Chernobyl nuclear power plant, which is located 100 km from Kiev in Ukraine (at that time part of the USSR), and the consequent reactor fire, which lasted for 10 days, resulted in an unprecedented release of radioactive material from a nuclear reactor and adverse consequences for the public and the environment. The resulting contamination of the environment with radioactive material caused the evacuation of more than 100 000 people from the affected region during 1986 and the relocation, after 1986, of another 200 000 people from Belarus, the Russian Federation and Ukraine. Some five million people continue to live in areas contaminated by the accident. The national governments of the three affected countries, supported by international organizations, have undertaken costly efforts to remediate the areas affected by the contamination, ... >> The explosion on 26 April 1986 at the Chernobyl nuclear power plant, which is located 100 km from Kiev in Ukraine (at that time part of the USSR), and the consequent reactor fire, which lasted for 10 days, resulted in an unprecedented release of radioactive material from a nuclear reactor and adverse consequences for the public and the environment. The resulting contamination of the environment with radioactive material caused the evacuation of more than 100 000 people from the affected region during 1986 and the relocation, after 1986, of another 200 000 people from Belarus, the Russian Federation and Ukraine. Some five million people continue to live in areas contaminated by the accident. The national governments of the three affected countries, supported by international organizations, have undertaken costly efforts to remediate the areas affected by the contamination, provide medical services and restore the region's social and economic well-being. The accident's consequences were not limited to the territories of Belarus, the Russian Federation and Ukraine, since other European

  18. Nuclear power systems: Their safety. Current issue review

    International Nuclear Information System (INIS)

    Myers, L.C.

    1994-04-01

    Human beings utilize energy in many forms and from a variety of sources. A number of countries have chosen nuclear-electric generation as a component of their energy system. At the end of 1992, there were 419 power reactors operating in 29 countries, accounting for more than 15% of the world's production of electricity. In 1992, 13 countries derived at least 25% of their electricity from nuclear units, with Lithuania leading at just over 78%, followed closely by France at 72%. In the same year, Canada produced about 16% of its electricity from nuclear units. Some 53 power reactors are under construction in 14 countries outside the former USSR. Within the ex-USSR countries, six new reactors are currently under construction. No human endeavour carries the guarantee of perfect safety and the question of whether of not nuclear-electric generation represents an 'acceptable' risk to society has long been vigorously debated. Until the events of late April 1986 in the then Soviet Union, nuclear safety had indeed been an issue for discussion, for some concern, but not for alarm. The accident at the Chernobyl reactor irrevocably changed all that. This disaster brought the matter of nuclear safety into the public mind in a dramatic fashion. Subsequent opening of the ex-Soviet nuclear power program to outside scrutiny has done little to calm people's concerns about the safety of nuclear power in that part of the world. This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents that have occurred to date, as well as more recent, less dramatic events touching on the safety issue. (author). 7 refs

  19. Lessons for PHWRs learned from the Chernobyl accident

    International Nuclear Information System (INIS)

    Waddington, J.G.; Molloy, T.J.

    1996-01-01

    The Atomic Energy Control Board of Canada examined its criteria for licensing nuclear power plants following the accident to the Chernobyl reactor in 1986. The causes of the accident were studied to ascertain whether they revealed any deficiencies in the safety of CANDU PHWRs. A report published in 1987 contained nine recommendations, and this paper revisits these to indicate how they were dealt with the plant owners and the regulatory authority

  20. Chernobyl NPP decommissioning efforts - Past, Present and Future. Decommissioning Efforts on Chernobyl NPP site - Past, Present

    International Nuclear Information System (INIS)

    Kuchinskiy, V.

    2017-01-01

    Two unique large-scale projects are underway at the moment within the Chernobyl - Exclusion zone - Shelter object transformation into ecologically safe system and the decommissioning of 3 Chernobyl NPP Units. As a result of beyond design accident in 1986 the entire territory of the industrial site and facilities located on it was heavily contaminated. Priority measures were carried out at the damaged Unit under very difficult conditions to reduce the accident consequences and works to ensure nuclear and radiation safety are continuous, and the Unit four in 1986 was transformed into the Shelter object. Currently, works at the Shelter object are in progress. Under assistance of the International Community new protective construction was built above the existing Shelter object - New Safe Confinement, which will ensure the SO Safety for the long term - within up to 100 years. The second major project is the simultaneous decommissioning of Chernobyl NPP Units 1, 2 and 3. Currently existing Chernobyl NPP decommissioning Strategy has been continuously improved starting from the Concept of 1992. Over the years the following was analyzed and taken into account: the results of numerous research and development works, international experience in decommissioning, IAEA recommendations, comments and suggestions from the governmental and regulatory bodies in the fields of nuclear energy use and radioactive waste management. In 2008 the final decommissioning strategy option for Chernobyl NPP was approved, that was deferred gradual dismantling (SAFSTOR). In accordance with this strategy, decommissioning will be carried out in 3 stages (Final Shutdown and Preservation, Safe Enclosure, Dismantling). The SAFSTOR strategy stipulates: -) the preservation of the reactor, the primary circuit and the reactor compartment equipment; -) the dismantling of the equipment external in relation to the reactor; -) the safe enclosure (under the supervision); -) the gradual dismantling of the primary

  1. Public acceptance of prospects of nuclear power development in Belarus

    International Nuclear Information System (INIS)

    Grusha, N.M.; Mikhalevich, A.A.; Tushin, N.N.

    2000-01-01

    The issue of constructing a nuclear power plant (NPP) in Belarus is far from being new. The Republic was oriented to development of nuclear power industry by the Energy Programme adopted in the former USSR. In 1983 the construction of the Minsk Nuclear Heat and Power Plant (NHPP) with a projected output of 2 million kW was initiated, the construction of a NPP with an output of 6 million KW was planned. The Chernobyl accident however shut down all on-going projects in nuclear power engineering. After the collapse of the interconnected power system that united the republics of the former USSR, Belarus found itself in the energy crisis. The nuclear industry is thus considered to be one of the possible ways for solving the energy problems, which are nowadays intensively discussed through mass media. One of the major arguments spoke out by nuclear power opponents is the Chernobyl syndrome, which is incident to a significant portion of the population. The sociological monitoring of the public opinion is carried out for revealing the attitude of the population to the suggested ways of overcoming the energy crisis and the prospects of developing the nuclear power industry. During the period of 1995-1998 three sociological studies were accomplished. The first sociological study showed that 40.9% of population supported the NPP construction, 39 % were against and 19.2% could not answer. In the second study the poll covered general public and 'experts', representatives of scientific community, educationalists, managers of various levels etc. The result confirmed a growing support of construction NPP by the population. The third sociological study was conducted autumn 1998 which polled both mass media professionals and general public. Among the respondents 67.5% revealed their stiff and rather bellicose attitude to possible construction of NPP. While among the population only every third respondent can be related to the convinced opponents of the NPP construction and among the

  2. 10 years from the Chernobyl nuclear reactor accident: consequences and lesson learned

    International Nuclear Information System (INIS)

    1996-01-01

    Published jointly by the Czech State Office for Nuclear Safety and the Czech National Radiation Protection Institute, the publication gives a succinct account of the cause of the Chernobyl accident and its impact on the former Soviet Union, and concentrates on the effects of the accident on the Czech Republic. The topics dealt with in this respect include, among others: radionuclide contents of foods with particular emphasis on milk products for babies, assessment of surface contamination of the Czech Republic due to the accident, internal contamination of the population as determined by whole-body measurements, assessment of the effective dose equivalents from external irradiation and effective dose equivalent commitments from internal irradiation, cesium radioisotopes in natural ecosystems, and the use of post-Chernobyl monitoring to test radionuclide migration models within the IAEA VAMP programme. (P.A.). 12 tabs., 30 figs., 64 refs

  3. Bone marrow transplantation after the Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    Baranov, A.; Gale, R.P.; Guskova, A.

    1989-01-01

    On April 26, 1986, an accident at the Chernobyl nuclear power station in the Soviet Union exposed about 200 people to large doses of total-body radiation. Thirteen persons exposed to estimated total-body doses of 5.6 to 13.4 Gy received bone marrow transplants. Two transplant recipients, who received estimated doses of radiation of 5.6 and 8.7 Gy, are alive more than three years after the accident. The others died of various causes, including burns (the cause of death in five), interstitial pneumonitis (three), graft-versus-host disease (two), and acute renal failure and adult respiratory distress syndrome (one). There was hematopoietic (granulocytic) recovery in nine transplant recipients who could be evaluated, six of whom had transient partial engraftment before the recovery of their own marrow. Graft-versus-host disease was diagnosed clinically in four persons and suspected in two others. Although the recovery of endogenous hematopoiesis may occur after exposure to radiation doses of 5.6 to 13.4 Gy, we do not know whether it is more likely after the transient engraftment of transplanted stem cells. Because large doses of radiation affect multiple systems, bone marrow recovery does not necessarily ensure survival. Furthermore, the risk of graft-versus-host disease must be considered when the benefits of this treatment are being weighed

  4. Twenty years after the Chernobyl accident

    International Nuclear Information System (INIS)

    2006-01-01

    Full text: The April 1986 accident at the Chernobyl nuclear power plant remains a painful memory in the lives of the hundreds of thousands of people who were most affected by the accident. In addition to the emergency rescue workers who died, thousands of children contracted thyroid cancer, and thousands of other individuals will eventually die of other cancers caused by the release of radiation. Vast areas of cropland, forests, rivers and urban centres were contaminated by environmental fallout. Hundreds of thousands of people were evacuated from these affected areas - forced to leave behind their homes, possessions, and livelihoods - and resettled elsewhere, in a traumatic outcome that has had long-lasting psychological and social impacts. The commemoration of the Chernobyl tragedy is taking place in many forums this month - in Minsk, in Kiev and in other locations. At the IAEA, it might be said that we have been responding to the accident and its consequences for twenty years, in a number of ways: first, through a variety of programmes designed to help mitigate the environmental and health consequences of the accident; second, by analyzing the lessons of what went wrong to allow such an accident to occur at all; and third, by working to prevent any such accident from occurring in the future. Building a strong and effective global nuclear safety regime is a central objective of our work. This requires effective international cooperation. The explosions that destroyed the Unit 4 reactor core, and discharged its contents in a cloud of radionuclides, made painfully clear that the safety risks associated with nuclear and radiological activities extend beyond national borders. International cooperation on nuclear safety matters - sharing information, setting clear safety standards, assisting with safety upgrades, and reviewing operational performance - has therefore become a hallmark of IAEA activity, particularly at a time when we are witnessing an expansion of

  5. DDG-NS statement at the opening of the international conference 'Chernobyl: Looking back to go forwards'

    International Nuclear Information System (INIS)

    Taniguchi, T.

    2005-01-01

    Exclusion Zone, Safety of remediation of contaminated land, especially in the Chernobyl Exclusion Zone, - Radiation safety of general public residing in contaminated areas, Environmental monitoring and monitoring of human exposure in contaminated areas, and Safety of operating and new nuclear power plants

  6. THE ROLE OF BELARUS NATIONAL COMMISSION ON RADIATION PROTECTION IN THE MINIMIZATION OF CONSEQUENCES OF THE ACCIDENT AT THE CHERNOBYL NUCLEAR POWER PLANT

    Directory of Open Access Journals (Sweden)

    A. N. Stozharov

    2016-01-01

    Full Text Available The Belarus National Commission on Radiation Protection was established in 1991, based on the former Byelorussian Soviet Socialist Republic Supreme Council Resolution. The Commission works out recommendations on the radiation protection to submit to the state authorities, state institutions under the Republic of Belarus Government and state research institutions, reviews and assesses scientific data in the field of radiation protection and makes suggestions in regards of the implementation of the achieved developments. The Commission engages leading scientists and practitioners from Belarus, involved in the provision of the radiation protection and safety in the state. The methodological cornerstone for the Commission activities was chosen to be the committment to the worldwide accepted approach of the nature and magnitude of the undertaken protective measures justification in the field of radiation safety. The Commission adheres the ALARA optimization criteria as the core of the aforementioned approach. The Commission has also submited to the Government a number of developments which were crucial in the highest level managerial decisions elaboration. The latter impacted directly the state tactics and strategy in the environmental, health and social consequences of the Chernobyl disaster minimization. Following the recommendations of the international institutions (ICRP, IAEA, UNSCEAR, FAO/WHO, developments of the colleagues in the Russian Federation, Ukraine and the local regional experience, the Commission proceeds with the expert observation of the ongoing protective measures to reduce the radiation impact and population exposure resulted from the Chernobyl accident, is actively occupied in the radiation safety ensuring at the Belarussian nuclear power plant being under construction, much contributes to elaboration of the new version of the state Law “On Radiation Protection of Population” and other regulatory documents.

  7. Chernobyl in the 7th year. The report of scientific council of Ministry of Health and the assessments of universities

    International Nuclear Information System (INIS)

    2006-01-01

    Seven years later from Chernobyl Nuclear Power Plant accident, to increase on leukemia and cancer on the people living on the east part of the country, a Scientific Council was formed by Ministry Health. The second report of this series is the original re-publishing of the report of the discussion council of the Chernobyl radiation effects and the vision of the universities

  8. Challenges and Opportunities in Launching New Nuclear Power Programs in Developing Countries

    International Nuclear Information System (INIS)

    Kim, Hak-Gyun

    2011-01-01

    As a consequence of the 1st and 2nd oil shock during the 1970's, nuclear power generation was considered as the most economical energy source. After that, new nuclear power programs began showing a downward trend due to public opinion against nuclear power as a result of large-scale accidents such as the Three Mile Island accident of 1979, the Chernobyl nuclear disaster, and antinuclear power generation movements by environmental organizations. However, according to a recent IAEA report, 300 more nuclear power plants will be constructed worldwide by 2030. In the case of the U.S.A., the construction permits for 26 new nuclear power plants have been filed from 2007. It is considered the green light for 'The Golden Years of Nuclear Energy.' There are various requirements for the development of a country, and among them one of the most important elements is securing economical and good quality energy sources. Securing economical energy sources concerns mankind itself, setting aside matters of individual countries. Especially for developing countries striving for economic development, securing stable and economical energy sources is on their top priority list in order to realize sustainable economic development. Contrary to the fact that developed countries such as the U.S.A, England, Germany, France, Russia, Japan and Korea have advanced nuclear technology, developing countries are heavily dependent on energy sources with unstable supply, high prices, and great environmental pollution such as coal and oil. In 1959 when the national per capita income was between 70 and 80 dollars, the Korea Atomic Energy Research Institute was opened and within 50 years Korea has become the world's 6th largest nuclear power generating country. I will suggest solutions to the problems of introducing new nuclear power programs in developing countries with the basis of Korea's experience on exemplary nuclear power programs development.

  9. Nuclear energy law after Chernobyl

    International Nuclear Information System (INIS)

    Cameron, P.; Harcher, L.

    1988-01-01

    This work examines the legal issues surrounding the possibility of accidents at nuclear installations in Europe. Contents include: Regulations and control by international organizations in the context of a nuclear accident; The role of Euratom; Border installations: the interaction of administrative, European community and public international law; and Border installations: the experience of Wackersdorf. Concepts of nuclear liability and the liability of suppliers to nuclear power plants are discussed

  10. Accumulation and potential dissolution of Chernobyl-derived radionuclides in river bottom sediment

    International Nuclear Information System (INIS)

    Sanada, Yukihisa; Matsunaga, Takeshi; Yanase, Nobuyuki; Nagao, Seiya; Amano, Hikaru; Takada, Hideshige; Tkachenko, Yuri

    2002-01-01

    Areas contaminated with radionuclides from the Chernobyl nuclear accident have been identified in Pripyat River near the Chernobyl Nuclear Power Plant. The river bottom sediment cores contained 137 Cs (10 5 - 10 6 Bq/m 2 ) within 0-30 cm depth, whose concentration is comparable to that in the ground soil in the vicinity of the nuclear power plant (the Exclusion Zone). The sediment cores also accumulated 90 Sr (10 5 Bq/m 2 ), 239,240 Pu (10 4 Bq/m 2 ) and 241 Am (10 4 Bq/m 2 ) derived from the accident. Several nuclear fuel particles have been preserved at 20-25 cm depth that is the peak area of the concentrations of the radionuclides. Th ese inventories in the bottom sediments were compared with those of the released radionuclides during the accident. An analysis using a selective sequential extraction technique was applied for the radionuclides in the sediments. Results suggest that the possibility of release of 137 Cs and 239,240 Pu from the bottom sediment was low compared with 90 Sr. The potential dissolution and subsequent transport of 90 Sr from the river bottom sediment should be taken into account with respect to the long-term radiological influence on the aquatic environment

  11. The consequences of the Chernobyl nuclear accident in Greece - Report No. 2

    International Nuclear Information System (INIS)

    1986-12-01

    In this report a realistic estimate of the radioactive fallout on Greece from the Chernobyl nuclear accident is described. The measurements performed on environmental samples and samples of the food chain, as well as some realistic estimations for the population doses and the expected consequences of the accident are presented. The analysis has shown that the radiological impact of the accident in Greece can be considered minor. (J.K.)

  12. Lessons for PHWRs learned from the Chernobyl accident

    International Nuclear Information System (INIS)

    Waddington, J.G.; Molloy, T.J.

    1996-04-01

    The Atomic Energy Control Board of Canada examined its criteria for licensing nuclear power plants following the accident to the Chernobyl reactor in 1986. The causes of the accident were studied to ascertain whether they revealed any deficiencies in the safety of CANDU PHWRs. A report published in 1987 contained nine recommendations, and this paper revisits these to indicate how they were dealt with by plant owners and the regulatory authority. (author)

  13. Ecological half-time of radiocaesium from the Chernobyl accident and from nuclear weapons fallout as measured in a South Swedish population

    International Nuclear Information System (INIS)

    Raeaef, C.L.; Hemdal, B.; Mattsson, S.

    2000-01-01

    From 1960 to 1980 and between 1987 and 1994 the whole-body content of 137 Cs, and when possible also 134 Cs, was measured in a south Swedish population living in the city of Lund (55.7degN, 13.2degE), the so-called Lund reference group. The results have now been analysed in order to estimate the effective ecological half-time of fallout radiocaesium in that area, which was subjected to a total deposition of about 2 kBq m -2 of pre-Chernobyl 137 Cs from nuclear weapons testing and 2 kBq m -2 of 137 Cs from Chernobyl fallout in May 1986. The contribution of radiocaesium in man from the nuclear weapons tests in the 1960s and 70s still gave a significant contribution to the total 137 Cs levels in the post-Chernobyl study period (1987-1994) of about 0.4 Bq per kg body weight, which was about 10% of the peak post-Chernobyl concentration level of 137 Cs (3.5-4 Bq kg -1 ). The effective ecological half-time for 137 Cs from Chernobyl was found to be 2.4±0.2 years. The aggregated transfer factor, T ag , was estimated to be 1.7 Bq kg -1 /kBq m -2 . These values may be compared with a short-term effective ecological half-time of 1.3 years found in the reference group in the sixties, and an aggregated transfer factor of 9.8 Bq kg -1 /kBq m -2 . The average committed individual effective dose from ingested 137 Cs from Chernobyl fallout was estimated to be 0.02 mSv and from the nuclear weapons fallout to 0.25 mSv. The ten times higher dose contribution from the latter source is attributed to a higher transfer of cesium through the food chain to man when the radionuclide is deposited continuously on ground during the growing seasons than compared with thc single deposit event of Chernobyl, which occurred before the Swedish growing season. (author)

  14. Aspermy, Sperm Quality and Radiation in Chernobyl Birds

    Science.gov (United States)

    Møller, Anders Pape; Bonisoli-Alquati, Andrea; Mousseau, Timothy A.; Rudolfsen, Geir

    2014-01-01

    Background Following the Chernobyl nuclear power plant accident, large amounts of radionuclides were emitted and spread in the environment. Animals living in such contaminated areas are predicted to suffer fitness costs including reductions in the quality and quantity of gametes. Methodology/Principal Findings We studied whether aspermy and sperm quality were affected by radioactive contamination by examining ejaculates from wild caught birds breeding in areas varying in background radiation level by more than three orders of magnitude around Chernobyl, Ukraine. The frequency of males with aspermy increased logarithmically with radiation level. While 18.4% of males from contaminated areas had no sperm that was only the case for 3.0% of males from uncontaminated control areas. Furthermore, there were negative relationships between sperm quality as reflected by reduced sperm velocity and motility, respectively, and radiation. Conclusions/Significance Our results suggest that radioactive contamination around Chernobyl affects sperm production and quality. We are the first to report an interspecific difference in sperm quality in relation to radioactive contamination. PMID:24963711

  15. Legal aspects of a nuclear power plant

    International Nuclear Information System (INIS)

    Lukes, R.

    1987-01-01

    According to law the licensing boards can deny the licensing of new plants but in the case of non-compliance with the legal requirements. General safety scruples as a result of the Chernobyl reactor accident do not justify denials. The decommissioning of nuclear power plants cannot be decreed but in accordance with Para. 17, 18 of the Atomic Energy Law. Although the legislator is authorized to change laws, any law providing for the decommissioning of existing plants or providing for the legal basis of the decommissioning of plants would be equivalent to an expropriation and therefore involve damages according to article 14, section 3(2) of the Fundamental Law. (orig./HP) [de

  16. Licensing operators for commercial nuclear power plants

    International Nuclear Information System (INIS)

    Hannon, J.N.

    1988-01-01

    The human element in the operation of commercial nuclear power plants is of utmost importance. Not only must the operators be technically competent in the execution of numerous complicated tasks, they must be capable of working together as a team to diagnose dynamic plant conditions to ensure that their plants are operated safely. The significance of human interaction skills and crew communications has been demonstrated most vividly in TMI and Chernobyl. It follows that the NRC must retain its high standards for licensing operators. This paper discusses activities and initiatives being employed by the NRC to enhance the reliability of its licensing examinations, and to build a highly qualified examiner work force

  17. Perception of risk and the future of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Slovic, P [University of Oregon and Decision Research, Eugene, OR (United States)

    1990-07-01

    Scientists and policy makers were slow to recognize the importance of public attitudes and perceptions in shaping the fate of nuclear power. In 1976, Alvin Weinberg observed: 'As I compare the issues we perceived during the infancy of nuclear energy with those that have emerged during its maturity, the public perception and acceptance of nuclear energy appears to be the question that we missed rather badly.... This issue has emerged as the most critical question concerning the future of nuclear energy.' Today, fourteen years later, the problem of public acceptance is even more critical. Either the problem is damn tough or we have not been working hard enough to solve it (I suspect that both of these assertions are true). Public support for nuclear power has declined steadily for a decade and a half, driven by a number of powerful forces and events. In mid-March of 1979, the movie The China Syndrome had its premier, dramatizing the worst-case predictions of the earliest risk assessment studies. Two weeks later, events at Three Mile Island made the movie appear prophetic. Succeeding years have brought us Chernobyl and other major technological disasters, most notably Bhopal and the Challenger accident. The public has drawn a common message from these accidents - that nuclear (and other) complex technology is unsafe, that expertise is inadequate, and that government and industry cannot be trusted to manage nuclear power safely. These dramatic accidents and the distrust they have spawned have been reinforced by numerous chronic problems involving radiation, such as the discovery of significant radon concentrations in many homes, the continuing battles over the siting of facilities to store or dispose of nuclear wastes, and the disclosures of serious environmental contamination emanating from nuclear weapons facilities (at Hanford, Fernald, Rocky Flats and Savannah River)

  18. Perception of risk and the future of nuclear power

    International Nuclear Information System (INIS)

    Slovic, P.

    1990-01-01

    Scientists and policy makers were slow to recognize the importance of public attitudes and perceptions in shaping the fate of nuclear power. In 1976, Alvin Weinberg observed: 'As I compare the issues we perceived during the infancy of nuclear energy with those that have emerged during its maturity, the public perception and acceptance of nuclear energy appears to be the question that we missed rather badly.... This issue has emerged as the most critical question concerning the future of nuclear energy.' Today, fourteen years later, the problem of public acceptance is even more critical. Either the problem is damn tough or we have not been working hard enough to solve it (I suspect that both of these assertions are true). Public support for nuclear power has declined steadily for a decade and a half, driven by a number of powerful forces and events. In mid-March of 1979, the movie The China Syndrome had its premier, dramatizing the worst-case predictions of the earliest risk assessment studies. Two weeks later, events at Three Mile Island made the movie appear prophetic. Succeeding years have brought us Chernobyl and other major technological disasters, most notably Bhopal and the Challenger accident. The public has drawn a common message from these accidents - that nuclear (and other) complex technology is unsafe, that expertise is inadequate, and that government and industry cannot be trusted to manage nuclear power safely. These dramatic accidents and the distrust they have spawned have been reinforced by numerous chronic problems involving radiation, such as the discovery of significant radon concentrations in many homes, the continuing battles over the siting of facilities to store or dispose of nuclear wastes, and the disclosures of serious environmental contamination emanating from nuclear weapons facilities (at Hanford, Fernald, Rocky Flats and Savannah River)

  19. Review and Analysis of Solid Long-lived and High Level Radioactive Waste arising at the Chernobyl Nuclear Power Plant and the Restricted Zone

    International Nuclear Information System (INIS)

    Antropov, V.M.; Bugai, D.A.; Dutton, L.M.C.; Gerchikov, M.Y.; Kennett, E.J.; Ledenev, A.I.; Novikov, A.A.; Rudko, V.; Ziegenhagen, J.

    2001-01-01

    The study characterised potential waste arisings in the Exclusion Zone surrounding the Chernobyl Nuclear Power Plant. Studied sites include the Industrial Zone outside the Sarcophagus, three engineered disposal sites (the so-called PZRO), non-engineered near surface trench dumps (PVLRO), contaminated soil and sites of ''unauthorized'' disposal within the Exclusion Zone. Analysis of the previous methodology used for waste characterisation and inventory estimates identified a number of errors. A new database was established, which contains the most up-to date information on radwaste in the Exclusion Zone. Based on the analysis of the available information and potential radiological consequences, a judgement was taken regarding the priority of waste retrieval. In a number of cases it is necessary to carry out risk assessment to ensure that in-situ disposal would satisfy the Ukrainian regulations. Assessments of waste stream volumes for subsequent incineration, encapsulation, storage and disposal in the planned near-surface facilities have been made. It is judged that throughput and capacity of the planned waste management facilities specified by OSAT is, in general, appropriate to the likely waste arisings. (author)

  20. Protection against internal fires and explosions in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Experience of the past two decades in the operation of nuclear power plants and modern analysis techniques confirm that fire may be a real threat to nuclear safety and should receive adequate attention from the beginning of the design process throughout the life of the plant. Within the framework of the NUSS programme, a Safety Guide on fire protection had therefore been developed to enlarge on the general requirements given in the Code. Since its first publication in 1979, there has been considerable development in protection technology and analysis methods and after the Chernobyl accident it was decided to revise the existing Guide. This Safety Guide supplements the requirements established in Safety of Nuclear Power Plants: Design. It supersedes Safety Series No. 50-SG-D2 (Rev. 1), Fire Protection in Nuclear Power Plants: A Safety Guide, issued in 1992.The present Safety Guide is intended to advise designers, safety assessors and regulators on the concept of fire protection in the design of nuclear power plants and on recommended ways of implementing the concept in some detail in practice

  1. The nuclear technology development program in the U.S.S.R

    International Nuclear Information System (INIS)

    Lukonin, N.F.

    1987-01-01

    The trend of strategy on the nuclear power generation in USSR is not changed in spite of the accident in Chernobyl Nuclear Power Station. In 1986, the electric power generated by nuclear power generation was 162 billion kWh, and the heat supply by nuclear energy was 29 million Gcal. The development of nuclear power generation in USSR for 30 years proved that the atomic energy is technically omnipotent, and the economical substitution of the demand of fossil fuel with nuclear fuel is possible. As of January 1, 1987, 17 nuclear power stations were in operation in USSR, and the total power output was 31,000 MW. The share of nuclear power generation in the total electric power generation was 1/9. 11 nuclear power stations are under construction. The accelerating development of nuclear power generation is the base of meeting the electric power demand in the European region of USSR together with the power transmission from the eastern region. The nuclear power generation in USSR is based on two types of nuclear reactors, that is, water-water type VVER and water-graphite type RBMK. The accident in Chernobyl Nuclear Power Station and the situation thereafter are reported. The development of nuclear power generation in future is discussed. (Kako, I.)

  2. Radiological and geophysical changes around the Fukushima Daiichi Nuclear Power Plant since the accident to the present time

    Science.gov (United States)

    Kolotkov, Gennady

    2013-04-01

    Detailed analysis of accidental released of radioactive material from Fukushima Daiichi nuclear power plant has shown that long-lived radionuclides add considerable support for intensity of ion formation. Based on the results of airborne monitoring by MEXT and DOE (total surface deposition of Cs134 and Cs137 inside 80 km zone of Fukushima Daiichi NPP) it has been calculated the spatial distribution of the intensity of ion formation and atmospheric electric conductivity. The evidence of plutonium in the Fukushima radioactive trace allows calculates the concentration of small, intermediate and large ions. The results show the excess of these parameters by several orders of magnitude since the accident to the present time. For example the concentration of small air ion in the area of Chernobyl is 7±2?102 cm-3, the Fukushima Daiichi NPP ones is 1.3?106 cm-3. The difference in the atmospheric bipolar electric conductivity is about 24 fS/m between the Chernobyl and the Fukushima Daiichi ones. The evaluation technique was used after Chernobyl disaster allows to make an analysis of ecological, hygiene requirements and other problems into the troposphere and on the soil intensity of ion formation in the area of Fukushima Daiichi nuclear power plant. The standard ion air differ by four orders of magnitude in the case for Fukushima Daiichi ones. Comparative study of the radiophysical characteristics of the atmosphere with the analogous ones in Chernobyl and application of identification of various types of the air pollution is discussed.

  3. Risks of potential accidents of nuclear power plants in Europe

    International Nuclear Information System (INIS)

    Slaper, H.; Eggink, G.J.; Blaauboer, R.O.

    1993-12-01

    This report is focussed on an integrated assessment of probabilistic cancer mortality risks due to possible accidental releases from the European nuclear power plants. For each of the European nuclear power plants the probability of accidental releases per year of operation is combined with the consequences in terms of the excess doses received over a lifetime (70 years). Risk estimates are restricted to cancer mortality and do not include immediate or short term deaths in the direct vicinity ( -8 per year in Western Europe. Going East the risks increase gradually to over 1000 x 10 -8 per year in regions of the former Soviet Union, where reactors of the Chernobyl type are located. The nuclear power plants in the East European countries dominate the estimated risk pattern and contribute at least 40-50% to the average risk in the West European countries. Improving the reactor safety in eastern European countries could lead to considerable reductions in estimated excess mortality risks. In western Europe the mortality risk might be reduced by a factor of two, and in eastern Europe by a factor of 100 to 1000. (orig.)

  4. The Chernobyl accidents: Causes and Consequences

    International Nuclear Information System (INIS)

    Chihab-Eddine, A.

    1988-01-01

    The objective of this communication is to discuss the causes and the consequences of the Chernobyl accident. To facilitate the understanding of the events that led to the accident, the author gave a simplified introduction to the important physics that goes on in a nuclear reactor and he presented a brief description and features of chernobyl reactor. The accident scenario and consequences have been presented. The common contribution factors that led to both Three Mile Island and Chernobyl accidents have been pointed out.(author)

  5. Radiant smiles everywhere - before the Chernobyl accident

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The business reports presented by the Federal German electric utilities for 1985 are almost all simply brillant. Electricity consumption has been going up, some of the utilities even can boast about rates kept constant over the year. But before the printed business reports could be presented to the meetings of shareholders, a nasty cloud threw a dark shadow over all the brilliant results. The Chernobyl accident made some of the hymns over the nuclear electricity increases and nuclear power in general sound rather queer. Could we do without this energy source. Substituting nuclear power would yearly require: 28 million t of oil, or 41 million t of hard coal, or 142 million t of browncoal, or 38 thousand million cubic metres of natural gas. Extrapolating current conditions and assuming best achievements, renewable energy sources might be able to meet 6 p.c. of the primary energy demands by the year 2000. (orig./HP) [de

  6. A Proposal for more Effective Training in Countries Developing Nuclear Power

    International Nuclear Information System (INIS)

    Abdel-Halim, A.; Durst, P.C.; Witkin, A.L.

    2010-01-01

    The expanded use of nuclear power is being driven in today's world, because nuclear power provides high density base-load power, produces waste in a manageable and compact form, and does not emit carbon based 'green-house gases' that could be altering the world's climate. For these reasons, there is a veritable renaissance in the construction of nuclear power reactors of inherently safer designs, as well as an expansion in worldwide uranium mining, and construction of associated fuel cycle facilities. It is important to recognize that this expansion and revisiting of nuclear power is not just limited to the industrialized countries of North America, Europe, and Asia, but is also occurring in states developing their first nuclear power plant. In particular, the United Arab Emirates (UAE), Turkey, Egypt, Jordan, and Indonesia have all contracted the construction of nuclear power plants, or are planning to do so. The authors of this paper believe that all of these programs could benefit from enhanced training in the use and operation of nuclear power reactors and fuel cycle facilities, through the more effective transfer of knowledge. In particular, the authors propose the greater use of retired nuclear reactor and fuel cycle engineers, experts, and former senior staff members from the International Atomic Energy Agency (IAEA) as one way to transfer this knowledge more effectively. The transfer of nuclear knowledge between senior experts and students, young engineers and professionals in training would help bridge the significant gap that exists in today's nuclear engineering curriculum between academic instruction and the real world of industry. The need for more effective knowledge transfer is particularly acute in the areas of nuclear safety, nuclear safeguards, and security. One only has to recall the nuclear accidents at the Chernobyl nuclear power plant in the Ukraine, Three Mile Island in the United States, and the JCO uranium conversion plant in Japan, to

  7. The nuclear state - from consensus to conflict

    International Nuclear Information System (INIS)

    Blowers, Andrew.; Pepper, David.

    1987-01-01

    The early 1980s is suggested as the 'moment of transition' in Britain when public opinion turned from being basically, but quietly, in favour or indifferent to nuclear power, to being actively involved in debate about it and far less happy with it. The accident to the reactor at Chernobyl made nuclear power a major international issue and intensified the debate. The conflict over nuclear power in Britain and elsewhere in the Western World is examined. The causes of the conflict are identified as legitimacy, accountability and control, the changing political environment and finally, the international political dimension. Problems at the fuel reprocessing plant at Sellafield and the disposal of radioactive wastes are seen as central issues in the conflict. Questionable levels of nuclear safety are also crucial with the accident at Chernobyl making this a major factor. This chapter looks at these issues as the background to the nuclear power conflict. (UK)

  8. Nuclear Power after Fukushima; L'energie nucleaire apres Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Bigot, B. [CEA Saclay, 91 - Gif sur Yvette (France)

    2011-07-15

    On 11 March 2011 Japan suffered an earthquake of very high magnitude, followed by a tsunami that left thousands dead in the Sendai region, the main consequence of which was a major nuclear disaster at the Fukushima power station. The accident ranked at the highest level of severity on the international scale of nuclear events, making it the biggest since Chernobyl in 1986. It is still impossible to gauge the precise scope of the consequences of the disaster, but it has clearly given rise to the most intense renewed debates on the nuclear issue. Futuribles echoes this in the 'Forum' feature of this summer issue which is entirely devoted to energy questions. Bernard Bigot, chief executive officer of the technological research organization CEA, looks back on the Fukushima disaster and what it changes (or does not change) so far as the use of nuclear power is concerned, particularly in France. After recalling the lessons of earlier nuclear disasters, which led to the development of the third generation of power stations, he reminds us of the currently uncontested need to free ourselves from dependence on fossil fuels, which admittedly involves increased use of renewables, but can scarcely be envisaged without nuclear power. Lastly, where the Fukushima disaster is concerned, Bernard Bigot shows how it was, in his view, predominantly the product of a management error, from which lessons must be drawn to improve the safety conditions of existing or projected power stations and enable the staff responsible to deliver the right response as quickly as possible when an accident occurs. In this context and given France's high level of dependence on nuclear power, the level of use of this energy source ought not to be reduced on account of the events of March 2011. (author)

  9. Nuclear and energy. Special issue on the Fukushima power plant

    International Nuclear Information System (INIS)

    2011-01-01

    This issue analyses the first consequences of the Fukushima accident at the world level, i.e. impacts which are either already noticeable or predictable. A first article proposes a portrait of Japan (its historical relationship with nature, the cultural education, the role of its bureaucracy, the Japanese business and political worlds) and evokes the nuclear safety organization at the institutional level. It also evokes the different companies involved in nuclear energy production. The second article discusses and comments the environmental and radiological impact of the accident (protection of the inhabitants, environment monitoring, comparison with Chernobyl, main steps of degradation of the reactors, releases in the sea, total release assessment, soil contamination, food contamination, radiation protection). A third article discusses the international impact, notably for the existing or projected power plants in different countries, in terms of public opinion, and with respect to negotiations on climate. The fourth article discusses the reactions of different countries possessing nuclear reactors. The last article questions the replacement of the lost production (that of Fukushima and maybe another power plant) by renewable energies

  10. Cooperative research with CHECIR (CHErnobyl Center for International Research)

    International Nuclear Information System (INIS)

    Nagaoka, T.; Saito, K.; Sakamoto, R.; Tsutsumi, M.; Moriuchi, S.

    1994-01-01

    The Chernobyl Center for International Research (CHECIR) has been established under an agreement among IAEA. Russia, Byelorussia and Ukraine in order to implement various studies on the reactor facilities and on the environment near and around the reactor. JAERI started discussions with a view to join the idea on the research project of study on assessment and analysis of environmental consequences in contaminated area. On June, 1992, JAERI and CHECIR concluded an agreement on the Implementation of Research at the CHECIR. Under the agreement, JAERI has started 'Study on Assessment and Analysis of Environmental Radiological Consequences and Verification of an Assessment System'. This project is scheduled to last until 1996. This study consists of following two subjects. Subject-1: Study on Measurements and Evaluation of Environmental External Exposure after Nuclear Accident. Subject-2: Study on the Validation of Assessment Models in an Environmental Consequence Assessment Methodology for Nuclear Accidents. Subject-3: Study on Migration of Radionuclides Released into Rivers adjacent to the Chernobyl Nuclear Power Plant (planned to start from FY1994). In this workshop, research activity will be introduced with actually measured data. (J.P.N.)

  11. Chernobyl - an evaluation of health hazards. 3. Enl. and Rev. Ed. Tschernobyl - eine Einschaetzung der gesundheitlichen Schaeden

    Energy Technology Data Exchange (ETDEWEB)

    Huber, E E; Dersee, T; Iwert, B

    1986-01-01

    The pamphlet abstracted contains some general information about the radiation hazards and health risks of nuclear power plants. The consequences of the Chernobyl reactor accident are dealt with by way of summarizing the events and by evaluating the health risks and damage the public should be prepared for. This topical report is completed by a popular presentation of the risks of nuclear power and by definitions of the major terms and measuring units.

  12. The social impact of the Chernobyl disaster

    International Nuclear Information System (INIS)

    Marples, D.R.

    1988-01-01

    This book focuses on the broader ramifications of the Chernobyl disaster,such as the impact upon the environment, agriculture, health, the media and the arts. The author feels that there is much information not yet available about the accident, and he says the Soviet Government has essentially developed an official line that is patently untrue. Many of the key mistakes and short comings that figured prominently in the accident and that the Soviets have been reluctant to publicize are highlighted. The part that what might be termed the Soviet system played in the accident and events following the accident is explored. This is not limited just to the incompetence of the plant operators when the accident occurred but is extended to the system that placed unqualified operators on the staff of a nuclear power plant, produced the defective reactor design, was responsible for the poor quality of the initial construction, etc. The author contends that the International Atomic Energy Agency (IAEA) did not really press the Soviets for complete truthful reports because it was not expedient to do so as the Chernobyl accident threatened the global nuclear industry of which IAEA is a part

  13. Thirty years after the Chernobyl accident: What lessons have we learnt?

    International Nuclear Information System (INIS)

    Beresford, N.A.; Fesenko, S.; Konoplev, A.; Skuterud, L.; Smith, J.T.; Voigt, G.

    2016-01-01

    April 2016 sees the 30 th anniversary of the accident at the Chernobyl nuclear power plant. As a consequence of the accident populations were relocated in Belarus, Russia and Ukraine and remedial measures were put in place to reduce the entry of contaminants (primarily 134+137 Cs) into the human food chain in a number of countries throughout Europe. Remedial measures are still today in place in a number of countries, and areas of the former Soviet Union remain abandoned. The Chernobyl accident led to a large resurgence in radioecological studies both to aid remediation and to be able to make future predictions on the post-accident situation, but, also in recognition that more knowledge was required to cope with future accidents. In this paper we discuss, what in the authors' opinions, were the advances made in radioecology as a consequence of the Chernobyl accident. The areas we identified as being significantly advanced following Chernobyl were: the importance of semi-natural ecosystems in human dose formation; the characterisation and environmental behaviour of ‘hot particles'; the development and application of countermeasures; the “fixation” and long term bioavailability of radiocaesium and; the effects of radiation on plants and animals. - Highlights: • A review of 30 years of radioecological studies following the 1986 Chernobyl accident. • Key contributions to radioecology from post-Chernobyl research are discussed.

  14. The present and future place of nuclear power in the world and its role in relation to environmental risks and energy production

    International Nuclear Information System (INIS)

    Blix, H.

    1987-03-01

    This speech was delivered at a Seminar on Managing Environmental Risks, 1987. It states and enlarges on the three following propositions: First, that the world will need more energy - not least electric energy - energy savings and modified lifestyles will not be enough to compensate for new needs; Second, that our choice of energy mixes is one of the important factors deciding what future environmental risk and damage we shall live with; Third, that nuclear power offers us one of the most environmentally benign sources of energy generation. The paper points to coal and nuclear energy as the two principal realistic options for future large-scale production of electricity in the world. Questions regarding nuclear safety are discussed in particular the accident at Chernobyl. As regards the use of coal and gas it is concluded that it is imperative to tighten the emission restrictions for environmental reasons. It is also stressed that the use of nuclear power should not be examined in isolation. The Agency's nuclear safety standards are mentioned since they are being reviewed to see if some of them should be updated in the light of lessons from Chernobyl. 2 refs

  15. Study on the social economic estimation of Chernobyl accident

    International Nuclear Information System (INIS)

    Sagara, Aya; Fujimoto, Noboru; Morita, Koji; Fukuda, Kenji

    2000-01-01

    In order to estimate the external economic effect for the risk of the nuclear power plants, the document research has been carried out, which mainly deals with the economic influence of the Chernobyl accident that occurred on the 26th of April 1986. As a result, the direct and indirect total economic loss between 1986 and 1995 is about $ 80 billion in Belarus, $ 115 billion in Ukraine and 1.15 trillion in Russia. This value, however, is considered as an overestimation, since the environmental contamination with radioactive material and thyroid cancer in Russia is very much the same as in Belarus and Ukraine. Also, the total economic loss is about a billion dollars in west European countries. The total economic loss for the Chernobyl accident is estimated more than about $ 300 billion. On the other hand, the chance occurrence of this kind of major accident of the nuclear power plant is very small in terms of probabilities, and the product of economic loss and frequency is smaller than the cost benefit for the measure of global warming and the energy security in Japan. This kind of problem should be treated as a social problem and study on various external economic effect is necessary. (author)

  16. Report by USSR survey mission of Nuclear Safety Commission

    International Nuclear Information System (INIS)

    1990-01-01

    The USSR survey mission of Nuclear Safety Commission drew up and presents the report as follows. In relation to the accident in Chernobyl Nuclear Power Station in USSR, in order to investigate into the present status of the countermeasures for nuclear power safety in USSR and to exchange opinion, the USSR survey mission inspected nuclear power station facilities and visited the government organs, research institutes and others in USSR. The survey mission comprised 13 members, and went to Moscow, Kiev and two nuclear power station sites, from October 22 to November 1, 1989, for 11 days. At present in USSR, 49 nuclear power plants of about 35 GWe are in operation, and by 2000, the operation of more nuclear power plants of about 30 GWe is needed, but due to the change of social situation in USSR, its attainment seems to be difficult. The plan of nuclear power generation in USSR, the ensuring of safety in general, the recent countermeasures for improving safety, the effect of the accident in Chenobyl Nuclear Power Station on health and so on are reported. The detailed record of the visit to Zaporozhe and Chernobyl Nuclear Power Stations and 7 other research institutes and government organs is given. (K.I.)

  17. Environmental Problems Associated with Decommissioning of Chernobyl Power Plant Cooling Pond

    Science.gov (United States)

    Foley, T. Q.; Oskolkov, B. Y.; Bondarkov, M. D.; Gashchak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.; Jannik, G. T.; Farfan, E. B.; Marra, J. C.

    2009-12-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities associated with residual radioactive contamination is a fairly pressing issue. Significant problems may result from decommissioning of cooling ponds. The Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond is one of the largest self-contained bodies of water in the Chernobyl Region and Ukrainian Polesye with a water surface area of 22.9 km2. The major hydrological feature of the ChNPP Cooling Pond is that its water level is 6-7 m higher than the water level in the Pripyat River and water losses due to seepage and evaporation are replenished by pumping water from the Pripyat River. In 1986, the accident at the ChNPP #4 Reactor Unit significantly contaminated the ChNPP Cooling Pond. According to the 2001 data, the total radionuclide inventory in the ChNPP Cooling Pond bottom deposits was as follows: 16.28 ± 2.59 TBq for 137Cs; 2.4 ± 0.48 TBq for 90Sr, and 0.00518 ± 0.00148 TBq for 239+240Pu. Since ChNPP is being decommissioned, the ChNPP Cooling Pond of such a large size will no longer be needed and cost effective to maintain. However, shutdown of the water feed to the Pond would expose the contaminated bottom deposits and change the hydrological features of the area, destabilizing the radiological and environmental situation in the entire region in 2007 - 2008, in order to assess potential consequences of draining the ChNPP Cooling Pond, the authors conducted preliminary radio-ecological studies of its shoreline ecosystems. The radioactive contamination of the ChNPP Cooling Pond shoreline is fairly variable and ranges from 75 to 7,500 kBq/m2. Three areas with different contamination levels were selected to sample soils, vegetation, small mammals, birds, amphibians, and reptilians in order to measure their 137Cs and 90Sr content. Using the ERICA software, their dose exposures were estimated. For the 2008 conditions, the estimated dose rates were found to be as follows: amphibians - 11

  18. Chernobyl: Anatomy of the explosion

    International Nuclear Information System (INIS)

    Lvov, G.

    1992-01-01

    On Friday, 26 April 1986, it was planned to shut down the fourth unit of the Chernobyl Atomic Power Station, U.S.S.R., for periodic maintenance. The procedure supplied the opportunity to perform a further experiment; operation of the turbine in free rotation regime, which occurs when the steam is cut down while the turbine is still running. It so happened that carrying out this experiment turned out to be the worst accident in the history of nuclear power industry. The first part of the article proceeds to a second by second detailed analysis of the causes of the catastrophe. The analysis uses official data and reports. The author covers the sequence of events, which led up to two explosions in the second hour of that tragic morning. In the second part of the article, the author provides hints and suggestions, so that 'the tragedy of Chernobyl does not become a useless lesson'. With regard to what, so far, has been published, the novelty of the article may be a diagram showing the excessive changes that affected the main parameters (power, water flow through circulating pumps, steam pressure in separators, and length of the immersed part of control rods) in the fourth unit during the last seconds before the explosion. If may be noteworthy to mention that the curves supplied here are based on data stored in the computer 'SCALA'. 2 figs

  19. Thyroid Nodularity and cancer in Chernobyl clean-up workers from Latvia

    International Nuclear Information System (INIS)

    Kurjane, N.; Farbtuha, T.; Matisane, L.

    2004-01-01

    The Chernobyl nuclear reactor accident on April 26, 1986, resulted in massive radioactive contamination of the surrounding area. Radiation exposure was from rapidly decaying radioactive iodines, as well as from 137 CS and other long-lived radioisotopes. About 6000 clean-up workers of the Chernobyl Power Plant accident were from Latvia. External radiation exposure was defined for 40% of them and the doses were 0.01-0.5 Grey (Gy). Although according to conclusions of authoritative experts of different countries, the actual doses of radiation might be at least 3-4 times higher. Because the thyroid is highly susceptible to cancer induction by ionizing radiation, our examination was conducted in 2001 to determine the prevalence of thyroid tumors in 1990-2000 and other nodular thyroid disease 14 years after the accident in Latvia's Chernobyl clean-up workers. The Latvian State Register for persons who have received ionising radiation in Chernobyl and Latvia's Cancer Register were used in this work as well as 1000 Chernobyl accident clean-up workers medical ambulatory cards were analysed. We have received that occurrence of thyroid cancer in Chernobyl clean-up workers was 10,6 times higher than in Latvia's population (men) in 1990-2000 and also it occurs at earlier age in comparison with population data (40-50 and 55-65 accordingly). This can be explained in two ways: either due to effect of the short-term or long-term external and internal radiation exposure (including, from the incorporated 131 I) on the thyroid tissue, or due to a better dispensarisation (obligatory thyroid ultrasound examination once per year) of the examined group. The first thyroid cancer was discovered in 1996 -after ten years of latent period. The relative risk of thyroid cancer in Chernobyl clean-up workers in 1996 was 33.27, and in 1997 -42.64. Then, the morbidity of the thyroid cancer exhibits tendency to decrease (RR 18.27 in 1998, and 9.42 in 1999). The presence of thyroid benign nodules was

  20. Environmental and health consequences in Japan due to the accident at Chernobyl nuclear reactor plant

    International Nuclear Information System (INIS)

    Uchiyama, Masafumi; Nakamura, Yuji; Kankura, Takako; Iwasaki, Tamiko; Fujimoto, Kenzo; Kobayashi, Sadayoshi.

    1988-03-01

    A comprehensive review was made on the results of national monitoring program for environmental radioactivity in Japan resulting from the accident at the Chernobyl nuclear power plant in USSR. Period of monitoring efforts covered by the present review is from 30th of April 1986 to 31st of May 1987. A radioactive cloud released from the Chernobyl nuclear reactor initially arrived in Japan on 30th of April 1986 as indicated by the elevated level of 131 I, 137 Cs and 134 Cs activity in the total deposition on 30th of April and also by the increased 137 Cs body burden noted on 1st of May. Almost all the radioactive nuclides detected in the European countries were also identified in Japan. For example, the observed nuclides were: 95 Zr, 95 Nb, 99m Tc, 103 Ru, 106 Ru, 110m Ag, 111 Ag, 125 Sb, 127 Sb, 129m Te, 131 I, 132 Te, 132 I, 133 I, 134 Cs, 136 Cs, 137 Cs, 140 Ba, 140 La, 141 Ce and 144 Ce. Among the above radionuclides, the country average concentration was determined for 131 I, 137 Cs and 134 Cs in various environmental materials such as air, fresh water, soil, milk, leafy and root vegetables, cereals, marine products and other foodstuffs. In contrast to the sharp decline of 131 I which was negligible after a few months, 137 Cs showed a tendency to maintain its activity in foodstuffs at an appreciable level one year later. Collective effective dose equivalent and dose equivalent to thyroid in Japanese population due to 137 Cs, 134 Cs and 131 I were estimated to be around 590 man Sv and 4760 man Sv, respectively. Corresponding values for the per caput dose equivalent are 5 μSv for whole body and 40 μSv for thyroid, respectively. (author)

  1. The internationalization of nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1989-01-01

    Nuclear safety is interlinked in many ways with the themes of this conference. In searching for co-operative activities that touch on global energy and environmental problems and on initiatives that relieve international tensions, the ongoing developments in nuclear power safety offer a number of successful examples. Commercial nuclear power has been with us for more than 30 years, and with 26 countries operating plants in addition to 6 more constructing their first, there has been an ongoing global co-operation, coinciding of Chernobyl with Glasnost, along with the increasing awareness of the benefits of common solutions to safety issues, have brought about an internationalization of nuclear safety. Although the main responsibility for safety rests with each operator and its government, a primary driving force expanding international co-operation is the transboundary aspects of nuclear energy, as vividly demonstrated by Chernobyl accident. In this presentation we focus on the mechanisms already in place that foster cooperation in the nuclear safety area

  2. Prognosis for tumor morbidity among the salvaging personnel of the Chernobyl Nuclear Power Station

    International Nuclear Information System (INIS)

    Zubovskij, G.A.; Kharchenko, V.P.; Tararukhina, O.B.

    2000-01-01

    Preduction of oncological disease rate in persons participating in the Chernobyl accident response for Russia group of liquidators (100000 persons) worked in 1986 is presented based on the assumption that neoplasm development period will consists subsequent 15 years (up to 2015). According to the official data in 1986, radiation doses to liquidators did not exceed 25 h. But real radiation doses to liquidators in most cases were not determined because of the absence of personal dosemeters. Radiation dose due to radionuclides inhalation was not accounted. Average dose to liquidators worked at the destroyed unit of Chernobyl NPP was 0.40 Sv in Summer, 1986, with the account of internal exposure. Data on the oncological disease rate, 12 years later the disaster, show that the neoplasms of respiratory organs and digestive organs are the most spread (36.2 and 28.3% correspondingly). Further, in the order of decreasing, the neoplasms follow of hematopoietic and lymphatic systems, urinary system and brain. Preventive therapy combination including A, C, E vitamins, provitamin A, selenium with lecithin in nut oil is recommended [ru

  3. Vegetation fires, smoke emissions, and dispersion of radionuclides in the chernobyl exclusion zone

    Science.gov (United States)

    Wei Min Hao; Oleg O. Bondarenko; Sergiy Zibtsev; Diane Hutton

    2009-01-01

    The accident of the Chernobyl nuclear power plant (ChNPP) in 1986 was probably the worst environmental disaster in the past 30 years. The fallout and accumulation of radionuclides in the soil and vegetation could have long-term impacts on the environment. Radionuclides released during large, catastrophic vegetation fires could spread to continental Europe, Scandinavia...

  4. Chernobyl, the sarcophagus of the human kind

    International Nuclear Information System (INIS)

    Dupuy, Jean-Pierre

    2006-01-01

    Back from a short trip within the 'thirty kilometre area' around Chernobyl where he has been moved and shocked by what he saw, the author criticises the content of the 2005 Chernobyl forum report, notably about the assessment of casualties. He more particularly criticises the importance given by this report to so-called psychological mechanisms which would produce strange pathologies. He states that Chernobyl is the symbol of the energetic and environmental future of our planet and of mankind. He discusses how health consequences of Chernobyl are assessed, and more particularly that epidemiological studies could not be performed properly, that the model adopted by international bodies of radiation protection is not a good one to assess the victims of radioactivity. He extends his reflection on the role of nuclear energy to nuclear deterrence, discusses how the safety of nuclear plant has been considered in the 1960's. He notices that US plants were not protected against the impact of a lorry loaded with explosives whereas such an attempt occurred against a building in Oklahoma City, killing about two hundred persons, not as much as terrorists on the 9/11. He finally accuse expertise of thoughtlessness (a term used by Hannah Arendt)

  5. The Associations between Self-Reported Exposure to the Chernobyl Nuclear Disaster Zone and Mental Health Disorders in Ukraine.

    Science.gov (United States)

    Bolt, Matthew A; Helming, Luralyn M; Tintle, Nathan L

    2018-01-01

    In 1986, Reactor 4 of the Chernobyl nuclear power plant near Pripyat, Ukraine exploded, releasing highly-radioactive materials into the surrounding environment. Although the physical effects of the disaster have been well-documented, a limited amount of research has been conducted on association of the disaster with long-term, clinically-diagnosable mental health disorders. According to the diathesis-stress model, the stress of potential and unknown exposure to radioactive materials and the ensuing changes to ones life or environment due to the disaster might lead those with previous vulnerabilities to fall into a poor state of mental health. Previous studies of this disaster have found elevated symptoms of stress, substance abuse, anxiety, and depression in exposed populations, though often at a subclinical level. With data from The World Mental Health Composite International Diagnostic Interview, a cross-sectional large mental health survey conducted in Ukraine by the World Health Organization, the mental health of Ukrainians was modeled with multivariable logistic regression techniques to determine if any long-term mental health disorders were association with reporting having lived in the zone affected by the Chernobyl nuclear disaster. Common classes of psychiatric disorders were examined as well as self-report ratings of physical and mental health. Reporting that one lived in the Chernobyl-affected disaster zone was associated with a higher rate of alcohol disorders among men and higher rates of intermittent explosive disorders among women in a prevalence model. Subjects who lived in the disaster zone also had lower ratings of personal physical and mental health when compared to controls. Stress resulting from disaster exposure, whether or not such exposure actually occurred or was merely feared, and ensuing changes in life circumstances is associated with increased rates of mental health disorders. Professionals assisting populations that are coping with the

  6. The Associations between Self-Reported Exposure to the Chernobyl Nuclear Disaster Zone and Mental Health Disorders in Ukraine

    Directory of Open Access Journals (Sweden)

    Matthew A. Bolt

    2018-02-01

    Full Text Available BackgroundIn 1986, Reactor 4 of the Chernobyl nuclear power plant near Pripyat, Ukraine exploded, releasing highly-radioactive materials into the surrounding environment. Although the physical effects of the disaster have been well-documented, a limited amount of research has been conducted on association of the disaster with long-term, clinically-diagnosable mental health disorders. According to the diathesis–stress model, the stress of potential and unknown exposure to radioactive materials and the ensuing changes to ones life or environment due to the disaster might lead those with previous vulnerabilities to fall into a poor state of mental health. Previous studies of this disaster have found elevated symptoms of stress, substance abuse, anxiety, and depression in exposed populations, though often at a subclinical level.Materials and methodsWith data from The World Mental Health Composite International Diagnostic Interview, a cross-sectional large mental health survey conducted in Ukraine by the World Health Organization, the mental health of Ukrainians was modeled with multivariable logistic regression techniques to determine if any long-term mental health disorders were association with reporting having lived in the zone affected by the Chernobyl nuclear disaster. Common classes of psychiatric disorders were examined as well as self-report ratings of physical and mental health.ResultsReporting that one lived in the Chernobyl-affected disaster zone was associated with a higher rate of alcohol disorders among men and higher rates of intermittent explosive disorders among women in a prevalence model. Subjects who lived in the disaster zone also had lower ratings of personal physical and mental health when compared to controls.DiscussionStress resulting from disaster exposure, whether or not such exposure actually occurred or was merely feared, and ensuing changes in life circumstances is associated with increased rates of mental health

  7. Demystifying nuclear power: the linear non-threshold model and its use for evaluating radiation effects on living organisms

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Alexandre F.; Vasconcelos, Miguel F.; Vergueiro, Sophia M. C.; Lima, Suzylaine S., E-mail: alex.ramos@usp.br [Universidade de São Paulo (USP), SP (Brazil). Núcleo Interdisciplinar de Modelagem de Sistemas Complexos

    2017-07-01

    Recently, a new variable has been introduced on nuclear power expansion policy: public opinion. That variable challenges the nuclear community to develop new programs aiming to educate society sectors interested on energy generation and not necessarily familiarized with concepts of the nuclear eld. Here we approach this challenge by discussing how a misconception about the use of theories in science has misled the interpretation of the Chernobyl's accident consequences. That discussion have been presented for students from fields related with Environmental Sciences and Humanities and have helped to elucidate that an extrapolation such as the Linear Non-Threshold model is a hypothesis to be tested experimentally instead of a theoretical tool with predictive power. (author)

  8. Demystifying nuclear power: the linear non-threshold model and its use for evaluating radiation effects on living organisms

    International Nuclear Information System (INIS)

    Ramos, Alexandre F.; Vasconcelos, Miguel F.; Vergueiro, Sophia M. C.; Lima, Suzylaine S.

    2017-01-01

    Recently, a new variable has been introduced on nuclear power expansion policy: public opinion. That variable challenges the nuclear community to develop new programs aiming to educate society sectors interested on energy generation and not necessarily familiarized with concepts of the nuclear eld. Here we approach this challenge by discussing how a misconception about the use of theories in science has misled the interpretation of the Chernobyl's accident consequences. That discussion have been presented for students from fields related with Environmental Sciences and Humanities and have helped to elucidate that an extrapolation such as the Linear Non-Threshold model is a hypothesis to be tested experimentally instead of a theoretical tool with predictive power. (author)

  9. The renaissance of Italian nuclear power; La renaissance du nucleaire italien

    Energy Technology Data Exchange (ETDEWEB)

    Bouchter, J.C.; Cassuto, A. [CEA/Ambassade de France a Rome (Italy)

    2010-07-15

    In the fifties Italy was an advanced country in terms of nuclear electricity but as a consequence of the Chernobyl accident Italy changed drastically its energy policy and closed definitely all its nuclear plants. Now in order to be less dependent on energy imports and to reduce its CO{sub 2} emission, Italy has changed its mind and welcomes nuclear power in its future energy mix. The aim is to reach the following contributions for the production of electricity in 2030: 50% from fossil fuels, 25% from renewable energies and 25% from nuclear energy (13.000 MWe) and with a first reactor operating in 2020. The main actors of the renaissance of nuclear power in Italy are: -) ENEL (the second electricity producer in Europe), -) SOGIN, a company that is mainly in charge of the dismantling of nuclear plants, -) ENEA a state agency for the development of new technologies, energy and sustainable development, and -) companies working in the nuclear industry like ANSALDO. Various collaboration agreements have been signed between ENEL and EDF or between ENEA and CEA concerning staff training, nuclear safety or radioactive waste management. The main difficulties of this renaissance of the nuclear energy are to get the agreement of the national and local populations as well as that of the political class that is strongly marked by a division in 2 wings. (A.C.)

  10. Psychological impact of nuclear disasters

    International Nuclear Information System (INIS)

    Behere, Prakash B.; Chougule, Kaveri N.; Syyed, S.

    2017-01-01

    There are major Nuclear Power plant disasters in world, one was Chernobyl, Ukraine 1986, and other was Fukushima, Japan 2011. There are many studies, which are evidence based to demonstrate short and long terms consequences of nuclear plant disasters. The psychological consequences of nuclear power plant disasters include depression, anxiety, posttraumatic stress disorder, and medically unexplained somatic symptoms. These effects are often long term and associated with fears about developing serious illness like cancer. Research on disasters involving radiation, particularly evidence from Chernobyl, indicates that mothers of young children and safai workers are the highest risk groups. It is important that non-mental health providers learn to recognize and manage psychological symptoms and that medical programs be designed to reduce stigma and alleviate psychological suffering by integrating psychiatric and medical treatment

  11. Management, administrative and operational causes of the accident: Chernobyl nuclear power station

    International Nuclear Information System (INIS)

    Anastas, G.

    1996-01-01

    Full text: The Chernobyl accident, which occurred in April 1986, was the result of management, administrative, operational, technical and design flaws. The accident released millions of curies of mixed fission products (including 70-100 P Bq of 137 Cs). The results of this study strongly suggest that the cultural, political, managerial and operational attributes of the Soviet 'system' performed in a synergistic manner to significantly contribute to the initiation of the accident. At the time of the accident, science, engineering and safety in the former Soviet Union were dominated by an atmosphere of politics, group think and 'dingoes tending the sheep'

  12. Come back to Chernobyl

    International Nuclear Information System (INIS)

    Dupuy, J.P.

    2006-04-01

    After a return to Chernobyl, the author exposes the gap between the official estimation of the United Nations Organization and what he saw: no more house, track of life. He shows that all official estimation should taking into account philosophical and ethical dimensions. Three main aspects appear in this book: a reportage on Chernobyl and the areas, a scientifical and educational investigation of the nuclear risks and stakes today and for the future and a plea against the government lies and for the humanist transparency. (A.L.B.)

  13. Nuclear Bashing in Chernobyl Coverage: Fact or Fiction?

    Science.gov (United States)

    Friedman, Sharon M.; And Others

    Critics of coverage of nuclear power have charged that the media overemphasize the importance of nuclear accidents, encourage public fear, and omit information vital to public understanding of nuclear power and risk. Some also feel there is an anti-nuclear bias among reporters and editors. A study was conducted to determine if such charges were…

  14. Validity of thyroid cancer incidence data following the Chernobyl accident.

    Science.gov (United States)

    Jargin, Sergei V

    2011-12-01

    The only clearly demonstrated cancer incidence increase that can be attributed to radiation from the Chernobyl accident is thyroid carcinoma in patients exposed during childhood or adolescence. Significant increases in thyroid disease were observed as soon as 4 y after the accident. The solid/follicular subtype of papillary carcinoma predominated in the early period after the accident. Morphological diagnosis of cancer in such cases, if no infiltrative growth is clearly visible, depends mainly on the nuclear criteria. Outdated equipment and insufficient quality of histological specimens impeded reliable evaluation of the nuclear criteria. Access to foreign professional literature has always been limited in the former Soviet Union. The great number of advanced tumors observed shortly after the accident can be explained by the screening effect (detection of previously neglected cancers) and by the fact that many patients were brought from non-contaminated areas and registered as Chernobyl victims. It is also worth noting that exaggeration of the Chernobyl cancer statistics facilitated the writing of dissertations, financing of research, and assistance from outside the former Soviet Union. "Chernobyl hysteria" impeded nuclear energy production in some countries, thus contributing to higher prices for fossil fuel. The concluding point is that since post-Chernobyl cancers tend on average to be in a later stage of tumor progression, some published data on molecular or immunohistochemical characteristics of Chernobyl-related cancers require reevaluation.

  15. Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over Europe.

    Science.gov (United States)

    Evangeliou, Nikolaos; Hamburger, Thomas; Talerko, Nikolai; Zibtsev, Sergey; Bondar, Yuri; Stohl, Andreas; Balkanski, Yves; Mousseau, Timothy A; Møller, Anders P

    2016-09-01

    30 years after the Chernobyl Nuclear Power Plant (CNPP) accident, its radioactive releases still remain of great interest mainly due to the long half-lives of many radionuclides emitted. Observations from the terrestrial environment, which hosts radionuclides for many years after initial deposition, are important for health and environmental assessments. Furthermore, such measurements are the basis for validation of atmospheric transport models and can be used for constraining the still not accurately known source terms. However, although the "Atlas of cesium deposition on Europe after the Chernobyl accident" (hereafter referred to as "Atlas") has been published since 1998, less than 1% of the direct observations of (137)Cs deposition has been made publicly available. The remaining ones are neither accessible nor traceable to specific data providers and a large fraction of these data might have been lost entirely. The present paper is an effort to rescue some of the data collected over the years following the CNPP accident and make them publicly available. The database includes surface air activity concentrations and deposition observations for (131)I, (134)Cs and (137)Cs measured and provided by Former Soviet Union authorities the years that followed the accident. Using the same interpolation tool as the official authorities, we have reconstructed a deposition map of (137)Cs based on about 3% of the data used to create the Atlas map. The reconstructed deposition map is very similar to the official one, but it has the advantage that it is based exclusively on documented data sources, which are all made available within this publication. In contrast to the official map, our deposition map is therefore reproducible and all underlying data can be used also for other purposes. The efficacy of the database was proved using simulated activity concentrations and deposition of (137)Cs from a Langrangian and a Euleurian transport model. Copyright © 2016. Published by

  16. Chernobyl accident: Causes, consequences and problems of radiation measurements

    International Nuclear Information System (INIS)

    Kortov, V.; Ustyantsev, Yu.

    2013-01-01

    General description of Chernobyl accident is given in the review. The accident causes are briefly described. Special attention is paid to radiation situation after the accident and radiation measurements problems. Some data on Chernobyl disaster are compared with the corresponding data on Fukushima accident. It is noted that Chernobyl and Fukushima lessons should be taken into account while developing further measures on raising nuclear industry safety. -- Highlights: ► The short comparative analysis of accidents at Chernobyl and Fukushima is given. ► We note the great effect of β-radiation on the radiation situation at Chernobyl. ► We discuss the problems of radiation measurements under these conditions. ► The impact of shelter on the radiation situation near Chernobyl NPS is described

  17. Countermeasures to the Chernobyl accident in the Nordic countries: Public reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, L; Rundmo, T; Eraenen, L; Ekstroem, H

    1998-01-01

    In Sweden the TMI accident was the direct cause to a decision to hold a national referendum on nuclear power on March 23, 1980. The referendum and the subsequent political decision to phase out nuclear power by 2010 to some extent neutralized the issue and nuclear attitudes returned to a mildly positive state. However, the Chernobyl accident in 1986 again changed the scene. Just as the TMI accident had been something of a surprise to many, the Chernobyl accident and its consequences in Scandinavia were not anticipated. Attitudes to nuclear power became quite negative immediately after the accident but they soon resumed their initial mildly positive position again. Even if the radioactive fall-out never reached truly alarming levels authorities in Finland, Norway and Sweden took measures to counteract the effects of radioactivity and to protect the population. This was done in a very heated atmosphere and intense attention was paid by the mass media. Trust in authorities and governments was put to a stringent test during these days 10 years ago. Several psychologists, sociologists and mass media researchers were active from the very beginning to document the events taking place, e.g. by means of surveys of the public opinion. The reports they wrote were usually in local languages and much of this material was never published in print but remained as project reports. It is the purpose of the present project to localize these report and to summarize and interpret their contents, and to give bibliographical information about where the sources can be located. Different experiences and conditions in the three countries account for somewhat different approaches of the three country chapters. There is no doubt that Chernobyl was a very significant social and psychological event in the three countries discussed in the present report. It was also regarded by many as a significant threat to public health, although radiation experts assured the public that the direct effects

  18. Emergency response and nuclear risk governance. Nuclear safety at nuclear power plant accidents; Notfallschutz und Risk Governance. Zur nuklearen Sicherheit bei Kernkraftwerksunfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlen, Johannes

    2014-07-01

    The present study entitled ''Emergency Response and Nuclear Risk Governance: nuclear safety at nuclear power plant accidents'' deals with issues of the protection of the population and the environment against hazardous radiation (the hazards of nuclear energy) and the harmful effects of radioactivity during nuclear power plant accidents. The aim of this study is to contribute to both the identification and remediation of shortcomings and deficits in the management of severe nuclear accidents like those that occurred at Chernobyl in 1986 and at Fukushima in 2011 as well as to the improvement and harmonization of plans and measures taken on an international level in nuclear emergency management. This thesis is divided into a theoretical part and an empirical part. The theoretical part focuses on embedding the subject in a specifically global governance concept, which includes, as far as Nuclear Risk Governance is concerned, the global governance of nuclear risks. Due to their characteristic features the following governance concepts can be assigned to these risks: Nuclear Safety Governance is related to safety, Nuclear Security Governance to security and NonProliferation Governance to safeguards. The subject of investigation of the present study is as a special case of the Nuclear Safety Governance, the Nuclear Emergency governance, which refers to off-site emergency response. The global impact of nuclear accidents and the concepts of security, safety culture and residual risk are contemplated in this context. The findings (accident sequences, their consequences and implications) from the analyses of two reactor accidents prior to Fukushima (Three Mile Iceland in 1979, Chernobyl in 1986) are examined from a historical analytical perspective and the state of the Nuclear Emergency governance and international cooperation aimed at improving nuclear safety after Chernobyl is portrayed by discussing, among other topics, examples of &apos

  19. The radiological significance of beta emitting hot particles released from the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Hofmann, W.; Crawford-Brown, D.J.; Martonen, T.B.

    1988-01-01

    In order to assess radiological hazards associated with inhalation of beta emitting hot particles detected in fall-out from the Chernobyl incident, radiation doses and lung cancer risk are calculated for a hot particle composed entirely of 103 Ru. Lung cancer risk estimates are based upon an initiation-promotion model of carcinogenesis. In the immediate vicinity of a hot particle, calculations indicate that doses may be extremely high, so that all cells are killed and no tumour will arise. At intermediate distances, however, the probability for lung cancer induction exhibits a distinct maximum. Risk enhancement factors, computed relative to a uniform radionuclide distribution of equal activity, are highest for intermediate activities and hot particles moving in the lung. While the risk from inhalation of 103 Ru hot particles might, indeed, exceed that from all other exposure pathways of the Chernobyl fall-out, it still lies within normal fluctuations of radon progeny induced lung cancer risk. (author)

  20. 15 years after Chernobyl, nuclear power plant safety improved world-wide, but regional strains on health, economy and environment remain

    International Nuclear Information System (INIS)

    2001-01-01

    Fifteen years after the Chernobyl accident, exhaustive studies by the IAEA and others provide a solid understanding of the causes and consequences of the accident, which stemmed from design deficiencies in the reactor compounded by violation of operating procedures. These deficiencies and the lack of an international notification mechanism led to the speedy adoption of early Notification and Assistance Conventions as well as later establishment of the landmark Convention on Nuclear Safety. Lessons learned from the accident were also a significant driving force behind a decade of IAEA assistance to the countries of Central and eastern Europe and the Former Soviet Union. Much of this work was focused on identifying the weaknesses in and improving the design safety of WWER and RBMK reactors

  1. No ''all clear'' signal yet. Although the West has set up support programmes for nuclear power plants in eastern Europe

    International Nuclear Information System (INIS)

    Roehrlich, D.

    1996-01-01

    During the first years after the catastrophic nuclear accident at Chernobyl, reports on Soviet nuclear power plants leaking to the west seldom contained hard facts. Now, after five years of a partnership between east and west in matters of reactor safety, things are clearer. What the commitment of the west to more reactor safety in eastern Europe means in practice was the subject of the winter meeting of the Deutsches Atomforum, Bonn. (orig.) [de

  2. Transgenerational genomic instability in children of irradiated parents as a result of the Chernobyl Nuclear Accident

    International Nuclear Information System (INIS)

    Aghajanyan, Anna; Suskov, Igor

    2009-01-01

    The study of families irradiated as a result of the accident at the Chernobyl Nuclear Power Plant revealed significantly increased aberrant genomes frequencies (AGFs) not only in irradiated parents (n = 106, p 137 Cs) of peripheral blood samples from the children and their parents at doses of 0.1, 0.2 and 0.3 Gy. The spectrum and frequency of chromosome aberrations were studied in the 1st and 2nd cell generations. The average AGF was significantly increased at all doses (except 0.1 Gy) in children of irradiated parents, as compared to children born from non-irradiated parents. Amplification of cells with single-break chromosome aberrations in mitosis 2, as compared to mitosis 1, suggests the replication mechanism of realization of potential damage in DNA and the occurrence of genomic instability in succeeding cell generations.

  3. Drosophila as a model object in to study Chernobyl NPP after

    International Nuclear Information System (INIS)

    Marinenko, T.V.; Kozeretskaya, I.A.; Gorodetski, G.V.

    2007-01-01

    Complete text of publication follows. Water extractions of soil probes, which were selected on areas with different density of radioactive pollutions near Chernobyl exclusion zone ('Apple-tree garden' (Chernobyl); 'Island' (the bank of the pond-cooler of the Chernobyl nuclear power plant); 'Torch' (the area of revegetation near the Chernobyl nuclear power plant); 'Red forest' (side of a road) and 'Red forest' (edge of a forest)) were investigated. Dosimetric metering of all studied areas was conducted. γ- and β-activities of soil probes were determined by spectrometry and radiochemistry methods. The contents of trace elements in the soil probes of areas the 'Appletree garden' and 'Island' were determined. Water extractions from soil were prepared according to standard method (ratio - 1 : 2,5). The mutagenicity of water extractions of soil was estimated using the test of frequency of the sex-linked lethal mutations of Drosophila melanogaster. Water extractions were directly adds to a nourishing medium instead of standard component - distilled water. The strain of wild type of Drosophila Canton-S and natural populations of Drosophila from Pyriatin and Chernobyl were used in our study. The natural populations of Chernobyl and Pyriatin were included in study for more fully estimation of influence of factor on genetic processes of Drosophila, because of presence of unspecific adaptations of natural populations from radioactive polluted territories (as was shown before). According to dosimetric analysis data radiation activity of all water extractions of soils did not exceed a natural background. The probes of soil from areas the 'Red forest' and the 'Torch' were marked the higher activity; total activity of them was over 110 Mbk/kg. It is possibly that this fact was the reason of the absence of descendants in all variants of experiments conducted on medium with water extraction the 'Red forest' and in a variant of experiments concerned on study of activity of water

  4. Management, administrative and operational causes of the accident: Chernobyl nuclear power station

    International Nuclear Information System (INIS)

    Anastas, G.

    1996-01-01

    The Chernobyl accident, which occurred in April 1986, was the result of management, administrative, operational, technical and design flaws. The accident released millions of curies of mixed fission products including 70-100 PBq of 137 Cs. At the time of the accident, science, engineering and safety in the former Soviet Union were dominated by an atmosphere of politics, group think and 'dingoes tending the sheep'. This corrupted safety culture exacerbated the poor design of the reactor. The results of this study strongly suggest that the cultural, political, managerial and operational attributes of the Soviet 'system' performed in a synergistic manner to significantly contribute to the initiation of the accident. (authors)

  5. Twenty-five years of environmental radionuclide concentrations near a nuclear power plant.

    Science.gov (United States)

    Harris, Charles; Kreeger, Danielle; Patrick, Ruth; Palms, John

    2015-05-01

    The areas in and along a 262-km length of the Susquehanna River in Pennsylvania were monitored for the presence of radioactive materials. This study began two months after the 1979 Three Mile Island (TMI) partial reactor meltdown; it spanned the next 25 y. Monitoring points included stations at the PPL Susquehanna and TMI nuclear power plants. Monthly gamma measurements document concentrations of radionuclides from natural and anthropogenic sources. During this study, various series of gamma-emitting radionuclide concentration measurements were made in many general categories of animals, plants, and other inorganic matter. Sampling began in 1979 before the first start-up of the PPL Susquehanna power plant. Although all species were not continuously monitored for the entire period, an extensive database was compiled. In 1986, the ongoing measurements detected fallout from the Chernobyl nuclear accident. These data may be used in support of dose or environmental transport calculations.

  6. Proteomic Analysis of Flax Seeds from the Chernobyl Area Suggests Involvement of Stress, Signaling, and Transcription/Translation in Response to Ionizing Radiation

    Science.gov (United States)

    The accident at the Chernobyl Nuclear Power Plant (CNPP) on April 26, 1986 is the most serious nuclear disaster in human history. However, while the area proximal to the CNPP remains substantially contaminated with long-lived radioisotopes including 90Sr and 137Cs, the local ecosystem has been able...

  7. Reconstruction of the Chernobyl emergency and accident management

    International Nuclear Information System (INIS)

    Schinner, F.; Andreev, I.; Andreeva, I.; Fritsche, F.; Hofer, P.; Lettner, E.; Seidelberger, E.; Kromp-Kolb, H.; Kromp, W.

    1998-01-01

    Full text of publication follows: on April 26, 1986 the most serious civil technological accident in the history of mankind occurred of the Chernobyl Nuclear Power Plant (ChNPP) in the former Soviet Union. As a direct result of the accident, the reactor was severely destroyed and large quantities of radionuclides were released. Some 800000 persons, also called 'liquidators' - including plant operators, fire-fighters, scientists, technicians, construction workers, emergency managers, volunteers, as well as medical and military personnel - were part of emergency measurements and accident management efforts. Activities included measures to prevent the escalation of the accident, mitigation actions, help for victims as well as activities in order to provide a basic infrastructure for this unprecedented and overwhelming task. The overall goal of the 'Project Chernobyl' of the Institute of Risk Research of the University of Vienna was to preserve for mankind the experience and knowledge of the experts among the 'liquidators' before it is lost forever. One method used to reconstruct the emergency measures of Chernobyl was the direct cooperation with liquidators. Simple questionnaires were distributed among liquidators and a database of leading accident managers, engineers, medical experts etc. was established. During an initial struggle with a number of difficulties, the response was sparse. However, after an official permit had been issued, the questionnaires delivered a wealth of data. Furthermore a documentary archive was established, which provided additional information. The multidimensional problem in connection with the severe accident of Chernobyl, the clarification of the causes of the accident, as well as failures and successes and lessons to be learned from the Chernobyl emergency measures and accident management are discussed. (authors)

  8. The results of the research and studies concerning the information about the Chernobyl nuclear disaster

    International Nuclear Information System (INIS)

    Landahl, P.A.

    1988-01-01

    The studies conducted by the National Board of Psychological Defence after the Chernobyl nuclear accident concern questions of great importance about crisis information. The Chernobyl fallout created problems for the mass media and the authorities. Both lacked individual preparedness. The knowledge necessary to face strong demands for information from the public was lacking. A sign of this lack of knowledge and experience was shown when individual journalists - contrary to their usual behaviour - uncritically accepted the sometimes ambiguous information coming from the central authorities. For the authorities it was very much the same. The expert authority, the National Institute for Radiation Protection, had quite a lot of know-how, but no resources for such extensive information as the situation required. Significant problems must be solved concerning the cooperation between central and regional authorities. Direct contacts must be established so that both types of authorities do not learn through mass media what has been decided. The wordings of the messages conveyed in such critical situations must be a matter of more concern. Facts known by the authorities must be presented in a way comprehensible to the public. Technical terms and units must be used with great care. Negative information must of course be presented but measures should be taken to countermand the negative effect. A special responsibility should rest with the school system. The difficulties of informing the public after the Chernobyl disaster were still more emphasized by the study of how the brochure After Chernobyl was received

  9. Bacterial microflora characteristics of plant samples from contaminated by radionuclides Chernobyl area

    International Nuclear Information System (INIS)

    Zelena, Pavlina; Shevchenko, Julia; Molozhava, Olha; Berezhna, Valentina; Shylina, Julia; Guscha, Mykola

    2015-01-01

    Two serious nuclear accidents during the last quarter century (Chernobyl, 1986 and Fukushima, 2011) contaminated large agricultural areas with radioactivity. In radioactive areas all components of ecosystems, including microorganisms, exposed to ionizing radiation. The aim of this study was isolation and identification of dominant bacteria from plant samples, which were collected from the area of radioactive contamination and to compare it with bacteria isolated from plant collected in a non-radioactive area by their qualitative composition, physiological, biochemical and pathogenic characteristics. Bacteria were isolated from plant samples grown in a radioactive field located 5 km from the Chernobyl Nuclear Power Plant (CNPP). Physiological, biochemical and pathogenic properties were characterized from nine pure bacterial isolates. The common features of bacteria from radionuclide contaminated plant samples were increased synthesis of mucus and capsule creation. It was found that all selected isolates produce catalase, therefore, bacteria were resistant to oxidative stress. The increased pathogenicity of most bacteria isolated from the plant grown in radioactive Chernobyl area compare to the isolates from the plant without radioactive contamination was established from the phytopathogenic tests. Consequently, bacterial isolates from the plants grown in the radioactive environment tends to dominate enterobacteria similar to agents of opportunistic infections. (author)

  10. Analysis on perception of nuclear power plant and the preference of its policy alternatives for public acceptance

    International Nuclear Information System (INIS)

    Choi, Young Sung; Lee, Byong Whi

    1995-01-01

    Public acceptance has become an important factor in nuclear power program particularly after Chernobyl accident and recent rapid democratization in Korea. Methods reflection public opinions in order to improve public acceptance are firstly to understand what the public think about nuclear power plant and secondly to find out the public preference values for its policies. For this purpose, simplified multi-attribute utility(MAU) model was applied to analyze the public perception for five power production system. And the conjoint analysis was applied to find out he quantitative values of public preferences for twelve policy alternatives to improve the safety and support communities surrounding nuclear power plants in Korea. To implement these perception and preference analyses, mail survey was conducted to the qualified sample who had the experience of visiting nuclear power plant. Diagnosis of their perception pattern for five power production systems was made by the simplified MAU model. Estimation of the quantitative preference values for potential policy alternatives was made by the conjoint measurement technique, which made it possible to forecast the effectiveness of each option. The results from the qualified sample and the methods used in this study would be helpful to set up new policy of nuclear power plant. 4 figs., 7 tabs., 18 refs. (Author)

  11. Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience. Report of the Chernobyl Forum Expert Group 'Environment'

    International Nuclear Information System (INIS)

    2006-01-01

    The explosion on 26 April 1986 at the Chernobyl nuclear power plant, which is located 100 km from Kiev in Ukraine (at that time part of the USSR), and the consequent reactor fire, which lasted for 10 days, resulted in an unprecedented release of radioactive material from a nuclear reactor and adverse consequences for the public and the environment. The resulting contamination of the environment with radioactive material caused the evacuation of more than 100 000 people from the affected region during 1986 and the relocation, after 1986, of another 200 000 people from Belarus, the Russian Federation and Ukraine. Some five million people continue to live in areas contaminated by the accident. The national governments of the three affected countries, supported by international organizations, have undertaken costly efforts to remediate the areas affected by the contamination, provide medical services and restore the region's social and economic well-being. The accident's consequences were not limited to the territories of Belarus, the Russian Federation and Ukraine, since other European countries were also affected as a result of the atmospheric transfer of radioactive material. These countries also encountered problems in the radiation protection of their populations, but to a lesser extent than the three most affected countries. Although the accident occurred nearly two decades ago, controversy still surrounds the real impact of the disaster. Therefore the IAEA, in cooperation with the Food and Agriculture Organization of the United Nations (FAO), the United Nations Development Programme (UNDP), the United Nations Environment Programme (UNEP), the United Nations Office for the Coordination of Humanitarian Affairs (OCHA), the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the World Health Organization (WHO) and the World Bank, as well as the competent authorities of Belarus, the Russian Federation and Ukraine, established the

  12. US Department of Energy Chernobyl accident bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R A; Mahaffey, J A; Carr, F Jr

    1992-04-01

    This bibliography has been prepared by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Office of Health and Environmental Research to provide bibliographic information in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the Ukrainian Republic, USSR in 1986. This report is a product of the Chernobyl Database Management project. The purpose of this project is to produce and maintain an information system that is the official United States repository for information related to the accident. Two related products prepared for this project are the Chernobyl Bibliographic Search System (ChernoLit{trademark}) and the Chernobyl Radiological Measurements Information System (ChernoDat). This report supersedes the original release of Chernobyl Bibliography (Carr and Mahaffey, 1989). The original report included about 2200 references. Over 4500 references and an index of authors and editors are included in this report.

  13. US Department of Energy Chernobyl accident bibliography

    International Nuclear Information System (INIS)

    Kennedy, R.A.; Mahaffey, J.A.; Carr, F. Jr.

    1992-04-01

    This bibliography has been prepared by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Office of Health and Environmental Research to provide bibliographic information in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the Ukrainian Republic, USSR in 1986. This report is a product of the Chernobyl Database Management project. The purpose of this project is to produce and maintain an information system that is the official United States repository for information related to the accident. Two related products prepared for this project are the Chernobyl Bibliographic Search System (ChernoLit trademark) and the Chernobyl Radiological Measurements Information System (ChernoDat). This report supersedes the original release of Chernobyl Bibliography (Carr and Mahaffey, 1989). The original report included about 2200 references. Over 4500 references and an index of authors and editors are included in this report

  14. Forensic Reconstructions of Radioactive Particulate Releases at the Chernobyl and the Al Tuwaitha Nuclear Facilities

    International Nuclear Information System (INIS)

    Chesser, R. K.; Rogers, B. E.; Philips, C. J.

    2007-01-01

    Evaluating dispersion of nuclear materials released by accidental, operational, or clandestine means is important to the international community. Our research team has performed forensic reconstructions of radionuclide releases at the Chernobyl Nuclear Power Plant (ChNPP) in Ukraine and the Al Tuwaitha Nuclear Facility (ATNF) near Baghdad, Iraq. Our objectives at ChNPP were to determine the influences of extant atmospheric conditions on particle size distributions and their depositions in the near-field (less than 12 km) regions surrounding the complex. We derived mathematical models of particulate fluid-flow in varying velocity and turbulence fields to fit with 3000 geographically-referenced measurements. Conformity of predicted and empirical fallout patterns was excellent, enabling accurate reconstructions of the particle size contributions, weather conditions, and release energies from the accident. The objectives at ATNF were to evaluate means of dispersion and characterization of nuclear materials within and outside of the compound. Normal facility operations, military actions, and looting of the facility could have contributed to the release of radioactivity, but would yield quite different geographic and radionuclide profiles. Detailed gamma, alpha, and beta radiation profiles were examined for 400 geographically-referenced soil samples collected from ATNF and the villages of Ishtar and Al Ryhad. Natural uranium clusters were identified in several locations clearly showing that looting of yellowcake was the primary means of dispersion. No dispersion of nuclear materials was shown to result from military operations at the site. Our programs demonstrate the precision of geographic-based forensic reconstructions and show that forecast models are robust.(author)

  15. Nuclear safeguards and security in a changing world

    International Nuclear Information System (INIS)

    Badolato, E.V.

    1986-01-01

    Two major crises of 1986 - the Chernobyl nuclear accident and international terrorism have had the effect of making what everyone does even more critically important for U.S. national security and for the security of the world. Chernobyl can be a starting point for efforts to make nuclear power systems safer and more benign. It also poses very basic questions for nuclear arms control activities. A fundamental objective of the Administration's arms control policy is to achieve substantial and equitable reductions in U.S. and Soviet nuclear forces with effective verification. However, Chernobyl served to remind the U.S. once again of the obsessive secretiveness of the Soviet Union and the difficulties of obtaining information on Soviet nuclear weapon activities. All of this points to the importance of developing improved monitoring technologies and obtaining Soviet agreement on on-site inspection. Nuclear safeguards and security developments in response to a changing world are the topic of discussion in this paper

  16. Nuclear Power and Radiation in Public Acceptance

    International Nuclear Information System (INIS)

    Vastchenko, S. V.

    2002-01-01

    The special knowledge deficiency does not give the possibility to the majority of people to pattern their behaviour in a correct way on radiation problems and to estimate faithfully the possible damage rate to the health of a human being from the different radiation sources effects. Studying of the public opinion in Belarus has shown that one of the results of the Chernobyl NPP accident consequences is inseparability of nuclear and radiation danger in public consciousness. The anonymous questionnaire of the inhabitants living in various Belarus regions has been carried out aiming at definition of a general radiation erudition, as well as revealing the knowledge of the population about the effect of power stations (nuclear and thermal) on the environment and the human being health. Answers on questions connected with power have shown a very poor erudition of population about ecological advantages and drawbacks inherent in thermal and nuclear power plants. The majority of the respondents (about 80%) does not know about the absence of CO 2 discharge and oxygen preservation in the air. The questionnaire analysis shows that people are exclusively frightened with radiation from NPPs, but the rest sources of radiation effect do not cause so anxiety and apprehension. People in Belarus have learnt well that the reason of the majority of the diseases is radiation, so it can be frequently heard not only from mass media, but also at scientific conferences and seminars. Most of medical workers are sure that all diseases are caused by radiation. The deficiency of special knowledge on nuclear technologies in the people majority and availability of a great amount of contradictory and untrue information supplied by mass media result in overestimation of danger from energy objects and underestimation of the increased radiation dose from other sources consequences, for example, under roentgen medical examination and treatment. The investigations carried out will help to arrange

  17. Environmental monitoring data around the Chernobyl nuclear power plant used in the cooperative research project between JAERI and CHESCIR (Ukraine). Cooperative research

    International Nuclear Information System (INIS)

    Ueno, Takashi; Matsunaga, Takeshi; Amano, Hikaru

    2003-01-01

    This report is a compilation of the shared data derived from the environmental monitoring by RADEK (The state Enterprise for Region Monitoring of Environment and Dosimetric Control of Ukraine) and the record of environmental characteristics derived from field observations during a research project (1992-1999) between JAERI (Japan Atomic Energy Research Institute) and CHESCIR (Chernobyl Science and Technology Centre for International Research). The compiled data in this report are especially related to one particular research subject (Subject-3) of the project on the migration of radionuclides released into the terrestrial and aquatic environments after a nuclear accident. The present report shows the basis of published works concerning Subject-3. (author)

  18. Mayday at Chernobyl. One year on, the facts revealed

    International Nuclear Information System (INIS)

    Hamman, Henry; Parrott, Stuart.

    1987-01-01

    The book tells the story of the accident at the Chernobyl-4 reactor on April 26th 1986. It explains why and how it happened, using Soviet and Western sources. First the situation on May 1st 1986 is recounted -the May Day parade in Red Square and the desperate efforts of helicopter pilots and essential workers to cope with the immediate effects of the accident and to stop the fire in the reactor unit. Then the Soviet reaction, in particular that lack of information given about what had happened, is discussed in the context of the Soviet political regime. The Soviet nuclear policy and its nuclear power industry are explained. The story then returns to the accident itself and the immediate consequences, both in Russia, in neighbouring countries and the rest of Europe. The local effects and the environmental effects further away are discussed. The political effects on nuclear power in the USSR and the rest of the world is reviewed. (UK)

  19. CHRONIC IRRADIATION OF SCOTS PINE TREES (PINUS SYLVESTRIS) IN THE CHERNOBYL EXCLUSION ZONE: DOSIMETRY AND RADIOBIOLOGICAL EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.

    2011-10-01

    To identify effects of chronic internal and external radiation exposure for components of terrestrial ecosystems, a comprehensive study of Scots pine trees in the Chernobyl Exclusion Zone was performed. The experimental plan included over 1,100 young trees (up to 20 years old) selected from areas with varying levels of radioactive contamination. These pine trees were planted after the 1986 Chernobyl Nuclear Power Plant accident mainly to prevent radionuclide resuspension and soil erosion. For each tree, the major morphological parameters and radioactive contamination values were identified. Cytological analyses were performed for selected trees representing all dose rate ranges. A specially developed dosimetric model capable of taking into account radiation from the incorporated radionuclides in the trees was developed for the apical meristem. The calculated dose rates for the trees in the study varied within three orders of magnitude, from close to background values in the control area (about 5 mGy y{sup -1}) to approximately 7 Gy y{sup -1} in the Red Forest area located in the immediate vicinity of the Chernobyl Nuclear Power Plant site. Dose rate/effect relationships for morphological changes and cytogenetic defects were identified and correlations for radiation effects occurring on the morphological and cellular level were established.

  20. Chernobyl - state of the art

    International Nuclear Information System (INIS)

    Souza, Daiane C.B. de; Vicente, Roberto; Rostelato, Maria Elisa C.M.; Borges, Jessica F.; Tiezzi, Rodrigo; Peleias Junior, Fernando S.; Souza, Carla D.; Rodrigues, Bruna T.; Benega, Marcos A.G.; Souza, Anderson S. de; Silva, Thais H. da

    2014-01-01

    This article aims to analyze what has been done so far in relation to damage caused by the accident and the state of art in Chernobyl, as well as the impact on radiation protection applied safety nuclear power plants. In the first part of the work a data survey was done through a bibliographic review and the in the second part data was collected during a visit, in June 2013 at the crash site, when was observed dose values in the affected areas and the works of repairs that have been made in the sarcophagus and surroundings as well as in official reports available through active international bodies. The main results indicate significant improvements in radiation protection systems