WorldWideScience

Sample records for cherenkov counters

  1. Charged particle identification: Cherenkov counters at ISABELLE

    International Nuclear Information System (INIS)

    Etkin, A.; Kostoulas, I.; Leith, D.W.G.S.; Thun, R.

    1977-01-01

    A brief summary is given of a study of Cherenkov counters for ISABELLE. The study was certainy not exhaustive and was meant primarily to suggest future detector development. A substantial research effort is needed in order to insure that Cherenkov counters utilizing photoionization are fully exploited

  2. Analysis of Cherenkov counter efficiencies for E691

    International Nuclear Information System (INIS)

    Cremaldi, L.; Elliott, J.; Gibney, M.; Nauenberg, U.

    1985-01-01

    A program is outlined which simulates Cherenkov counters. The program can compute the effect of the magnetic field on the efficiencies of Cherenkov counters. It also tells what cone to mirror distance gives the highest collection efficiency and at which target position should the laser be placed to represent the direction of the actual Cherenkov light the mirror sees

  3. Beam test of Cherenkov counter prototype for ZDF setup

    International Nuclear Information System (INIS)

    Kacharava, A.K.; Macharashvili, G.G.; Nioradze, M.S.; Komarov, V.I.; Sopov, V.S.; Chernyshev, V.P.

    1995-01-01

    We describe a Cherenkov counter of total internal reflection for particle separation in the momentum range where all types of particles radiate Cherenkov light. The Cherenkov counter prototype with the lucite radiator was tested on the secondary beam of the ITEP (Moscow) accelerator. Dependence of the photomultiplier pulse height on the particle entrance angle was clearly observed. 4 refs., 4 figs

  4. Silica aerogel Cherenkov counter for the KEK B-factory experiment

    CERN Document Server

    Sumiyoshi, T; Enomoto, R; Iijima, T; Suda, R; Leonidopoulos, C; Marlow, D R; Prebys, E; Kawabata, R; Kawai, H; Ooba, T; Nanao, M; Suzuki, K; Ogawa, S; Murakami, A; Khan, M H R

    1999-01-01

    Low-refractive-index silica aerogel is a convenient radiator for threshold-type Cherenkov counters, which are used for particle identification in high-energy physics experiments. For the BELLE detector at the KEK B-Factory we have produced about 2 m sup 3 of hydrophobic silica aerogels of n=1.01-1.03 using a new production method. The particle identification capability of the aerogel Cherenkov counters was tested and 3 sigma pion/proton separation has been achieved at 3.5 GeV/c. Radiation hardness of the aerogels was confirmed up to 9.8 Mrad. The Aerogel Cherenkov counter system (ACC) was successfully installed in the BELLE just before this conference.

  5. Aerogel Cherenkov Counters of the KEDR Detector

    CERN Document Server

    Ovtin, I V; Barnyakov, M Y; Bobrovnikov, V S; Buzykaev, A R; Danilyuk, A F; Katcin, A A; Kononov, S A; Kravchenko, E A; Kuyanov, I A; Onuchin, A P; Rodiakin, V A

    2017-01-01

    The particle identification system of the KEDR detector is based on aerogel threshold Cherenkov counters called ASHIPH counters. The system consists of 160 counters arranged in two layers. An event reconstruction program for the ASHIPH system was developed. The position of each counter relative to the tracking system was determined using cosmic muons and Bhabha events. The geometric efficiency of the ASHIPH system was verified with Bhabha events. The efficiency of relativistic particle detection was measured with cosmic muons. A π/K separation of 4δ in the momentum range 0.95 −1.45 GeV/c was confirmed. A simulation program for the ASHIPH counters has been developed.

  6. Development of aerogel Cherenkov counters at Novosibirsk

    International Nuclear Information System (INIS)

    Barnyakov, A.Yu.; Barnyakov, M.Yu.; Baehr, J.; Bellunato, T.; Beloborodov, K.I.; Bobrovnikov, V.S.; Buzykaev, A.R.; Calvi, M.; Danilyuk, A.F.; Djordjadze, V.; Golubev, V.B.; Kononov, S.A.; Kravchenko, E.A.; Lipka, D.; Matteuzzi, C.; Musy, M.; Onuchin, A.P.; Perego, D.; Rodiakin, V.A.; Savinov, G.A.; Serednyakov, S.I.; Shamov, A.G.; Stephan, F.; Tayursky, V.A.; Vorobiov, A.I.

    2006-01-01

    The work on aerogel Cherenkov counters was started in Novosibirsk in 1986. Production of aerogels with refractive indices of 1.006-1.13 and thicknesses of blocks up to 50mm was developed. The light absorption length at 400nm is 5-7m, the scattering length is 4-5cm. By these parameters, the Novosibirsk aerogel is one of the best in the world. The ASHIPH Cherenkov counters with light collection on wavelength shifters have been developed. The ASHIPH system of the KEDR detector contains 1000l of aerogel. The π/K separation is 4.5σ. A project of ASHIPH counters for the SND detector has been developed. Aerogel RICH for LHCb gives a possibility to identify hadrons in the momentum range of 2-10GeV/c. The Novosibirsk group is developing an aerogel RICH for the endcap for the SuperBaBar project. Calculations performed by a group of physicists from Novosibirsk and DESY-Zeuthen have shown that aerogel radiators enable to achieve time resolution up to 20fs

  7. Silica aerogel threshold Cherenkov counters for the JLab Hall A spectrometers: improvements and proposed modifications

    CERN Document Server

    Lagamba, L; Colilli, S; Crateri, R; De Leo, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Iodice, M; Iommi, R; Leone, A; Lucentini, M; Mostarda, A; Nappi, E; Perrino, R; Pierangeli, L; Santavenere, F; Urciuoli, G M

    2001-01-01

    Recently approved experiments at Jefferson Lab Hall A require a clean kaon identification in a large electron, pion, and proton background environment. To this end, improved performance is required of the silica aerogel threshold Cherenkov counters installed in the focal plane of the two Hall A spectrometers. In this paper we propose two strategies to improve the performance of the Cherenkov counters which presently use a hydrophilic aerogel radiator, and convey Cherenkov photons towards the photomultipliers by means of mirrors with a parabolic shape in one direction and flat in the other. The first strategy is aerogel baking. In the second strategy we propose a modification of the counter geometry by replacing the mirrors with a planar diffusing surface and by displacing in a different way the photomultipliers. Tests at CERN with a 5 GeV/c multiparticle beam revealed that both the strategies are able to increase significantly the number of the detected Cherenkov photons and, therefore, the detector performan...

  8. Stability and linearity control of spectrometric channels of the Cherenkov counters using controllable units

    International Nuclear Information System (INIS)

    Kollar, D.; Kollarova, L.; Khorvat, P.

    1976-01-01

    A system is elaborated to control stability and linearity of the Cherenkov counter spectrometric channels in an experiment on a magnetic monopole search. Linearity of a light characteristic of a photoelectric multiplier is checked with the help of the calibrated light-strikings of light emitting diodes with flare intensity adjusted by controlling generator voltage across the mercury body. A program algorithm is presented for checking stability and linearity of the Cherenkov counter spectrometric channels which helps to consider the fatigue effects of the photoelectric multiplier resulting from the considerable loads

  9. Construction and performance of two multicell Cherenkov counters used in FRAMM-NA1 spectrometer

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Budinich, M.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Liello, F.; Marrocchesi, P.S.; Mensa, A.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stanga, R.; Stefanini, A.; Tonelli, G.

    1983-01-01

    Two small dimension multicell Cherenkov counters have been built for FRAMM-NA1 multiparticle spectrometer to identify pions and kaons in the momentum range between 5 and 22 GeV/c. The performances achieved and the construction details are reported. (orig.)

  10. Recent results from the DELPHI barrel ring imaging Cherenkov counter

    International Nuclear Information System (INIS)

    Anassontzis, E.G.; Ioannou, P.; Kalkanis, G.; Katsanevas, S.; Kontaxis, I.; Kourkoumelis, C.; Nounos, S.; Preve, P.; Resvanis, L.K.; Brunet, J.M.; Dolbeau, J.; Guglielmo, L.; Ledroit, F.; Poutot, D.; Tristram, G.

    1991-01-01

    The DELPHI detector, installed at LEP, is equipped with RICH (Ring Imaging Cherenkov) counters. The Barrel part incorporates a liquid (C 6 F 14 ) and a gaseous (C 5 F 12 ) radiator providing particle identification up to 20GeV/c. The Cherenkov protons of both radiators are detected by TPC-like photon detectors. The drift gas (75% CH 4 + 25% C 2 H 6 ) is doped with TMAE, but which the UV Cherenkov photons are converted into single free photo-electrons. These are drifted towards MWPC's at the end of the drift tubes and the space coordinates of the conversion point are determined. One half of the Barrel RICH is now equipped with drift tubes and has provided results from the liquid radiator since spring 1990. The gas radiator has been tested with C 2 F 6 as a preliminary filling since August 1990. The data obtained demonstrate the good particle identification potential. For the liquid radiator the number of detected photons per ring in hadron jets is N=8, whereas for muon pairs (single tracks) N=10 has been obtained. For the gas radiator 2.1 photons per track were observed, which demonstrates the good functioning of the focussing mirrors, as the C 2 F 6 this is close to the expected value

  11. Quality Assurance of Pixel Hybrid Photon Detectors for the LHCb Ring Imaging Cherenkov Counters

    CERN Document Server

    Carson, Laurence

    Pion/kaon discrimination in the LHCb experiment will be provided by two Ring Imaging Cherenkov (RICH) counters. These use arrays of 484 Hybrid Photon Detectors (HPDs) to detect the Cherenkov photons emitted by charged particles traversing the RICH. The results from comprehensive quality assurance tests on the 550 HPDs manufactured for LHCb are described. Leakage currents, dead channel probabilities, dark count rates and ion feedback rates are reported. Furthermore, measurements carried out on a sample of tubes to determine the efficiency of the HPD pixel chip by measuring the summed analogue response from the backplane of the silicon sensor are described.

  12. Efficiency calibration of a liquid scintillation counter for 90Y Cherenkov counting

    International Nuclear Information System (INIS)

    Vaca, F.; Garcia-Leon, M.

    1998-01-01

    In this paper a complete and self-consistent method for 90 Sr determination in environmental samples is presented. It is based on the Cherenkov counting of 90 Y with a conventional liquid scintillation counter. The effects of color quenching on the counting efficiency and background are carefully studied. A working curve is presented which allows to quantify the correction in the counting efficiency depending on the color quenching strength. (orig.)

  13. A long liquid Cherenkov counter for 300 to 460 MeV/c pion beams

    International Nuclear Information System (INIS)

    Zavrtanik, D.; Sever, F.; Plesko, M.; Music, M.; Kernel, G.

    1984-01-01

    A long liquid Cherenkov counter has been used to measure the proportion of muons in positive and negative pion beams in the momentum range between 300 and 460 MeV/c. A nine-parameter function fits all the spectra well. The data show a smooth dependence on incident momenta and agree with calculations of pion and muon pulse heights. (orig.)

  14. Realisation and tests of a compressed gas Cherenkov counter. Study of the pollution of a beam (1961); Realisation et essais d'un compteur cherenkov a gaz comprime etude de la pollution d'un faisceau (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Duboc, J; Banaigs, J; Detoeuf, J F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The realisation of a compressed as Cherenkov counter permits the study of the pollution of a beam of {pi} mesons with momentum varying from 220 to 11000 MeV/c. (authors) [French] La realisation d'un compteur Cherenkov a gaz sous pression permet l'etude de la pollution d'un faisceau de mesons {pi} d'impulsions comprise entre 220 et 1100 MeV/c. (auteurs)

  15. Cerenkov counters at ISABELLE

    International Nuclear Information System (INIS)

    Etkin, A.; Kostoulas, I.; Leith, D.W.G.S.; Thun, R.

    1977-01-01

    The Cherenkov counter described for use at Isabelle is a threshold counter in which light is focussed on phototubes. The counter is applicable in large-angle, small-aperture magnetic spectrometers for measurement of particle yields at large p/sub T/. Three of these counters will provide complete π-K-p separation in the range of 7-20 GeV/c. Other Cherenkov counters are discussed and a bibliography of relevant literature on the counters utilizing photoionization is included

  16. Programmable trigger for electron pairs in ring image Cherenkov counters

    International Nuclear Information System (INIS)

    Glab, J.; Baur, R.; Manner, R.

    1990-01-01

    This paper describes a programmable trigger processor for the recognition of Cherenkov rings in a RICH counter. It identifies open electron pairs and suppresses close conversion and Dalitz pairs within 20 μs. More generally, the system can be used for correlating pixel images with pattern masks in order to locate all relatively well defined patterns of a certain type. The trigger processor consists of a systolic processor array of 160 x 176, i.e., 28,160 identical processing elements (PEs) that filter out open electron pairs, and a pseudo adder array that determines whether there was at least one such pair. The processor array is assembled of 20 x 22 VLSI chips containing 8 x 8 PEs each. The semi-custom chip has been developed in 2 μ CMOS standard cell technology

  17. A large area plastic Cherenkov detector

    International Nuclear Information System (INIS)

    Bernabei, R.; Bidoli, V.; Zorzi, G. de; Biagio, A. di

    1978-01-01

    A large area Cherenkov counter has been built up using as a radiator a sheet of Pilot 425 plastic, (180x20)cm 2 x2.5 cm. Experimental tests performed with a pion beam in order to measure the average number of photoelectrons collected by photomultipliers and the scintillation to Cherenkov light ratio. (Auth.)

  18. SiPM as photon counter for Cherenkov detectors

    International Nuclear Information System (INIS)

    Roy, B.J.; Orth, H.; Schwarz, C.; Wilms, A.; Peters, K.

    2009-01-01

    Silicon photomultipliers (SiPMs) are very new type of photon counting devices that show great promise to be used as detection device in combination with scintillators/ Cherenkov radiators. SiPM is essentially an avalanche photo-diode operated in limited Geiger mode. They have been considered as potential readout devices for DIRC counter of the PANDA detector which is one of the large experiment at FAIR- the new international facility to be built at GSI, Darmstadt. In addition, the potential use of SiPM includes medical diagnosis, fluorescence measurement and high energy physics experiments. The SiPM module is a photon counting device capable of low light level detection. It is essentially an opto-semiconductor device with excellent photon counting capability and possesses great advantages over the conventional PMTs because of low voltage operation and insensitivity to magnetic fields. In many of the high energy physics experiments, the photon sensors are required to operate in high magnetic fields precluding the use of conventional PMTs. This problem can be over come with the use of SiPMs. With this motivation in mind, we have developed a SiPM test facility and have tested several commercially available SiPM for their performance study and comparison with other photon counting devices

  19. Development of aerogel Cherenkov detectors at Novosibirsk

    International Nuclear Information System (INIS)

    Barnyakov, A.Yu.; Barnyakov, M.Yu.; Baehr, J.; Bellunato, T.; Beloborodov, K.I.; Bobrovnikov, V.S.; Buzykaev, A.R.; Calvi, M.; Danilyuk, A.F.; Djordjadze, V.; Golubev, V.B.; Kononov, S.A.; Kravchenko, E.A.; Lipka, D.; Matteuzzi, C.; Musy, M.; Onuchin, A.P.; Perego, D.; Rodiakin, V.A.; Savinov, G.A.; Serednyakov, S.I.; Shamov, A.G.; Stephan, F.; Tayursky, V.A.; Vorobiov, A.I.

    2005-01-01

    The development of aerogel Cherenkov counters with the light collection using a wavelength shifter is described. 80 counters of this type are working in the KEDR detector. A project of similar counters for the SND detector based on 'heavy' aerogel with n=1.13 has been developed. Aerogel with a refractive index of 1.006-1.13 and dimensions of blocks up to 200x200x50mm 3 is produced by the Novosibirsk group for use in Cherenkov counters of different types. The Novosibirsk group is participating in the development of LHCb RICH as well as a beam diagnostics for a photo-injector test facility at DESY-Zeuthen. Recently we started development of RICH based on focusing aerogel (FARICH) for the endcap of the SuperBaBar. For the first time in the world the focusing aerogel with layers of different refractive indices has been produced

  20. Electronic equipment of Cherenkov counters for detection of extensive atmospheric showers; Ehlektronnaya apparatura cherenkovskikh detektorov dlya registratsii shiroki kh atmosfernykh livnej

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A I; meleshko, L A; Pan` kov, A A

    1996-12-31

    Paper describes electronic system of designed to record extensive atmospheric showers based on application of Cherenkov counters. Modules of preamplifier and PM divider, amplifier-scanner of two channel unit of precise time correlation, 8-channel time coder with 0.5 ns channel width and 14-input master unit are developed to realize the suggested operating circuit. 2 refs.

  1. Real-time {sup 90}Sr Counter

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Naomi; Kawai, Hideyuki; Kodama, Satoshi; Kobayashi, Atsushi; Tabata, Makoto; Ito, Hiroshi [Graduate School of Science, Chiba University, Chiba, (Japan); Han, Soorim [Graduate School of Science, Chiba University, Chiba, (Japan); National Institute of Radiological Science, Chiba, (Japan)

    2015-07-01

    Radioisotopes have been emitted around Japan due to a nuclear accident at the Fukushima Daiichi nuclear power station in March 2011. A problem is the contaminated water including the atomic nucleus which relatively has a long half- life time and soluble such as {sup 90}Sr, {sup 137}Cs. Internal exposures by {sup 90}Sr are more dangerous than {sup 137}Cs's because Sr has effective half-life time of 18 years and property of accumulation in a born. We have developed real-time {sup 90}Sr counter which is sensitive beta-ray of maximum kinematic energy of 2.28 MeV from {sup 90}Sr and insensitive of beta-ray of maximum kinematic energy of 1.17 MeV and gamma-ray from {sup 90}Sr by Cherenkov detection. This counter composes of Cerenkov counter, trigger scintillation counter and veto counter. Silica aerogel for Cherenkov counter can obtain refractive index between 1.017 and 1.049 easily. And wavelength shifting fiber (WLSF) is used as a light guide for extending effective area and producing lower cost. A mechanism of the identification of {sup 90}Sr is explained in following. In case of {sup 90}Sr, when the trigger counter reacts on the beta-ray from {sup 90}Sr, aerogel emits the Cherenkov light and WLSF reacts and read the Cherenkov light. On the other hand, in case of {sup 137}Cs, the trigger counter reacts on the beta-ray, aerogel stops the beta- ray and Cherenkov light is not emitted. Therefore, aerogel has a function as a radiator and shielding material. the gamma-ray is not reacted on the lower density detector. Cosmic rays would be also reacted by the veto counter. A prototype counter whose the effective area is 30 cm x 10 cm was obtained (2.0±1.2){sup 3} of mis-identification as {sup 137}Cs/{sup 90}Sr. Detection limit in the surface contamination inspection depends on measurement time and effective area mainly. The sensitivity of wide range, 10{sup -2} - 10{sup 4} Bq/cm{sup 2}, is obtained by adjustment of detection level in circuit of this counter. A lower

  2. In-beam test of a DIRC Cherenkov radiator with SiPM

    International Nuclear Information System (INIS)

    Kroeck, B.; Hayrapetyan, A.; Foehl, K.; Merle, O.; Dueren, M.; Roy, B.J.; Peters, K.

    2009-01-01

    One of the crucial points for any high energy physics experiment is to obtain a good pion/kaon separation i.e. particle identification (PID). For particles in minimum ionising range, the conventional methods of PID using energy loss and time of flight become insufficient. In such a situation, the measurement of velocity of particles using Cherenkov radiation is an effective tool for PID in combination with momentum information from a tracking detector. The PANDA experiment at FAIR/ GSI plans to use a novel technique for PID with detection of internally reflected Cherenkov (DIRC) light. DIRC uses, in contrast to the conventional gas Cherenkov detectors, a solid radiator and total internal reflection to guide Cherenkov photons onto a detection plane where it will be detected by advanced photon counters. A SiPM is a very new generation photon counter that has several advantages over conventional PMTs. Several prototype Cherenkov detectors with different readout systems are being developed for R and D studies. One such prototype detector with Geiger-APD readout has been built at Giessen and was tested in-beam at GSI. The present report provides details of the very first test measurement

  3. Photon detection in ring imaging Cherenkov counters

    International Nuclear Information System (INIS)

    Jansen, H.

    1988-01-01

    One of the parts of DELPHI (a detector at the CERN LEP) is the barrel-RICH which uses Cherenkov radiation to determine the velocity of charged particles; together with the measured momentum this information yields the mass of each particle. The performance of the photon detector, which determines to a large extent the analyzing power of the barrel-RICH, is studied. 98 refs.; 40 figs.; 6 tabs

  4. Cherenkov rings from aerogel detected by four large-area hybrid photodiodes

    International Nuclear Information System (INIS)

    Bellunato, T.; Braem, A.; Buzykaev, A.R.; Calvi, M.; Chesi, E.; Danilyuk, A.F.; Easo, S.; Jolly, S.; Joram, C.; Kravchenko, E.A.; Liko, D.; Matteuzzi, C.; Musy, M.; Negri, P.; Neufeld, N.; Onuchin, A.P.; Seguinot, J.; Wotton, S.

    2003-01-01

    We report on the results obtained using thick samples of silica aerogel as radiators for a Ring Imaging Cherenkov counter. Four large-diameter hybrid photodiodes with 2048 channels have been used as photon detectors. Pions and protons with momenta ranging from 6 to 10 GeV/c were separated and identified. The number of photoelectrons and the radius of the Cherenkov rings together with the Cherenkov angle resolution were measured. A comparison with a simulation program based on GEANT4 is discussed

  5. High speed decision electronics combined to a beam Cherenkov counter

    International Nuclear Information System (INIS)

    Sghaier, H.

    1993-01-01

    The Hypolit detector for identification of particles in high energy physics using the Cherenkov radiation, is based on an intensifier tube coupled to photomultipliers via a fiber-optic matrix. Cherenkov photons are focused into a ring; particle identification consists in calculating the ring radius. A fast and high level electronic system is associated to Hypolit. Besides deriving the radius, it allows a background rejection and achieves a momentum correction. This on line tagging contributes to build the WA89 trigger. Tuning is controlled with a micro-computer which makes the access to the heart of the system friendly-user

  6. Development of a 144-channel Hybrid Avalanche Photo-Detector for Belle II ring-imaging Cherenkov counter with an aerogel radiator

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S., E-mail: shohei.nishida@kek.jp [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Adachi, I. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hamada, N. [Toho University, Funabashi (Japan); Hara, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Iijima, T. [Nagoya University, Nagoya (Japan); Iwata, S.; Kakuno, H. [Tokyo Metropolitan University, Hachioji (Japan); Kawai, H. [Chiba University, Chiba (Japan); Korpar, S.; Krizan, P. [Jozef Stefan Institute, Ljubljana (Slovenia); Ogawa, S. [Toho University, Funabashi (Japan); Pestotnik, R.; Ŝantelj, L.; Seljak, A. [Jozef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, T. [Tokyo Metropolitan University, Hachioji (Japan); Tabata, M. [Chiba University, Chiba (Japan); Tahirovic, E. [Jozef Stefan Institute, Ljubljana (Slovenia); Yoshida, K. [Tokyo Metropolitan University, Hachioji (Japan); Yusa, Y. [Niigata University, Niigata (Japan)

    2015-07-01

    The Belle II detector, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron–positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity-focusing ring-imaging Cherenkov counter with an aerogel radiator is being developed. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector has been developed with Hamamatsu Photonics K.K. In this report, we describe the specification of the Hybrid Avalanche Photo-Detector and the status of the mass production.

  7. Experimental study of photon fast detector with a cathodic lecture in check pattern for annular focusing Cherenkov counters

    International Nuclear Information System (INIS)

    Arnold, R.; Guyonnet, J.L.; Giomataris, Y.; Seguinot, J.; Ypsilantis, T.

    1990-01-01

    It's about the experimental study of a photodetector for Cherenkov counters, able to separate events of a high multiplicity belonging to two successive collisions of beams (Interaction rate - 100 MHz for a luminosity of 10 33 cm -2 sec -1 at SSC). The detailed tests of the photodetector have been made to know its answer. (detection efficiency, rapidity, geometric resolution, reconstruction), to optimalize its geometry but also to elaborate and to test a Monte Carlo simulation program which can predict the comportment and the reconstruction resolution of a detector for several granularities of lecture for different devices of photon-electron converters or operation gases [fr

  8. PPO-ethanol system as wavelength shifter for the Cherenkov counting technique using a liquid scintillation counter

    International Nuclear Information System (INIS)

    Takiue, M.; Fujii, H.; Ishikawa, H.

    1984-01-01

    2,5-diphenyloxazole (PPO) has been proposed as a wavelength shifter for Cherenkov counting. Since PPO is not incorporated with water, we have introduced the fluor into water in the form of micelle using a PPO-ethanol system. This technique makes it possible to obtain a high Cherenkov counting efficiency under stable sample conditions, attributed to the proper spectrometric features of the PPO. The 32 P Cherenkov counting efficiency (68.4%) obtained from this technique is 1.62 times as large as that measured with a conventional Cherenkov technique. (orig.)

  9. Cherenkov light imaging tests with state-of-the-art solid state photon counter for the CLAS12 RICH detector

    Science.gov (United States)

    Balossino, Ilaria; Barion, L.; Contalbrigo, M.; Lenisa, P.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Movsisyan, A.; Squerzanti, S.; Turisini, M.

    2017-12-01

    A large area ring-imaging Cherenkov detector will be operated for hadron identification in the 3 GeV / c to 8 GeV / c momentum range at the CLAS12 experiment at the upgraded continuous electron beam accelerator facility of Jefferson Lab. The detector, consisting of aerogel radiator, composite mirrors and photon counters, will be built with a hybrid optics design to allow the detection of Cherenkov light for both forward and large angle hadron tracks. The active area has to be densely packed and highly segmented, covering about 1m2 with pixels of 6mm2 , and to allow a time resolution of 1 ns. A technology that can offer a cost-effective solution and low material budget could be Silicon Photomultipliers (SiPM) thanks to their high gain at low bias voltage, fast timing, good single-photoelectron resolution and insensitivity to magnetic fields. An investigation is ongoing on samples of 3 × 3mm2 SiPM of different micro-cell size to assess the single photon detection capability in the presence of high dark count rate due to thermal generation effects, after-pulses or optical cross-talk and to study the response to the moderate radiation damage expected at CLAS12. In this work, a brief review of the latest and most interesting results from these studies will be shown.

  10. A programmable systolic array correlator as a trigger processor for electron pairs in rich (ring image Cherenkov) counters

    Science.gov (United States)

    Männer, R.

    1989-12-01

    This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128 x 128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8 x 8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology.

  11. A programmable systolic array correlator as a trigger processor for electron pairs in RICH (ring image Cherenkov) counters

    International Nuclear Information System (INIS)

    Maenner, R.

    1989-01-01

    This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128x128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8x8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology. (orig.)

  12. Measuring the emulsion stability in Cherenkov radiation with insignificant modification of a liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Wiechen, A.; Lorenzen, P.Ch.; Reimerdes, E.H.

    1984-01-01

    A method is described by which the stability of emulsions can be measured by a modified liquid scintillation counter. The 226 Ra external standard source of a commercially available equipment, fixed in the measuring position, is used for the production of Cherenkov radiation in a sample of an emulsion. This Cherenkov radiation is absorbed by the sample due to its turbidity. The turbidity of emulsions follows a typical course with time designated as creaming-up-curve. These curves can be registered automatically in digital form. (author)

  13. Light collection and its fluctuation in Cherenkov and scintillation spectrometers

    International Nuclear Information System (INIS)

    Kitaev, D.F.; Samedov, V.V.; Stolyarova, E.L.

    1982-01-01

    The GAMMA program for calculating light collection in the Cherenkov and scintillation counters is described. Together with the shower modelling program the GAMNA program can be used for evaluating the output signal and energy resolution of shower spectrometers. Principle formulae and block diagram of the program are given. Results of test calculations performed on the example of scintillation counters of culindrical and rectangular shapes were considered. Modelling of the radiation polarization envisaged in the program permits to take account of the effect of selective discrimination of photoelectron amplifier photocathode. The program analyzes, for the present situation, calculation errors which permits to plan in advance the calculation with the given accuracy. The program permits to use additional subprograms together with it where it is possible to take account of other peculiarities of light collection, for example, the presence of outer reflectors and focusing elements of light collection systems, particle slowing down in the spectrometer radiator expressed in the change of angle of semiaperture of the Cherenkov radiation cone. It is concluded on the basis of analyzing results of test calculations that the choosen technique and algorithms of light collection coefficient calculation in spectrometer radiators are correct

  14. ''Conventional'' Cerenkov counters at ISABELLE

    International Nuclear Information System (INIS)

    Foley, K.J.

    1977-01-01

    Cherenkov counters to be used with ISABELLE are described. The three counters used in the Hadron Spectrometer can be used to identify particles in the range 10 to 40 GeV/c with pions separated from heavier particles down to approximately 3 GeV/c. A longer spectrometer for 400 x 400 GeV operation should also be used. The spectrometers may be used with CO 2 and H 2 . The range of particle identification of 8 to 60 GeV/c with pions separated from heavier particles down to approximately 5 GeV/c is possible

  15. An iterative method for the analysis of Cherenkov rings in the HERA-B RICH

    International Nuclear Information System (INIS)

    Staric, M.; Krizan, P.

    1999-01-01

    A new method is presented for the analysis of data recorded with a Ring Imaging Cherenkov (RICH) counter. The method, an iterative sorting of hits on the photon detector, is particularly useful for events where rings overlap considerably. The algorithm was tested on simulated data for the HERA-B experiment

  16. Cherenkov radiation imaging of beta emitters: in vitro and in vivo results

    International Nuclear Information System (INIS)

    Spinelli, Antonello E.; Boschi, Federico; D'Ambrosio, Daniela; Calderan, Laura; Marengo, Mario; Fenzi, Alberto; Menegazzi, Marta; Sbarbati, Andrea; Del Vecchio, Antonella; Calandrino, Riccardo

    2011-01-01

    The main purpose of this work was to investigate both in vitro and in vivo Cherenkov radiation (CR) emission coming from 18 F and 32 P. The main difference between 18 F and 32 P is mainly the number of the emitted light photons, more precisely the same activity of 32 P emits more CR photons with respect to 18 F. In vitro results obtained by comparing beta counter measurements with photons average radiance showed that Cherenkov luminescence imaging (CLI) allows quantitative tracer activity measurements. In order to investigate in vivo the CLI approach, we studied an experimental xenograft tumor model of mammary carcinoma (BB1 tumor cells). Cherenkov in vivo dynamic whole body images of tumor bearing mice were acquired and the tumor tissue time activity curves reflected the well-known physiological accumulation of 18 F-FDG in malignant tissues with respect to normal tissues. The results presented here show that it is possible to use conventional optical imaging devices for in vitro or in vivo study of beta emitters.

  17. Cherenkov radiation imaging of beta emitters: in vitro and in vivo results

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Antonello E., E-mail: spinelli.antonello@hsr.it [Medical Physics Department, S. Raffaele Scientific Institute, Via Olgettina N. 60, Milan (Italy); Boschi, Federico [Department of Morphological-Biomedical Sciences, University of Verona, Strada Le Grazie N. 8, Verona (Italy); D' Ambrosio, Daniela [Medical Physics Department, S. Orsola-Malpighi University Hospital, via Massarenti N. 9, Bologna (Italy); Calderan, Laura [Department of Morphological-Biomedical Sciences, University of Verona, Strada Le Grazie N. 8, Verona (Italy); Marengo, Mario [Medical Physics Department, S. Orsola-Malpighi University Hospital, via Massarenti N. 9, Bologna (Italy); Fenzi, Alberto [Department of Morphological-Biomedical Sciences, University of Verona, Strada Le Grazie N. 8, Verona (Italy); Menegazzi, Marta [Department of Life and Reproduction Sciences, University of Verona, Strada Le Grazie N. 8, Verona (Italy); Sbarbati, Andrea [Department of Morphological-Biomedical Sciences, University of Verona, Strada Le Grazie N. 8, Verona (Italy); Del Vecchio, Antonella; Calandrino, Riccardo [Medical Physics Department, S. Raffaele Scientific Institute, Via Olgettina N. 60, Milan (Italy)

    2011-08-21

    The main purpose of this work was to investigate both in vitro and in vivo Cherenkov radiation (CR) emission coming from {sup 18}F and {sup 32}P. The main difference between {sup 18}F and {sup 32}P is mainly the number of the emitted light photons, more precisely the same activity of {sup 32}P emits more CR photons with respect to {sup 18}F. In vitro results obtained by comparing beta counter measurements with photons average radiance showed that Cherenkov luminescence imaging (CLI) allows quantitative tracer activity measurements. In order to investigate in vivo the CLI approach, we studied an experimental xenograft tumor model of mammary carcinoma (BB1 tumor cells). Cherenkov in vivo dynamic whole body images of tumor bearing mice were acquired and the tumor tissue time activity curves reflected the well-known physiological accumulation of {sup 18}F-FDG in malignant tissues with respect to normal tissues. The results presented here show that it is possible to use conventional optical imaging devices for in vitro or in vivo study of beta emitters.

  18. A ring imaging Cherenkov counter for the AMS experiment: simulation, prototype and perspective; Un imageur d'anneaux tcherenkov pour l'experience AMS: simulation, prototypie et perspectives physiques

    Energy Technology Data Exchange (ETDEWEB)

    Thuillier, T

    2000-05-01

    The AMS spectrometer is scheduled to be installed on the International Space Station ISS in 2003. The detector will be equipped with a Ring Imaging Cherenkov Counter (RICH). The report starts with a presentation of the physics goals of AMS and continues with a description of the spectrometer. The RICH detector response and event reconstruction is then described and detailed. The presentation proceeds with a simulation study of cosmic ray nuclei expected with the AMS RICH counter in space. Next, the thesis reports on the research and development of a RICH prototype built and tested in the period 1997-1999 in the Grenoble Institute of Nuclear Science (ISN). The response of the prototype and its calibration are described. Tests have been performed with cosmic rays at ground and ion beam at GSI-Darmstadt. The data analysis of the test campaigns is then presented and compared with simulation results. Finally, a dedicated test of Albedo particle Rejection Power of the RICH detector is reported. (author)

  19. CORNELL: CLEO's counters

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Particle identification by measuring ionization is complicated by the fact that the energy lost to ionization in passing through matter has large fluctuations, first calculated by Landau. These large fluctuations imply that many measurements must be made in order to determine the most probable ionization value that is characteristic of the particle type. The JADE chamber at PETRA and the TPC chamber at PEP measure both the ionization and the momenta of tracks in the same device. In the CLEO experiment at Cornell's CESR ring, ionization is measured in dedicated energy loss counters contained in each of the eight octants surrounding the drift chamber and superconducting coil. The last of these were installed in the summer of 1981, replacing Cherenkov counters that were used while the energy loss counters were being developed and built

  20. The DIRC counter: A new type of particle identification device for B factories

    International Nuclear Information System (INIS)

    Coyle, P.; Lu, A.

    1992-07-01

    A very thin, solid radiator, totally internally reflecting, imaging Cherenkov counter (DIRC) is described. this device is well matched to the hadronic charged particle identification requirements at an asymmetric e + e - B Factory

  1. The DIRC counter: A new type of particle identification device for B factories

    International Nuclear Information System (INIS)

    Ratcliff, B.

    1993-01-01

    A very thin, solid radiator, totally internally reflecting, imaging Cherenkov counter (DIRC) is described. This device is well matched to the hadronic charged particle identification requirements at an asymmetric e + e - B Factory

  2. DIRC dreams: research directions for the next generation of internally reflected imaging counters

    International Nuclear Information System (INIS)

    Ratcliff, Blair N.; Spanier, Stefan

    1999-01-01

    Some conceptual design features of the total internally reflecting, imaging Cherenkov counter (DIRC) are described. Limits of the DIRC approach to particle identification, and a few features of alternative DIRC designs, are briefly explored

  3. New air Cherenkov light detectors to study mass composition of cosmic rays with energies above knee region

    Energy Technology Data Exchange (ETDEWEB)

    Tsunesada, Yoshiki, E-mail: tsunesada@cr.phys.titech.ac.jp [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550 Japan (Japan); Katsuya, Ryoichi, E-mail: katsuya@cr.phys.titech.ac.jp [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550 Japan (Japan); Mitsumori, Yu; Nakayama, Keisuke; Kakimoto, Fumio; Tokuno, Hisao [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550 Japan (Japan); Tajima, Norio [RIKEN, Wako, Saitama 351-0198 (Japan); Miranda, Pedro; Salinas, Juan; Tavera, Wilfredo [Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz (Bolivia, Plurinational State of)

    2014-11-01

    We have installed a hybrid detection system for air showers generated by cosmic rays with energies greater than 3×10{sup 15}eV at Mount Chacaltaya (5200 m above the sea level), in order to study the mass composition of cosmic rays above the knee region. This detection system comprises an air shower array with 49 scintillation counters in an area of 500 m×650 m, and seven new Cherenkov light detectors installed in a radial direction from the center of the air shower array with a separation of 50 m. It is known that the longitudinal development of a particle cascade in the atmosphere strongly depends on the type of the primary nucleus, and an air shower initiated by a heavier nucleus develops faster than that by a lighter primary of the same energy, because of the differences in the interaction cross-section and the energy per nucleon. This can be measured by detecting the Cherenkov radiation emitted from charged particles in air showers at higher altitudes. In this paper we describe the design and performance of our new non-imaging Cherenkov light detectors at Mount Chacaltaya that are operated in conjunction with the air shower array. The arrival directions and energies of air showers are determined by the shower array, and information about the primary masses is obtained from the Cherenkov light data including the time profiles and lateral distributions. The detector consists of photomultiplier tube (PMT), high-speed ADCs, other control modules, and data storage device. The Cherenkov light signals from an air shower are typically 10–100 ns long, and the waveforms are digitized with a sampling frequency of 1 GHz and recorded in situ without long-distance analog signal transfers. All the Cherenkov light detectors record their time-series data by receiving a triggering signal transmitted from the trigger module of the air shower array, which is fired by a coincidence of shower signals in four neighboring scintillation counters. The optical characteristics of the

  4. Performance Studies of Pixel Hybrid Photon Detectors for the LHCb RICH Counters

    CERN Document Server

    Aglieri Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2004-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  5. DIRC Dreams Redux: Research Directions for the Next Generation of Internally Reflected Imaging Counters

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Blair N

    2001-09-18

    Some general conceptual design features of total internally reflecting, imaging Cherenkov counters (DIRCs) are described. Limits of the DIRC approach to particle identification and a few features of alternative DIRC designs are briefly explored.

  6. Development of proportional counters using photosensitive gases and liquids

    International Nuclear Information System (INIS)

    Anderson, D.F.

    1984-10-01

    An introduction to the history and to the principle of operation of wire chambers using photosensitive gases and liquids is presented. Their use as light sensors coupled to Gas Scintillation Proportional Counters and BaF 2 , as well as their use in Cherenkov Ring imaging, is discussed in some detail. 42 references, 21 figures

  7. THGEM based photon detector for Cherenkov imaging applications

    CERN Document Server

    Alexeev, M; Bradamante, F; Bressan, A; Chiosso, M; Ciliberti, P; Croci, G; Colantoni, M L; Dalla Torre, S; Duarte Pinto, S; Denisov, O; Diaz, V; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Giacomini, G; Giorgi, M; Gobbo, B; Heinsius, F H; Herrmann, F; Jahodova, V; Königsmann, K; Lauser, L; Levorato, S; Maggiora, A; Martin, A; Menon, G; Nerling, F; Panzieri, D; Pesaro, G; Polak, J; Rocco, E; Ropelewski, L; Sauli, F; Sbrizzai, G; Schiavon, P; Schill, C; Schopferer, S; Slunecka, M; Sozzi, F; Steiger, L; Sulc, M; Takekawa, S; Tessarotto, F; Wollny, H

    2010-01-01

    We are developing a single photon detector for Cherenkov imaging counters. This detector is based on the use of THGEM electron multipliers in a multilayer design. The major goals of our project are ion feedback suppression down to a few per cent, large gain, fast response, insensitivity to magnetic fields, and a large detector size. We report about the project status and perspectives. In particular, we present a systematic study of the THGEM response as a function of geometrical parameters, production techniques and the gas mixture composition. The first figures obtained from measuring the response of a CsI coated THGEM to single photons are presented.

  8. Discovery of high energy electrons in the radiation belt by devices with gas Cherenkov counters

    International Nuclear Information System (INIS)

    Kirillov-Ugryumov, V.G.; Galper, A.M.; Dmitrenko, V.V.

    1986-01-01

    A detailed study of the trapped electrons was undertaken with Bulgary-1300 satellite, the orbit altitude and the inclination being proportional900 km and 81 0 , respectively. The instrument axis in this case was perpendicular to the orbit plane. A scintillation-Cherenkov telescope, Electron, with parameters similar to that of Elena was used. (orig./HSI)

  9. Application of Cherenkov light observation to reactor measurements (2). Design and trial fabrication of Cherenkov light estimation system

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Hayashi, Takayasu; Kosuge, Fumiaki; Sano, Tadafumi

    2015-11-01

    Development of the reactor measurement system was started to obtain the real-time in-core nuclear and thermal information, where the quantitative measurement of brightness of Cherenkov light was investigated. This report summarized the results of design and trial fabrication of the Cherenkov light estimation system from thermal power evaluation from Cherenkov light image emitted from the fuel elements. The developed Cherenkov light estimation system was verified with the Cherenkov light image emitted from the fuels in the core of Kyoto University Research Reactor (KUR). From the results, the thermal power of the fuel elements evaluated from the brightness of the Cherenkov light observed by a CCD camera was almost the same as that of thermal power calculated from SRAC code. On the other hand, the evaluation values of some fuel elements were different from the calculation values. This, it is necessary to improve the observation method of Cherenkov light in the reactor and the evaluation method of the brightness of Cherenkov light. (author)

  10. Progress in Cherenkov femtosecond fiber lasers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2016-01-01

    systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond......We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser...... Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuumbased...

  11. The Cherenkov Bremsstrahlung

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1995-01-01

    The vanishing of the 'retardation factor' leads to a significant growth of the intensity of the electromagnetic field 'velocity part' of the moving charge. The Cherenkov radiation is its physical consequence. The same reason also conditions the growth of another term: the 'acceleration part' of the field which gives rise to the 'Cherenkov Bremsstrahlung'. 4 refs

  12. Cherenkov radiation

    International Nuclear Information System (INIS)

    Hubert, P.

    1955-01-01

    When the radioactivity has been discovered, it was observed by researchers that different materials as mineral salts or solutions were emitting a weak light when submitted to radioactivity beams. At the beginning it has been thought that it was fluorescent light. In 1934, Cherenkov, a russian physicist, worked on the luminescence of uranyl salts solutions caused by gamma radiation and observed a very weak light was emitted by pure liquid. After further studies, he concluded that this phenomena was different from fluorescence. Since then, it has been called Cherenkov effect. This blue light emission is produced when charged particles are going through a transparent medium with an upper velocity than light velocity. This can happen only in medium with large refractive index as water or glass. It also presents its different properties discovered afterwards. The different applications of the Cherenkov radiation are discussed as counting techniques for radiation detectors or comic ray detectors. (M.P.)

  13. Cherenkov radiation in vacuum. 1

    International Nuclear Information System (INIS)

    Kozik, B.

    1985-01-01

    After discussing some historical aspects of the Cherenkov effect from electrodynamic and quantum theoretical points of view a methodically clear and simple theory of the Cherenkov effect is presented in which an arbitrary shaped rigid charge distribution is considered and which is based only on essential knowledge of Fourier transformations and cylindric functions. The Cherenkov effect is derived as a consequence of the structure of the potentials and the influence of the geometric shape of the charge distribution on the spectral distribution of the radiation intensity is taken into account in a general form. The educational value of such a representation of the Cherenkov effect in textbooks is emphasized

  14. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  15. Trends in the development of large area photon detectors for Cherenkov light imaging applications

    CERN Document Server

    Nappi, E

    2003-01-01

    Since the successful operations of hi-tech devices at OMEGA, DELPHI and SLD, the technique of Cherenkov light imaging has gone through an impressive and fruitful evolution driven by the conception of novel large area photon detectors. The well-assessed potentialities of thin CsI films, employed as reflective photoconverters in gas counters operated at atmospheric pressure, will be compared with the promising features of hybrid and multianode vacuum photomultipliers. Recently proposed single-photon gaseous detectors based on GEMs will also be reviewed.

  16. An experimental study on cyclotron-Cherenkov radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C Y; Masuzaki, M; Yoshida, H; Toyosugi, N; Kamada, K; Ando, R [Kanazawa Univ. (Japan). Department of Physics

    1997-12-31

    Dielectric-loaded cylindrical waveguide configurations with an injected electron beam in which the growth rate of the cyclotron-Cherenkov instability surpasses that of the Cherenkov instability were sought by numerical treatment, and one configuration of this kind was found. This configuration consists of a metallic core and an outer metallic cylinder with a dielectric liner on the inner surface. Based on the calculations, an experimental device was designed and assembled to investigate experimentally radiation due to the cyclotron-Cherenkov instability. Beam propagation in the dielectric-loaded coaxial waveguide and microwave radiation due to the cyclotron-Cherenkov instability and the Cherenkov instability were studied. (author). 6 figs., 10 refs.

  17. Construction of silica aerogel radiator system for Belle II RICH Counter

    Science.gov (United States)

    Adachi, I.; Dolenec, R.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Križan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Pestotnik, R.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yonenaga, M.; Yusa, Y.

    2017-12-01

    We have developed a RICH counter as a new forward particle identification device for the Belle II experiment. As a Cherenkov radiator in this counter, a dual aerogel layer combination consisting of two refractive indicies, n=1.045 and 1.055, is employed. Mass production of these aerogel tiles has been done during 2013-2014 with new method improved by Chiba group. Optical qualities for them have been examined. The refractive indices of the obtained tiles were found to be in good agreement with our expectations, and the transparencies were high enough to be used for the RICH radiator.

  18. The Cherenkov Radiation for Non-Trivial Systems; La Radiacion Cherenkov en Sistemas No Triviales

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.

    2002-07-01

    The charge pathways and the dielectric properties of the medium are two essential aspects to be considered in the study of the emission of Cherenkov radiation. We described the evolution of the Cherenkov wavefront when the charges follow circular or helical pathways. Also we derive expressions for the refractive Index in different transparent media (solid, liquid or gas), focusing our attention on optically active plasmas. The optical analogies between the plasma and the birefringent crystals is studied in detail. Finally, we list some examples of plasmas, which can be considered emitters of Cherenkov radiation. (Author) 52 refs.

  19. The aerogel threshold Cherenkov detector for the high momentum spectrometer in Hall C at Jefferson lab

    International Nuclear Information System (INIS)

    Razmik Asaturyan; Rolf Ent; Howard Fenker; David Gaskell; Garth Huber; Mark Jones; David Mack; Hamlet Mkrtchyan; Bert Metzger; Nadia Novikoff; Vardan Tadevosyan; William Vulcan; Stephen Wood

    2004-01-01

    We describe a new aerogel threshold Cherenkov detector installed in the HMS spectrometer in Hall C at Jefferson Lab. The Hall C experimental program in 2003 required an improved particle identification system for better identification of π/K/p, which was achieved by installing an additional threshold Cherenkov counter. Two types of aerogel with n = 1.03 and n = 1.015 allow one to reach ∼10 -3 proton and 10 -2 kaon rejection in the 1-5 GeV/c momentum range with pion detection efficiency better than 99% (97%). The detector response shows no significant position dependence due to a diffuse light collection technique. The diffusion box was equipped with 16 Photonis XP4572 PMT's. The mean number of photoelectrons in saturation was ∼16 and ∼8, respectively. Moderate particle identification is feasible near threshold

  20. The aerogel Ring Imaging Cherenkov system at the Belle II spectrometer

    Science.gov (United States)

    Pestotnik, R.; Adachi, I.; Dolenec, R.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Križan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yonenaga, M.; Yusa, Y.

    2017-12-01

    In the forward end-cap of the Belle II spectrometer, a proximity focusing Ring Imaging Cherenkov counter with an aerogel radiator will be installed. The detector will occupy a limited space inside solenoid magnet with longitudinal field of 1.5 T. It will consist of a double layer aerogel radiator, an expansion volume and a photon detector. 420 Hamamatsu hybrid avalanche photo sensors with 144 channels each will be used to read out single Cherenkov photons with high efficiency. More than 60,000 analog signals will be digitized and processed in the front end electronics and send to the unified experiment data acquisition system. The detector components have been successfully produced and are now being installed in the spectrometer. Tested before on the bench, they are currently being installed in the mechanical frame. Part of the detector have been commissioned and connected to the acquisition system to register the cosmic ray particles. The first preliminary results are in accordance with previous expectations. We expect an excellent performance of the device which will allow at least a 4σ separation of pions from kaons in the experiment kinematic region from 0.5 GeV/c to 4 GeV/c.

  1. CAMAC-system for calibration and control of experimental apparatus with scintillation counters

    International Nuclear Information System (INIS)

    Petrov, A.G.; Sinaev, A.N.

    1977-01-01

    The CAMAC-system is described, connected to the minicomputer PH-2116C, for calibration and control of an experiment on pion scattering on He-nuclei performed with a streamer chamber triggered by a scintillation hodoscope. The following operations are performed: -delay calibration in telescope and hodoscope tracts involving 22 scintillation counters; -control of relative efficiency of hodoscope counters and other parameters of the experiments; -control of HV supply of photomultipliers; -control of the currents of magnets and lenses of the muon track of the synchrocyclotron; -measurement of pulse-hight spectra from a Cherenkov counter to determine the beam composition. The working programs are initiated and the dialogue with the computer is carried out using an alphanumerical display connected to the PH-2116C via a CAMAC interface

  2. Asymmetric Cherenkov acoustic reverse in topological insulators

    Science.gov (United States)

    Smirnov, Sergey

    2014-09-01

    A general phenomenon of the Cherenkov radiation known in optics or acoustics of conventional materials is a formation of a forward cone of, respectively, photons or phonons emitted by a particle accelerated above the speed of light or sound in those materials. Here we suggest three-dimensional topological insulators as a unique platform to fundamentally explore and practically exploit the acoustic aspect of the Cherenkov effect. We demonstrate that by applying an in-plane magnetic field to a surface of a three-dimensional topological insulator one may suppress the forward Cherenkov sound up to zero at a critical magnetic field. Above the critical field the Cherenkov sound acquires pure backward nature with the polar distribution differing from the forward one generated below the critical field. Potential applications of this asymmetric Cherenkov reverse are in the design of low energy electronic devices such as acoustic ratchets or, in general, in low power design of electronic circuits with a magnetic field control of the direction and magnitude of the Cherenkov dissipation.

  3. Silicon photomultiplier as a detector of Cherenkov photons

    International Nuclear Information System (INIS)

    Korpar, S.; Dolenec, R.; Hara, K.; Iijima, T.; Krizan, P.; Mazuka, Y.; Pestotnik, R.; Stanovnik, A.; Yamaoka, M.

    2008-01-01

    A novel photon detector-i.e. the silicon photomultiplier-whose main advantage over conventional photomultiplier tubes is the operation in high magnetic fields, has been tested as a photon detector in a proximity focusing RICH with aerogel radiator. This type of RICH counter is proposed for the upgrade of the Belle detector at the KEK B-factory. Recently produced silicon photomultipliers show less noise and have larger size, which are important issues for a large area photon detector. We measured the single photon pulse height distribution, the timing resolution and the position sensitivity for different silicon photomultipliers (Hamamatsu MPPC HC025, HC050, and HC100). The silicon photomultipliers were then used to detect Cherenkov photons emitted by cosmic ray particles in a proximity focusing aerogel RICH. Various light guides were investigated in order to increase the detection efficiency

  4. Cherenkov water detector NEVOD

    Science.gov (United States)

    Petrukhin, A. A.

    2015-05-01

    A unique multipurpose Cherenkov water detector, the NEVOD facility, uses quasispherical measuring modules to explore all the basic components of cosmic rays on Earth's surface, including neutrinos. Currently, the experimental complex includes the Cherenkov water detector, a calibration telescope system, and a coordinate detector. This paper traces the basic development stages of NEVOD, examines research directions, presents the results obtained, including the search for the solution to the 'muon puzzle', and discusses possible future development prospects.

  5. TOP counter for particle identification at the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Inami, Kenji

    2014-12-01

    Ring imaging Cherenkov counter, named TOP counter, utilizing precise photon detection timing has been developed as a particle identification detector for the Belle II experiment. The real size prototype has been produced and tested with 2 GeV positrons at Spring-8 LEPS beam line. The quartz radiator production and assembling with microchannel plate photomultipliers was successfully carried out. The beam test data shows good agreement with full Monte-Carlo simulation results in the ring image and the distribution of number of detected photons and timing information. - Highlights: • TOP counter was developed as a particle identification detector for the Belle II experiment. • The real size prototype was produced and tested with 2 GeV positrons. • The quartz radiator production and assembling with MCP-PMT was successfully carried out. • The beam test data shows good agreement with full Monte-Carlo simulation results.

  6. On Cherenkov light production by irradiated nuclear fuel rods

    International Nuclear Information System (INIS)

    Branger, E.; Grape, S.; Svärd, S. Jacobsson; Jansson, P.; Sundén, E. Andersson

    2017-01-01

    Safeguards verification of irradiated nuclear fuel assemblies in wet storage is frequently done by measuring the Cherenkov light in the surrounding water produced due to radioactive decays of fission products in the fuel. This paper accounts for the physical processes behind the Cherenkov light production caused by a single fuel rod in wet storage, and simulations are presented that investigate to what extent various properties of the rod affect the Cherenkov light production. The results show that the fuel properties have a noticeable effect on the Cherenkov light production, and thus that the prediction models for Cherenkov light production which are used in the safeguards verifications could potentially be improved by considering these properties. It is concluded that the dominating source of the Cherenkov light is gamma-ray interactions with electrons in the surrounding water. Electrons created from beta decay may also exit the fuel and produce Cherenkov light, and e.g. Y-90 was identified as a possible contributor to significant levels of the measurable Cherenkov light in long-cooled fuel. The results also show that the cylindrical, elongated fuel rod geometry results in a non-isotropic Cherenkov light production, and the light component parallel to the rod's axis exhibits a dependence on gamma-ray energy that differs from the total intensity, which is of importance since the typical safeguards measurement situation observes the vertical light component. It is also concluded that the radial distributions of the radiation sources in a fuel rod will affect the Cherenkov light production.

  7. On the fine structure of the Vavilov-Cherenkov radiation

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Kartavenko, V.G.; Zrelov, V.P.

    2003-01-01

    The aim of this paper is to study the fine structure of the Cherenkov rings. We analyze Zrelov's experiments in which the Cherenkov radiation was detected without using the special focusing devices. The broad Cherenkov ring was observed in the plane perpendicular to the motion axis. Using the exact and approximate formulae, we investigate how a charge uniformly moving in a medium radiates in a finite space interval. The formulae obtained describe the radiation intensity in the whole space interval, inside and outside the Cherenkov ring. In the plane perpendicular to the motion axis, the radiation fills mainly the finite ring. Its width, proportional to the motion interval, and the energy released in this ring do not depend on the position of the observation plane. Outside the Cherenkov ring, the radiation intensity suddenly drops. Inside it, the radiation intensity exhibits small oscillations which are due to the interference of the Vavilov-Cherenkov radiation and bremsstrahlung. The increase in the radiation intensity at the ends of the Cherenkov ring is associated with the shock waves arising at the beginning and the end of the charge motion and at the moments when the charge velocity coincides with the light velocity in a medium. For the chosen motion interval, the well-known Tamm formula does not describe the radiation intensity inside the Cherenkov ring for any position of the observation plane. Outside the Cherenkov ring, the Tamm formula is valid only at very large observation distances. Theoretical calculations are in satisfactory agreement with experimental data. Thus, the combined experimental and theoretical study of the unfocused Cherenkov rings allows one to obtain information on the physical processes accompanying the Cherenkov radiation (bremsstrahlung, transition of the light velocity barrier, etc.)

  8. Performance of aerogel as Cherenkov radiator

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Negri, P.; Braem, A.; Chesi, E.; Hansen, C.; Liko, D.; Joram, C.; Neufeld, N.; Seguinot, J.; Weilhammer, P.; Buzykaev, A.R.; Kravchenko, E.A.; Onuchin, A.P.; Danilyuk, A.F.; Easo, S.; Wotton, S.; Jolly, S.

    2004-01-01

    Aerogel with index of refraction around 1.03 has been studied as Cherenkov radiator in a test at CERN PS using a π - and a mixed π + /p beam of momenta between 6 and 10 GeV/c. The Cherenkov photons were detected by means of four large HPD tubes designed and constructed at CERN. Results on the photoelectron yield, the Cherenkov angle and its resolution, and the π/p separation are obtained. The performances measured demonstrate that a RICH with aerogel is a viable detector for experiments with high multiplicity of particles in the final state

  9. Particle Identification in Cherenkov Detectors using Convolutional Neural Networks

    CERN Document Server

    Theodore, Tomalty

    2016-01-01

    Cherenkov detectors are used for charged particle identification. When a charged particle moves through a medium faster than light can propagate in that medium, Cherenkov radiation is released in the shape of a cone in the direction of movement. The interior of the Cherenkov detector is instrumented with PMTs to detect this Cherenkov light. Particles, then, can be identified by the shapes of the images on the detector walls.

  10. Application of Cherenkov light observation to reactor measurements (1). Estimation of reactor power from Cherenkov light intensity

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Takeuchi, Tomoaki; Kimura, Nobuaki; Ohtsuka, Noriaki; Tsuchiya, Kunihiko; Sano, Tadafumi; Nakajima, Ken; Homma, Ryohei; Kosuge, Fumiaki

    2015-01-01

    Development of the reactor measurement system was started to obtain the real-time in-core nuclear and thermal information, where the quantitative measurement of brightness of Cherenkov light was investigated. The system would be applied as a monitoring system in severe accidents and for the advanced operation management technology in existing LWRs. The calculation and the observation were performed to obtain the quantity of the Cherenkov light caused by the gamma and beta rays emitted from the fuels in the core of Kyoto University Research Reactor. The results indicate that the real-time reactor power can be estimated from the brightness of the Cherenkov light observed by a CCD camera. This method can also work for the estimation of the burn-up of spent fuels at commercial reactors. Since the observed brightness value of the Cherenkov light was influenced by the camera position, the optical observation method should be improved to achieve high accuracy observation. (author)

  11. All-fiber femtosecond Cherenkov radiation source

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe

    2012-01-01

    -conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics...

  12. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET

    Science.gov (United States)

    Brunner, S. E.; Schaart, D. R.

    2017-06-01

    Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times (CRT) between 325 ps and 400 ps FWHM have recently been developed. Before the introduction of L(Y)SO:Ce, BGO was used in many PET systems. In addition to a lower price, BGO offers a superior attenuation coefficient and a higher photoelectric fraction than L(Y)SO:Ce. However, BGO is generally considered an inferior TOF-PET scintillator. In recent years, TOF-PET detectors based on the Cherenkov effect have been proposed. However, the low Cherenkov photon yield in the order of  ˜10 photons per event complicates energy discrimination-a severe disadvantage in clinical PET. The optical characteristics of BGO, in particular its high transparency down to 310 nm and its high refractive index of  ˜2.15, are expected to make it a good Cherenkov radiator. Here, we study the feasibility of combining event timing based on Cherenkov emission with energy discrimination based on scintillation in BGO, as a potential approach towards a cost-effective TOF-PET detector. Rise time measurements were performed using a time-correlated single photon counting (TCSPC) setup implemented on a digital photon counter (DPC) array, revealing a prompt luminescent component likely to be due to Cherenkov emission. Coincidence timing measurements were performed using BGO crystals with a cross-section of 3 mm  ×  3 mm and five different lengths between 3 mm and 20 mm, coupled to DPC arrays. Non-Gaussian coincidence spectra with a FWHM of 200 ps were obtained with the 27 mm3 BGO cubes, while FWHM values as good as 330 ps were achieved with the 20 mm long crystals. The FWHM value was found to improve with decreasing temperature, while the FWTM value showed the opposite trend.

  13. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET.

    Science.gov (United States)

    Brunner, S E; Schaart, D R

    2017-06-07

    Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times (CRT) between 325 ps and 400 ps FWHM have recently been developed. Before the introduction of L(Y)SO:Ce, BGO was used in many PET systems. In addition to a lower price, BGO offers a superior attenuation coefficient and a higher photoelectric fraction than L(Y)SO:Ce. However, BGO is generally considered an inferior TOF-PET scintillator. In recent years, TOF-PET detectors based on the Cherenkov effect have been proposed. However, the low Cherenkov photon yield in the order of  ∼10 photons per event complicates energy discrimination-a severe disadvantage in clinical PET. The optical characteristics of BGO, in particular its high transparency down to 310 nm and its high refractive index of  ∼2.15, are expected to make it a good Cherenkov radiator. Here, we study the feasibility of combining event timing based on Cherenkov emission with energy discrimination based on scintillation in BGO, as a potential approach towards a cost-effective TOF-PET detector. Rise time measurements were performed using a time-correlated single photon counting (TCSPC) setup implemented on a digital photon counter (DPC) array, revealing a prompt luminescent component likely to be due to Cherenkov emission. Coincidence timing measurements were performed using BGO crystals with a cross-section of 3 mm  ×  3 mm and five different lengths between 3 mm and 20 mm, coupled to DPC arrays. Non-Gaussian coincidence spectra with a FWHM of 200 ps were obtained with the 27 mm 3 BGO cubes, while FWHM values as good as 330 ps were achieved with the 20 mm long crystals. The FWHM value was found to improve with decreasing temperature, while the FWTM value showed the opposite

  14. FACT. Bokeh alignment for Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sebastian Achim [ETH Zurich (Switzerland); Buss, Jens [TU Dortmund (Germany)

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need fast and large imaging optics to map the faint Cherenkov light emitted in cosmic ray air showers onto their image sensors. Segmented reflectors are inexpensive, lightweight and offer good image quality. However, alignment of the mirror facets remains a challenge. A good alignment is crucial in IACT observations to separate gamma rays from hadronic cosmic rays. We present a simple, yet extendable method, to align segmented reflectors using their Bokeh. Bokeh alignment does not need a star or good weather nights but can be done anytime, even during the day. Bokeh alignment optimizes the facet orientations by comparing the segmented reflector's Bokeh to a predefined template. The Bokeh is observed using the out of focus image of a nearby point like light source in a distance of about ten times the focal lengths. We introduce Bokeh alignment on segmented reflectors and present its use on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on Canary Island La Palma, as well as on the Cherenkov Telescope Array (CTA) Medium Size Telescope (MST) prototype in Berlin Adlershof.

  15. Measurement of radionuclides in the environment via Cherenkov radiation

    International Nuclear Information System (INIS)

    Ross, H.H.

    1987-01-01

    The author has developed an alternate approach to the measurement of some beta-emitting nuclides that utilizes the luminescence generated by the Cherenkov process. The luminescence, now known as Cherenkov radiation, was shown to be generated when a charged particle passes through a transparent medium at a speed that exceeds the phase velocity of light in the same medium. Cherenkov emission is different from most other luminescence processes in that it is a purely physical phenomenon. One consequence of this is that Cherenkov systems are free of chemical quenching effects. Conventional methods of analysis for environmental levels of beta-emitting radionuclides are often tedious, time-consuming, and expensive. The Cherenkov method is fast, requires very little operator attention, and is much less expensive to perform

  16. Optical fiber Cherenkov detector for beam current monitoring

    International Nuclear Information System (INIS)

    Pishchulin, I.V.; Solov'ev, N.G.; Romashkin, O.B.

    1991-01-01

    The results obtained in calculation of an optical fiber Cherenkov detector for accelerated beam current monitoring are presented. The technique of beam parameters monitoring is based on Cherenkov radiation excitation by accelerated electrons in the optical fiber. The formulas for calculations of optical power and time dependence of Cherenkov radiation pulse are given. The detector sensitivity and time resolution dependence on the fiber material characteristics are investigated. Parameters of a 10μm one-mode quartz optical fiber detector for the free electron laser photoinjector are calculated. The structure of a monitoring system with the optical fiber Cherenkov detector is considered. Possible applications of this technique are discussed and some recommendations are given

  17. Spontaneous emission in Cherenkov FEL devices

    International Nuclear Information System (INIS)

    Ciocci, F.; Dattoli, G.; Doria, A.; Schettini, G.; Torre, A.; Walsh, J.E.

    1987-01-01

    The main features of the spectral characteristics of the spontaneously emitted Cherenkov light in circular and rectangular wave-guides filled with dielectric are discussed. The characteristics of the radiation emitted by an electron beam moving near and parallel to the surface of a dielectric slab are also analysed. Finally, the relevance of these results to a possible FEL-Cherenkov operation is briefly discussed

  18. The Cherenkov Radiation for Non-Trivial Systems

    International Nuclear Information System (INIS)

    Grau Carles, A.

    2002-01-01

    The charge pathways and the dielectric properties of the medium are two essential aspects to be considered in the study of the emission of Cherenkov radiation. We described the evolution of the Cherenkov wavefront when the charges follow circular or helical pathways. Also we derive expressions for the refractive Index in different transparent media (solid, liquid or gas), focusing our attention on optically active plasmas. The optical analogies between the plasma and the birefringent crystals is studied in detail. Finally, we list some examples of plasmas, which can be considered emitters of Cherenkov radiation. (Author) 52 refs

  19. Aerogel as Cherenkov radiator for RICH detectors

    International Nuclear Information System (INIS)

    Bellunato, T.; Braem, A.; Buzykaev, A.R.; Calvi, M.; Chesi, E.; Danilyuk, A.F.; Easo, S.; Hansen, C.; Jolly, S.; Joram, C.; Kravchenko, E.A.; Liko, D.; Matteuzzi, C.; Musy, M.; Negri, P.; Neufeld, N.; Onuchin, A.P.; Seguinot, J.; Weilhammer, P.; Wotton, S.

    2003-01-01

    We present here the results obtained using silica aerogel as Cherenkov radiator for the separation and identification of particles in the momentum range from 6 to 10 GeV/c. Photoelectron yield and Cherenkov ring resolution were studied under different experimental conditions and compared to the simulation

  20. Cherenkov radiation; La radiation Cerenkov

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    When the radioactivity has been discovered, it was observed by researchers that different materials as mineral salts or solutions were emitting a weak light when submitted to radioactivity beams. At the beginning it has been thought that it was fluorescent light. In 1934, Cherenkov, a russian physicist, worked on the luminescence of uranyl salts solutions caused by gamma radiation and observed a very weak light was emitted by pure liquid. After further studies, he concluded that this phenomena was different from fluorescence. Since then, it has been called Cherenkov effect. This blue light emission is produced when charged particles are going through a transparent medium with an upper velocity than light velocity. This can happen only in medium with large refractive index as water or glass. It also presents its different properties discovered afterwards. The different applications of the Cherenkov radiation are discussed as counting techniques for radiation detectors or comic ray detectors. (M.P.)

  1. Uncertainty and Detection Limit in Determination of 89,90Sr by Cherenkov Counting

    International Nuclear Information System (INIS)

    Grahek, Z.; Karanovic, G.; Nodilo, M.

    2013-01-01

    The methodology for the rapid determination of 89,90Sr in normal and emergency situations is given. Methodology is based on simultaneous separation of strontium and yttrium from samples and quantitative 89,90Sr determination by Cherenkov counting within three days. Methodology for quantitative determination by Cherenkov counting based on following changes of sample activity during the time is described and discussed. It has been shown that 89,90Sr can be determined with acceptable accuracy when 89Sr/90Sr ratio is over 10:1. Obtained results show that by using low level liquid scintillation counter it can be possible to determine 89Sr and 90Sr in broad range of concentration activities (1 - 1000 Bq (kgL) -1 ) with uncertainties below 10% within 2-3 days. Results also show that accuracy of determination of 89Sr (and 90Sr) depends on determination of difference between separation and counting time when activity ratio of 89Sr/90Sr is high. Analysis of combined uncertainty shows that it mainly depends on uncertainty of efficiency and recovery determination, uncertainty of activities determination for both isotopes and level of background radiation. Portion of each in combined uncertainty depend on level of activity of each isotope and its activity ratio.(author)

  2. Looking inside volcanoes with the Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Del Santo, M.; Catalano, O.; Cusumano, G.; La Parola, V.; La Rosa, G.; Maccarone, M. C.; Mineo, T.; Sottile, G.; Carbone, D.; Zuccarello, L.; Pareschi, G.; Vercellone, S.

    2017-12-01

    Cherenkov light is emitted when charged particles travel through a dielectric medium with velocity higher than the speed of light in the medium. The ground-based Imaging Atmospheric Cherenkov Telescopes (IACT), dedicated to the very-high energy γ-ray Astrophysics, are based on the detection of the Cherenkov light produced by relativistic charged particles in a shower induced by TeV photons interacting with the Earth atmosphere. Usually, an IACT consists of a large segmented mirror which reflects the Cherenkov light onto an array of sensors, placed at the focal plane, equipped by fast electronics. Cherenkov light from muons is imaged by an IACT as a ring, when muon hits the mirror, or as an arc when the impact point is outside the mirror. The Cherenkov ring pattern contains information necessary to assess both direction and energy of the incident muon. Taking advantage of the muon detection capability of IACTs, we present a new application of the Cherenkov technique that can be used to perform the muon radiography of volcanoes. The quantitative understanding of the inner structure of a volcano is a key-point to monitor the stages of the volcano activity, to forecast the next eruptive style and, eventually, to mitigate volcanic hazards. Muon radiography shares the same principle as X-ray radiography: muons are attenuated by higher density regions inside the target so that, by measuring the differential attenuation of the muon flux along different directions, it is possible to determine the density distribution of the interior of a volcano. To date, muon imaging of volcanic structures has been mainly achieved with detectors made up of scintillator planes. The advantage of using Cherenkov telescopes is that they are negligibly affected by background noise and allow a consistently improved spatial resolution when compared to the majority of the current detectors.

  3. Studies of runaway electrons via Cherenkov effect in tokamaks

    Science.gov (United States)

    Zebrowski, J.; Jakubowski, L.; Rabinski, M.; Sadowski, M. J.; Jakubowski, M. J.; Kwiatkowski, R.; Malinowski, K.; Mirowski, R.; Mlynar, J.; Ficker, O.; Weinzettl, V.; Causa, F.; COMPASS; FTU Teams

    2018-01-01

    The paper concerns measurements of runaway electrons (REs) which are generated during discharges in tokamaks. The control of REs is an important task in experimental studies within the ITER-physics program. The NCBJ team proposed to study REs by means of Cherenkov-type detectors several years ago. The Cherenkov radiation, induced by REs in appropriate radiators, makes it possible to identify fast electron beams and to determine their spatial- and temporal-characteristics. The results of recent experimental studies of REs, performed in two tokamaks - COMPASS in Prague and FTU in Frascati, are summarized and discussed in this paper. Examples of the electron-induced signals, as recorded at different experimental conditions and scenarios, are presented. Measurements performed with a three-channel Cherenkov-probe in COMPASS showed that the first fast electron peaks can be observed already during the current ramp-up phase. A strong dependence of RE-signals on the radial position of the Cherenkov probe was observed. The most distinct electron peaks were recorded during the plasma disruption. The Cherenkov signals confirmed the appearance of post-disruptive RE beams in circular-plasma discharges with massive Ar-puffing. During experiments at FTU a clear correlation between the Cherenkov detector signals and the rotation of magnetic islands was identified.

  4. Application of Cherenkov light observation to reactor measurements (3). Evaluation of spent fuel elements of LWRs with Cherenkov light estimation system

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Hayashi, Takayasu; Kosuge, Fumiaki

    2016-11-01

    Development of the reactor measurement system has been carried out to obtain the real-time in-core nuclear and thermal information, where the quantitative measurement of brightness of Cherenkov light was investigated. The system would be applied as a monitoring system in severe accidents and for the advanced operation management technology in existing LWRs. This report summarized the modification of Cherenkov light estimation system described JAEA-Testing 2015-001 and the result of the burn-up evaluation by Cherenkov light image emitted from spent fuel elements of LWRs with the modified system. (author)

  5. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    International Nuclear Information System (INIS)

    Wiebe, L.I.; Helus, F.; Maier-Borst, W.

    1978-01-01

    18 F and 14 C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched 14 C fluorescence, and with a 10-fold excess of DMSO over MS, 18 F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of 18 F in MS. Nitrobenzene was a concentration-dependent quencher for both 14 C and 18 F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with 18 F. Counting efficiencies for 18 F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. 14 C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high 14 C and 18 F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as 18 F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as 14 C. (author)

  6. Cherenkov and scintillation light separation in organic liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D. [University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Yeh, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-12-15

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ{sub r} = 0.72 ± 0.33 ns. (orig.)

  7. Cherenkov and scintillation light separation in organic liquid scintillators

    International Nuclear Information System (INIS)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D.; Yeh, M.

    2017-01-01

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns. (orig.)

  8. Cherenkov TOF PET with silicon photomultipliers

    Science.gov (United States)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2015-12-01

    As previously demonstrated, an excellent timing resolution below 100 ps FWHM is possible in time-of-flight positron emission tomography (TOF PET) if the detection method is based on the principle of detecting photons of Cherenkov light, produced in a suitable material and detected by microchannel plate photomultipliers (MCP PMTs). In this work, the silicon photomultipliers (SiPMs) were tested for the first time as the photodetectors in Cherenkov TOF PET. The high photon detection efficiency (PDE) of SiPMs led to a large improvement in detection efficiency. On the other hand, the time response of currently available SiPMs is not as good as that of MCP PMTs. The SiPM dark counts introduce a new source of random coincidences in Cherenkov method, which would be overwhelming with present SiPM technology at room temperature. When the apparatus was cooled, its performance significantly improved.

  9. Vavilov-Cherenkov and Synchrotron Radiation Foundations and Applications

    CERN Document Server

    Afanasiev, G. N

    2005-01-01

    The theory of the Vavilov-Cherenkov radiation observed by Cherenkov in 1934 was created by Tamm, Frank and Ginsburg who associated the observed blue light with the uniform charge motion of a charge at a velocity greater than the velocity of light in the medium. On the other hand, Vavilov, Cherenkov's teacher, attributed the observed blue light to the deceleration of electrons. This has given rise to the appearance of papers in which the radiation of a charge uniformly moving in a finite space interval was related to the Bremsstrahlung arising at the end points of the motion interval. This monograph is intended for students of the third year and higher, for postgraduates, for professional scientists (both experimentalists and theoreticians) dealing with Vavilov-Cherenkov and synchrotron radiation. An acquaintance with the three volumes of the Landau and Lifshitz course (Quantum Mechanics, Classical Field Theory and Macroscopic Electrodynamics) is sufficient for understanding the text.

  10. Generation and propagation of synchro - Cherenkov radiation

    International Nuclear Information System (INIS)

    Heintzmann, H.; Novello, M.; Schruefer, E.

    1981-01-01

    Particles moving along the magnetic field lines emit under favorable conditions Cherenkov radiation in a cold, rarefied plasma. A peculiar phenomenon occurs for curved magnetic fields: in for example a toroidal magnetic field the radiation spirals inward and approaches a resonance. Both the generation and the study of the propagation of these Cherenkov modes appear to be within reach of present technology. (Author) [pt

  11. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  12. Cherenkov Water Detectors in Particle Physics and Cosmic Rays

    Science.gov (United States)

    Petrukhin, A. A.; Yashin, I. I.

    2017-12-01

    Among various types of Cherenkov detectors (solid, liquid and gaseous) created for different studies, the most impressive development was gained by water detectors: from the first detector with a volume of several liters in which the Cherenkov radiation was discovered, to the IceCube detector with a volume of one cubic kilometer. The review of the development of Cherenkov water detectors for various purposes and having different locations - ground-based, underground and underwater-is presented in the paper. The prospects of their further development are also discussed.

  13. Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Otte, A N; Dickinson, H.; Funk, S.; Jogler, T.; Johnson, C.A.; Karn, P.; Meagher, K.; Naoya, H.; Nguyen, T.; Okumura, A.; Santander, M.; Sapozhnikov, L.; Stier, A.; Tajima, H.; Tibaldo, L.; Vandenbroucke, J.; Wakely, S.; Weinstein, A.; Williams, D.A.

    2015-01-01

    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give ...

  14. Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Villanueva Ibáñez, Guillermo Eduardo; Lægsgaard, Jesper

    2013-01-01

    We investigate the noise properties of a femtosecond all-fiber Cherenkov radiation source with emission wavelength around 600 nm, based on an Yb-fiber laser and a highly-nonlinear photonic crystal fiber. A relative intensity noise as low as - 103 dBc/Hz, corresponding to 2.48 % pulse-to-pulse...... fluctuation in energy, was observed at the Cherenkov radiation output power of 4.3 mW, or 150 pJ pulse energy. This pulse-to-pulse fluctuation is at least 10.6 dB lower compared to spectrally-sliced supercontinuum sources traditionally used for ultrafast fiberbased generation at visible wavelengths. Low noise...... makes allfiber Cherenkov sources promising for biophotonics applications such as multi-photon microscopy, where minimum pulse-to-pulse energy fluctuation is required. We present the dependency of the noise figure on both the Cherenkov radiation output power and its spectrum....

  15. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L I; Helus, F; Maier-Borst, W [Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.). Inst. fuer Nuklearmedizin

    1978-06-01

    /sup 18/F and /sup 14/C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched /sup 14/C fluorescence, and with a 10-fold excess of DMSO over MS, /sup 18/F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of /sup 18/F in MS. Nitrobenzene was a concentration-dependent quencher for both /sup 14/C and /sup 18/F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with /sup 18/F. Counting efficiencies for /sup 18/F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. /sup 14/C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high /sup 14/C and /sup 18/F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as /sup 18/F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as /sup 14/C.

  16. Performance of a prototype water Cherenkov detector for LHAASO project

    International Nuclear Information System (INIS)

    An, Q.; Bai, Y.X.; Bi, X.J.; Cao, Z.; Cao, Zhe; Chang, J.F.; Chen, G.; Chen, L.H.; Chen, M.J.; Chen, T.L.; Chen, Y.T.; Cui, S.W.; Dai, B.Z.; Danzengluobu; Feng, C.F.; Gao, B.; Gu, M.H.; Hao, X.J.; He, H.H.; Hu, H.B.

    2011-01-01

    A large high-altitude air shower observatory is to be built at Yang-Ba-Jing, Tibet, China. One of its main purposes is to survey the northern sky for very-high-energy (above 100 GeV) gamma ray sources via its ground-based water Cherenkov detector array. To gain full knowledge of water Cherenkov technique in detecting air showers, a prototype water Cherenkov detector is built at the Institute of High Energy Physics, Beijing. The performance of the prototype water Cherenkov detector is studied by measuring its response to cosmic muons. The results are compared with those from a full Monte Carlo simulation to provide a series of information regarding the prototype detector in guiding electronics design and detector optimization.

  17. CLASSiC: Cherenkov light detection with silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, Oscar [Physics Dept., University of Florence, Via Sansone 1, 50019, Sesto Fiorentino (Italy); INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Albergo, Sebastiano [Physics Dept., University of Catania, Via Santa Sofia 64, 95123 Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy); D' Alessandro, Raffaello [Physics Dept., University of Florence, Via Sansone 1, 50019, Sesto Fiorentino (Italy); INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Lenzi, Piergiulio [INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Sciuto, Antonella [CNR-IMM, VIII Strada 5, Zona Industriale, Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy); Starodubtsev, Oleksandr [INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Tricomi, Alessia [Physics Dept., University of Catania, Via Santa Sofia 64, 95123 Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy)

    2017-02-11

    We present the CLASSiC R&D for the development of a silicon carbide (SiC) based avalanche photodiode for the detection of Cherenkov light. SiC is a wide-bandgap semiconductor material, which can be used to make photodetectors that are insensitive to visible light. A SiC based light detection device has a peak sensitivity in the deep UV, making it ideal for Cherenkov light. Moreover, the visible blindness allows such a device to disentangle Cherenkov light and scintillation light in all those materials that scintillate above 400 nm. Within CLASSiC, we aim at developing a device with single photon sensitivity, having in mind two main applications. One is the use of the SiC APD in a new generation ToF PET scanner concept, using the Cherenov light emitted by the electrons following 511 keV gamma ray absorption as a time-stamp. Cherenkov is intrinsically faster than scintillation and could provide an unprecedentedly precise time-stamp. The second application concerns the use of SiC APD in a dual readout crystal based hadronic calorimeter, where the Cherenkov component is used to measure the electromagnetic fraction on an event by event basis. We will report on our progress towards the realization of the SiC APD devices, the strategies that are being pursued toward the realization of these devices and the preliminary results on prototypes in terms of spectral response, quantum efficiency, noise figures and multiplication.

  18. Quenching the scintillation in CF4 Cherenkov gas radiator

    International Nuclear Information System (INIS)

    Blake, T.; D'Ambrosio, C.; Easo, S.; Eisenhardt, S.; Fitzpatrick, C.; Forty, R.; Frei, C.; Gibson, V.; Gys, T.; Harnew, N.; Hunt, P.; Jones, C.R.; Lambert, R.W.; Matteuzzi, C.; Muheim, F.; Papanestis, A.; Perego, D.L.; Piedigrossi, D.; Plackett, R.; Powell, A.

    2015-01-01

    CF 4 is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF 4 is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation

  19. CHERENKOV RADIATION DETECTOR

    African Journals Online (AJOL)

    ES Obe

    1981-03-01

    Mar 1, 1981 ... to measure the Cherenkov angles for natural radioactivity from sources as. Cs137 ... at 435 Mev in their proton-proton ..... (ii) Use is made of Table 5A Jelley ..... charge and rest mass in units of electron rest mass is shown in the table ... Proton e+. 1836. 322. Neutron. 0. 1839. 325. Alpha e2+. 7344. 1600.

  20. Silicon photomultipliers in AMIGA muon counters

    Energy Technology Data Exchange (ETDEWEB)

    Botti, Ana Martina [Institut fuer Kernphysik, Karlsruher Institut fuer Technologie (Germany); Instituto de Tecnologias en Deteccion y Astroparticulas (ITeDA) (Argentina); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The project AMIGA (Auger Muons and Infill for the Ground Array) aims to extend the energy range at the Pierre Auger Observatory to observe cosmic rays of lower energies (down to ∝10{sup 17} eV) and to study the transition from extragalactic to galactic cosmic rays. AMIGA is compounded by an infill of surface detectors (employing Cherenkov radiation detection in water) and muon counters. The AMIGA muon counters consist of an array of buried modules composed of 64 scintillator bars, a multi-pixel Photo Multiplier Tube (PMT) and the corresponding electronic of acquisition which works along with the surface detector. Currently, ITeDA is evaluating the feasibility of replacing PMTs with silicon photomultipliers (SiPM) without performing any substantial modification in the digital readout nor in the mechanical design. I present calibration results of a prototype module associated to the surface detector Toune of the Pierre Auger Observatory using a SiPM Hamamatsu S1257-100C plugged to the standard AMIGA front-end electronics. In addition, a study concerning gain stability and temperature variation has also been performed and is reported. I finally discuss a comparison between traces measured by both photodetectors (PMT and SiPM) for modules associated to the surface detector Toune.

  1. DIRC, the internally reflecting ring imaging Cherenkov detector for BABAR

    International Nuclear Information System (INIS)

    Adam, I.; Aston, D.

    1997-11-01

    The DIRC is a new type of Cherenkov imaging device that will be used for the first time in the BABAR detector at the asymmetric B-factory, PEP-II. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiator and light guide. The principles of the DIRC ring imaging Cherenkov technique are explained and results from the prototype program are presented. Its choice for the BABAR detector particle identification system is motivated, followed by a discussion of the quartz radiator properties and the detector design

  2. Operating performance of the gamma-ray Cherenkov telescope: An end-to-end Schwarzschild–Couder telescope prototype for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Dournaux, J.L., E-mail: jean-laurent.dournaux@obspm.fr [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); De Franco, A. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Laporte, P. [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); White, R. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Greenshaw, T. [University of Liverpool, Oliver Lodge Laboratory, P.O. Box 147, Oxford Street, Liverpool L69 3BX (United Kingdom); Sol, H. [LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); Abchiche, A. [CNRS, Division technique DT-INSU, 1 Place Aristide Briand, 92190 Meudon (France); Allan, D. [Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE (United Kingdom); Amans, J.P. [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); Armstrong, T.P. [Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE (United Kingdom); Balzer, A.; Berge, D. [GRAPPA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Boisson, C. [LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); and others

    2017-02-11

    The Cherenkov Telescope Array (CTA) consortium aims to build the next-generation ground-based very-high-energy gamma-ray observatory. The array will feature different sizes of telescopes allowing it to cover a wide gamma-ray energy band from about 20 GeV to above 100 TeV. The highest energies, above 5 TeV, will be covered by a large number of Small-Sized Telescopes (SSTs) with a field-of-view of around 9°. The Gamma-ray Cherenkov Telescope (GCT), based on Schwarzschild–Couder dual-mirror optics, is one of the three proposed SST designs. The GCT is described in this contribution and the first images of Cherenkov showers obtained using the telescope and its camera are presented. These were obtained in November 2015 in Meudon, France.

  3. Cross-talk of a multi-anode PMT and attainment of a σ∼10ps TOF counter

    International Nuclear Information System (INIS)

    Enari, Y.; Hayasaka, K.; Hokuue, T.; Inami, K.; Ohshima, T.; Sato, N.; Akatsu, M.; Kawakami, S.; Miyabayashi, Y.; Tokuda, H.; Yanase, H.; Shimoi, H.; Fujimori, T.

    2005-01-01

    We extensively studied a cross-talk phenomenon that seriously deteriorates the high time-resolution of a multi-anode 16-channel linear array photo-multiplier tube (PMT); the dynode structures were modified to eliminate the cross-talk effect and to recover a time resolution of σ=70-80ps for single photons. The use of 16 anode signals of the modified PMT enabled us to attain σ=12ps for a small TOF counter of Cherenkov radiation

  4. Cherenkov Radiation Control via Self-accelerating Wave-packets.

    Science.gov (United States)

    Hu, Yi; Li, Zhili; Wetzel, Benjamin; Morandotti, Roberto; Chen, Zhigang; Xu, Jingjun

    2017-08-18

    Cherenkov radiation is a ubiquitous phenomenon in nature. It describes electromagnetic radiation from a charged particle moving in a medium with a uniform velocity larger than the phase velocity of light in the same medium. Such a picture is typically adopted in the investigation of traditional Cherenkov radiation as well as its counterparts in different branches of physics, including nonlinear optics, spintronics and plasmonics. In these cases, the radiation emitted spreads along a "cone", making it impractical for most applications. Here, we employ a self-accelerating optical pump wave-packet to demonstrate controlled shaping of one type of generalized Cherenkov radiation - dispersive waves in optical fibers. We show that, by tuning the parameters of the wave-packet, the emitted waves can be judiciously compressed and focused at desired locations, paving the way to such control in any physical system.

  5. Visual sensations during megavoltage radiotherapy to the orbit attributable to Cherenkov radiation

    International Nuclear Information System (INIS)

    Newman, Francis; Asadi-Zeydabadi, Masoud; Durairaj, Vikram D.; Ding Meisong; Stuhr, Kelly; Kavanagh, Brian

    2008-01-01

    During megavoltage photon and electron beam radiotherapy treatment involving the eye, patients commonly report visual sensations; 'nerve stimulation' is the conventional explanation. We propose that the phenomenon can be attributed to Cherenkov radiation inside the eye. The threshold electron energy for Cherenkov radiation in water is 260 keV. The human retina is able to perceive approximately 5-14 visible photons in 0.001 s. A single 500 keV electron traversing 1 mm of water will induce nearly 15 Cherenkov visible range photons. We propose that a portal image involving the eye will produce sufficient Cherenkov radiation to be detected by the retina

  6. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  7. Volcanoes muon imaging using Cherenkov telescopes

    International Nuclear Information System (INIS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M.C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  8. Cherenkov and scintillation light separation on the CheSS experiment

    Science.gov (United States)

    Caravaca, Javier; Land, Benjamin; Descamps, Freija; Orebi Gann, Gabriel D.

    2016-09-01

    Separation of the scintillation and Cherenkov light produced in liquid scintillators enables outstanding capabilities for future particle detectors, the most relevant being: particle directionality information in a low energy threshold detector and improved particle identification. The CheSS experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in liquid scintillator using two techniques: based on the photon density and using the photon hit time information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by several ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WbLS) enhances the separation since it allows tuning of the Cherenkov/Scintillation ratio. Latest results on the separation for pure liquid scintillators and WbLS will be presented.

  9. The GCT camera for the Cherenkov Telescope Array

    Science.gov (United States)

    Lapington, J. S.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bose, R.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Buckley, J.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Laporte, P.; Leach, S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Minaya, I. A.; Mohrmann, L.; Molyneux, P.; Moore, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Varner, G.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-12-01

    The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of 35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA.

  10. Advances in Multi-Pixel Photon Counter technology: First characterization results

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, G., E-mail: gbonanno@oact.inaf.it [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Marano, D.; Romeo, G.; Garozzo, S.; Grillo, A.; Timpanaro, M.C. [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo Italy (Italy)

    2016-01-11

    Due to the recent advances in silicon photomultiplier technology, new types of Silicon Photomultiplier (SiPM), also named Multi-Pixel Photon Counter (MPPC) detectors have become recently available, demonstrating superior performance in terms of their most important electrical and optical parameters. This paper presents the latest characterization results of the novel Low Cross-Talk (LCT) MPPC families from Hamamatsu, where a noticeable fill-factor enhancement and cross-talk reduction is achieved. In addition, the newly adopted resin coating has been proven to yield improved photon detection capabilities in the 280–320 nm spectral range, making the new LCT MPPCs particularly suitable for emerging applications like Cherenkov Telescope Array, and Astroparticle Physics.

  11. Quenching the scintillation in CF{sub 4} Cherenkov gas radiator

    Energy Technology Data Exchange (ETDEWEB)

    Blake, T. [Department of Physics, University of Warwick, Coventry (United Kingdom); D' Ambrosio, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Easo, S. [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Eisenhardt, S. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Fitzpatrick, C. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Forty, R.; Frei, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gibson, V. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Gys, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Harnew, N.; Hunt, P. [Department of Physics, University of Oxford, Oxford (United Kingdom); Jones, C.R. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Lambert, R.W. [Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam (Netherlands); Matteuzzi, C. [Sezione INFN di Milano Bicocca, Milano (Italy); Muheim, F. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Papanestis, A., E-mail: antonis.papanestis@stfc.ac.uk [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Perego, D.L. [Sezione INFN di Milano Bicocca, Milano (Italy); Università di Milano Bicocca, Milano (Italy); Piedigrossi, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Plackett, R. [Imperial College London, London (United Kingdom); Powell, A. [Department of Physics, University of Oxford, Oxford (United Kingdom); and others

    2015-08-11

    CF{sub 4} is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF{sub 4} is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation.

  12. Color quench correction for low level Cherenkov counting.

    Science.gov (United States)

    Tsroya, S; Pelled, O; German, U; Marco, R; Katorza, E; Alfassi, Z B

    2009-05-01

    The Cherenkov counting efficiency varies strongly with color quenching, thus correction curves must be used to obtain correct results. The external (152)Eu source of a Quantulus 1220 liquid scintillation counting (LSC) system was used to obtain a quench indicative parameter based on spectra area ratio. A color quench correction curve for aqueous samples containing (90)Sr/(90)Y was prepared. The main advantage of this method over the common spectra indicators is its usefulness also for low level Cherenkov counting.

  13. A Cherenkov viewing device for used-fuel verification

    International Nuclear Information System (INIS)

    Attas, E.M.; Chen, J.D.; Young, G.J.

    1990-01-01

    A Cherenkov viewing device (CVD) has been developed to help verify declared inventories of used nuclear fuel stored in water bays. The device detects and amplifies the faint ultraviolet Cherenkov glow from the water surrounding the fuel, producing a real-time visible image on a phosphor screen. Quartz optics, a UV-pass filter and a microchannel-plate image-intensifier tube serve to form the image, which can be photographed or viewed directly through an eyepiece. Normal fuel bay lighting does not interfere with the Cherenkov light image. The CVD has been successfully used to detect anomalous PWR, BWR and CANDU (CANada Deuterium Uranium: registered trademark) fuel assemblies in the presence of normal-burnup assemblies stored in used-fuel bays. The latest version of the CVD, known as Mark IV, is being used by inspectors from the International Atomic Energy agency for verification of light-water power-reactor fuel. Its design and operation are described, together with plans for further enhancements of the instrumentation. (orig.)

  14. The Cherenkov correlated timing detector: beam test results from quartz and acrylic bars

    International Nuclear Information System (INIS)

    Kichimi, H.; Sugaya, Y.; Yamaguchi, H.; Yoshimura, Y.; Kanda, S.; Olsen, S.; Ueno, K.; Varner, G.; Bergfeld, T.; Bialek, J.; Lorenc, J.; Palmer, M.; Rudnick, G.; Selen, M.; Auran, T.; Boyer, V.; Honscheid, K.; Tamura, N.; Yoshimura, K.; Lu, C.; Marlow, D.; Mindas, C.; Prebys, E.; Asai, M.; Kimura, A.; Hayashi, S.

    1996-01-01

    Several prototypes of a Cherenkov correlated timing (CCT) detector have been tested at the KEK-PS test beam line. We describe the results for Cherenkov light yields and timing characteristics from quartz and acrylic bar prototypes. A Cherenkov angle resolution is found to be 15 mrad at a propagation distance of 100 cm with a 2 cm thick quartz bar prototype. (orig.)

  15. Large Water Cherenkov Detectors - Technical Issues -

    CERN Document Server

    Aihara, H

    2010-01-01

    We address technical issues and challenges to construct a one-megaton scale water Cherenkov detector for neutrino detection. Studies presented here are mostly based on preliminary work for Hyper Kamiokande project.

  16. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del [Department of Physics, University of Pisa, Pisa (Italy); INFN, section of Pisa, Pisa (Italy); Cherry, Simon R. [Department of Biomedical Engineering, University of California, Davis, CA (United States); Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E. [Department of Radiology, University of Washington, Seattle, WA (United States)

    2015-11-16

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  17. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    International Nuclear Information System (INIS)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del; Cherry, Simon R.; Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E.

    2015-01-01

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  18. Technical Note: On maximizing Cherenkov emissions from medical linear accelerators.

    Science.gov (United States)

    Shrock, Zachary; Yoon, Suk W; Gunasingha, Rathnayaka; Oldham, Mark; Adamson, Justus

    2018-04-19

    Cherenkov light during MV radiotherapy has recently found imaging and therapeutic applications but is challenged by relatively low fluence. Our purpose is to investigate the feasibility of increasing Cherenkov light production during MV radiotherapy by increasing photon energy and applying specialized beam-hardening filtration. GAMOS 5.0.0, a GEANT4-based framework for Monte Carlo simulations, was used to model standard clinical linear accelerator primary photon beams. The photon source was incident upon a 17.8 cm 3 cubic water phantom with a 94 cm source to surface distance. Dose and Cherenkov production was determined at depths of 3-9 cm. Filtration was simulated 15 cm below the photon beam source. Filter materials included aluminum, iron, and copper with thicknesses of 2-20 cm. Histories used depended on the level of attenuation from the filter, ranging from 100 million to 2 billion. Comparing average dose per history also allowed for evaluation of dose-rate reduction for different filters. Overall, increasing photon beam energy is more effective at improving Cherenkov production per unit dose than is filtration, with a standard 18 MV beam yielding 3.3-4.0× more photons than 6 MV. Introducing an aluminum filter into an unfiltered 2400 cGy/min 10 MV beam increases the Cherenkov production by 1.6-1.7×, while maintaining a clinical dose rate of 300 cGy/min, compared to increases of ~1.5× for iron and copper. Aluminum was also more effective than the standard flattening filter, with the increase over the unfiltered beam being 1.4-1.5× (maintaining 600 cGy/min dose rate) vs 1.3-1.4× for the standard flattening filter. Applying a 10 cm aluminum filter to a standard 18 MV, photon beam increased the Cherenkov production per unit dose to 3.9-4.3× beyond that of 6 MV (vs 3.3-4.0× for 18 MV with no aluminum filter). Through a combination of increasing photon energy and applying specialized beam-hardening filtration, the amount of Cherenkov photons per

  19. Light-weight spherical mirrors for Cherenkov detectors

    CERN Document Server

    Cisbani, E; Colilli, S; Crateri, R; Cusanno, F; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Iodice, M; Iommi, R; Lagamba, L; Lucentini, M; Mostarda, A; Nappi, E; Pierangeli, L; Santavenere, F; Urciuoli, G M; Vernin, P

    2003-01-01

    Light-weight spherical mirrors have been appositely designed and built for the gas threshold Cherenkov detectors of the two Hall A spectrometers. The mirrors are made of a 1 mm thick aluminized plexiglass sheet, reinforced by a rigid backing consisting of a phenolic honeycomb sandwiched between two carbon fiber mats epoxy glued. The produced mirrors have a thickness equivalent to 0.55% of radiation length, and an optical slope error of about 5.5 mrad. These characteristics make these mirrors suitable for the implementation in Cherenkov threshold detectors. Ways to improve the mirror features are also discussed in view of their possible employment in RICH detectors.

  20. Development of an underwater Cherenkov detector to reveal sources of technogenic radionuclides

    International Nuclear Information System (INIS)

    Chernyaev, A.M.; Gaponov, I.A.; Lapushkina, L.V.

    1999-01-01

    The major difference of the Cherenkov underwater detector from a scintillation detector is that its operation does not require a primary transducer (scintillator). Detected particle energy conversion into a light flash occurs directly in sea water (radiator) due to the Cherenkov effect. Consequently, photoreceiver of the underwater Cherenkov detector registers light from radiator of actually infinite volume. The circumstance is of principle importance, as it permits attaining the utmost sensitivity in case of the minimal overall dimensions and weight of detecting equipment

  1. On the kinematics of the two-photon Cherenkov effect

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    2003-01-01

    We study the kinematics of the two-photon Cherenkov effect. In the general case, the emission angles of two photons satisfy certain inequalities and the corresponding radiation intensities are rather diffused. In special cases, when the above inequalities reduce to equalities, the emission angles of two photons are fixed and the corresponding radiation intensities should have sharp maxima at these angles. This makes easier the experimental study of the two-photon Cherenkov effect

  2. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    Energy Technology Data Exchange (ETDEWEB)

    An, Q. [University of Science and Technology of China, Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Bai, Y.X.; Bi, X.J.; Cao, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chang, J.F. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Chen, G.; Chen, M.J. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, S.M. [Tsinghua University, Beijing 100084 (China); Chen, S.Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, T.L. [University of Tibet, Lhasa 851600 (China); Chen, X. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Y.T. [University of Yunnan, Kunming 650091 (China); Cui, S.W. [Normal University of Hebei, Shijiazhuang 050016 (China); Dai, B.Z. [University of Yunnan, Kunming 650091 (China); Du, Q. [Tsinghua University, Beijing 100084 (China); Danzengluobu [University of Tibet, Lhasa 851600 (China); Feng, C.F. [University of Shandong, Jinan 250100 (China); Feng, S.H.; Gao, B. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao, S.Q. [National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); and others

    2013-10-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured.

  3. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    International Nuclear Information System (INIS)

    An, Q.; Bai, Y.X.; Bi, X.J.; Cao, Z.; Chang, J.F.; Chen, G.; Chen, M.J.; Chen, S.M.; Chen, S.Z.; Chen, T.L.; Chen, X.; Chen, Y.T.; Cui, S.W.; Dai, B.Z.; Du, Q.; Danzengluobu; Feng, C.F.; Feng, S.H.; Gao, B.; Gao, S.Q.

    2013-01-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured

  4. The first GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    De Franco, A.; Allan, D.; Armstrong, T.; Ashton, T.; Balzer, A.; Berge, D.; Bose, R.; Brown, A.M.; Buckley, J.; Chadwick, P.M.; Cooke, P.; Cotter, G.; Daniel, M.K.; Funk, S.; Greenshaw, T.; Hinton, J.; Kraus, M.; Lapington, J.; Molyneux, P.; Moore, P.; Nolan, S.; Okumura, A.; Ross, D.; Rulten, C.; Schmoll, J.; Schoorlemmer, H.; Stephan, M.; Sutcliffe, P.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Varner, G.; Watson, J.; Zink, A.

    2015-01-01

    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\\deg} angular size, resulting in a field of view of ~9{\\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.

  5. Mirror position determination for the alignment of Cherenkov Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Ahnen, M.L. [ETH Zurich, Institute for Particle Physics Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Baack, D. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Balbo, M. [University of Geneva, ISDC Data Center for Astrophysics Chemin Ecogia 16, 1290 Versoix (Switzerland); Bergmann, M. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); Biland, A. [ETH Zurich, Institute for Particle Physics Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Blank, M. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); Bretz, T. [ETH Zurich, Institute for Particle Physics Otto-Stern-Weg 5, 8093 Zurich (Switzerland); RWTH Aachen (Germany); Bruegge, K.A.; Buss, J. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Dmytriiev, A. [University of Geneva, ISDC Data Center for Astrophysics Chemin Ecogia 16, 1290 Versoix (Switzerland); Domke, M. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Dorner, D. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); FAU Erlangen (Germany); Einecke, S. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Hempfling, C. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); and others

    2017-07-11

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures to map the faint Cherenkov light emitted in extensive air showers onto their image sensors. Segmented reflectors fulfill these needs using mass produced and light weight mirror facets. However, as the overall image is the sum of the individual mirror facet images, alignment is important. Here we present a method to determine the mirror facet positions on a segmented reflector in a very direct way. Our method reconstructs the mirror facet positions from photographs and a laser distance meter measurement which goes from the center of the image sensor plane to the center of each mirror facet. We use our method to both align the mirror facet positions and to feed the measured positions into our IACT simulation. We demonstrate our implementation on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).

  6. The performance of silicon photomultipliers in Cherenkov TOF PET

    International Nuclear Information System (INIS)

    Dolenec, Rok; Korpar, Samo; Krizan, Peter; Pestotink, Rok

    2015-01-01

    In time-of-flight positron emission tomography (TOF PET) one of the main factors limiting the time resolution is the time evolution of the scintillation process. This can be avoided by using exclusively the Cherenkov light produced in a suitable material. Sub 100 ps FWHM timing has already been experimentally demonstrated but with a drawback of relatively low detection efficiency due to the photodetectors used. In this work silicon photomultipliers (SiPMs) are considered as a photodetector in Cherenkov TOF PET. The detection efficiency can be significantly improved by using SiPMs, however, at room temperature the SiPM dark counts introduce a significant source of fake coincidences. SiPM samples from different producers were tested in a simple back-to-back setup in combination with lead fluoride Cherenkov radiators. Results for coincidence timing, detection efficiency and effects of dark counts at different temperatures and SiPM overvoltages are presented.

  7. Study of a Cherenkov TOF-PET module

    Science.gov (United States)

    Korpar, S.; Dolenec, R.; Križan, P.; Pestotnik, R.; Stanovnik, A.

    2013-12-01

    An apparatus, consisting of two PbF2 crystals, each coupled to a multichannel plate photomultiplier (MCP-PMT), has been constructed in order to measure the time-of-flight (TOF) of the two 511 keV annihilation photons produced in positron emission tomography (PET). Excellent timing is achieved by detecting the prompt Cherenkov photons produced by the absorption of the 511 keV gamma photons. The present work describes the measurement and image reconstruction of two 22Na point sources. In addition, the influence of the radiator thickness and the Cherenkov light absorption cut-off of the crystal on the efficiency and the timing resolution have been studied by Monte Carlo simulation.

  8. JETSET: Physics at LEAR with an internal jet target

    International Nuclear Information System (INIS)

    Anderl, T.; Bassi, D.; Birien, P.; Bock, R.K.; Buzzo, A.; Chesi, E.; Debevec, P.T.; Dobinson, R.; Eisenstein, R.A.; Fearnley, T.; Ferro-Luzzy, M.; Frankenberg, R. von; Franz, J.; Hamann, N.; Harfield, R.; Hertzog, D.; Hughes, S.; Jeffery, D.; Johansson, A.; Johansson, T.; Kilian, K.; Kirsebom, K.; Klett, A.; Lundby, A.; Macri, M.; Marinelli, M.; Martinengo, P.; Mattera, L.; Mouellic, B.; Muratori, G.; Nitopi, L.; Oelert, W.; Ohlsson, S.; Onel, Y.; Osculati, B.; Perreau, J.M.; Pia, M.G.; Piuz, F.; Price, M.; Reimer, P.; Rossle, E.; Santroni, A.; Schmitt, H.; Stugu, B.; Tayloe, R.; Terreni, S.

    1989-01-01

    The planned measurement of the reaction panti p→ K+ K- with special regards to the processes panti p→ΦΦ and panti p→ΦK +K -. The experimental set-up consisting of a tracking detector, a set of multi-layered scintillation counters, a threshold Cherenkov counter to reject charged pion background, a silicon counter for the measurement of dE/dx, a ring-imaging Cherenkov counter, an electromagnetic calorimeter and a γ veto counter. (HSI)

  9. Research on mutual influence of Cherenkov-type probes within the ISTTOK tokamak chamber

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L., E-mail: lech.jakubowski@ncbj.gov.pl [National Centre for Nuclear Research (NCBJ), 05-400 Otwock (Poland); Plyusnin, V.V. [Association Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Malinowski, K.; Sadowski, M.J.; Zebrowski, J.; Rabinski, M. [National Centre for Nuclear Research (NCBJ), 05-400 Otwock (Poland); Fernandes, H.; Silva, C.; Figueiredo, H. [Association Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, M.J. [National Centre for Nuclear Research (NCBJ), 05-400 Otwock (Poland)

    2014-12-11

    The paper describes an influence of a Cherenkov-type probe, which is used for measurements of fast electron streams inside the ISTTOK chamber, on other probes and behaviour of a plasma ring. The reported study shows that such a probe situated near the plasma column has a strong influence on signals from another Cherenkov probe, and can cause a considerable reduction of electron-induced signals. This effect does not depend on positions of the probes in relation to the limiter. Measurements of hard X-ray (HXR) emission show that the deeply immersed Cherenkov probe can also influence on the limiter . Under specific experimental conditions such a Cherenkov probe can play the role of a new limiter and change the plasma configuration.

  10. First studies of 500-nm Cherenkov radiation from 255-MeV electrons in a diamond crystal

    Energy Technology Data Exchange (ETDEWEB)

    Takabayashi, Y., E-mail: takabayashi@saga-ls.jp [SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan); Fiks, E.I. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Pivovarov, Yu.L. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); National Research Tomsk State University, 634050 Tomsk (Russian Federation)

    2015-06-12

    The first experiment on Cherenkov light from 255-MeV electrons passing through a 50-μm-thick diamond crystal in a special geometry allowing extraction of 500-nm Cherenkov light at a right angle with respect to the electron beam direction has been performed at the injector linac of SAGA Light Source accelerator facility. The dependence of 500-nm Cherenkov light intensity (separated by a band-pass filter) on the crystal rotation angle was measured by a CCD detector. The experimentally obtained rocking curve with an intense maximum is theoretically explained as the projector effect of Cherenkov light deflected by the exit surface of the crystal. The width of the rocking curve is explained by the convolution of the standard Tamm–Frank angular distribution of Cherenkov radiation with chromatic aberration, the multiple scattering of electrons in a crystal, and initial electron beam angular divergence. In addition, it is found that the Cherenkov light intensity did not change under the (220) planar channeling condition, which is consistent with a recent theory. - Highlights: • Cherenkov light from 255-MeV electrons in a diamond crystal has been investigated. • The Cherenkov light from channeled electrons has been observed for the first time. • The experimental results are in good agreement with theory.

  11. Velocity determination of neutron-rich projectile fragments with a ring-imaging Cherenkov detector

    International Nuclear Information System (INIS)

    Zeitelhack, K.

    1992-11-01

    For the velocity determination of relativistic heavy ions (A>100) in the energy range 300A.MeV ≤ E kin ≤ 2A.GeV a highly resolving, compact ring-imaging Cherenkov counter with large dynamical measurement range was developed. The Cherenkov light cone emitted in the flight of a relativistic heavy ion by a liquid layer (C 6 F 14 ) is focused on the entrance window of a one-dimensional position-resolving VUV-sensitive photon detector. This gas detector is operated at atmospheric pressure with a mixture of 90% methane and 10% isobutane with 0.04% TMAE as photosensitive admixture. For 725A.MeV 129 Xe ions a velocity resolution Δβ/β=1.8.10 -3 and a nuclear charge-number resolution ΔZ/Z=5.1.10 -2 was reached. The over the photon energy range 5.4 eV ≤ E γ ≤ 7.2 eV averaged detection efficiency of the detector system was determined to ε tot =2.8%>. At the 0deg magnet spectrometer Fragmentseparator of the GSI Darmstadt the RICH detector was for the first time applied for the identification of nuclear charge number and mass of heavy relativistic projectile fragments. In the experiment the production cross sections of very neutron-rich nuclei by fragmentation of 136 Xe projectiles in the reaction 76A.MeV 136 Xe on 27 Al were determined. From the measured production erates for the production of the double-magic nucleus 132 Zn in this reaction a cross section of σ=(0.4± 0.3 0.6 ) μbarn can be extrapolated. (orig./HSI) [de

  12. Measurement of aerogel performance for ring image Cherenkov detector of HERMES

    International Nuclear Information System (INIS)

    Kanesaka, Jiro; Zhang Linfeng; Sato, Fumiko; Suetsugu, Kentaro; Sakami, Yasuhiro; Shibata, Toshiaki

    1999-01-01

    The first experiment of ring image Cherenkov detector (RICH) used aerogel in the world was reported in this paper. We built RICH using aerogel as illuminant for HERMES. The refractive index and size of all aerogel tiles were measured in order to select them for construction of RICH. The select conditions of tile were 113.1 -4 , the dispersion of refractive index of aerogel tile, which condition was fitted to the accuracy of Cherenkov light emission angle of RICH. The mean thickness, transmission and reflection of tile, the thickness of corner of tile (thickness of surface), the refractive index dependence on position and temperature were measured. The effect of thickness of tile on the shift of Cherenkov emission angle was 6.1% the maximum value per one tile and 0.18% mean value of center. The effect of position dependence of refractive index on the Cherenkov light emission angle was agreed with the effect of dispersion of thickness of tile. The transmission and reflection of tile were almost same as the theoretical value. (S.Y.)

  13. FACT. Normalized and asynchronous mirror alignment for Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sebastian Achim [ETH Zurich (Switzerland); Buss, Jens [TU Dortmund (Germany)

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need fast and large imaging optics to map the faint Cherenkov light emitted in cosmic ray air showers onto their image sensors. Segmented reflectors are inexpensive, lightweight and offer good image quality. However, alignment of the mirror facets remains a challenge. A good alignment is crucial in IACT observations to separate gamma rays from hadronic cosmic rays. We present a star tracking alignment method which is not restricted to clear nights. It normalizes the mirror facet reflections to be independent of the reference star or the cloud coverage. It records asynchronously of the telescope drive which makes the method easy to integrate in existing telescopes. It can be combined with remote facet actuation, but it does not need one to work. Furthermore, it can reconstruct all individual mirror facet point spread functions. We present the method and alignment results on the First Geiger-mode Photo Diode Avalanche Cherenkov Telescope (FACT) on the Canary Island of La Palma, Spain.

  14. An anti-Cherenkov photomultiplier tube

    International Nuclear Information System (INIS)

    Selove, W.; Cormell, L.R.; Dris, M.; Kononenko, W.; Robinson, B.; Yost, B.T.

    1982-01-01

    We have designed a special photomultiplier tube (PMT), with very much reduced sensitivity to Cherenkov light produced in the end window. These PMTs have been produced for us by EMI, and have been used in a modular calorimeter array. The design eliminates a 'hot-spot' problem which was of intolerable magnitude in our application. (orig.)

  15. SU-F-J-56: The Connection Between Cherenkov Light Emission and Radiation Absorbed Dose in Proton Irradiated Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Kassaee, A; Finlay, J [University of Pennsylvania, Philadelphia, PA (United States); Taleei, R [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanism of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.

  16. The first telescope of the HEGRA air Cherenkov imaging telescope array

    International Nuclear Information System (INIS)

    Mirzoyan, R.; Kankanian, R.; Krennrich, F.; Mueller, N.; Sander, H.; Sawallisch, P.; Aharonian, F.; Akhperjanian, A.; Beglarian, A.; Fernandez, J.; Fonseca, V.; Grewe, W.; Heusler, A.; Konopelko, A.K.; Lorenz, E.; Merck, M.; Plyasheshnikov, A.V.; Renker, D.; Samorski, M.; Sauerland, K.; Smarsch, E.; Stamm, W.; Ulrich, M.; Wiedner, C.A.; Wirth, H.

    1994-01-01

    In search of VHE γ ray emission from cosmic point sources a system of imaging Cherenkov telescopes is constructed at present on the Canarian island of La Palma; the first telescope has been operational since 1992. The Cherenkov light from air shower particles is collected by a 5 m 2 reflector. The camera at the focus contains 37 photomultipliers which sample the images of the Cherenkov flashes. The subsequent image analysis allows the discrimination of γ ray induced events from the much more abundant charged cosmic ray induced showers. The telescope has an effective energy threshold for γ showers of about 1.5 TeV. During the first year of operation a signal from the Crab nebula was detected. ((orig.))

  17. Study of TeV range cosmic ray detection with Cherenkov imaging techniques

    International Nuclear Information System (INIS)

    Ansari, R.; Gaillard, J.M.; Parrour, G.

    1992-03-01

    The Monte Carlo study of cosmic ray detection in the TeV energy range has been triggered by the authors' interest in the ARTEMIS (Antimatter Research Through the Earth Moon Ion Spectrometer) proposal. The properties of cosmic ray showers detected by Cherenkov imaging in the visible domain are studied. The detection sensitivity and the accuracy of the reconstruction of the parent particle direction using Cherenkov imaging are discussed. The backbone of the study is the atmospheric shower Monte Carlo generator developed by A.M. Hillas. A comparison between nucleon and photon induced showers of Cherenkov detection is also included. (R.P.) 14 refs., 48 figs., 3 tabs

  18. Investigating the Cherenkov light lateral distribution function for primary proton and iron nuclei in extensive air showers

    International Nuclear Information System (INIS)

    Al-Rubaiee, A.A.; Hashim, U.; Al-Douri, Y.

    2015-01-01

    The lateral distribution function (LDF) of Cherenkov radiation in extensive air showers (EAS) was simulated by CORSIKA program for the conditions of Yakutsk Cherenkov array at high energy range (10 13 -10 16 eV) for two primary particles (p and Fe) for different zenith angles. Using Breit-Wigner function for analyzing Cherenkov light LDF, a parameterization of Cherenkov light LDF was reconstructed by depending on CORSIKA simulation as a function of primary energy. The comparison between the estimated Cherenkov light LDF and the LDF that was measured on the Yakutsk EAS array gives the ability of particle identification that initiated the shower and determination of particle's energy around the knee region. The extrapolation of approximated Cherenkov light LDF for energies 20 and 30 PeV was obtained for primary particles (p and Fe)

  19. Cherenkov-type diagnostics of fast electrons beams escaping from MCF facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L.; Malinowski, K.; Mirowski, R.; Rabinski, M.; Sadowski, M.J.; Zebrowski, J. [Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland)

    2011-07-01

    The paper presents the feasibility study, the measuring system and the first experimental results of a new method developed for direct detection of high-energy (super-thermal, ripple-born and runaway) electrons generated in magnetic confinement fusion (MCF) facilities. The technique in question is based on registration of the Cherenkov radiation, emitted by energetic electrons, moving through a transparent medium (radiator) with a velocity higher than the velocity of light in this material. The main aim of our studies was to develop a diagnostic technique applicable for measurements of fast electron beams within MCF devices. The IPJ team proposed Cherenkov-type probes because of their high spatial- and temporal-resolutions. The most important results of applications of the presented Cherenkov-type diagnostics have proved that the one- and four-channel versions of the detecting head are useful for studies of the fast (ripple-born and runaway) electrons in different MCF experiments. Experience collected during the described studies allows to introduce some changes in the radiator configuration and to modify the Cherenkov probe design. This document is composed of a paper followed by a poster

  20. Beam Cherenkov counter conception for in line identification of 270 GeV/c Σ- Ξ- and Ω-

    International Nuclear Information System (INIS)

    Touillon, R.

    1991-06-01

    The purpose of this thesis is to design a beam Cerenkov counter. This counter will provide an on line identification of the Σ - , Ξ - and Ω - hyperons (270 GeV/c) in the experiment WA89 at CERN. The acceptance of the detector should allow tagging these hyperons in a large momentum range (± 25%) and for a beam divergence up to 250 microrad. The first part of this report is devoted to the physical goals such as the study of charmed baryons, the search of multiquark states, and the determination of hadronic and electromagnetic hyperon radii. The experimental WA89 setup is also presented. The major part deals with the design of the Cerenkov counter. The dimension of the detector, the Cerenkov angle value, the focal length of the spherical mirror, etc... are derived from a Monte-Carlo simulation. Various methods of simple photon detection (gaz detector: TEA, TMAE; solid detectors: PM and Image Intensifier) are investigated. The most performing solution uses two conical mirrors in order to reduce the size of the Cerenkov circles and an image intensifier (which detects the single photon) followed by an optical fiber matrix transmitting the luminous signal to 160 photomultipliers. The on line procedure for calculating the radius of each circle (identification of the particle) is studied in detail. Finally, the optimization of the optical system to achromatize the Cerenkov light is discussed [fr

  1. Measurable difference in Cherenkov light between gamma and hadron induced EAS

    Energy Technology Data Exchange (ETDEWEB)

    Cabot, H.; Meynadier, Ch. [Universite de Perpignan, Groupe de Physique Fondamentale, Perpignan (France); Sobczynska, D. [Experimental Physics Department, University of Lodz, Lodz (Poland); Szabelska, B. [Soltan Institute for Nuclear Studies, Lodz (Poland); Szabelski, J. [Universite de Perpignan, Groupe de Physique Fondamentale, Perpignan (France)]|[Soltan Institute for Nuclear Studies, Lodz (Poland); Wibig, T. [Experimental Physics Department, University of Lodz, Lodz (Poland)

    1997-12-31

    We describe the possibly measurable difference in the Cherenkov light component of EAS induced by en electromagnetic particle (i.e. e{sup +}, e{sup -} or {gamma}) and induced by a hadron (i.e. proton or heavier nuclei) in TeV range. The method can be applied in experiments which use wavefront sampling method of EAS Cherenkov light detection (e.g. THEMISTOCLE, ASGAT). (author) 16 refs, 9 figs

  2. Cherenkov radiation in a plasma-filled, dielectric coaxial waveguide

    International Nuclear Information System (INIS)

    Wu Jianqiang

    2004-01-01

    Using the self-consistent linear field theory, Cherenkov radiation excitated by the beam-wave interaction of a thin annular relativistic electron beam in a plasma-filled, dielectric coaxial cylindrical waveguide was analyzed. The dispersion equation of the interaction, the synchronized condition and the wave growth rate were derived. The energy exchange between the wave and the electron beam in the presence of background plasma was discussed, and the effects of plasma density on the dispersion characteristics, the wave growth rate and the beam-wave energy exchange were calculated and discussed. It was clear that the Cherenkov radiation results from the coupling between the slow TM mode propagated along the waveguide and the negative-energy space-charge mode propagated along the beam, and the coupling strength is proportional to the beam density. It was theoretically demonstrated that due to the background plasma, the plasma-filled coaxial cylindrical Cherenkov maser could operate at higher frequency, get higher wave growth rate, or have higher beam current at the same operating frequency, leading to higher microwave output power. (authors)

  3. SU-G-IeP4-06: Feasibility of External Beam Treatment Field Verification Using Cherenkov Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Black, P; Na, Y; Wuu, C [Columbia University, New York, NY (United States)

    2016-06-15

    Purpose: Cherenkov light emission has been shown to correlate with ionizing radiation (IR) dose delivery in solid tissue. In order to properly correlate Cherenkov light images with real time dose delivery in a patient, we must account for geometric and intensity distortions arising from observation angle, as well as the effect of monitor units (MU) and field size on Cherenkov light emission. To test the feasibility of treatment field verification, we first focused on Cherenkov light emission efficiency based on MU and known field size (FS). Methods: Cherenkov light emission was captured using a PI-MAX4 intensified charge coupled device(ICCD) system (Princeton Instruments), positioned at a fixed angle of 40° relative to the beam central axis. A Varian TrueBeam linear accelerator (linac) was operated at 6MV and 600MU/min to deliver an Anterior-Posterior beam to a 5cm thick block phantom positioned at 100cm Source-to-Surface-Distance(SSD). FS of 10×10, 5×5, and 2×2cm{sup 2} were used. Before beam delivery projected light field images were acquired, ensuring that geometric distortions were consistent when measuring Cherenkov field discrepancies. Cherenkov image acquisition was triggered by linac target current. 500 frames were acquired for each FS. Composite images were created through summation of frames and background subtraction. MU per image was calculated based on linac pulse delay of 2.8ms. Cherenkov and projected light FS were evaluated using ImageJ software. Results: Mean Cherenkov FS discrepancies compared to light field were <0.5cm for 5.6, 2.8, and 8.6 MU for 10×10, 5×5, and 2×2cm{sup 2} FS, respectably. Discrepancies were reduced with increasing field size and MU. We predict a minimum of 100 frames is needed for reliable confirmation of delivered FS. Conclusion: Current discrepancies in Cherenkov field sizes are within a usable range to confirm treatment delivery in standard and respiratory gated clinical scenarios at MU levels appropriate to

  4. Extensive air showers and diffused Cherenkov light detection: The ULTRA experiment

    International Nuclear Information System (INIS)

    Agnetta, G.; Assis, P.; Biondo, B.

    2007-01-01

    The Uv Light Transmission and Reflection in the Atmosphere (ULTRA) experiment has been designed to provide quantitative measurements of the backscattered Cherenkov signal associated to the Extensive Air Showers (EAS) at the impact point on the Earth surface. The knowledge of such information will test the possibility to detect the diffused Cherenkov light spot from space within the Ultra high-energy cosmic ray observation. The Cherenkov signal is necessary to give an absolute reference for the track, allowing the measurement of the shower maximum and easing the separation between neutrino and hadronic showers. In this paper we discuss the experimental set-up with detailed information on the detection method; the in situ and laboratory calibrations; the simulation of the expected detector response and finally the preliminary results on the detector performance

  5. Conceptual history of the Vavilov-Cherenkov radiation

    International Nuclear Information System (INIS)

    Frank, I.M.

    1984-01-01

    The evolution of ideas on the nature of the Vavilov-Cherenkov radiation is discussed. The period between Vavilov's ideas, advanced in 1934, and the formulation of a quantitative theory of the phenomenon in 1937 is surveyed

  6. G-APDs in Cherenkov astronomy: The FACT camera

    International Nuclear Information System (INIS)

    Krähenbühl, T.; Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, V.; Djambazov, L.; Dorner, D.; Farnier, C.; Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Huber, B.; Kim, K.-S.; Köhne, J.-H.; Krumm, B.

    2012-01-01

    Geiger-mode avalanche photodiodes (G-APD, SiPM) are a much discussed alternative to photomultiplier tubes in Cherenkov astronomy. The First G-APD Cherenkov Telescope (FACT) collaboration builds a camera based on a hexagonal array of 1440 G-APDs and has now finalized its construction phase. A light-collecting solid PMMA cone is glued to each G-APD to eliminate dead space between the G-APDs by increasing the active area, and to restrict the light collection angle of the sensor to the reflector area in order to reduce the amount of background light. The processing of the signals is integrated in the camera and includes the digitization using the domino ring sampling chip DRS4.

  7. Theoretical study of Cherenkov radiation emission in anisotropic uniaxial crystals

    Energy Technology Data Exchange (ETDEWEB)

    Delbart, A; Derre, J

    1996-04-01

    A theoretical review of the Cherenkov radiation emission in uniaxial crystals is presented. The formalism of C. Muzicar in terms of energetic properties of the emitted waves are corrected. This formalism is used to simulate the Cherenkov radiation emission in a strongly birefringent sodium nitrate crystal (NaNO{sub 3}) and to investigate the consequences of the slight anisotropy of sapphire (Al{sub 2}O{sub 3}) on the design of the Optical Trigger. (author). 12 refs. Submitted to Physical Review, D (US).

  8. Neutrino superluminality without Cherenkov-like processes in Finslerian special relativity

    International Nuclear Information System (INIS)

    Chang Zhe; Li Xin; Wang Sai

    2012-01-01

    Recently, Cohen and Glashow [A.G. Cohen, S.L. Glashow, Phys. Rev. Lett. 107 (2011) 181803] pointed out that the superluminal neutrinos reported by the OPERA would lose their energy rapidly via the Cherenkov-like process. The Cherenkov-like process for the superluminal particles would be forbidden if the principle of special relativity holds in any frame instead violated with a preferred frame. We have proposed that the Finslerian special relativity could account for the data of the neutrino superluminality ( (arXiv:1110.6673 [hep-ph])). The Finslerian special relativity preserves the principle of special relativity and involves a preferred direction while consists with the causality. In this Letter, we prove that the energy-momentum conservation is preserved and the energy-momentum is well defined in Finslerian special relativity. The Cherenkov-like process is forbidden in the Finslerian special relativity. Thus, the superluminal neutrinos would not lose energy in their distant propagation.

  9. The nonlinear CWFA [Cherenkov Wakefield Accelerator

    International Nuclear Information System (INIS)

    Schoessow, P.

    1989-01-01

    The possible use of nonlinear media to enhance the performance of the Cherenkov Wakefield Accelerator (CWFA) is considered. Numerical experiments have been performed using a new wakefield code which demonstrate larger gradients and transformer ratios in the nonlinear CWFA than are obtained in the linear case. 7 refs., 3 figs

  10. Calibration strategies for the Cherenkov Telescope Array

    NARCIS (Netherlands)

    Gaug, M.; Berge, D.; Daniel, M.; Doro, M.; Förster, A.; Hofmann, W.; Maccarone, M.C.; Parsons, D.; de los Reyes Lopez, R.; van Eldik, C.

    2014-01-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration

  11. Cherenkov angle and charge reconstruction with the RICH detector of the AMS experiment

    CERN Document Server

    Barão, F; Borges, J; Gonçalves, P; Pimenta, M; Pérez, I

    2003-01-01

    The Alpha Magnetic Spectrometer experiment to be installed on the International Space Station will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector, for measurements of particle electric charge and velocity. In this note, two possible methods for reconstructing the Cherenkov angle and the electric charge with the RICH are discussed. A Likelihood method for the Cherenkov angle reconstruction was applied leading to a velocity determination for protons with a resolution of around 0.1%. The existence of a large fraction of background photons which can vary from event to event implied a charge reconstruction method based on an overall efficiency estimation on an event-by-event basis.

  12. Characterization of Multianode Photomultiplier Tubes for a Cherenkov Detector

    Science.gov (United States)

    Benninghoff, Morgen; Turisini, Matteo; Kim, Andrey; Benmokhtar, Fatiha; Kubarovsky, Valery; Duquesne University Collaboration; Jefferson Lab Collaboration

    2017-09-01

    In the Fall of 2017, Jefferson Lab's CLAS12 (CEBAF Large Acceptance Spectrometer) detector is expecting the addition of a RICH (ring imaging Cherenkov) detector which will allow enhanced particle identification in the momentum range of 3 to 8 GeV/c. RICH detectors measure the velocity of charged particles through the detection of produced Cherenkov radiation and the reconstruction of the angle of emission. The emitted Cherenkov photons are detected by a triangular-shaped grid of 391 multianode photomultiplier tubes (MAPMTs) made by Hamamatsu. The custom readout electronics consist of MAROC (multianode read out chip) boards controlled by FPGA (Field Programmable Gate Array) boards, and adapters used to connect the MAROC boards and MAPMTs. The focus of this project is the characterization of the MAPMTs with the new front end electronics. To perform these tests, a black box setup with a picosecond diode laser was constructed with low and high voltage supplies. A highly automated procedure was developed to acquire data at different combinations of high voltage values, light intensities and readout electronics settings. Future work involves using the collected data in calibration procedures and analyzing that data to resolve the best location for each MAPMT. SULI, NSF.

  13. The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array

    Science.gov (United States)

    Daniel, M. K.; CTA Consortium

    2015-04-01

    The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23 m), Medium (12 m) and Small (4 m) sized telescopes spread over an area of order ~km2. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of the candidate sites and the atmospheric calibration strategy. CTA will utilise a suite of instrumentation and analysis techniques for atmospheric modelling and monitoring regarding pointing forecasts, intelligent pointing selection for the observatory operations and for offline data correction.

  14. A G-APD based Camera for Imaging Atmospheric Cherenkov Telescopes

    International Nuclear Information System (INIS)

    Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, S.; Commichau, V.; Dorner, D.; Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Koehne, J.-H.; Kraehenbuehl, T.; Kranich, D.; Lorenz, E.; Lustermann, W.; Mannheim, K.

    2011-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACT) for Gamma-ray astronomy are presently using photomultiplier tubes as photo sensors. Geiger-mode avalanche photodiodes (G-APD) promise an improvement in sensitivity and, important for this application, ease of construction, operation and ruggedness. G-APDs have proven many of their features in the laboratory, but a qualified assessment of their performance in an IACT camera is best undertaken with a prototype. This paper describes the design and construction of a full-scale camera based on G-APDs realized within the FACT project (First G-APD Cherenkov Telescope).

  15. Reconstruction algorithms in the Super-Kamiokande large water Cherenkov detector

    CERN Document Server

    Shiozawa, M

    1999-01-01

    The Super-Kamiokande experiment, using a large underground water Cherenkov detector, has started its operation since first April, 1996. One of the main physics goals of this experiment is to measure the atmospheric neutrinos. Proton decay search is also an important topic. For these analyses, all measurement of physical quantities of an event such as vertex position, the number of Cherenkov rings, momentum, particle type and the number of decay electrons, is automatically performed by reconstruction algorithms. We attain enough quality of the analyses using these algorithms and several impressive results have been addressed.

  16. Reconstruction algorithms in the Super-Kamiokande large water Cherenkov detector

    International Nuclear Information System (INIS)

    Shiozawa, M.

    1999-01-01

    The Super-Kamiokande experiment, using a large underground water Cherenkov detector, has started its operation since first April, 1996. One of the main physics goals of this experiment is to measure the atmospheric neutrinos. Proton decay search is also an important topic. For these analyses, all measurement of physical quantities of an event such as vertex position, the number of Cherenkov rings, momentum, particle type and the number of decay electrons, is automatically performed by reconstruction algorithms. We attain enough quality of the analyses using these algorithms and several impressive results have been addressed

  17. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    Science.gov (United States)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  18. Cherenkov Radiation from a Pseudospark-sourced Electron Beam

    International Nuclear Information System (INIS)

    Phelps, A.D.R.; Yin, H.; Cross, A.W.; He, W.; Ronald, K.

    2003-01-01

    Electron beam generation from a multi-gap pseudospark discharge was investigated. A pseudospark-sourced electron beam has two phases, an initial hollow cathode phase (HCP) beam followed by a conductive phase (CP) beam. The beam brightness was measured by a field-free collimator to be 109 and 1011 Am-2rad-2 for the hollow cathode phase (HCP) beam and the conductive phase (CP) beam respectively. The initial HCP beam from an eight-gap pseudospark discharge was applied in a Cherenkov interaction between the electron beam and the TM01 mode of a 60-cm long alumina-lined waveguide. It was found experimentally that significant microwave radiation was generated only when the dielectric was present in the interaction space. If there was no dielectric in the cylindrical waveguide, then a very small background microwave output was detected even when the guide B-field was absent. This demonstrated, in conjunction with the observation that the microwave output signal was independent of the guide magnetic field over the range 0.13 to 0.26 T, that the radiation from the experiment was due to the Cherenkov interaction mechanism. In addition, two components of the microwave pulse were observed corresponding to the two energy components of the electron beam during the pseudospark discharge breakdown. These results demonstrated that the microwave radiation was generated by Cherenkov amplification of the broadband emission from the pseudospark discharge itself. A background signal level of around 100 W was measured in the frequency range 20 - 50 GHz with a percentage of (2.7 ± 0.6)% in the frequency range 25.5 - 28.6 GHz, when the dielectric lining was removed from the maser. The frequency of the microwave output after the Cherenkov maser interaction was measured to be mainly around 25.5 GHz and the dominating mode was identified as being TM01. The duration of the microwave pulse was approximately 80 ns, with a peak power of around 2 ± 0.2 kW. The gain of this amplifier was measured

  19. A quartz Cherenkov detector for polarimetry at the ILC

    International Nuclear Information System (INIS)

    Vauth, Annika

    2014-09-01

    At the proposed International Linear Collider (ILC), the use of polarised electron and positron beams is a key ingredient of the physics program. A measurement of the polarisation with a yet unprecedented precision of δP / P =0.25% is required. To achieve this, Compton polarimeter measurements in front of and behind the collision point are foreseen. In this thesis, a novel concept for a detector for ILC polarimetry is introduced to eliminate one of the dominating systematics limiting the previous best measurement of beam polarisation: a detector using quartz as Cherenkov medium could increase the tolerance against non-linear photodetector responses. The high refractive index of quartz results in a higher Cherenkov light yield compared to conventional Cherenkov gases. This could allow single-peak resolution in the Cherenkov photon spectra produced by the Compton electrons at the polarimeters. The detailed simulation studies presented in this work imply that such single-peak resolution is possible. Considerations for the choice of a suitable detector geometry are discussed. A four-channel prototype has been constructed and successfully operated in a first testbeam campaign at the DESY testbeam, confirming simulation predictions. Although further studies have to be considered to quantify all aspects of the detector response, the findings of the analysis of the data from the first testbeam are promising with regards to reaching the desired light yield. In the final part of this thesis, the application of a detector concept allowing single-peak resolution to the polarisation measurement at the ILC is examined. Two of the main sources of systematic uncertainties on the polarimeter measurements are detector non-linearities and misalignments. The performance of the suggested quartz detector concept in Monte Carlo studies promises a control of these systematics which meets the precision requirements for ILC polarimetry.

  20. Cherenkov radiation as a means of radio isotope diagnosis of eyeball tumors

    International Nuclear Information System (INIS)

    Moshnikov, O.S.; Kolesnichenko, V.N.

    1986-01-01

    Radiophosphorus indication of eye new-growths can be accomplished through registration of beta-particle or Cherenkov radiation. In both cases the criterion for the conclusion to be drawn from the experimental results is the relative increment of the count rate. The article analyses the specific features of the equipment aimed at recording Cherenkov radiation in the process of radiophosphorus studied in ophthalmology, and discusses the method for these studies. (orig.)

  1. FACT light collection - solid light concentrators in Cherenkov Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Isabel [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Collaboration: FACT-Collaboration

    2011-07-01

    Pixelized cameras of Imaging Atmospheric Cherenkov Telescopes use hollow light guides with reflective surfaces based on the Winston cone design. These cones minimize insensitive spaces between the photo sensors and shield the camera from stray background light by limiting the angular acceptance to the primary reflector area. FACT (First G-APD Cherenkov Telescope) will be the first IACT with Geiger-mode avalanche photodiodes as light sensors. Solid light concentrators complementing these sensors will be used instead of hollow Winston cones. We will present simulations and measurements of our light collector design, which was optimized for the requirements of the FACT telescope and detector, and discuss the specific differences to more traditional solutions.

  2. A new approach to the theory of Cherenkov radiation based on relativistic generalization of the Landau criterion

    International Nuclear Information System (INIS)

    Chefranov, S.G.

    2004-01-01

    Relativistic generalization of the Landau criterion is obtained which, in contrast to the classical Tamm-Frank and Ginzburg theories, determines the primary energy mechanism of emission of nonbremsstrahlung Cherenkov radiation. It is shown that Cherenkov radiation may correspond to a threshold energetically favorable conversion of the condensate (ultimately long-wavelength) elementary Bose perturbations of a medium into transverse Cherenkov photons emitted by the medium proper during its interaction with a sufficiently fast charged particle. The threshold conditions of emission are determined for a medium with an arbitrary refractive index n, including the case of isotropic plasma with n < 1 for which the classical theory of Cherenkov radiation prohibits such direct and effective nonbremsstrahlung emission of these particular transverse high-frequency electromagnetic waves. It is established that these conditions of emission agree with the data of well-known experiments on the threshold for observation of Cherenkov radiation, whereas the classical theory only corresponds to the conditions of observation of the interference maximum of this radiation. The possibility of direct effective emission of nonbremsstrahlung Cherenkov radiation, not taken into account in the classical theory, is considered for many observed astrophysical phenomena (type III solar radio bursts, particle acceleration by radiation, etc.)

  3. Time and charge calibration of Cherenkov telescope data acquired by Domino Ring Sampler 4 chips

    Energy Technology Data Exchange (ETDEWEB)

    Hoerbe, Mario; Doert, Marlene [Ruhr-Universitaet Bochum (Germany); Bruegge, Kai; Buss, Jens; Bockermann, Christian; Egorov, Alexej [TU Dortmund (Germany)

    2016-07-01

    Very-high-energy gamma-ray astronomy aims to give an insight into the most energetic phenomena in our Universe. Earthbound Cherenkov telescopes can measure Cherenkov light emitted by atmospheric particle showers which are produced by incoming cosmic particles at high energies. Current Cherenkov telescopes, e.g. operated in the FACT and the MAGIC experiments, utilize Domino Ring Sampler 4 (DRS4) chips for recording signals at high speed coming from the telescopes' cameras. DRS4 chips will also be used in the cameras of the Large-Size telescopes of the projected Cherenkov Telescope Array (CTA). We aim at developing a software solution for the calibration of DRS4 data based on the streams-framework, a software tool for streaming analysis which has been developed within the Collaborative Research Center SFB 876. The objectives and the current status of the project are presented.

  4. Effect of wavelength shifters on water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Badino, G; Galeotti, P; Periale, L; Saavedra, O; Turtelli, A [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)

    1981-06-15

    We report the results of a test showing that concentrations of approx. equal to 2 mg/l of wavelength shifter in water give almost the maximum efficiency of detection without losing the directionality of Cherenkov light.

  5. Remote Cherenkov imaging-based quality assurance of a magnetic resonance image-guided radiotherapy system.

    Science.gov (United States)

    Andreozzi, Jacqueline M; Mooney, Karen E; Brůža, Petr; Curcuru, Austen; Gladstone, David J; Pogue, Brian W; Green, Olga

    2018-06-01

    Tools to perform regular quality assurance of magnetic resonance image-guided radiotherapy (MRIgRT) systems should ideally be independent of interference from the magnetic fields. Remotely acquired optical Cherenkov imaging-based dosimetry measurements in water were investigated for this purpose, comparing measures of dose accuracy, temporal dynamics, and overall integrated IMRT delivery. A 40 × 30.5 × 37.5 cm 3 water tank doped with 1 g/L of quinine sulfate was imaged using an intensified charge-coupled device (ICCD) to capture the Cherenkov emission while being irradiated by a commercial MRIgRT system (ViewRay™). The ICCD was placed down-bore at the end of the couch, 4 m from treatment isocenter and behind the 5-Gauss line of the 0.35-T MRI. After establishing optimal camera acquisition settings, square beams of increasing size (4.2 × 4.2 cm 2 , 10.5 × 10.5 cm 2 , and 14.7 × 14.7 cm 2 ) were imaged at 0.93 frames per second, from an individual cobalt-60 treatment head, to develop projection measures related to percent depth dose (PDD) curves and cross beam profiles (CPB). These Cherenkov-derived measurements were compared to ionization chamber (IC) and radiographic film dosimetry data, as well as simulation data from the treatment planning system (TPS). An intensity-modulated radiotherapy (IMRT) commissioning plan from AAPM TG-119 (C4:C-Shape) was also imaged at 2.1 frames per second, and the single linear sum image from 509 s of plan delivery was compared to the dose volume prediction generated by the TPS using gamma index analysis. Analysis of standardized test target images (1024 × 1024 pixels) yielded a pixel resolution of 0.37 mm/pixel. The beam width measured from the Cherenkov image-generated projection CBPs was within 1 mm accuracy when compared to film measurements for all beams. The 502 point measurements (i.e., pixels) of the Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to p

  6. Development of slow control system for the Belle II ARICH counter

    Science.gov (United States)

    Yonenaga, M.; Adachi, I.; Dolenec, R.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Križan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Pestotnik, R.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yusa, Y.

    2017-12-01

    A slow control system (SCS) for the Aerogel Ring Imaging Cherenkov (ARICH) counter in the Belle II experiment was newly developed and coded in the development frameworks of the Belle II DAQ software. The ARICH is based on 420 Hybrid Avalanche Photo-Detectors (HAPDs). Each HAPD has 144 pixels to be readout and requires 6 power supply (PS) channels, therefore a total number of 2520 PS channels and 60,480 pixels have to be configured and controlled. Graphical User Interfaces (GUIs) with detector oriented view and device oriented view, were also implemented to ease the detector operation. The ARICH SCS is in operation for detector construction and cosmic rays tests. The paper describes the detailed features of the SCS and preliminary results of operation of a reduced set of hardware which confirm the scalability to the full detector.

  7. Cherenkov ring imaging using a television digitizer

    International Nuclear Information System (INIS)

    Charpak, G.; Peisert, A.; Sauli, F.; Cavestro, A.; Vascon, M.; Zanella, G.

    1981-01-01

    A Cherenkov ring imaging device using as photon detector a multistep spark chamber coupled to a television digitizer is described. Results of a test run using triethylamine as photo-ionizing vapour are presented, as well as preliminary results obtained with a new vapour having an extremely low ionization potential. (orig.)

  8. The Tunka-133 EAS Cherenkov light array: Status of 2011

    International Nuclear Information System (INIS)

    Berezhnev, S.F.; Besson, D.; Budnev, N.M.; Chiavassa, A.; Chvalaev, O.A.; Gress, O.A.; Dyachok, A.N.; Epimakhov, S.N.; Haungs, A.; Karpov, N.I.; Kalmykov, N.N.; Konstantinov, E.N.; Korobchenko, A.V.; Korosteleva, E.E.; Kozhin, V.A.; Kuzmichev, L.A.; Lubsandorzhiev, B.K.; Lubsandorzhiev, N.B.; Mirgazov, R.R.; Panasyuk, M.I.

    2012-01-01

    A new EAS Cherenkov light array, Tunka-133, with ∼1km 2 geometrical area has been installed at the Tunka Valley (50 km from Lake Baikal) in 2009. The array permits a detailed study of cosmic ray energy spectrum and mass composition in the energy range 10 16 –10 18 eV with a uniform method. We describe the array construction, DAQ and methods of the array calibration. The method of energy reconstruction and absolute calibration of measurements are discussed. The analysis of spatial and time structure of EAS Cherenkov light allows to estimate the depth of the EAS maximum X max . The results on the all particles energy spectrum and the mean depth of the EAS maximum X max vs. primary energy derived from the data of two winter seasons (2009–2011) are presented. Preliminary results of joint operation of the Cherenkov array with antennas for the detection of EAS radio signals are shown. Plans for future upgrades – deployment of remote clusters, radioantennas and a scintillator detector network and a prototype of the HiSCORE gamma-telescope – are discussed.

  9. A quartz Cherenkov detector for Compton-polarimetry at future e+e- colliders

    International Nuclear Information System (INIS)

    List, Jenny; Vauth, Annika; Vormwald, Benedikt; Hamburg Univ.

    2015-02-01

    Precision polarimetry is essential for future e + e - colliders and requires Compton polarimeters designed for negligible statistical uncertainties. In this paper, we discuss the design and construction of a quartz Cherenkov detector for such Compton polarimeters. The detector concept has been developed with regard to the main systematic uncertainties of the polarisation measurements, namely the linearity of the detector response and detector alignment. Simulation studies presented here imply that the light yield reachable by using quartz as Cherenkov medium allows to resolve in the Cherenkov photon spectra individual peaks corresponding to different numbers of Compton electrons. The benefits of the application of a detector with such single-peak resolution to the polarisation measurement are shown for the example of the upstream polarimeters foreseen at the International Linear Collider. Results of a first testbeam campaign with a four-channel prototype confirming simulation predictions for single electrons are presented.

  10. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Paul B.; Erickson, Anna S., E-mail: erickson@gatech.edu [Georgia Institute of Technology, Nuclear and Radiological Engineering, G.W. Woodruff School of Mechanical Engineering, 770 State St., Atlanta, Georgia 30332 (United States)

    2016-08-14

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  11. Wavelet imaging cleaning method for atmospheric Cherenkov telescopes

    Science.gov (United States)

    Lessard, R. W.; Cayón, L.; Sembroski, G. H.; Gaidos, J. A.

    2002-07-01

    We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.

  12. Observation of Cherenkov rings using a low-pressure parallel-plate chamber and a solid cesium-iodide photocathode

    International Nuclear Information System (INIS)

    Lockyer, N.S.; Millan, J.E.; Lu, C.; McDonald, K.T.; Lopez, A.

    1993-01-01

    We have observed Cherenkov rings from minimum-ionizing particles using a low-pressure, parallel-plate pad-chamber with a cesium-iodide solid photocathode. This detector is blind to minimum-ionizing particles, and sensitive to Cherenkov photons of wavelengths 170-210 nm. An average of 5 photoelectrons per Cherenkov ring were detected using a 2-cm-thick radiator of liquid C 6 F 14 . This paper reports on the chamber construction, photocathode preparation and testbeam results. (orig.)

  13. Development of a research reactor power measurement system using Cherenkov radiation

    Energy Technology Data Exchange (ETDEWEB)

    Salles, Brício M.; Mesquita, Amir Z., E-mail: briciomares@hotmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Nuclear research reactors are usually located in open pools, to allow visibility to the core and bluish luminosity of Cherenkov radiation. Usually the thermal power released in these reactors is monitored by chambers that measure the neutron flux, as it is proportional to the power. There are other methods used for power measurement, such as monitoring the core temperature and the energy balance in the heat exchanger. The brightness of Cherenkov's radiation is caused by the emission of visible electromagnetic radiation (in the blue band) by charged particles that pass through an insulating medium (water in nuclear research reactors) at a speed higher than that of light in this medium. This effect was characterized by Pavel Cherenkov, which earned him the Nobel Prize for Physics in 1958. The project's objective is to develop an innovative and alternative method for monitoring the power of nuclear research reactors. It will be performed by analyzing and monitoring the intensity of luminosity generated by Cherenkov radiation in the reactor core. This method will be valid for powers up to 250 kW, since above that value the luminosity saturates, as determined by previous studies. The reactor that will be used to test the method is the TRIGA, located at Nuclear Technology Development Center (CDTN), which currently has a maximum operating power of 250 kW. This project complies with International Atomic Energy Agency (IAEA) recommendations on reactor safety. It will give more redundancy and diversification in this measure and will not interfere with its operation. (author)

  14. Development of a research reactor power measurement system using Cherenkov radiation

    International Nuclear Information System (INIS)

    Salles, Brício M.; Mesquita, Amir Z.

    2017-01-01

    Nuclear research reactors are usually located in open pools, to allow visibility to the core and bluish luminosity of Cherenkov radiation. Usually the thermal power released in these reactors is monitored by chambers that measure the neutron flux, as it is proportional to the power. There are other methods used for power measurement, such as monitoring the core temperature and the energy balance in the heat exchanger. The brightness of Cherenkov's radiation is caused by the emission of visible electromagnetic radiation (in the blue band) by charged particles that pass through an insulating medium (water in nuclear research reactors) at a speed higher than that of light in this medium. This effect was characterized by Pavel Cherenkov, which earned him the Nobel Prize for Physics in 1958. The project's objective is to develop an innovative and alternative method for monitoring the power of nuclear research reactors. It will be performed by analyzing and monitoring the intensity of luminosity generated by Cherenkov radiation in the reactor core. This method will be valid for powers up to 250 kW, since above that value the luminosity saturates, as determined by previous studies. The reactor that will be used to test the method is the TRIGA, located at Nuclear Technology Development Center (CDTN), which currently has a maximum operating power of 250 kW. This project complies with International Atomic Energy Agency (IAEA) recommendations on reactor safety. It will give more redundancy and diversification in this measure and will not interfere with its operation. (author)

  15. Noise simulation and rejection for the DELPHI Barrel Ring Imaging Cherenkov detector

    International Nuclear Information System (INIS)

    Bloch, D.

    1996-01-01

    The performance of Ring Imaging Cherenkov detectors is severely affected by the background noise due to the necessity of detecting single electrons. Furthermore, in the majority of the existing RICHs, the charged particles to be identified also cross the sensitive area of the apparatus thus creating secondary effects. The different noise sources and the background behaviour have been studied for the DELPHI RICH in order to efficiently clean the Cherenkov rings from the background while preserving the majority of the signal. Particular care has been taken to optimize the parameters of the Cherenkov image ''cleaning'' for the gas and the liquid radiators separately. For Z 0 hadronic decays 70% background rejection has been achieved, whilst 85% of the signal has been retained. This paper also presents a simulation of the noise producing mechanisms where ionization electrons, δ-rays, feedback electrons created during avalanches and electronic noise are modeled according to the measured parameters. Good agreement between data and simulation has been achieved. (orig.)

  16. Monitor and control systems for the SLD Cherenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Boston Univ., MA; California Univ., Santa Barbara, CA; California Univ., Santa Cruz, CA; Cincinnati Univ., OH; Rutgers--the State Univ., Piscataway, NJ; Tohoku Univ., Sendai

    1989-10-01

    To help ensure the stable long-term operation of a Cherenkov Ring Detector at high efficiency, a comprehensive monitor and control system is being developed. This system will continuously monitor and maintain the correct operating temperatures, and will provide an on-line monitor and maintain the correct operating temperatures, and will provide an on-line monitor of the pressures, flows, mixing, and purity of the various fluids. In addition the velocities and trajectories of Cherenkov photoelectrons drifting within the imaging chambers will be measured using a pulsed uv lamp and a fiberoptic light injection system. 9 refs., 6 figs

  17. Design and construction of a Cherenkov detector for Compton polarimetry at the ILC

    International Nuclear Information System (INIS)

    Bartels, Christoph

    2010-11-01

    This paper describes the design and construction of a Cherenkov detector conceived with regard to high energy Compton polarimeters for the International Linear Collider, where beam diagnostic systems of unprecedented precision must complement the interaction region detectors to pursue an ambitious physics programme. Besides the design of the Cherenkov detector, detailed simulation studies and first testbeam results are presented. Good agreement of beam data with expectations from Monte Carlo simulations is observed. (orig.)

  18. Design and construction of a Cherenkov detector for Compton polarimetry at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Christoph [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Ebert, Joachim; Hartin, Anthony; Helebrant, Christian; Kaefer, Daniela; List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    This paper describes the design and construction of a Cherenkov detector conceived with regard to high energy Compton polarimeters for the International Linear Collider, where beam diagnostic systems of unprecedented precision must complement the interaction region detectors to pursue an ambitious physics programme. Besides the design of the Cherenkov detector, detailed simulation studies and first testbeam results are presented. Good agreement of beam data with expectations from Monte Carlo simulations is observed. (orig.)

  19. Development of DIRC counters for the PANDA experiment at FAIR

    International Nuclear Information System (INIS)

    Seitz, B.; Bettoni, D.; Branford, D.; Britting, A.; Carassiti, V.; Cecchi, A.; Cowie, E.; Dodokhof, V.Kh.; Dueren, M.; Eyrich, W.; Foehl, K.; Hayrapetyan, A.; Hill, G.; Hoek, M.; Hohler, R.; Kaiser, R.; Keri, T.; Lehmann, A.; Lehmann, D.; Marton, J.

    2011-01-01

    The PANDA experiment at the planned FAIR facility at GSI, Darmstadt, aims at measuring hadronic final states with unprecedented precision and luminosity. Superior particle identification of charged and neutral particles is mandatory to fulfil PANDA's physics aims. DIRC (Detection of Internally Reflected Cherenkov light) counters are foreseen for charged particle identification. A barrel DIRC will cover the central region while a disc DIRC will provide particle identification in the forward region. Three DIRC concepts differing in the radiator geometry and method for dispersion correction are studied. The barrel DIRC uses a novel imaging system and aims at exploiting a 3D reconstruction to mitigate dispersion effects. Two concepts are investigated for the forward disc DIRC. One concept employs passive dispersion correction and focussing light guides for image reconstruction. Alternatively, time-of-propagation measurements and a wave-length dependent photon detection system are investigated. The three detector designs share common developments such as investigating radiator properties and photon detection systems, and use the same test beam facilities.

  20. Workshop on Non-Imaging Cherenkov at High Energy

    CERN Document Server

    2013-01-01

    The non-Imaging Cherenkov air shower measurement technique holds great promise in furthering our understanding the Knee-to-Ankle region of the cosmic ray spectrum. In particular, this technique offers a unique way to determine the evolution of the cosmic ray nuclear composition, and an example is given by the recent spectrum results of the Tunka Collaboration. With this in mind, we are organizing a workshop, to be held at the University of Utah, to bring together the various practitioners of this cosmic ray measurement technique to share simulations, analyses, detector designs, and past experimental results amongst the community. The workshop will also be in support of our effort, NICHE, to extend the reach of the TA/TALE detector systems down to the Knee. We anticipate that the workshop will result in a white paper on the scientific importance of these high-energy cosmic ray measurements and on using the Cherenkov technique to accomplish them. Our goal is to have contributions from members of the previous ge...

  1. Spectrometer of Cherenkov radiation rings with hodoscopic photomultipliers

    International Nuclear Information System (INIS)

    Abramov, V.V.; Alekseev, A.V.; Baldin, B.Yu.

    1983-01-01

    Characteristics of SKOCH Cherenkov radiation ring spectrometer intended for identification of π- and K-mesons and protons in a wide divergent beam in the pulse range of 5.5-30 GeV/s are investigated. The spectrometer detecting system is based on using the hodoscopic photoelectron multipliers (HPEM). The HPEM specific feature is that they have an extended cathode and permit to determine the coordinate of an incident photon by measuring the time of photoelectron drift to a dinode system. The spectrometer has been tested at the FODS facility in the secondary particle beam with angular divergence equal to 16x6 mrad and aperture of 400x200 mm in the pulse range of 6-20 GeV/s. The range of Cherenkov radiation angle detection is 40-100 mrad which corresponds to the particle velocity range of 0.996-1. The angular and radial aperture is 30 mrad, the diameter is 420 mm. The obtained velocity resolution is 6x10 -5

  2. A Cherenkov-emission Microwave Source*

    Science.gov (United States)

    Lai, C. H.; Yoshii, J.; Katsouleas, T.; Hairapetian1, G.; Joshi, C.; Mori, W.

    1996-11-01

    In an unmagnetized plasma, there is no Cherenkov emission because the phase velocity vf of light is greater than c. In a magnetized plasma, the situation is completely changed. There is a rich variety of plasma modes with phase velocities vf 2 c which can couple to a fast particle. In the magnetized plasma, a fast particle, a particle beam, or even a short laser pulse excites a Cherenkov wake that has both electrostatic and electromagnetic components. Preliminary simulations indicate that at the vacuum/plasma boundary, the wake couples to a vacuum microwave with an amplitude equal to the electromagnetic component in the plasma. For a weakly magnetized plasma, the amplitude of the out-coupled radiation is approximately wc/wp times the amplitude of the wake excited in the plasma by the beam, and the frequency is approximately wp. Since plasma wakes as high as a few GeV/m are produced in current experiments, the potential for a high-power (i.e., GWatt) coherent microwave to THz source exists. In this talk, a brief overview of the scaling laws will be presented, followed by 1-D and 2-D PIC simulations. Prospects for a tuneable microwave source experiment based on this mechanism at the UCLA plasma wakefield accelerator facility will be discussed. *Work supported by AFOSR Grant #F4 96200-95-0248 and DOE Grant # DE-FG03-92ER40745. 1Now at Hughes Research Laboratories, Malibu, CA 90265

  3. Evaluation of new 5 inch photomultiplier for use in threshold Cherenkov detectors with aerogel radiator

    International Nuclear Information System (INIS)

    Wojtsekhowski, B.; Zorn, C.; Flyckt, S.O.

    2000-01-01

    A cost effective alternative to UV-sensitive 5 inch PMTs often used with threshold Aerogel Cherenkov detectors has been developed and tested. The photomultiplier -XP4572-is a variation of the Photonis XP4512 glass window tube with improved electron collection efficiency. Fast timing and high gain were only moderately compromised. The effective quantum efficiency has been measured as twice that of a Burle 8854 Quantacon when exposed to a Cherenkov spectrum generated by Ru-106 electrons (les;3.54 MeV) through 1 cm of high index, high transparency Matsushita Electric aerogel (n=1.05). This new phototube is being installed in an aerogel-based Cherenkov detector for Hall A at Jefferson Lab

  4. WE-AB-303-04: A Tissue Model of Cherenkov Emission From the Skin Surface During Megavoltage X-Ray Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, A. N.; Loyalka, S. K. [University of Missouri, Columbia, MO (United States); Izaguirre, E. W. [University of Missouri, Columbia, MO (United States); Baylor Scott & White Health, Temple, TX (United States)

    2015-06-15

    Purpose: To develop a tissue model of Cherenkov radiation emitted from the skin surface during external beam radiotherapy. Imaging Cherenkov radiation emitted from human skin allows visualization of the beam position and potentially surface dose estimates, and our goal is to characterize the optical properties of these emissions. Methods: We developed a Monte Carlo model of Cherenkov radiation generated in a semi-infinite tissue slab by megavoltage x-ray beams with optical transmission properties determined by a two-layered skin model. We separate the skin into a dermal and an epidermal layer in our model, where distinct molecular absorbers modify the Cherenkov intensity spectrum in each layer while we approximate the scattering properties with Mie and Rayleigh scattering from the highly structured molecular organization found in human skin. Results: We report on the estimated distributions of the Cherenkov wavelength spectrum, emission angles, and surface distribution for the modeled irradiated skin surface. The expected intensity distribution of Cherenkov radiation emitted from skin shows a distinct intensity peak around 475 nm, the blue region of the visible spectrum, between a pair of optical absorption bands in hemoglobin and a broad plateau beginning near 600 nm and extending to at least 700 nm where melanin and hemoglobin absorption are both low. We also find that the Cherenkov intensity decreases with increasing angle from the surface normal, the majority being emitted within 20 degrees of the surface normal. Conclusion: Our estimate of the spectral distribution of Cherenkov radiation emitted from skin indicates an advantage to using imaging devices with long wavelength spectral responsivity. We also expect the most efficient imaging to be near the surface normal where the intensity is greatest; although for contoured surfaces, the relative intensity across the surface may appear to vary due to decreasing Cherenkov intensity with increased angle from the

  5. Performance study of wavelength shifting acrylic plastic for Cherenkov light detection

    Energy Technology Data Exchange (ETDEWEB)

    Beckford, B., E-mail: beckford@aps.org [American Physical Society, One Physics Ellipse, College Park, MD 20740 (United States); De la Puente, A. [TRIUMF Laboratory, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 (Canada); Fujii, Y.; Hashimoto, O.; Kaneta, M.; Kanda, H.; Maeda, K.; Matsumura, A.; Nakamura, S.N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Perez, N.; Reinhold, J. [Department of Physics, Florida International University, Miami, FL 33199 (United States); Tang, L. [Department of Physics, Hampton University, Hampton, VA 23668 (United States); Tsukada, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2014-01-21

    The collection efficiency for Cherenkov light incident on a wavelength shifting plate (WLS) has been determined during a beam test at the Proton Synchrotron facility located in the National Laboratory for High Energy Physics (KEK), Tsukuba, Japan. The experiment was conducted in order to determine the detector's response to photoelectrons converted from photons produced by a fused silica radiator; this allows for an approximation of the detector's quality. The yield of the photoelectrons produced through internally generated Cherenkov light as well as light incident from the radiator was measured as a function of the momentum of the incident hadron beam. The yield is proportional to sin{sup 2}θ{sub c}, where θ{sub c} is the opening angle of the Cherenkov light created. Based on estimations and results from similar conducted tests, where the collection efficiency was roughly 39%, the experimental result was expected to be around 40% for internally produced light from the WLS. The results of the experiment determined the photon collection response efficiency of the WLS to be roughly 62% for photons created in a fused silica radiator and 41% for light created in the WLS.

  6. SU-F-T-684: Analysis of Cherenkov Excitation in Tissue and the Feasibility of Cherenkov Excited Photodynamic Therapy

    International Nuclear Information System (INIS)

    Saunders, Sara L; Andreozzi, Jacqueline M; Pogue, Brian W; Glaser, Adam K

    2016-01-01

    Purpose: The irradiation of photodynamic agents with radiotherapy beams has been demonstrated to enhance tumor killing in various studies, and one proposed mechanism is the optical fluence of Cherenkov emission activating the photosensitizer. This mechanism is explored in Monte Carlo simulations of fluence as well as laboratory measurements of fluence and radical oxygen species. Methods: Simulations were completed using GAMOS/GEANT4 with a 6 MV photon beam in tissue. The effects of blood vessel diameter, blood oxygen saturation, and beam size were examined, recording spectral fluence. Experiments were carried out in solutions of photosensitizer and phantoms. Results: Cherenkov produced by a 100×100um"2 6 MV beam resulted in fluence of less than 1 nJ/cm"2/Gy per 1 nm wavelength. At this microscopic level, differences in absorption of blood and water in the tissue affected the fluence spectrum, but variation in blood oxygenation had little effect. Light in tissue resulting from larger (10mm ×10mm) 6 MV beams had greater fluence due to light transport and elastic scattering of optical photons, but this transport process also resulted in higher absorption shifts. Therefore, the spectrum produced by a microscopic beam was weighted more heavily in UV/blue wavelengths than the spectrum at the macroscopic level. At the macroscopic level, the total fluence available for absorption by Verteporfin (BPD) in tissue approached uJ/cm"2 for a high radiation dose, indicating that photodynamic activation seems unlikely. Tissue phantom confirmation of these light levels supported this observation, and photosensitization measurements with a radical oxygen species reporter are ongoing. Conclusion: Simulations demonstrated that fluence produced by Cherenkov in tissue by 6 MV photon beams at typical radiotherapy doses appears insufficient to activate photosensitizers to the level required for threshold effects, yet this disagrees with published biological experiments. Experimental

  7. SU-F-T-684: Analysis of Cherenkov Excitation in Tissue and the Feasibility of Cherenkov Excited Photodynamic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Sara L; Andreozzi, Jacqueline M; Pogue, Brian W [Dartmouth College, Hanover, NH (United States); Glaser, Adam K [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: The irradiation of photodynamic agents with radiotherapy beams has been demonstrated to enhance tumor killing in various studies, and one proposed mechanism is the optical fluence of Cherenkov emission activating the photosensitizer. This mechanism is explored in Monte Carlo simulations of fluence as well as laboratory measurements of fluence and radical oxygen species. Methods: Simulations were completed using GAMOS/GEANT4 with a 6 MV photon beam in tissue. The effects of blood vessel diameter, blood oxygen saturation, and beam size were examined, recording spectral fluence. Experiments were carried out in solutions of photosensitizer and phantoms. Results: Cherenkov produced by a 100×100um{sup 2} 6 MV beam resulted in fluence of less than 1 nJ/cm{sup 2}/Gy per 1 nm wavelength. At this microscopic level, differences in absorption of blood and water in the tissue affected the fluence spectrum, but variation in blood oxygenation had little effect. Light in tissue resulting from larger (10mm ×10mm) 6 MV beams had greater fluence due to light transport and elastic scattering of optical photons, but this transport process also resulted in higher absorption shifts. Therefore, the spectrum produced by a microscopic beam was weighted more heavily in UV/blue wavelengths than the spectrum at the macroscopic level. At the macroscopic level, the total fluence available for absorption by Verteporfin (BPD) in tissue approached uJ/cm{sup 2} for a high radiation dose, indicating that photodynamic activation seems unlikely. Tissue phantom confirmation of these light levels supported this observation, and photosensitization measurements with a radical oxygen species reporter are ongoing. Conclusion: Simulations demonstrated that fluence produced by Cherenkov in tissue by 6 MV photon beams at typical radiotherapy doses appears insufficient to activate photosensitizers to the level required for threshold effects, yet this disagrees with published biological experiments

  8. Stability and behavior of the outer array of small water Cherenkov detectors, outriggers, in the HAWC observatory

    OpenAIRE

    Capistrán, T.; Torres, I.; Moreno, E.; collaboration, for the HAWC

    2017-01-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is used for detecting TeV gamma rays. HAWC is operating at 4,100 meters above level sea on the slope of the Sierra Negra Volcano in the State of Puebla, Mexico, and consists of an array of 300 water Cherenkov detectors (WCDs) covering an area of 22,000 $m^2$. Each WCD is equipped with four photomultiplier tubes (PMTs) to detect Cherenkov emission in the water from secondary particles of extensive air-shower (EAS) that are produced in the in...

  9. The Cherenkov correlated timing detector: materials, geometry and timing constraints

    International Nuclear Information System (INIS)

    Aronstein, D.; Bergfeld, T.; Horton, D.; Palmer, M.; Selen, M.; Thayer, G.; Boyer, V.; Honscheid, K.; Kichimi, H.; Sugaya, Y.; Yamaguchi, H.; Yoshimura, Y.; Kanda, S.; Olsen, S.; Ueno, K.; Tamura, N.; Yoshimura, K.; Lu, C.; Marlow, D.; Mindas, C.; Prebys, E.; Pomianowski, P.

    1996-01-01

    The key parameters of Cherenkov correlated timing (CCT) detectors are discussed. Measurements of radiator geometry, optical properties of radiator and coupling materials, and photon detector timing performance are presented. (orig.)

  10. Cherenkov detectors and a new effective-mass spectrometer method

    Czech Academy of Sciences Publication Activity Database

    Hladký, Jan

    2006-01-01

    Roč. 75, - (2006), s. 854-855 ISSN 0969-806X Institutional research plan: CEZ:AV0Z10100502 Keywords : Cherenkov radiation * spectrometer * effective mass method Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.868, year: 2006

  11. LUCID A Cherenkov Tube Based Detector for Monitoring the ATLAS Experiment Luminosity

    CERN Document Server

    Sbrizzi, A

    2007-01-01

    The LUCID (LUminosity Cherenkov Integrating Detector) apparatus is composed by two symmetric arms deployed at about 17 m from the ATLAS interaction point. The purpose of this detector, which will be installed in january 2008, is to monitor the luminosity delivered by the LHC machine to the ATLAS experiment. An absolute luminosity calibration is needed and it will be provided by a Roman Pot type detector with the two arms placed at about 240 m from the interaction point. Each arm of the LUCID detector is based on an aluminum vessel containing 20 Cherenkov tubes, 15 mm diameter and 1500 mm length, filled with C4F10 radiator gas at 1.5 bar. The Cherenkov light generated by charged particles above the threshold is collected by photomultiplier tubes (PMT) directly placed at the tubes end. The challenging aspect of this detector is its readout in an environment characterized by the high dose of radiation (about 0.7 Mrad/year at 10^33cm^2 s^-1) it must withstand. In order to fulfill these radiation hardness requirem...

  12. Modeling the Effects of Mirror Misalignment in a Ring Imaging Cherenkov Detector

    Science.gov (United States)

    Hitchcock, Tawanda; Harton, Austin; Garcia, Edmundo

    2012-03-01

    The Very High Momentum Particle Identification Detector (VHMPID) has been proposed for the ALICE experiment at the Large Hadron Collider (LHC). This detector upgrade is considered necessary to study jet-matter interaction at high energies. The VHMPID identifies charged hadrons in the 5 GeV/c to 25 GeV/c momentum range. The Cherenkov photons emitted in the VHMPID radiator are collected by spherical mirrors and focused onto a photo-detector plane forming a ring image. The radius of this ring is related to the Cherenkov angle, this information coupled with the particle momentum allows the particle identification. A major issue in the RICH detector is that environmental conditions can cause movements in mirror position. In addition, chromatic dispersion causes the refractive index to shift, altering the Cherenkov angle. We are modeling a twelve mirror RICH detector taking into account the effects of mirror misalignment and chromatic dispersion using a commercial optical software package. This will include quantifying the effects of both rotational and translational mirror misalignment for the initial assembly of the module and later on particle identification.

  13. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.B., E-mail: prose6@gatech.edu; Erickson, A.S., E-mail: anna.erickson@me.gatech.edu

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in {sup 11}B(d,n-γ){sup 12}C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example {sup 232}Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  14. Photon counting with a FDIRC Cherenkov prototype readout by SiPM arrays

    Energy Technology Data Exchange (ETDEWEB)

    Marrocchesi, P.S., E-mail: marrocchesi@pi.infn.it [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Bagliesi, M.G. [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); Basti, A. [Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Bigongiari, G.; Bonechi, S.; Brogi, P. [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Checchia, C.; Collazuol, G. [Department of Physics and Astronomy, University of Padova, Padova, Italy, and INFN-Padova, 35131 Padova (Italy); Maestro, P. [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Morsani, F. [INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Piemonte, C. [Fondazione Bruno Kessler (FBK), I-38122 Trento (Italy); Stolzi, F.; Suh, J.E; Sulaj, A. [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy)

    2017-02-11

    A prototype of a Focused Internal Reflection Cherenkov, equipped with 16 arrays of NUV-SiPM, was tested at CERN SPS in March 2015 with beams of relativistic ions at 13, 19 and 30 GeV/n obtained from fragmentation of an Ar primary beam. The detector, designed to identify cosmic nuclei, features a Fused Silica radiator bar optically connected to a cylindrical mirror of the same material and an imaging focal plane of dimensions ∼4 cm×3 cm covered with a total of 1024 SiPM photosensors. Thanks to the outstanding performance of the SiPM arrays, the detector could be operated in photon counting mode as a fully digital device. The Cherenkov pattern was recorded together with the total number of detected photoelectrons increasing as Z{sup 2} as a function of the atomic number Z of the beam particle. In this paper, we report on the characterization and test of the SiPM arrays and the performance of the Cherenkov prototype for the charge identification of the beam particles.

  15. Signal intensity analysis and optimization for in vivo imaging of Cherenkov and excited luminescence

    Science.gov (United States)

    LaRochelle, Ethan P. M.; Shell, Jennifer R.; Gunn, Jason R.; Davis, Scott C.; Pogue, Brian W.

    2018-04-01

    During external beam radiotherapy (EBRT), in vivo Cherenkov optical emissions can be used as a dosimetry tool or to excite luminescence, termed Cherenkov-excited luminescence (CEL) with microsecond-level time-gated cameras. The goal of this work was to develop a complete theoretical foundation for the detectable signal strength, in order to provide guidance on optimization of the limits of detection and how to optimize near real time imaging. The key parameters affecting photon production, propagation and detection were considered and experimental validation with both tissue phantoms and a murine model are shown. Both the theoretical analysis and experimental data indicate that the detection level is near a single photon-per-pixel for the detection geometry and frame rates commonly used, with the strongest factor being the signal decrease with the square of distance from tissue to camera. Experimental data demonstrates how the SNR improves with increasing integration time, but only up to the point where the dominance of camera read noise is overcome by stray photon noise that cannot be suppressed. For the current camera in a fixed geometry, the signal to background ratio limits the detection of light signals, and the observed in vivo Cherenkov emission is on the order of 100×  stronger than CEL signals. As a result, imaging signals from depths  <15 mm is reasonable for Cherenkov light, and depths  <3 mm is reasonable for CEL imaging. The current investigation modeled Cherenkov and CEL imaging of two oxygen sensing phosphorescent compounds, but the modularity of the code allows for easy comparison of different agents or alternative cameras, geometries or tissues.

  16. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, L.; Zebrowski, J.; Malinowski, K.; Rabinski, M.; Sadowski, M. J. [National Centre for Nuclear Research (NCBJ), 7 Andrzeja Soltana Str., 05-400 Otwock (Poland)

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  17. The barrel and disc DIRC counters for the PANDA experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Mustafa [II. Physikalisches Institut, Universitaet Giessen (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    The PANDA spectrometer for the future FAIR facility at GSI will be used to address open questions in hadronic physics by investigating antiproton collisions with a fixed target in the momentum range between 1.5 GeV/c and 15 GeV/c. In order to achieve a particle identification with a high precision, two different DIRC detector concepts have been developed by PANDA, which allow a compact detector design together with an excellent performance to cleanly separate pions, kaons, and protons. The Barrel DIRC in the target spectrometer of PANDA is based on the successful BaBar DIRC with several key improvements. It is designed for polar angles between θ = 22 and θ = 140 and momenta up to 3.5 GeV/c. The Disc DIRC is part of the endcap region of the spectrometer and covers the angular range from θ = 5 /10 to θ = 22 in the forward direction of PANDA. It will provide a π/K separation with a 4-σ separation power up to a momentum of 4 GeV/c. Both Cherenkov detectors will use MCP-PMTs for the photon detection in combination with fast readout electronics. The radiators are synthetic fused silica plates with precision polished surfaces that guarantee to have very little photon losses by total reflection and conserve the Cherenkov angle during propagation through the optical system. Simulations with Geant4 and tests with several prototypes at various test beam facilities have been used to evaluate the designs and validate the expected PID performance of the DIRC counters.

  18. Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Jacqueline M., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu, E-mail: Lesley.A.Jarvis@hitchcock.org; Glaser, Adam K. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J.; Williams, Benjamin B.; Jarvis, Lesley A., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu, E-mail: Lesley.A.Jarvis@hitchcock.org [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States); Pogue, Brian W. [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2016-02-15

    Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R{sup 2} = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial

  19. Particle Identification with the Cherenkov imaging technique using MPGD based Photon Detectors for Physics at COMPASS Experiment at CERN

    CERN Document Server

    AUTHOR|(CDS)2070220; Martin, Anna

    A novel technology for the detection of single photons has been developed and implemented in 2016 in the Ring Imaging Cherenkov (RICH) detector of the COMPASS Experiment at CERN SPS. Some basic knowledge in the field of particle identification and RICH counters, Micro Pattern Gaseous Detectors (MPGDs) in general and their development for photon detection applications are provided. The characteristics of the COMPASS setup are summarized and the COMPAS RICH-1 detector is described and shown to provide hadron identification in the momentum range between 3 and 55 GeV/c. The THGEM technology is discussed illustrating their characterization as gas multipliers and as reflective photocathodes: large gains and efficient photodetection collections are achieved when using optimized parameters and conditions (hole diameter = THGEM thickness = 0.4 mm; hole pitch = 0.8 mm and no rim; CH4-rich gas mixtures and electric field values > 1 kV/cm at the CsI surface). The intense R\\&D program leading to the choice of a hybrid...

  20. Test of aerogel as Cherenkov radiator

    CERN Document Server

    Alemi, M; Calvi, M; Matteuzzi, C; Negri, P; Paganoni, M; Liko, D; Neufeld, N; Chesi, Enrico Guido; Joram, C; Séguinot, Jacques; Ypsilantis, Thomas

    2001-01-01

    Two different stacks of aerogel were tested in a pion/proton beam of momentum between 3 and 10 GeV/c. The optical characteristics of the aerogel samples were different: one sample was hygroscopic while the other was hydrophobic. Two HPD tubes were used as photodetectors, and different thicknesses of the stacks were used, in order to determine the photoelectron yield, the Cherenkov angle and its precision. Pion/proton separation has been demonstrated at momenta up to 10 GeV/c.

  1. NECTAR: New electronics for the Cherenkov Telescope Array

    Science.gov (United States)

    Naumann, Christopher Lindsay; Bolmont, J.; Corona, P.; Delagnes, E.; Dzahini, D.; Feinstein, F.; Gascon, D.; Glicenstein, J.-F.; Nayman, P.; Rarbi, F.; Ribo, M.; Sanuy, A.; Siero, X.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The international CTA consortium is currently in the preparatory phase for the development of the next-generation Cherenkov Telescope Array (CTA [1]), based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS. To achieve an unprecedented sensitivity and energy range for TeV gamma rays, a new kind of flexible and powerful yet inexpensive front-end hardware will be required for the order of 105 channels of photodetectors in up to 100 telescopes. One possible solution is the NECTAr (New Electronics for the Cherenkov Telescope Array) system, based on the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC for very fast readout performance and a significant reduction of the cost and the lower consumption per channel, while offering a high degree of flexibility both for the triggering and the readout of the telescope. The current status of its development is presented, along with newest results from measurements and simulation studies.

  2. INFN Camera demonstrator for the Cherenkov Telescope Array

    CERN Document Server

    Ambrosi, G; Aramo, C.; Bertucci, B.; Bissaldi, E.; Bitossi, M.; Brasolin, S.; Busetto, G.; Carosi, R.; Catalanotti, S.; Ciocci, M.A.; Consoletti, R.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Palma, F.; Desiante, R.; Di Girolamo, T.; Di Giulio, C.; Doro, M.; D'Urso, D.; Ferraro, G.; Ferrarotto, F.; Gargano, F.; Giglietto, N.; Giordano, F.; Giraudo, G.; Iacovacci, M.; Ionica, M.; Iori, M.; Longo, F.; Mariotti, M.; Mastroianni, S.; Minuti, M.; Morselli, A.; Paoletti, R.; Pauletta, G.; Rando, R.; Fernandez, G. Rodriguez; Rugliancich, A.; Simone, D.; Stella, C.; Tonachini, A.; Vallania, P.; Valore, L.; Vagelli, V.; Verzi, V.; Vigorito, C.

    2015-01-01

    The Cherenkov Telescope Array is a world-wide project for a new generation of ground-based Cherenkov telescopes of the Imaging class with the aim of exploring the highest energy region of the electromagnetic spectrum. With two planned arrays, one for each hemisphere, it will guarantee a good sky coverage in the energy range from a few tens of GeV to hundreds of TeV, with improved angular resolution and a sensitivity in the TeV energy region better by one order of magnitude than the currently operating arrays. In order to cover this wide energy range, three different telescope types are envisaged, with different mirror sizes and focal plane features. In particular, for the highest energies a possible design is a dual-mirror Schwarzschild-Couder optical scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based camera is being proposed as a solution to match the dimensions of the pixel (angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made by 9 Photo Sensor Modules (PSMs...

  3. Characterization of a 6×6-mm{sup 2} 75-μm cell MPPC suitable for the Cherenkov Telescope Array project

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, G., E-mail: giuseppe.romeo@oact.inaf.it [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Bonanno, G.; Garozzo, S.; Grillo, A.; Marano, D.; Munari, M.; Timpanaro, M.C. [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo (Italy)

    2016-08-01

    This paper presents the latest characterization results of a novel Low Cross-Talk (LCT) large-area (6×6-mm{sup 2}) Multi-Pixel Photon Counter (MPPC) detector manufactured by Hamamatsu, belonging to the recent LCT5 family and achieving a fill-factor enhancement and cross-talk reduction. In addition, the newly adopted resin coating is demonstrated to yield improved photon detection capabilities in the 290–350 nm spectral range, making the new LCT MPPC particularly suitable for emerging applications like Cherenkov Telescopes. For a 3×3-mm{sup 2} version of the new MPPC under test, a comparative analysis of the large pixel pitch (75-µm) detector versus the smaller pixel pitch (50-µm) detector is also undertaken. Furthermore, measurements of the 6×6-mm{sup 2} MPPC response versus the angle of incidence are provided for the characterized device.

  4. Measurement of high-energy electrons by means of a Cherenkov detector in ISTTOK tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L., E-mail: lech.Jjakubowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Plyusnin, V.V. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal); Malinowski, K.; Sadowski, M.J.; Rabinski, M. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Fernandes, H.; Silva, C.; Duarte, P. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal)

    2010-10-15

    The paper concerns detectors of the Cherenkov radiation which can be used to measure high-energy electrons escaping from short-living plasma. Such detectors have high temporal (about 1 ns) and spatial (about 1 mm) resolution. The paper describes a Cherenkov-type detector which was designed, manufactured and installed in the ISTTOK tokamak in order to measure fast runaway electrons. The radiator of that detector was made of an aluminium nitride (AlN) tablet with a light-tight filter on its front surface. Cherenkov signals from the radiator were transmitted through an optical cable to a fast photomultiplier. It made possible to perform direct measurements of the runaway electrons of energy above 80 keV. The measured energy values and spatial characteristics of the recorded electrons appeared to be consistent with results of numerical modelling of the runaway electron generation process in the ISTTOK tokamak.

  5. Gamma ray astronomy with atmospheric Cherenkov telescopes: the future

    International Nuclear Information System (INIS)

    Krennrich, Frank

    2009-01-01

    Atmospheric Cherenkov telescopes have been key to the recent discoveries in teraelectronvolt (TeV) γ-ray astronomy. The detection of TeV γ rays from more than 90 galactic and extragalactic sources provides a wealth of data for probing physical phenomena that pertain to some of the big questions in astrophysics. These include the understanding of the origin of cosmic rays, unveiling the connection between relativistic jets and black holes, shedding light on dark matter and its relation to supersymmetric particles and estimating the brightness of cosmological diffuse radiation fields in the optical/infrared waveband. While these recent advances were made with instruments designed in the 1990s, the present paper is concerned with a next generation of imaging atmospheric Cherenkov telescopes (IACTs) that are currently in the conceptual planning stage. We discuss the basic ideas, the required technology and expected performance of a ≥1 square-kilometer array, which is poised to yield the most dramatic step yet to come in TeV astronomy.

  6. Needle counter

    International Nuclear Information System (INIS)

    Fujita, Yuzo

    1977-01-01

    Needle counter had been devised by Geiger about 60 years ago before the present GM counter appeared. It is suitable for the detection of weak radiation because it is limited in effective volume, if the background due to mainly cosmic ray is proportional to the effective volume of the counter. Recently the very low β detector having a needle counter as the main detector has been developed. It showed highly excellent performance in the measurements of small area samples, about ten times sensitive as compared with other detectors. The counter is installed in the very low radiation measuring well at Nokogiriyama, Chiba Prefecture, using a NaI scintillator as its guard counter. D. H. Wilkinson first treated a gas amplification counter theoretically and quantitatively. The authors have obtained good results in the comparison with the experiments of the counter using a generalized form of Wilkinson theory. The findings obtained through this study seem to be applicable to the electrode arrangement which is important for the counter design. It was found that the excellent rise time of induced pulses in a gas amplification counter was achieved in larger amplification factor and smaller convolution effect. In the detection of charged particles with small obstructing capability such as γ ray, faster rise time and higher pulses can be obtained with needle counters than wire counters. (Wakatsuki, Y.)

  7. Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation.

    Science.gov (United States)

    Suizu, Koji; Koketsu, Kaoru; Shibuya, Takayuki; Tsutsui, Toshihiro; Akiba, Takuya; Kawase, Kodo

    2009-04-13

    Terahertz (THz) wave generation based on nonlinear frequency conversion is promising way for realizing a tunable monochromatic bright THz-wave source. Such a development of efficient and wide tunable THz-wave source depends on discovery of novel brilliant nonlinear crystal. Important factors of a nonlinear crystal for THz-wave generation are, 1. High nonlinearity and 2. Good transparency at THz frequency region. Unfortunately, many nonlinear crystals have strong absorption at THz frequency region. The fact limits efficient and wide tunable THz-wave generation. Here, we show that Cherenkov radiation with waveguide structure is an effective strategy for achieving efficient and extremely wide tunable THz-wave source. We fabricated MgO-doped lithium niobate slab waveguide with 3.8 microm of thickness and demonstrated difference frequency generation of THz-wave generation with Cherenkov phase matching. Extremely frequency-widened THz-wave generation, from 0.1 to 7.2 THz, without no structural dips successfully obtained. The tuning frequency range of waveguided Cherenkov radiation source was extremely widened compare to that of injection seeded-Terahertz Parametric Generator. The tuning range obtained in this work for THz-wave generation using lithium niobate crystal was the widest value in our knowledge. The highest THz-wave energy obtained was about 3.2 pJ, and the energy conversion efficiency was about 10(-5) %. The method can be easily applied for many conventional nonlinear crystals, results in realizing simple, reasonable, compact, high efficient and ultra broad band THz-wave sources.

  8. Cherenkov light as a source of photochemical reactions in irradiated solutions of nitrile of malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Stuglik, Z; Grodkowski, J

    1986-10-01

    Experimental data on photochemical activity of Cherenkov light are presented. Malachite green leucocyanide was used to detect the photochemical effects. The G value of Cherenkov light from the region 200-330 nm (number of quanta formed per 100 eV absorbed energy of ionizing radiation) in ethanol was estimated to be in the range of 0.0027-0.049. 14 references.

  9. Cherenkov light as a source of photochemical reactions in irradiated solutions of nitrile of malachite green

    International Nuclear Information System (INIS)

    Stuglik, Z.; Grodkowski, J.

    1986-01-01

    Experimental data on photochemical activity of Cherenkov light are presented. Malachite green leucocyanide was used to detect the photochemical effects. The G value of Cherenkov light from the region 200-330 nm (number of quanta formed per 100 eV absorbed energy of ionizing radiation) in ethanol was estimated to be in the range of 0.0027-0.049. (author)

  10. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S. [National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States)

    2016-11-15

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO{sub 2} clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1–3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.

  11. Data analysis for solar neutrinos observed by water Cherenkov detectors{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Koshio, Yusuke [Okayama University, Okayama (Japan)

    2016-04-15

    A method of analyzing solar neutrino measurements using water-based Cherenkov detectors is presented. The basic detection principle is that the Cherenkov photons produced by charged particles via neutrino interaction are observed by photomultiplier tubes. A large amount of light or heavy water is used as a medium. The first detector to successfully measure solar neutrinos was Kamiokande in the 1980's. The next-generation detectors, i.e., Super-Kamiokande and the Sudbury Neutrino Observatory (SNO), commenced operation from the mid-1990's. These detectors have been playing the critical role of solving the solar neutrino problem and determining the neutrino oscillation parameters over the last decades. The future prospects of solar neutrino analysis using this technique are also described. (orig.)

  12. Extension of Cherenkov Light LDF Parametrization for Tunka and ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The Cherenkov light Lateral Distribution Function (LDF) from particles initiated Extensive Air Showers (EAS) with ultrahigh energies ( > 1016 eV) was simulated using CORSIKA program for configuration of Tunka and Yakutsk EAS arrays for different primary particles (p, Fe and O2) and different zenith ...

  13. Muon-track studies in a water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Etchegoyen, A. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina)]. E-mail: etchegoy@tandar.cnea.gov.ar; Bauleo, P. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Bertou, X. [Enrico Fermfi Institute, University of Chicago, 5640 S. Ellis, Chicago, IL 60637 (United States); Bonifazi, C.B. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Filevich, A. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Medina, M.C. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Melo, D.G. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Rovero, A.C. [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28 (1428) Buenos Aires (Argentina); Supanitsky, A.D. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Tamashiro, A. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina)

    2005-06-21

    Background muons may be used in cosmic ray experiments to understand the response of a given detector system and to lay the basis for the further theoretical and simulation work needed in the analysis of air showers. Experiments were performed using a water Cherenkov detector at the Tandar Laboratory. Monte Carlo and semi-analytical calculations were compared to the data.

  14. Measuring the attenuation length of water in the CHIPS-M water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Amat, F.; Bizouard, P. [Aix Marseille University Saint-Jerome, 13013 Marseille (France); Bryant, J. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Carroll, T.J.; Rijck, S. De [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Germani, S. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Joyce, T. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Kriesten, B. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Marshak, M.; Meier, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Nelson, J.K. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Perch, A.J.; Pfützner, M.M. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Salazar, R. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Thomas, J., E-mail: jennifer.thomas@ucl.ac.uk [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Trokan-Tenorio, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Vahle, P. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Wade, R. [Avenir Consulting, Abingdon, Oxfordshire (United Kingdom); Wendt, C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Whitehead, L.H. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); and others

    2017-02-01

    The water at the proposed site of the CHIPS water Cherenkov detector has been studied to measure its attenuation length for Cherenkov light as a function of filtering time. A scaled model of the CHIPS detector filled with water from the Wentworth 2W pit, proposed site of the CHIPS deployment, in conjunction with a 3.2 m vertical column filled with this water, was used to study the transmission of 405 nm laser light. Results consistent with attenuation lengths of up to 100 m were observed for this wavelength with filtration and UV sterilization alone.

  15. Using Deep Learning for Gamma Ray Source Detection at the First G-APD Cherenkov Telescope (FACT)

    Science.gov (United States)

    Bieker, Jacob

    2018-06-01

    Finding gamma-ray sources is of paramount importance for Imaging Air Cherenkov Telescopes (IACT). This study looks at using deep neural networks on data from the First G-APD Cherenkov Telescope (FACT) as a proof-of-concept of finding gamma-ray sources with deep learning for the upcoming Cherenkov Telescope Array (CTA). In this study, FACT’s individual photon level observation data from the last 5 years was used with convolutional neural networks to determine if one or more sources were present. The neural networks used various architectures to determine which architectures were most successful in finding sources. Neural networks offer a promising method for finding faint and extended gamma-ray sources for IACTs. With further improvement and modifications, they offer a compelling method for source detection for the next generation of IACTs.

  16. NECTAr: New electronics for the Cherenkov Telescope Array

    International Nuclear Information System (INIS)

    Vorobiov, S.; Bolmont, J.; Corona, P.; Delagnes, E.; Feinstein, F.; Gascon, D.; Glicenstein, J.-F.; Naumann, C.L.; Nayman, P.; Sanuy, A.; Toussenel, F.; Vincent, P.

    2011-01-01

    The European astroparticle physics community aims to design and build the next generation array of Imaging Atmospheric Cherenkov Telescopes (IACTs), that will benefit from the experience of the existing H.E.S.S. and MAGIC detectors, and further expand the very-high energy astronomy domain. In order to gain an order of magnitude in sensitivity in the 10 GeV to >100TeV range, the Cherenkov Telescope Array (CTA) will employ 50-100 mirrors of various sizes equipped with 1000-4000 channels per camera, to be compared with the 6000 channels of the final H.E.S.S. array. A 3-year program, started in 2009, aims to build and test a demonstrator module of a generic CTA camera. We present here the NECTAr design of front-end electronics for the CTA, adapted to the trigger and data acquisition of a large IACTs array, with simple production and maintenance. Cost and camera performances are optimized by maximizing integration of the front-end electronics (amplifiers, fast analog samplers, ADCs) in an ASIC, achieving several GS/s and a few μs readout dead-time. We present preliminary results and extrapolated performances from Monte Carlo simulations.

  17. NECTAr: New electronics for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiov, S., E-mail: vorobiov@lpta.in2p3.f [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Feinstein, F. [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Glicenstein, J.-F. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Sanuy, A. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Toussenel, F.; Vincent, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France)

    2011-05-21

    The European astroparticle physics community aims to design and build the next generation array of Imaging Atmospheric Cherenkov Telescopes (IACTs), that will benefit from the experience of the existing H.E.S.S. and MAGIC detectors, and further expand the very-high energy astronomy domain. In order to gain an order of magnitude in sensitivity in the 10 GeV to >100TeV range, the Cherenkov Telescope Array (CTA) will employ 50-100 mirrors of various sizes equipped with 1000-4000 channels per camera, to be compared with the 6000 channels of the final H.E.S.S. array. A 3-year program, started in 2009, aims to build and test a demonstrator module of a generic CTA camera. We present here the NECTAr design of front-end electronics for the CTA, adapted to the trigger and data acquisition of a large IACTs array, with simple production and maintenance. Cost and camera performances are optimized by maximizing integration of the front-end electronics (amplifiers, fast analog samplers, ADCs) in an ASIC, achieving several GS/s and a few {mu}s readout dead-time. We present preliminary results and extrapolated performances from Monte Carlo simulations.

  18. Development of an underwater high sensitivity Cherenkov detector: Sea Urchin

    International Nuclear Information System (INIS)

    Camerini, U.; McGibney, D.; Roberts, A.

    1982-01-01

    The need for a high gain, high sensitivity Cherenkov light sensor to be used in a deep underwater muon and neutrino detector (DUMAND) array has led to the design of the Sea Urchin detector. In this design a spherical photocathode PMTis optically coupled through a glass hemisphere to a large number of glass spines, each of which is filled with a wavelength-shifting (WLS) solution of a high quantum efficiency phosphor. The Cherenkov radiation is absorbed in the spine, isotropically re-radiated at a longer wavelength, and a fraction of the fluorescent light is internally reflected in the spine, and guided to the photomultiplier concentrically located in the glass hemisphere. Experiments measuring the optical characteristics of the spines and computer programs simulating light transformation and detection cross sections are described. Overall optical gains in the range 5-10 are achieved. The WLS solution is inexpensive, and may have other applications. (orig.)

  19. TU-AB-BRA-12: Quality Assurance of An Integrated Magnetic Resonance Image Guided Adaptive Radiotherapy Machine Using Cherenkov Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, J; Bruza, P; Saunders, S; Pogue, B [Dartmouth College, Hanover, NH (United States); Mooney, K; Curcuru, A; Green, O [Washington University School of Medicine, Saint Louis, MO (United States); Gladstone, D [Dartmouth-Hitchcock Med. Ctr., Lebanon, NH (Lebanon)

    2016-06-15

    Purpose: To investigate the viability of using Cherenkov imaging as a fast and robust method for quality assurance tests in the presence of a magnetic field, where other instruments can be limited. Methods: Water tank measurements were acquired from a clinically utilized adaptive magnetic resonance image guided radiation therapy (MR-IGRT) machine with three multileaf-collimator equipped 60Co sources. Cherenkov imaging used an intensified charge coupled device (ICCD) camera placed 3.5m from the treatment isocenter, looking down the bore of the 0.35T MRI into a water tank. Images were post-processed to make quantitative comparison between Cherenkov light intensity with both film and treatment planning system predictions, in terms of percent depth dose curves as well as lateral beam profile measurements. A TG-119 commissioning test plan (C4: C-Shape) was imaged in real-time at 6.33 frames per second to investigate the temporal and spatial resolution of the Cherenkov imaging technique. Results: A .33mm/pixel Cherenkov image resolution was achieved across 1024×1024 pixels in this setup. Analysis of the Cherenkov image of a 10.5×10.5cm treatment beam in the water tank successfully measured the beam width at the depth of maximum dose within 1.2% of the film measurement at the same point. The percent depth dose curve for the same beam was on average within 2% of ionization chamber measurements for corresponding depths between 3–100mm. Cherenkov video of the TG-119 test plan provided qualitative agreement with the treatment planning system dose predictions, and a novel temporal verification of the treatment. Conclusions: Cherenkov imaging was successfully used to make QA measurements of percent depth dose curves and cross beam profiles of MRI-IGRT radiotherapy machines after only several seconds of beam-on time and data capture; both curves were extracted from the same data set. Video-rate imaging of a dynamic treatment plan provided new information regarding temporal

  20. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Glaser, A [Dartmouth College, Hanover, NH - New Hampshire (United States); Jarvis, L [Dartmouth-Hitchcock Medical Center, City Of Lebanon, New Hampshire (United States); Gladstone, D [Dartmouth-Hitchcock Medical Center, Hanover, City of Lebanon (Lebanon); Andreozzi, J; Hitchcock, W; Pogue, B [Dartmouth College, Hanover, NH (United States)

    2014-06-15

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. An edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking

  1. Lunar imaging and ionospheric calibration for the Lunar Cherenkov technique

    NARCIS (Netherlands)

    McFadden, R.; Scholten, O.; Mevius, M.

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the

  2. The Cherenkov Surface Detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Billoir, Pierre, E-mail: billoir@lpnhe.in2p3.fr [LPNHE, CNRS/IN2P3 and Univ. P. and M. Curie and Univ. D. Diderot, 4 place Jussieu 75272 Paris Cedex 05 (France); Observatorio Pierre Auger, av. San Martín Norte, 304 5613, Malargüe (Argentina)

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km{sup 2}), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense “infill” subarray. - Highlights: • The water Cherenkov technique is used in the Surface Detector of the Pierre Auger Observatory. • Cross-calibrated with the Fluorescence Detector, it provides a measurement of the primary energy. • The spectrum of the UHE cosmic rays exhibits clearly an “ankle” and a cutoff. • The muon observed muon content of the atmospheric showers is larger than expected from the models. • Stringent limits on the flux of UHE neutrinos and photons are obtained.

  3. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin

    2011-01-01

    When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2...

  4. Distributed performance counters

    Science.gov (United States)

    Davis, Kristan D; Evans, Kahn C; Gara, Alan; Satterfield, David L

    2013-11-26

    A plurality of first performance counter modules is coupled to a plurality of processing cores. The plurality of first performance counter modules is operable to collect performance data associated with the plurality of processing cores respectively. A plurality of second performance counter modules are coupled to a plurality of L2 cache units, and the plurality of second performance counter modules are operable to collect performance data associated with the plurality of L2 cache units respectively. A central performance counter module may be operable to coordinate counter data from the plurality of first performance counter modules and the plurality of second performance modules, the a central performance counter module, the plurality of first performance counter modules, and the plurality of second performance counter modules connected by a daisy chain connection.

  5. The On-Site Analysis of the Cherenkov Telescope Array

    CERN Document Server

    Bulgarelli, Andrea; Zoli, Andrea; Aboudan, Alessio; Rodríguez-Vázquez, Juan José; De Cesare, Giovanni; De Rosa, Adriano; Maier, Gernot; Lyard, Etienne; Bastieri, Denis; Lombardi, Saverio; Tosti, Gino; Bergamaschi, Sonia; Beneventano, Domenico; Lamanna, Giovanni; Jacquemier, Jean; Kosack, Karl; Antonelli, Lucio Angelo; Boisson, Catherine; Borkowski, Jerzy; Buson, Sara; Carosi, Alessandro; Conforti, Vito; Colomé, Pep; Reyes, Raquel de los; Dumm, Jon; Evans, Phil; Fortson, Lucy; Fuessling, Matthias; Gotz, Diego; Graciani, Ricardo; Gianotti, Fulvio; Grandi, Paola; Hinton, Jim; Humensky, Brian; Inoue, Susumu; Knödlseder, Jürgen; Flour, Thierry Le; Lindemann, Rico; Malaguti, Giuseppe; Markoff, Sera; Marisaldi, Martino; Neyroud, Nadine; Nicastro, Luciano; Ohm, Stefan; Osborne, Julian; Oya, Igor; Rodriguez, Jerome; Rosen, Simon; Ribo, Marc; Tacchini, Alessandro; Schüssler, Fabian; Stolarczyk, Thierry; Torresi, Eleonora; Testa, Vincenzo; Wegner, Peter

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory will be one of the largest ground-based very high-energy gamma-ray observatories. The On-Site Analysis will be the first CTA scientific analysis of data acquired from the array of telescopes, in both northern and southern sites. The On-Site Analysis will have two pipelines: the Level-A pipeline (also known as Real-Time Analysis, RTA) and the level-B one. The RTA performs data quality monitoring and must be able to issue automated alerts on variable and transient astrophysical sources within 30 seconds from the last acquired Cherenkov event that contributes to the alert, with a sensitivity not worse than the one achieved by the final pipeline by more than a factor of 3. The Level-B Analysis has a better sensitivity (not be worse than the final one by a factor of 2) and the results should be available within 10 hours from the acquisition of the data: for this reason this analysis could be performed at the end of an observation or next morning. The latency (in part...

  6. Monte Carlo Studies of a Novel LiF Radiator for RICH Detectors

    OpenAIRE

    Efimov, A.; Artuso, M.; Gao, Min; Mountain, R.; Muheim, F.; Mukhin, Y.; Playfer, S.

    1995-01-01

    We show that a multifaceted LiF radiator produces more Cherenkov light and has better resolution per photon than a flat radiator slab when used in a ring imaging Cherenkov counter. Such a system is being considered for the CLEO III upgrade.

  7. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    Science.gov (United States)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-06-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  8. Parametric Cherenkov radiation (development of idea)

    International Nuclear Information System (INIS)

    Buts, V.A.

    2004-01-01

    Some physical results of researches about charged particles radiation in mediums with a periodic heterogeneity and in periodic potential are reported. The development of ideas Parametric Cherenkov Radiation has shown, that in mediums, which have even a weak degree of a periodic heterogeneity of an permittivity or potential, the nonrelativistic oscillators can radiated as relativistic. They effectively radiate the high numbers of harmonics. In particular, in the carried out experiments the ultra-violet radiation was excited at action on a crystal of intensive ten-centimetric radiation. These results give the reasons to hope for making of nonrelativistic lasers on free electrons

  9. Large-area atmospheric Cherenkov detectors for high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Ong, R.A.

    1996-01-01

    This paper describes the development of new ground-based gamma-ray detectors to explore the energy region between 20 and 200 GeV. This region in energy is interesting because it is currently unexplored by any experiment. The proposed detectors use the atmospheric Cherenkov technique, in which Cherenkov radiation produced in the gamma-ray air showers is detected using mirrors and light-sensitive devices. The important feature of the proposed experiments is the use of large mirror collection areas, which should allow for a significant improvement (i.e. reduction) in energy threshold over existing experiments. Large mirror areas are available for relatively low cost at central tower solar power plants, and there are two groups developing gamma-ray experiments using solar heliostat arrays. This paper summarizes the progress in the design of experiments using this novel approach

  10. Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study.

    Science.gov (United States)

    Ota, Ryosuke; Yamada, Ryoko; Moriya, Takahiro; Hasegawa, Tomoyuki

    2018-05-01

    Cherenkov radiation has recently received attention due to its prompt emission phenomenon, which has the potential to improve the timing performance of radiation detectors dedicated to positron emission tomography (PET). In this study, a Cherenkov-based three-dimensional (3D) position-sensitive radiation detector was proposed, which is composed of a monolithic lead fluoride (PbF 2 ) crystal and a photodetector array of which the signals can be readout independently. Monte Carlo simulations were performed to estimate the performance of the proposed detector. The position- and time resolution were evaluated under various practical conditions. The radiator size and various properties of the photodetector, e.g., readout pitch and single photon timing resolution (SPTR), were parameterized. The single photon time response of the photodetector was assumed to be a single Gaussian for the simplification. The photo detection efficiency of the photodetector was ideally 100% for all wavelengths. Compton scattering was included in simulations, but partly analyzed. To estimate the position at which a γ-ray interacted in the Cherenkov radiator, the center-of-gravity (COG) method was employed. In addition, to estimate the depth-of-interaction (DOI) principal component analysis (PCA), which is a multivariate analysis method and has been used to identify the patterns in data, was employed. The time-space distribution of Cherenkov photons was quantified to perform PCA. To evaluate coincidence time resolution (CTR), the time difference of two independent γ-ray events was calculated. The detection time was defined as the first photon time after the SPTR of the photodetector was taken into account. The position resolution on the photodetector plane could be estimated with high accuracy, by using a small number of Cherenkov photons. Moreover, PCA showed an ability to estimate the DOI. The position resolution heavily depends on the pitch of the photodetector array and the radiator

  11. TH-CD-201-04: A Study of Cherenkov Light Generated and Collected in Plastic Scintillation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, L [CHUQ Pavillon Hotel-Dieu de Quebec, Quebec, QC (Canada); Papaconstadopoulos, P [McGill Montreal General Hospital, Montreal, QC (Canada); Seuntjens, J [McGill Montreal General Hospital, Montreal, QC (Canada); McGill University, Montreal, Quebec (Canada); Bouchard, H [CHUM-Hospital Notre-Dame, Montreal, QC (Canada)

    2016-06-15

    Purpose: To study Cherenkov light emission in plastic scintillation detectors (PSDs) from a theoretical point of view to identify situations that may arise where the calibration coefficient obtained in one condition is not applicable to another condition. By identifying problematic situations, we hope to provide guidance on how to confidently use PSDs. Methods: Cherenkov light emission in PSD was modelled using basic physical principles. In particular, changes in refractive index as a function of wavelength were accounted for using the Sellmeier empirical equation. Both electron and photon beams were considered. For photons, realistic distributions of secondary charged particles were calculated using Klein-Nishina’s formula. Cherenkov production and collection in PSDs were studied for a range of parameters including beam energy, charged particle momentum distribution, detector orientation and material composition. Finally, experimental validation was made using a commercial plastic scintillation detector. Results: In specific situations, results show that the Cherenkov spectrum coupled in the PSD can deviate from its expected behaviour (i.e. one over the square of the wavelength). In these cases were the model is realistic it is possible to see a peak wavelength instead of a monotonically decreasing function. Consequences of this phenomenon are negligible when the momentum of charged particle is distributed randomly, but in some clinically relevant cases, such as an electron beam at depth close to R50 or for photon beams with minimal scatter component, the value of the calibration coefficient can be altered. Experimental tests with electron beams showed changes in the Cherenkov light ratio, the parameter used in the calibration of PSDs, up to 2–3% depending on the PSD orientation. Conclusion: This work is the first providing a physical explanation for apparent change in PSD calibration coefficient. With this new information at hand, it will be possible to

  12. CELESTE: an atmospheric Cherenkov telescope for high energy gamma astrophysics

    Czech Academy of Sciences Publication Activity Database

    Paré, E.; Balauge, B.; Bazer-Bachi, R.; Bergeret, H.; Berny, F.; Briand, N.; Bruel, P.; Cerutti, M.; Collon, J.; Cordier, A.; Cornbise, P.; Debiais, G.; Dezalay, J. P.; Dumora, D.; Durand, E.; Eschstruth, P.; Espigat, P.; Fabre, B.; Fleury, P.; Gilly, J.; Gouillaud, J. C.; Gregory, C.; Hérault, N.; Holder, J.; Hrabovský, Miroslav; Incerti, S.; Jouenne, A.; Kalt, L.; LeGallou, R.; Lott, B.; Manigot, P.; Neveu, J.; Olive, J. F.; Palatka, Miroslav; Perez, A.; Rebii, A.; Rob, L.; Sans, J. L.; Schovánek, Petr; Villard, G.

    2002-01-01

    Roč. 490, - (2002), s. 71-89 ISSN 0168-9002 R&D Projects: GA MŠk LN00A006 Institutional research plan: CEZ:AV0Z1010920 Keywords : gamma-ray astronopy * atmospheric Cherenkov detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.167, year: 2002

  13. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  14. R and D on high momentum particle identification with a pressurized Cherenkov radiator

    Energy Technology Data Exchange (ETDEWEB)

    Agócs, A.G. [Wigner RCP of the HAS, Budapest (Hungary); Barile, F. [INFN Sezione di Bari and Universit´a degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); Barnaföldi, G.G. [Wigner RCP of the HAS, Budapest (Hungary); Bellwied, R. [University of Houston, Houston (United States); Bencédi, G.; Bencze, G.; Berényi, D.; Boldizsár, L. [Wigner RCP of the HAS, Budapest (Hungary); Chattopadhyay, S. [Saha Institute of Nuclear Physics, Kolkata (India); Chinellato, D.D. [University of Houston, Houston (United States); Cindolo, F. [University of Salerno, Salerno (Italy); Cossyleon, K. [Chicago State University, Chicago, IL (United States); Das, D.; Das, K.; Das-Bose, L. [Saha Institute of Nuclear Physics, Kolkata (India); De Cataldo, G.; Di Bari, D. [INFN Sezione di Bari and Universit´a degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); Di Mauro, A. [CERN, CH1211 Geneva 23 (Switzerland); Futó, E. [Wigner RCP of the HAS, Budapest (Hungary); Garcia-Solis, E. [Chicago State University, Chicago, IL (United States); and others

    2014-12-01

    We report on the R and D results for a Very High Momentum Particle Identification (VHMPID) detector, which was proposed to extend the charged hadron track-by-track identification in the momentum range from 5 to 25 GeV/c in the ALICE experiment at CERN. It is a RICH detector with focusing geometry using pressurized perfluorobutane (C{sub 4}F{sub 8}O) as a Cherenkov radiator. A MWPC with a CsI photocathode was investigated as the baseline option for the photon detector. The results of beam tests performed on RICH prototypes using both liquid C{sub 6}F{sub 14} radiator (in proximity focusing geometry for reference measurements) and pressurized C{sub 4}F{sub 8}O gaseous radiator will be shown in this paper. In addition, we present studies of a CsI based gaseous photon detector equipped with a MWPC having an adjustable anode–cathode gap, aiming at the optimization of the chamber layout and performance in the detection of single photoelectrons. - Highlights: • Pressurized and heated C{sub 4}F{sub 8}O was used as Cherenkov radiator gas. • A Cherenkov angle resolution of 1.5 mrad was achieved. • The separation of electrons, pions, and kaons in a large momentum range is shown.

  15. Design and fabrication of a window for the gas Cherenkov detector 3

    Energy Technology Data Exchange (ETDEWEB)

    Fatherley, V. E., E-mail: vef@lanl.gov; Bingham, D. A.; Cartelli, M. D.; Griego, J. R.; Herrmann, H. W.; Lopez, F. E.; Oertel, J. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); DiDomizio, R. A.; Pollack, M. J. [EnvirOptics, Inc., Colmar, Pennsylvania 18915 (United States)

    2016-11-15

    The gas Cherenkov detector 3 was designed at Los Alamos National Laboratory for use in inertial confinement fusion experiments at both the Omega Laser Facility and the National Ignition Facility. This instrument uses a low-Z gamma-to-electron convertor plate and high pressure gas to convert MeV gammas into UV/visible Cherenkov photons for fast optical detection. This is a follow-on diagnostic from previous versions, with two notable differences: the pressure of the gas is four times higher, and it allows the use of fluorinated gas, requiring metal seals. These changes force significant changes in the window component, having a unique set of requirements and footprint limitations. The selected solution for this component, a sapphire window brazed into a stainless steel flange housing, is described.

  16. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging.

    Science.gov (United States)

    Andreozzi, Jacqueline M; Zhang, Rongxiao; Glaser, Adam K; Jarvis, Lesley A; Pogue, Brian W; Gladstone, David J

    2015-02-01

    To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary cost than the EM-ICCD. The

  17. High-Energy Astrophysics with the High Altitude Water Cherenkov (HAWC) Observatory

    Science.gov (United States)

    Pretz, John; HAWC Collaboration

    2013-04-01

    The High Altitude Water Cherenkov (HAWC) observatory, under construction at Sierra Negra in the state of Puebla, Mexico, consists of a 22500 square meter area of water Cherenkov detectors: water tanks instrumented with light-sensitive photomultiplier tubes. The experiment is used to detect energetic secondary particles reaching the ground when a 50 GeV to 100 TeV cosmic ray or gamma ray interacts in the atmosphere above the experiment. By timing the arrival of particles on the ground, the direction of the original primary particle may be resolved with an error of between 1.0 (50 GeV) and 0.1 (10 TeV) degrees. Gamma-ray primaries may be distinguished from cosmic ray background by identifying the penetrating particles characteristic of a hadronic particle shower. The instrument is 10% complete and is performing as expected, with 30% of the channels anticipated by the summer of 2013. HAWC will complement existing Imaging Atmospheric Cherenkov Telescopes and space-based gamma-ray telescopes with its extreme high-energy sensitivity and its large field-of-view. The observatory will be used to study particle acceleration in Pulsar Wind Nebulae, Supernova Remnants, Active Galactic Nuclei and Gamma-ray Bursts. Additionally, the instrument can be used to probe dark matter annihilation in halo and sub-halos of the galaxy. We will present the sensitivity of the HAWC instrument in the context of the main science objectives. We will also present the status of the deployment including first data from the instrument and prospects for the future.

  18. First observation of Cherenkov rings with a large area CsI-TGEM-based RICH prototype

    CERN Document Server

    Peskov, V; Di Mauro, A; Martinengo, P; Mayani, D; Molnar, L; Nappi, E; Paic, G; Smirnov, N; Anand, H; Shukla, I

    2012-01-01

    We have built a RICH detector prototype consisting of a liquid C6F14 radiator and six triple Thick Gaseous Electron Multipliers (TGEMs), each of them having an active area of 10x10 cm2. One triple TGEM has been placed behind the liquid radiator in order to detect the beam particles, whereas the other five have been positioned around the central one at a distance to collect the Cherenkov photons. The upstream electrode of each of the TGEM stacks has been coated with a 0.4 micron thick CsI layer. In this paper, we will present the results from a series of laboratory tests with this prototype carried out using UV light, 6 keV photons from 55Fe and electrons from 90Sr as well as recent results of tests with a beam of charged pions where for the first time Cherenkov Ring images have been successfully recorded with TGEM photodetectors. The achieved results prove the feasibility of building a large area Cherenkov detector consisting of a matrix of TGEMs.

  19. A Cherenkov imager for the charge measurement of the elements of nuclear cosmic radiation

    International Nuclear Information System (INIS)

    Sallaz-Damaz, Y.

    2008-10-01

    A Cherenkov imager, CHERCAM (Cherenkov Camera) has been designed and built for the CREAM (Cosmic Ray Energetics and Mass) balloon-borne experiment. The instrument will perform charge measurements of nuclear cosmic-ray over a range extending from proton to iron in the energy domain from 10 10 to 10 15 eV. This work has focused on the development of CHERCAM by creating a simulation of the detector and on the aerogel plan characterization for the radiator. But it has also expanded on the technical aspects of the construction of the detector and its various tests, as well as the development of calibration software and data analysis. (author)

  20. Gaseous photomultipliers for the readout of scintillators and detection Cherenkov radiation

    International Nuclear Information System (INIS)

    Peskov, V.; Borovik-Romanov, A.

    1993-11-01

    The latest achievements in the development of gaseous detectors for registering UV and visible photons are described. Possible modifications of their design for some particular applications such as the readout of crystal scintillators. noble liquids, fibers and for large area Cherenkov detectors are discussed

  1. The Cherenkov Telescope Array For Very High-Energy Astrophysics

    Science.gov (United States)

    Kaaret, Philip

    2015-08-01

    The field of very high energy (VHE) astrophysics had been revolutionized by the results from ground-based gamma-ray telescopes, including the current imaging atmospheric Cherenkov telescope (IACT) arrays: HESS, MAGIC and VERITAS. A worldwide consortium of scientists from 29 countries has formed to propose the Cherenkov Telescope Array (CTA) that will capitalize on the power of this technique to greatly expand the scientific reach of ground-based gamma-ray telescopes. CTA science will include key topics such as the origin of cosmic rays and cosmic particle acceleration, understanding extreme environments in regions close to neutron stars and black holes, and exploring physics frontiers through, e.g., the search for WIMP dark matter, axion-like particles and Lorentz invariance violation. CTA is envisioned to consist of two large arrays of Cherenkov telescopes, one in the southern hemisphere and one in the north. Each array will contain telescopes of different sizes to provide a balance between cost and array performance over an energy range from below 100 GeV to above 100 TeV. Compared to the existing IACT arrays, CTA will have substantially better angular resolution and energy resolution, will cover a much wider energy range, and will have up to an order of magnitude better sensitivity. CTA will also be operated as an open observatory and high-level CTA data will be placed into the public domain; these aspects will enable broad participation in CTA science from the worldwide scientific community to fully capitalize on CTA's potential. This talk will: 1) review the scientific motivation and capabilities of CTA, 2) provide an overview of the technical design and the status of prototype development, and 3) summarize the current status of the project in terms of its proposed organization and timeline. The plans for access to CTA data and opportunities to propose for CTA observing time will be highlighed.Presented on behalf of the CTA Consortium.

  2. The atmospheric Cherenkov technique in searches for exploding primordial black holes

    International Nuclear Information System (INIS)

    Danaher, S.; Fegan, D.J.; Porter, N.A.; Weekes, T.C.

    1981-01-01

    The Cherenkov technique has been used with a number of detectors, ranging from 1.5 m 2 mirrors to the Central Receiver Test Facility of 8400 m 2 . Limits have been set to the flux of primordial black holes for various models of the evaporation process. (author)

  3. Simple method of determining induced 32P activity following burning of sulfur tablets by measuring Cherenkov radiation

    International Nuclear Information System (INIS)

    Kubicek, I.

    1986-01-01

    A method is described allowing the detemination of induced beta activity of phosphorus-32 using Cherenkov radiation, following the burning of sulfur tablets in the measuring vesels. A mixture of phosphoric acid and sodium phosphate solutions was used as the medium for the production of Cherenkov radiation. The losses of activity during sulfur tablet burning, the detection efficiency and the minimum detectable activity for which the minimum determinable dose was estimated, were determined. The results obtained by measurement with Cherenkov radiation are compared with other techniques of phosphorus-32 detection. The method was tested at VUPL Bratislava on detectors irradited using a 252 Cf fast neutron source. From Caswell's data, the fluence-to-kerma conversin factor was determined for a neutron spectrum calculated by the Monte Carlo method. Tissue kerma was estimated from the neutron fluence corresponding to the appropriate values of saturated activity per 1 sulfur-32 nucleus. (author)

  4. Development of new photon detection device for Cherenkov and fluorescence radiation

    Directory of Open Access Journals (Sweden)

    Tinti A.

    2013-06-01

    Full Text Available Recent progress on the development of a new solid state detector allowed the use of finely pixelled photocathodes obtained from silicon semiconductors. SiPM detectors seem to be an ideal tool for the detection of Cherenkov and fluorescence light in spite of their not yet resolved criticism for operating temperature and intrinsic noise. The main disadvantage of SiPM in this case is the poor sensitivity in the wavelength range 300-400 nm, where the Cherenkov light and fluorescence radiation are generated. We report on the possibility to realize a new kind of pixelled photodetector based on the use of silicon substrate with carbon nanotube compounds, more sensitive to the near UV radiation. Also if at the very beginning, the development of such detector appears very promising and useful for astroparticle physics, both in the ground based arrays and in the space experiments. The detectors are ready to be operated in conditions of measurements without signal amplification.

  5. Prototype of a production system for Cherenkov Telescope Array with DIRAC

    CERN Document Server

    Arrabito, L; Haupt, A; Graciani Diaz, R; Stagni, F; Tsaregorodtsev, A

    2015-01-01

    The Cherenkov Telescope Array (CTA) — an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale — is the next generation instrument in the field of very high energy gamma-ray astronomy. CTA will operate as an open observatory providing data products to the scientific community. An average data stream of about 10 GB/s for about 1000 hours of observation per year, thus producing several PB/year, is expected. Large CPU time is required for data-processing as well for massive Monte Carlo simulations needed for detector calibration purposes. The current CTA computing model is based on a distributed infrastructure for the archive and the data off-line processing. In order to manage the off-line data-processing in a distributed environment, CTA has evaluated the DIRAC (Distributed Infrastructure with Remote Agent Control) system, which is a general framework for the management of tasks over distributed heterogeneous computing environments. In particular, a production sy...

  6. CHerenkov detectors In mine PitS (CHIPS) Letter of Intent to FNAL

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Austin, J. [Univ. of Minnesota, Duluth, MN (United States); Cao, S. V. [Univ. of Texas, Austin, TX (United States); Coelho, J. A. B. [Tufts Univ., Medford, MA (United States); Davies, G. S. [Iowa State Univ., Ames, IA (United States); Evans, J. J. [Univ. of Manchester (United Kingdom); Guzowski, P. [Univ. of Manchester (United Kingdom); Habig, A. [Univ. of Minnesota, Duluth, MN (United States); Holin, A. [Univ. College London, London (United Kingdom); Huang, J. [Univ. of Texas, Austin, TX (United States); Johnson, R. [Univ. of Cincinnati, OH (United States); St. John, J. [Univ. of Cincinnati, OH (United States); Kreymer, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kordosky, M. [College of William and Mary, Williamsburg, VA (United States); Lang, K. [Univ. of Texas, Austin, TX (United States); Marshak, M. L. [Univ. of Minnesota, Minneapolis, MN (United States); Mehdiyev, R. [Univ. of Texas, Austin, TX (United States); Meier, J. [Univ. of Minnesota, Minneapolis, MN (United States); Miller, W. [Univ. of Minnesota, Minneapolis, MN (United States); Naples, D. [Univ. of Pittsburgh, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nichol, R. J. [Univ. College London, London (United Kingdom); Patterson, R. B. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paolone, V. [Univ. of Pittsburgh, PA (United States); Pawloski, G. [Univ. of Minnesota, Minneapolis, MN (United States); Perch, A. [Univ. College London, London (United Kingdom); Pfutzner, M. [Univ. College London, London (United Kingdom); Proga, M. [Univ. of Texas, Austin, TX (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Radovic, A. [Univ. College London, London (United Kingdom); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Schreiner, S. [Univ. of Minnesota, Minneapolis, MN (United States); Soldner-Rembold, S. [Univ. of Manchester (United Kingdom); Sousa, A. [Univ. of Cincinnati, OH (United States); Thomas, J. [Univ. College London, London (United Kingdom); Vahle, P. [College of William and Mary, Williamsburg, VA (United States); Wendt, C. [Univ. of Wisconsin, Madison, WI (United States); Whitehead, L. H. [Univ. College London, London (United Kingdom); Wojcicki, S. [Stanford Univ., CA (United States)

    2013-12-30

    This Letter of Intent outlines a proposal to build a large, yet cost-effective, 100 kton fiducial mass water Cherenkov detector that will initially run in the NuMI beam line. The CHIPS detector (CHerenkov detector In Mine PitS) will be deployed in a flooded mine pit, removing the necessity and expense of a substantial external structure capable of supporting a large detector mass. There are a number of mine pits in northern Minnesota along the NuMI beam that could be used to deploy such a detector. In particular, the Wentworth Pit 2W is at the ideal off-axis angle to contribute to the measurement of the CP violating phase. The detector is designed so that it can be moved to a mine pit in the LBNE beam line once that becomes operational.

  7. DETECTORS USED IN PARTICLE PHYSICS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Melissines, A. C.

    1963-10-15

    Detectors used in particle physics are discussed, and their specific properties are compared. With the pictorial'' devices are included nuclear emulsions, cloud and bubble chambers, and spark chambers. Included in the digital'' devices are counters, e.g., the Geiger counter, scintillation counters, solid-state detectors, Cherenkov counters, and spark counters. Sensitivity, resolving power, time resolutions, saturation level, and energy detection are discussed. (R.E.U.)

  8. First observation of Cherenkov ring images using hybrid photon detectors

    International Nuclear Information System (INIS)

    Albrecht, E.; Wilkinson, G.; Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N.; Brook, N.H.; Halley, A.W.; O'Shea, V.; French, M.; Gibson, V.; Wotton, S.A.; Schomaker, R.

    1998-01-01

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C 4 F 10 gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  9. First observation of Cherenkov ring images using hybrid photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Wilkinson, G. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Barber, G.; Duane, A.; John, M.; Miller, D.G.; Websdale, D. [Imperial College of Science Technology and Medicine, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N. [University of Oxford, Department of Nuclear Physics, Keble Road, Oxford OX1 3RH (United Kingdom); Brook, N.H.; Halley, A.W.; O`Shea, V. [University of Glasgow, Department of Physics, Glasgow G12 8QQ (United Kingdom); French, M. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Gibson, V.; Wotton, S.A. [University of Cambridge, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom); Schomaker, R. [Delft Electronic Products BV, 9300 AB Roden (Netherlands)

    1998-07-11

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C{sub 4}F{sub 10} gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  10. Experimental and numerical investigations of a Cherenkov plasma maser

    International Nuclear Information System (INIS)

    Huet, D.; Pompier, F.; Vezinet, R.; Courtois, L.; Cubaynes, F.; Lalle, B.; Laporte, P.

    2005-01-01

    We are investigating the performances of a new tunable and low frequency (2-6 GHz band) Cherenkov plasma master driven by a 600 kV, 100 ns Tesla generator. We present experimental results in terms of energy and spectrum and their comparison with 2D computer simulations results versus voltage, plasma density and B field levels. The accelerator is presented in the first part of the paper [ru

  11. Study on single-channel signals of water Cherenkov detector array for the LHAASO project

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.C., E-mail: lihuicai@ihep.ac.cn [University of Nankai, Tianjin 300071 (China); Yao, Z.G.; Chen, M.J. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Yu, C.X. [University of Nankai, Tianjin 300071 (China); Zha, M.; Wu, H.R.; Gao, B.; Wang, X.J. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, J.Y.; Liao, W.Y. [University of Nankai, Tianjin 300071 (China); Huang, D.Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-05-11

    The Large High Altitude Air Shower Observatory (LHAASO) is planned to be built at Daocheng, Sichuan Province, China. The water Cherenkov detector array (WCDA), with an area of 78,000 m{sup 2} and capacity of 350,000 tons of purified water, is one of the major components of the LHAASO project. A 9-cell detector prototype array has been built at the Yangbajing site, Tibet, China to comprehensively understand the water Cherenkov technique and investigate the engineering issues of WCDA. In this paper, the rate and charge distribution of single-channel signals are evaluated using a full detail Monte Carlo simulation. The results are discussed and compared with the results obtained with prototype array.

  12. Development of the fast and efficient gamma detector using Cherenkov light for TOF-PET

    Science.gov (United States)

    Canot, C.; Alokhina, M.; Abbon, P.; Bard, J. P.; Tauzin, G.; Yvon, D.; Sharyy, V.

    2017-12-01

    In this paper we present two configurations of innovative gamma detectors using Cherenkov light for time-of-flight—Positron Emission Tomography (PET). The first uses heavy crystals as a Cherenkov radiator to develop a demonstrator for a whole body PET scanner with high detection efficiency. We demonstrated a 30% detection efficiency and a 180 ps (FWHM) time resolution, mainly limited by the time transit spread of the photomultiplier. The second configuration uses an innovative liquid, the TriMethyl Bismuth, to develop a high precision brain-scanning PET device with time-of-flight capability. According to Geant4 simulation, we expect to reach a precision of 150 ps (FWHM) and an efficiency of about 25%.

  13. Cherenkov-like emission of Z bosons

    Science.gov (United States)

    Colladay, D.; Noordmans, J. P.; Potting, R.

    2017-07-01

    We study CPT and Lorentz violation in the electroweak gauge sector of the Standard Model in the context of the Standard-Model Extension (SME). In particular, we show that any non-zero value of a certain relevant Lorentz violation parameter that is thus far unbounded by experiment would imply that for sufficiently large energies one of the helicity modes of the Z boson should propagate with spacelike four-momentum and become stable against decay in vacuum. In this scenario, Cherenkov-like radiation of Z bosons by ultra-high-energy cosmic-ray protons becomes possible. We deduce a bound on the Lorentz violation parameter from the observational data on ultra-high energy cosmic rays.

  14. Determining the primary cosmic ray energy from the total flux of Cherenkov light measured at the Yakutsk EAS array

    International Nuclear Information System (INIS)

    Ivanov, A. A.; Knurenko, S. P.; Sleptsov, I. E.

    2007-01-01

    We present a method for determining the energy of the primary particle that generates an extensive air shower (EAS) of comic rays based on measuring the total flux of Cherenkov light from the shower. Applying this method to Cherenkov light measurements at the Yakutsk EAS array has allowed us to construct the cosmic ray energy spectrum in the range 10 15 - 3 x 10 19 eV

  15. Cherenkov Ring Imaging Detector front-end electronics

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Marshall, D.; Muller, D.; Nagamine, T.; Oxoby, G.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Suekane, F.; Toge, N.; Va'Vra, J.; Williams, S.; Wilson, R.J.; Whitaker, J.S.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Morrison, R.; Witherell, M.; Yellin, S.; Coyle, P.; Coyne, D.; Spencer, E.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Jacques, P.; Plano, R.; Stamer, P.; Abe, K.; Hasegawa, K.; Yuta, H.

    1990-10-01

    The SLD Cherenkov Ring Imaging Detector use a proportional wire detector for which a single channel hybrid has been developed. It consists of a preamplifier, gain selectable amplifier, load driver amplifier, power switching, and precision calibrator. For this hybrid, a bipolar, semicustom integrated circuit has been designed which includes video operational amplifiers for two of the gain stages. This approach allows maximization of the detector volume, allows DC coupling, and enables gain selection. System tests show good noise performance, calibration precision, system linearity, and signal shape uniformity over the full dynamic range. 10 refs., 8 figs

  16. Cherenkov radiation conversion and collection considerations for a gamma bang time/reaction history diagnostic for the NIF.

    Science.gov (United States)

    Herrmann, Hans W; Mack, Joseph M; Young, Carlton S; Malone, Robert M; Stoeffl, Wolfgang; Horsfield, Colin J

    2008-10-01

    Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from gamma rays to relativistic electrons to UV/visible Cherenkov radiation.

  17. Cherenkov radiation conversion and collection considerations for a gamma bang time/reaction history diagnostic for the NIF

    International Nuclear Information System (INIS)

    Herrmann, Hans W.; Mack, Joseph M.; Young, Carlton S.; Malone, Robert M.; Stoeffl, Wolfgang; Horsfield, Colin J.

    2008-01-01

    Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from γ rays to relativistic electrons to UV/visible Cherenkov radiation.

  18. Development of the optical system for the SST-1M telescope of the Cherenkov Telescope Array observatory

    CERN Document Server

    Ostrowski, Michael; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Schioppa, E. jr; Schovanek, P.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.; Barciński, T.; Karczewski, M.; Kukliński, J. Nicolau; Płatos, Ł.; Rataj, M.; Wawer, P.; Wawrzaszek, R.

    2016-01-01

    The prototype of a Davies-Cotton small size telescope (SST-1M) has been designed and developed by a consortium of Polish and Swiss institutions and proposed for the Cherenkov Telescope Array (CTA) observatory. The main purpose of the optical system is to focus the Cherenkov light emitted by extensive air showers in the atmosphere onto the focal plane detectors. The main component of the system is a dish consisting of 18 hexagonal mirrors with a total effective collection area of 6.47 m2 (including the shadowing and estimated mirror reflectivity). Such a solution was chosen taking into account the analysis of the Cherenkov light propagation and based on optical simulations. The proper curvature and stability of the dish is ensured by the mirror alignment system and the isostatic interface to the telescope structure. Here we present the design of the optical subsystem together with the performance measurements of its components.

  19. The image camera of the 17 m diameter air Cherenkov telescope MAGIC

    CERN Document Server

    Ostankov, A P

    2001-01-01

    The image camera of the 17 m diameter MAGIC telescope, an air Cherenkov telescope currently under construction to be installed at the Canary island La Palma, is described. The main goal of the experiment is to cover the unexplored energy window from approx 10 to approx 300 GeV in gamma-ray astrophysics. In its first phase with a classical PMT camera the MAGIC telescope is expected to reach an energy threshold of approx 30 GeV. The operational conditions, the special characteristics of the developed PMTs and their use with light concentrators, the fast signal transfer scheme using analog optical links, the trigger and DAQ organization as well as image reconstruction strategy are described. The different paths being explored towards future camera improvements, in particular the constraints in using silicon avalanche photodiodes and GaAsP hybrid photodetectors in air Cherenkov telescopes are discussed.

  20. Towards a network of atmospheric Cherenkov detectors 7

    International Nuclear Information System (INIS)

    Robin, M.; Weekes, T.C.; Mori, M.; Mariotti, M.; Hofmann, W.; Aharonian, F.; Sinitsyna, V.; Smith, D.; Marleau, P.; Sinnis, G.; Volk, H.; Jager, O. de; Harding, A.; Coppi, P.; Dermer, C.; Goldwurm, A.; Paul, J.; Puhlhofer, G.; Bernardini, E.; Swordy, S.; Yoshikoshi, T.; Punch, M.

    2005-01-01

    This document gathers the papers and transparencies presented at the conference. The main part of the conference was organized into 6 sessions: 1) the review of present experiments (Veritas, Cangaroo-3, Magic, Hess-1, Shalon, Cactus, Cygnus-X-3...), 2) calibration and analysis techniques in VHE (very high energy) astrophysics, 3) multi-wavelength observations and phenomenology of sources, 4) the future of ground-based VHE astronomy, 5) developments in instrumentation for Cherenkov telescopes, and 6) the evolution of the field and its link with mainstream astrophysics

  1. The forward ring imaging Cherenkov detector of DELPHI

    International Nuclear Information System (INIS)

    Adam, W.; Albrecht, E.; Ambec, I.; Augustinus, A.; Barnoux, C.; Bostjancic, B.; Botner, O.; Budziak, A.P.; Caloba, L.P.; Carecchio, P.; Cavalli, P.; Ceelie, L.; Cereseto, R.; Cerutti, G.; Dahl-Jensen, E.; Dam, P.; Damgaard, G.; Koning, N. de; De la Vega, A.S.; Dimitriou, N.; Dulinski, W.; Eek, L.O.; Ekeloef, T.; Erikson, J.; Florek, A.; Florek, B.; Fontanelli, F.; Fontenille, A.; Galuszka, K.; Garcia, J.; Gracco, V.; Hallgren, A.; Hao, W.; Henkes, T.; Isenhower, D.; Johansson, H.; Karvelas, E.; Kindblom, P.; Koene, B.; Korporaal, A.; Kostarakis, P.; Lenzen, G.; Lindqvist, L.E.; Lorenz, P.; Loukas, D.; Lund-Jensen, B.; Maltezos, A.; Markou, A.; Mattsson, L.; Medbo, J.; Michalowski, J.; Montano, F.; Nielsen, B.S.; Ostler, J.M.; Pakonski, K.; Perdikis, C.; Polok, G.; Robohm, A.; Sajot, G.; Sannino, M.; Saragas, E.; Schyns, E.; Squarcia, S.; Stavropoulos, G.; Stodulski, M.; Stopa, Z.; Thadome, J.; Theodosiou, G.E.; Traspedini, L.; Turala, M.; Ullaland, O.; Waerm, A.; Werner, J.; Xyroutsikos, S.; Zavrtanik, M.; Zevgolatakos, E.

    1994-01-01

    The Forward Ring Imaging Cherenkov detector of the DELPHI experiment at LEP provides hadron identification at polar angles 15 6 F 14 and a volume of gaseous C 4 F 10 , in combination provide coverage of momenta up to 40 GeV/c. A single array of photosensitive Time Projection Chambers registers the impact points of ultraviolet photons from both radiators. The design of the detector and of its readout system is described. First results obtained with a partly installed detector are reported. (orig.)

  2. Towards a network of atmospheric Cherenkov detectors 7

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M. [Ecole Polytechnique, 91 - Palaiseau (France); Weekes, T.C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Mori, M. [Tokyo Univ., Institute for Cosmic Ray Research (Japan); Mariotti, M. [Padova Univ., INFN (Italy); Hofmann, W.; Aharonian, F. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Sinitsyna, V. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Smith, D. [Centre d' Etudes Nucleaires de Bordeaux Gradignan, 33 - Gradignan (France); Marleau, P. [California Univ., Davis, CA (United States); Sinnis, G. [Los Alamos National Lab., NM (United States); Volk, H. [Max-Planck-Institut fur Kernphysik (Germany); Jager, O. de [South Africa Univ., North-West (South Africa); Harding, A. [NASA Goddard Space Flight Center (United States); Coppi, P. [Yale Univ., New Haven, CT (United States); Dermer, C. [Naval Research Laboratory (United States); Goldwurm, A.; Paul, J. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Puhlhofer, G. [Landessternwarte Heidelberg (Germany); Bernardini, E. [DESy-Zeuthen (Germany); Swordy, S. [Chicago Univ., IL (United States); Yoshikoshi, T. [Tokyo Univ., Tanashi (Japan). Inst. for Cosmic Ray Research; Teshima, M. [Max-Planck-Institute for Physics, Munich (Germany); Punch, M. [Astrophysique et Cosmologie (APC), College de France, 75 - Paris (France)

    2005-07-01

    This document gathers the papers and transparencies presented at the conference. The main part of the conference was organized into 6 sessions: 1) the review of present experiments (Veritas, Cangaroo-3, Magic, Hess-1, Shalon, Cactus, Cygnus-X-3...), 2) calibration and analysis techniques in VHE (very high energy) astrophysics, 3) multi-wavelength observations and phenomenology of sources, 4) the future of ground-based VHE astronomy, 5) developments in instrumentation for Cherenkov telescopes, and 6) the evolution of the field and its link with mainstream astrophysics.

  3. Water resistant rhodium plated reflectors for use in the DIRC BaBar Cherenkov detector

    CERN Document Server

    Benkebil, M; Plaszczynski, S; Schune, M H; Wormser, G

    2000-01-01

    Early simulation studies showed that reflectors mounted on the photomultipliers would be useful for the DIRC BaBar Cherenkov detector, showing a gain between 20% and 30% in the number of Cherenkov photons. The proof of principle for these reflectors has been obtained during the beam test of a large-scale prototype of the DIRC detector. An extensive R and D has been conducted in order to test different metallization procedures. Indeed, the challenge was to find a metallization technique which can resist the pure de-ionized water (>15 M OMEGA) up to 10 yr. The chosen technology was rhodium plated reflectors. During the first BaBar cosmic run, the measured performance confirmed the results of the simulation, the prototype-II and the R and D.

  4. DIRC-based PID for the EIC central detector

    Energy Technology Data Exchange (ETDEWEB)

    Dzhygadlo, Roman; Schwarz, Carsten; Schwiening, Jochen [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Peters, Klaus [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe-Universitaet Frankfurt (Germany); Collaboration: DIRC at EIC RD-Collaboration

    2015-07-01

    One of the key requirements for the central detector of a future Electron-Ion Collider (EIC) is to provide radially compact Particle Identification (PID) (e/π,π/K,K/p) over a wide momentum range. It is expected that the PID system will need to include one or more Cherenkov counters to achieve this goal. With a radial size of only a few cm, a DIRC counter (Detector of Internally Reflected Cherenkov light) is potentially an attractive option. The DIRC rate at EIC R and D Collaboration was formed by groups in the United States and Germany in 2011 with funding from DOE to investigate ways to extend the momentum coverage of DIRC counters for the EIC detector by up to 50% beyond the current state of the art. Possible design improvements include a complex focusing system, multi-anode sensors with smaller pixels, a time-based reconstruction algorithm, and chromatic dispersion mitigation. Both Geant and ray-tracing simulations are used to optimize the design configuration of the DIRC counter in terms of the performance and the best integration with the EIC detector. We discuss the current status of the design studies and the possible improvements to the Cherenkov angle resolution and the photon yield.

  5. A wide dynamic range experiment to measure high energy γ-showers in air by detecting Cherenkov light in the middle ultraviolet

    International Nuclear Information System (INIS)

    Apollinari, G.; Bedeschi, F.; Belforte, S.; Bellettini, G.; Bertolucci, E.; Cervelli, F.; Chiarelli, G.; Dell'Orso, M.; Giannetti, P.; Menzione, A.; Ristori, L.; Scribano, A.; Sestini, P.; Stefanini, A.; Zetti, F.; Pisa Univ.

    1988-01-01

    An experiment to study high energy γ rays from localized cosmic sources is described. A number of Al mirrors reflects the Cherenkov light emitted by the showers into photosensitive gas chambers on the mirror focal plane. The use of gas chambers with large active areas allows a sensitivity superior to existing experiments to be reached. Pad readout gives the required angular accuracy. The chamber is sensitive to the middle ultraviolet Cherenkov light produced by the showers in the atmosphere. Since the ozone in the upper atmosphere absorbs the direct ultraviolet light from any outer source, the lower level atmosphere provides a large dark volume in which the Cherenkov radiation from the showers can be isolated. (orig.)

  6. Features and performance of a large gas Cherenkov detector with threshold regulation

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Alvarez-Taviel, J.; Asenjo, L.; Colino, N.; Diez-Hedo. F.; Duran, I.; Gonzalez, J.; Hernandez, J.J.; Ladron de Guevara, P.; Marquina, M.A.

    1988-01-15

    We present here the development, main features and calibration procedures for a new type of gas Cherenkov detector, based upon the ability to control its threshold by regulating the temperature of the gas used as radiator. We also include the performance of this detector in particle identification.

  7. Background level of natural radioactivities in a giant water Cherenkov detector and its surrounding environment

    International Nuclear Information System (INIS)

    Yamamoto, Masayoshi; Sakanoue, Masanobu; Komura, Kazuhisa; Ueno, Kaoru

    1989-01-01

    The KAMIOKANDE-II water Cherenkov detector for the measurement of nucleon decay and/or solar neutrino has been operating in the underground laboratory at a depth of 2,700 m.w.e. (meter water equivalent) in Kamioka mine of Gifu Prefecture. Concentrations of 238 U, 232 Th, 226 Ra and 222 Rn as the major background sources have been measured for various kinds of rocks, mine water, mine air and high purity water used as a detector during the period from August 1986 to December 1987. The concentration levels of these radionuclides and their seasonal variation have become clear. Some of these results have provided useful informations for decreasing the background level of water Cherenkov detector. (author)

  8. Influence of thermal fluctuations on Cherenkov radiation from fluxons in dissipative Josephson systems

    DEFF Research Database (Denmark)

    Antonov, A. A.; Pankratov, A. L.; Yulin, A. V.

    2000-01-01

    The nonlinear dynamics of fluxons in Josephson systems with dispersion and thermal fluctuations is analyzed using the "quasiparticle" approach to investigate the influence of noise on the Cherenkov radiation effect. Analytical expressions for the stationary amplitude of the emitted radiation...

  9. Proximity focusing RICH with TOF capabilities

    International Nuclear Information System (INIS)

    Korpar, S.; Adachi, I.; Fujita, K.; Fukushima, T.; Gorisek, A.; Hayashi, D.; Iijima, T.; Ikado, T.; Ishikawa, T.; Kawai, H.; Kozakai, Y.; Krizan, P.; Kuratani, A.; Mazuka, Y.; Nakagawa, T.; Nishida, S.; Ogawa, S.; Pestotnik, R.; Seki, T.; Sumiyoshi, T.; Tabata, M.; Unno, Y.

    2007-01-01

    A proximity focusing RICH counter with a multi-channel micro-channel plate (MCP) PMT was tested as a time-of-flight counter. Cherenkov photons emitted in the radiator medium as well as in the entrance window of the PMT were used for the time-of-flight measurement, and an excellent performance of the counter could be demonstrated

  10. Multimode pulse counter

    International Nuclear Information System (INIS)

    Natanzon, D.D.

    1982-01-01

    A pulse counter with code conversion is described. The counter is based on the integrated circuits of direct-counting devices of medium integration. The counter ensures various modes of pulse counting depending on the logical control signals: reversible, two-channel summing, one-channel summing binary, summing with ''storage'' signal code fixation without interrupting pulse counting. Arrangement of the suggested structure as a microcircuit of medium integration might contribute to reduction in the counter type nomenclature in digital families of widely used integrated circuits

  11. Proposal of coherent Cherenkov radiation matched to circular plane wave for intense terahertz light source

    International Nuclear Information System (INIS)

    Sei, Norihiro; Sakai, Takeshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nakao, Keisuke; Nogami, Kyoko; Inagaki, Manabu

    2015-01-01

    Highlights: • We proposed a new intense terahertz-wave source based on coherent Cherenkov radiation (CCR). • A hollow conical dielectric is used to generate the CCR beam. • The wave front of the CCR beam can be matched to the basal plane. • The peak-power of the CCR beam is above 1 MW per micropulse with a short interval of 350 ps. - Abstract: We propose a high-peak-power terahertz-wave source based on an electron accelerator. By passing an electron beam through a hollow conical dielectric with apex facing the incident electron beam, the wave front of coherent Cherenkov radiation generated on the inner surface of the hollow conical dielectric matches the basal plane. Using the electron beam generated at the Laboratory for Electron Beam Research and Application at Nihon University, the calculated power of coherent Cherenkov radiation that matched the circular plane (CCR-MCP) was above 1 MW per micropulse with a short interval of 350 ps, for wavelengths ranging from 0.5 to 5 mm. The electron beam is not lost for generating the CCR-MCP beam by using the hollow conical dielectric. It is possible to combine the CCR-MCP beams with other light sources based on an accelerator

  12. The development of simulation and atmospheric shower reconstruction tools for the study of future Cherenkov Imaging telescopes

    International Nuclear Information System (INIS)

    Sajjad, S.

    2007-09-01

    The future of ground based gamma-ray astronomy lies in large arrays of Imaging Atmospheric Cherenkov Telescopes with better capabilities: lower energy threshold, higher sensitivity, better resolution and background rejection. The design of IACT systems and the optimisation of their parameters requires an understanding of the atmospheric showers as well as dedicated tools for the simulation of telescope systems and the evaluation of their performance. The first part of this dissertation deals with atmospheric showers, the various properties of the Cherenkov light they emit and their simulation. The second part presents the tools we have developed for the simulation of imaging atmospheric Cherenkov telescopes and the characteristics of the shower images obtained by them. The third part of this thesis contains a presentation of the tools developed for the reconstruction of the source position in the sky, core position on the ground and energy of the gamma-rays as well as ideas for gamma-hadron separation. In the end, we use these tools to study two large arrays of telescopes at two altitudes and evaluate their performance for gamma-ray detection. (author)

  13. The Cherenkov Surface Detector of the Pierre Auger Observatory

    Science.gov (United States)

    Billoir, Pierre

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km2), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense "infill" subarray.

  14. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    Science.gov (United States)

    An, Q.; Bai, Y. X.; Bi, X. J.; Cao, Z.; Chang, J. F.; Chen, G.; Chen, M. J.; Chen, S. M.; Chen, S. Z.; Chen, T. L.; Chen, X.; Chen, Y. T.; Cui, S. W.; Dai, B. Z.; Du, Q.; Danzengluobu; Feng, C. F.; Feng, S. H.; Gao, B.; Gao, S. Q.; Ge, M. M.; Gu, M. H.; Hao, X. J.; He, H. H.; Hou, C.; Hu, H. B.; Hu, X. B.; Huang, J.; Huang, W. P.; Jia, H. Y.; Jiang, K.; Liu, J.; Liu, J. L.; Liu, J. S.; Liu, S. B.; Liu, Y.; Liu, Y. N.; Li, Q. J.; Li, C.; Li, F.; Li, H. C.; Li, X. R.; Lu, H.; Lv, H. K.; Mao, Y. J.; Ma, L. L.; Ma, X. H.; Shao, J.; Shao, M.; Sheng, X. D.; Sun, G. X.; Sun, Z. B.; Tang, Z. B.; Wu, C. Y.; Wu, H. R.; Wu, Q.; Xiao, G.; Xu, Y.; Yang, Q. Y.; Yang, R.; Yao, Z. G.; You, X. H.; Yuan, A. F.; Zhang, B. K.; Zhang, H. M.; Zhang, S. R.; Zhang, S. S.; Zhang, X. Y.; Zhang, Y.; Zhang, L.; Zhai, L. M.; Zhao, J.; Zhao, L.; Zhao, Z. G.; Zha, M.; Zhou, B.; Zhu, F. R.; Zhu, K. J.; Zhuang, J.; Zuo, X.

    2013-10-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given.

  15. Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    International Nuclear Information System (INIS)

    Bourrion, O; Bernard, C; Bondoux, D; Bouly, J L; Bouvier, J; Boyer, B; Brinet, M; Buenerd, M; Damieux, G; Derome, L; Eraud, L; Foglio, R; Fombaron, D; Grondin, D; Marton, M; Pelissier, A; Lee, M H; Lutz, L; Menchaca-Rocha, A; Perie, J N

    2011-01-01

    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1'' diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 ≤ Z∼<26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.

  16. Design of on-line steam generator leak monitoring system based on Cherenkov counting technique

    International Nuclear Information System (INIS)

    Dileep, B.N.; D'Cruz, S.J.; Biju, P.; Jashi, K.B.; Prabhakaran, V.; Venkataramana, K.; Managanvi, S.S.

    2006-01-01

    The methodology developed by Nuclear Power Corporation of India Ltd. for identification of leaky Steam Generator (SG) by monitoring 134 I activity in the blow down water is a very high sensitive method. However, this technique can not be put into use as an on-line system. A new method of on-line detection of SG leak and identify the offending SG based on Cherenkov counting technique is explained in this paper. It identifies the leak by detecting Cherenkov radiation produced by the hard beta emitting radio nuclides escaped into feed water during leak in an operating reactor. A simulated system shows that a leak rate of 2 kg/h can be detected by the proposed system, while coolant 134 I activity is 3.7 MBq/l (100μCi/l). (author)

  17. MEMPHYS: A large scale water Cherenkov detector at Frejus

    International Nuclear Information System (INIS)

    Bellefon, A. de; Dolbeau, J.; Gorodetzky, P.; Katsanevas, S.; Patzak, T.; Salin, P.; Tonazzo, A.; Bouchez, J.; Busto, J.; Campagne, J.E.; Cavata, C.; Mosca, L.; Dumarchez, J.; Mezzetto, M.; Volpe, C.

    2006-07-01

    A water Cherenkov detector project, of megaton scale, to be installed in the Frejus underground site and dedicated to nucleon decay, neutrinos from supernovae, solar and atmospheric neutrinos, as well as neutrinos from a super-beam and/or a beta-beam coming from CERN, is presented and compared with competitor projects in Japan and in the USA. The performances of the European project are discussed, including the possibility to measure the mixing angle θ 13 and the CP-violating phase δ. (authors)

  18. Calibration of the mirror system in the HERA-B RICH

    International Nuclear Information System (INIS)

    Staric, Marko; Krizan, Peter

    2008-01-01

    The mirror system of the HERA-B ring imaging Cherenkov (RICH) counter consists of two spherical and two planar mirrors, composed of altogether 116 mirror segments. Analysis of displacements of the Cherenkov ring center relative to the charged particle track, for given spherical-planar segment pairs, leads to accurate information regarding the orientation of individual mirror segments. The method for mirror calibration is described and the effect of applying the required corrections on the Cherenkov angle resolution of the HERA-B RICH is discussed

  19. MO-AB-BRA-08: Rapid Treatment Field Uniformity Optimization for Total Skin Electron Beam Therapy Using Cherenkov Imaging

    International Nuclear Information System (INIS)

    Andreozzi, J; Zhang, R; Glaser, A; Pogue, B; Jarvis, L; Williams, B; Gladstone, D

    2015-01-01

    Purpose: To evaluate treatment field heterogeneity resulting from gantry angle choice in total skin electron beam therapy (TSEBT) following a modified Stanford dual-field technique, and determine a relationship between source to surface distance (SSD) and optimized gantry angle spread. Methods: Cherenkov imaging was used to image 62 treatment fields on a sheet of 1.2m x 2.2m x 1.2cm polyethylene following standard TSEBT setup at our institution (6 MeV, 888 MU/min, no spoiler, SSD=441cm), where gantry angles spanned from 239.5° to 300.5° at 1° increments. Average Cherenkov intensity and coefficient of variation in the region of interest were compared for the set of composite Cherenkov images created by summing all unique combinations of angle pairs to simulate dual-field treatment. The angle pair which produced the lowest coefficient of variation was further studied using an ionization chamber. The experiment was repeated at SSD=300cm, and SSD=370.5cm. Cherenkov imaging was also implemented during TSEBT of three patients. Results: The most uniform treatment region from a symmetric angle spread was achieved using gantry angles +/−17.5° about the horizontal axis at SSD=441cm, +/−18.5° at SSD=370.5cm, and +/−19.5° at SSD=300cm. Ionization chamber measurements comparing the original treatment spread (+/−14.5°) and the optimized angle pair (+/−17.5°) at SSD=441cm showed no significant deviation (r=0.999) in percent depth dose curves, and chamber measurements from nine locations within the field showed an improvement in dose uniformity from 24.41% to 9.75%. Ionization chamber measurements correlated strongly (r=0.981) with Cherenkov intensity measured concurrently on the flat Plastic Water phantom. Patient images and TLD results also showed modest uniformity improvements. Conclusion: A decreasing linear relationship between optimal angle spread and SSD was observed. Cherenkov imaging offers a new method of rapidly analyzing and optimizing TSEBT setup

  20. Gamma/hadron segregation for a ground based imaging atmospheric Cherenkov telescope using machine learning methods: Random Forest leads

    International Nuclear Information System (INIS)

    Sharma Mradul; Koul Maharaj Krishna; Mitra Abhas; Nayak Jitadeepa; Bose Smarajit

    2014-01-01

    A detailed case study of γ-hadron segregation for a ground based atmospheric Cherenkov telescope is presented. We have evaluated and compared various supervised machine learning methods such as the Random Forest method, Artificial Neural Network, Linear Discriminant method, Naive Bayes Classifiers, Support Vector Machines as well as the conventional dynamic supercut method by simulating triggering events with the Monte Carlo method and applied the results to a Cherenkov telescope. It is demonstrated that the Random Forest method is the most sensitive machine learning method for γ-hadron segregation. (research papers)

  1. Note: Measurements of fast electrons in the TORE-SUPRA tokamak by means of modified Cherenkov-type diamond detector

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L.; Sadowski, M. J.; Zebrowski, J.; Rabinski, M.; Jakubowski, M. J.; Malinowski, K.; Mirowski, R. [National Centre for Nuclear Research (NCBJ), 7 Andrzeja Soltana Str., 05-400 Otwock (Poland); Lotte, Ph.; Goniche, M.; Gunn, J.; Colledani, G.; Pascal, J.-Y.; Basiuk, V. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)

    2013-01-15

    The Note reports on experimental studies of ripple born fast electrons within the TORE-SUPRA facility, which were performed by means of a modified measuring head equipped with diamond detectors designed especially for recording the electron-induced Cherenkov radiation. There are presented signals produced by fast electrons in the TORE-SUPRA machine, which were recorded during two experimental campaigns performed in 2010. Shapes of these electron-induced signals are considerably different from those observed during the first measurements carried out by the prototype Cherenkov probe in 2008. An explanation of the observed differences is given.

  2. Note: Measurements of fast electrons in the TORE-SUPRA tokamak by means of modified Cherenkov-type diamond detector

    International Nuclear Information System (INIS)

    Jakubowski, L.; Sadowski, M. J.; Zebrowski, J.; Rabinski, M.; Jakubowski, M. J.; Malinowski, K.; Mirowski, R.; Lotte, Ph.; Goniche, M.; Gunn, J.; Colledani, G.; Pascal, J.-Y.; Basiuk, V.

    2013-01-01

    The Note reports on experimental studies of ripple born fast electrons within the TORE-SUPRA facility, which were performed by means of a modified measuring head equipped with diamond detectors designed especially for recording the electron-induced Cherenkov radiation. There are presented signals produced by fast electrons in the TORE-SUPRA machine, which were recorded during two experimental campaigns performed in 2010. Shapes of these electron-induced signals are considerably different from those observed during the first measurements carried out by the prototype Cherenkov probe in 2008. An explanation of the observed differences is given.

  3. Simulation studies of an air Cherenkov telescope, IceACT, for future IceCube surface extensions

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Bengt; Auffenberg, Jan; Bekman, Ilja; Kemp, Julian; Roegen, Martin; Schaufel, Merlin; Stahlberg, Martin; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen, Aachen (Germany); Bretz, Thomas; Hebbeker, Thomas; Middendorf, Lukas; Niggemann, Tim; Schumacher, Johannes [III. Physikalisches Institut A, RWTH Aachen, Aachen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceACT is a compact air Cherenkov telescope using silicon photomultipliers. The Fresnel lens based design has been adopted from the fluorescence telescope FAMOUS. The goal of IceACT is the efficient detection of cosmic ray induced air showers above the IceCube Neutrino Observatory at the geographic South Pole. This allows to distinguish cosmic ray induced muons and neutrinos in the southern sky from astrophysical neutrinos in the deep ice detector. This leads to an increase in low-background astrophysical neutrinos of several dozen events per year for a detection threshold of several 100 TeV cosmic ray primary energy. To determine the actual telescope performance, dedicated CORSIKA air shower simulations incorporating the full Cherenkov light information are performed.

  4. Ground-based gamma-ray astronomy with Cherenkov telescopes

    International Nuclear Information System (INIS)

    Hinton, Jim

    2009-01-01

    Very high-energy (>100 GeV) γ-ray astronomy is emerging as an important discipline in both high-energy astrophysics and astro-particle physics. This field is currently dominated by imaging atmospheric-Cherenkov telescopes (IACTs) and arrays of these telescopes. Such arrays have achieved the best angular resolution and energy flux sensitivity in the γ-ray domain and are still far from the fundamental limits of the technique. Here, I will summarize some key aspects of this technique and go on to review the current status of the major instruments and to highlight selected recent results.

  5. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

    International Nuclear Information System (INIS)

    Jarvis, Lesley A.; Zhang, Rongxiao; Gladstone, David J.; Jiang, Shudong; Hitchcock, Whitney; Friedman, Oscar D.; Glaser, Adam K.; Jermyn, Michael; Pogue, Brian W.

    2014-01-01

    Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy

  6. Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Bourrion, O; Bernard, C; Bondoux, D; Bouly, J L; Bouvier, J; Boyer, B; Brinet, M; Buenerd, M; Damieux, G; Derome, L; Eraud, L; Foglio, R; Fombaron, D; Grondin, D; Marton, M; Pelissier, A [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53, rue des Martyrs, Grenoble (France); Lee, M H; Lutz, L [University of Maryland, College Park MD 20742 (United States); Menchaca-Rocha, A [Instituto de Fisica, UNAM, A.P. 20-364, 01000 Mexico DF (Mexico); Perie, J N, E-mail: olivier.bourrion@lpsc.in2p3.fr [Universite de Toulouse, INSA, UPS, Mines Albi, ISAE, ICA (Institut Clement Ader), 133, avenue de Rangueil, F-31077 Toulouse (France)

    2011-06-15

    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1'' diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 {<=} Z{approx}<26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.

  7. Cherenkov radiation by an electron bunch that moves in a vacuum above a left-handed material

    International Nuclear Information System (INIS)

    Averkov, Yu.O.; Yakovenko, V.M.

    2005-01-01

    Cherenkov radiation by a nonrelativistic electron bunch that moves above an interface of a vacuum-left-handed material has been investigated theoretically. The electron density of the bunch is described by a Gauss distribution. Cherenkov radiation for the frequency range where the refractive index is negative is shown to lead to simultaneous excitation of both bulk and surface electromagnetic waves over one and the same frequency range. In this case the wave vector magnitude in the plane of the interface of surface electromagnetic waves is larger than the corresponding wave vector magnitude of bulk electromagnetic waves. The energy flows in a left-handed material have been calculated. The spectral density and the radiation pattern have been investigated

  8. The Vavilov-Cherenkov radiation in a medium with a nonzero absorption coefficient

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    1997-01-01

    Distribution of the field around a charged relativistic particle in a medium is discussed. It is shown that the Vavilov-Cherenkov radiation exists in the case when the velocity of the charged particle is equal to the velocity of light in the medium. A simple approach is proposed to avoid singularity in the medium Electrodynamics

  9. Cherenkov and anomalous Doppler effects in the relaxation of an electron beam

    International Nuclear Information System (INIS)

    Muschietti, L.; Appert, K.; Vaclavik, J.

    1981-01-01

    The interplay between the Cherenkov and anomalous Doppler interactions in the relaxation of a warm electron beam is investigated by numerical means. The most important feature in the interplay is found to be a nonelastic isotropization. A simple semianalytical model which allows one to estimate various quantities relevant to the relaxation process is also presented

  10. Feasibility study of the water Cherenkov detector as a D-T fusion power monitor in the system using neutron activation of flowing water. First experimental phase

    International Nuclear Information System (INIS)

    Verzilov, Yury M.; Ochiai, Kentaro; Nishitani, Takeo

    2003-09-01

    The technique of monitoring D-T neutrons using water flow is based on the reaction of the 16 O(n, p) 16 N. In order to significantly improve the D-T neutron monitoring system in the ITER reactor in comparison with the system that uses a γ-ray scintillation detector, a new approach was proposed. The basic idea of this approach is to utilize the Cherenkov light, produced by energetic β-particles from 16 N in water near the first wall of the fusion reactor, and then deliver the light by the optical fiber to the remote light detector. The proof of the principle experiment is divided into two phases. The main idea of the first experimental phase is to examine Cherenkov light measurements using a remotely located water and light detector. During the second phase the water radiator will be placed next to the neutron source, then the Cherenkov light will be transferred by an optical fiber to the remotely located light detector. For the purpose of the first experimental phase, a water Cherenkov detector was installed in the shielded measurement room. A closed water loop, with circulating water, was used to transport 16 N from the D-T source to the Cherenkov detector. The experiment was carried out at FNS/JAERI, with the accelerator set to a direct current mode, the source neutron yield around 2 x 10 11 n/s, and the water flowage approximately 2 m/s. The registered Cherenkov signal was identified as the light produced by β-particles from 16 N using the time decay and the energy spectra data. According to the present study, the water Cherenkov detector is very effective for measurements of the 16 N activity, due to high counting efficiency, absence of the scintillation detector and simplicity of the method. (author)

  11. The fluid systems for the SLD Cherenkov ring imaging detector

    International Nuclear Information System (INIS)

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Bean, A.; Caldwell, D.O.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Yellin, S.; Ben-David, R.; Manly, S.; Snyder, J.; Turk, J.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Schneider, M.; Williams, D.A.; Coller, J.; Shank, J.T.; Whitaker, J.S.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Sokoloff, M.D.; Stockdale, I.; Wilson, R.J.

    1992-10-01

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C 2 H 6 + TMAE), radiator gas (C 5 F 12 + N 2 ) and radiator liquid (C 6 F 14 ). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported

  12. The new Tunka-133 EAS Cherenkov array: Status of 2009

    International Nuclear Information System (INIS)

    Antokhonov, B.V.; Beregnev, S.F.; Budnev, N.M.; Chvalaev, O.B.; Chiavassa, A.; Gress, O.A.; Kalmykov, N.N.; Karpov, N.N.; Korosteleva, E.E.; Kozhin, V.A.; Kuzmichev, L.A.; Lubsandorzhiev, B.K.; Mirgazov, R.R.; Panasyuk, M.I.; Pankov, L.V.; Prosin, V.V.; Ptuskin, V.S.; Semeney, Yu.A.; Shaibonov, B.; Silaev, A.A.

    2011-01-01

    The deployment of the new Extensive air shower Cherenkov installation Tunka-133 with about 1 km 2 geometric acceptance area was completed in October 2009. The array will permit a detailed long-term study of the cosmic ray energy spectrum and mass composition in the energy range 10 15 -10 18 eV with a unique and more elaborate method. The array construction and data acquisition system, preliminary results and plans for future development are presented.

  13. Cherenkov-type diamond detectors for measurements of fast electrons in the TORE-SUPRA tokamak

    International Nuclear Information System (INIS)

    Jakubowski, L.; Sadowski, M. J.; Zebrowski, J.; Rabinski, M.; Malinowski, K.; Mirowski, R.; Lotte, Ph.; Gunn, J.; Pascal, J-Y.; Colledani, G.; Basiuk, V.; Goniche, M.; Lipa, M.

    2010-01-01

    The paper presents a schematic design and tests of a system applicable for measurements of fast electron pulses emitted from high-temperature plasma generated inside magnetic confinement fusion machines, and particularly in the TORE-SUPRA facility. The diagnostic system based on the registration of the Cherenkov radiation induced by fast electrons within selected solid radiators is considered, and electron low-energy thresholds for different radiators are given. There are some estimates of high thermal loads, which might be deposited by intense electron beams upon parts of the diagnostic equipment within the TORE-SUPRA device. There are some proposed measures to overcome this difficulty by the selection of appropriate absorption filters and Cherenkov radiators, and particularly by the application of a fast-moving reciprocating probe. The paper describes the measuring system, its tests, as well as some results of the preliminary measurements of fast electrons within TORE-SUPRA facility.

  14. Interference effects on guided Cherenkov emission in silicon from perpendicular, oblique, and parallel boundaries

    Science.gov (United States)

    Couillard, M.; Yurtsever, A.; Muller, D. A.

    2010-05-01

    Waveguide electromagnetic modes excited by swift electrons traversing Si slabs at normal and oblique incidence are analyzed using monochromated electron energy-loss spectroscopy and interpreted using a local dielectric theory that includes relativistic effects. At normal incidence, sharp spectral features in the visible/near-infrared optical domain are directly assigned to p -polarized modes. When the specimen is tilted, s -polarized modes, which are completely absent at normal incidence, become visible in the loss spectra. In the tilted configuration, the dispersion of p -polarized modes is also modified. For tilt angles higher than ˜50° , Cherenkov radiation, the phenomenon responsible for the excitation of waveguide modes, is expected to partially escape the silicon slab and the influence of this effect on experimental measurements is discussed. Finally, we find evidence for an interference effect at parallel Si/SiO2 interfaces, as well as a delocalized excitation of guided Cherenkov modes.

  15. Interference effects on guided Cherenkov emission in silicon from perpendicular, oblique, and parallel boundaries

    International Nuclear Information System (INIS)

    Couillard, M.; Yurtsever, A.; Muller, D. A.

    2010-01-01

    Waveguide electromagnetic modes excited by swift electrons traversing Si slabs at normal and oblique incidence are analyzed using monochromated electron energy-loss spectroscopy and interpreted using a local dielectric theory that includes relativistic effects. At normal incidence, sharp spectral features in the visible/near-infrared optical domain are directly assigned to p-polarized modes. When the specimen is tilted, s-polarized modes, which are completely absent at normal incidence, become visible in the loss spectra. In the tilted configuration, the dispersion of p-polarized modes is also modified. For tilt angles higher than ∼50 deg. Cherenkov radiation, the phenomenon responsible for the excitation of waveguide modes, is expected to partially escape the silicon slab and the influence of this effect on experimental measurements is discussed. Finally, we find evidence for an interference effect at parallel Si/SiO 2 interfaces, as well as a delocalized excitation of guided Cherenkov modes.

  16. Cherenkov-type diamond detectors for measurements of fast electrons in the TORE-SUPRA tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L.; Sadowski, M. J.; Zebrowski, J.; Rabinski, M.; Malinowski, K.; Mirowski, R. [Andrzej Soltan Institute for Nuclear Studies (IPJ), Otwock-Swierk 05-400 (Poland); Lotte, Ph.; Gunn, J.; Pascal, J-Y.; Colledani, G.; Basiuk, V.; Goniche, M.; Lipa, M. [CEA, IRFM, St Paul-lez-Durance F-13108 (France)

    2010-01-15

    The paper presents a schematic design and tests of a system applicable for measurements of fast electron pulses emitted from high-temperature plasma generated inside magnetic confinement fusion machines, and particularly in the TORE-SUPRA facility. The diagnostic system based on the registration of the Cherenkov radiation induced by fast electrons within selected solid radiators is considered, and electron low-energy thresholds for different radiators are given. There are some estimates of high thermal loads, which might be deposited by intense electron beams upon parts of the diagnostic equipment within the TORE-SUPRA device. There are some proposed measures to overcome this difficulty by the selection of appropriate absorption filters and Cherenkov radiators, and particularly by the application of a fast-moving reciprocating probe. The paper describes the measuring system, its tests, as well as some results of the preliminary measurements of fast electrons within TORE-SUPRA facility.

  17. Cherenkov effect as a probe of photonic nanostructures

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Pattantyus-Abraham, A.G.; Wolf, M.O.; Zabala, N.; Rivacoba, A.; Echenique, P.M.

    2003-01-01

    Electron energy-loss spectroscopy (EELS) is shown to be an excellent source of information both on photonic crystal bands and on radiation modes of complex nanostructures. Good agreement is reported between measurements and parameter-free calculations of EELS in porous alumina films, where Cherenkov radiation is scattered by the pores to yield a strong 8.3-eV (7-eV) feature for 120-keV (200-keV) electrons. The latter is related to the bands of two-dimensional photonic crystals formed by air cylinders in an alumina matrix with similar near-range ordering. Finally, the band structure is proved to be directly mapped by angle-resolved EELS

  18. A swimming pool array for ultra high energy showers

    Science.gov (United States)

    Yodh, Gaurang B.; Shoup, Anthony; Barwick, Steve; Goodman, Jordan A.

    1992-11-01

    A very preliminary design concept for an array using water Cherenkov counters, built out of commercially available backyard swimming pools, to sample the electromagnetic and muonic components of ultra high energy showers at large lateral distances is presented. The expected performance of the pools is estimated using the observed lateral distributions by scintillator and water Cherenkov arrays at energies above 1019 eV and simulations.

  19. The use of an ultra-violet camera in the atmospheric Cherenkov technique

    International Nuclear Information System (INIS)

    Urban, M.; Fleury, P.; Kerrick, A.D.; Pare, E.; Vacanti, G.

    1996-01-01

    The atmospheric Cherenkov technique for gamma ray astronomy is shown to be feasible using an ultraviolet (UV) camera on moon-lit-nights. The Whipple telescope has been used as the reflector and the CRab Nebula as the standard gamma ray beam. Our energy threshold is 1.2 TeV which is compared to 0.4 TeV in the visible. (orig.)

  20. CELESTE an atmospheric Cherenkov telescope for high energy gamma astrophysics

    CERN Document Server

    Paré, E; Bazer-Bachi, R; Bergeret, H; Berny, F; Briand, N; Bruel, P; Cerutti, M; Collon, J; Cordier, A; Cornebise, P; Debiais, G; Dezalay, J P; Dumora, D; Durand, E; Eschstruth, P T; Espigat, P; Fabre, B; Fleury, P; Gilly, J; Gouillaud, J C; Gregory, C; Herault, N; Holder, J; Hrabovsky, M; Incerti, S; Jouenne, A; Kalt, L; Legallou, R; Lott, B; Lodygensky, O; Manigot, P; Manseri, H; Manitaz, H; Martin, M; Morano, R; Morineaud, G; Muenz, F; Musquere, A; Naurois, M D; Neveu, J; Noppe, J M; Olive, J F; Palatka, M; Pérez, A; Quebert, J; Rebii, A; Reposeur, T; Rob, L; Roy, P; Sans, J L; Sako, T; Schovanek, P; Smith, D A; Snabre, P; Villard, G

    2002-01-01

    CELESTE is an atmospheric Cherenkov telescope based on the sampling method which makes use of the de-commissioned THEMIS solar electrical plant in the French Pyrenees. A large (2000 m sup 2) mirror surface area from 40 independent heliostats followed by a secondary optic, a trigger system using analog summing techniques and signal digitization with 1 GHz flash ADCs make possible the detection of cosmic gamma-rays down to 30 GeV. This paper provides a detailed technical description of the CELESTE installation.

  1. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V. V.; Oepts, D.; van der Wiel, M. J.

    1997-01-01

    A possible way to carry out two-color IR+VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  2. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V.V.; Oepts, W.; Wiel, van der M.J.

    1997-01-01

    A possible way to carry out two-color IR + VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  3. Detection of ultraviolet Cherenkov light from high energy cosmic ray atmospheric showers: A field test

    International Nuclear Information System (INIS)

    Bartoli, B.; Peruzzo, L.; Sartori, G.; Bedeschi, F.; Bertolucci, E.; Mariotti, M.; Menzione, A.; Ristori, L.; Stefanini, A.; Zetti, F.; Scribano, A.; Budinich, M.; Liello, F.

    1991-01-01

    We present the results of a test with a prototype apparatus aimed to detect the ultraviolet Cherenkov light in the wavelenght range 2000-2300A, emitted by high energy cosmic ray showers. The system consists of a gas proportional chamber, with TMAE vapour as the photosensitive element, placed on the focal plane of a 1.5 m diameter parabolic mirror. The test was done during the summer of 1989 with cosmic ray showers seen in coincidence with the EAS-TOP experiment, an extended atmospheric shower charged particle array now being exploited at Campo Imperatore, 1900 m above sea level, on top of the Gran Sasso underground Laboratory of INFN. The results were positive and show that a full scale ultraviolet Cherenkov experiment with good sensitivity, angular resolution and virtually no background from moonlight or even daylight can be envisaged. (orig.)

  4. Real-time track-less Cherenkov ring fitting trigger system based on Graphics Processing Units

    Science.gov (United States)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Gianoli, A.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-12-01

    The parallel computing power of commercial Graphics Processing Units (GPUs) is exploited to perform real-time ring fitting at the lowest trigger level using information coming from the Ring Imaging Cherenkov (RICH) detector of the NA62 experiment at CERN. To this purpose, direct GPU communication with a custom FPGA-based board has been used to reduce the data transmission latency. The GPU-based trigger system is currently integrated in the experimental setup of the RICH detector of the NA62 experiment, in order to reconstruct ring-shaped hit patterns. The ring-fitting algorithm running on GPU is fed with raw RICH data only, with no information coming from other detectors, and is able to provide more complex trigger primitives with respect to the simple photodetector hit multiplicity, resulting in a higher selection efficiency. The performance of the system for multi-ring Cherenkov online reconstruction obtained during the NA62 physics run is presented.

  5. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    International Nuclear Information System (INIS)

    Chen, Y.T.; La Taille, C. de; Suomijärvi, T.; Cao, Z.; Deligny, O.; Dulucq, F.; Ge, M.M.; Lhenry-Yvon, I.; Martin-Chassard, G.; Nguyen Trung, T.; Wanlin, E.; Xiao, G.; Yin, L.Q.; Yun Ky, B.; Zhang, L.; Zhang, H.Y.; Zhang, S.S.; Zhu, Z.

    2015-01-01

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs

  6. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.T., E-mail: chenytao@ynu.edu.cn [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Yunnan University, 650091 Kunming (China); La Taille, C. de [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Suomijärvi, T. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Cao, Z. [Institute of High Energy Physics, 100049 Beijing (China); Deligny, O. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Dulucq, F. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Ge, M.M. [Yunnan University, 650091 Kunming (China); Lhenry-Yvon, I. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Martin-Chassard, G. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Nguyen Trung, T.; Wanlin, E. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Xiao, G.; Yin, L.Q. [Institute of High Energy Physics, 100049 Beijing (China); Yun Ky, B. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Zhang, L. [Yunnan University, 650091 Kunming (China); Zhang, H.Y. [Tsinghua University, 100084 Beijing (China); Zhang, S.S.; Zhu, Z. [Institute of High Energy Physics, 100049 Beijing (China)

    2015-09-21

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs.

  7. Multi-anode photon-multiplier readout electronics for the LHCb ring imaging Cherenkov detectors

    CERN Document Server

    Smale, N J

    2004-01-01

    A readout system for the Ring Imaging CHerenkov (RICH) detectors of the LHCb experiment has been developed. Two detector technologies for the measurement of Cherenkov photons are considered, the Multi-Anode Photo-Multiplier Tube (MAPMT) and the Hybrid Photon Detector (HPD), both of which meet the RICH requirements. The properties of the MAPMT are evaluated using a controlled single-photon source; a pixel-to-pixel gain variation of ~3 and a typical signal to noise of ~20 is measured. The relative tube efficiency is found to be reduced by ~26 % due to the detailed focusing structure of the MAPMT device. A radiation hard application-specific integrated circuit (ASIC) chip, the Beetle1.2MA0, has been developed to capture and store signals from a pair of MAPMTs. The Beetle1.2MA0 is built on the architecture of the Beetle family that was designed for silicon strip detectors, the difference being a modified front-end amplifier. The 128 input-channels of the Beetle1.2MA0 have a charge-sensitive pre-amplifier followed...

  8. FACT-The first Cherenkov telescope using a G-APD camera for TeV gamma-ray astronomy

    International Nuclear Information System (INIS)

    Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, S.; Commichau, V.; Domke, M.; Dorner, D.; Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Koehne, J.-H.; Kraehenbuehl, T.; Kranich, D.; Krumm, B.; Lorenz, E.

    2011-01-01

    Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and are constructing a new, fine-pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details.

  9. Particle identification system based on dense aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Beloborodov, K.I., E-mail: K.I.Beloborodov@inp.nsk.su [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, 5, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Golubev, V.B. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Gulevich, V.V. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Martin, K.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Serednyakov, S.I. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); and others

    2013-12-21

    A threshold Cherenkov counter based on dense aerogel with refraction index n=1.13 is described. This counter is used for kaon identification at momenta below 1 GeV/c in the SND detector, which takes data at the VEPP-2000 e{sup +}e{sup −} collider. The results of measurements of the counter efficiency using electrons, muons, pions, and kaons produced in e{sup +}e{sup −} annihilation are presented.

  10. Cherenkov particle identifier for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J P; Olson, D L; Baumgartner, M; Girard, J G; Lindstrom, P J; Greiner, D E; Symons, T J.M.; Crawford, H J

    1985-12-01

    A total internal reflection Cherenkov detector is described. A figure of merit of 84Z/sup 2/sin/sup 2/theta photoelectrons/cm has been measured and the application of the device to charge and velocity measurements of relativistic heavy ions has been tested. We have achieved a charge resolution of ..delta..Zsub(rms)=0.15e for Z=20 with a 3 mm thick glass detector and a velocity resolution of ..delta beta..sub(rms)=2x10/sup -4/ at ..beta..=0.93 and Z=26 with a 6 mm thick fused silica detector. Combining charge and velocity measurements with a magnetic rigidity selection, we have achieved an isotopic mass resolution of ..delta..Msub(rms)=0.1 u with a 2 mm thick fused silica detector for 20

  11. Cherenkov particle identifier for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J P; Olson, D L; Baumgartner, M; Girard, J G; Lindstrom, P J; Greiner, D E; Symons, T J.M.; Crawford, H J

    1985-12-01

    A total internal reflection Cherenkov detector is described. A figure of merit of 84Z/sup 2/sin/sup 2/theta photoelectrons/cm has been measured and the application of the device to charge and velocity measurements of relativistic heavy ions has been tested. We have achieved a charge resolution of ..delta..Zsub(rms)=0.15e for Z=20 with a 3 mm thick glass detector and a velocity resolution of ..delta beta..sub(rms)=2 x 10/sup -4/ at ..beta..=0.93 and Z=26 with a 6 mm thick fused silica detector. Combining charge and velocity measurements with a magnetic rigidity selection, we have achieved an isotopic mass resolution of ..delta..Msub(rms)=0.1 u with a 2 mm thick fused silica detector for 20 < A < 40.

  12. Background level of natural radioactivities in a giant water Cherenkov detector and its surrounding environment; KAMIOKANDE-II

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Masayoshi; Sakanoue, Masanobu; Komura, Kazuhisa; Ueno, Kaoru [Kanazawa Univ., Tatsunokuchi, Ishikawa (Japan). Low Level Radioactivity Lab.

    1989-12-01

    The KAMIOKANDE-II water Cherenkov detector for the measurement of nucleon decay and/or solar neutrino has been operating in the underground laboratory at a depth of 2,700 m.w.e. (meter water equivalent) in Kamioka mine of Gifu Prefecture. Concentrations of {sup 238}U, {sup 232}Th, {sup 226}Ra and {sup 222}Rn as the major background sources have been measured for various kinds of rocks, mine water, mine air and high purity water used as a detector during the period from August 1986 to December 1987. The concentration levels of these radionuclides and their seasonal variation have become clear. Some of these results have provided useful informations for decreasing the background level of water Cherenkov detector. (author).

  13. Space and power efficient hybrid counters array

    Science.gov (United States)

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  14. A low-level needle counter

    International Nuclear Information System (INIS)

    Fujita, Y.; Taguchi, Y.; Imamura, M.; Inoue, T.; Tanaka, S.

    1977-01-01

    A small end-window type gas-flow counter which has a sharpened needle (anode) against the end-window plane (cathode) was developed for low-level counting of β particles to the amount of less than one count per hour in solid sources of relatively high specific activity. The advantage of the needle counter for low-level work is that being of a conical shape the active volume as against the window area is small. The background count rate of 0.0092+-0.0005 cpm was obtained for a 10 mm dia needle counter operating in GM mode and in anticoincidence with a well-type NaI(Tl) guard crystal with massive shields. The counter design and the counter characteristics are presented in detail. The needle counter is simple in design, low-cost and stable in long time operation. (author)

  15. TH-C-17A-05: Cherenkov Excited Phosphorescence Oxygen (CEPhOx) Imaging During Multi-Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Pogue, B [Dartmouth College, Hanover, NH (United States); Holt, R [Dartmouth College, Hanover, NH - New Hampshire (United States); Esipova, T; Vinogradov, S [University of Pennsylvania, Philadelphia, PA (United States); Gladstone, D [Dartmouth-Hitchcock Medical Center, Hanover, City of Lebanon (Lebanon)

    2014-06-15

    Purpose: Cherenkov radiation is created during external beam radiation therapy that can excite phosphorescence in tissue from oxygen-sensitive, bio-compatible probes. Utilizing the known spatial information of the treatment plan with directed multiple beam angles, Cherenkov Excited Phosphorescence Oxygen (CEPhOx) imaging was realized from the reconstructions of Cherenkov excited phosphorescence lifetime. Methods: Platinum(II)-G4 (PtG4) was used as the oxygen-sensitive phosphorescent probe and added to a oxygenated cylindrical liquid phantom with a oxygenated/deoxygenated cylindrical anomaly. Cherenkov excited phosphorescence was imaged using a time-gated ICCD camera temporallysynchronized to the LINAC pulse output. Lifetime reconstruction was carried out in NIRFAST software. Multiple angles of the incident radiation beam was combined with the location of the prescribed treatment volume (PTV) to improve the tomographic recovery as a function of location. The tissue partial pressure of oxygen (pO2) in the background and PTV was calculated based on the recovered lifetime distribution and Stern-Volmer equation. Additionally a simulation study was performed to examine the accuracy of this technique in the setting of a human brain tumor. Results: Region-based pO2 values in the oxygenated background and oxygenated/deoxygenated PTV were correctly recovered, with the deoxygenated anomaly (15.4 mmHg) easily distinguished from the oxygenated background (143 mmHg). The data acquisition time could be achieved within the normal irradiation time for a human fractionated plan. The simulations indicated that CEPhOx would be a sufficient to sample tumor pO2 sensing from tumors which are larger than 2cm in diameter or within 23mm depth from the surface. Conclusion: CEPhOx could be a novel imaging tool for pO2 assessment during external radiation beam therapy. It is minimally invasive and should work within the established treatment plan of radiation therapy with multiple beams in

  16. Dispersion relation and growth rate in a Cherenkov free electron laser: Finite axial magnetic field

    International Nuclear Information System (INIS)

    Kheiri, Golshad; Esmaeilzadeh, Mahdi

    2013-01-01

    A theoretical analysis is presented for dispersion relation and growth rate in a Cherenkov free electron laser with finite axial magnetic field. It is shown that the growth rate and the resonance frequency of Cherenkov free electron laser increase with increasing axial magnetic field for low axial magnetic fields, while for high axial magnetic fields, they go to a saturation value. The growth rate and resonance frequency saturation values are exactly the same as those for infinite axial magnetic field approximation. The effects of electron beam self-fields on growth rate are investigated, and it is shown that the growth rate decreases in the presence of self-fields. It is found that there is an optimum value for electron beam density and Lorentz relativistic factor at which the maximum growth rate can take place. Also, the effects of velocity spread of electron beam are studied and it is found that the growth rate decreases due to the electron velocity spread

  17. Alignment of the HERA-B RICH optical system with data

    International Nuclear Information System (INIS)

    Gorisek, A.; Krizan, P.; Korpar, S.; Staric, M.

    1999-01-01

    We present a method for alignment of the mirror segments in the Ring Image Cherenkov Counter of the HERA-B spectrometer. The method will use recorded data, and was tested by using simulated events. The study shows that the mirrors can be aligned accurately enough to make the corresponding error in Cherenkov angle measurement negligible compared to other contributions. The mirrors are aligned relative to one mirror segment which can be chosen arbitrarily

  18. Proportional counter system for radiation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M; Okudera, S

    1970-11-21

    A gas such as Xe or Kr employed in counter tubes is charged into the counter tube of a gas-flow type proportional counter for radiation measurement and into a vessel having a volume larger than that of the counter tube. The vessel communicates with the counter tube to circulate the gas via a pump through both the vessel and tube during measurement. An organic film such as a polyester synthetic resin film is used for the window of the counter tube to measure X-rays in the long wavelength range. Accordingly, a wide range of X-rays can be measured including both long and short wavelengths ranges by utilizing only one counter tube, thus permitting the gases employed to be effectively used.

  19. Counter-discourse in Zimbabwean literature

    NARCIS (Netherlands)

    Mangena, Tendai

    2015-01-01

    Counter-Discourse in Zimbabwean Literature is a study of specific aspects of counter-discursive Zimbabwean narratives in English. In discussing the selected texts, my thesis is based on Terdiman’s (1989) the postcolonial concept of counter-discourse. In Zimbabwean literature challenges to a dominant

  20. Cherenkov light based measurement of extensive air showers around the knee with the HEGRA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aharonian, F.; Akhperjanian, A.G.; Barrio, J.A.; Belgarian, A.S.; Bernloehr, K.; Bojahr, H.; Contreras, J.L.; Cortina, J.; Daum, A.; Deckers, T.; Denninghoff, S.; Fernandez, J.; Fonseca, V.; Gonzales, J.C.; Heinzelmann, G.; Hemberger, M.; Hermann, G.; Hess, M.; Heusler, A.; Hofmann, W.; Hohl, H.; Horns, D.; Kankanyan, R.; Kestel, M.; Kirstein, O.; Koehler, C.; Konopelko, A.; Kornmayer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lindner, A.; Lorenz, E.; Magnussen, N.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Petry, D.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Prosch, C.; Puehlhofer, G.; Rauterberg, G.; Renault, C.; Rhode, W.; Roehring, A.; Sahakian, V.; Samorski, M.; Schmele, D.; Schroeder, F.; Stamm, W.; Voelk, H.J.; Wiebel-Sooth, B

    1999-03-01

    Data of the wide angle atmospheric Cherenkov light detector array AIROBICC and the scintillator matrix of the HEGRA air shower detector complex are combined to determine the energy spectrum and coarse composition of charged cosmic rays in the energy interval from 300 TeV to 10 PeV.

  1. Performance of the CAPRICE98 balloon-borne gas-RICH detector

    CERN Document Server

    Bergström, D; Carlson, P J; Francke, T; Grinstein, S; Weber, N; Suffert, Martin; Hof, M; Kremer, J; Menn, W; Simon, M; Stephens, S A; Ambriola, M; Bellotti, R; Cafagna, F; Castellano, M G; Ciacio, F; Circella, M; De Marzo, C; Finetti, N; Papini, P; Piccardi, S; Spillantini, P; Bartalucci, S; Ricci, M; Bidoli, V; Casolino, M; De Pascale, M P; Morselli, A; Picozza, P; Sparvoli, R; Barbiellini, Guido; Schiavon, R P; Vacchi, A; Zampa, N; Mitchell, J W; Ormes, J F; Streitmatter, R E; Bravar, U; Stochaj, S J

    2001-01-01

    A RICH counter using a gas radiator of C/sub 4/F/sub 10/ and a photosensitive MWPC with pad readout has been developed, tested in particle beam at CERN and used in the CAPRICE98 balloon-borne experiment. The MWPC was operated with a TMAE and ethane mixture at atmospheric pressure and used a cathode pad plane to give an unambiguous image of the Cherenkov light. The induced signals in the pad plane were read our using the AMPLEX chip and CRAMS. The good efficiency of the Cherenkov light collection, the efficient detection of the weak signal from single UV photons together with a low noise level in the electronics of the RICH detector, resulted in a large number of detected photoelectrons per event. For beta approximately=1 charge one particles, an average of 12 photoelectrons per event were detected. The reconstructed Cherenkov angle of 50 mrad for a beta approximately=1 particle had a resolution of 1.2 mrad (rms). The RICH was flown with the CAPRICE98 magnetic spectrometer and was the first RICH counter ever u...

  2. A Prototype Combination TPC Cherenkov Detector with GEM Readout for Tracking and Particle Identification and its Potential Use at an Electron Ion Collider

    Directory of Open Access Journals (Sweden)

    Woody Craig

    2018-01-01

    Full Text Available A prototype detector is being developed which combines the functions of a Time Projection Chamber for charged particle tracking and a Cherenkov detector for particle identification. The TPC consists of a 10×10×10 cm3 drift volume where the charge is drifted to a 10×10 cm2 triple GEM detector. The charge is measured on a readout plane consisting of 2×10 mm2 chevron pads which provide a spatial resolution ∼ 100 μm per point in the chevron direction along with dE/dx information. The Cherenkov portion of the detector consists of a second 10×10 cm2 triple GEM with a photosensitive CsI photocathode on the top layer. This detector measures Cherenkov light produced in the drift gas of the TPC by high velocity particles which are above threshold. CF4 or CF4 mixtures will be used as the drift gas which are highly transparent to UV light and can provide excellent efficiency for detecting Cherenkov photons. The drift gas is also used as the operating gas for both GEM detectors. The prototype detector has been constructed and is currently being tested in the lab with sources and cosmic rays, and additional tests are planned in the future to study the detector in a test beam.

  3. A Prototype Combination TPC Cherenkov Detector with GEM Readout for Tracking and Particle Identification and its Potential Use at an Electron Ion Collider

    Science.gov (United States)

    Woody, Craig; Azmoun, Babak; Majka, Richard; Phipps, Michael; Purschke, Martin; Smirnov, Nikolai

    2018-02-01

    A prototype detector is being developed which combines the functions of a Time Projection Chamber for charged particle tracking and a Cherenkov detector for particle identification. The TPC consists of a 10×10×10 cm3 drift volume where the charge is drifted to a 10×10 cm2 triple GEM detector. The charge is measured on a readout plane consisting of 2×10 mm2 chevron pads which provide a spatial resolution ˜ 100 μm per point in the chevron direction along with dE/dx information. The Cherenkov portion of the detector consists of a second 10×10 cm2 triple GEM with a photosensitive CsI photocathode on the top layer. This detector measures Cherenkov light produced in the drift gas of the TPC by high velocity particles which are above threshold. CF4 or CF4 mixtures will be used as the drift gas which are highly transparent to UV light and can provide excellent efficiency for detecting Cherenkov photons. The drift gas is also used as the operating gas for both GEM detectors. The prototype detector has been constructed and is currently being tested in the lab with sources and cosmic rays, and additional tests are planned in the future to study the detector in a test beam.

  4. Sum-frequency nonlinear Cherenkov radiation generated on the boundary of bulk medium crystal.

    Science.gov (United States)

    Wang, Xiaojing; Cao, Jianjun; Zhao, Xiaohui; Zheng, Yuanlin; Ren, Huaijin; Deng, Xuewei; Chen, Xianfeng

    2015-12-14

    We demonstrated experimentally a method to generate the sum-frequency Nonlinear Cherenkov radiation (NCR) on the boundary of bulk medium by using two synchronized laser beam with wavelength of 1300 nm and 800 nm. It is also an evidence that the polarization wave is always confined to the boundary. Critical conditions of surface sum-frequency NCR under normal and anomalous dispersion condition is discussed.

  5. Effect of Vavilov–Cherenkov radiation cone transformation upon entry of a relativistic electron into a substance layer

    Energy Technology Data Exchange (ETDEWEB)

    Kishchin, I. A.; Kubankin, A. S., E-mail: kubankin@bsu.edu.ru; Nikulicheva, T. B.; Al-Omari; Sotnikov, A. V.; Starovoitov, A. S. [Belgorod National Research University (Russian Federation)

    2016-12-15

    Transformation of the Vavilov–Cherenkov radiation cone under grazing interaction of a relativistic electron with a layer of substance is theoretically studied. It is shown that this effect can occur when the electron enters the substance layer.

  6. Vacuum Cherenkov radiation for Lorentz-violating fermions

    Science.gov (United States)

    Schreck, M.

    2017-11-01

    The current work focuses on the process of vacuum Cherenkov radiation for Lorentz-violating fermions that are described by the minimal standard-model extension (SME). To date, most considerations of this important hypothetical process have been restricted to Lorentz-violating photons, as the necessary theoretical tools for the SME fermion sector have not been available. With their development in a very recent paper, we are now in a position to compute the decay rates based on a modified Dirac theory. Two realizations of the Cherenkov process are studied. In the first scenario, the spin projection of the incoming fermion is assumed to be conserved, and in the second, the spin projection is allowed to flip. The first type of process is shown to be still forbidden for the dimensionful a and b coefficients where there are strong indications that it is energetically disallowed for the H coefficients, as well. However, it is rendered possible for the dimensionless c , d , e , f , and g coefficients. For large initial fermion energies, the decay rates for the c and d coefficients were found to grow linearly with momentum and to be linearly suppressed by the smallness of the Lorentz-violating coefficient where for the e , f , and g coefficients this suppression is even quadratic. The decay rates vanish in the vicinity of the threshold, as expected. The decay including a fermion spin-flip plays a role for the spin-nondegenerate operators and it was found to occur for the dimensionful b and H coefficients as well as for the dimensionless d and g . The characteristics of this process differ much from the properties of the spin-conserving one, e.g., there is no threshold. Based on experimental data of ultra-high-energy cosmic rays, new constraints on Lorentz violation in the quark sector are obtained from the thresholds. However, it does not seem to be possible to derive bounds from the spin-flip decays. This work reveals the usefulness of the quantum field theoretic methods

  7. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation.

    Science.gov (United States)

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R; Esipova, Tatiana V; Vinogradov, Sergei; Gladstone, David J; Jarvis, Lesley A; Pogue, Brian W

    2016-05-21

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  8. A multiplicity trigger for a Cherenkov detector

    International Nuclear Information System (INIS)

    Jonsson, P.

    1984-05-01

    The Multiplicity Trigger (MT) is a device for deciding if, in a given time window, the number of wires that are hit in a multi wire proportional chamber (MWPC) is within given limits. The MT is designed for a Cherenkov detector, using a MWPC with 155 sense wires. It has ten inputs with sixteen channels on each, for 160 ECL input signals from the MWPC. With the MT, it is possible to decide if the number of hits is greater than n out of 160, where n is called the multiplicity. Here, 2 < n < 30, with an accuracy of +- 1. The time window can be adjusted from 0.7 to 4 μs. The MT has four separate NIM outputs, to make it possible to have four different values of n at the same time. The propagation delay from input to output is at the most 100 ns. (author)

  9. Ionization and pulse lethargy effects in inverse Cherenkov accelerators

    International Nuclear Information System (INIS)

    Sprangle, P.; Hubbard, R.F.; Hafizi, B.

    1997-01-01

    Ionization processes limit the accelerating gradient and place an upper limit on the pulse duration of the electromagnetic driver in the inverse Cherenkov accelerator (ICA). Group velocity slippage, i.e., pulse lethargy, on the other hand, imposes a lower limit on the pulse duration. These limits are obtained for two ICA configurations in which the electromagnetic driver (e.g., laser or millimeter wave source) is propagated in a waveguide that is (i) lined with a dielectric material or (ii) filled with a neutral gas. In either configuration the electromagnetic driving field is guided and has an axial electric field with phase velocity equal to the speed of light in vacuum, c. The intensity of the driver in the ICA, and therefore the acceleration gradient, is limited by tunneling and collisional ionization effects. Partial ionization of the dielectric liner or gas can lead to significant modification of the dispersive properties of the waveguide, altering the phase velocity of the accelerating field and causing particle slippage, thus disrupting the acceleration process. An additional limitation on the pulse duration is imposed since the group velocity of the driving pulse is less than c and the pulse slips behind the accelerated electrons. Hence for sufficiently short pulses the electrons outrun the pulse, terminating the acceleration. Limitations on the driver pulse duration and accelerating gradient, due to ionization and pulse lethargy, are estimated for the two ICA configurations. Maximum accelerating gradients and pulse durations are presented for a 10 μm, 1 mm, and 1 cm wavelength electromagnetic driver. The combination of ionization and pulse lethargy effects impose severe limitations on the maximum energy gain in inverse Cherenkov accelerators. copyright 1997 The American Physical Society

  10. What is Counter-Enlightenment?

    OpenAIRE

    Darrin M. McMahon

    2017-01-01

    This article counters recent suggestions that there was no such thing as a “Counter-Enlightenment” or “Counter-Enlightenments,” and that such terms ought thus to be abandoned.   While acknowledging inevitable difficulties with the terms, the article argues that there can be no doubting the reality.   European countries faced a variety of vehement and self-conscious movements that defined themselves precisely through their opposition to what they took to be the corrosive effects of the Enlight...

  11. New electronics for the Cherenkov Telescope Array (NECTAr)

    International Nuclear Information System (INIS)

    Naumann, C.L.; Delagnes, E.; Bolmont, J.; Corona, P.; Dzahini, D.; Feinstein, F.; Gascón, D.; Glicenstein, J.-F.; Guilloux, F.; Nayman, P.; Rarbi, F.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-01-01

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000–4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main

  12. New electronics for the Cherenkov Telescope Array (NECTAr)

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L., E-mail: christopher.naumann@lpnhe.in2p3.fr [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Bolmont, J.; Corona, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Dzahini, D. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona (Spain); Glicenstein, J.-F.; Guilloux, F. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Nayman, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Rarbi, F. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Sanuy, A. [ICC-UB, Universitat Barcelona (Spain); Tavernet, J.-P.; Toussenel, F.; Vincent, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Vorobiov, S. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); DESY Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)

    2012-12-11

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000-4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main

  13. New electronics for the Cherenkov Telescope Array (NECTAr)

    Science.gov (United States)

    Naumann, C. L.; Delagnes, E.; Bolmont, J.; Corona, P.; Dzahini, D.; Feinstein, F.; Gascón, D.; Glicenstein, J.-F.; Guilloux, F.; Nayman, P.; Rarbi, F.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000-4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main

  14. Detectors for particle radiation. 2. rev. ed.

    International Nuclear Information System (INIS)

    Kleinknecht, K.

    1987-01-01

    This book is a description of the set-up and mode of action of detectors for charged particles and gamma radiation for students of physics, as well as for experimental physicists and engineers in research and industry: Ionization chamber, proportional counter, semiconductor counter; proportional chamber, drift chamber, bubble chamber, spark chamber, photomultiplier, laser ionization, silicion strip detector; Cherenkov counter, transition radiation detector; electron-photon-cascade counter, hadron calorimeter; magnetic spectrometer; applications in nuclear medicine, geophysics, space travel, atom physics, nuclear physics, and high-energy physics. With 149 figs., 20 tabs [de

  15. Astronomía gamma con telescopios Cherenkov: hacia un observatorio astronómico abierto a la comunidad

    Science.gov (United States)

    Rovero, A. C.

    Gamma-ray astronomy is opening the way to a universe far more energetic than anyone could have imagined half a century ago. The understanding of the processes of nature which carry a large portion of the energy in the universe, has astrophysical and cosmological implications. The next gen- eration of Cherenkov telescopes, an order of magnitude more sensitive and with higher resolution than the current systems, will mean a significant step forward for ground-based gamma-ray astronomy. This paper presents the current status of this field as well as the next generation of telescopes in this energy range, which are being designed for the first international observa- tory open to the astronomical community. The Cherenkov Telescope Array project and the Argentine sites proposed for the southern observatory are described in this paper. FULL TEXT IN SPANISH

  16. A portable neutron coincidence counter

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, A.J.; Bowyer, S.M.; Craig, R.A.; Dudder, G.B.; Knopf, M.A.; Panisko, M.E.; Reeder, P.L.; Stromswold, D.C.; Sunberg, D.S.

    1996-11-01

    Pacific Northwest National Laboratory has designed and constructed a prototype portable neutron coincidence counter intended for use in a variety of applications, such as the verification and inspection of weapons components, safety measurements for novel and challenging situations, portable portal deployment to prevent the transportation of fissile materials, uranium enrichment measurements in hard-to-reach locations, waste assays for objects that cannot be measured by existing measurement systems, and decontamination and decommissioning. The counting system weighs less than 40 kg and is composed of parts each weighing no more than 5 kg. In addition, the counter`s design is sufficiently flexible to allow rapid, reliable assembly around containers of nearly arbitrary size and shape. The counter is able to discern the presence of 1 kg of weapons-grade plutonium within an ALR-8 (30-gal drum) in roughly 100 seconds and 10 g in roughly 1000 seconds. The counter`s electronics are also designed for maximum adaptability, allowing operation under a wide variety of circumstances, including exposure to gamma-ray fields of 1 R/h. This report provides a detailed review of the design and construction process. Finally, preliminary experimental measurements that confirm the performance capabilities of this counter are discussed. 6 refs., 18 figs., 3 tabs.

  17. Detection of Cherenkov radiation: the inverse problem to generation of nondiffracting beams

    Czech Academy of Sciences Publication Activity Database

    Miler, Miroslav; Pala, Jan

    2003-01-01

    Roč. 33, 2-3 (2003), s. 307-313 ISSN 0078-5466. [Polish-Czech-Slovak Optica l Conference on Wave and Quantum Aspects of Contemporary Optics PCS /13./. Krzyzowa, 09.09.2002-13.09.2002] R&D Projects: GA ČR GA102/01/0429 Institutional research plan: CEZ:AV0Z2067918 Keywords : Cherenkov radiation * holographic optica l elements * laser beams * diffraction Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.221, year: 2003

  18. Vavilov-Cherenkov and transition radiations on the dielectric and metallic spheres

    International Nuclear Information System (INIS)

    Afanasiev, G.N.; Kartavenko, V.G.; Stepanovsky, Yu.P.

    2003-01-01

    Closed expressions are obtained for angular and frequency radiation intensities produced by a charge moving inside the dielectric sphere S, with observations made outside S (in fact, this is a typical experimental situation when a charge moves in one medium while measurements are made in the other one). It is shown that the difference in media properties inside and outside S drastically affects angular and frequency distributions. Also, a charge motion is considered which begins and terminates in medium 2 and which passes either through the dielectric sphere filled with medium 1 or through the metallic one. The energy flux in medium 2 involves the Vavilov-Cherenkov, transition radiation and the one arising from the charge instantaneous beginning and termination of motion. The evaluated angular and frequency distributions for various charge velocities and medium properties inside and outside S show that the standard identification of the charge velocity by its radiation on the part of the charge trajectory where βn>1 is not always valid. We analyze also the frequently used interpretation of the transition radiation in terms of instantaneous charge deceleration in one medium and its sudden acceleration in another one, and find them as to be insufficient. On the other hand, attempts to interpret the transition radiation in terms of semi-infinite motions terminating in one medium and beginning in the other one turn out to be correct if one takes into account the terms corresponding to the Vavilov-Cherenkov radiation

  19. Application of Geiger-mode photosensors in Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gamal, Ahmed, E-mail: gamal.ahmed@assoc.oeaw.ac.a [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Al-Azhar University, Faculty of Science, Physics Department, Cairo (Egypt); Paul, Buehler; Michael, Cargnelli [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Roland, Hohler [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Johann, Marton [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Herbert, Orth [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Ken, Suzuki [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria)

    2011-05-21

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. We are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8x8 cells to increase the active photon detection area of an 8x8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  20. CEDAR counter (internal part)

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    Here on the mounting bench. The counter is a differential Cerenkov, corrected for chromaticity, able to differentiate pions from kaons up to 350 GeV. Counters of this type were used in all SPS hadron beams.

  1. Whole Body Counters (rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Woodburn, John H. [Walter Johnson High School, Rockville, MD; Lengemann, Frederick W. [Cornell University

    1967-01-01

    Whole body counters are radiation detecting and measuring instruments that provide information about the human body. This booklet describes different whole body counters, scientific principles that are applied to their design, and ways they are used.

  2. Residual heat estimation by using Cherenkov radiation in Tehran Research Reactor

    International Nuclear Information System (INIS)

    Arkani, M.; Gharib, M.

    2008-01-01

    An experiment is set up in Tehran 5 MW research reactor to observe Cherenkov radiation response during post-shutdown periods. An ordinary PC camera is used for this purpose. Theoretical estimation of the total power including decay heat and neutronic power is checked against detector response. A general agreement suggests that the same setup could equally serve as an independent channel for similar purposes in other reactors. This suggested that a similar setup based on present experience could be utilized in other reactors especially with the aim of fuel surveillance and monitoring.

  3. Residual heat estimation by using Cherenkov radiation in Tehran Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Arkani, M. [Department of Nuclear Engineering, Azad University, Tehran (Iran, Islamic Republic of); Gharib, M. [Tehran Research Reactor, Nuclear Science and Technology Research Institute (NSTRI), Tehran 14395-836 (Iran, Islamic Republic of)], E-mail: mgharib@aeoi.org.ir

    2008-11-11

    An experiment is set up in Tehran 5 MW research reactor to observe Cherenkov radiation response during post-shutdown periods. An ordinary PC camera is used for this purpose. Theoretical estimation of the total power including decay heat and neutronic power is checked against detector response. A general agreement suggests that the same setup could equally serve as an independent channel for similar purposes in other reactors. This suggested that a similar setup based on present experience could be utilized in other reactors especially with the aim of fuel surveillance and monitoring.

  4. On the possiblity of using vertically pointing Central Laser Facilities to calibrate the Cherenkov Telescope Array

    International Nuclear Information System (INIS)

    Gaug, Markus

    2014-01-01

    A Central Laser Facility is a system composed of a laser placed at a certain distance from a light-detector array, emitting fast light pulses, typically in the vertical direction, with the aim to calibrate that array. During calibration runs, all detectors are pointed towards the same portion of the laser beam at a given altitude. Central Laser Facilities are used for various currently operating ultra-high-energy cosmic ray and imaging atmospheric Cherenkov telescope arrays. In view of the future Cherenkov Telescope Array, a similar device could provide a fast calibration of the whole installation at different wavelengths. The relative precision (i.e. each individual telescope with respect to the rest of the array is expected) to be better than 5%, while an absolute calibration should reach a precisions of 6–11%, if certain design requirements are met. Additionally, a preciser monitoring of the sensitivity of each telescope can be made on time-scales of days to years

  5. Over-the-Counter Medicines

    Science.gov (United States)

    Over-the-counter (OTC) medicines are drugs you can buy without a prescription. Some OTC medicines relieve aches, pains and itches. ... medicine is safe enough to sell over-the-counter. Taking OTC medicines still has risks. Some interact ...

  6. Studies on a silicon-photomultiplier-based camera for Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Arcaro, C.; Corti, D.; De Angelis, A.; Doro, M.; Manea, C.; Mariotti, M.; Rando, R.; Reichardt, I.; Tescaro, D.

    2017-12-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) represent a class of instruments which are dedicated to the ground-based observation of cosmic VHE gamma ray emission based on the detection of the Cherenkov radiation produced in the interaction of gamma rays with the Earth atmosphere. One of the key elements of such instruments is a pixelized focal-plane camera consisting of photodetectors. To date, photomultiplier tubes (PMTs) have been the common choice given their high photon detection efficiency (PDE) and fast time response. Recently, silicon photomultipliers (SiPMs) are emerging as an alternative. This rapidly evolving technology has strong potential to become superior to that based on PMTs in terms of PDE, which would further improve the sensitivity of IACTs, and see a price reduction per square millimeter of detector area. We are working to develop a SiPM-based module for the focal-plane cameras of the MAGIC telescopes to probe this technology for IACTs with large focal plane cameras of an area of few square meters. We will describe the solutions we are exploring in order to balance a competitive performance with a minimal impact on the overall MAGIC camera design using ray tracing simulations. We further present a comparative study of the overall light throughput based on Monte Carlo simulations and considering the properties of the major hardware elements of an IACT.

  7. Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal.

    Science.gov (United States)

    Suizu, Koji; Shibuya, Takayuki; Uchida, Hirohisa; Kawase, Kodo

    2010-02-15

    Terahertz (THz) wave generation based on nonlinear frequency conversion is a promising method for realizing a tunable monochromatic high-power THz-wave source. Unfortunately, many nonlinear crystals have strong absorption in the THz frequency region. This limits efficient and widely tunable THz-wave generation. The Cherenkov phase-matching method is one of the most promising techniques for overcoming these problems. Here, we propose a prism-coupled Cherenkov phase-matching (PCC-PM) method, in which a prism with a suitable refractive index at THz frequencies is coupled to a nonlinear crystal. This has the following advantages. Many crystals can be used as THz-wave emitters; the phase-matching condition inside the crystal does not have to be observed; the absorption of the crystal does not prevent efficient generation of radiation; and pump sources with arbitrary wavelengths can be employed. Here we demonstrate PCC-PM THz-wave generation using the organic crystal 4-dimethylamino-N-metyl-4-stilbazolium tosylate (DAST) and a Si prism coupler. We obtain THz-wave radiation with tunability of approximately 0.1 to 10 THz and with no deep absorption features resulting from the absorption spectrum of the crystal. The obtained spectra did not depend on the pump wavelength in the range 1300 to 1450 nm. This simple technique shows promise for generating THz radiation using a wide variety of nonlinear crystals.

  8. In-vivo radiation counter

    International Nuclear Information System (INIS)

    Pollard, D.E.

    1983-01-01

    This patent specification describes a radiation counter utilizing at least one detector for sensing radiation from a living body. The radiation counter also includes an aperture for forming a corridor between the body and the detector. A shield outside the corridor prevents passage of background radiation through the corridor and gaining access to the detector. The counter also includes a device for isolating a selected portion of the body from the corridor such that radiation counting is restricted to a region of the body through a separate detector. The corridor formation permits a user to stand in an upright position while the detector and detectors are able to separately monitor different sections of the body. The radiation counter overcomes the problem of obtaining accurate and quick measurements or radiation doses sustained by a large group of persons. (author)

  9. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water.

    Science.gov (United States)

    Glaser, Adam K; Andreozzi, Jacqueline M; Zhang, Rongxiao; Pogue, Brian W; Gladstone, David J

    2015-07-01

    To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp-Davis-Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm(3) volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%-99% pass fraction depending on the chosen threshold dose. The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  10. A generalized ray-tracing procedure for an atmospheric Cherenkov imaging telescope and optical characteristics of the TACTIC light collector

    International Nuclear Information System (INIS)

    Tickoo, A.K.; Suthar, R.L.; Koul, R.; Sapru, M.L.; Kumar, N.; Kaul, C.L.; Yadav, K.K.; Thoudam, S.; Kaul, S.K.; Venugopal, K.; Kothari, M.; Goyal, H.C.; Chandra, P.; Dhar, V.K.; Rannot, R.C.; Koul, M.K.; Kaul, S.R.

    2005-01-01

    A generalized ray-tracing procedure has been developed, which facilitates the design of a multimirror-based light collector used in atmospheric Cherenkov telescopes. This procedure has been employed to study the optical characteristics of the 3.5 m diameter light collector of the TACTIC Imaging telescope. Comparison of the measured point-spread function of the light collector with the simulated performance of ideal Davies-Cotton and paraboloid designs has been made to determine an optimum arrangement of the 34 spherical mirror facets used in the telescope to obtain the best possible point-spread function. A description of the ray-tracing subroutine used for processing CORSIKA-generated Cherenkov data, required for carrying out Monte-Carlo simulation studies, is also discussed in the paper

  11. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; Everse, LA; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J.E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M-O.; Van Beuzekom, Martin; Bien, A.; Bifani, S.; Bird, T.D.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. H. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph; Chefdeville, M.; Chen, S.; Cheung, S-F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; CruzTorres, M.; Cunliffe, S.; Currie, C.R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; de Miranda, J. M.; Paula, L.E.; da-Silva, W.S.; De Simone, P.; Dean, C-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; ElRifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T. M.; Falabella, A.; Faerber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, Mark; Fontanelli, F.; Forty, R.; De Aguiar Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Torreira, A. Gallas; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Garofoli, J.; Tico, J. Garra; Garrido, L.; Gascon, D.; Carvalho-Gaspar, M.; Gauld, Rhorry; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T. J.; Ghez, Ph; Gianelle, A.; Giani, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.Q.; Gotti, C.; Gandara, M. Grabalosa; Diaz, R. Graciani; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, H.M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D. E.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M. H.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.M.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G. D.; Lai, A.; Lambert, D.M.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T. E.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, S.C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Maerki, R.; Marks, J.; Martellotti, G.; Martinelli-Boneschi, F.; Santos, D. Martinez; Martinez-Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; McSkelly, B.; Meadows, B. T.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mueller, J.; Mueller, Karl; Mueller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, E.A.; Owen, R.P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L.L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, D.A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Olloqui, E. Picatoste; Pietrzyk, B.; Pilar, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, M. E.; Price, J.D.; Prisciandaro, J.; Pritchard, C.A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, Y.W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M.; dos Reis, A. C.; Ricciardi, S.; Richards, Jennifer S; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, L.E.T.; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, van Hapere; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, R. H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; de Souza, D.K.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson-Moore, P.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M. N.; Todd, Jim; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, N.T.M.T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, M.J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, John; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M.P.; Williams, M.; Wilson, James F; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.J.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-01-01

    A search is performed for heavy long-lived charged particles using 3.0 fb(-1) of proton-proton collisions collected at √s = 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from

  12. Study on the optimization of the water Cherenkov detector array of the LHAASO project for surveying VHE gamma ray sources

    Science.gov (United States)

    Li, Hui-Cai; Chen, Ming-Jun; Jia, Huan-Yu; Gao, Bo; Wu, Han-Rong; Yao, Zhi-Guo; Yuo, Xiao-Hao; Zhou, Bin; Zhu, Feng-Rong

    2014-01-01

    It is prpopsed that a water Cherenkov detector array, LHAASO-WCDA, is to be built at Shangri-la, Yunnan Province, China. As one of the major components of the LHAASO project, the main purpose of it is to survey the northern sky for gamma ray sources in the energy range of 100 GeV-30 TeV. In order to design the water Cherenkov array efficiently to economize the budget, a Monte Carlo simulation is carried out. With the help of the simulation, the cost performance of different configurations of the array are obtained and compared with each other, serving as a guide for the more detailed design of the experiment in the next step.

  13. Study on the optimization of the water Cherenkov detector array of the LHAASO project for surveying VHE gamma ray sources

    International Nuclear Information System (INIS)

    Li Huicai; Chen Mingjun; Gao Bo; Wu Hanrong; Yao Zhiguo; Zhou Bin; Jia Huanyu; Zhu Fengrong; You Xiaohao

    2014-01-01

    It is proposed that a water Cherenkov detector array, LHAASO-WCDA, is to be built at Shangri-la, Yunnan Province, China. As one of the major components of the LHAASO project, the main purpose of it is to survey the northern sky for gamma ray sources in the energy range of 100 GeV-30 TeV. In order to design the water Cherenkov array efficiently to economize the budget, a Monte Carlo simulation is carried out. With the help of the simulation, the cost performance of different configurations of the array are obtained and compared with each other, serving as a guide for the more detailed design of the experiment in the next step. (authors)

  14. Small-signal analysis and particle-in-cell simulations of planar dielectric Cherenkov masers for use as high-frequency, moderate-power broadband amplifiers

    International Nuclear Information System (INIS)

    Carlsten, Bruce E.

    2002-01-01

    A small-signal gain analysis of the planar dielectric Cherenkov maser is presented. The analysis results in a Pierce gain solution, with three traveling-wave modes. The analysis shows that the dielectric Cherenkov maser has a remarkable broadband tuning ability near cutoff, while maintaining reasonable gain rates. Numerical simulations verifying the small-signal gain results are presented, using a particle-in-cell code adapted specifically for planar traveling-wave tubes. An instantaneous bandwidth is numerically shown to be very large, and saturated efficiency for a nominal high-power design is shown to be in the range of standard untapered traveling-wave tubes

  15. A Neutron Rem Counter

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Braun, J

    1964-01-15

    A neutron detector is described which measures the neutron dose rate in rem/h independently of the energy of the neutrons from thermal to 15 MeV. The detector consists of a BF{sub 3} proportional counter surrounded by a shield made of polyethylene and boron plastic that gives the appropriate amount of moderation and absorption to the impinging neutrons to obtain rem response. Two different versions have been developed. One model can utilize standard BF{sub 3} counters and is suitable for use in installed monitors around reactors and accelerators and the other model is specially designed for use in a portable survey instrument. The neutron rem counter for portable instruments has a sensitivity of 2.4 cps/mrem/h and is essentially nondirectional in response. With correct bias setting the counter is insensitive to gamma exposure up to 200 r/h from Co-60.

  16. Getting the traces (FADCs) of a water Cherenkov detector signal

    International Nuclear Information System (INIS)

    Ponce, E.; Salazar, H.; Martinez, O.; Moreno, E.

    2003-01-01

    In this work we present the electronics developed into a complete data acquisition system (DAS) for a water Cherenkov detector (WCD) in order to detect cosmic rays with energies from 1 x 1014 to 1 x 1016 eV. The components are: a high voltage source, a bleeder circuit for each photomultiplier, an electronic unit to amplify, compare, determine coincidence and sum the signals produced by the PMTs, a control circuit to digitalize and store the information corresponding to a valid event and finally an interface to a PC to record data for further analysis. The sampling rate of the system is 40 MHz

  17. Feasibility of a next generation underground water Cherenkov detector: UNO

    International Nuclear Information System (INIS)

    Jung, Chang Kee

    2000-01-01

    The feasibility of a next generation underground water Cherenkov detector is examined and a conceptual design (UNO) is presented. The design has a linear detector configuration with a total volume of 650 kton which is 13 times the total volume of the Super-Kamiokande detector. It corresponds to a 20 times increase in fiducial volume for physics analysis. The physics goals of UNO are to increase the sensitivity of the search for nucleon decay by a factor of ten and to make precision measurements of the solar and atmospheric neutrino properties. In addition, the detection sensitivity for supernova neutrinos will reach as far as the Andromeda galaxy

  18. Permanently calibrated interpolating time counter

    International Nuclear Information System (INIS)

    Jachna, Z; Szplet, R; Kwiatkowski, P; Różyc, K

    2015-01-01

    We propose a new architecture of an integrated time interval counter that provides its permanent calibration in the background. Time interval measurement and the calibration procedure are based on the use of a two-stage interpolation method and parallel processing of measurement and calibration data. The parallel processing is achieved by a doubling of two-stage interpolators in measurement channels of the counter, and by an appropriate extension of control logic. Such modification allows the updating of transfer characteristics of interpolators without the need to break a theoretically infinite measurement session. We describe the principle of permanent calibration, its implementation and influence on the quality of the counter. The precision of the presented counter is kept at a constant level (below 20 ps) despite significant changes in the ambient temperature (from −10 to 60 °C), which can cause a sevenfold decrease in the precision of the counter with a traditional calibration procedure. (paper)

  19. Information and Communications Technology (ICT) Infrastructure for the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, F.; Tacchini, A.; Leto, G.; Martinetti, E.; Bruno, P.; Bellassai, G.; Conforti, V.; Gallozzi, S.; Mastropietro, M.; Tanci, C.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground-based observatories for very high energy gamma-ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The Italian National Institute for Astrophysics (INAF) is developing the Cherenkov Small Size Telescope ASTRI SST- 2M end-to-end prototype telescope within the framework of the International Cherenkov Telescope Array (CTA) project. The ASTRI prototype has been installed at the INAF observing station located in Serra La Nave on Mt. Etna, Italy. Furthermore a mini-array, composed of nine of ASTRI telescopes, has been proposed to be installed at the Southern CTA site. Among the several different infrastructures belonging the ASTRI project, the Information and Communication Technology (ICT) equipment is dedicated to operations of computing and data storage, as well as the control of the entire telescope, and it is designed to achieve the maximum efficiency for all performance requirements. Thus a complete and stand-alone computer centre has been designed and implemented. The goal is to obtain optimal ICT equipment, with an adequate level of redundancy, that might be scaled up for the ASTRI mini-array, taking into account the necessary control, monitor and alarm system requirements. In this contribution we present the ICT equipment currently installed at the Serra La Nave observing station where the ASTRI SST-2M prototype will be operated. The computer centre and the control room are described with particular emphasis on the Local Area Network scheme, the computing and data storage system, and the

  20. Mass dependence of spectral and angular distributions of Cherenkov radiation from relativistic isotopes in solid radiators and its possible application as mass selector

    Science.gov (United States)

    Bogdanov, O. V.; Rozhkova, E. I.; Pivovarov, Yu. L.; Kuzminchuk-Feuerstein, N.

    2018-02-01

    The first proof of principle experiment with a prototype of a Time-of-Flight (TOF) - Cherenkov detector of relativistic heavy ions (RHI) exploiting a liquid Iodine Naphthalene radiator has been performed at Cave C at GSI (Darmstadt, Germany). A conceptual design for a liquid Cherenkov detector was proposed as a prototype for the future TOF measurements at the Super-FRS by detection of total number of Cherenkov photons. The ionization energy loss of RHI in a liquid radiator decreases only slightly this number, while in a solid radiator changes sufficiently not the total number of ChR photons, but ChR angular and spectral distributions. By means of computer simulations, we showed that these distributions are very sensitive to the isotope mass, due to different stopping powers of isotopes with initial equal relativistic factors. The results of simulations for light (Li, Be) and heavy (Xe) isotopes at 500-1000 MeV/u are presented indicating the possibility to use the isotopic effect in ChR of RHI as the mass selector.

  1. Portable microcomputer controlled radiation counter

    International Nuclear Information System (INIS)

    Mason, E.W.; Weber, J.M.

    1984-01-01

    A portable microcomputer controlled counter for use as a radiation counter is described. The counter uses digital processing of input pulses from a radiation detector. The number of counts received by the microcomputer per unit time is used to calculate a value for display using a calibration factor obtained during physical calibration of the instrument with a radiation source or with a pulse generator. The keyboard is used to enter calibration points. The number of calibration points which may be entered depends on the degree of accuracy desired by the user. The high voltage generator which drives the detector is triggered by pulses from the microcomputer in relation to the count rate. After processing the count, the resulting count rate or dose rate is displayed on the liquid crystal display. The counter is autoranging in which the decimal point is shifted as necessary by the microcomputer. The units displayed are determined by the user by means of a multiposition switch. Low battery and an overrange condition are displayed. An interface is provided via a connector to allow parallel transmission of data to peripheral devices. Low battery power consumption is featured. The counter is capable of providing more accurate readings than currently available counters

  2. The response of wavelength shifting panels in large water Cherenkov systems

    International Nuclear Information System (INIS)

    Bakich, A.M.; Peak, L.S.

    1986-01-01

    This paper describes a series of tests performed with a panel Bicron wavelength shifting acrylic plastic (BC-480) coupled to an EMI 9623B photomultiplier tube. The aim was to effectively increase the cathode coverage and its sensitivity to incident Cherenkov radiation, so that such a system could be employed in a solar neutrino detector. Measurements of the uniformity and effective efficiency of the system have been made and compared with the results of various simulation runs. The effects of side mirrors, back reflector, water interface and possible shaping of the panel to enhance its response are also assessed. (orig.)

  3. Aplanatic telescopes based on Schwarzschild optical configuration: from grazing incidence Wolter-like x-ray optics to Cherenkov two-mirror normal incidence telescopes

    Science.gov (United States)

    Sironi, Giorgia

    2017-09-01

    At the beginning of XX century Karl Schwarzschild defined a method to design large-field aplanatic telescopes based on the use of two aspheric mirrors. The approach was then refined by Couder (1926) who, in order to correct for the astigmatic aberration, introduced a curvature of the focal plane. By the way, the realization of normal-incidence telescopes implementing the Schwarzschild aplanatic configuration has been historically limited by the lack of technological solutions to manufacture and test aspheric mirrors. On the other hand, the Schwarzschild solution was recovered for the realization of coma-free X-ray grazing incidence optics. Wolter-like grazing incidence systems are indeed free of spherical aberration, but still suffer from coma and higher order aberrations degrading the imaging capability for off-axis sources. The application of the Schwarzschild's solution to X-ray optics allowed Wolter to define an optical system that exactly obeys the Abbe sine condition, eliminating coma completely. Therefore these systems are named Wolter-Schwarzschild telescopes and have been used to implement wide-field X-ray telescopes like the ROSAT WFC and the SOHO X-ray telescope. Starting from this approach, a new class of X-ray optical system was proposed by Burrows, Burg and Giacconi assuming polynomials numerically optimized to get a flat field of view response and applied by Conconi to the wide field x-ray telescope (WFXT) design. The Schwarzschild-Couder solution has been recently re-discovered for the application to normal-incidence Cherenkov telescopes, thanks to the suggestion by Vassiliev and collaborators. The Italian Institute for Astrophysics (INAF) realized the first Cherenkov telescope based on the polynomial variation of the Schwarzschild configuration (the so-called ASTRI telescope). Its optical qualification was successfully completed in 2016, demonstrating the suitability of the Schwarzschild-like configuration for the Cherenkov astronomy requirements

  4. What is Counter-Enlightenment?

    Directory of Open Access Journals (Sweden)

    Darrin M. McMahon

    2017-02-01

    Full Text Available This article counters recent suggestions that there was no such thing as a “Counter-Enlightenment” or “Counter-Enlightenments,” and that such terms ought thus to be abandoned.   While acknowledging inevitable difficulties with the terms, the article argues that there can be no doubting the reality.   European countries faced a variety of vehement and self-conscious movements that defined themselves precisely through their opposition to what they took to be the corrosive effects of the Enlightenment.  In the process, they defined the main terms of an enduring vision of the world that we now associate with the Right.

  5. BaYb2F8, a new radiation hard Cherenkov radiator for electromagnetic calorimeters

    International Nuclear Information System (INIS)

    Aseev, A.A.; Devitsin, E.G.; Komar, A.A.; Kozlov, V.A.; Hovsepyan, Yu.I.; Potashov, S.Yu.; Sokolovsky, K.A.; Uvarova, T.V.; Vasilchenko, V.G.

    1992-01-01

    Radiation hardness and optical properties of a new Cherenkov radiator, heavy fluoride BaYb 2 F 8 doped with various elements, have been studied. The above mentioned crystal has the density of 7 g/cm 3 , the radiation length is 1.28 cm and the Moliere radius 2.44 cm. High radiation hardness has been demonstrated for BaYb 2 F 8 doped with Tm, Pr, Tb. (orig.)

  6. Nuclear timer/counter

    International Nuclear Information System (INIS)

    Wuthayavanich, S.

    1978-01-01

    This thesis represents the development of a Timer/COUNTER compatible to the standard Nuclear Instrument Module Specifications. The unit exhibits high accuracy, light weight and ease of maintenance. The unit also has a built-in precision discriminator to discriminate unwanted signals that may cause interference in counting. With line frequency time base the timer can be preset in steps from 0.1 sec. to 9 x 10 5 min. The counter with six digits miniature display and an overflow output has a maximum counting rate of 10 MHz. The accumulated counting data can be transferred to a teletype or printer for hard copy printout with the aid of ORTEC 777 Line Printer or 432 A Print-out Control or any print out interface with input compatible to the print output of the Timer/Counter. Owing to its NIM compatibility the unit is directly powered by the NIM power supply

  7. Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    International Nuclear Information System (INIS)

    Cecchini, S.; D'Antone, I.; Degli Esposti, L.; Giacomelli, G.; Guerra, M.; Lax, I.; Mandrioli, G.; Parretta, A.; Sarno, A.; Schioppo, R.; Sorel, M.; Spurio, M.

    2000-01-01

    Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-cost semiconductor detectors as good candidates for their optical read-out. The aim of this paper is to evaluate the viability of solar panels for this purpose. The experimental framework resulting from measurements performed with suitably-designed solar cells and large conventional photovoltaic areas is presented. A discussion on the obtained and achievable sensitivities follows

  8. Gas Time-of-Flight Cherenkov Detector with Radiofrequency Phototube for FP420

    International Nuclear Information System (INIS)

    Margaryan, A.

    2011-01-01

    In this paper, the gas Cherenkov detector with radiofrequency phototube is considered as a fast-timing detector for FP420 project. The detector serves for precise Time-of-Flight measurements of forward going protons, capable of accurate vertex reconstruction and background rejection at high luminosities. The proposed technique is a high resolution (∼ 5 ps FWHM for a single proton), high rate (∼ MHz) and highly stable (less than 1 ps) timing technique capable to detect up to several tens events in a short (∼ 1 ns) time interval. (author)

  9. Large X Hadron Physics and Correlations with Central Region Phenomena

    CERN Multimedia

    2002-01-01

    The experiment uses a forward double-septum magnetic spectrometer with acceptance of @+~150~mrad to study the production of multiparticle systems. The system of mini-drift MWPC's has a processor which enables real-time selection of different multiplicities. The 32-cell Cherenkov counters along with the T.O.F. system allow the identification and separation of @p's, K's and p's over a large momentum range. A 3~m~x~3~m shower counter is installed to measure @p|0's and @g's traversing the spectrometer. \\\\ \\\\ A magnetic spectrometer installed at 90|0 measures identified single particles (T.O.F. and aerogel Cherenkov counters) and permits the measurement of flavour correlations with the forward spectrometer. Momentum selection of the 90|0 particles is incorporated in the trigger. .in +3 The experiment is data taking and studying such topics as 1) Production of @L^c|+ @A @L@p|+@p|+@p|- @A pK|-@p|+ 2) Glueball search in diffractive production of p @A pK|0^sK@+@p, pK|0^sK|0^s, p@L@L, etc... 3) p@*, pp comparison inclu...

  10. An Experiment on the Strong Interactions of Charged Hyperons

    CERN Multimedia

    2002-01-01

    The main goal of this experiment is to study @S*, @X* and @W* diffractive production in @X|-N collisions. Incident @X|- at a mean momentum of 118~GeV/c are tagged by a differential Cherenkov counter (DISC). The resonance decay products are analysed by a double stage magnetic spectrometer equipped with multiwire proportional chambers and drift chambers, a multicell Cherenkov counter and two complementary neutral particle detectors, a liquid argon calorimeter for @g and neutron detection and a lead glass bl wide angle @g rays. A multiplicity counter (M) and two hodoscopes of scintillators (H2 and H3) are used in the trigger. Hyperon radiative decays are also being studied with the same apparatus. The scattering target is taken out and appropriate trigger conditions are used. For the @S|+~@A~p@g decay mode, the polarity of the hyperon channel is reversed and the @S|+'s are identified by the DISC. For the @L~@A~n@g decay mode, @X|-~@A~@L@p|- decays occuring between the B and D chambers provide a source of @L's of...

  11. COMPASS mirror wall of RICH 1

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    The COMPASS experiment uses ring imaging Cherenkov (RICH) counters to identify particles produced in high-energy muon collisions, to better understand the spin structure of the nucleon. Charged particles moving faster than the speed of light in the medium through which they are travelling emit a cone of Cherenkov radiation in the direction of their motion. The light in this cone is reflected from these mirrors onto a photo detector so that the size of the cone can be measured, which gives the energy of the particle.

  12. The first CEDAR counter

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The first differential Cerenkov counter with chromatic corrections (called CEDAR) successfully tested at the PS in July 75. These counters were used in the SPS hadronic beams for particle identification. Some of the eight photomultipliers can be seen: they receive the light reflected back through the annular diaphragm. René Maleyran stands on the left.

  13. All-fiber femtosecond Cherenkov laser at visible wavelengths

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe Visbech

    2013-01-01

    -matching condition [1]. The resonant ultrafast wave conversion via the fiber-optic CR mechanism is instrumental for applications in biophotonics such as bio-imaging and microscopy [2]. In this work, we demonstrate a highly-stable all-fiber, fully monolithic CR system based on an Yb-fiber femtosecond laser, producing...... to be as low as -103 dBc/Hz. This is 2 orders of magnitudes lower noise as compared to spectrally-sliced supercontinuum, which is the current standard of ultrafast fiber-optic generation at visible wavelength. The layout of the laser system is shown in Fig. 1(a). The system consists of two parts: an all-fiber......Fiber-optic Cherenkov radiation (CR), also known as dispersive wave generation or non-solitonic radiation, is produced in small-core photonic crystal fibers (PCF) when a soliton perturbed by fiber higher-order dispersion co-propagates with a dispersive wave fulfilling a certain phase...

  14. Nonlineart theory of relativistic beam-plasma instabilities in the regime of the collective Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Bobylev, Yu. V. [L.N. Tolstoy Tula State Pedagogical University (Russian Federation); Kuzelev, M. V. [Moscow State University (Russian Federation); Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov Institute of General Physics (Russian Federation)

    2008-02-15

    A general mathematical model is proposed that is based on the Vlasov kinetic equation with a self-consistent field and describes the nonlinear dynamics of the electromagnetic instabilities of a relativistic electron beam in a spatially bounded plasma. Two limiting cases are analyzed, namely, high-frequency (HF) and low-frequency (LF) instabilities of a relativistic electron beam, of which the LF instability is a qualitatively new phenomenon in comparison with the known Cherenkov resonance effects. For instabilities in the regime of the collective Cherenkov effect, the equations containing cubic nonlinearities and describing the nonlinear saturation of the instabilities of a relativistic beam in a plasma are derived by using the methods of expansion in small perturbations of the trajectories and momenta of the beam electrons. Analytic expressions for the amplitudes of the interacting beam and plasma waves are obtained. The analytical results are shown to agree well with the exact solutions obtained numerically from the basic general mathematical model of the instabilities in question. The general mathematical model is also used to discuss the effects associated with variation in the constant component of the electron current in a beam-plasma system.

  15. SU-C-201-07: Towards Clinical Cherenkov Emission Dosimetry: Stopping Power-To-Cherenkov Power Ratios and Beam Quality Specification of Clinical Electron Beams

    International Nuclear Information System (INIS)

    Zlateva, Y; Seuntjens, J; El Naqa, I

    2016-01-01

    Purpose: We propose a Cherenkov emission (CE)-based reference dosimetry method, which in contrast to ionization chamber-based dosimetry, employs spectrum-averaged electron restricted mass collision stopping power-to-Cherenkov power ratios (SCRs), and we examine Monte Carlo-calculated SCRs and beam quality specification of clinical electron beams. Methods: The EGSnrc user code SPRRZnrc was modified to compute SCRs instead of stopping-power ratios (single medium: water; cut-off: CE threshold (observing Spencer-Attix conditions); CE power: Frank-Tamm). SCRs are calculated with BEAMnrc for realistic electron beams with nominal energies of 6–22 MeV from three Varian accelerators (TrueBeam Clinac 21EX, Clinac 2100C/D) and for mono-energetic beams of energies equal to the mean electron energy at the water surface. Sources of deviation between clinical and mono-energetic SCRs are analyzed quantitatively. A universal fit for the beam-quality index R_5_0 in terms of the depth of 50% CE C_5_0 is carried out. Results: SCRs at reference depth are overestimated by mono-energetic values by up to 0.2% for a 6-MeV beam and underestimated by up to 2.3% for a 22-MeV beam. The variation is mainly due to the clinical beam spectrum and photon contamination. Beam angular spread has a small effect across all depths and energies. The influence of the electron spectrum becomes increasingly significant at large depths, while at shallow depths and high beam energies photon contamination is predominant (up to 2.0%). The universal data fit reveals a strong linear correlation between R_5_0 and C_5_0 (ρ > 0.99999). Conclusion: CE is inherent to radiotherapy beams and can be detected outside the beam with available optical technologies, which makes it an ideal candidate for out-of-beam high-resolution 3D dosimetry. Successful clinical implementation of CE dosimetry hinges on the development of robust protocols for converting measured CE to radiation dose. Our findings constitute a key step

  16. Proportional counter end effects eliminator

    International Nuclear Information System (INIS)

    Meekins, J.F.

    1976-01-01

    An improved gas-filled proportional counter which includes a resistor network connected between the anode and cathode at the ends of the counter in order to eliminate ''end effects'' is described. 3 Claims, 2 Drawing Figures

  17. Fiber-Optic Monitoring System of Particle Counters

    Directory of Open Access Journals (Sweden)

    A. A. Titov

    2016-01-01

    Full Text Available The article considers development of a fiber-optic system to monitor the counters of particles. Presently, optical counters of particles, which are often arranged at considerable distance from each other, are used to study the saltation phenomenon. For monitoring the counters, can be used electric communication lines.However, it complicates and raises the price of system Therefore, we offered a fiber-optic system and the counter of particles, free from these shortcomings. The difference between the offered counter of particles and the known one is that the input of radiation to the counter and the output of radiation scattering on particles are made by the optical fibers, and direct radiation is entered the optical fiber rather than is delayed by a light trap and can be used for lighting the other counters thereby allowing to use their connection in series.The work involved a choice of the quartz multimode optical fiber for communication, defining the optical fiber and lenses parameters of the counter of particles, and a selection of the radiation source and the photo-detector.Using the theory of light diffraction on a particle, a measuring range of the particle sizes has been determined. The system speed has been estimated, and it has been shown that a range of communication can reach 200km.It should be noted that modulation noise of counters of particles connected in series have the impact on the useful signal. To assess the extent of this influence we have developed a calculation procedure to illustrate that with ten counters connected in series this influence on the signal-to-noise ratio will be insignificant.Thus, it has been shown that the offered fiber-optic system can be used for monitoring the counters of particles across the desertified territories. 

  18. Counter-Narratives and the Unrehearsed Stories Counter-Terrorists Unwittingly Produce

    Directory of Open Access Journals (Sweden)

    Beatrice de Graaf

    2010-11-01

    Full Text Available Governments produce both deliberate and involuntary (and less conscious narratives when countering terrorism. The thesis of this article is that such unintended messages can be much more powerful and consequential than is realized; in fact, they can completely contradict the intended official 'counter-narrative'. To substantiate this hypothesis, the author looks at the experience of the German Federal Republic in the 1970s and beyond when state and society were confronted with the Red Army Faction (RAF and similar left-wing "revolutionaries" like those of the 2nd of June Movement or the Red Zora.

  19. Plea and counter-plea

    International Nuclear Information System (INIS)

    1979-06-01

    The bulk of papers written during the hearing 'Plea and counter-plea', the so-called 'Gorleben hearing', which was held from 28th March until 3rd April 1979, comprises ca. 4,200 pages. It consists of the written comments put forward by the critics of nuclear energy, the minutes of the hearing as well as the supplementary statements of the counter-critics. This report is trying to confront those essential objections made by the critics which put in doubt the feasibility of a fuel-cycle centre with regard to safety engineering with the facts which are considered correct from the view of the DWK. The oral and written explanations of the counter-critics are particularly referred to in this debate. (orig./HP) [de

  20. Multiple channel programmable coincidence counter

    Science.gov (United States)

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  1. Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding.

    Science.gov (United States)

    Bakunov, M I; Mikhaylovskiy, R V; Bodrov, S B; Luk'yanchuk, B S

    2010-01-18

    We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.

  2. Application of machine learning techniques to lepton energy reconstruction in water Cherenkov detectors

    Science.gov (United States)

    Drakopoulou, E.; Cowan, G. A.; Needham, M. D.; Playfer, S.; Taani, M.

    2018-04-01

    The application of machine learning techniques to the reconstruction of lepton energies in water Cherenkov detectors is discussed and illustrated for TITUS, a proposed intermediate detector for the Hyper-Kamiokande experiment. It is found that applying these techniques leads to an improvement of more than 50% in the energy resolution for all lepton energies compared to an approach based upon lookup tables. Machine learning techniques can be easily applied to different detector configurations and the results are comparable to likelihood-function based techniques that are currently used.

  3. Crate counter for normal operating loss

    International Nuclear Information System (INIS)

    Harlan, R.A.

    A lithium-loaded zinc sulfide scintillation counter to closely assay plutonium in waste packaged in 1.3 by 1.3 by 2.13m crates was built. In addition to assays for normal operating loss accounting, the counter will allow safeguards verification immediately before shipment of the crates for burial. The counter should detect approximately 10 g of plutonium in 1000 kg of waste

  4. An introduction to automatic radioactive sample counters

    International Nuclear Information System (INIS)

    1980-01-01

    The subject is covered in chapters, entitled; the detection of radiation in sample counters; nucleonic equipment; liquid scintillation counting; basic features of automatic sample counters; statistics of counting; data analysis; purchase, installation, calibration and maintenance of automatic sample counters. (U.K.)

  5. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  6. On Tamm's problem in the Vavilov-Cherenkov radiation theory

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Kartavenko, V.G.; Stepanovskij, Yu.P.

    1999-01-01

    We analyze the well-known Tamm's problem treating the charge motion on a finite space interval with the velocity exceeding light velocity in medium. By comparing Tamm's approximate formulae with the exact ones we prove that the former do not properly describe Cherenkov radiation terms. We also investigate Tamm's formula cos θ T = 1/βn defining the position of the maximum of the field strengths in the Fourier representation. Numerical analysis of the Fourier components of field strengths shows that they have a well pronounced maximum at θ = θ T only for the charge motion on the sufficiently small interval. As an interval grows, many maxima appear. For the charge motion on an infinite interval there is infinite number of maxima of the same amplitude. The quantum analysis of Tamm's formula leads to the same results

  7. Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin

    2010-01-01

    -matching point is located in the absorption region of the crystal, effectively absorbing the generated dispersive wave. By calculating the phase-matching curves for typically used frequency conversion crystals, we point out that the mid-IR absorption in the crystal in many cases automatically will filter away....... The beating between the dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of a simple short-wave pass filter after the crystal can restore a clean soliton. On the other hand, bandpass filtering around the dispersive wave peak results in near......We show through theory and numerics that when few-cycle femtosecond solitons are generated through cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov radiation in the form of linear dispersive waves located in the red part of the spectrum...

  8. Analytical method for determining colour intensities based on Cherenkov radiation colour quenching

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Gomez, C; Lopez-Gonzalez, J deD; Ferro-Garcia, M A [Univ. of Granada, Granada (Spain). Faculty of Sciences, Dept. of Inorganic Chemistry. Radiochemistry Section; Consejo Superior de Investigaciones Cientificas, Granada (Spain). Dept. of Chemical Research Coordinated Centre)

    1983-01-01

    A study was made for determining color intensities using as luminous non-monochromatic source produced by the Cherenkov emission in the walls of a glass capillary which acts as luminous source itself inside the colored solution to be evaluated. The reproducibility of this method has been compared with the spectrophotometric assay; the relative errors of both analytical methods have been calculated for different concentrations of congo red solution in the range of minimal error, according to Ringbom's criterion. The sensitivity of this analytical method has been studied for the two ..beta..-emitters employed: /sup 90/Sr//sup 90/Y and /sup 204/Tl.

  9. Improvement of optical properties and radiation hardness of NaBi(WO sub 4) sub 2 Cherenkov crystals

    CERN Document Server

    Zadneprovski, B I; Polyansky, E V; Devitsin, E G; Kozlov, V A; Potashov, S Yu; Terkulov, A R

    2002-01-01

    On the basis of the data on melt evaporation while growing NaBi(WO sub 4) sub 2 Cherenkov crystals, the formation of nonstoichiometry and most probable types of dot defects of the crystals have been considered. The influence of melt nonstoichiometry and doping with Sc on optical transmission and radiation hardness of the crystals has been experimentally investigated. The surplus of WO sub 3 has been established to increase optical transmission and radiation hardness and lack of Bi sub 2 O sub 3 in the melt to reduce radiation hardness. Sc doping is shifting the absorption edge to UV region by 30-35 nm and is increasing radiation hardness of the crystals about three-fold. Analytical estimations give the increase of the number of Cherenkov photons by a factor of 1.3, which leads to an improvement of the energy resolution of a calorimeter based on NaBi(WO sub 4) sub 2 :Sc crystals compared with undoped NaBi(WO sub 4) sub 2 of approximately 15%.

  10. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: prototype technologies goals and strategies for the future SST

    Science.gov (United States)

    Marchiori, Gianpietro; Busatta, Andrea; Giacomel, Stefano; Folla, Ivan; Valsecchi, Marco; Canestrari, Rodolfo; Bonnoli, Giacomo; Cascone, Enrico; Conconi, Paolo; Fiorini, Mauro; Giro, Enrico; La Palombara, Nicola; Pareschi, Giovanni; Perri, Luca; Rodeghiero, Gabriele; Sironi, Giorgia; Stringhetti, Luca; Toso, Giorgio; Tosti, Gino; Pellicciari, Carlo

    2014-07-01

    The Cherenkov Telescope Array (CTA) observatory will represent the next generation of Imaging Atmospheric Cherenkov Telescope. Using a combination of large-, medium-, and small-scale telescopes (LST, MST, SST, respectively), it will explore the Very High Energy domain from a few tens of GeVup to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. In this framework, the Italian ASTRI program, led by the Italian National Institute of Astrophysics (INAF) developed a 4-meter class telescope, which will adopt an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild- Couder configuration. Within this program INAF assigned to the consortium between Galbiati Group and EIE Group the construction, assembly and tests activities of the prototype named ASTRI SST-2M. On the basis of the lesson learnt from the prototype, other telescopes will be produced, starting from a re-design phase, in order to optimize performances and the overall costs and production schedule for the CTA-SST telescope. This paper will firstly give an overview of the concept for the SST prototype mount structure. In this contest, the technologies adopted for the design, manufacturing and tests of the entire system will be presented. Moreover, a specific focus on the challenges of the prototype and the strategies associated with it will be provided, in order to outline the near future performance goals for this type of Cherenkov telescopes employed for Gamma ray science.

  11. The counter ion: expanding excipient functionality

    Directory of Open Access Journals (Sweden)

    Shireesh Apte

    2011-06-01

    Full Text Available Excipients have increasingly become 'enablers' of drug delivery and efficacy rather than passive bystanders. Advances in pharmaceutical technology have enabled the ability to deliver specific counter ions (in the form of the counter ion containing excipient and the API simultaneously to preselected targets in the body. This, coupled with a near universal mechanism of columbic interactions that determine the [API- counter ion] efficacy, can be harnessed to exploit this hitherto unavailable or unrecognized enabling mechanism. New excipients may be assembled by a near inexhaustible supply of different permutations of counter ions and their judicious use in specific situations could potentially drive a renaissance in excipient innovation (and drug delivery and efficacy despite regulatory stagnation.

  12. Counter-cryptanalysis

    NARCIS (Netherlands)

    M.M.J. Stevens (Marc); R. Canetti; J.A. Garay

    2013-01-01

    textabstractWe introduce \\emph{counter-cryptanalysis} as a new paradigm for strengthening weak cryptographic primitives against cryptanalytic attacks. Redesigning a weak primitive to more strongly resist cryptanalytic techniques will unavoidably break backwards compatibility. Instead,

  13. Over-the-counter codeine use in Iceland

    DEFF Research Database (Denmark)

    Almarsdóttir, A B; Grimsson, A

    2000-01-01

    BACKGROUND: The objective of this study was to test the assumption that liberalizing community pharmacy ownership in Iceland would lead to increased irrational use of over-the-counter pain relievers containing codeine. METHODS: Based on this assumption we built and tested a model using an interru......BACKGROUND: The objective of this study was to test the assumption that liberalizing community pharmacy ownership in Iceland would lead to increased irrational use of over-the-counter pain relievers containing codeine. METHODS: Based on this assumption we built and tested a model using...... an interrupted time series design that contrasts the monthly sales data for over-the-counter pain relievers containing codeine before and after the legislation took effect. RESULTS: The total use of over-the-counter pain relievers containing codeine as well as those containing paracetamol and codeine has risen...... leads to irrational use of over-the-counter medicines is not substantiated in the case of over-the-counter pain relievers containing codeine....

  14. Ideal response function of a 3He proportional counter to thermal neutrons determined by different length counters

    International Nuclear Information System (INIS)

    Takeda, Naoto; Kudo, Katsuhisa; Kobayashi, Katsuhei; Yoshimoto, Takaaki

    2000-01-01

    The relative gas multiplication along the cylindrical axis of three 3 He proportional counters with different length were measured by using a thermal neutron beam at the Kyoto University Reactor and an ideal response function by taking into account the difference of pulse height spectra were measured by different length counters. The three 3 He proportional counters (model type of P4-0806, P4-0806 and P4-0808 manufactured by Reuter-Stokes) prepared for relative gas multiplication measurements had identical structure having cylindrical outer shells of 304 stainless steel except for different sensitive lengths of 10 cm, 15 cm and 20 cm, respectively. All counters were filled with 400 kPa of 3 He gas and 200 kPa of Ar gas. The pulse height distributions were measured by moving the counter in the direction of it's cylindrical axis perpendicular to the thermal neutron beam. The measured pulse heights corresponding to the full energy peaks at various entrance points were normalized to that of the whole counter irradiation. The results as a function of the distance from the bottom edge of the stainless steel cylinder are shown. The total transition region of gas gain corresponded to about 23 %, 15 % and 10 % of each nominal sensitive region corresponding to shot, middle and long counters. The ideal pulse height spectrum (dots) obtained by using proportional counters of 10 cm and 20 cm in nominal sensitive length to thermal neutron beam is shown in the paper in comparison to simulated one which was calculated assuming the constant gain within the sensitive region and zero gas gain outside the sensitive regions. The simulation realized the ideal response function fairly well. (S.Y.)

  15. Hadron production at 0.8Mrad by 300GeV protons incident on a thick aluminium target

    International Nuclear Information System (INIS)

    Aubert, B.; Benvenuti, A.; Cline, D.; Coffin, T.; Diamond, R.; French, R.; Ford, W.T.; Imlay, R.; Koester, L.; Koizumi, G.; Ling, T.Y.; Mann, A.K.; Orr, R.; Reeder, D.D.; Roberts, T.; Rubbia, C.; Sard, R.; Stefanski, R.; Sulak, L.; White, H.

    1975-01-01

    The Fermilab muon beam was used as a double-bend spectrometer for measuring π +- , K +- , proton and antiproton hadronic production, Cherenkov counters being used for particle identification. Measurements were made at 0.8mrad with 300GeV protons hitting an aluminum target

  16. Electron Signal Detection for the Beam-Finder Wire of the Linac Coherent Light Source Undulator

    International Nuclear Information System (INIS)

    Wu, Juhao; Emma, P.; Field, R.C.; SLAC

    2006-01-01

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. The tight tolerances for positioning the electron beam close to the undulator axis calls for the introduction of Beam Finder Wire (BFW) device. A BFW device close to the upstream end of the undulator segment and a quadrupole close to the down stream end of the undulator segment will allow a beam-based undulator segment alignment. Based on the scattering of the electrons on the BFW, we can detect the electron signal in the main dump bends after the undulator to find the beam position. We propose to use a threshold Cherenkov counter for this purpose. According to the signal strength at such a Cherenkov counter, we then suggest choice of material and size for such a BFW device in the undulator

  17. Basic Research Needs for Countering Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, W.; Michalske, T.; Trewhella, J.; Makowski, L.; Swanson, B.; Colson, S.; Hazen, T.; Roberto, F.; Franz, D.; Resnick, G.; Jacobson, S.; Valdez, J.; Gourley, P.; Tadros, M.; Sigman, M.; Sailor, M.; Ramsey, M.; Smith, B.; Shea, K.; Hrbek, J.; Rodacy, P.; Tevault, D.; Edelstein, N.; Beitz, J.; Burns, C.; Choppin, G.; Clark, S.; Dietz, M.; Rogers, R.; Traina, S.; Baldwin, D.; Thurnauer, M.; Hall, G.; Newman, L.; Miller, D.; Kung, H.; Parkin, D.; Shuh, D.; Shaw, H.; Terminello, L.; Meisel, D.; Blake, D.; Buchanan, M.; Roberto, J.; Colson, S.; Carling, R.; Samara, G.; Sasaki, D.; Pianetta, P.; Faison, B.; Thomassen, D.; Fryberger, T.; Kiernan, G.; Kreisler, M.; Morgan, L.; Hicks, J.; Dehmer, J.; Kerr, L.; Smith, B.; Mays, J.; Clark, S.

    2002-03-01

    To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism.

  18. A fast photo-counter with multi-level buffers

    International Nuclear Information System (INIS)

    Peng Hu; Zhou Peiling; Yao Kun; Guo Guangcan

    1992-01-01

    Digital Photon Correlator (DPC) is composed of a Photo-counter and a data processing unit. The performance of Photo-counter in data acquisition system has a direct influence on data processing. The Photo-counter with fast carry designed here has multi-level buffers. Photon pulses can be correctly and dynamically recorded by the Photo-counter and processed by a single chip computer

  19. Challenges of arbitrary waveform signal detection by Silicon Photomultipliers as readout for Cherenkov fibre based beam loss monitoring systems

    CERN Document Server

    Vinogradov, Sergey; Nebot del Busto, Eduardo; Kastriotou, Maria; Welsch, Carsten P

    2016-01-01

    Silicon Photomultipliers (SiPMs) are well recognised as very competitive photodetectors due to their exceptional photon number and time resolution, room-temperature low-voltage operation, insensitivity to magnetic fields, compactness, and robustness. Detection of weak light pulses of nanosecond time scale appears to be the best area for SiPM applications because in this case most of the SiPM drawbacks have a rather limited effect on its performance. In contrast to the more typical scintillation and Cherenkov detection applications, which demand information on the number of photons and/or the arrival time of the light pulse only, beam loss monitoring (BLM) systems utilising Cherenkov fibres with photodetector readout have to precisely reconstruct the temporal profile of the light pulse. This is a rather challenging task for any photon detector especially taking into account the high dynamic range of incident signals (100K – 1M) from a few photons to a few percents of destructive losses in a beam line and pre...

  20. Counter-responses as organizers in adolescent analysis and therapy.

    Science.gov (United States)

    Richmond, M Barrie

    2004-01-01

    The author introduces Counter-response as a phenomological term to replace theory-burdened terms like counter-transference, counter-identification, and counter-resistance. He discusses the analyst's use of self (drawing on the comparison with Winnicott's use of the object) in processing the expectable destabilizing counter-reactions that occur in working therapeutically with disturbed adolescents and their parents. Further; he discusses the counter-reaction to the patient's narrative, acting-out, and how re-enactments can serve as an organizer for understanding the patient's inner life when the analyst formulates his/her counter-response. Emphasis is placed on the therapist forming his or her own narrative with the adolescent that takes into account the evoked counter-reaction. For this purpose, the author recommends the use of a combined counter-response and metaphor-orienting perspective to acknowledge and work with the denial, illusions, reversal of perspective, and catastrophic anxieties experienced with these adolescents. The counter-response perspective permits the emergence of the disturbed adolescent's novel narrative; however, since these experiences can be destabilizing or disruptive, the author also recommends the use of a personal metaphor to anticipate the reluctance to examining, processing, and formulating the analyst's dysphoric counter-reaction. With the use of the counter-response, the analyst's therapeutic ideal is to achieve a more optimal balance between using accepted narrative theories and exploring novel enactment experiences. His swimming metaphor stratagem is designed to keep the analyst in these difficult encounters.

  1. High-speed parallel counter

    International Nuclear Information System (INIS)

    Gus'kov, B.N.; Kalinnikov, V.A.; Krastev, V.R.; Maksimov, A.N.; Nikityuk, N.M.

    1985-01-01

    This paper describes a high-speed parallel counter that contains 31 inputs and 15 outputs and is implemented by integrated circuits of series 500. The counter is designed for fast sampling of events according to the number of particles that pass simultaneously through the hodoscopic plane of the detector. The minimum delay of the output signals relative to the input is 43 nsec. The duration of the output signals can be varied from 75 to 120 nsec

  2. The Micro Trench Gas Counter

    International Nuclear Information System (INIS)

    Schmitz, J.

    1991-07-01

    A novel design is presented for a gas avalanche chamber with micro-strip gas readout. While existing gaseous microstrip detectors (Micro-strip Gas Counters, Knife edge chambers) have a minimum anode pitch of the order of 100 μm, the pitch of the discussed Micro Trench Gas Counter goes down to 30-50 μm. This leads to a better position resolution and two track separation, and a higher radiation resistivity. Its efficiency and signal speed are expected to be the same as the Microstrip Gas Counter. The energy resolution of the device is expected to be equal to or better than 10 percent for the 55 Fe peak. Since the anode strip dimensions are larger than those in a MSGC, the device may be not as sensitive to discharges and mechanical damage. In this report production of the device is briefly described, and predictions on its operation are made based on electric field calculations and experience with the Microstrip Gas Counter. The authors restrict themselves to the application in High Energy Physics. (author). 10 refs.; 9 figs

  3. The 'miniskirt' counter array at CDF II

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Bellettini, G.

    2002-01-01

    Muon detection is fundamental to many of the interesting analyses at CDF II. For more efficient muon registration in Run II it was decided to increase geometrical coverage. The so-called 'miniskirt' counters are part of this upgrade. The original design parameters of the 'miniskirt' and mixed 'miniskirt' scintillation counters for the CDF Muon System are presented. The modifications, testing and installation of these counters within the CDF Upgrade Project are described in detail. The timing characteristics of mixed 'miniskirt' counters are also investigated using cosmic muons. The measurements show that the time resolution does not exceed 2.2 ns

  4. Light output optimization for the Cherenkov strips of the Barrel detector of FOPI

    Energy Technology Data Exchange (ETDEWEB)

    Petrovici, M; Gobbi, A; Hildenbrand, K D [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Kirejczyk, M; Sikora, B [Warsaw Univ. (Poland); Chelepov, V; Dulin, M; Frolov, S; Judentsov, A; Krylov, V; Nikitin, A; Smolyankin, V; Zhilin, A [Institute for Theoretical and Expermental Physics - ITEP, B. Chermushkinskaya ulitsa 25, RU-117 259 Moskva, (Russian Federation); Mgebrishvili, G; Vasiliev, M [I.V. Kurchatov Institute of Atomic Energy, Ulitsa Kurchatova 46, RU-123 182 Moskva, (Russian Federation)

    1994-12-31

    Available as short communication only. A systematic study on how to increase the number of the photoelectrons (PE) in the phototubes at the end of the bent light guides has been undertaken prior to the final assembly of the Cherenkov strips of the Barrel detector for the 4{pi} facility FOPI at GSI-Darmstadt. This was motivated by the observation that with the mass-produced strips only 0.8 PE were found for cosmic rays incident at the center of the 240 cm long strips, a value too low to ensure a decent detection of even {beta}=1 particles. The method used was based on a careful calibration of the amplitude spectra by means of measuring single-electron peaks in the attached tubes. As the consequence of these studies the wave-length shifter (amino G salt) concentration in the distilled water of strips was optimized and a cell of 1000 mm with a mirror on one side has been used. These changes brought a improvement factor of 9 in the number of PE at 85 cm distance from the light guide. This results led to the decision of changing the former design of the Cherenkov layer. In addition during production of these final modules it has been observed that variances between different strips in terms of the number of PE could be minimized by an outer polishing of the plexiglas cells. Finally, during mounting of the detectors the used phototubes were selected according to their performance in peak to valley ratio of the single electron peaks spectrum. (Author) 3 Figs., 2 Refs.

  5. Position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit uses a conventional (low-resistance, metal-wire anode) counter for spatial resolution of an ionizing event along the anode, which functions as an RC line. A pair of preamplifiers at the anode ends act as stabilized active-capacitance loads, each comprising a series-feedback, low-noise amplifier and a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction of handling of the anodes, and stabilizes the anode resistivity at high count rates (>10 6 counts/sec). (author)

  6. TORCH—a Cherenkov based time-of-flight detector

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, M.W.U. van, E-mail: m.vandijk@bristol.ac.uk [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Brook, N.H. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Castillo García, L. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Laboratory for High Energy Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Cowie, E.N.; Cussans, D. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); D' Ambrosio, C. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Fopma, J. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Forty, R.; Frei, C. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Gao, R. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Gys, T. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Harnew, N.; Keri, T. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Piedigrossi, D. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland)

    2014-12-01

    TORCH is an innovative high-precision time-of-flight system to provide particle identification in the difficult intermediate momentum region up to 10 GeV/c. It is also suitable for large-area applications. The detector provides a time-of-flight measurement from the imaging of Cherenkov photons emitted in a 1 cm thick quartz radiator. The photons propagate by total internal reflection to the edge of the quartz plate and are then focused onto an array of photon detectors at the periphery. A time-of-flight resolution of about 10–15 ps per incident charged particle needs to be achieved to allow a three sigma kaon-pion separation up to 10 GeV/c momentum for the TORCH located 9.5 m from the interaction point. Given ∼30 detected photons per incident charged particle, this requires measuring the time-of-arrival of individual photons to about 70 ps. This paper will describe the design of a TORCH prototype involving a number of ground-breaking and challenging techniques.

  7. Counter-diabatic driving for Dirac dynamics

    Science.gov (United States)

    Fan, Qi-Zhen; Cheng, Xiao-Hang; Chen, Xi

    2018-03-01

    In this paper, we investigate the fast quantum control of Dirac equation dynamics by counter-diabatic driving, sharing the concept of shortcut to adiabaticity. We systematically calculate the counter-diabatic terms in different Dirac systems, like graphene and trapped ions. Specially, the fast and robust population inversion processes are achieved in Dirac system, taking into account the quantum simulation with trapped ions. In addition, the population transfer between two bands can be suppressed by counter-diabatic driving in graphene system, which might have potential applications in opt-electric devices.

  8. Counter traction makes endoscopic submucosal dissection easier.

    Science.gov (United States)

    Oyama, Tsuneo

    2012-11-01

    Poor counter traction and poor field of vision make endoscopic submucosal dissection (ESD) difficult. Good counter traction allows dissections to be performed more quickly and safely. Position change, which utilizes gravity, is the simplest method to create a clear field of vision. It is useful especially for esophageal and colon ESD. The second easiest method is clip with line method. Counter traction made by clip with line accomplishes the creation of a clear field of vision and suitable counter traction thereby making ESD more efficient and safe. The author published this method in 2002. The name ESD was not established in those days; the name cutting endoscopic mucosal resection (EMR) or EMR with hook knife was used. The other traction methods such as external grasping forceps, internal traction, double channel scope, and double scopes method are introduced in this paper. A good strategy for creating counter traction makes ESD easier.

  9. Study of solar activity by measuring cosmic rays with a water Cherenkov detector

    International Nuclear Information System (INIS)

    Bahena Bias, Angelica; Villasenor, Luis

    2011-01-01

    We report on an indirect study of solar activity by using the Forbush effect which consists on the anti-correlation between the intensity of solar activity and the intensity of secondary cosmic radiation detected at ground level at the Earth. We have used a cylindrical water Cherenkov detector to measure the rate of arrival of secondary cosmic rays in Morelia Mich., Mexico, at 1950 m.a.s.l. We describe the analysis required to unfold the effect of atmospheric pressure and the search for Forbush decreases in our data, the latter correspond to more than one year of continuous data collection.

  10. Simulated gamma-ray pulse profile of the Crab pulsar with the Cherenkov Telescope Array

    Science.gov (United States)

    Burtovoi, A.; Zampieri, L.

    2016-07-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 h). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes. CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.

  11. An efficient anticoincidence counter

    CERN Multimedia

    1977-01-01

    This scintillation counter (about 25 cm diameter) was prepared at CERN for an experiment at the Saclay 600 MeV electron linac studying molecular processes originated in liquid hydrogen by muons. The counter is meant to surround the target and detect charged particles emerging from the hydrogen. The experiment was a CERN-Saclay collaboration which used the linac so as to take advantage of the time structure of the electron beam(see CERN Courier Sep 1977 and J. Bardin et al. Phys. Lett. B104 (1981) 320)

  12. Prospects for Gamma-Ray Burst detection by the Cherenkov Telescope Array

    Directory of Open Access Journals (Sweden)

    Bissaldi E.

    2017-01-01

    Full Text Available The Large Area Telescope (LAT on the Fermi satellite is expected to publish a catalogue with more than 100 Gamma-Ray Bursts (GRBs detected above 100 MeV thanks to a new detection algorithm and a new event reconstruction. This work aims at revising the prospects for GRB alerts with the Cherenkov Telescope Array (CTA based on the new LAT results. We start considering the simulation of the observations with the full CTA of two extremely bright events, the long GRB 130427A and the short GRB 090510, then we investigate how these GRBs would be observed by a particular configuration of the array with the telescopes pointing to different directions in what is called the “coupled divergent mode”.

  13. Modular focusing ring imaging Cherenkov detector for electron-ion collider experiments

    Science.gov (United States)

    Wong, C. P.; Alfred, M.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Barion, L.; Bennett, J.; Brooks, W.; Butler, C.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Del Dotto, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Elder, T.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; Haseler, T. O. S.; He, X.; van Hecke, H.; Horn, T.; Hruschka, A.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarajlic, O.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stien, H. D.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A. C.; Toh, J.; Towell, C. L.; Towell, R. S.; Tsang, T.; Turisini, M.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.

    2017-11-01

    A powerful new electron-ioncollider (EIC) has been recommended in the 2015 Long Range Plan for Nuclear Science for probing the partonic structure inside nucleons and nuclei with unprecedented precision and versatility [1]. EIC detectors are currently under development [2], all of which require hadron identification over a broad kinematic range. A prototype ring imaging Cherenkov detector has been developed for hadron identification in the momentum range from 3 GeV/c to 10 GeV/c. The key feature of this new detector is a compact and modular design, achieved by using aerogel as radiator and a Fresnel lens for ring focusing. In this paper, the results from a beam test of a prototype device at Fermilab are reported.

  14. COUNTER-PUNISHMENT, COMMUNICATION AND COOPERATION AMONG PARTNERS

    Directory of Open Access Journals (Sweden)

    Giulia eAndrighetto

    2016-04-01

    Full Text Available We study how communication affects cooperation in an experimental public goods environment with punishment and counter-punishment opportunities. Participants interacted over thirty rounds in fixed groups with fixed identifiers that allowed them to trace other group members’ behavior over time. The two dimensions of communication we study are asking for a specific contribution level and having to express oneself when choosing to counter-punish. We conduct four experimental treatments, all involving a contribution stage, a punishment stage and a counter-punishment stage in each round. In the first treatment communication is not possible at any of the stages. The second treatment allows participants to ask for a contribution level at the punishment stage and in the third treatment participants are required to send a message if they decide to counter-punishment. The fourth combines the two communication channels of the second and third treatments. We find that the three treatments involving communication at any of the two relevant stages lead to significantly higher contributions than the baseline treatment. We find no difference between the three treatments with communication. We also relate our results to previous results from treatments without counter-punishment opportunities and do not find that the presence of counter-punishment leads to lower cooperation level. The overall pattern of results shows that given fixed identifiers the key factor is the presence of communication. Whenever communication is possible contributions and earnings are higher than when it is not, regardless of counter-punishment opportunities.

  15. Consumer Preferences for High Welfare Meat in Germany: Self-service Counter or Service Counter?

    Directory of Open Access Journals (Sweden)

    Ramona Weinrich

    2015-01-01

    Full Text Available Many people view animal welfare standards in the agricultural industry as critical and some consumers would prefer to buy high welfare meat. In order to successfully introduce high welfare meat products onto the market, some important marketing decisions must be made. Due to limited shelf space in retail outlets, niche products like high welfare meat cannot be placed both at the self-service counter and at the service counter. In order to analyze where to place it best an online survey of 642 German consumers was conducted. By means of factor and cluster analyses, consumers’ animal welfare attitudes and their preference for a point of purchase were combined. The different target groups were joint using cross tabulation analysis. The results reveal that consumers in the target group show a more positive attitude to the service counter.

  16. Pattern recognition trigger electronics for an imaging atmospheric Cherenkov telescope

    International Nuclear Information System (INIS)

    Bradbury, S.M.; Rose, H.J.

    2002-01-01

    For imaging atmospheric Cherenkov telescopes, which aim to detect electromagnetic air showers with cameras consisting of several hundred photomultiplier pixels, the single pixel trigger rate is dominated by fluctuations in night sky brightness and by ion feedback in the photomultipliers. Pattern recognition trigger electronics may be used to reject night sky background images, thus reducing the data rate to a manageable level. The trigger system described here detects patterns of 2, 3 or 4 adjacent pixel signals within a 331 pixel camera and gives a positive trigger decision in 65 ns. The candidate pixel pattern is compared with the contents of a pre-programmed memory. With the trigger decision timing controlled by a fixed delay the time-jitter inherent in the use of programmable gate arrays is avoided. This system is now in routine operation at the Whipple 10 m Telescope

  17. 21 CFR 866.2170 - Automated colony counter.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2170 Automated colony counter. (a) Identification. An automated colony counter is a mechanical device intended for medical...

  18. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    International Nuclear Information System (INIS)

    Seitz, B

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  19. Development of photocathodes for gas counters

    International Nuclear Information System (INIS)

    Chalot, J.F.

    1982-03-01

    A lot of ways of physics needs the development of high sensibility imaging devices with large sensitive surface. The problems brought by the building of such devices may be solved by the use of gaz counters. But we must sensitize these counters to low energy photons ( [fr

  20. Cherenkov radiation effects on counting efficiency in extremely quenched liquid scintillation samples

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.; Rodriguez Barquero, L.

    1993-01-01

    The CIEMAT/NIST tracer method has successfully standardized nuclides with diverse quench values and decay schemes in liquid scintillation counting. However, the counting efficiency is computed inaccurately for extremely quenched samples. This article shows that when samples are extremely quenched, the counting efficiency in high-energy beta-ray nuclides depends principally on the Cherenkov effect. A new technique is described for quench determination, which makes the measurement of counting efficiency possible when scintillation counting approaches zero. A new efficiency computation model for pure beta-ray nuclides is also described. The results of the model are tested experimentally for 89 Sr, 90 Y, 36 Cl and 204 Tl nuclides with independence of the quench level. (orig.)

  1. Geometric covers, graph orientations, counter games

    DEFF Research Database (Denmark)

    Berglin, Edvin

    -directed graph is dynamic (can be altered by some outside actor), some orientations may need to be reversed in order to maintain the low out-degree. We present a new algorithm that is simpler than earlier work, yet matches or outperforms the efficiency of these results with very few exceptions. Counter games...... example is Line Cover, also known as Point-Line Cover, where a set of points in a geometric space are to be covered by placing a restricted number of lines. We present new FPT algorithms for the sub-family Curve Cover (which includes Line Cover), as well as for Hyperplane Cover restricted to R 3 (i...... are a type of abstract game played over a set of counters holding values, and these values may be moved between counters according to some set of rules. Typically they are played between two players: the adversary who tries to concentrate the greatest value possible in a single counter, and the benevolent...

  2. 21 CFR 866.2180 - Manual colony counter.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2180 Manual colony counter. (a) Identification. A manual colony counter is a device intended for medical purposes that consists...

  3. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H

    2015-09-23

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  4. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H; Mitsudharmadi, Hatsari; Budiman, A C; Hasheminejad, S M; Nadesan, T; Tandiono; Low, H T; Lee, T S

    2015-01-01

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  5. NECTAr0, a new high speed digitizer ASIC for the Cherenkov telescope array

    International Nuclear Information System (INIS)

    Delagnes, E.; Glicenstein, J.F.; Guilloux, F.; Bolmont, J.; Corona, P.; Naumann, C.L.; Nayman, P.; Tavemet, J.P.; Toussenel, F.; Vincent, P.; Dzahini, D.; Rarbi, F.; Feinstein, F.; Vorobiov, S.; Gascon, D.; Sanuy, A.

    2011-01-01

    H.E.S.S. and MAGIC experiments have demonstrated the high level of maturity of Imaging Atmospheric Cherenkov Telescopes (IACTs) dedicated to very-high-energy gamma ray astronomy domain. The astro-particle physics community is preparing the next generation of instruments, with sensitivity improved by an order of magnitude in the 10 GeV to 100 TeV range. To reach this goal, the Cherenkov Telescope Array (CTA) will consist in an array of 50-100 dishes of various sizes and various spacing, each equipped with a camera, made of few thousands fast photo-detectors and its associated front-end electronics. The total number of electronics channels will be larger than 100,000 to be compared to the total of 6,000 channels of the 5-telescopes H.E.S.S.-I H.E.S.S.-II array. To decrease the overall CTA cost, a consequent effort should be done to lower the cost of the electronics while keeping performance at least as good as the one demonstrated on the current experiments and simplifying its maintenance. This will be allowed by mass production, use of standardized modules and integration of front-end functions in ASICs. The 3-year NECTAr program started in 2009 addresses these two topics. Its final aim is to develop and test a demonstrator module of a generic CTA camera. The paper is mainly focused on one of the main components of this module, the NECTAr ASIC which samples the photo-detector signal in a circular analog memory at several GSPS and digitizes it over 12 bits after having received an external trigger. (authors)

  6. Counter Traction Makes Endoscopic Submucosal Dissection Easier

    OpenAIRE

    Oyama, Tsuneo

    2012-01-01

    Poor counter traction and poor field of vision make endoscopic submucosal dissection (ESD) difficult. Good counter traction allows dissections to be performed more quickly and safely. Position change, which utilizes gravity, is the simplest method to create a clear field of vision. It is useful especially for esophageal and colon ESD. The second easiest method is clip with line method. Counter traction made by clip with line accomplishes the creation of a clear field of vision and suitable co...

  7. Israel's Counter-Terrorism Strategy and its Effectiveness

    National Research Council Canada - National Science Library

    Smith, Jerry D

    2005-01-01

    This thesis analyzes Israeli counter-terrorism strategy and its effectiveness. Because of ongoing suicide attacks from Palestinian and other terrorist organizations, Israel will continue to have an aggressive counter-terrorism strategy...

  8. The possibilities of constructing a very big Cherenkov detector with usage of a light spectrum shifters

    International Nuclear Information System (INIS)

    Akimov, Yu.K.

    1980-01-01

    A version of Cherenkov detector (V approximately 10 4 tonns) for nuclear instability searches and for neutrino investigations is suggested. The detector has a 4π-anticoincidence screen and is characterized by a relatively uniform sensitivity at a moderate number of photomultipliers. For light collecting the wavelength shifters are used which absorb blue light and reemit it in the green light. Wavelength shifters provide almost a one-order increase of light collecting. Detector possibilities are discussed [ru

  9. WIMP search and a Cherenkov detector prototype for ILC polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Christoph

    2011-10-15

    The planned International Linear Collider (ILC) will be an essential experiment to precisely determine the properties and structure of physics at the TeV scale. An important feature of the ILC is the possibility to use polarized electrons and positrons. In part 1 of this thesis, a model independent search for Weakly Interacting Massive Particles (WIMPs) at ILC is presented. The signal channel under study is direct WIMP pair production with associated Initial State Radiation (ISR), e{sup +}e{sup -} {yields} {chi}{chi}{gamma}, where the WIMPs leave the detector without any further interaction, and only the emitted photon is detected. From the energy spectrum of the detected photons the coupling structure, cross sections, masses and the quantum number of the dominant partial wave in the production process can be inferred. The analysis includes the dominant SM, as well as machine-induced backgrounds, and is performed using a full simulation of the ILD detector concept. For an integrated luminosity of L=500 fb{sup -1}, the signal cross sections can be measured to a precision of 3%, dominated by systematic uncertainties on the polarization measurement of the initial electrons and positrons. Masses can be measured to a precision of up to 2% by a comparison of the data photon spectrum to parametrized template spectra. In part 2 of this thesis, a Cherenkov detector prototype for Compton polarimetry at ILC is presented. For the polarization measurement a systematic uncertainty of {delta} P/P = 0.25% or better is envisioned. To achieve this goal, the Cherenkov detector has to be precisely aligned with the fan of Compton scattered electrons and its signal response needs to be highly linear. For the detector prototype data driven alignment strategies have been developed by comparing data recorded at the Elsa accelerator in Bonn, Germany, with detailed Geant4 simulations. With the use of multi-anode photomultipliers, data driven alignment strategies promise to provide the

  10. WIMP search and a Cherenkov detector prototype for ILC polarimetry

    International Nuclear Information System (INIS)

    Bartels, Christoph

    2011-10-01

    The planned International Linear Collider (ILC) will be an essential experiment to precisely determine the properties and structure of physics at the TeV scale. An important feature of the ILC is the possibility to use polarized electrons and positrons. In part 1 of this thesis, a model independent search for Weakly Interacting Massive Particles (WIMPs) at ILC is presented. The signal channel under study is direct WIMP pair production with associated Initial State Radiation (ISR), e + e - → χχγ, where the WIMPs leave the detector without any further interaction, and only the emitted photon is detected. From the energy spectrum of the detected photons the coupling structure, cross sections, masses and the quantum number of the dominant partial wave in the production process can be inferred. The analysis includes the dominant SM, as well as machine-induced backgrounds, and is performed using a full simulation of the ILD detector concept. For an integrated luminosity of L=500 fb -1 , the signal cross sections can be measured to a precision of 3%, dominated by systematic uncertainties on the polarization measurement of the initial electrons and positrons. Masses can be measured to a precision of up to 2% by a comparison of the data photon spectrum to parametrized template spectra. In part 2 of this thesis, a Cherenkov detector prototype for Compton polarimetry at ILC is presented. For the polarization measurement a systematic uncertainty of δ P/P = 0.25% or better is envisioned. To achieve this goal, the Cherenkov detector has to be precisely aligned with the fan of Compton scattered electrons and its signal response needs to be highly linear. For the detector prototype data driven alignment strategies have been developed by comparing data recorded at the Elsa accelerator in Bonn, Germany, with detailed Geant4 simulations. With the use of multi-anode photomultipliers, data driven alignment strategies promise to provide the required precision. At ILC, these

  11. Position sensitive proportional counters as focal plane detectors

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1979-01-01

    The rise time and charge division techniques for position decoding with RC-line proportional counters are reviewed. The advantages that these detectors offer as focal plane counters for nuclear spectroscopy performed with magnetic spectrographs are discussed. The theory of operation of proportional counters as position sensing devices is summarized, as well as practical aspects affecting their application. Factors limiting the position and energy resolutions obtainable with a focal plane proportional counter are evaluated and measured position and energy loss values are presented for comparison. Detector systems capable of the multiparameter measurements required for particle identification, background suppression and ray-tracing are described in order to illustrate the wide applicability of proportional counters within complex focal plane systems. Examples of the use of these counters other than with magnetic spectrographs are given in order to demonstrate their usefulness in not only nuclear physics but also in fields such as solid state physics, biology, and medicine. The influence of the new focal plane detector systems on future magnetic spectrograph designs is discussed. (Auth.)

  12. Modeling of inverse Cherenkov laser acceleration with axicon laser-beam focusing

    International Nuclear Information System (INIS)

    Romea, R.D.; Kimura, W.D.

    1990-01-01

    Acceleration of free electrons by the inverse Cherenkov effect using radially polarized laser light focused through an axicon [J. P. Fontana and R. H. Pantell, J. Appl. Phys. 54, 4285 (1983)] has been studied utilizing a Monte Carlo computer simulation and further theoretical analysis. The model includes effects, such as scattering of the electrons by the gas, and diffraction and interference effects of the axicon laser beam, that were not included in the original analysis of Fontana and Pantell. Its accuracy is validated using available experimental data. The model results show that effective acceleration is possible even with the effects of scattering. Sample results are given. The analysis includes examining the issues of axicon focusing, phase errors, energy gain, phase slippage, focusing of the e beam, and emittance growth

  13. Channel coincidence counter: version 1

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1980-06-01

    A thermal neutron coincidence counter has been designed for the assay of fast critical assembly fuel drawers and plutonium-bearing fuel rods. The principal feature of the detector is a 7-cm by 7-cm by 97-cm detector channel, which provides a uniform neutron detection efficiency of 16% along the central 40 cm of the channel. The electronics system is identical to that used for the High-Level Neutron Coincidence Counter

  14. Strange meson spectroscopy in K[omega] and K[phi] at 11 GeV/c and Cherenkov ring imaging at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Youngjoon.

    1993-01-01

    This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part 1: The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e[sup +]e[sup [minus

  15. FACT - Status and experience from five years of operation of the first G-APD Cherenkov Telescope

    Science.gov (United States)

    Neise, D.; Adam, J.; Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Brügge, K. A.; Buss, J.; Dmytriiev, A.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Linhoff, L.; Mannheim, K.; Müller, S.; Neronov, A.; Nöthe, M.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Walter, R.

    2017-12-01

    The First G-APD Cherenkov Telescope (FACT) demonstrates the usability of novel Geiger-mode operated Avalanche Photo Diodes (G-APD, often called SiPM) for Imaging Atmospheric Cherenkov Telescopes (IACT). The camera consists of 1440 pixels with dedicated electronics operating at 2 Giga samples per second. It is installed on the refurbished HEGRA telescope with a mirror area of ≈ 9.5m2 on the Canary Island La Palma. FACT is taking data almost every night since the camera was installed in October 2011. It was possible to improve the data taking efficiency to very high values due to the very stable and reliable operation. This also allows to operate FACT remotely without any need for operators on site. Even remote human intervention became less and less frequent over the years, allowing operation to become mostly automatic. FACT is monitoring the long-term behavior of some very-high energy variable extra-galactic sources with unparalleled sampling density as well as testing the behavior of the sensors under severe weather conditions. Due to the long exposure of FACT's G-APDs under strong moonlight conditions it was possible to evaluate the aging effects of G-APDs due to collected charge. No indication of aging was found. No external calibration device is needed to operate FACT since the properties of the sensors themselves allow for a high precision self-calibration of the camera.

  16. Efficiency calibration of solid track spark auto counter

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Liu Rong; Jiang Li; Lu Xinxin; Zhu Tonghua

    2008-01-01

    The factors influencing detection efficiency of solid track spark auto counter were analyzed, and the best etch condition and parameters of charge were also reconfirmed. With small plate fission ionization chamber, the efficiency of solid track spark auto counter at various experiment assemblies was re-calibrated. The efficiency of solid track spark auto counter at various experimental conditions was obtained. (authors)

  17. Generalization of the development of liquid-sparkling counter

    International Nuclear Information System (INIS)

    Bian Zhengzhu; Zhang Jue; Zhang Jinwei

    2006-01-01

    This paper includes five parts. It not only reviews the development history of liquid-sparkling counter but refers that the appearance of coincident circuit is its milestone. The paper summarizes the resembled hard ware and soft ware and soft ware of liquid-sparkling counter of indoor and overseas, and prospects the development of liquid-sparkling counter in our country. (authors)

  18. Calibration of proportional counters in microdosimetry

    International Nuclear Information System (INIS)

    Varma, M.N.

    1982-01-01

    Many microdosimetric spectra for low LET as well as high LET radiations are measured using commercially available (similar to EG and G) Rossi proportional counters. This paper discusses the corrections to be applied to data when calibration of the counter is made using one type of radiation, and then the counter is used in a different radiation field. The principal correction factor is due to differences in W-value of the radiation used for calibration and the radiation for which microdosimetric measurements are made. Both propane and methane base tissue-equivalent (TE) gases are used in these counters. When calibrating the detectors, it is important to use the correct stopping power value for that gas. Deviations in y-bar/sub F/ and y-bar/sub D/ are calculated for 60 Co using different extrapolation procedures from 0.15 keV/μm to zero event size. These deviations can be as large as 30%. Advantages of reporting microdosimetric parameters such as y-bar/sub F/ and y-bar/sub D/ above a certain minimum cut-off are discussed

  19. Evaluation of the optical cross talk level in the SiPMs adopted in ASTRI SST-2M Cherenkov Camera using EASIROC front-end electronics

    International Nuclear Information System (INIS)

    Impiombato, D; Giarrusso, S; Mineo, T; Agnetta, G; Biondo, B; Catalano, O; Gargano, C; Rosa, G La; Russo, F; Sottile, G; Belluso, M; Billotta, S; Bonanno, G; Garozzo, S; Marano, D; Romeo, G

    2014-01-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana), is a flagship project of the Italian Ministry of Education, University and Research whose main goal is the design and construction of an end-to-end prototype of the Small Size of Telescopes of the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, will adopt a wide field dual mirror optical system in a Schwarzschild-Couder configuration to explore the VHE range of the electromagnetic spectrum. The camera at the focal plane is based on Silicon Photo-Multipliers detectors which is an innovative solution for the detection astronomical Cherenkov light. This contribution reports some preliminary results on the evaluation of the optical cross talk level among the SiPM pixels foreseen for the ASTRI SST-2M camera

  20. Mixed optical Cherenkov–Bremsstrahlung radiation in vicinity of the Cherenkov cone from relativistic heavy ions: Unusual dependence of the angular distribution width on the radiator thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkova, E.I., E-mail: elenafiks@gmail.com; Pivovarov, Yu.L.

    2016-07-15

    The Cherenkov radiation (ChR) angular distribution is usually described by the Tamm–Frank (TF) theory, which assumes that relativistic charged particle moves uniformly and rectilinearly in the optically transparent radiator. According to the TF theory, the full width at half maximum (FWHM) of the ChR angular distribution inversely depends on the radiator thickness. In the case of relativistic heavy ions (RHI) a slowing-down in the radiator may sufficiently change the angular distribution of optical radiation in vicinity of the Cherenkov cone, since there appears a mixed ChR–Bremsstrahlung radiation. As a result, there occurs a drastic transformation of the FWHM of optical radiation angular distribution in dependence on the radiator thickness: from inversely proportional (TF theory) to the linearly proportional one. In our paper we present the first analysis of this transformation taking account of the gradual velocity decrease of RHI penetrating through a radiator. - Highlights: • Stopping of relativistic heavy ions leads to appearance of a Cherenkov–Bremsstrahlung radiation near the Cherenkov cone. • Mixed Cherenkov–Bremsstrahlung optical radiation FWHM differs from the standard one determined by the Tamm–Frank theory. • The Cherenkov–Bremsstrahlung radiation angular distribution FWHM linearly depends on the radiator thickness.

  1. Development of a 13-in. Hybrid Avalanche Photo-Detector (HAPD) for a next generation water Cherenkov detector

    International Nuclear Information System (INIS)

    Nakayama, H.; Kusaka, A.; Kakuno, H.; Abe, T.; Iwasaki, M.; Aihara, H.; Shiozawa, M.; Tanaka, M.; Kyushima, H.; Suyama, M.; Kawai, Y.

    2006-01-01

    We have developed a 13-in. Hybrid Avalanche Photo-Detector (HAPD) for photosensors in next generation water Cherenkov type detectors. We study the performance of the HAPD and the results show good time resolution better than σ=1ns, good sensitivity for single photon detection, wide dynamic range, and good uniformity on the photocathode. The HAPD is also expected to be less expensive than large PMTs because of its simpler structure without dynodes

  2. Performance of a fast low noise front-end preamplifier for the MAGIC imaging Cherenkov telescope

    International Nuclear Information System (INIS)

    Blanch, O.; Blanchot, G.; Bosman, M.

    1999-01-01

    The observation of high energy cosmic gamma rays with an energy threshold of 15 GeV using the proposed MAGIC ground based air imaging Cherenkov telescope requires the development of new low noise fast preamplifiers for the camera photosensors. The speed and noise performance of a transimpedance preamplifier that resolves the multi photoelectron peaks from a hybrid photomultiplier with a peaking time below 7 ns is presented. The new front-end circuit is designed with RF low noise bipolar transistors and provides fast output pulses that allow for fast trigger settings

  3. Advertising health: the case for counter-ads.

    Science.gov (United States)

    Dorfman, L; Wallack, L

    1993-01-01

    Public service advertisements have been used by many in hopes of "selling" good health behaviors. But selling good behavior--even if it could be done more effectively--is not the best goal for using mass media to prevent health problems. Personal behavior is only part of what determines health status. Social conditions and the physical environment are important determinants of health that are usually ignored by health promotion advertising. Public service advertising may be doing more harm than good if it is diverting attention from more effective socially based health promotion strategies. Counter-ads are one communications strategy that could be used to promote a broader responsibility for rectifying health problems. In the tradition of advocacy advertising directly promoting policy rather than products, counter-ads promote views consistent with a public health perspective. Counter-ads set the agenda for health issues, conferring status on policy-oriented strategies for addressing health problems. The primary purpose of counter-ads is to challenge the dominant view that public health problems reflect personal health habits. They are controversial because they place health issues in a social and political context. Advertising strategies for health promotion range over a spectrum from individually oriented public service advertising to socially oriented counter-advertising. The recent anti-tobacco campaign from the California Department of Health Services represents advertisements across the spectrum. Counter-ads that focus on a politically controversial definition for health problems are an appropriate and necessary alternative to public service advertising. PMID:8265756

  4. A novel background reduction strategy for high level triggers and processing in gamma-ray Cherenkov detectors

    OpenAIRE

    Cabras, G.; De Angelis, A.; De Lotto, B.; De Maria, M. M.; De Sabata, F.; Mansutti, O.; Frailis, M.; Persic, M.; Bigongiari, C.; Doro, M.; Mariotti, M.; Peruzzo, L.; Saggion, A.; Scalzotto, V.; Paoletti, R.

    2008-01-01

    Gamma ray astronomy is now at the leading edge for studies related both to fundamental physics and astrophysics. The sensitivity of gamma detectors is limited by the huge amount of background, constituted by hadronic cosmic rays (typically two to three orders of magnitude more than the signal) and by the accidental background in the detectors. By using the information on the temporal evolution of the Cherenkov light, the background can be reduced. We will present here the results obtained wit...

  5. Counter - Drug: Mandate for the Army.

    Science.gov (United States)

    1991-03-01

    this comprehensive review will provide a basis for responding to new missions assigned...observations for determining the short-, mid-, and long-term direction of Army support to the national counter-drug effort. Also, this comprehensive review will provide...and long-term direction of Army support to the national counter-drug effort. Also, this comprehensive review will provide a basis for responding

  6. Hardware support for software controlled fast multiplexing of performance counters

    Science.gov (United States)

    Salapura, Valentina; Wisniewski, Robert W.

    2013-01-01

    Performance counters may be operable to collect one or more counts of one or more selected activities, and registers may be operable to store a set of performance counter configurations. A state machine may be operable to automatically select a register from the registers for reconfiguring the one or more performance counters in response to receiving a first signal. The state machine may be further operable to reconfigure the one or more performance counters based on a configuration specified in the selected register. The state machine yet further may be operable to copy data in selected one or more of the performance counters to a memory location, or to copy data from the memory location to the counters, in response to receiving a second signal. The state machine may be operable to store or restore the counter values and state machine configuration in response to a context switch event.

  7. Count rate effect in proportional counters

    International Nuclear Information System (INIS)

    Bednarek, B.

    1980-01-01

    A new concept is presented explaining changes in spectrometric parameters of proportional counters which occur due to varying count rate. The basic feature of this concept is that the gas gain of the counter remains constant in a wide range of count rate and that the decrease in the pulse amplitude and the detorioration of the energy resolution observed are the results of changes in the shape of original current pulses generated in the active volume of the counter. In order to confirm the validity of this statement, measurements of the gas amplification factor have been made in a wide count rate range. It is shown that above a certain critical value the gas gain depends on both the operating voltage and the count rate. (author)

  8. Design of a hybrid gas proportional counter with CdTe guard counters for sup 1 sup 4 C dating system

    CERN Document Server

    Zhang, L; Hinamoto, N; Nakazawa, M; Yoshida, K

    2002-01-01

    Nowadays uniform, low-cost and large-size compound semiconductor detectors are available up to several square centimeters. We are trying to combine this technology with conventional gas detectors to upgrade an anticoincidence type proportional counter, Oeschger-type thin wall counter of 2.2 l, used for a sup 1 sup 4 C dating facility at the University of Tokyo. In order to increase the ratio of the signal to the background for smaller quantity of samples less than 1 g, an effective approach is to minimize the detector volume at higher gas pressure. However, the anticoincidence function suffers from such a small volume. Therefore we designed a new active wall gas counter of 0.13 l counting volume using CdTe compound semiconductor detectors as the wall of the gas proportional counter to perform anticoincidence. Simulation study showed that at noise thresholds less than 70 keV, the wall counters can reject above 99.8% of events arising from outer gamma rays. Measured noise levels of CdTe detectors were smaller t...

  9. Pre-selecting muon events in the camera server of the ASTRI telescopes for the Cherenkov Telescope Array

    Science.gov (United States)

    Maccarone, Maria C.; Mineo, Teresa; Capalbi, Milvia; Conforti, Vito; Coffaro, Martina

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground based observatories for very high energy gamma ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium, and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The telescopes will be equipped with cameras composed either of photomultipliers or silicon photomultipliers, and with different trigger and read-out electronics. In such a scenario, several different methods will be used for the telescopes' calibration. Nevertheless, the optical throughput of any CTA telescope, independently of its type, can be calibrated analyzing the characteristic image produced by local atmospheric highly energetic muons that induce the emission of Cherenkov light which is imaged as a ring onto the focal plane if their impact point is relatively close to the telescope optical axis. Large sized telescopes would be able to detect useful muon events under stereo coincidence and such stereo muon events will be directly addressed to the central CTA array data acquisition pipeline to be analyzed. For the medium and small sized telescopes, due to their smaller mirror area and large inter-telescope distance, the stereo coincidence rate will tend to zero; nevertheless, muon events will be detected by single telescopes that must therefore be able to identify them as possible useful calibration candidates, even if no stereo coincidence is available. This is the case for the ASTRI telescopes, proposed as pre-production units of the small size array of the CTA, which are able to detect muon events during regular data taking without requiring any dedicated trigger. We present two fast

  10. Tests of BF3 counters with getter

    International Nuclear Information System (INIS)

    Comte, R.; Dauphin, G.

    1968-01-01

    BF 3 counters with addition of a getter have been developed to improve operation characteristics of these detectors in presence of strong gamma flows. The getter is made of an active coal deposit on the cathode. As noticed by other studies, the degradation of these counters is related to the exposure to strong neutron flows and to gamma radiations. The authors report tests performed on these counters with a brief presentation of the counters, and a presentation of the test installation. A threshold curve and an amplitude spectrum are obtained, and counting is performed for a fixed threshold before and after the exposure of detectors to variable doses of γ radiation. The results after a first 2 hour long irradiation, a 230 hour long second irradiation, and a third irradiation under high voltage (2100 V) are discussed. Thermal tests are then performed and commented

  11. Factors influencing the temporal growth rate of the high order TM{sub 0n} modes in the Ka-band overmoded Cherenkov oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dapeng, E-mail: vipbenjamin@163.com; Shu, Ting; Ju, Jinchuan [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-06-15

    When the wavelength of overmoded Cherenkov oscillator goes into Ka-band, power handling capacity becomes an essential issue. Using the TM{sub 02} mode or higher order TM{sub 0n} modes as the operating mode is a potential solution. This paper is aimed to find some proper parameters to make the temporal growth rate of the TM{sub 02} mode higher in our previously studied Gigawatt (GW)-class Ka band oscillator. An accurate and fast calculation method of the “hot” dispersion equation is derived for rectangular corrugated SWSs, which are widely used in the high frequency Cherenkov devices. Then, factors that affect the temporal growth rate of the high order TM{sub 0n} modes are analyzed, including the depth of corrugation, the radius of drift tube, and the diode voltage. Results show that, when parameters are chosen properly, the temporal growth rate of the TM{sub 02} mode can be as high as 0.3 ns{sup −1}.

  12. Estimation of primary cosmic ray characteristics with the help of EAS Cherenkov light

    International Nuclear Information System (INIS)

    Aleksandrov, L.; Brankova, M.; Kirov, I.; Mishev, A.; Stamenov, J.; Ushev, S.; Mavrodiev, S.

    1999-01-01

    A new method of estimating primary cosmic ray characteristics based on the registration and analysis of EAS Cherenkov light is proposed. The nature, energy and arrival direction of primaries are obtained as a solution of a nonlinear inverse problem. The applied mathematical model is created by analyzing 'Hotovo' telescope experimental data. The behaviour of model parameters is studied using CORSIKA code for the primary energy interval 30 GeV-3 TeV. This method could be applied successfully for a different kind of detector displacements of EAS arrays. Moreover, it is shown that the shower parameter estimation could be obtained more effectively and precisely in the case of detectors displacement according to a Spiral

  13. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  14. Numerical modelling of tissue-equivalent proportional counters

    International Nuclear Information System (INIS)

    Segur, P.; Colautti, P.

    1995-01-01

    In this paper a survey is given of the various numerical techniques employed to study the transport of ionising particles inside a TEPC. The first part is devoted to the description of the general concept of particle transport calculations. Thereafter, the different methods available to study transport phenomena and energy deposition in the sensitive volume and in counter walls are described. Finally, the basic ionisation mechanisms which may occur in a counter are described, and the non-equilibrium phenomena which play an important role mainly for counters that are to be used in measurements at the nanodosemeter level are studied. (author)

  15. Neutron dosimetry using proportional counters with tissue equivalent walls

    International Nuclear Information System (INIS)

    Kerviller, H. de

    1965-01-01

    The author reminds the calculation method of the neutron absorbed dose in a material and deduce of it the conditions what this material have to fill to be equivalent to biological tissues. Various proportional counters are mode with walls in new tissue equivalent material and filled with various gases. The multiplication factor and neutron energy response of these counters are investigated and compared with those obtained with ethylene lined polyethylene counters. The conditions of working of such proportional counters for neutron dosimetry in energy range 10 -2 to 15 MeV are specified. (author) [fr

  16. Performance of a C4F8O gas radiator ring imaging Cherenkov detector using multi-anode photomultiplier tubes

    International Nuclear Information System (INIS)

    Artuso, M.; Boulahouache, C.; Blusk, S.; Butt, J.; Dorjkhaidav, O.; Menaa, N.; Mountain, R.; Muramatsu, H.; Nandakumar, R.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J.C.; Zhang, K.

    2006-01-01

    We report on tests of a novel ring imaging Cherenkov (RICH) detection system consisting of a 3-m-long gaseous C 4 F 8 O radiator, a focusing mirror, and a photon detector array based on Hamamatsu multi-anode photomultiplier tubes. This system was developed to identify charged particles in the momentum range from 3 to 70GeV/c for the BTeV experiment

  17. The Cherenkov Telescope Array production system for Monte Carlo simulations and analysis

    Science.gov (United States)

    Arrabito, L.; Bernloehr, K.; Bregeon, J.; Cumani, P.; Hassan, T.; Haupt, A.; Maier, G.; Moralejo, A.; Neyroud, N.; pre="for the"> CTA Consortium, DIRAC Consortium,

    2017-10-01

    The Cherenkov Telescope Array (CTA), an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale, is the next-generation instrument in the field of very high energy gamma-ray astronomy. An average data stream of about 0.9 GB/s for about 1300 hours of observation per year is expected, therefore resulting in 4 PB of raw data per year and a total of 27 PB/year, including archive and data processing. The start of CTA operation is foreseen in 2018 and it will last about 30 years. The installation of the first telescopes in the two selected locations (Paranal, Chile and La Palma, Spain) will start in 2017. In order to select the best site candidate to host CTA telescopes (in the Northern and in the Southern hemispheres), massive Monte Carlo simulations have been performed since 2012. Once the two sites have been selected, we have started new Monte Carlo simulations to determine the optimal array layout with respect to the obtained sensitivity. Taking into account that CTA may be finally composed of 7 different telescope types coming in 3 different sizes, many different combinations of telescope position and multiplicity as a function of the telescope type have been proposed. This last Monte Carlo campaign represented a huge computational effort, since several hundreds of telescope positions have been simulated, while for future instrument response function simulations, only the operating telescopes will be considered. In particular, during the last 18 months, about 2 PB of Monte Carlo data have been produced and processed with different analysis chains, with a corresponding overall CPU consumption of about 125 M HS06 hours. In these proceedings, we describe the employed computing model, based on the use of grid resources, as well as the production system setup, which relies on the DIRAC interware. Finally, we present the envisaged evolutions of the CTA production system for the off-line data processing during CTA operations and

  18. The Banking Counter-Guarantee. Juridical Regime

    Directory of Open Access Journals (Sweden)

    Postolache Rada

    2009-06-01

    Full Text Available Not so much studied by the specialised literature, the banking counter-guarantee may beconfounded with the other types of guarantee which frequently go with the guaranteed obligation –simple guarantee, collateral guarantee, the confirmation of the guarantee. The counter-guarantee may bean independent or accessory obligation, as the case may be, exclusively governed by its text, accordingto the parties’ will. At the same time, it is a complex juridical act, a contract whose contents cannot beset apart from the contracts connected form an “economic” point of view. The counter-guarantee is theresult of the banking practice and is generated by the need to make amends for the flaws generated bythe direct guarantee. The present research is focused on the analysis of the banking practice, normativeacts, jurisprudence and banking juridical literature.

  19. The scintillation counter system at the SAPHIR detector

    International Nuclear Information System (INIS)

    Bour, D.

    1989-10-01

    The scintillation-counters system of the SAPHIR-detector at the stretcher accelerator ELSA in Bonn consists of 64 counters. It supplies a fast hadronic trigger and is utilizised for the particle identification by time of flight measurements. Prototypes of the counters (340x21.25 x 6.0 cm 3 ) had been tested. The contribution to the resolution of the time of flight measurement was measured to σ=125 ps, the effective light velocity to 17.5 ns/cm and the attenuation length of 7.8 m. A pion kaon separation is possible up to a momentum of 1 GeV/c with time of flight measurement. With the first photon-beam at SAPHIR the counters were tested, first triggers were obtained and evaluated. (orig.) [de

  20. Development of a low-cost whole body counter

    International Nuclear Information System (INIS)

    Smith, M.H.; Gross, G.P.

    1991-01-01

    This paper documents the construction and calibration of a whole-body counter for the Radiation Safety Office of the Mayo Clinic in Rochester, MN. Changes in the federal regulations may require improved documentation of internal dose for radiation workers. A relatively inexpensive and simple chair-type whole-body counter may suit the needs of many organizations for in vivo assessment of gamma emitting radionuclides. A simple calibration phantom and a spreadsheet computer program were developed in conjunction with the counter. The spreadsheet can be used to calculate an estimate of committed effective dose equivalent based on activity in a subject and data from ICRP Publication 30. Using a count time of 10 minutes, the counter's minimum detectable activity ranged from 370 Bq to 1,110 Bq for 60 Co and 57 Co respectively. Other institutions will be able to assemble whole-body counters at low cost, often from surplus components. The spreadsheet is easily adapted to the needs of any institution and uses current methodology to estimate internal dose

  1. View of the Axial Field Spectrometer (R807)

    CERN Multimedia

    1980-01-01

    In this view of the Axial Field Spectrometer at I8, the vertical uranium/scintillator hadron calorimeter (just left of centre) is retracted to give access to the cylindrical central drift chamber. The yellow iron structure served as a filter to identify muons, with MWPCs and the array of Cherenkov counters to the right.

  2. DELPHI

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The DELPHI detector for the LEP storage ring is described. It consists of time projection chamber within a superconducting magnet coil surrounded by a ring-image Cherenkov counter. Furthermore within the solenoid an electromagnetic calorimeter is located while outside the hadronic calorimeter is placed. Furthermore the data acquisition and filtering system is described. (HSI).

  3. Simplified method of analysis of Strontium-90 in milk

    International Nuclear Information System (INIS)

    Suomela, J.

    1987-06-01

    The milk sample is freeze-dried and the milk powder ignited. The ash is dissolved in hydrochloric acid and yttrium is extracted from the solution by 5% HDEHP (dioctyl phosforic acid). After re-extraction in nitric acid the Cherenkov radiation of yttrium 90 is measured in a low beta liquid scintillation counter. (O.S.)

  4. Quality control and the multicrystal counter

    International Nuclear Information System (INIS)

    Hart, G.C.; Davis, K.M.

    1983-01-01

    The reliability of multicrystal counters for use in counting large numbers of radioimmunoassay samples is studied. In particular, the dependencies of the outputs from the array of detectors, and hence their degree of matching, on the count rate and volume of the samples being counted are investigated. Quality control procedures are described to assist in the assurance of consistent performance of the counter in the clinical situation. (U.K.)

  5. Pulse formation of gas-filled counter

    International Nuclear Information System (INIS)

    Iwatani, Kazuo; Teshima, Kazunori; Shizuma, Kiyoshi; Hasai, Hiromi

    1991-01-01

    The pulse formation of gas-filled counter has been calculated by simple models for the proportional and self-quenching streamer (SQS) modes. Calculated pulse shapes of counter output have accurately reproduced the observed ones for both modes. As a result, it is shown that the special density distribution of ion pairs in a streamer can be estimated with the rising part of observed pulse shape, using the model. (author)

  6. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Y.; Kubo, H.; Masuda, S. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan); Paoletti, R.; Poulios, S. [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Rugliancich, A., E-mail: andrea.rugliancich@pi.infn.it [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Saito, T. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan)

    2016-07-11

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards. - Highlights: • The Dragon Board is part of the DAQ of the LST Cherenkov telescope prototype. • We developed an automated quality control system for the Dragon Board. • We check pedestal, linearity, pulse shape and crosstalk values. • The quality control test can be performed on the production line.

  7. CHERENCUBE: Concept definition and implementation challenges of a Cherenkov-based detector block for PET

    Energy Technology Data Exchange (ETDEWEB)

    Somlai-Schweiger, I., E-mail: ian.somlai@tum.de; Ziegler, S. I. [Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, München 81675 (Germany)

    2015-04-15

    Purpose: A new concept for a depth-of-interaction (DOI) capable time-of-flight (TOF) PET detector is defined, based only on the detection of Cherenkov photons. The proposed “CHERENCUBE” consists of a cubic Cherenkov radiator with position-sensitive photodetectors covering each crystal face. By means of the spatial distribution of the detected photons and their time of arrival, the point of interaction of the gamma-ray in the crystal can be determined. This study analyzes through theoretical calculations and Monte Carlo simulations the potential advantages of the concept toward reaching a Cherenkov-only detector for TOF-PET with DOI capability. Furthermore, an algorithm for the DOI estimation is presented and the requirements for a practical implementation of the proposed concept are defined. Methods: The Monte Carlo simulations consisted of a cubic crystal with one photodetector coupled to each one of the faces of the cube. The sensitive area of the detector matched exactly the crystal size, which was varied in 1 mm steps between 1 × 1 × 1 mm{sup 3} and 10 × 10 × 10 mm{sup 3}. For each size, five independent simulations of ten thousand 511 keV gamma-rays were triggered at a fixed distance of 10 mm. The crystal chosen was PbWO{sub 4}. Its scintillation properties were simulated, but only Cherenkov photons were analyzed. Photodetectors were simulated having perfect photodetection efficiency and infinite time resolution. For every generated particle, the analysis considered its creation process, parent and daughter particles, energy, origin coordinates, trajectory, and time and position of detection. The DOI determination is based on the distribution of the emission time of all photons per event. These values are calculated as a function of the coordinates of detection and origin for every photon. The common origin is estimated by finding the distribution with the most similar emission time-points. Results: Detection efficiency increases with crystal size from

  8. CHERENCUBE: Concept definition and implementation challenges of a Cherenkov-based detector block for PET

    International Nuclear Information System (INIS)

    Somlai-Schweiger, I.; Ziegler, S. I.

    2015-01-01

    Purpose: A new concept for a depth-of-interaction (DOI) capable time-of-flight (TOF) PET detector is defined, based only on the detection of Cherenkov photons. The proposed “CHERENCUBE” consists of a cubic Cherenkov radiator with position-sensitive photodetectors covering each crystal face. By means of the spatial distribution of the detected photons and their time of arrival, the point of interaction of the gamma-ray in the crystal can be determined. This study analyzes through theoretical calculations and Monte Carlo simulations the potential advantages of the concept toward reaching a Cherenkov-only detector for TOF-PET with DOI capability. Furthermore, an algorithm for the DOI estimation is presented and the requirements for a practical implementation of the proposed concept are defined. Methods: The Monte Carlo simulations consisted of a cubic crystal with one photodetector coupled to each one of the faces of the cube. The sensitive area of the detector matched exactly the crystal size, which was varied in 1 mm steps between 1 × 1 × 1 mm 3 and 10 × 10 × 10 mm 3 . For each size, five independent simulations of ten thousand 511 keV gamma-rays were triggered at a fixed distance of 10 mm. The crystal chosen was PbWO 4 . Its scintillation properties were simulated, but only Cherenkov photons were analyzed. Photodetectors were simulated having perfect photodetection efficiency and infinite time resolution. For every generated particle, the analysis considered its creation process, parent and daughter particles, energy, origin coordinates, trajectory, and time and position of detection. The DOI determination is based on the distribution of the emission time of all photons per event. These values are calculated as a function of the coordinates of detection and origin for every photon. The common origin is estimated by finding the distribution with the most similar emission time-points. Results: Detection efficiency increases with crystal size from 8.2% (1 × 1

  9. HOW THE WAR WAS ‘ONE’: COUNTERING VIOLENT EXTREMISM AND THE SOCIAL DIMENSIONS OF COUNTER-TERRORISM IN CANADA.

    Directory of Open Access Journals (Sweden)

    Tami Amanda Jacoby

    2016-03-01

    Full Text Available The current global “war on terror” highlights a fundamental quandary for all liberal democracies seeking to counter the violent extremism of their own citizens while maintaining civic rights and freedoms. This challenge accompanies a transformation in international conflict from inter-state war and superpower rivalry, to homegrown terrorism, radicalization-to-violence, Internet propaganda, and targeting and recruitment of vulnerable persons. These new threats shift the battlefield, as traditionally defined, to the home front, as extremist violence is nurtured by and perpetrated within public spaces, such as schools, places of religious worship, civil society and the home. Today, violence emanates from within liberal democratic society and its extremist motivations bypass the very institutions that would otherwise support civic rights, freedoms and multiculturalism. As such, attempts to counter extremist violence must appeal to the political, social, cultural, religious and familial aspects of human behavior alongside a parallel shift in efforts to keep citizens safe within their own social spaces. In recent years, Canada has been introduced to home grown and lone individual terrorism with the cases of attack against armed forces personnel in Saint-Jean-sur-Richelieu and Ottawa in 2014. This article identifies the social dimensions of counter-terrorism in the Canadian context, a propitious case by which to evaluate different approaches to countering violent extremism. Canadian initiatives - simultaneously proliferating and in their infancy – raise a host of questions about counter-terrorism in liberal democratic countries. For example, why do individuals radicalize-to-violence in rights-based and multicultural societies? How and when can the liberal democratic state best temper the radicalization process in ways that are effective and procedurally just? What state-society balance works best to counter radicalized viewpoints? Who are the

  10. Influence of tube volume on measurement uncertainty of GM counters

    Directory of Open Access Journals (Sweden)

    Stanković Koviljka Đ.

    2010-01-01

    Full Text Available GM counters are often used in radiation detection since they generate a strong signal which can be easily detected. The working principal of a GM counter is based on the interaction of ionizing radiation with the atoms and molecules of the gas present in the counter's tube. Free electrons created as a result of this interaction become initial electrons, i. e. start an avalanche process which is detected as a pulse of current. This current pulse is independent of the energy imparted on the gas, that being the main difference between a GM counter and the majority of other radiation detectors. In literature, the dependence on the incidence of radiation energy, tube's orientation and characteristics of the reading system are quoted as the main sources of measurement uncertainty of GM counters. The aim of this paper is to determine the dependence of measurement uncertainty of a GM counter on the volume of its counter's tube. The dependence of the pulse current on the size of the counter's tube has, therefore, been considered here, both in radial and parallel geometry. The initiation and expansion of the current pulse have been examined by means of elementary processes of electrical discharge such as the Markov processes, while the changes in the counter's tube volume were put to test by the space - time enlargement law. The random variable known as the 'current pulse in the counter's tube' (i. e. electrical breakdown of the electrode configuration has also been taken into account and an appropriate theoretical distribution statistically determined. Thus obtained theoretical results were then compared to corresponding experimental results established in controlled laboratory conditions.

  11. Optical properties of the PANDA barrel DIRC radiator bars

    Energy Technology Data Exchange (ETDEWEB)

    Kalicy, Grzegorz; Krebs, Marvin; Peters, Klaus [GSI, Darmstadt (Germany); Goethe Universitaet, Frankfurt (Germany); Schwarz, Carsten; Schwiening, Jochen [GSI, Darmstadt (Germany); Collaboration: PANDA-Collaboration

    2015-07-01

    The PANDA experiment at the Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt, will study fundamental questions of hadron physics and QCD. A fast focusing DIRC (Detection of Internally Reflected Cherenkov light) counter will provide hadronic particle identification (PID) in the barrel region of the PANDA detector. To meet the PID requirements, the Barrel DIRC has to provide precise measurements of the Cherenkov angle, which is conserved for Cherenkov photons propagating through the radiator by total internal reflection. The radiators, rectangular bars made from fused silica, have to fulfill very strict optical and mechanical requirements. This includes the squareness and parallelism of the sides of the bars, sharp corners, and a very smooth surface polish, ensuring that the Cherenkov photons reach the optical sensors without angular distortions. Currently the Barrel DIRC is at the final design stage and several different bar shapes and fabrication methods are being considered for the final detector. An optical setup, consisting of a computer-controlled positioning and a multi-wavelength laser system, is used to evaluate the radiator bars to obtain critical values like transmittance and reflectivity. The current results and techniques are presented on this poster.

  12. Design of a novel quantum reversible ternary up-counter

    Science.gov (United States)

    Houshmand, Pouran; Haghparast, Majid

    2015-08-01

    Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.

  13. Reduction of degraded events in miniaturized proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R.; Kirsten, T. (Max Planck Inst. fuer Kernphysik, Heidelberg (Germany))

    1991-11-15

    A method to reduce the number of degraded events in miniaturized proportional counters is described. A shaping of the outer cathode leads to a more uniform gas gain along the counter axis. The method is useful in situations in which the total number of decay events is very low. The effects leading to degraded events are studied theoretically and experimentally. The usefulness of the method is demonstrated by using it for the proportional counter of the GALLEX solar neutrino experiment. (orig.).

  14. Optical Cherenkov radiation in an As2S3 slot waveguide with four zero-dispersion wavelengths

    DEFF Research Database (Denmark)

    Wang, Shaofei; Hu, Jungao; Guo, Hairun

    2013-01-01

    , dispersion profiles with four zero dispersion wavelengths are found to produce a phase-matching nonlinear process leading to a broadband resonant radiation. The broadband OCR investigated in the chalcogenide waveguide may find applications in on-chip wavelength conversion and near-infrared pulse generation.......We propose an approach for an efficient generation of optical Cherenkov radiation (OCR) in the near-infrared by tailoring the waveguide dispersion for a zero group-velocity mismatching between the radiation and the pump soliton. Based on an As2S3 slot waveguide with subwavelength dimensions...

  15. Study of electron beams within ISTTOK tokamak by means of a multi-channel Cherenkov detector; their correlation with hard X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L., E-mail: Lech.Jakubowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Malinowski, K.; Sadowski, M.J.; Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Plyusnin, V.V. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Rabinski, M. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Fernandes, H.; Silva, C.; Duarte, P. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, M.J. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland)

    2010-11-11

    The paper describes experimental studies of electron beams emitted from a plasma torus within the ISTTOK tokamak, which were performed by means of a new four-channel detector of the Cherenkov type. A range of electron energy was estimated. There were also measured hard X-rays, and their correlation with the fast run-away electron beams was investigated experimentally.

  16. Case study for co and counter swirling domestic burners

    Directory of Open Access Journals (Sweden)

    Ashraf Kotb

    2018-03-01

    Full Text Available In this case study, the influence of equivalence ratio for co and counter-swirl domestic burners compared with non-swirl design on the thermal efficiency as well as CO emissions has been studied using liquefied petroleum gas (LPG. Also, the flame stability, and pot height, which is defined as the burner-to-pot distance (H, of the co and counter domestic burners were compared. The analysis of the results showed that, for both swirl burners co and counter one the thermal efficiency under all operation conditions tested is higher than the non-swirled burner (base burner. For example, the thermal efficiency increased by 8.8%, and 5.8% than base burner for co and counter swirl, respectively at Reynolds number equal 2000 and equivalence ratio 1. The co and counter swirl burners show lower CO emission than the base burner. The co swirl burner has wider operation range than counter swirl. With the increase of pot height, the thermal efficiency of all burners decreases because the flame and combustion gases are cooled due to mixing with ambient air. As a result, the heat transfer is decreased due to atmospheric loss, which decrease the thermal efficiency.

  17. Portable counter for geological research

    Energy Technology Data Exchange (ETDEWEB)

    Russell, O J

    1949-05-01

    A portable counter which has been developed for prospecting for radio-active uranium and thorium minerals, for general geological investigations, and as an ultra-sensitive detector of lost or mislaid radium, is described. The aforementioned general usage includes the identification of changes in strata by means of the investigation of the slight amount of residual activity pressent in most minerals. The apparatus, which consists essentially of a scaled-down version of a standard laboratory Geiger-Muller counter, is highly sensitive since a variation equivalent to 4% of the cosmic ray background can be detected by a three-minute count.

  18. Cosmic Ray Background Analysis For A Cargo Container Counter

    International Nuclear Information System (INIS)

    Ensslin, Norbert; Geist, W.H.; Lestone, J.P.; Mayo, D.R.; Menlove, Howard O.

    2001-01-01

    We have developed a new model for calculating the expected yield of cosmic-ray spallation neutrons in a Cargo Container Counter, and we have benchmarked the model against measurements made with several existing large neutron counters. We also developed two versions of a new measurement uncertainty prediction code based on Microsoft Excel spreadsheets. The codes calculate the minimum detectability limit for the Cargo Container Counter for either neutron singles or doubles counting, and also propagate the uncertainties associated with efficiency normalization flux monitors and cosmic ray flux monitors. This paper will describe the physics basis for this analysis, and the results obtained for several different counter designs.

  19. Micropipette as Coulter counter for submicron particles

    Science.gov (United States)

    Rudzevich, Yauheni; Ordonez, Tony; Evans, Grant; Chow, Lee

    2011-03-01

    Coulter counter based on micropipette has been around for several decades. Typical commercial Coulter counter has a pore size of 20 μ m, and is designed to detect micron-size blood cells. In recent years, there are a lot of interests in using nanometer pore size Coulter counter to detect single molecule and to sequence DNA. Here we describe a simple nanoparticle counter based on pulled micropipettes with a diameter of 50 -- 500 nm. Borosilicate micropipettes with an initial outer diameter of 1.00 mm and inner diameter of 0.5 mm are used. After pulling, the micropipettes are fire polished and ultrasound cleaned. Chlorinated Ag/AgCl electrodes and 0.1 M of KCl solution are used. The ionic currents are measured using an Axopatch 200B amplifier in the voltage-clamp mode. Several types and sizes of nanoparticles are measured, including plain silica and polystyrene nanospheres. The results will be discussed in terms of pH values of the solution and concentrations of the nanoparticles. Financial support from National Science Foundation (NSF-0901361) is acknowledged.

  20. Calibration strategies for the Cherenkov Telescope Array

    Science.gov (United States)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  1. The Need for a United Nations Global Counter-Terrorism Coordinator

    Directory of Open Access Journals (Sweden)

    Howard Stoffer

    2013-08-01

    Full Text Available The case for a high level United Nations (UN Counter-Terrorism Coordinator position within the UN system has become increasingly urgent in 2013. This need has diluted some Member State reticence to creating a new Assistant Secretary-General position that would supervise and manage the existing counter-terrorism structures in the UN system. A Coordinator would have a basic responsibility to keep track of all of the activities of many formal inter-governmental organisations operating at the international, regional and sub-regional level and would also work closely with national counter-terrorism focal points. In this Policy Brief, Dr. Howard Stoffer reviews the debate among Security Council and Fifth Committee members about the efficacy of establishing a senior UN Global Counter-Terrorism Coordinator. He argues that the creation of such a position could lead to a restructuring of the UN counter-terrorism architecture as well as its funding within the UN budget and among donors. The position would eventually make the UN overall counter-terrorism effort, under the UN Global Counter-Terrorism Strategy, a stronger, more effective and more efficient process with measurable impact on the ground among Member States.

  2. Multi-element proportional counter for radiation protection measurements

    International Nuclear Information System (INIS)

    Kliauga, P.; Rossi, H.H.; Johnson, G.

    1988-01-01

    This article discusses design modifications of a multi-element proportional counter. The original counter exhibited poor resolution, as measured by the width of the event-size spectrum for low-energy photons. It was also suspected that the field inside each volume was not sufficiently symmetric. Results of the modifications showed that a dramatic improvement in resolution could be obtained in the chamber with tissue-equivalent septa if their potentials were adjusted to obtain optimal resolution. The full width at half maximum then approached, although it did not equal, that of a standard spherical counter

  3. Lifetime characteristics of Gaiger-Muller counters

    Directory of Open Access Journals (Sweden)

    Kartalović Nenad M.

    2016-01-01

    Full Text Available This paper discusses the process of functional aging of Geiger-Muller counters. Two types of Geiger-Muller counter chambers were characterized in an experiment using a combined constant voltage. Chamber A had a coaxial geometry and chamber B had a plan-parallel geometry. The experimental results indicate that the aging process was faster in the case of chambers with a coaxial geometry. The results are explained based on the process of electrical discharges in gasses.

  4. Recoil-proton fast-neutron counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica); Galeazzi, G.; Bressanini, G.

    1981-12-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  5. Recoil-proton fast-neutron-counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Bressanini, G.

    1981-01-01

    A proton-recoil neutron counter telescope is described composed of a solid state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time-of-flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV, presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  6. Presettable up-down CAMAC counter for 24 bit

    International Nuclear Information System (INIS)

    Kuhn, K.; Meyer, U.; Weidhase, F.

    1976-01-01

    A module containing a presettable binary up-down CAMAC counter for 24 bit is described. The use of dataway is discussed. As an example for application in nuclear physics, control of beam position by the up-down counter is illustrated

  7. Criticism and Counter-Criticism of Public Management: Strategy Models

    OpenAIRE

    Luis C. Ortigueira

    2007-01-01

    Critical control is very important in scientific management. This paper presents models of critical and counter-critical public-management strategies, focusing on the types of criticism and counter-criticism manifested in parliamentary political debates. The paper includes: (i) a normative model showing how rational criticism can be carried out; (ii) a normative model for oral critical intervention; and (iii) a general motivational strategy model for criticisms and counter-criticisms. The pap...

  8. Discrimination capability of avalanche counters detecting different ionizing particles

    International Nuclear Information System (INIS)

    Prete, G.; Viesti, G.; Padua Univ.

    1985-01-01

    The discrimination capability of avalanche counters to detect different ionizing particles has been studied using a 252 Cf source. Pulse height, pulse-height resolution and timing properties have been measured as a function of the reduced applied voltage for parallel-plate and parallel-grid avalanche counters. At the highest applied voltages, space charge effects shift the pulse-height signal of the avalanche counter away from being linearly proportional to the stopping power of the detected particles and cause the pulse-height resolution to deteriorate. To optimize the avalanche counter capability, without loss of time resolution, it appears better to operate the detector at voltages well below the breakdown threshold. Measurements with 32 S ions are also reported. (orig.)

  9. Expanded and combined uncertainty in measurements by GM counters

    International Nuclear Information System (INIS)

    Stankovic, K.; Arandjic, D.; Lazarevic, Dj.; Osmokrovic, P.

    2007-01-01

    This paper deals with possible ways of obtaining expanded and combined uncertainty in measurements for four types of GM counters with a same counter's tube, in cases when the contributors of these uncertainties are cosmic background radiation and induced overvoltage phenomena. Nowadays, as a consequence of electromagnetic radiation, the latter phenomenon is especially marked in urban environments. Based on experimental results obtained, it has been established that the uncertainties of an influenced random variable 'number of pulses from background radiation' and 'number of pulses induced by overvoltage' depend on the technological solution of the counter's reading system and contribute in different ways to the expanded and combined uncertainty in measurements of the applied types of GM counters. (author)

  10. Study of the CP violation in the channel B{sup 0} {yields} J/{psi}K{sub S}{sup 0} and development of an aerogel Cherenkov counter; Etude de la violation de CP dans le canal B{sup 0} {yields} J/{psi}K{sub S}{sup 0} et developpement d`un compteur Tcherenkov a aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Lafaye, Remi [Savoie Univ., 73 - Chambery (France)

    1998-05-11

    CP violation and the mass generation problem, will be the two fundamental points for Particle Physics at the dawn of the third millennium. The BABAR experiment, which is installed at PEP-II SLAC B-factory, aims to study CP violation in the B meson systems. It will be then possible to test the standard model explanation of CP violation and may be to highlight new sources. In order to study CP violation with the BABAR experiment it is mandatory to identify most of the produced particles. The first part of this thesis presents the study we carried out on a project of Cherenkov aerogel threshold counters for separating pions from kaons in the momentum region between 0.5 and 4.3 GeV/c. This study includes: preliminary search on materials (reflecting wrappings, wavelength shifters and aerogel), cells and light guides geometry and prototype simulation. Test beam results have shown the feasibility of such a detector. The second part of this thesis deals with the CP parameter measurement that could be achieved at the BABAR experiment for the B{sup 0} {yields} J/{psi}K{sub S}{sup 0} channel, where the J/{psi} decays in lepton mode. The reconstruction efficiency, background level, tagging efficiency as well as the resolution on the B vertex positions are studied. The measurement of the expected asymmetry is made with a probabilistic method or a fit and the resolution on the parameter sin 2{beta} that could be achieved is estimated. It is then shown that an uncertainty of 0.075 on sin 2{beta} could be reached in 1 year of data taking at the BABAR experiment, corresponding to an integrated luminosity of 30 fbarn{sup -1}. (author) 89 refs., 89 figs., 28 tabs.

  11. Optimization of the digital Silicon Photomultiplier for Cherenkov light detection

    International Nuclear Information System (INIS)

    Frach, T

    2012-01-01

    The Silicon Photomultiplier is a promising alternative to fast vacuum photodetectors. We developed a fully digital implementation of the Silicon Photomultiplier. The sensor is based on a single photon avalanche photodiode (SPAD) integrated in a standard CMOS process. Photons are detected directly by sensing the voltage at the SPAD anode using a dedicated cell electronics block next to each diode. This block also contains active quenching and recharge circuits as well as a one bit memory for the selective inhibit of detector cells. A balanced trigger network is used to propagate the trigger signal from all cells to the integrated time-to-digital converter. Photons are detected and counted as digital signals, thus making the sensor less susceptible to temperature variations and electronic noise. The integration with CMOS logic has the added benefit of low power consumption and possible integration of data post-processing in the sensor. In this paper, we discuss the sensor architecture together with its characteristics, and its possible optimizations for applications requiring the detection of Cherenkov light.

  12. Lessons from History for Counter- Terrorism Strategic Communications

    NARCIS (Netherlands)

    Ingram, H.J.; Reed, A.G.

    2016-01-01

    Drawing on the Counter-terrorism Strategic Communication (CTSC) Project’s research paper “A Brief History of Propaganda during Conflict“, this Policy Brief lays out the key policy-relevant lessons for developing effective counter-terrorism strategic communications. It presents a framework of

  13. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to −25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  14. Primary gamma ray selection in a hybrid timing/imaging Cherenkov array

    Directory of Open Access Journals (Sweden)

    Postnikov E.B.

    2017-01-01

    Full Text Available This work is a methodical study on hybrid reconstruction techniques for hybrid imaging/timing Cherenkov observations. This type of hybrid array is to be realized at the gamma-observatory TAIGA intended for very high energy gamma-ray astronomy (> 30 TeV. It aims at combining the cost-effective timing-array technique with imaging telescopes. Hybrid operation of both of these techniques can lead to a relatively cheap way of development of a large area array. The joint approach of gamma event selection was investigated on both types of simulated data: the image parameters from the telescopes, and the shower parameters reconstructed from the timing array. The optimal set of imaging parameters and shower parameters to be combined is revealed. The cosmic ray background suppression factor depending on distance and energy is calculated. The optimal selection technique leads to cosmic ray background suppression of about 2 orders of magnitude on distances up to 450 m for energies greater than 50 TeV.

  15. Ground-based VHE γ ray astronomy with air Cherenkov imaging telescopes

    International Nuclear Information System (INIS)

    Mirzoyan, R.

    2000-01-01

    The history of astronomy has been one of the scientific discovery following immediately the introduction of new technology. In this report, we will review shortly the basic development of the atmospheric air Cherenkov light detection technique, particularly the imaging telescope technique, which in the last years led to the firm establishment of a new branch in experimental astronomy, namely ground-based very high-energy (VHE) γ ray astronomy. Milestones in the technology and in the analysis of imaging technique will be discussed. The design of the 17 m diameter MAGIC Telescope, being currently under construction, is based on the development of new technologies for all its major parts and sets new standards in the performance of the ground-based γ detectors. MAGIC is one of the next major steps in the development of the technique being the first instrument that will allow one to carry out measurements also in the not yet investigated energy gap i.e. between 10 and 300 GeV

  16. Counter of radiation in body parts

    International Nuclear Information System (INIS)

    Pollard, D.E.

    1983-01-01

    A new radiation counter for the determination of radiocontaminated body parts has been designed. Composed of several movable detectors, shielded from background radiation and focused on different parts of the human body by narrow apertures in the lead enclosure, the invention provides a quick tool for quantitative and qualitative part-by-part analysis of the body with respect to radiocontamination. The counter can be handled easily by the tested person himself and consequently, it is suitable for mass controls etc. (G.J.P.)

  17. Massive Cherenkov neutrino facilities?their evolution, their future: Twenty-five years at these International Neutrino Conferences

    International Nuclear Information System (INIS)

    Sulak, Lawrence R.

    2005-01-01

    This review traces the evolution of massive water Cherenkov tracking calorimeters. Pioneering concepts, first presented in this conference a quarter of a century ago, have led to 1) IMB, the first large detector (10kT), which was designed primarily to search for proton decay, and secondarily to be sensitive to supernova neutrinos and atmospheric oscillations, and 2) Dumand, an attempt to initiate the search for TeV astrophysical neutrinos with a prototype for a 1 km 3 telescope. The concepts and initial work on IMB influenced subsequent detectors: Kamiokande, Super-K, SNO, and, in part, Kamland. These detectors have to their credit the elucidation of the physics of atmospheric, solar, reactor and supernova neutrinos. With the advent of the K2K beam, controlled accelerator neutrinos confirm the atmospheric studies. The path breaking developments of Dumand now are incorporated in the high-volume Amanda and Antares detectors, as well as their sequels, IceCube and the proposed Cubic Kilometer detector. The future (ultimate?) facilities have new physics challenges: A high-resolution megaton detector, eventually coupled with an intense accelerator neutrino source, is critical for precision studies of neutrino oscillation parameters and for the potential discovery of CP violation in the lepton sector. The Gigaton TeV neutrino telescopes (IceCube and Cubic Kilometer) seek to open high-energy neutrino astronomy, still an elusive goal. (Amanda, IceCube, and UNO, as well as Minos, Icarus and other large neutrino facilities using non-Cherenkov technologies, are treated in other contributions to this volume.)

  18. Proton-recoil proportional counter tests at TREAT

    International Nuclear Information System (INIS)

    Fink, C.L.; Eichholz, J.J.; Burrows, D.R.; DeVolpi, A.

    1979-01-01

    A methane filled proton-recoil proportional counter will be used as a fission neutron detector in the fast-neutron hodoscope. To provide meaningful fuel-motion information the proportional counter should have: a linear response over a wide range of reactor powers background ratio (the number of high energy neutrons detected must be maximized relative to low energy neutrons, and gamma ray sensitivity must be kept small); and a detector efficiency for fission neutrons above 1 MeV of approximately 1%. In addition, it is desirable that the detector and the associated amplifier/discriminator be capable of operating at counting rates in excess of 500 kHz. This paper reports on tests that were conducted on several proportional counters at the TREAT reactor

  19. Construction and calibration studies of the SAPHIR scintillation counters

    International Nuclear Information System (INIS)

    Kostrewa, D.

    1988-03-01

    For the scintillation counter system of the SAPHIR detector at the stretcher ring ELSA in Bonn 50 time of flight counters and 12 trigger counters have been built. Each of them has two photomultipliers, one at each side. A laser calibration system with a pulsed nitrogen laser as central light source to monitor these photomultipliers has been optimized. It was used to adjust the photomultipliers and to test their long and short time instabilities. (orig.)

  20. An extended range neutron rem counter

    International Nuclear Information System (INIS)

    Birattari, C.; Nuccetelli, C.; Pelliccioni, M.; Silari, M.

    1990-01-01

    Extensive Monte Carlo calculations have been carried out to assess the possibility of extending the sensitivity of a neutron rem counter of the Andersson-Braun type up to several hundred MeV. The validity of the model adopted has first been checked by comparing with experimental data the calculated response curve and the angular dependence of the sensitivity for a well known commercial rem counter. Next, a number of modifications to the configuration of the moderator-attenuator have been investigated. The response functions and angular distributions produced by two simple solutions yielding an instrument with a sensitivity extended up to 400 MeV are presented. The response of the original rem counter and of its two modified versions to nine test spectra has also been calculated. The resulting instrument is transportable rather than portable, but the availability of an extended range neutron survey meter would be of great advantage at medium and high energy particle accelerator facilities. (orig.)