WorldWideScience

Sample records for chemoenzymatically synthesized multimeric

  1. Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library

    DEFF Research Database (Denmark)

    Sugiura, Nobuo; Clausen, Thomas Mandel; Shioiri, Tatsuasa

    2016-01-01

    with chondroitin sulfate (CS) proteoglycans present in the placental tissue. CS is a linear acidic polysaccharide composed of repeating disaccharide units of d-glucuronic acid and N-acetyl-d-galactosamine that are modified by sulfate groups at different positions. Previous reports have shown that placental......-adhering IEs were associated with an unusually low sulfated form of chondroitin sulfate A (CSA) and that a partially sulfated dodecasaccharide is the minimal motif for the interaction. However, the fine molecular structure of this CS chain remains unclear. In this study, we have characterized the CS chain...... that interacts with a recombinant minimal CS-binding region of VAR2CSA (rVAR2) using a CS library of various defined lengths and sulfate compositions. The CS library was chemo-enzymatically synthesized with bacterial chondroitin polymerase and recombinant CS sulfotransferases. We found that C-4 sulfation...

  2. Top-Down Chemoenzymatic Approach to Synthesizing Diverse High-Mannose N-Glycans and Related Neoglycoproteins for Carbohydrate Microarray Analysis.

    Science.gov (United States)

    Toonstra, Christian; Wu, Lisa; Li, Chao; Wang, Denong; Wang, Lai-Xi

    2018-05-22

    High-mannose-type N-glycans are an important component of neutralizing epitopes on HIV-1 envelope glycoprotein gp120. They also serve as signals for protein folding, trafficking, and degradation in protein quality control. A number of lectins and antibodies recognize high-mannose-type N-glycans, and glycan array technology has provided an avenue to probe these oligomannose-specific proteins. We describe in this paper a top-down chemoenzymatic approach to synthesize a library of high-mannose N-glycans and related neoglycoproteins for glycan microarray analysis. The method involves the sequential enzymatic trimming of two readily available natural N-glycans, the Man 9 GlcNAc 2 Asn prepared from soybean flour and the sialoglycopeptide (SGP) isolated from chicken egg yolks, coupled with chromatographic separation to obtain a collection of a full range of natural high-mannose N-glycans. The Asn-linked N-glycans were conjugated to bovine serum albumin (BSA) to provide neoglycoproteins containing the oligomannose moieties. The glycoepitopes displayed were characterized using an array of glycan-binding proteins, including the broadly virus-neutralizing agents, glycan-specific antibody 2G12, Galanthus nivalis lectin (GNA), and Narcissus pseudonarcissus lectin (NPA).

  3. Chemoenzymatic Synthesis of Oligo(L-cysteine) for Use as a Thermostable Bio-Based Material.

    Science.gov (United States)

    Ma, Yinan; Sato, Ryota; Li, Zhibo; Numata, Keiji

    2016-01-01

    Oligomerization of thiol-unprotected L-cysteine ethyl ester (Cys-OEt) catalyzed by proteinase K in aqueous solution has been used to synthesize oligo(L-cysteine) (OligoCys) with a well-defined chemical structure and relatively large degree of polymerization (DP) up to 16-17 (average 8.8). By using a high concentration of Cys-OEt, 78.0% free thiol content was achieved. The thermal properties of OligoCys are stable, with no glass transition until 200 °C, and the decomposition temperature could be increased by oxidation. Chemoenzymatically synthesized OligoCys has great potential for use as a thermostable bio-based material with resistance to oxidation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and evaluation of novel multimeric neurotensin(8-13) analogs.

    Science.gov (United States)

    Hultsch, Christina; Pawelke, Beate; Bergmann, Ralf; Wuest, Frank

    2006-09-01

    Neurotensin(8-13) is a hexapeptide with subnanomolar affinity to the neurotensin receptor 1 which is expressed with high incidence in several human tumor entities. Thus, radiolabeled neurotensin(8-13) might be used for tumor targeting. However, its application is limited by insufficient metabolic stability. The present study aims at improving metabolic stability by the synthesis of multimeric neurotensin(8-13) derivatives rather than commonly employed chemical modifications of the peptide itself. Thus, different dimeric and tetrameric peptides carrying C- or N-terminal attached neurotensin(8-13) moieties have been synthesized and their binding affinity toward the neurotensin receptor has been determined. The results demonstrate that branched compounds containing neurotensin(8-13) attached via its C-terminus only show low receptor affinities, whilst derivatives with neurotensin(8-13) attached via the N-terminus show IC50 values in the nanomolar range. Moreover, within the multimeric neurotensin(8-13) derivatives with neurotensin(8-13) attached via the N-terminus an increasing number of branching units lead to higher binding affinities toward the neurotensin receptor.

  5. Chemoenzymatic assembly of mammalian O-mannose glycans.

    Science.gov (United States)

    Cao, Hongzhi; Meng, Caicai; Sasmal, Aniruddha; Zhang, Yan; Gao, Tian; Liu, Chang-Cheng; Khan, Naazneen; Varki, Ajit; Wang, Fengshan

    2018-05-26

    O-Mannose glycans account up to 30% of total O-glycans in brain. Previous synthesis and functional studies only focused on the Core M3 O-mannose glycans of α-dystroglycan which are a causative factor for various muscular diseases. In this study, a highly efficient chemoenzymatic strategy was developed that enabled the first collective synthesis of 63 Core M1 and Core M2 O-mannose glycans. This chemoenzymatic strategy features the gram-scale chemical synthesis of 5 judiciously designed core structures, and the diversity-oriented modification of the core structures with 3 enzyme modules to provide 58 complex O-mannose glycans in a linear sequence that does not exceed 4 steps. The binding profiles of synthetic O-mannose glycans with a panel of lectins, antibodies and brain proteins were also explored using the printed O-mannose glycan array. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Chemoenzymatic synthesis of fluorogenic phospholipids and evaluation in assays of phospholipases A, C and D

    DEFF Research Database (Denmark)

    Piel, Mathilde S.; Peters, Günther H.J.; Brask, Jesper

    2017-01-01

    Phospholipases are ubiquitous in nature and the target of significant research aiming at both their physiological roles and technical applications in e.g. the food industry. In the search for sensitive and selective phospholipase assays, we have focused on synthetic FRET (Forster resonance energy...... lyso-(dansyl-FA)-GPE-dabcyl (6) and (dansyl-FA)2-GPE-dabcyl (7) were synthesized by a chemoenzymatic strategy, in which preparation of (6) further included a novel selective enzymatic esterification step. As proof of concept, activity of a handful of phospholipases, one from each of the PLA1, PLA2, PLC...

  7. Recent Progress in Chemical and Chemoenzymatic Synthesis of Carbohydrates

    Science.gov (United States)

    Muthana, Saddam; Cao, Hongzhi; Chen, Xi

    2011-01-01

    Summary The important roles that carbohydrates play in biological processes and their potential application in diagnosis, therapeutics, and vaccine development have made them attractive synthetic targets. Despite ongoing challenges, tremendous progresses have been made in recent years for the synthesis of carbohydrates. The chemical glycosylation methods have become more sophisticated and the synthesis of oligosaccharides has become more predictable. Simplified one-pot glycosylation strategy and automated synthesis are increasingly used to obtain biologically important glycans. On the other hand, chemoenzymatic synthesis continues to be a powerful alternative for obtaining complex carbohydrates. This review highlights recent progress in chemical and chemoenzymatic synthesis of carbohydrates with a particular focus on the methods developed for the synthesis of oligosaccharides, polysaccharides, glycolipids, and glycosylated natural products. PMID:19833544

  8. A novel chemo-enzymatic synthesis of hydrophilic phytosterol derivatives.

    Science.gov (United States)

    He, Wen-Sen; Hu, Di; Wang, Yu; Chen, Xue-Yan; Jia, Cheng-Sheng; Ma, Hai-Le; Feng, Biao

    2016-02-01

    In this study, a novel method was developed for chemo-enzymatic synthesis of hydrophilic phytosterol derivatives, phytosteryl polyethylene glycol succinate (PPGS), through an intermediate phytosteryl hemisuccinate (PSHS), which was first chemically prepared and subsequently coupled with polyethylene glycol (PEG) through lipase-catalyzed esterification. The chemical structure of intermediate and goal product were finally confirmed to be PSHS and PPGS by FT-IR, MS and NMR, suggesting that hydrophilic phytosterol derivatives were successfully synthesized. The effects of various parameters on the conversion of PSHS to PPGS were investigated and the highest conversion (>78%) was obtained under the selected conditions: 75 mmol/L PSHS, 1:2M ratio of PSHS to PEG, 50 g/L Novozym 435, 120 g/L 3 Å molecular sieves in tert-butanol, 55 °C, 96 h and 200 rpm. The solubility of phytosterols in water was significantly improved by coupling with PEG, facilitating the incorporation into a variety of foods containing water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates.

    Science.gov (United States)

    Yu, Hai; Chen, Xi

    2016-03-14

    Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with glycosyltransferases in one pot for efficient production of the target glycans from simple monosaccharides and acceptors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitated the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modifications (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequence for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of the glycosyltransferases define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. This Perspective summarizes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed.

  10. Deep Eutectic Solvents Enable More Robust Chemoenzymatic Epoxidation Reactions

    NARCIS (Netherlands)

    Zhou, Pengfei; Wang, Xuping; Zeng, Chaoxi; Wang, Weifei; Yang, Bo; Hollmann, F.; Wang, Yonghua

    2017-01-01

    A chemoenzymatic method for the production of epoxidized vegetable oils was developed. The unique combination of the commercial lipase G from Penicillieum camembertii with certain deep eutectic solvents enabled the efficient production of epoxidized vegetable oils.

  11. Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library.

    Science.gov (United States)

    Sugiura, Nobuo; Clausen, Thomas Mandel; Shioiri, Tatsumasa; Gustavsson, Tobias; Watanabe, Hideto; Salanti, Ali

    2016-12-01

    Placental malaria, a serious infection caused by the parasite Plasmodium falciparum, is characterized by the selective accumulation of infected erythrocytes (IEs) in the placentas of the pregnant women. Placental adherence is mediated by the malarial VAR2CSA protein, which interacts with chondroitin sulfate (CS) proteoglycans present in the placental tissue. CS is a linear acidic polysaccharide composed of repeating disaccharide units of D-glucuronic acid and N-acetyl-D-galactosamine that are modified by sulfate groups at different positions. Previous reports have shown that placental-adhering IEs were associated with an unusually low sulfated form of chondroitin sulfate A (CSA) and that a partially sulfated dodecasaccharide is the minimal motif for the interaction. However, the fine molecular structure of this CS chain remains unclear. In this study, we have characterized the CS chain that interacts with a recombinant minimal CS-binding region of VAR2CSA (rVAR2) using a CS library of various defined lengths and sulfate compositions. The CS library was chemo-enzymatically synthesized with bacterial chondroitin polymerase and recombinant CS sulfotransferases. We found that C-4 sulfation of the N-acetyl-D-galactosamine residue is critical for supporting rVAR2 binding, whereas no other sulfate modifications showed effects. Interaction of rVAR2 with CS is highly correlated with the degree of C-4 sulfation and CS chain length. We confirmed that the minimum structure binding to rVAR2 is a tri-sulfated CSA dodecasaccharide, and found that a highly sulfated CSA eicosasaccharide is a more potent inhibitor of rVAR2 binding than the dodecasaccharides. These results suggest that CSA derivatives may potentially serve as targets in therapeutic strategies against placental malaria.

  12. A Chemoenzymatic Histology Method for O-GlcNAc Detection.

    Science.gov (United States)

    Aguilar, Aime Lopez; Hou, Xiaomeng; Wen, Liuqing; Wang, Peng G; Wu, Peng

    2017-12-14

    Modification of nuclear and cytoplasmic proteins by the addition or removal of O-GlcNAc dynamically impacts multiple biological processes. Here, we present the development of a chemoenzymatic histology method for the detection of O-GlcNAc in tissue specimens. We applied this method to screen murine organs, uncovering specific O-GlcNAc distribution patterns in different tissue structures. We then utilized our histology method for O-GlcNAc detection in human brain specimens from healthy donors and donors with Alzheimer's disease and found higher levels of O-GlcNAc in specimens from healthy donors. We also performed an analysis using a multiple cancer tissue array, uncovering different O-GlcNAc levels between healthy and cancerous tissues, as well as different O-GlcNAc cellular distributions within certain tissue specimens. This chemoenzymatic histology method therefore holds great potential for revealing the biology of O-GlcNAc in physiopathological processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multimeric and trimeric subunit SP-D are interconvertible structures with distinct ligand interaction

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Hoegh, Silje V; Leth-Larsen, Rikke

    2009-01-01

    -D compared to Met11 SP-D. Multimerization has proven important for enhancement of microbial phagocytosis. In the present study defined multimeric forms of Met11Thr SP-D were isolated from human amniotic fluid. Implementation of ManNAc-affinity chromatography allowed high recovery of natural trimeric SP......-D multimers. Trimeric SP-D subunits also showed greater binding to endogenous lipoproteins: LDL, oxLDL, and HDL, than multimeric SP-D. In conclusion, purified trimeric and multimeric SP-D represent separate and only partly interconvertible molecular populations with distinct biochemical properties....

  14. Multimerization rules for G-quadruplexes

    Czech Academy of Sciences Publication Activity Database

    Kolesnikova, Sofia; Hubálek, Martin; Bednárová, Lucie; Cvačka, Josef; Curtis, Edward A.

    2017-01-01

    Roč. 45, č. 15 (2017), s. 8684-8696 ISSN 0305-1048 Institutional support: RVO:61388963 Keywords : tetramolecular G-quadruplexes * RNA G-quadruplexes * circular dichroism Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 10.162, year: 2016 https://academic.oup.com/nar/article/45/15/8684/4002725/Multimerization-rules-for-Gquadruplexes

  15. Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles

    Science.gov (United States)

    Lee, Jiho; Chang, Jeong Ho

    2014-12-01

    This work reports the high-efficient and one-step immobilization of multimeric protein G on magnetic nanoparticles. The histidine-tagged (His-tag) recombinant multimeric protein G was overexpressed in Escherichia coli BL21 by the repeated linking of protein G monomers with a flexible linker. High-efficient immobilization on magnetic nanoparticles was demonstrated by two different preparation methods through the amino-silane and chloro-silane functionalization on silica-coated magnetic nanoparticles. Three kinds of multimeric protein G such as His-tag monomer, dimer, and trimer were tested for immobilization efficiency. For these tests, bicinchoninic acid (BCA) assay was employed to determine the amount of immobilized His-tag multimeric protein G. The result showed that the immobilization efficiency of the His-tag multimeric protein G of the monomer, dimer, and trimer was increased with the use of chloro-silane-functionalized magnetic nanoparticles in the range of 98% to 99%, rather than the use of amino-silane-functionalized magnetic nanoparticles in the range of 55% to 77%, respectively.

  16. Chemoenzymatic combination of glucose oxidase with titanium silicalite -1

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Taarning, Esben; Christensen, Claus H.

    2010-01-01

    Zeozymes: A proof-of-concept is presented for the chemoenzymatic combination of titanium silicalite-1 zeolite with glucose oxidase. In this combination, glucose is oxidized to gluconic acid and the H2O2 byproduct formed in situ is used for the simultaneous oxidation of chemical substrates. Both...... a soluble glucose oxidase and a truly integrated heterogeneous combination whereby the oxidase enzyme is anchored onto the zeolite surface are reported....

  17. Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides.

    Science.gov (United States)

    Chokhawala, Harshal A; Huang, Shengshu; Lau, Kam; Yu, Hai; Cheng, Jiansong; Thon, Vireak; Hurtado-Ziola, Nancy; Guerrero, Juan A; Varki, Ajit; Chen, Xi

    2008-09-19

    Although the vital roles of structures containing sialic acid in biomolecular recognition are well documented, limited information is available on how sialic acid structural modifications, sialyl linkages, and the underlying glycan structures affect the binding or the activity of sialic acid-recognizing proteins and related downstream biological processes. A novel combinatorial chemoenzymatic method has been developed for the highly efficient synthesis of biotinylated sialosides containing different sialic acid structures and different underlying glycans in 96-well plates from biotinylated sialyltransferase acceptors and sialic acid precursors. By transferring the reaction mixtures to NeutrAvidin-coated plates and assaying for the yields of enzymatic reactions using lectins recognizing sialyltransferase acceptors but not the sialylated products, the biotinylated sialoside products can be directly used, without purification, for high-throughput screening to quickly identify the ligand specificity of sialic acid-binding proteins. For a proof-of-principle experiment, 72 biotinylated alpha2,6-linked sialosides were synthesized in 96-well plates from 4 biotinylated sialyltransferase acceptors and 18 sialic acid precursors using a one-pot three-enzyme system. High-throughput screening assays performed in NeutrAvidin-coated microtiter plates show that whereas Sambucus nigra Lectin binds to alpha2,6-linked sialosides with high promiscuity, human Siglec-2 (CD22) is highly selective for a number of sialic acid structures and the underlying glycans in its sialoside ligands.

  18. Elastin-like polypeptide switches: A design strategy to detect multimeric proteins.

    Science.gov (United States)

    Dhandhukia, Jugal P; Brill, Dab A; Kouhi, Aida; Pastuszka, Martha K; MacKay, J Andrew

    2017-09-01

    Elastin-Like Polypeptides (ELPs) reversibly phase separate in response to changes in temperature, pressure, concentration, pH, and ionic species. While powerful triggers, biological microenvironments present a multitude of more specific biological cues, such as antibodies, cytokines, and cell-surface receptors. To develop better biosensors and bioresponsive drug carriers, rational strategies are required to sense and respond to these target proteins. We recently reported that noncovalent association of two ELP fusion proteins to a "chemical inducer of dimerization" small molecule (1.5 kDa) induces phase separation at physiological temperatures. Having detected a small molecule, here we present the first evidence that ELP multimerization can also detect a much larger (60 kDa) protein target. To demonstrate this strategy, ELPs were biotinylated at their amino terminus and mixed with tetrameric streptavidin. At a stoichiometric ratio of [4:1], two to three biotin-ELPs associate with streptavidin into multimeric complexes with an apparent K d of 5 nM. The increased ELP density around a streptavidin core strongly promotes isothermal phase separation, which was tuned to occur at physiological temperature. This phase separation reverses upon saturation with excess streptavidin, which only favors [1:1] complexes. Together, these findings suggest that ELP association with multimeric biomolecules is a viable strategy to deliberately engineer ELPs that respond to multimeric protein substrates. © 2017 The Protein Society.

  19. Tub-Tag Labeling; Chemoenzymatic Incorporation of Unnatural Amino Acids.

    Science.gov (United States)

    Helma, Jonas; Leonhardt, Heinrich; Hackenberger, Christian P R; Schumacher, Dominik

    2018-01-01

    Tub-tag labeling is a chemoenzymatic method that enables the site-specific labeling of proteins. Here, the natural enzyme tubulin tyrosine ligase incorporates noncanonical tyrosine derivatives to the terminal carboxylic acid of proteins containing a 14-amino acid recognition sequence called Tub-tag. The tyrosine derivative carries a unique chemical reporter allowing for a subsequent bioorthogonal modification of proteins with a great variety of probes. Here, we describe the Tub-tag protein modification protocol in detail and explain its utilization to generate labeled proteins for advanced applications in cell biology, imaging, and diagnostics.

  20. Chemo-Enzymatic Synthesis of Chiral Epoxides Ethyl and Methyl (S-3-(Oxiran-2-ylpropanoates from Renewable Levoglucosenone: An Access to Enantiopure (S-Dairy Lactone

    Directory of Open Access Journals (Sweden)

    Aurélien A. M. Peru

    2016-07-01

    Full Text Available Chiral epoxides—such as ethyl and methyl (S-3-(oxiran-2-ylpropanoates ((S-1a/1b—are valuable precursors in many chemical syntheses. Until recently, these compounds were synthesized from glutamic acid in four steps (deamination, reduction, tosylation and epoxide formation in low to moderate overall yield (20%–50%. Moreover, this procedure requires some harmful reagents such as sodium nitrite ((ecotoxic and borane (carcinogen. Herein, starting from levoglucosenone (LGO, a biobased chiral compound obtained through the flash pyrolysis of acidified cellulose, we propose a safer and more sustainable chemo-enzymatic synthetic pathway involving lipase-mediated Baeyer-Villiger oxidation, palladium-catalyzed hydrogenation, tosylation and treatment with sodium ethoxide/methoxide as key steps. This route afforded ethyl and methyl (S-3-(oxiran-2-ylpropanoates in 57% overall yield, respectively. To demonstrate the potentiality of this new synthetic pathway from LGO, the synthesis of high value-added (S-dairy lactone was undertaken from these epoxides and provided the target in 37% overall yield from LGO.

  1. Chemoenzymatic elaboration of monosaccharides using engineered cytochrome P450_(BM3) demethylases

    OpenAIRE

    Lewis, Jared C.; Bastian, Sabine; Bennett, Clay S.; Fu, Yu; Mitsuda, Yuuichi; Chen, Mike M.; Greenberg, William A.; Wong, Chi-Huey; Arnold, Frances H.

    2009-01-01

    Polysaccharides comprise an extremely important class of biopolymers that play critical roles in a wide range of biological processes, but the synthesis of these compounds is challenging because of their complex structures. We have developed a chemoenzymatic method for regioselective deprotection of monosaccharide substrates using engineered Bacillus megaterium cytochrome P450 (P450_(BM3)) demethylases that provides a highly efficient means to access valuable intermediate...

  2. Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins.

    Science.gov (United States)

    Park, Su-Jung; Ciccone, Samantha L M; Beck, Brian D; Hwang, Byounghoon; Freie, Brian; Clapp, D Wade; Lee, Suk-Hee

    2004-07-16

    Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function.

  3. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Samantha C Lewis

    2015-02-01

    Full Text Available Mitochondrial DNA (mtDNA encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.

  4. Multimeric, Multifunctional Derivatives of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Gian Maria Bonora

    2011-07-01

    Full Text Available This article reviews the use of multifunctional polymers founded on high-molecular weight poly(ethylene glycol (PEG. The design of new PEG derivatives assembled in a dendrimer-like multimeric fashion or bearing different functionalities on the same molecule is described. Their use as new drug delivery systems based on the conjugation of multiple copies or diversely active drugs on the same biocompatible support is illustrated.

  5. An integrated chemo-enzymatic route for preparation of ß-thymidine, a key intermediate in the preparation of antiretrovirals

    CSIR Research Space (South Africa)

    Gordon, GER

    2011-01-01

    Full Text Available A chemo-enzymatic method for production of ß-thymidine, an intermediate in the synthesis of antiretrovirals, is described. Guanosine and thymine were converted by means of enzymatic transglycosylation to yield 5-methyluridine (5-MU), which...

  6. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance

    DEFF Research Database (Denmark)

    Sørensen, Anne Louise; Reis, Celso A; Tarp, Mads A

    2005-01-01

    The MUC1 mucin represents a prime target antigen for cancer immunotherapy because it is abundantly expressed and aberrantly glycosylated in carcinomas. Attempts to generate strong humoral immunity to MUC1 by immunization with peptides have generally failed partly because of tolerance. In this stu...

  7. Automated chemoenzymatic synthesis of no-carrier-added [carbonyl-11C]propionyl L-carnitine for pharmacokinetic studies

    International Nuclear Information System (INIS)

    Davenport, R.J.; Pike, V.W.; Dowsett, K.; Turton, D.R.; Poole, K.

    1997-01-01

    Propionyl-L-carnitine (PLC) is under development as a therapeutic for the treatment of peripheral artery disease, coronary heart disease and chronic heart failure. Three methods were examined for labelling PLC in its propionyl group with positron-emitting carbon-11 (t 1/2 = 20.3 min), one chemical and two chemoenzymatic. The former was based on the preparation of [ 11 C]propionyl chloride as labelling agent via 11 C-carboxylation of ethylmagnesium bromide with cyclotron-produced [ 11 C]carbon dioxide and subsequent chlorination. Reaction of carrier-added [ 11 C]propionyl chloride with L-carnitine in trifluoroacetic acid gave [ 11 C]PLC in 12% radiochemical yield (decay-corrected) from cyclotron-produced [ 11 C]carbon dioxide. However, the radiosynthesis was unsuccessful at the no-carrier added (NCA) level of specific radioactivity. [ 11 C]Propionate, as a radioactive precursor for chemoenzymatic routes, was prepared via carboxylation of ethylmagnesium bromide with [ 11 C]carbon dioxide and hydrolysis. NCA [ 11 C]PLC was prepared in 68 min in 14% radiochemical yield (decay-corrected) from [ 11 C]propionate via sequential conversions catalysed by acetate kinase, phosphotransacetylase and carnitine acetyltransferase. A superior chemoenzymatic synthesis of NCA [ 11 C]PLC was developed, based on the use of a novel supported Grignard reagent for the synthesis of [ 11 C]propionate and conversions by S-acetyl-CoA synthetase and carnitine acetyltransferase. This gave an overall radiochemical yield of 30-48% (decay-corrected). This synthesis was automated for radiation safety and provides pure NCA [ 11 C]PLC in high radioactivities ready for intravenous administration within 25 min from radionuclide production. The [ 11 C]PLC is suitable for pharmacokinetic studies in human subjects with PET and the elucidation of the fate of the propionyl group of PLC in vivo. (Author)

  8. Distinct subcellular trafficking resulting from monomeric vs multimeric targeting to endothelial ICAM-1: implications for drug delivery.

    Science.gov (United States)

    Ghaffarian, Rasa; Muro, Silvia

    2014-12-01

    Ligand-targeted, receptor-mediated endocytosis is commonly exploited for intracellular drug delivery. However, cells-surface receptors may follow distinct endocytic fates when bound by monomeric vs multimeric ligands. Our purpose was to study this paradigm using ICAM-1, an endothelial receptor involved in inflammation, to better understand its regulation and potential for drug delivery. Our procedure involved fluorescence microscopy of human endothelial cells to determine the endocytic behavior of unbound ICAM-1 vs ICAM-1 bound by model ligands: monomeric (anti-ICAM) vs multimeric (anti-ICAM biotin-streptavidin conjugates or anti-ICAM coated onto 100 nm nanocarriers). Our findings suggest that both monomeric and multimeric ligands undergo a similar endocytic pathway sensitive to amiloride (∼50% inhibition), but not inhibitors of clathrin-pits or caveoli. After 30 min, ∼60-70% of both ligands colocalized with Rab11a-compartments. By 3-5 h, ∼65-80% of multimeric anti-ICAM colocalized with perinuclear lysosomes with ∼60-80% degradation, while 70% of monomeric anti-ICAM remained associated with Rab11a at the cell periphery and recycled to and from the cell-surface with minimal (drug delivery.

  9. Automated chemoenzymatic synthesis of no-carrier-added [carbonyl-{sup 11}C]propionyl L-carnitine for pharmacokinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, R.J.; Pike, V.W.; Dowsett, K.; Turton, D.R.; Poole, K. [Hammersmith Hospital, London (United Kingdom). MRC Cyclotron Unit

    1997-07-30

    Propionyl-L-carnitine (PLC) is under development as a therapeutic for the treatment of peripheral artery disease, coronary heart disease and chronic heart failure. Three methods were examined for labelling PLC in its propionyl group with positron-emitting carbon-11 (t{sub 1/2} = 20.3 min), one chemical and two chemoenzymatic. The former was based on the preparation of [{sup 11}C]propionyl chloride as labelling agent via {sup 11}C-carboxylation of ethylmagnesium bromide with cyclotron-produced [{sup 11}C]carbon dioxide and subsequent chlorination. Reaction of carrier-added [{sup 11}C]propionyl chloride with L-carnitine in trifluoroacetic acid gave [{sup 11}C]PLC in 12% radiochemical yield (decay-corrected) from cyclotron-produced [{sup 11}C]carbon dioxide. However, the radiosynthesis was unsuccessful at the no-carrier added (NCA) level of specific radioactivity. [{sup 11}C]Propionate, as a radioactive precursor for chemoenzymatic routes, was prepared via carboxylation of ethylmagnesium bromide with [{sup 11}C]carbon dioxide and hydrolysis. NCA [{sup 11}C]PLC was prepared in 68 min in 14% radiochemical yield (decay-corrected) from [{sup 11}C]propionate via sequential conversions catalysed by acetate kinase, phosphotransacetylase and carnitine acetyltransferase. A superior chemoenzymatic synthesis of NCA [{sup 11}C]PLC was developed, based on the use of a novel supported Grignard reagent for the synthesis of [{sup 11}C]propionate and conversions by S-acetyl-CoA synthetase and carnitine acetyltransferase. This gave an overall radiochemical yield of 30-48% (decay-corrected). This synthesis was automated for radiation safety and provides pure NCA [{sup 11}C]PLC in high radioactivities ready for intravenous administration within 25 min from radionuclide production. The [{sup 11}C]PLC is suitable for pharmacokinetic studies in human subjects with PET and the elucidation of the fate of the propionyl group of PLC in vivo. (Author).

  10. Surfactant protein D multimerization and gene polymorphism in COPD and asthma

    DEFF Research Database (Denmark)

    Fakih, Dalia; Akiki, Zeina; Junker, Kirsten

    2018-01-01

    BACKGROUND AND OBJECTIVE: A structural single nucleotide polymorphism rs721917 in the surfactant protein D (SP-D) gene, known as Met11Thr, was reported to influence the circulating levels and degree of multimerization of SP-D and was associated with both COPD and atopy in asthma. Moreover, diseas...

  11. The Bryopsis hypnoides plastid genome: multimeric forms and complete nucleotide sequence.

    Directory of Open Access Journals (Sweden)

    Fang Lü

    Full Text Available BACKGROUND: Bryopsis hypnoides Lamouroux is a siphonous green alga, and its extruded protoplasm can aggregate spontaneously in seawater and develop into mature individuals. The chloroplast of B. hypnoides is the biggest organelle in the cell and shows strong autonomy. To better understand this organelle, we sequenced and analyzed the chloroplast genome of this green alga. PRINCIPAL FINDINGS: A total of 111 functional genes, including 69 potential protein-coding genes, 5 ribosomal RNA genes, and 37 tRNA genes were identified. The genome size (153,429 bp, arrangement, and inverted-repeat (IR-lacking structure of the B. hypnoides chloroplast DNA (cpDNA closely resembles that of Chlorella vulgaris. Furthermore, our cytogenomic investigations using pulsed-field gel electrophoresis (PFGE and southern blotting methods showed that the B. hypnoides cpDNA had multimeric forms, including monomer, dimer, trimer, tetramer, and even higher multimers, which is similar to the higher order organization observed previously for higher plant cpDNA. The relative amounts of the four multimeric cpDNA forms were estimated to be about 1, 1/2, 1/4, and 1/8 based on molecular hybridization analysis. Phylogenetic analyses based on a concatenated alignment of chloroplast protein sequences suggested that B. hypnoides is sister to all Chlorophyceae and this placement received moderate support. CONCLUSION: All of the results suggest that the autonomy of the chloroplasts of B. hypnoides has little to do with the size and gene content of the cpDNA, and the IR-lacking structure of the chloroplasts indirectly demonstrated that the multimeric molecules might result from the random cleavage and fusion of replication intermediates instead of recombinational events.

  12. A Chemo-Enzymatic Road Map to the Synthesis of CoA Esters

    Directory of Open Access Journals (Sweden)

    Dominik M. Peter

    2016-04-01

    Full Text Available Coenzyme A (CoA is a ubiquitous cofactor present in every known organism. The thioesters of CoA are core intermediates in many metabolic processes, such as the citric acid cycle, fatty acid biosynthesis and secondary metabolism, including polyketide biosynthesis. Synthesis of CoA-thioesters is vital for the study of CoA-dependent enzymes and pathways, but also as standards for metabolomics studies. In this work we systematically tested five chemo-enzymatic methods for the synthesis of the three most abundant acyl-CoA thioester classes in biology; saturated acyl-CoAs, α,β-unsaturated acyl-CoAs (i.e., enoyl-CoA derivatives, and α-carboxylated acyl-CoAs (i.e., malonyl-CoA derivatives. Additionally we report on the substrate promiscuity of three newly described acyl-CoA dehydrogenases that allow the simple conversion of acyl-CoAs into enoyl-CoAs. With these five methods, we synthesized 26 different CoA-thioesters with a yield of 40% or higher. The CoA esters produced range from short- to long-chain, include branched and α,β-unsaturated representatives as well as other functional groups. Based on our results we provide a general guideline to the optimal synthesis method of a given CoA-thioester in respect to its functional group(s and the commercial availability of the precursor molecule. The proposed synthetic routes can be performed in small scale and do not require special chemical equipment, making them convenient also for biological laboratories.

  13. Chemo-enzymatic modification of poly-N-acetyllactosamine (LacNAc) oligomers and N,N-diacetyllactosamine (LacDiNAc) based on galactose oxidase treatment

    Czech Academy of Sciences Publication Activity Database

    Kupper, E. Ch.; Rosencrantz, R. R.; Henßen, B.; Pelantová, Helena; Thönes, S.; Drozdová, Anna; Křen, Vladimír; Elling, L.

    2012-01-01

    Roč. 8, MAY 9 2012 (2012), s. 712-725 ISSN 1860-5397 R&D Projects: GA MŠk OC09045 Keywords : chemo-enzymatic synthesis * galactose oxidase * glycosyltransferase Subject RIV: CE - Biochemistry Impact factor: 2.801, year: 2012

  14. Radiation inactivation of multimeric enzymes: application to subunit interactions of adenylate cyclase

    International Nuclear Information System (INIS)

    Verkman, A.S.; Skorecki, K.L.; Ausiello, D.A.

    1986-01-01

    Radiation inactivation has been applied extensively to determine the molecular weight of soluble enzyme and receptor systems from the slope of a linear ln (activity) vs. dose curve. Complex nonlinear inactivation curves are predicted for multimeric enzyme systems, composed of distinct subunits in equilibrium with multimeric complexes. For the system A1 + A2----A1A2, with an active A1A2 complex (associative model), the ln (activity) vs. dose curve is linear for high dissociation constant, K. If a monomer, A1, has all the enzyme activity (dissociative model), the ln (activity) vs. dose curve has an activation hump at low radiation dose if the inactive subunit, A2, has a higher molecular weight than A1 and has upward concavity when A2 is smaller than A1. In general, a radiation inactivation model for a multistep mechanism for enzyme activation fulfills the characteristics of an associative or dissociative model if the reaction step forming active enzyme is an associative or dissociative reaction. Target theory gives the molecular weight of the active enzyme subunit or complex from the limiting slope of the ln (activity) vs. dose curve at high radiation dose. If energy transfer occurs among subunits in the multimer, the ln (activity) vs. dose curve is linear for a single active component and is concave upward for two or more active components. The use of radiation inactivation as a method to determine enzyme size and multimeric subunit assembly is discussed with specific application to the hormone-sensitive adenylate cyclase system. It is shown that the complex inactivation curves presented in the accompanying paper can be used select the best mechanism out of a series of seven proposed mechanisms for the activation of adenylate cyclase by hormone

  15. A Rhizavidin Monomer with Nearly Multimeric Avidin-Like Binding Stability Against Biotin Conjugates.

    Science.gov (United States)

    Lee, Jeong Min; Kim, Jung A; Yen, Tzu-Chi; Lee, In Hwan; Ahn, Byungjun; Lee, Younghoon; Hsieh, Chia-Lung; Kim, Ho Min; Jung, Yongwon

    2016-03-01

    Developing a monomeric form of an avidin-like protein with highly stable biotin binding properties has been a major challenge in biotin-avidin linking technology. Here we report a monomeric avidin-like protein-enhanced monoavidin-with off-rates almost comparable to those of multimeric avidin proteins against various biotin conjugates. Enhanced monoavidin (eMA) was developed from naturally dimeric rhizavidin by optimally maintaining protein rigidity during monomerization and additionally shielding the bound biotin by diverse engineering of the surface residues. eMA allowed the monovalent and nonperturbing labeling of head-group-biotinylated lipids in bilayer membranes. In addition, we fabricated an unprecedented 24-meric avidin probe by fusing eMA to a multimeric cage protein. The 24-meric avidin and eMA were utilized to demonstrate how artificial clustering of cell-surface proteins greatly enhances the internalization rates of assembled proteins on live cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-06-14

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.

  17. Chemo-enzymatic Baeyer-Villiger oxidation of 4-methylcyclohexanone via kinetic resolution of racemic carboxylic acids: direct access to enantioenriched lactone.

    Science.gov (United States)

    Drożdż, Agnieszka; Chrobok, Anna

    2016-01-21

    A new method for the asymmetric chemo-enzymatic Baeyer-Villiger oxidation of prochiral 4-methylcyclohexanone to (R)-4-methylcaprolactone in the presence of (±)-4-methyloctanoic acid, Candida Antarctica lipase B and 30% aq. H2O2 has been developed. A mechanism for the asymmetric induction based on kinetic resolution of racemic carboxylic acids is proposed.

  18. TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn2+

    Directory of Open Access Journals (Sweden)

    Joseph B. Rayman

    2018-01-01

    Full Text Available Summary: Stress granules are non-membranous structures that transiently form in the cytoplasm during cellular stress, where they promote translational repression of non-essential RNAs and modulate cell signaling by sequestering key signal transduction proteins. These and other functions of stress granules facilitate an adaptive cellular response to environmental adversity. A key component of stress granules is the prion-related RNA-binding protein, T cell intracellular antigen-1 (TIA-1. Here, we report that recombinant TIA-1 undergoes rapid multimerization and phase separation in the presence of divalent zinc, which can be reversed by the zinc chelator, TPEN. Similarly, the formation and maintenance of TIA-1-positive stress granules in arsenite-treated cells are inhibited by TPEN. In addition, Zn2+ is released in cells treated with arsenite, before stress granule formation. These findings suggest that Zn2+ is a physiological ligand of TIA-1, acting as a stress-inducible second messenger to promote multimerization of TIA-1 and subsequent localization into stress granules. : Rayman et al. show that Zn2+ is a stress-inducible second messenger that triggers self-multimerization and phase separation of TIA-1 and regulates dynamic recruitment of TIA-1 into stress granules. This mechanism is part of an adaptive cellular response to environmental adversity. Keywords: TIA-1, TIA1, stress granules, cellular stress, functional prion, phase separation, zinc regulation

  19. Monomeric, dimeric and multimeric system of RGD peptides radiolabeled with 177Lu for tumors therapy that expressing αβ integrin s

    International Nuclear Information System (INIS)

    Luna G, M. A.

    2014-01-01

    The conjugation of peptides to gold nanoparticles (AuNPs) produces biocompatible and stable multimeric systems with target-specific molecular recognition. Peptides based on the cyclic Arg-Gly-Asp (RGD) sequence have been reported as high affinity agents for the α(v)β(3) and α(v)β(5) integrin. The aim of this research was to prepare a multimeric system of 177 Lu-labeled gold nanoparticles conjugated to c[RGDfK(C)] [cyclo(Arg-Gly-Asp-Phe-Lys(Cys)] peptides and to compare the radiation absorbed dose with that of 177 Lu-labeled monomeric and dimeric RGD peptides to α(v)β(3) integrin-positive U87MG tumors in mice, as well as, evaluate the in vitro potential 177 Lu-AuNP-c[RGDfK(C)] as a plasmonic photothermal therapy and targeted radiotherapy system in MCF7 breast cancer cells. DOTA-GGC (1,4,7,10-tetraaza cyclododecane-N,N,N-tetraacetic-Gly-Gly-Cys) and c[RGDfK(C)] peptides were synthesized and conjugated to AuNPs by the spontaneous reaction of the thiol groups. Tem, UV-Vis, XP S, Raman and Far-IR spectroscopy techniques demonstrated that AuNPs were functionalized with the peptides. To obtain 177 Lu-AuNP-c[RGDfK(C)], the 177 Lu-DOTA-GGC radio peptide was first prepared and added to a solution of AuNPs followed by c[RGDfK(C)] (25 μL, 5 μM) at 18 grades C for 15 min. 177 Lu-DOTA-GGC, 177 Lu- DOTA-cRGDfK and 177 Lu-DOTA-E-c(RGDfK) 2 were prepared by adding 177 LuCl 3 (370 MBq) to 5 μL (1 mg/ml) of the DOTA derivative diluted with 50 μL of 1 M acetate buffer at ph 5. The mixture was incubated at 90 grades C in a block heater for 30 min. Radiochemical purity was determined by ultrafiltration and HPLC analyses. After laser irradiation, the presence of c[RGDfK(C)]-AuNP in cells caused a significant increase in the temperature of the medium (50.5 grades C, compared to 40.3 grades C without AuNPs) resulting in a significant decrease in MCF7 cell viability down to 9 %. After treatment with 177 Lu-AuNP-c[RGDfK(C)], the MCF7 cell proliferation was significantly inhibited

  20. A one bath chemo-enzymatic process for preparation of absorbent cotton

    Directory of Open Access Journals (Sweden)

    A.S.M. Raja

    2016-09-01

    Full Text Available Cotton is the raw material for preparation of absorbent cotton. Raw cotton has to be subjected to scouring and bleaching processes for making it absorbent by removing the naturally present wax, protein and minerals in the fibre. The scouring is done at 115 °C using alkali followed by bleaching at boiling condition using alkaline hydrogen peroxide solution. The effluent coming out of such processes contains high COD and BOD values. Due to the stringent environmental regulation and great awareness among the public about environment, worldwide attempts have been made to develop green and sustainable chemical processing of materials. Based on the above, in the present study efforts have been made to develop an eco-friendly one bath preparatory process for the production of absorbent cotton using chemo-enzymatic formulation. The result indicated that absorbent cotton produced using the developed process fulfilled the required performance properties as per pharmacopoeia in comparable with the conventional process made one.

  1. Conformational changes of the N-terminal part of Mason-Pfizer monkey virus p12 protein during multimerization

    Czech Academy of Sciences Publication Activity Database

    Knejzlík, Z.; Ulbrich, P.; Strohalm, Martin; Laštůvková, H.; Kodíček, M.; Sakalian, M.; Ruml, T.

    2009-01-01

    Roč. 393, č. 1 (2009), s. 168-176 ISSN 0042-6822 Institutional research plan: CEZ:AV0Z50200510 Keywords : alpha-Helix * Multimerization * CD spectroscopy Subject RIV: EE - Microbiology, Virology Impact factor: 3.042, year: 2009

  2. Adipocyte spliced form of X-box-binding protein 1 promotes adiponectin multimerization and systemic glucose homeostasis

    NARCIS (Netherlands)

    Sha, H.; Yang, L.; Liu, M.; Xia, S.; Liu, Y.; Liu, F.; Kersten, A.H.; Qi, L.

    2014-01-01

    The physiological role of the spliced form of X-box–binding protein 1 (XBP1s), a key transcription factor of the endoplasmic reticulum (ER) stress response, in adipose tissue remains largely unknown. In this study, we show that overexpression of XBP1s promotes adiponectin multimerization in

  3. Chemo-enzymatic Synthesis of Clickable Xylo-oligosaccharide Monomers from Hardwood 4-O-Methylglucuronoxylan.

    Science.gov (United States)

    MacCormick, Benjamin; Vuong, Thu V; Master, Emma R

    2018-02-12

    A chemo-enzymatic pathway was developed to transform 4-O-methylglucuronic acid (MeGlcpA) containing xylo-oligosaccharides from beechwood into clickable monomers capable of polymerizing at room temperature and in aqueous conditions to form unique polytriazoles. While the gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum was used to oxidize C6-propargylated oligosaccharides, the acid-amine coupling reagents 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDAC) and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) were employed and compared for their ability to append click functionalities to carboxylic acid groups of enzyme-treated oligosaccharides. While DMT-MM was a superior coupling reagent for this application, a triazine side product was observed during C-1 amidation. Resulting bifunctional xylo-oligosaccharide monomers were polymerized using a Cu(I) catalyst, forming a soft gel which was characterized by 1 H NMR, confirming the triazole product.

  4. Enhancement of Muramyldipeptide (MDP) Immunostimulatory Activity by Controlled Multimerization on Dendrimers

    DEFF Research Database (Denmark)

    Sørensen, Nanna Skall; Boas, Ulrik; Heegaard, Peter M. H.

    2011-01-01

    Peptidoglycan is a widespread bacterial PAMP molecule and a powerful initiator of innate immune responses. It consists of repeating units of MDP, which as a monomer is only weakly immunostimulatory. Here, MDP-coupled dendrimers were prepared and investigated for stimulation of pig blood mononuclear...... cells. Compared to monomeric MDP, MDP-dendrimers induced a markedly enhanced production of IL-12 p40, IL-1β and IL-6 and completely down-regulated surface expression of B7 and MHC class II. These results suggest a possible novel strategy based on controlled multimerization of minimal PAMP motifs...... on dendrimers for preparing molecularly defined immunostimulators with predictable bioactivities....

  5. TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn2.

    Science.gov (United States)

    Rayman, Joseph B; Karl, Kevin A; Kandel, Eric R

    2018-01-02

    Stress granules are non-membranous structures that transiently form in the cytoplasm during cellular stress, where they promote translational repression of non-essential RNAs and modulate cell signaling by sequestering key signal transduction proteins. These and other functions of stress granules facilitate an adaptive cellular response to environmental adversity. A key component of stress granules is the prion-related RNA-binding protein, T cell intracellular antigen-1 (TIA-1). Here, we report that recombinant TIA-1 undergoes rapid multimerization and phase separation in the presence of divalent zinc, which can be reversed by the zinc chelator, TPEN. Similarly, the formation and maintenance of TIA-1-positive stress granules in arsenite-treated cells are inhibited by TPEN. In addition, Zn 2+ is released in cells treated with arsenite, before stress granule formation. These findings suggest that Zn 2+ is a physiological ligand of TIA-1, acting as a stress-inducible second messenger to promote multimerization of TIA-1 and subsequent localization into stress granules. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Ultrasound-assisted chemoenzymatic epoxidation of soybean oil by using lipase as biocatalyst.

    Science.gov (United States)

    Bhalerao, Machhindra S; Kulkarni, Vaishali M; Patwardhan, Anand V

    2018-01-01

    The present work reports the use of ultrasonic irradiation for enhancing lipase catalyzed epoxidation of soybean oil. Higher degree of unsaturated fatty acids, present in the soybean oil was converted to epoxidized soybean oil by using an immobilized lipase, Candida antarctica (Novozym 435). The effects of various parameters on the relative percentage conversion of the double bond to oxirane oxygen were investigated and the optimum conditions were established. The parameters studied were temperature, hydrogen peroxide to ethylenic unsaturation mole ratio, stirring speed, solvent ratio, catalyst loading, ultrasound frequency, ultrasound input power and duty cycle. The main objective of this work was to intensify chemoenzymatic epoxidation of the soybean oil by using ultrasound, to reduce the time required for epoxidation. Epoxidation of the soybean oil was achieved under mild reaction conditions by indirect ultrasonic irradiations (using ultrasonic bath). The relative percentage conversion to oxirane oxygen of 91.22% was achieved within 5h. The lipase was remarkably stable under optimized reaction conditions, later was recovered and reused six times to produce epoxidized soybean oil (ESO). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Chemoenzymatic site-specific labeling of influenza glycoproteins as a tool to observe virus budding in real time.

    Directory of Open Access Journals (Sweden)

    Maximilian Wei-Lin Popp

    Full Text Available The influenza virus uses the hemagglutinin (HA and neuraminidase (NA glycoproteins to interact with and infect host cells. While biochemical and microscopic methods allow examination of the early steps in flu infection, the genesis of progeny virions has been more difficult to follow, mainly because of difficulties inherent in fluorescent labeling of flu proteins in a manner compatible with live cell imaging. We here apply sortagging as a chemoenzymatic approach to label genetically modified but infectious flu and track the flu glycoproteins during the course of infection. This method cleanly distinguishes influenza glycoproteins from host glycoproteins and so can be used to assess the behavior of HA or NA biochemically and to observe the flu glycoproteins directly by live cell imaging.

  8. An investigation of nitrile transforming enzymes in the chemo-enzymatic synthesis of the taxol sidechain.

    Science.gov (United States)

    Wilding, Birgit; Veselá, Alicja B; Perry, Justin J B; Black, Gary W; Zhang, Meng; Martínková, Ludmila; Klempier, Norbert

    2015-07-28

    Paclitaxel (taxol) is an antimicrotubule agent widely used in the treatment of cancer. Taxol is prepared in a semisynthetic route by coupling the N-benzoyl-(2R,3S)-3-phenylisoserine sidechain to the baccatin III core structure. Precursors of the taxol sidechain have previously been prepared in chemoenzymatic approaches using acylases, lipases, and reductases, mostly featuring the enantioselective, enzymatic step early in the reaction pathway. Here, nitrile hydrolysing enzymes, namely nitrile hydratases and nitrilases, are investigated for the enzymatic hydrolysis of two different sidechain precursors. Both sidechain precursors, an openchain α-hydroxy-β-amino nitrile and a cyanodihydrooxazole, are suitable for coupling to baccatin III directly after the enzymatic step. An extensive set of nitrilases and nitrile hydratases was screened towards their activity and selectivity in the hydrolysis of two taxol sidechain precursors and their epimers. A number of nitrilases and nitrile hydratases converted both sidechain precursors and their epimers.

  9. Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces

    Czech Academy of Sciences Publication Activity Database

    Sauerzapfe, B.; Křenek, Karel; Schmiedel, J.; Wakarchuk, W.W.; Pelantová, Helena; Křen, Vladimír; Elling, L.

    2009-01-01

    Roč. 26, č. 2 (2009), s. 141-159 ISSN 0282-0080 R&D Projects: GA AV ČR IAA400200503; GA MŠk(CZ) LC06010 Grant - others:CZ(CZ) DAAD-AV ČR projekt PPP-D7-CZ 26/04-05D/03/44448 Institutional research plan: CEZ:AV0Z50200510 Keywords : chemo-enzymatic sysnthesis * galectin binding * biomaterials Subject RIV: EE - Microbiology, Virology Impact factor: 2.500, year: 2009

  10. The ability of multimerized cyclophilin A to restrict retrovirus infection

    International Nuclear Information System (INIS)

    Javanbakht, Hassan; Diaz-Griffero, Felipe; Yuan Wen; Yeung, Darwin F.; Li Xing; Song Byeongwoon; Sodroski, Joseph

    2007-01-01

    In owl monkeys, the typical retroviral restriction factor of primates, TRIM5α, is replaced by TRIMCyp. TRIMCyp consists of the TRIM5 RING, B-box 2 and coiled-coil domains, as well as the intervening linker regions, fused with cyclophilin A. TRIMCyp restricts infection of retroviruses, such as human immunodeficiency virus (HIV-1) and feline immunodeficiency virus (FIV), with capsids that can bind cyclophilin A. The TRIM5 coiled coil promotes the trimerization of TRIMCyp. Here we show that cyclophilin A that is oligomeric as a result of fusion with a heterologous multimer exhibits substantial antiretroviral activity. The addition of the TRIM5 RING, B-box 2 and Linker 2 to oligomeric cyclophilin A generated a protein with antiretroviral activity approaching that of wild-type TRIMCyp. Multimerization increased the binding of cyclophilin A to the HIV-1 capsid, promoting accelerated uncoating of the capsid and restriction of infection

  11. Isolation and chemoenzymatic treatment of glycoalkaloids from green, sprouting and rotting Solanum tuberosum potatoes for solanidine recovery.

    Science.gov (United States)

    Koffi, Grokoré Yvonne; Remaud-Simeon, Magali; Due, Ahipo Edmond; Combes, Didier

    2017-04-01

    The estimation of glycoalkaloids in the flesh of different types of decayed potatoes was evaluated. The results showed that turned green and also sprouting or rotting potato flesh contain high amounts of toxic solanine and chaconine, exceeding by 2-5-fold the recommended limit, and ranging from 2578±86mg/kg to 5063±230mg/kg of dry weight potato flesh. For safety consideration, these decayed potatoes should be systematically set aside. To avoid a net economic loss and encourage the removal of this hazardous food, a recycling process was investigated to generate added-value compounds from the toxic glycoalkaloids. A simple chemo-enzymatic protocol comprising a partial acidic hydrolysis followed by an enzymatic treatment with the β-glycosidase from Periplaneta americana allowed the efficient conversion of α-chaconine to solanidine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Sequence determination of synthesized chondroitin sulfate dodecasaccharides.

    Science.gov (United States)

    Shioiri, Tatsumasa; Tsuchimoto, Jun; Watanabe, Hideto; Sugiura, Nobuo

    2016-06-01

    Chondroitin sulfate (CS) is a linear acidic polysaccharide composed of repeating disaccharide units of glucuronic acid and N-acetyl-d-galactosamine. The polysaccharide is modified with sulfate groups at different positions by a variety of sulfotransferases. CS chains exhibit various biological and pathological functions by interacting with cytokines and growth factors and regulating their signal transduction. The fine structure of the CS chain defines its specific biological roles. However, structural analysis of CS has been restricted to disaccharide analysis, hampering the understanding of the structure-function relationship of CS chains. Here, we chemo-enzymatically synthesized CS dodecasaccharides having various sulfate modifications using a bioreactor system of bacterial chondroitin polymerase mutants and various CS sulfotransferases. We developed a sequencing method for CS chains using the CS dodecasaccharides. The method consists of (i) labeling a reducing end with 2-aminopyridine (PA), (ii) partial digestion of CS with testicular hyaluronidase, followed by separation of PA-conjugated oligosaccharides with different chain lengths, (iii) limited digestion of these oligosaccharides with chondroitin lyase AC II into disaccharides, followed by labeling with 2-aminobenzamide, (iv) CS disaccharide analysis using a dual-fluorescence HPLC system (reversed-phase ion-pair and ion-exchange chromatography), and (v) estimation of the composition by calculating individual disaccharide ratios. This CS chain sequencing allows characterization of CS-modifying enzymes and provides a useful tool toward understanding the structure-function relationship of CS chains. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. High-level expression of an antimicrobial peptide histonin as a natural form by multimerization and furin-mediated cleavage.

    Science.gov (United States)

    Kim, Jung Min; Jang, Su A; Yu, Byung Jo; Sung, Bong Hyun; Cho, Ju Hyun; Kim, Sun Chang

    2008-02-01

    Direct expression of an antimicrobial peptide (AMP) in Escherichia coli causes several problems such as the toxicity of AMP to the host cell, its susceptibility to proteolytic degradation, and decreased antimicrobial activity due to the additional residue(s) introduced after cleavage of AMPs from fusion partners. To overcome these problems and produce a large quantity of a potent AMP histonin (RAGLQFPVGKLLKKLLKRLKR) in E. coli, an efficient expression system was developed, in which the toxicity of histonin was neutralized by a fusion partner F4 (a truncated fragment of PurF protein) and the productivity was increased by a multimeric expression of a histonin gene. The expression level of the fusion proteins reached a maximum with a 12-mer of a histonin gene. In addition, because of the RLKR residues present at the C terminus of histonin, furin cleavage of the multimeric histonin expressed produces an intact, natural histonin. The AMP activity of the histonin produced in E. coli was identical to that of a synthetic histonin. With our expression system, 167 mg of histonin was obtained from 1 l of E. coli culture. These results may lead to a cost-effective solution for the mass production of AMPs that are toxic to a host.

  14. Chemoenzymatic dynamic kinetic resolution of primary amines using a recyclable palladium nanoparticle catalyst together with lipases.

    Science.gov (United States)

    Gustafson, Karl P J; Lihammar, Richard; Verho, Oscar; Engström, Karin; Bäckvall, Jan-E

    2014-05-02

    A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 °C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 °C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times.

  15. Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines

    Science.gov (United States)

    2015-01-01

    Chemoenzymatic dynamic kinetic resolution (DKR) constitutes a convenient and efficient method to access enantiomerically pure alcohol and amine derivatives. This Perspective highlights the work carried out within this field during the past two decades and pinpoints important avenues for future research. First, the Perspective will summarize the more developed area of alcohol DKR, by delineating the way from the earliest proof-of-concept protocols to the current state-of-the-art systems that allows for the highly efficient and selective preparation of a wide range of enantiomerically pure alcohol derivatives. Thereafter, the Perspective will focus on the more challenging DKR of amines, by presenting the currently available homogeneous and heterogeneous methods and their respective limitations. In these two parts, significant attention will be dedicated to the design of efficient racemization methods as an important means of developing milder DKR protocols. In the final part of the Perspective, a brief overview of the research that has been devoted toward improving enzymes as biocatalysts is presented. PMID:25730714

  16. Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.

    Science.gov (United States)

    Nomura, Wataru; Hashimoto, Chie; Suzuki, Takaharu; Ohashi, Nami; Fujino, Masayuki; Murakami, Tsutomu; Yamamoto, Naoki; Tamamura, Hirokazu

    2013-08-01

    To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Essential multimeric enzymes in kinetoplastid parasites: A host of potentially druggable protein-protein interactions.

    Science.gov (United States)

    Wachsmuth, Leah M; Johnson, Meredith G; Gavenonis, Jason

    2017-06-01

    Parasitic diseases caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania are an urgent public health crisis in the developing world. These closely related species possess a number of multimeric enzymes in highly conserved pathways involved in vital functions, such as redox homeostasis and nucleotide synthesis. Computational alanine scanning of these protein-protein interfaces has revealed a host of potentially ligandable sites on several established and emerging anti-parasitic drug targets. Analysis of interfaces with multiple clustered hotspots has suggested several potentially inhibitable protein-protein interactions that may have been overlooked by previous large-scale analyses focusing solely on secondary structure. These protein-protein interactions provide a promising lead for the development of new peptide and macrocycle inhibitors of these enzymes.

  18. Multimerization of the cytoplasmic domain of syndecan-4 is required for its ability to activate protein kinase C

    DEFF Research Database (Denmark)

    Oh, E S; Woods, A; Couchman, J R

    1997-01-01

    of syndecan-4 (4L) containing a membrane-proximal basic sequence did not form higher order oligomers and could not regulate the activity of PKCalphabetagamma unless induced to aggregate by phosphatidylinositol 4,5-bisphosphate. Oligomerization and PKC regulatory activity of the 4V peptide were both increased...... by addition of N-terminal cysteine and reduced by phosphorylation of the cysteine thiol group. Concentration of syndecan-4 at sites of focal adhesion formation may enhance multimerization and both localize PKC and potentiate its activity to induce stable complex formation....

  19. Total adiponectin and adiponectin multimeric complexes in relation to weight loss-induced improvements in insulin sensitivity in obese women

    DEFF Research Database (Denmark)

    Polak, J.; Kovacova, Z.; Holst, C.

    2008-01-01

    , and LMW). The HMW form was suggested to be closely associated with insulin sensitivity. This study investigated whether diet-induced changes in insulin sensitivity were associated with changes in adiponectin multimeric complexes. SUBJECTS: Twenty obese women with highest and twenty obese women with lowest...... diet induced changes in insulin sensitivity (responders and non-responders respectively), matched for weight loss (body mass index (BMI)=34.5 (s.d. 2.9) resp. 36.5 kg/m(2) (s.d. 4.0) for responders and non-responders), were selected from 292 women who underwent a 10-week low-caloric diet (LCD; 600 kcal...

  20. Vaccination with multimeric recombinant VP28 induces high protection against white spot syndrome virus in shrimp.

    Science.gov (United States)

    Taengchaiyaphum, Suparat; Nakayama, Hideki; Srisala, Jiraporn; Khiev, Ratny; Aldama-Cano, Diva January; Thitamadee, Siripong; Sritunyalucksana, Kallaya

    2017-11-01

    To improve the efficacy of WSSV protection, multimeric (tetrameric) recombinant VP28 (4XrVP28) was produced and tested in comparison with those of monomeric VP28 (1XrVP28). In vitro binding of either 1XrVP28 or 4XrVP28 to shrimp hemocyte surface was evident as early as 10 min after protein inoculation. Similar results were obtained in vivo when shrimp were injected with recombinant proteins that the proteins bound to the hemocyte surface could be detected since 5 min after injection. Comparison of the WSSV protection efficiencies of 1XrVP28 or 4XrVP28 were performed by injection the purified 1XrVP28 or 4XrVP28 (22.5 μg/shrimp) and WSSV inoculum (1000 copies/shrimp) into shrimp. At 10 dpi, while shrimp injected with WSSV inoculum reached 100% mortality, shrimp injected with 1XrVP28 + WSSV or 4XrVP28 + WSSV showed relative percent survival (RPS) of 67% and 81%, respectively. PCR quantification revealed high number of WSSV in the moribund shrimp of WSSV- and 1XrVP28+WSSV-injected group. In contrast, lower number of WSSV copies were found in the survivors both from 1XrVP28+WSSV- or 4XrVP28+WSSV- injected groups. Histopathological analysis demonstrated the WSSV infected lesions found in the moribund from WSSV-infected group and 1XrVP28+WSSV-injected group, but less or none in the survivors. ELISA demonstrated that 4XrVP28 exhibited higher affinity binding to rPmRab7, a WSSV binding protein essential for WSSV entry to the cell than 1XrVP28. Taken together, the protection against WSSV in shrimp could be improved by application of multimeric rVP28. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Nucleic acid binding properties and intermediates of HCV core protein multimerization in Pichia pastoris

    International Nuclear Information System (INIS)

    Acosta-Rivero, Nelson; Rodriguez, Armando; Musacchio, Alexis; Falcon, Viviana; Suarez, Viana M.; Chavez, Liudmila; Morales-Grillo, Juan; Duenas-Carrera, Santiago

    2004-01-01

    Little is known about the in vivo assembly pathway or structure of the hepatitis C virus nucleocapsid. In this work the intermediates of HCcAg multimerization in Pichia pastoris cells and the nucleic acid binding properties of structured nucleocapsid-like particles (NLPs) were studied. Extensive cross-linking was observed for HCcAg after glutaraldehyde treatment. Data suggest that HCcAg exists in dimeric forms probably representing P21-P21, P21-P23, and P23-P23 dimers. In addition, the presence of HCcAg species that might represent trimers and multimers was observed. After sucrose equilibrium density gradient purification and nuclease digestion, NLPs were shown to contain both RNA and DNA molecules. Finally, the analysis by electron microscopy indicated that native NLPs were resistant to nuclease treatment. These results indicated that HCcAg assembles through dimers, trimers, and multimers' intermediates into capsids in P. pastoris cells. Assembly of NLPs in its natural environment might confer stability to these particles by adopting a compact structure

  2. Conformational changes of the N-terminal part of Mason-Pfizer monkey virus p12 protein during multimerization

    International Nuclear Information System (INIS)

    Knejzlik, Zdenek; Ulbrich, Pavel; Strohalm, Martin; Lastuvkova, Hana; Kodicek, Milan; Sakalian, Michael; Ruml, Tomas

    2009-01-01

    The Mason-Pfizer monkey virus is a prototype Betaretrovirus with the defining characteristic that it assembles spherical immature particles from Gag-related polyprotein precursors within the cytoplasm of the infected cell. It was shown previously that the N-terminal part of the Gag p12 domain (wt-Np12) is required for efficient assembly. However, the precise role for p12 in mediating Gag-Gag interaction is still poorly understood. In this study we employed detailed circular dichroism spectroscopy, electron microscopy and ultracentrifugation analyses of recombinant wt-Np12 prepared by in vitro transcription and translation. The wt-Np12 domain fragment forms fibrillar structures in a concentration-dependent manner. Assembly into fibers is linked to a conformational transition from unfolded or another non-periodical state to α-helix during multimerization.

  3. Monomeric, dimeric and multimeric system of RGD peptides radiolabeled with {sup 177}Lu for tumors therapy that expressing αβ integrin s; Sistema monomerico, dimerico y multimerico de peptidos de RGD radiomarcados con {sup 177}Lu para terapia de tumores que expresan integrinas αβ

    Energy Technology Data Exchange (ETDEWEB)

    Luna G, M. A.

    2014-07-01

    The conjugation of peptides to gold nanoparticles (AuNPs) produces biocompatible and stable multimeric systems with target-specific molecular recognition. Peptides based on the cyclic Arg-Gly-Asp (RGD) sequence have been reported as high affinity agents for the α(v)β(3) and α(v)β(5) integrin. The aim of this research was to prepare a multimeric system of {sup 177}Lu-labeled gold nanoparticles conjugated to c[RGDfK(C)] [cyclo(Arg-Gly-Asp-Phe-Lys(Cys)] peptides and to compare the radiation absorbed dose with that of {sup 177}Lu-labeled monomeric and dimeric RGD peptides to α(v)β(3) integrin-positive U87MG tumors in mice, as well as, evaluate the in vitro potential {sup 177}Lu-AuNP-c[RGDfK(C)] as a plasmonic photothermal therapy and targeted radiotherapy system in MCF7 breast cancer cells. DOTA-GGC (1,4,7,10-tetraaza cyclododecane-N,N,N-tetraacetic-Gly-Gly-Cys) and c[RGDfK(C)] peptides were synthesized and conjugated to AuNPs by the spontaneous reaction of the thiol groups. Tem, UV-Vis, XP S, Raman and Far-IR spectroscopy techniques demonstrated that AuNPs were functionalized with the peptides. To obtain {sup 177}Lu-AuNP-c[RGDfK(C)], the {sup 177}Lu-DOTA-GGC radio peptide was first prepared and added to a solution of AuNPs followed by c[RGDfK(C)] (25 μL, 5 μM) at 18 grades C for 15 min. {sup 177}Lu-DOTA-GGC, {sup 177}Lu- DOTA-cRGDfK and {sup 177}Lu-DOTA-E-c(RGDfK){sub 2} were prepared by adding {sup 177}LuCl{sub 3} (370 MBq) to 5 μL (1 mg/ml) of the DOTA derivative diluted with 50 μL of 1 M acetate buffer at ph 5. The mixture was incubated at 90 grades C in a block heater for 30 min. Radiochemical purity was determined by ultrafiltration and HPLC analyses. After laser irradiation, the presence of c[RGDfK(C)]-AuNP in cells caused a significant increase in the temperature of the medium (50.5 grades C, compared to 40.3 grades C without AuNPs) resulting in a significant decrease in MCF7 cell viability down to 9 %. After treatment with {sup 177}Lu

  4. Crystal structure of B acillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity: AtxA multimerization, phosphorylation and activity

    Energy Technology Data Exchange (ETDEWEB)

    Hammerstrom, Troy G.; Lori, Horton B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (HisAsp) and phosphoablative (HisAla) amino acid changes for activity in B.anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.

  5. Chemoenzymatic synthesis of carbon-14 labelled antioxidants

    International Nuclear Information System (INIS)

    Deigner, H.P.; Freyberg, C.; Heck, R.

    1993-01-01

    The syntheses of [ 14 C] labelled antioxidants are described. We developed an efficient synthetic methodology to prepare a series of labelled amides with antioxidant activity, starting from [ 14 C] KCN and alkyl or aryl halides. By a combination of nucleophilic displacement of halides by [ 14 C] cyanide, mediated by ultrasound and subsequent mild and selective enzymatic hydrolysis of the resulting nitriles, labelled carboxylic acids were obtained. Labelled amines were prepared by reduction of the respective nitriles. Availability of [ 14 C] KCN, efficient introduction of the label by ultrasound mediated reaction and selective and mild hydrolysis by commercially available nitrilase (Rhodococcus sp.), makes possible a wide range of applications of this methodology in the synthesis of functionalized labelled compounds. (Author)

  6. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    Science.gov (United States)

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Development and use of engineered peptide deformylase in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia

    2012-01-01

    Deze thesis beschrijft het onderzoek naar potentieel van het gebruik van het peptide deformylase (PDF) in chemo enzymatische peptide synthese. PDF is geschikt voor selective N terminale deformylatie van bepaalde N-formyl-peptides zonder gelijktijdige hydrolyse van de peptide binding. Door de

  8. Chemo-enzymatic Synthesis of Propionyl-ester-linked Taxol-monosaccharide Conjugate and its Drug Delivery System Using Hybrid-Bio-nanocapsules Targeting Brain Glioma Cells

    Directory of Open Access Journals (Sweden)

    Hiroki Hamada

    2013-01-01

    Full Text Available Taxol is recognized as one of the most potent anticancer agents used in the treatment of breast and ovarian cancers, which are common cancers in women. To overcome its shortcomings, that is, its low water-solubility that reduces drug loading capacity of DDS carriers when incorporating taxol, chemo-enzymatic synthesis of ester-linked taxol-glucose conjugate, i.e., 7-propionyltaxol 2′- O -α-D-glucoside, as a water soluble taxol prodrug was achieved by using a-glucosidase as a glucosylation catalyst. The water-solubility of 7-propionyltaxol 2′- O -α-D-glucoside (25 mM was 63 fold higher than that of taxol (0.4 mM. The pre-S1 peptide which displays on the surface of bio-nanocapsules, which are nanoparticles composed of the hepatitis B virus surface antigen, was replaced with the antibody affinity motif of protein A. Conjugation of such bio-nanocapsules with anti-human epidermal growth factor receptor antibody gave hybrid bio-nanocapsules. The hybrid bio-nanocapsules were effective for delivering 7-propionyltaxol 2′- O -α-D-glucoside to human brain glioma cells. 7-Propionyltaxol 2′- O -α-D-glucoside was effectively hydrolyzed to give taxol in 95% by human glioma cells. The drug loading capacity of hybrid bio-nanocapsules incorporating 7-propionyltaxol 2′- O -α-D-glucoside was 120 times higher than that incorporating taxol itself.

  9. Chemo-enzymatic synthesis route to poly(glucosyl-acrylates) using glucosidase from almonds

    NARCIS (Netherlands)

    Kloosterman, Wouter M. J.; Roest, Steven; Priatna, Siti R.; Stavila, Erythrina; Loos, Katja

    2014-01-01

    Novel types of glucosyl-acrylate monomers are obtained by beta-glucosidase from almond catalyzed glycosidation reaction. The saccharide-acrylate monomers were synthesized by reaction of D-glucose with hydroxyl functional acrylates: 2-hydroxyethyl acrylate (2-HEA), 2-hydroxyethyl methacrylate

  10. Chemo-enzymatic synthesis of furfuralcohol from chestnut shell hydrolysate by a sequential acid-catalyzed dehydration under microwave and Escherichia coli CCZU-Y10 whole-cells conversion.

    Science.gov (United States)

    Di, Junhua; Ma, Cuiluan; Qian, Jianghao; Liao, Xiaolong; Peng, Bo; He, Yucai

    2018-08-01

    In this study, chemo-enzymatic synthesis of furfuralcohol from biomass-derived xylose was successfully demonstrated by a sequential acid-catalyzed dehydration under microwave and whole-cells reduction. After dry dewaxed chestnut shells (CNS, 75 g/L) was acid-hydrolyzed with dilute oxalic acid (0.5 wt%) at 140 °C for 40 min, the obtained CNS-derived xylose (17.9 g/L xylose) could be converted to furfural at 78.8% yield with solid acid SO 4 2- /SnO 2 -Attapulgite (2.0 wt% catalyst loading) in the dibutyl phthalate-water (1:1, v:v) under microwave (600 W) at 180 °C for 10 min. In the dibutyl phthalate-water (1:1, v/v) media at 30 °C and pH 6.5, the furfural liquor (47.0 mM furfural) was biologically converted to furfuralcohol by recombinant Escherichia coli CCZU-Y10 whole-cells harboring an NADH-dependent reductase (PgCR) without extra addition of NAD + and glucose, and furfural was completely converted to furfuralcohol after 2.5 h. Clearly, this one-pot synthesis strategy can be effectively used for furfuralcohol production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore.

    Directory of Open Access Journals (Sweden)

    Anusha Panjwani

    2014-08-01

    Full Text Available Non-enveloped viruses must deliver their viral genome across a cell membrane without the advantage of membrane fusion. The mechanisms used to achieve this remain poorly understood. Human rhinovirus, a frequent cause of the common cold, is a non-enveloped virus of the picornavirus family, which includes other significant pathogens such as poliovirus and foot-and-mouth disease virus. During picornavirus cell entry, the small myristoylated capsid protein VP4 is released from the virus, interacts with the cell membrane and is implicated in the delivery of the viral RNA genome into the cytoplasm to initiate replication. In this study, we have produced recombinant C-terminal histidine-tagged human rhinovirus VP4 and shown it can induce membrane permeability in liposome model membranes. Dextran size-exclusion studies, chemical crosslinking and electron microscopy demonstrated that VP4 forms a multimeric membrane pore, with a channel size consistent with transfer of the single-stranded RNA genome. The membrane permeability induced by recombinant VP4 was influenced by pH and was comparable to permeability induced by infectious virions. These findings present a molecular mechanism for the involvement of VP4 in cell entry and provide a model system which will facilitate exploration of VP4 as a novel antiviral target for the picornavirus family.

  12. Significant role of PB1 and UBA domains in multimerization of Joka2, a selective autophagy cargo receptor from tobacco

    Directory of Open Access Journals (Sweden)

    Katarzyna eZientara-Rytter

    2014-01-01

    Full Text Available Tobacco Joka2 protein is a hybrid homolog of two mammalian selective autophagy cargo receptors, p62 and NBR1. These proteins can directly interact with the members of ATG8 family and the polyubiquitinated cargoes designed for degradation. Function of the selective autophagy cargo receptors relies on their ability to form protein aggregates. It has been shown that the N-terminal PB1 domain of p62 is involved in formation of aggregates, while the UBA domains of p62 and NBR1 have been associated mainly with cargo binding. Here we focus on roles of PB1 and UBA domains in localization and aggregation of Joka2 in plant cells. We show that Joka2 can homodimerize not only through its N-terminal PB1-PB1 interactions but also via interaction between N-terminal PB1 and C-terminal UBA domains. We also demonstrate that Joka2 co-localizes with recombinant ubiquitin and sequestrates it into aggregates and that C-terminal part (containing UBA domains is sufficient for this effect. Our results indicate that Joka2 accumulates in cytoplasmic aggregates and suggest that in addition to these multimeric forms it also exists in the nucleus and cytoplasm in a monomeric form.

  13. Identification of a probable pore-forming domain in the multimeric vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Baetz, Ulrike; Krügel, Undine; Martinoia, Enrico; De Angeli, Alexis

    2013-10-01

    Aluminum-activated malate transporters (ALMTs) form an important family of anion channels involved in fundamental physiological processes in plants. Because of their importance, the role of ALMTs in plant physiology is studied extensively. In contrast, the structural basis of their functional properties is largely unknown. This lack of information limits the understanding of the functional and physiological differences between ALMTs and their impact on anion transport in plants. This study aimed at investigating the structural organization of the transmembrane domain of the Arabidopsis (Arabidopsis thaliana) vacuolar channel AtALMT9. For that purpose, we performed a large-scale mutagenesis analysis and found two residues that form a salt bridge between the first and second putative transmembrane α-helices (TMα1 and TMα2). Furthermore, using a combination of pharmacological and mutagenesis approaches, we identified citrate as an "open channel blocker" of AtALMT9 and used this tool to examine the inhibition sensitivity of different point mutants of highly conserved amino acid residues. By this means, we found a stretch within the cytosolic moiety of the TMα5 that is a probable pore-forming domain. Moreover, using a citrate-insensitive AtALMT9 mutant and biochemical approaches, we could demonstrate that AtALMT9 forms a multimeric complex that is supposedly composed of four subunits. In summary, our data provide, to our knowledge, the first evidence about the structural organization of an ion channel of the ALMT family. We suggest that AtALMT9 is a tetramer and that the TMα5 domains of the subunits contribute to form the pore of this anion channel.

  14. Schizosaccharomyces pombe Rad22A and Rad22B have similar biochemical properties and form multimeric structures

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Femke A.T. de [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Zonneveld, Jose B.M. [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Groot, Anton J. de [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Koning, Roman I. [Department of Molecular Cell Biology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert A. van [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Pastink, Albert [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands)]. E-mail: A.Pastink@lumc.nl

    2007-02-03

    The Saccharomyces cerevisiae Rad52 protein has a crucial role in the repair of DNA double-strand breaks by homologous recombination. In vitro, Rad52 displays DNA binding and strand annealing activities and promotes Rad51-mediated strand exchange. Schizosaccharomyces pombe has two Rad52 homologues, Rad22A and Rad22B. Whereas rad22A deficient strains exhibit severe defects in repair and recombination, rad22B mutants have a much less severe phenotype. To better understand the role of Rad22A and Rad22B in double-strand break repair, both proteins were purified to near homogeneity. Using gel retardation and filter binding assays, binding of Rad22A and Rad22B to short single-stranded DNAs was demonstrated. Binding of Rad22A to double-stranded oligonucleotides or linearized plasmid molecules containing blunt ends or short single-stranded overhangs could not be detected. Rad22B also does not bind efficiently to short duplex oligonucleotides but binds readily to DNA fragments containing 3'-overhangs. Rad22A as well as Rad22B efficiently promote annealing of complementary single-stranded DNAs. In the presence of Rad22A annealing of complementary DNAs is almost 90%. Whereas in reactions containing Rad22B the maximum level of annealing is 60%, most likely due to inhibition of the reaction by duplex DNA. Gel-filtration experiments and electron microscopic analyses indicate self-association of Rad22A and Rad22B and the formation of multimeric structures as has been observed for Rad52 in yeast and man.

  15. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity.

    Science.gov (United States)

    Hammerstrom, Troy G; Horton, Lori B; Swick, Michelle C; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M

    2015-02-01

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO(2)/bicarbonate, and there is a positive correlation between the CO(2)/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His→Asp) and phosphoablative (His→Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism. © 2014 John Wiley & Sons Ltd.

  16. Essential roles of insulin, AMPK signaling and lysyl and prolyl hydroxylases in the biosynthesis and multimerization of adiponectin.

    Science.gov (United States)

    Zhang, Lin; Li, Ming-Ming; Corcoran, Marie; Zhang, Shaoping; Cooper, Garth J S

    2015-01-05

    Post-translational modifications (PTMs) of the adiponectin molecule are essential for its full bioactivity, and defects in PTMs leading to its defective production and multimerization have been linked to the mechanisms of insulin resistance, obesity, and type-2 diabetes. Here we observed that, in differentiated 3T3-L1 adipocytes, decreased insulin signaling caused by blocking of insulin receptors (InsR) with an anti-InsR blocking antibody, increased rates of adiponectin secretion, whereas concomitant elevations in insulin levels counteracted this effect. Adenosine monophosphate-activated protein kinase (AMPK) signaling regulated adiponectin production by modulating the expression of adiponectin receptors, the secretion of adiponectin, and eventually the expression of adiponectin itself. We found that lysyl hydroxylases (LHs) and prolyl hydroxylases (PHs) were expressed in white-adipose tissue of ob/ob mice, wherein LH3 levels were increased compared with controls. In differentiated 3T3-L1 adipocytes, both non-specific inhibition of LHs and PHs by dipyridyl, and specific inhibition of LHs by minoxidil and of P4H with ethyl-3,4-dihydroxybenzoate, caused significant suppression of adiponectin production, more particularly of the higher-order isoforms. Transient gene knock-down of LH3 (Plod3) caused a suppressive effect, especially on the high molecular-weight (HMW) isoforms. These data indicate that PHs and LHs are both required for physiological adiponectin production and in particular are essential for the formation/secretion of the HMW isoforms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Structural characterization of PTX3 disulfide bond network and its multimeric status in cumulus matrix organization.

    Science.gov (United States)

    Inforzato, Antonio; Rivieccio, Vincenzo; Morreale, Antonio P; Bastone, Antonio; Salustri, Antonietta; Scarchilli, Laura; Verdoliva, Antonio; Vincenti, Silvia; Gallo, Grazia; Chiapparino, Caterina; Pacello, Lucrezia; Nucera, Eleonora; Serlupi-Crescenzi, Ottaviano; Day, Anthony J; Bottazzi, Barbara; Mantovani, Alberto; De Santis, Rita; Salvatori, Giovanni

    2008-04-11

    PTX3 is an acute phase glycoprotein that plays key roles in resistance to certain pathogens and in female fertility. PTX3 exerts its functions by interacting with a number of structurally unrelated molecules, a capacity that is likely to rely on its complex multimeric structure stabilized by interchain disulfide bonds. In this study, PAGE analyses performed under both native and denaturing conditions indicated that human recombinant PTX3 is mainly composed of covalently linked octamers. The network of disulfide bonds supporting this octameric assembly was resolved by mass spectrometry and Cys to Ser site-directed mutagenesis. Here we report that cysteine residues at positions 47, 49, and 103 in the N-terminal domain form three symmetric interchain disulfide bonds stabilizing four protein subunits in a tetrameric arrangement. Additional interchain disulfide bonds formed by the C-terminal domain cysteines Cys(317) and Cys(318) are responsible for linking the PTX3 tetramers into octamers. We also identified three intrachain disulfide bonds within the C-terminal domain that we used as structural constraints to build a new three-dimensional model for this domain. Previously it has been shown that PTX3 is a key component of the cumulus oophorus extracellular matrix, which forms around the oocyte prior to ovulation, because cumuli from PTX3(-/-) mice show defective matrix organization. Recombinant PTX3 is able to restore the normal phenotype ex vivo in cumuli from PTX3(-/-) mice. Here we demonstrate that PTX3 Cys to Ser mutants, mainly assembled into tetramers, exhibited wild type rescue activity, whereas a mutant, predominantly composed of dimers, had impaired functionality. These findings indicate that protein oligomerization is essential for PTX3 activity within the cumulus matrix and implicate PTX3 tetramers as the functional molecular units required for cumulus matrix organization and stabilization.

  18. Fat-Specific DsbA-L Overexpression Promotes Adiponectin Multimerization and Protects Mice From Diet-Induced Obesity and Insulin Resistance

    Science.gov (United States)

    Liu, Meilian; Xiang, Ruihua; Wilk, Sarah Ann; Zhang, Ning; Sloane, Lauren B.; Azarnoush, Kian; Zhou, Lijun; Chen, Hongzhi; Xiang, Guangda; Walter, Christi A.; Austad, Steven N.; Musi, Nicolas; DeFronzo, Ralph A.; Asmis, Reto; Scherer, Philipp E.; Dong, Lily Q.; Liu, Feng

    2012-01-01

    The antidiabetic and antiatherosclerotic effects of adiponectin make it a desirable drug target for the treatment of metabolic and cardiovascular diseases. However, the adiponectin-based drug development approach turns out to be difficult due to extremely high serum levels of this adipokine. On the other hand, a significant correlation between adiponectin multimerization and its insulin-sensitizing effects has been demonstrated, suggesting a promising alternative therapeutic strategy. Here we show that transgenic mice overexpressing disulfide bond A oxidoreductase-like protein in fat (fDsbA-L) exhibited increased levels of total and the high-molecular-weight form of adiponectin compared with wild-type (WT) littermates. The fDsbA-L mice also displayed resistance to diet-induced obesity, insulin resistance, and hepatic steatosis compared with WT control mice. The protective effects of DsbA-L overexpression on diet-induced insulin resistance, but not increased body weight and fat cell size, were significantly decreased in adiponectin-deficient fDsbA-L mice (fDsbA-L/Ad−/−). In addition, the fDsbA-L/Ad−/− mice displayed greater activity and energy expenditure compared with adiponectin knockout mice under a high-fat diet. Taken together, our results demonstrate that DsbA-L protects mice from diet-induced obesity and insulin resistance through adiponectin-dependent and independent mechanisms. In addition, upregulation of DsbA-L could be an effective therapeutic approach for the treatment of obesity and its associated metabolic disorders. PMID:22807031

  19. PULSE SYNTHESIZING GENERATOR

    Science.gov (United States)

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  20. CHEMOENZYMATIC SYNTHESIS OF BIODEGRADABLE POLY(1′-O-VINYLADIPOYL-SUCROSE)

    Institute of Scientific and Technical Information of China (English)

    Des-hui Lu; Qi Wu; Xian-fu Lin

    2002-01-01

    A novel polymer containing the sucrose group was synthesized by radical polymerization from an enzymaticallyprepared monomer, 1′-O-vinyladipoyl-sucrose (VAS). Transesterification reaction of sucrose with divinyl adipate inanhydrous pyridine catalyzed by an alkaline protease from Bacillus subtilis at 60℃ for 7 days gave VAS (yield 55%) withoutany blocking/deblocking steps. The vinyl sucrose ester could be polymerized with potassium persulfate and H2O2 as initiatorto give poly(1′-O-vinyladipoyl-sucrose) with Mn = 33,000 and Mw = 53,200, Mw/Mn = 1.61. The polymer was biodegradable.After 6 days in aqueous buffer (pH 7), this alkaline protease could degrade poly(1′-O-vinyladipoyl-sucrose) to Mn of ca.1080, Mw/Mn = 3.30 (37℃), and Mn of ca. 5200, Mw/Mn = 2.44 (4℃). The polymer containing the sucrose branch would be afunctional material in various application fields.

  1. Composites comprising biologically-synthesized nanomaterials

    Science.gov (United States)

    Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun

    2013-04-30

    The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.

  2. A fast chemoenzymatic synthesis of [11C]-N5,N10-methylenetetrahydrofolate as a potential PET tracer for proliferating cells

    International Nuclear Information System (INIS)

    Saeed, Muhammad; Tewson, Timothy J.; Erdahl, Colbin E.; Kohen, Amnon

    2012-01-01

    Introduction: Thymidylate synthase and folate receptors are well-developed targets of cancer therapy. Discovery of a simple and fast method for the conversion of 11 CH 3 Ito[ 11 C]-formaldehyde ( 11 CH 2 O) encouraged us to label the co-factor of this enzyme. Preliminary studies conducted on cell lines have demonstrated a preferential uptake of [11- 14 C]-(R)-N 5 ,N 10 -methylene-5,6,7,8-tetrahydrofolate ( 14 CH 2 H 4 folate) by cancerous cell vs. normal cells from the same organ (Saeed M., Sheff D. and Kohen A. Novel positron emission tomography tracer distinguishes normal from cancerous cells. J Biol Chem 2011;286:33872–33878), pointing out 11 CH 2 H 4 folate as a positron emission tomography (PET) tracer for cancer imaging. Herein we report the synthesis of 11 CH 2 H 4 folate, which may serve as a potential PET tracer. Methods: In a remotely controlled module, methyl iodide ( 11 CH 3 I) was bubbled into a reaction vial containing trimethylamine N-oxide in N,N-Dimethylformamide (DMF) and heated to 70°C for 2 min. Formaldehyde ( 11 CH 2 O) formed after the completion of reaction was then mixed with a solution of freshly prepared tetrahydrofolate (H 4 folate) by using a fast chemoenzymatic approach to accomplish synthesis of 11 CH 2 H 4 folate. Purification of the product was carried out by loading the crude reaction mixture on a SAX cartridge, washing with water to remove unbound impurities and finally eluting with a saline solution. Results: The synthesis and purification of 11 CH 2 H 4 folate were completed within 5 min. High-performance liquid chromatography analysis of the product after SAX purification indicates that more than 90% of the radioactivity that was retained on the SAX cartridge was in 11 CH 2 H 4 folate, with minor ( 11 CH 2 O. Conclusion: We present a fast (∼5 min) synthesis and purification of 11 CH 2 H 4 folate as a potential PET tracer. The final product is received in physiologically compatible buffer (100 mM sodium phosphate, pH 7

  3. Preclinical Evaluation of a Novel In-111-Labeled Bombesin Homodimer for Improved Imaging of GRPR-Positive Prostate Cancer

    NARCIS (Netherlands)

    Carlucci, G.; Ananias, H. J. K.; Yu, Z.; Hoving, H. D.; Helfrich, W.; Dierckx, R. A. J. O.; Liu, S.; de Jong, I. J.; Elsinga, P. H.

    Rational-designed multimerization of targeting ligands can be used to improve kinetic and thermodynamic properties. Multimeric targeting ligands may be produced by tethering multiple identical or two or more monomeric ligands of different binding specificities. Consequently, multimeric ligands may

  4. Chemoenzymatic synthesis of a series of 4-substituted glutamate analogues and pharmacological characterization at human glutamate transporters subtypes 1-3

    DEFF Research Database (Denmark)

    Alaux, Sebastien; Kusk, Mie; Sagot, Emanuelle

    2005-01-01

    A series of nine L-2,4-syn-4-alkylglutamic acid analogues (1a-i) were synthesized in high yield and high enantiomeric excess (>99% ee) from their corresponding 4-substituted ketoglutaric acids (2a-i), using the enzyme aspartate aminotransferase (AAT) from pig heart or E. coli. The synthesized com...... subtypes EAAT1-3 while maintaining inhibitory activity....

  5. CAMAC programmable-control frequency synthesizer

    International Nuclear Information System (INIS)

    Yumaguzin, T.Kh.; Vyazovkin, D.E.; Nazirov, Eh.P.; Tuktarov, R.F.

    1989-01-01

    Synthesizer allows to set frequency with 0.015% accuracy and to scan it with variable step. Frequency controlled divider with further summing-up of divided frequency with fundamental one is used in synthesizer, and it has allowed to use digit of the input code and to obtain 3-4 MHz frequency range. Variation of operation flowsheet in the other frequency range is possible. K-155 and K-531 series microcircuits were used during development

  6. Synthesizing Modular Invariants for Synchronous Code

    Directory of Open Access Journals (Sweden)

    Pierre-Loic Garoche

    2014-12-01

    Full Text Available In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.

  7. Assessment voice synthesizers for reading in digital books

    Directory of Open Access Journals (Sweden)

    Sérvulo Fernandes da Silva Neto

    2013-07-01

    Full Text Available The digital accessibility shows ways to information access in digital media that assist people with different types of disabilities to a better interaction with the computer independent of its limitations. Of these tools are composed by voice synthesizers, that supposedly simplifying their access to any recorded knowledge through digital technologies. However such tools have emerged originally in countries foreign language. Which brings us to the following research problem: the voice synthesizers are appropriate for reading digital books in the Portuguese language? The objective of this study was to analyze and classify different software tools voice synthesizers in combination with software digital book readers to support accessibility to e-books in Portuguese. Through literature review were identified applications software voice synthesizers, composing the sample analyzed in this work. We used a simplified version of the method of Multiple Criteria Decision Support - MMDA, to assess these. In the research 12 were considered readers of e-books and 11 software voice synthesizer, tested with six formats of e-books (E-pub, PDF, HTML, DOC, TXT, and Mobi. In accordance with the results, the software Virtual Vision achieved the highest score. Relative to formats, it was found that the PDF has measured a better score when summed the results of the three synthesizers. In the studied universe contacted that many synthesizers simply cannot be used because they did not support the Portuguese language.

  8. Perception of Paralinguistic Traits in Synthesized Voices

    DEFF Research Database (Denmark)

    Baird, Alice Emily; Hasse Jørgensen, Stina; Parada-Cabaleiro, Emilia

    2017-01-01

    Along with the rise of artificial intelligence and the internet-of-things, synthesized voices are now common in daily–life, providing us with guidance, assistance, and even companionship. From formant to concatenative synthesis, the synthesized voice continues to be defined by the same traits we...

  9. Raman assisted lightwave synthesized frequency sweeper

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2010-01-01

    We present a Lightwave Synthesized Frequency Sweeper comprising a Raman amplifier for loss compensation. The generated pulse train contains 123 pulses and has a flat signal level as well as a low noise level.......We present a Lightwave Synthesized Frequency Sweeper comprising a Raman amplifier for loss compensation. The generated pulse train contains 123 pulses and has a flat signal level as well as a low noise level....

  10. Effect of zinc oxide nanoparticles synthesized by a precipitation

    Indian Academy of Sciences (India)

    ZnO nanoparticles were synthesized by a precipitation method in aqueous media from zinc nitrate hexahydrate and sodium hydroxide. The synthesized ZnO nanoparticles exhibited a crystalline structure with hexagonal structure of the wurtzite. The morphology of the synthesized ZnO nanoparticles presented a spherical ...

  11. Enantioselective catalytic syntheses of alpha-branched chiral amines

    DEFF Research Database (Denmark)

    Brase, S.; Baumann, T.; Dahmen, S.

    2007-01-01

    Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials.......Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials....

  12. Aeon: Synthesizing Scheduling Algorithms from High-Level Models

    Science.gov (United States)

    Monette, Jean-Noël; Deville, Yves; van Hentenryck, Pascal

    This paper describes the aeon system whose aim is to synthesize scheduling algorithms from high-level models. A eon, which is entirely written in comet, receives as input a high-level model for a scheduling application which is then analyzed to generate a dedicated scheduling algorithm exploiting the structure of the model. A eon provides a variety of synthesizers for generating complete or heuristic algorithms. Moreover, synthesizers are compositional, making it possible to generate complex hybrid algorithms naturally. Preliminary experimental results indicate that this approach may be competitive with state-of-the-art search algorithms.

  13. The development of [18F]FDG synthesizer

    International Nuclear Information System (INIS)

    Hu, M. G.; Kim, S. W.; Lee, J. Y.; Yang, S. D.; Jun, G. S.

    2003-01-01

    The automatic system for [ 18 F]FDG production using for the diagnosis of cancer has been developed. This automation system was consisted of a synthesizer module, a PLC based controller and a PMU for graphic user interface. By this system, the radiochemical purity was over 98%, the production yield was over 30% after synthesize and elapsed time was 35 minute

  14. Syntheses and absorption-structure relationships of some new ...

    Indian Academy of Sciences (India)

    New biheterocyclic compound was synthesized as starting material to prepare new photosensitizers mono-, tri-, substituted tri-, azadimethine and mixed cyanine dyes. Absorption-structure relationship of the synthesized cyanine dyes were determined by studying their electronic spectral behaviour in ethanol. The structure of ...

  15. A sucrose-derived scaffold for multimerization of bioactive peptides.

    Science.gov (United States)

    Rao, Venkataramanarao; Alleti, Ramesh; Xu, Liping; Tafreshi, Narges K; Morse, David L; Gillies, Robert J; Mash, Eugene A

    2011-11-01

    A spherical molecular scaffold bearing eight terminal alkyne groups was synthesized in one step from sucrose. One or more copies of a tetrapeptide azide, either N(3)(CH(2))(5)(CO)-His-DPhe-Arg-Trp-NH(2) (MSH4) or N(3)(CH(2))(5)(CO)-Trp-Met-Asp-Phe-NH(2) (CCK4), were attached to the scaffold via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Competitive binding assays using Eu-labeled probes based on the superpotent ligands Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH(2) (NDP-α-MSH) and Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH(2) (CCK8) were used to study the interactions of monovalent and multivalent MSH4 and CCK4 constructs with Hek293 cells engineered to overexpress MC4R and CCK2R. All of the monovalent and multivalent MSH4 constructs exhibited binding comparable to that of the parental ligand, suggesting that either the ligand spacing was inappropriate for multivalent binding, or MSH4 is too weak a binder for a second 'anchoring' binding event to occur before the monovalently-bound construct is released from the cell surface. In contrast with this behavior, monovalent CCK4 constructs were significantly less potent than the parental ligand, while multivalent CCK4 constructs were as or more potent than the parental ligand. These results are suggestive of multivalent binding, which may be due to increased residence times for monovalently bound CCK4 constructs on the cell surface relative to MSH4 constructs, the greater residence time being necessary for the establishment of multivalent binding. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Solid phase syntheses of oligoureas

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, K.; Linthicum, D.S.; Russell, D.H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A.J.; Ibarzo, J. [Texas A& M Univ., College Station, TX (United States)

    1997-02-19

    Isocyanates 7 were formed from monoprotected diamines 3 or 6, which in turn can be easily prepared from commercially available N-BOC- or N-FMOC-protected amino acid derivatives. Isocyanates 7, formed in situ, could be coupled directly to a solid support functionalized with amine groups or to amino acids anchored on resins using CH{sub 2}Cl{sub 2} as solvent and an 11 h coupling time at 25 {degree}C. Such couplings afforded peptidomimetics with an N-phthaloyl group at the N-terminus. The optimal conditions identified for removal of the N-phthaloyl group were to use 60% hydrazine in DMF for 1-3 h. Several sequences of amino acids coupled to ureas (`peptidic ureas`) and of sequential urea units (`oligoureas`) were prepared via solid phase syntheses and isolated by HPLC. Partition coefficients were measured for two of these peptidomimetics, and their water solubilities were found to be similar to the corresponding peptides. A small library of 160 analogues of the YGGFL-amide sequence was prepared via Houghten`s tea bag methodology. This library was tested for binding to the anti-{beta}-endorphin monoclonal antibody. Overall, this paper describes methodology for solid phase syntheses of oligourea derivatives with side chains corresponding to some of the protein amino acids. The chemistry involved is ideal for high-throughput syntheses and screening operations. 51 refs., 3 figs., 2 tabs.

  17. Substitution of conventional high-temperature syntheses of inorganic compounds by near-room-temperature syntheses in ionic liquids

    KAUST Repository

    Groh, Matthias Friedrich

    2013-01-01

    The high-temperature syntheses of the low-valent halogenides P2I4, Te2Br, α-Te4I4, Te4(Al2Cl7)2, Te4(Bi6Cl20), Te8(Bi4Cl14),Bi8(AlCl4)2, Bi6Cl7,and Bi6Br7, as well as of WSCl4 andWOCl4 have been replaced by resource-efficient low-temperature syntheses in room temperature ionic liquids (RTILs). The simple one-pot syntheses generally do not require elaborate equipment such as twozone furnaces or evacuated silica ampoules. Compared to the published conventional approaches, reduction of reaction time (up to 80%) and temperature (up to 500 K) and, simultaneously, an increase in yield were achieved. In the majority of cases, the solid products were phase-pure. X-Ray diffraction on single crystals (redetermination of 11 crystal structures) has demonstrated that the quality of the crystals from RTILs is comparable to that of products obtained by chemical transport reactions. © 2013 Verlag der Zeitschrift für Naturforschung, Tübingen.

  18. Operational Design that Synthesizes Art and Science

    Science.gov (United States)

    2011-05-04

    FINAL 3. DATES COVERED (From - To) Feb - May 2011 4. TITLE AND SUBTITLE OPERATIONAL DESIGN THAT SYNTHESIZES ART AND SCIENCE 5a...TITLE AND SUBTITLE Operational Design That Synthesizes Art And Science 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...proponents of EBO view warfare as only a science and not a combination of art and science . 9 Another main point of contention centered on the term

  19. Fully automated parallel oligonucleotide synthesizer

    Czech Academy of Sciences Publication Activity Database

    Lebl, M.; Burger, Ch.; Ellman, B.; Heiner, D.; Ibrahim, G.; Jones, A.; Nibbe, M.; Thompson, J.; Mudra, Petr; Pokorný, Vít; Poncar, Pavel; Ženíšek, Karel

    2001-01-01

    Roč. 66, č. 8 (2001), s. 1299-1314 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z4055905 Keywords : automated oligonucleotide synthesizer Subject RIV: CC - Organic Chemistry Impact factor: 0.778, year: 2001

  20. Widely tunable THz synthesizer

    Science.gov (United States)

    Hindle, F.; Mouret, G.; Eliet, S.; Guinet, M.; Cuisset, A.; Bocquet, R.; Yasui, T.; Rovera, D.

    2011-09-01

    The generation of cw-THz radiation by photomixing is particularly suited to the high resolution spectroscopy of gases; nevertheless, until recently, it has suffered from a lack of frequency metrology. Frequency combs are a powerful tool that can transfer microwave frequency standards to optical frequencies and a single comb has permitted accurate (10-8) THz frequency synthesis with a limited tuning range. A THz synthesizer composed of three extended cavity laser diodes phase locked to a frequency comb has been constructed and its utility for high resolution gas phase spectroscopy demonstrated. The third laser diode allows a larger tuning range of up to 300 MHz to be achieved without the need for large frequency excursions, while the frequency comb provides a versatile link to be established from any traceable microwave frequency standard. The use of a single frequency comb as a reference for all of the cw-lasers eliminates the dependency of synthesized frequency on the carrier envelope offset frequency. This greatly simplifies the frequency comb stabilization requirements and leads to a reduced instrument complexity.

  1. Synthesis of d‐ and l‐Phenylalanine Derivatives by Phenylalanine Ammonia Lyases: A Multienzymatic Cascade Process†

    Science.gov (United States)

    Parmeggiani, Fabio; Lovelock, Sarah L.; Weise, Nicholas J.; Ahmed, Syed T.

    2015-01-01

    Abstract The synthesis of substituted d‐phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one‐pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high‐throughput solid‐phase screening method has also been developed to identify PALs with higher rates of formation of non‐natural d‐phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the d‐configured product. Furthermore, the system was extended to the preparation of those l‐phenylalanines which are obtained with a low ee value using PAL amination. PMID:27478261

  2. Synthesis of d- and l-Phenylalanine Derivatives by Phenylalanine Ammonia Lyases: A Multienzymatic Cascade Process**

    Science.gov (United States)

    Parmeggiani, Fabio; Lovelock, Sarah L; Weise, Nicholas J; Ahmed, Syed T; Turner, Nicholas J

    2015-01-01

    The synthesis of substituted d-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural d-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the d-configured product. Furthermore, the system was extended to the preparation of those l-phenylalanines which are obtained with a low ee value using PAL amination. PMID:25728350

  3. A frequency tracking synthesizer for beam diagnostic systems

    International Nuclear Information System (INIS)

    Peterson, D.; Marriner, J.

    1991-01-01

    In low and medium energy synchrotrons the beam revolution frequency changes by a large factor during the acceleration process. High production rates require that these machines cycle rapidly. In attempting to diagnose instabilities which develop during the acceleration process it is useful to be able to select some frequency segment between revolution harmonics for viewing. Most types of test equipment operating in the frequency domain, such as spectrum analyzers and network analyzers, are not suited to making direct measurements on such rapidly sweeping signals. Ideally, one would want to set the frequency frame of reference to the spot in the accelerating revolution harmonic domain where the measurements are to be made. A scheme using a direct digital synthesizer (DDS) was developed to provide this moving reference frame. This paper describes a synthesizer scheme combining digital and analog synthesizer techniques to allow tracking of signals during acceleration. Virtually any ratio of synthesizer to beam revolution frequency may be generated by this scheme. Details of hardware and measurement results are presented

  4. Method of synthesizing pyrite nanocrystals

    Science.gov (United States)

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  5. A low-spurious fast-hopping MB-OFDM UWB synthesizer

    Energy Technology Data Exchange (ETDEWEB)

    Chen Danfeng; Li Wei; Li Ning; Ren Junyan, E-mail: w-li@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2010-06-15

    A frequency synthesizer for the ultra-wide band (UWB) group no. 1 is proposed. The synthesizer uses a phase-locked loop (PLL) and single-sideband (SSB) mixers to generate the three center frequencies of the first band group by mixing 4224 MHz with {+-}264 MHz and 792 MHz, respectively. A novel multi-QSSB mixer is designed to combine the function of frequency selection and frequency conversion for low power and high linearity. The synthesizer is fabricated in Jazz 0.18-{mu}m RF CMOS technology. The measured reference spur is as low as -69 dBc and the maximum spur is the LO leakage of -32 dBc. A low phase noise of -110 dBc/Hz - 1 MHz offset and an integrated phase noise of 1.86{sup 0} are achieved. The hopping time between different bands is less than 1.8 ns. The synthesizer consumes 30 mA from a 1.8 V supply. (semiconductor integrated circuits)

  6. A low-spurious fast-hopping MB-OFDM UWB synthesizer

    International Nuclear Information System (INIS)

    Chen Danfeng; Li Wei; Li Ning; Ren Junyan

    2010-01-01

    A frequency synthesizer for the ultra-wide band (UWB) group no. 1 is proposed. The synthesizer uses a phase-locked loop (PLL) and single-sideband (SSB) mixers to generate the three center frequencies of the first band group by mixing 4224 MHz with ±264 MHz and 792 MHz, respectively. A novel multi-QSSB mixer is designed to combine the function of frequency selection and frequency conversion for low power and high linearity. The synthesizer is fabricated in Jazz 0.18-μm RF CMOS technology. The measured reference spur is as low as -69 dBc and the maximum spur is the LO leakage of -32 dBc. A low phase noise of -110 dBc/Hz - 1 MHz offset and an integrated phase noise of 1.86 0 are achieved. The hopping time between different bands is less than 1.8 ns. The synthesizer consumes 30 mA from a 1.8 V supply. (semiconductor integrated circuits)

  7. Information Retrieval for Ecological Syntheses

    Science.gov (United States)

    Bayliss, Helen R.; Beyer, Fiona R.

    2015-01-01

    Research syntheses are increasingly being conducted within the fields of ecology and environmental management. Information retrieval is crucial in any synthesis in identifying data for inclusion whilst potentially reducing biases in the dataset gathered, yet the nature of ecological information provides several challenges when compared with…

  8. Fast, High-Precision Optical Polarization Synthesizer for Ultracold-Atom Experiments

    Science.gov (United States)

    Robens, Carsten; Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Zopes, Jonathan; Alberti, Andrea

    2018-03-01

    We present a technique for the precision synthesis of arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizations, where the phase and the amplitude of each light field are individually controlled. We find that the polarization-synthesized beam reaches a degree of polarization of 99.99%, which is mainly limited by static spatial variations of the polarization state over the beam profile. We also find that the depolarization caused by temporal fluctuations of the polarization state is about 2 orders of magnitude smaller. In a recent work, Robens et al. [Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices, Phys. Rev. Lett. 118, 065302 (2017), 10.1103/PhysRevLett.118.065302] demonstrated an application of the polarization synthesizer to create two independently controllable optical lattices which trap atoms depending on their internal spin state. We use ultracold atoms in polarization-synthesized optical lattices to give an independent, in situ demonstration of the performance of the polarization synthesizer.

  9. nanoparticles synthesized by citrate precursor m

    African Journals Online (AJOL)

    user

    (M=Co, Cu) nanoparticles synthesized by citrate precursor method ... The structural characterization was carried out using an X-ray Diffractometer (Rikagu Miniflex, Japan) ..... His current area of interest includes magnetic nanomaterials.

  10. Proteins synthesized in tobacco mosaic virus infected protoplasts

    International Nuclear Information System (INIS)

    Huber, R.

    1979-01-01

    The author deals with research on the multiplication of tobacco mosaic virus (TMV) in leaf cell protoplasts. An attempt is made to answer three questions: (1) Which proteins are synthesized in TMV infected protoplasts as a result of TMV multiplication. (2) Which of the synthesized proteins are made under the direction of the TMV genome and, if any, which of the proteins are host specific. (3) In which functions are these proteins involved. (Auth.)

  11. SYNTH: A spectrum synthesizer

    International Nuclear Information System (INIS)

    Hensley, W.K.; McKinnon, A.D.; Miley, H.S.; Panisko, M.E.; Savard, R.M.

    1993-10-01

    A computer code has been written at the Pacific Northwest Laboratory (PNL) to synthesize the results of typical gamma ray spectroscopy experiments. The code, dubbed SYNTH, allows a user to specify physical characteristics of a gamma ray source, the quantity of the nuclides producing the radiation, the source-to-detector distance and the presence of absorbers, the type and size of the detector, and the electronic set up used to gather the data. In the process of specifying the parameters needed to synthesize a spectrum, several interesting intermediate results are produced, including a photopeak transmission function versus energy, a detector efficiency curve, and a weighted list of gamma and x rays produced from a set of nuclides. All of these intermediate results are available for graphical inspection and for printing. SYNTH runs on personal computers. It is menu driven and can be customized to user specifications. SYNTH contains robust support for coaxial germanium detectors and some support for sodium iodide detectors. SYNTH is not a finished product. A number of additional developments are planned. However, the existing code has been compared carefully to spectra obtained from National Institute for Standards and Technology (NIST) certified standards with very favorable results. Examples of the use of SYNTH and several spectral results are presented

  12. General Syntheses of Nanotubes Induced by Block Copolymer Self-Assembly

    DEFF Research Database (Denmark)

    Zhao, Jianming; Huang, Wei; Si, Pengchao

    2018-01-01

    Amphiphilic block copolymer templating strategies are extensively used for syntheses of mesoporous materials. However, monodisperse tubular nanostructures are limited. Here, a general method is developed to synthesize monodisperse nanotubes with narrow diameter distribution induced by self...

  13. [Sugar Chain Construction of Functional Natural Products Using Plant Glucosyltransferases].

    Science.gov (United States)

    Mizukami, Hajime

    2015-01-01

    Plant secondary product glycosyltransferases belong to family 1 of the glycosyltransferase superfamily and mediate the transfer of a glycosyl residue from activated nucleotide sugars to lipophilic small molecules, thus affecting the solubility, stability and pharmacological activities of the sugar-accepting compounds. The biotechnological application of plant glycosyltransferases in glycoside synthesis has attracted attention because enzymatic glycosylation offers several advantages over chemical methods, including (1) avoiding the use of harsh conditions and toxic catalysts, (2) providing strict control of regio-and stereo-selectivity and (3) high efficiency. This review describes the in vivo and in vitro glycosylation of natural organic compounds using glycosyltransferases, focusing on our investigation of enzymatic synthesis of curcumin glycosides. Our current efforts toward functional characterization of some glycosyltransferases involved in the biosynthesis of iridoids and crocin, as well as in the sugar chain elongation of quercetin glucosides, are described. Finally, I describe the relationship of the structure of sugar chains and the intestinal absorption which was investigated using chemoenzymatically synthesized quercetin glycosides.

  14. Comparison on Bactericidal and Cytotoxic Effect of Silver Nanoparticles Synthesized by Different Methods

    Science.gov (United States)

    Mala, R.; Celsia, A. S. Ruby; Malathi Devi, S.; Geerthika, S.

    2017-08-01

    Biologically synthesized silver nanoparticle are biocompatible for medical applications. The present work is aimed to synthesize silver nanoparticle using the fruit pulp of Tamarindusindica and to evaluate its antibacterial and anticancer activity against lung cancercell lines. Antibacterial activity was assessed by well diffusion method. Cytotoxicity was evaluated using MTT assay. GC-MS of fruit pulp extract showed the presence of levoglucosenone, n-hexadecanoic acid, 9,12-octadecadienoic acid etc. Antioxidant activity of the fruit pulp was determined by DPPH assay, hydrogen peroxide scavenging assay and lipid peroxidation. The size of biologically synthesized silver nanoparticle varied from 50 nm to 76 nm. It was 59 nm to 98 nm for chemically synthesized silver nanoparticle. Biologically synthesized silver nanoparticle showed 26 mm inhibition zone against E. coli and chemically synthesized silver nanoparticle showed 20 mm. Antioxidant activity of fruit extract by DPPH showed 84 % reduction. The IC 50 of biologically synthesized silver nanoparticle against lung cancer cell lines was 48 µg/ml. It was 95 µg/ml for chemically synthesized silver nanoparticle. The increased activity of biologically synthesized silver nanoparticle was due to its smaller size, stability and the bioactive compounds capping the silver nanoparticle extracted from the fruit extract.

  15. Evaluation of Biological Activities of Chemically Synthesized Silver Nanoparticles

    International Nuclear Information System (INIS)

    Mostafa, A. A.; Solkamy, E.N.; Sayed, Sh. R. M.; Khan, M.; Shaik, M.R.; Al-Warthan, A.; Adil, S.F.

    2015-01-01

    Silver nanoparticles were synthesized by the earlier reported methods. The synthesized nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV/Vis), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray powder diffraction (XRD). The synthesized materials were also evaluated for their antibacterial activity against Gram positive and Gram negative bacterial strains. TEM micrograph showed the spherical morphology of AgNPs with size range of 40-60 nm. The synthesized nanoparticles showed a strong antimicrobial activity and their effect depends upon bacterial strain as AgNPs exhibited greater inhibition zone for Pseudomonas aeruginosa (19.1 mm) followed by Staphylococcus aureus (14.8?mm) and S. pyogenes (13.6 mm) while the least activity was observed for Salmonella typhi (12.5 mm) at concentration of 5 μg/disc. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus was 2.5 μg/disc and less than 2.5 μg/disc for P. aeruginosa. These results suggested that AgNPs can be used as an effective antiseptic agent for infectious control in medical field.

  16. Syntheses and studies of organosilicon compounds

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ren [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    The syntheses of polycarbosilanes and polysilanes as silicon carbide ceramic precursors have been active research areas in the Barton Research Group. In this thesis, the work is focused on the preparation of polycarbosilanes and polysilanes as stoichiometric silicon carbide precursor polymers. The syntheses of the precursor polymers are discussed and the conversions of these precursors to silicon carbide via pyrolysis are reported. The XRD pattern and elemental analyses of the resulting silicon carbide ceramics are presented. Silicon monoxide is an important intermediate in the production of silicon metal. The existence of silicon monoxide in gap phase has been widely accepted. In the second part of this thesis, the generation of gaseous silicon monoxide in four different reactors and the reactions of gaseous silicon monoxide towards organic compounds are discussed.

  17. Syntheses, molecular and crystalline architectures, and ...

    Indian Academy of Sciences (India)

    Syntheses, molecular and crystalline architectures, and luminescence behaviour of terephthalate bridged heptacoordinated dinuclear lead(II) complexes containing a pentadentate N-donor Schiff base. SUBHASIS ROYa, SOMNATH CHOUBEYa, SUMITAVA KHANa, KISHALAY BHARa,. PARTHA MITRAb and BARINDRA ...

  18. Biomedical applications of green synthesized Nobel metal nanoparticles.

    Science.gov (United States)

    Khan, Zia Ul Haq; Khan, Amjad; Chen, Yongmei; Shah, Noor S; Muhammad, Nawshad; Khan, Arif Ullah; Tahir, Kamran; Khan, Faheem Ullah; Murtaza, Behzad; Hassan, Sadaf Ul; Qaisrani, Saeed Ahmad; Wan, Pingyu

    2017-08-01

    Synthesis of Nobel metal nanoparticles, play a key role in the field of medicine. Plants contain a substantial number of organic constituents, like phenolic compounds and various types of glycosides that help in synthesis of metal nanoparticles. Synthesis of metal nanoparticles by green method is one of the best and environment friendly methods. The major significance of the green synthesis is lack of toxic by-products produced during metal nanoparticle synthesis. The nanoparticles, synthesized by green method show various significant biological activities. Most of the research articles report the synthesized nanoparticles to be active against gram positive and gram negative bacteria. Some of these bacteria include Escherichia coli, Bacillus subtilis, Klebsiella pneumonia and Pseudomonas fluorescens. The synthesized nanoparticles also show significant antifungal activity against Trichophyton simii, Trichophyton mentagrophytes and Trichophyton rubrum as well as different types of cancer cells such as breast cancer cell line. They also exhibit significant antioxidant activity. The activities of these Nobel metal nano-particles mainly depend on the size and shape. The particles of small size with large surface area show good activity in the field of medicine. The synthesized nanoparticles are also active against leishmanial diseases. This research article explores in detail the green synthesis of the nanoparticles and their uses thereof. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Antibacterial activity of silver nanoparticles synthesized from serine

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  20. Souper: A Synthesizing Superoptimizer

    OpenAIRE

    Sasnauskas, Raimondas; Chen, Yang; Collingbourne, Peter; Ketema, Jeroen; Lup, Gratian; Taneja, Jubi; Regehr, John

    2017-01-01

    If we can automatically derive compiler optimizations, we might be able to sidestep some of the substantial engineering challenges involved in creating and maintaining a high-quality compiler. We developed Souper, a synthesizing superoptimizer, to see how far these ideas might be pushed in the context of LLVM. Along the way, we discovered that Souper's intermediate representation was sufficiently similar to the one in Microsoft Visual C++ that we applied Souper to that compiler as well. Shipp...

  1. A low-power CMOS frequency synthesizer for GPS receivers

    International Nuclear Information System (INIS)

    Yu Yunfeng; Xiao Shimao; Zhuang Haixiao; Ma Chengyan; Ye Tianchun; Yue Jianlian

    2010-01-01

    A low-power frequency synthesizer for GPS/Galileo L1/E1 band receivers implemented in a 0.18 μm CMOS process is introduced. By adding clock-controlled transistors at latch outputs to reduce the time constant at sensing time, the working frequency of the high-speed source-coupled logic prescaler supplying quadrature local oscillator signals has been increased, compared with traditional prescalers. Measurement results show that this synthesizer achieves an in-band phase noise of -87 dBc/Hz at 15 kHz offset, with spurs less than -65 dBc. The whole synthesizer consumes 6 mA in the case of a 1.8 V supply, and its core area is 0.6 mm 2 . (semiconductor integrated circuits)

  2. Synthese en chemotherapeutisch onderzoek van sulfanilamidopyrimidinen

    NARCIS (Netherlands)

    Grevenstuk, Anton Bernard

    1942-01-01

    In order to investigate the influence of substitution in the pyrimidine nucleous on the activity of the three isomeric sulfanilamidopyrimidines (2, 5 and 6), a number of substituted sulfanilamidopyrimidines were synthesized and tested on chemotherapeutic activity. ... Zie: Summary

  3. SYNTH: A spectrum synthesizer

    International Nuclear Information System (INIS)

    Hensley, W.K.; McKinnon, A.D.; Miley, H.S.; Panisko, M.E.; Savard, R.M.

    1994-07-01

    A computer code has been written at the Pacific Northwest Laboratory (PNL) to synthesize the results of typical gamma-ray spectroscopy experiments. The code, dubbed SYNTH, allows a use r to specify physical characteristics of a gamma-ray source, the quantity of the nuclides producing the radiation, the source-to-detector distance and the type and thickness of absorbers, the size and composition of the detector (Ge or NaI), and the electronic set up used to gather the data. In the process of specifying the parameters needed to synthesize a spectrum, several interesting intermediate results are produced, including a photopeak transmission function vs energy, a detector efficiency curve, and a weighted list of gamma and x rays produced from a set of nuclides. All of these intermediate results are available for graphical inspection and for printing. SYNTH runs on personal computers. It is menu driven and can be customized to user specifications. SYNTH contains robust support for coaxial germanium detectors and some support for sodium iodide detectors. SYNTH is not a finished product. A number of additional developments are planned. However, the existing code has been compared carefully to spectra obtained from National Institute for Standards and Technology (NIST) certified standards with very favorable results. Examples of the use of SYNTH and several spectral results will be presented

  4. A fractional-N frequency synthesizer for wireless sensor network nodes

    International Nuclear Information System (INIS)

    Ma Xiao; Du Zhankun; Liu Chang; Liu Ke; Yan Yuepeng; Ye Tianchun

    2014-01-01

    This paper presents a fractional-N frequency synthesizer for wireless sensor network (WSN) nodes. The proposed frequency synthesizer adopts a phase locked loop (PLL) based structure, which employs an LC voltage-controlled oscillator (VCO) with small VCO gain (K VCO ) and frequency step (f step ) variations, a charge pump (CP) with current changing in proportion with the division ratio and a 20-bit ΔΣ modulator, etc. To realize constant K VCO and f step , a novel capacitor sub-bands grouping method is proposed. The VCO sub-groups' sizes are arranged according to the maximal allowed K VCO variation of the system. Besides, a current mode logic divide-by-2 circuit with inside-loop buffers ensures the synthesizer generates I/Q quadrature signals robustly. This synthesizer is implemented in a 0.13 μm CMOS process. Measurement results show that the frequency synthesizer has a frequency span from 2.07 to 3.11 GHz and the typical phase noise is −86.34 dBc/Hz at 100 kHz offset and −114.17 dBc/Hz at 1 MHz offset with a loop bandwidth of about 200 kHz, which meet the WSN nodes' requirements. (semiconductor integrated circuits)

  5. SYNTHESIZER CONTROLLED BEAM TRANSFER FROM THE AGS TO RHIC

    International Nuclear Information System (INIS)

    DELONG, J.; BRENNAN, J.M.; FISCHER, W.; HAYES, T.; SMITH, K.; VALENTINO, S.

    2001-01-01

    To ensure minimal losses and to preserve longitudinal emittance, beam is transferred from the AGS to the RHIC bunch to bucket. This requires precision frequency and phase control for synchronization and kicker timing. The required precision is realized with a set of Direct Digital Synthesizers. Each synthesizer can be frequency and phase modulated to align the AGS bunch to the target bucket in the RHIC phase

  6. The Semi-automatic Synthesis of 18F-fluoroethyl-choline by Domestic FDG Synthesizer

    Directory of Open Access Journals (Sweden)

    ZHOU Ming

    2016-02-01

    Full Text Available As an important complementary imaging agent for 18F-FDG, 18F-fluoroethyl-choline (18F-FECH has been demonstrated to be promising in brain and prostate cancer imaging. By using domestic PET-FDG-TI-I CPCU synthesizer, 18F-FECH was synthesized by different reagents and consumable supplies. The C18 column was added before the product collection bottle to remove K2.2.2. The 18F-FECH was synthesized by PET-FDG-IT-I synthesizer efficiently about 30 minutes by radiochemical yield of 42.0% (no decay corrected, n=5, and the radiochemical purity was still more than 99.0% after 6 hours. The results showed the domestic PET-FDG-IT-I synthesizer could semi-automatically synthesize injectable 18F-FECH in high efficiency and radiochemical purity

  7. Zinc Oxide Nano crystals Synthesized by Quenching Technique

    International Nuclear Information System (INIS)

    Norhayati Abu Bakar; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahya

    2011-01-01

    This paper reports an attempt to synthesize non toxic zinc oxide (ZnO) nano crystals using a simple quenching technique. The hot zinc oxide powder was quenched in hexane solution to obtain ZnO nano crystals. As the result, diameter size of the synthesized ZnO is 200 nm. It was also exhibited a good crystalline with wurtzite phase. The nano crystals properties of ZnO were revealed from good absorbance and green luminescence under UV exposure. This may be related with oxygen vacancy ionization during the annealing process. (author)

  8. Biological activities of synthesized silver nanoparticles

    Indian Academy of Sciences (India)

    The C. halicacabum leaf extract synthesized AgNPs efficiency were tested against different bacterial pathogens MTCC-426 Proteus vulgaris, MTCC-2453 Pseudomonas aeruginosa, MTCC-96 Staphylococcus aureus, MTCC-441 Bacillus subtilis andMTCC-735 Salmonella paratyphi, and fungal pathogens Alternaria solani ...

  9. Prime-boost vaccination with heterologous live vectors encoding SIV gag and multimeric HIV-1 gp160 protein: efficacy against repeated mucosal R5 clade C SHIV challenges.

    Science.gov (United States)

    Lakhashe, Samir K; Velu, Vijayakumar; Sciaranghella, Gaia; Siddappa, Nagadenahalli B; Dipasquale, Janet M; Hemashettar, Girish; Yoon, John K; Rasmussen, Robert A; Yang, Feng; Lee, Sandra J; Montefiori, David C; Novembre, Francis J; Villinger, François; Amara, Rama Rao; Kahn, Maria; Hu, Shiu-Lok; Li, Sufen; Li, Zhongxia; Frankel, Fred R; Robert-Guroff, Marjorie; Johnson, Welkin E; Lieberman, Judy; Ruprecht, Ruth M

    2011-08-05

    We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus > 90%; these RM also had strong SIV Gag-specific proliferation of CD8⁺ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4β7-expressing CD4⁺ T cells; the latter have been implicated as preferential virus targets in vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Enzymatic synthesizing of phytosterol oleic esters.

    Science.gov (United States)

    Pan, Xinxin; Chen, Biqiang; Wang, Juan; Zhang, Xinzhi; Zhul, Biyun; Tan, Tianwei

    2012-09-01

    A method of synthesizing the phytosterol esters from oleic acid and sterols was studied, using immobilized lipase Candida sp. 99-125 as catalyst. Molar ratio (oleic acid/phytosterols), temperature, reaction period, organic solvents, catalyst, and silica-gel drier were optimized, and the result showed that 93.4% of the sterols had been esterified under the optimal synthetic condition: the molar ratio of oleic acid/phytosterol is 1:1 in 10 mL iso-octane, immobilized lipase (w, 140% of the sterols), incubated in an orbital shaker (200 rpm) at a temperature of 45 °C for 24 h. The immobilized lipase could be reused for at least 13 times with limited loss of esterification activity. The conversion still maintained up to 86.6%. Hence, this developed process for synthesizing phytosterol esters could be considered as simple and low-energy consumption compared to existing chemical processes.

  11. Essential oils-oriented fenvalerate analogues: syntheses, characterization and biological evaluation

    International Nuclear Information System (INIS)

    Su, H.; Li, H.

    2016-01-01

    A series of essential oils oriented ester derivatives have been designed, synthesized and characterized based on the skeleton of fenvalerate. The preliminary bioassay results indicated that some of the newly synthesized compounds showed better insecticidal activities against Pyrausta nubilalis and Heliothis armigera than that of the control trans-prallethrin chloride. (author)

  12. GHz band frequency hopping PLL-based frequency synthesizers

    Institute of Scientific and Technical Information of China (English)

    XU Yong; WANG Zhi-gong; GUAN Yu; XU Zhi-jun; QIAO Lu-feng

    2005-01-01

    In this paper we describe a full-integrated circuit containing all building blocks of a completed PLL-based synthesizer except for low pass filter(LPF).The frequency synthesizer is designed for a frequency hopping (FH) transceiver operating up to 1.5 GHz as a local oscillator. The architecture of Voltage Controlled Oscillator (VCO) is optimized to get better performance, and a phase noise of -111.85-dBc/Hz @ 1 MHz and a tuning range of 250 MHz are gained at a centre frequency of 1.35 GHz.A novel Dual-Modulus Prescaler(DMP) is designed to achieve a very low jitter and a lower power.The settling time of PLL is 80 μs while the reference frequency is 400 KHz.This monolithic frequency synthesizer is to integrate all main building blocks of PLL except for the low pass filter,with a maximum VCO output frequency of 1.5 GHz,and is fabricated with a 0.18 μm mixed signal CMOS process. Low power dissipation, low phase noise, large tuning range and fast settling time are gained in this design.

  13. Synthesizer: Expediting synthesis studies from context-free data with information retrieval techniques.

    Directory of Open Access Journals (Sweden)

    Lisa M Gandy

    Full Text Available Scientists have unprecedented access to a wide variety of high-quality datasets. These datasets, which are often independently curated, commonly use unstructured spreadsheets to store their data. Standardized annotations are essential to perform synthesis studies across investigators, but are often not used in practice. Therefore, accurately combining records in spreadsheets from differing studies requires tedious and error-prone human curation. These efforts result in a significant time and cost barrier to synthesis research. We propose an information retrieval inspired algorithm, Synthesize, that merges unstructured data automatically based on both column labels and values. Application of the Synthesize algorithm to cancer and ecological datasets had high accuracy (on the order of 85-100%. We further implement Synthesize in an open source web application, Synthesizer (https://github.com/lisagandy/synthesizer. The software accepts input as spreadsheets in comma separated value (CSV format, visualizes the merged data, and outputs the results as a new spreadsheet. Synthesizer includes an easy to use graphical user interface, which enables the user to finish combining data and obtain perfect accuracy. Future work will allow detection of units to automatically merge continuous data and application of the algorithm to other data formats, including databases.

  14. Unstable structure of ribosomal particles synthesized in. gamma. -irradiated Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H; Morita, K [National Inst. of Radiological Sciences, Chiba (Japan)

    1975-06-01

    Stability of Escherichia coli ribosomes newly synthesized after ..gamma..-irradiation was compared with that of normal ribosomes. The ribosomal particles around 70-S synthesized in irradiated cells were more sensitive to digestion by pancreatic ribonuclease A. A larger number of the salt-unstable '50-S' precursor particles existed in the extract from irradiated cells than in the extract from unirradiated cells. These facts suggest that ribosomal particles, synthesized during an earlier stage in irradiated cells, maintain an incomplete structure even though they are not distinguishable from normal ribosomes by means of sucrose density-gradient centrifugation.

  15. Method to synthesize metal chalcogenide monolayer nanomaterials

    Science.gov (United States)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  16. Sol–gel synthesized mesoporous anatase titanium dioxide ...

    Indian Academy of Sciences (India)

    for dye sensitized solar cell (DSSC) applications. R GOVINDARAJ1,∗, M ... DSSC than rutile phase. In this work, we have synthesized hierarchically structured ... Hydrolysis and polycondensation reaction mechanism of sol–gel process. 2.

  17. Knowledge Syntheses in Medical Education: Demystifying Scoping Reviews.

    Science.gov (United States)

    Thomas, Aliki; Lubarsky, Stuart; Durning, Steven J; Young, Meredith E

    2017-02-01

    An unprecedented rise in health professions education (HPE) research has led to increasing attention and interest in knowledge syntheses. There are many different types of knowledge syntheses in common use, including systematic reviews, meta-ethnography, rapid reviews, narrative reviews, and realist reviews. In this Perspective, the authors examine the nature, purpose, value, and appropriate use of one particular method: scoping reviews. Scoping reviews are iterative and flexible and can serve multiple main purposes: to examine the extent, range, and nature of research activity in a given field; to determine the value and appropriateness of undertaking a full systematic review; to summarize and disseminate research findings; and to identify research gaps in the existing literature. Despite the advantages of this methodology, there are concerns that it is a less rigorous and defensible means to synthesize HPE literature. Drawing from published research and from their collective experience with this methodology, the authors present a brief description of scoping reviews, explore the advantages and disadvantages of scoping reviews in the context of HPE, and offer lessons learned and suggestions for colleagues who are considering conducting scoping reviews. Examples of published scoping reviews are provided to illustrate the steps involved in the methodology.

  18. Study on magnetite nanoparticles synthesized by chemical method

    International Nuclear Information System (INIS)

    Pei Wenli; Kumada, H.; Natusme, T.; Saito, H.; Ishio, S.

    2007-01-01

    Magnetite nanoparticles with controlled size were synthesized by chemical method. Higher deposition temperature and a rapid-raising temperature procedure are favorable to particle size distribution and fabrication of monodisperse nanoparticles. The larger nanoparticles can be synthesized by the two-step method. The large nanoparticle (up to 25 nm) without agglomeration was successfully produced. The saturation magnetization of 11 nm magnetite particles was 45 emu/g at room temperature, which is smaller than that of bulk magnetite due to surface effect. Hysteresis of the magnetite nanoparticle was very small, indicating superparamagnetic behavior. The magnetic domains of the 11 nm magnetite nanoparticles were successfully observed by MFM

  19. Taenia solium tapeworms synthesize corticosteroids and sex steroids in vitro.

    Science.gov (United States)

    Valdez, R A; Jiménez, P; Fernández Presas, A M; Aguilar, L; Willms, K; Romano, M C

    2014-09-01

    Cysticercosis is a disease caused by the larval stage of Taenia solium cestodes that belongs to the family Taeniidae that affects a number of hosts including humans. Taeniids tapeworms are hermaphroditic organisms that have reproductive units called proglottids that gradually mature to develop testis and ovaries. Cysticerci, the larval stage of these parasites synthesize steroids. To our knowledge there is no information about the capacity of T. solium tapeworms to metabolize progesterone or other precursors to steroid hormones. Therefore, the aim of this paper was to investigate if T. solium tapeworms were able to transform steroid precursors to corticosteroids and sex steroids. T. solium tapeworms were recovered from the intestine of golden hamsters that had been orally infected with cysticerci. The worms were cultured in the presence of tritiated progesterone or androstenedione. At the end of the experiments the culture media were analyzed by thin layer chromatography. The experiments described here showed that small amounts of testosterone were synthesized from (3)H-progesterone by complete or segmented tapeworms whereas the incubation of segmented tapeworms with (3)H-androstenedione, instead of (3)H-progesterone, improved their capacity to synthesize testosterone. In addition, the incubation of the parasites with (3)H-progesterone yielded corticosteroids, mainly deoxicorticosterone (DOC) and 11-deoxicortisol. In summary, the results described here, demonstrate that T. solium tapeworms synthesize corticosteroid and sex steroid like metabolites. The capacity of T. solium tapeworms to synthesize steroid hormones may contribute to the physiological functions of the parasite and also to their interaction with the host. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. ANALISYS OF FRACTIONAL-N FREQUENCY SYNTHESIZERS

    Directory of Open Access Journals (Sweden)

    Boris I. Shakhtarin

    2018-01-01

    Full Text Available Modern information and control systems cannot be imagined without synchronization subsystems. These are the basic elements that provide tracking of the frequency and phase of reference and information signals, the evaluation of information parameters, and the synthesis of reference and clock signals. Frequency synthesizers (FS are widely used due to the high speed of frequency setting, a wide range of frequency grids and minimal phase noise in the operating frequency range. Since with the mass appearance of specialized microprocessors and with the improvement of automatic design systems, the feasibility and repeatability of products has become simpler, digital FS are increasingly being used. The most widely used are FS with a frequency divider on digital elements, which serves to convert the signal of a reference oscillator and a controlled generator. For FS using a divisor with an integer division factor in the feedback loop, there are a number of limitations, such as the lower frequency of the FS and the frequency step of the FS. To solve this problem, divisors with fractional-variable division factors in the feedback loop are used, which allow to obtain the required range and the grid frequency step of the FS. The methods of improving the quality of spectral and dynamic characteristics of digital synthesizers in a given band of frequency detuning are analyzed. The principles of the FS operation with a divisor with a fractionalvariable fission coefficient are described, and structural schemes are given. The results of imitation simulation in the Simulink system of the software package MATLAB of frequency synthesizers with a divisor with a fractional-variable fission factor implemented in various ways are presented, and a comparative analysis of the spectral characteristics of the obtained models is carried out. 

  1. Mesoporous Akaganeite of Adjustable Pore Size Synthesized using Mixed Templates

    Science.gov (United States)

    Zhang, Y.; Ge, D. L.; Ren, H. P.; Fan, Y. J.; Wu, L. M.; Sun, Z. X.

    2017-12-01

    Mesoporous akaganeite with large and adjustable pore size was synthesized through a co-template method, which was achieved by the combined interaction between PEG2000 and alkyl amines with different lengths of the straight carbon chain. The characterized results indicate that the synthesized samples show comparatively narrow BJH pore size distributions and centered at 14.3 nm when PEG and HEPA was used, and it could be enlarged to 16.8 and 19.4 nm respectively through changing the alkyl amines to DDA and HDA. Meanwhile, all the synthesized akaganeite possess relativity high specific surface area ranging from 183 to 281 m2/g and high total pore volume of 0.98 to 1.5 cm3/g. A possible mechanism leading to the pore size changing was also proposed.

  2. Deep eutectic solvents as performance additives in biphasic reactions

    NARCIS (Netherlands)

    Lan, Dongming; Wang, Xuping; Zhou, Pengfei; Hollmann, F.; Wang, Yonghua

    2017-01-01

    Deep eutectic solvents act as surfactants in biphasic (hydrophobic/aqueous) reaction mixtures enabling higher interfacial surface areas at lower mechanical stress as compared to simple emulsions. Exploiting this effect the rate of a chemoenzymatic epoxidation reaction was increased more than

  3. An Open-Source Automated Peptide Synthesizer Based on Arduino and Python.

    Science.gov (United States)

    Gali, Hariprasad

    2017-10-01

    The development of the first open-source automated peptide synthesizer, PepSy, using Arduino UNO and readily available components is reported. PepSy was primarily designed to synthesize small peptides in a relatively small scale (<100 µmol). Scripts to operate PepSy in a fully automatic or manual mode were written in Python. Fully automatic script includes functions to carry out resin swelling, resin washing, single coupling, double coupling, Fmoc deprotection, ivDde deprotection, on-resin oxidation, end capping, and amino acid/reagent line cleaning. Several small peptides and peptide conjugates were successfully synthesized on PepSy with reasonably good yields and purity depending on the complexity of the peptide.

  4. M10.6.6: Designed and manufactured Frequency Synthesizer Board (AMC)

    CERN Document Server

    Czuba, K

    2011-01-01

    The LLRF system require generation of highly stable clock and trigger signals for high precision data processing and synchronous system operation. This deliverable provides an updated AMC module designed to fulfill the LLRF system timing synchronization needs. The module contains three independent clock synthesizers that are able to generate LVDS clock signals in the range of 10 MHz to 100 MHz. The clock synthesizers can be synchronized either by an internal quartz oscillator or an external phase reference signal provided to the board from the FLASH Master Oscillator. Besides clock synthesizers the AMC card contains also an optical receiver suited to convert and decode FLASH timing signals.

  5. 4-GHz counters bring synthesizers up to speed

    Science.gov (United States)

    Lee, F.; Miller, R.

    1984-06-01

    The availability of digital IC counters built on GaAs makes direct frequency division in microwave synthesizers possible. Four GHz is the highest clock rate achievable in production designs. These devices have the ability to drive TTL/CMOS logic, and the counter can be connected directly to single-chip frequency synthesizers controllers. A complete microwave sythesizer is formed by two chips and a voltage-controlled oscillator (VCO). The advantages of GaAs are discussed along with flip-flop basics, aspects of device fabrication, and the characteristics of GaAs MESAFETs. Attention is given to a GaAs prescaler usable for direct conversion, four kinds of flip-flops in a divide-by-two mode, and seven-stage binary ripple counters.

  6. Trapping of intermediates with substrate analog HBOCoA in the polymerizations catalyzed by class III polyhydroxybutyrate (PHB) synthase from Allochromatium vinosum.

    Science.gov (United States)

    Chen, Chao; Cao, Ruikai; Shrestha, Ruben; Ward, Christina; Katz, Benjamin B; Fischer, Christopher J; Tomich, John M; Li, Ping

    2015-05-15

    Polyhydroxybutyrate (PHB) synthases (PhaCs) catalyze the formation of biodegradable PHB polymers that are considered as an ideal alternative to petroleum-based plastics. To provide strong evidence for the preferred mechanistic model involving covalent and noncovalent intermediates, a substrate analog HBOCoA was synthesized chemoenzymatically. Substitution of sulfur in the native substrate HBCoA with an oxygen in HBOCoA enabled detection of (HB)nOCoA (n = 2-6) intermediates when the polymerization was catalyzed by wild-type (wt-)PhaECAv at 5.84 h(-1). This extremely slow rate is due to thermodynamically unfavorable steps that involve the formation of enzyme-bound PHB species (thioesters) from corresponding CoA oxoesters. Synthesized standards (HB)nOCoA (n = 2-3) were found to undergo both reacylation and hydrolysis catalyzed by the synthase. Distribution of the hydrolysis products highlights the importance of the penultimate ester group as previously suggested. Importantly, the reaction between primed synthase [(3)H]-sT-PhaECAv and HBOCoA yielded [(3)H]-sTet-O-CoA at a rate constant faster than 17.4 s(-1), which represents the first example that a substrate analog undergoes PHB chain elongation at a rate close to that of the native substrate (65.0 s(-1)). Therefore, for the first time with a wt-synthase, strong evidence was obtained to support our favored PHB chain elongation model.

  7. Microstructural characterization of gold nanoparticles synthesized by solution plasma processing

    International Nuclear Information System (INIS)

    Cho, Sung-Pyo; Bratescu, Maria Antoaneta; Takai, Osamu; Saito, Nagahiro

    2011-01-01

    Microstructural characteristics of gold nanoparticles (Au NPs) fabricated by solution plasma processing (SPP) in reverse micelle solutions have been studied by high-resolution transmission electron microscopy (HRTEM). The synthesized Au NPs, with an average size of 6.3 ± 1.4 nm, have different crystal characteristics; fcc single-crystalline particles, multiply twinned particles (MTPs), and incomplete MTPs (single-nanotwinned fcc configuration). The crystal structure characteristics of the Au NPs synthesized by the SPP method were analyzed and compared with similar-size Au NPs obtained by the conventional chemical reduction synthesis (CRS) method. The TEM analysis results show that the Au NPs synthesized by the CRS method have shapes and crystal structures similar to those nanoparticles obtained by the SPP method. However, from the detailed HRTEM analysis, the relative number of the Au MTPs and incomplete MTPs to the total number of the Au NPs synthesized by the SPP method was observed to be around 94%, whereas the relative number of these kinds of crystal structures fabricated by the CRS method was about 63%. It is most likely that the enhanced formation of the Au MTPs is due to the fact that the SPP method generates highly reaction-activated species under low environmental temperature conditions.

  8. Biosynthesis of silver nanoparticles synthesized by Aspergillus

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  9. Design of a synthesizer for magnetic resonance equipment using FPGA

    International Nuclear Information System (INIS)

    Sonora A

    2006-01-01

    This paper exposes the design of a direct digital synthesizer in FPGA. This desing can generate a sine wave output up to 4MHZ with 3,33 mHz of precision. The frequency is set by 32bit word of phase increment in 350ns. The desing was made for Magnetic Resonance scanners and uses a 97% of logic resources of device. Functions for the synthesizer control are implemented in the same chip

  10. Entwicklung eines kontinuierlichen Verfahrens zur enzymkatalysierten Synthese eines strukturierten Triglycerides

    OpenAIRE

    Stadler, Hans-Gerhard

    2005-01-01

    Ausgangspunkt für die in der vorliegenden Arbeit durchgeführten Entwicklung eines kontinuierlichen Verfahrens zur Synthese des strukturierten Triglycerides 1,3-Oleyl-2-palmitoylglycerin war die von Schmid [Schmid 1999] entwickelte lipase-katalysierte Zwei-Schritt-Synthese für strukturierte Triglyceride vom Typ ABA [European Patent Application; EP 0 882 797 A2]. In der ersten Reaktionsstufe dieser zweistufigen Umesterung wird in einer Folgereaktion das Substrat Tripalmitin mit Hilfe ein...

  11. Synthese monitoring mestmarkt 2006-2012

    OpenAIRE

    Koeijer, de, T.J.; Luesink, H.H.; Daatselaar, C.H.G.

    2014-01-01

    De aanvoer en afzet van dierlijke mest via de mestmarkt in Nederland zijn op verzoek van het ministerie van Economische Zaken (EZ) voor de periode 2006-2012 in beeld gebracht. Dit is gedaan op basis van analyses van de Vervoersbewijzen Dierlijke Mest (VDM’s) van RVO.nl (Rijksdienst voor Ondernemend Nederland) en op basis van modelberekeningen met MAMBO. Dit WOt-technical report geeft een synthese van de resultaten. Op basis van vergelijkbare meststromen is het aanbod op basis van de VDM’s 73 ...

  12. SYNTHESES AND CHARACTERIZATIONS OF THE CYANIDE ...

    African Journals Online (AJOL)

    2015-10-28

    (Received October 28, 2015; revised June 25, 2016) ... suggest that the Ni(II) ion is four coordinate with four cyanide-carbon atoms in ... However, there have been many studies on octahedral [M(CN)6]n- but little ... were synthesized and investigated by vibrational spectral (FT-IR and ..... Karaağaç, D.; Kürkçüoğlu, G.S. Bull.

  13. Synthesizing genetic sequential logic circuit with clock pulse generator.

    Science.gov (United States)

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  14. Cytotoxicity of Nanoliposomal Cisplatin Coated with Synthesized ...

    African Journals Online (AJOL)

    Purpose: To evaluate the cytotoxicity of pegylated nanoliposomal cisplatin on human ovarian cancer cell line A2780CP. Methods: Synthesized methoxypolyethylene glycol (mPEG) propionaldehyde was characterized by 1Hnuclear magnetic resonance (1H-NMR) and Fourier transform infrared spectroscopy (FTIR) and used ...

  15. Biogenic synthesized nanoparticles and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Abhijeet, E-mail: abhijeet.singh@jaipur.manipal.edu; Sharma, Madan Mohan [Manipal University Jaipur (India)

    2016-05-06

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO{sub 3} via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV–vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  16. Biogenic synthesized nanoparticles and their applications

    International Nuclear Information System (INIS)

    Singh, Abhijeet; Sharma, Madan Mohan

    2016-01-01

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO_3 via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV–vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  17. Tumoral fibrosis effect on the radiation absorbed dose of 177Lu–Tyr3-octreotate and 177Lu–Tyr3-octreotate conjugated to gold nanoparticles

    International Nuclear Information System (INIS)

    Azorín-Vega, E.P.; Zambrano-Ramírez, O.D.; Rojas-Calderón, E.L.; Ocampo-García, B.E.; Ferro-Flores, G.

    2015-01-01

    The aim of this work was to evaluate the tumoral fibrosis effect on the radiation absorbed dose of the radiopharmaceuticals 177 Lu–Tyr 3 -octreotate (monomeric) and 177 Lu–Tyr 3 -octreotate–gold nanoparticles (multimeric) using an experimental HeLa cells tumoral model and the Monte Carlo PENELOPE code. Experimental and computer micro-environment models with or without fibrosis were constructed. Results showed that fibrosis increases up to 33% the tumor radiation absorbed dose, although the major effect on the dose was produced by the type of radiopharmaceutical (112 Gy-multimeric vs. 43 Gy-monomeric). - Highlights: • Fibrosis increases the radiation absorbed dose to the tumor. • Fibrosis increases the radiopharmaceutical residence time in the tumor. • The multimeric nature of the radiopharmaceuticals enhances the radiopharmaceutical retention

  18. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  19. Spurious in PLL-DDS frequency synthesizers

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Věnceslav František; Štursa, Jarmil

    2002-01-01

    Roč. 2, č. 1 (2002), s. 48-51 ISSN 1335-8243. [Digital Signal Processing and Multimedia Communications DSP-MCOM 2001 /5./. Košice, 27.11.2001-29.11.2001] R&D Projects: GA ČR GA102/00/0958 Institutional research plan: CEZ:AV0Z2067918 Keywords : frequency synthesizers * phase locked loops * direct digital synthesis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  20. Bias Voltage-Dependent Impedance Spectroscopy Analysis of Hydrothermally Synthesized ZnS Nanoparticles

    Science.gov (United States)

    Dey, Arka; Dhar, Joydeep; Sil, Sayantan; Jana, Rajkumar; Ray, Partha Pratim

    2018-04-01

    In this report, bias voltage-dependent dielectric and electron transport properties of ZnS nanoparticles were discussed. ZnS nanoparticles were synthesized by introducing a modified hydrothermal process. The powder XRD pattern indicates the phase purity, and field emission scanning electron microscope image demonstrates the morphology of the synthesized sample. The optical band gap energy (E g = 4.2 eV) from UV measurement explores semiconductor behavior of the synthesized material. The electrical properties were performed at room temperature using complex impedance spectroscopy (CIS) technique as a function of frequency (40 Hz-10 MHz) under different forward dc bias voltages (0-1 V). The CIS analysis demonstrates the contribution of bulk resistance in conduction mechanism and its dependency on forward dc bias voltages. The imaginary part of the impedance versus frequency curve exhibits the existence of relaxation peak which shifts with increasing dc forward bias voltages. The dc bias voltage-dependent ac and dc conductivity of the synthesized ZnS was studied on thin film structure. A possible hopping mechanism for electrical transport processes in the system was investigated. Finally, it is worth to mention that this analysis of bias voltage-dependent dielectric and transport properties of as-synthesized ZnS showed excellent properties for emerging energy applications.

  1. Exploitation of rare earth catalysts in polymer syntheses

    Institute of Scientific and Technical Information of China (English)

    Shen Zhiquan

    2006-01-01

    The studies over forty years on rare earth catalysts in polymer syntheses of diene,alkyne,alkylene oxide,thiirane, carbon dioxide copolymerization, lactide,caprolactone,cyclic carbonate and so forth in China have been reviewed.

  2. Syntheses of copper complexes of nicotinohydroxamic and ...

    African Journals Online (AJOL)

    Nicotinohydroxamic acid (NHA) and isonicotinohydroxamic acid (INHA) were synthesized, characterized by electronic and spectral studies,magnetic measurements and their pKa determined spectrophotometrically as 8.68 ± 0.02 in aqueous medium of 0.1mol dm-3 I=ionic strength. The composition of the complexes was ...

  3. Hydrothermally Synthesized Zinc Sulphide Microspheres for Solar Light-Driven Photocatalytic Properties

    Science.gov (United States)

    Waghadkar, Yogesh; Arbuj, Sudhir; Shinde, Manish; Ballal, Reshma; Rane, Sunit B.; Gosavi, Suresh; Fouad, H.; Chauhan, Ratna

    2018-02-01

    In this work, we reported the synthesis of zinc sulphide microspheres using the hydrothermal method. ZnS microspheres were synthesized using water, zinc acetate, thiourea and ammonia solution at 150°C for 6 h, 12 h, and 24 h. The as-synthesized ZnS powders were characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and ultraviolet-visible (UV-Vis) spectroscopy. XRD indicates the cubic (major phase) as well as hexagonal (minor phase) crystalline phase with enhanced crystallinity increased gradually with more reaction time. UV-Vis spectra show the absorption peaks in the UV-Vis region for all the samples. The Tauc's plot was used to calculate the band gap energy of ZnS samples, which are found to be 3.39 eV, 3.4 eV, and 3.42 eV for the samples synthesized at reaction times of 6 h, 12 h, and 24 h, respectively. FESEM images confirm the formation of microspheres as aggregates of spherical nanoparticles. The as-synthesized ZnS microspheres have been explored for solar light-induced photo-catalytic dye degradation of methylene blue (MB), and the results confirm that such microspheres exhibit effectual photocatalytic properties.

  4. Enzymatic halogenation and oxidation using an alcohol oxidase-vanadium chloroperoxidase cascade

    NARCIS (Netherlands)

    But, Andrada; Noord, Van Aster; Poletto, Francesca; Sanders, Johan P.M.; Franssen, Maurice C.R.; Scott, Elinor L.

    2017-01-01

    The chemo-enzymatic cascade which combines alcohol oxidase from Hansenula polymorpha (AOXHp) with vanadium chloroperoxidase (VCPO), for the production of biobased nitriles from amino acids was investigated. In the first reaction H2O2 (and acetaldehyde) are generated from ethanol and oxygen by AOXHp.

  5. Syntheses, Protonation Constants and Antimicrobial Activity of 2 ...

    African Journals Online (AJOL)

    carboxaldehyde and N-alkylimidazole-2-methanol derivatives [alkyl = benzyl, methyl, ethyl, propyl, butyl, heptyl, octyl and decyl] have been synthesized and the protonation constants determined. The antimicrobial properties of the compounds were tested ...

  6. Hydrothermally synthesized barium fluoride nanocubes for thermoluminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bhadane, Mahesh S.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune-411007 (India)

    2016-05-23

    In this work, we report a hydrothermally synthesized Dy doped BaF{sub 2} (BaF{sub 2}:Dy) nanocubes and its Thermoluminescence studies. The synthesized BaF{sub 2}:Dy samples was found to posses FCC structure and having average size ~ 60-70 nm, as revealed through X-Ray Diffraction. Cubical morphology having size ~90 nm was observed from TEM analysis. The {sup 60}Co γ- ray irradiated BaF{sub 2}:Dy TL dosimetric experiments shows a pre-dominant single glow peak at 153 °C, indicating a single level trap present as a metastable state. Furthermore, BaF{sub 2}:Dy nanophosphor shows a sharp linear response from 10 Gy to 3 kGy, thus it can be applicable as a gamma dosimeter.

  7. Characterization of combustion synthesized zirconia powder by UV

    Indian Academy of Sciences (India)

    . The surface acidbase properties of these samples were also investigated by indicator titration method. The catalytic activity was probed with transfer hydrogenation reaction in liquid phase. It was found that combustion synthesized zirconia did ...

  8. GaN Nanowires Synthesized by Electroless Etching Method

    KAUST Repository

    Najar, Adel; Anjum, Dalaver H.; Ng, Tien Khee; Ooi, Boon S.; Ben Slimane, Ahmed

    2012-01-01

    Ultra-long Gallium Nitride Nanowires is synthesized via metal-electroless etching method. The morphologies and optical properties of GaN NWs show a single crystal GaN with hexagonal Wurtzite structure and high luminescence properties.

  9. Characterization of chemically synthesized CdS nanoparticles

    Indian Academy of Sciences (India)

    Similar to the effects of charge carriers on optical properties, confinement of optical and acoustic phonons leads to interesting changes in the phonon spectra. In the present work, we have synthesized nanoparticles of CdS using chemical precipitation technique. The crystal structure and grain size of the particles are studied ...

  10. Molecular trees: from syntheses towards applications

    International Nuclear Information System (INIS)

    Ardoin, N.; Astruc, D.

    1995-01-01

    Molecular trees, also called dendrimers, arborols, cauliflowers, cascades or hyperbranched molecules, have been synthesized since their first observation in 1978 by divergent, convergent or combined methods, with various functions on the branches. The potential applications of these nanoscopic molecules are in the fields of biology (gene therapy, virus mimicking an vectorization) and molecular materials sciences (new polymers, adhesion, liquid crystals, etc). (authors). 236 refs., 6 figs., 2 tabs., 8 schemes

  11. Purification and properties of beta-galactosidase from Aspergillus nidulans.

    Science.gov (United States)

    Díaz, M; Pedregosa, A M; de Lucas, J R; Torralba, S; Monistrol, I F; Laborda, F

    1996-12-01

    Beta-Galactosidase from mycelial extract of Aspergillus nidulans has been purified by substrate affinity chromatography and used to obtain anti-beta-galactosidase polyclonal antibodies. A. nidulans growing in lactose as carbon source synthesizes one active form of beta-galactosidase which seems to be a multimeric enzyme of 450 kDa composed of monomers with 120 and 97 kDa. Although the enzyme was not released to the culture medium, some enzymatic activity was detected in a cell-wall extract, thus suggesting that it can be an extracellular enzyme. Beta-Galactosidase of A. nidulans is a very unstable enzyme with an optimum pH value of 7.5 and an optimum temperature of 30 degrees C. It was only active against beta-galactoside substrates like lactose and p-nitrophenyl-beta-D-galactoside (PNPG).

  12. Substitution of conventional high-temperature syntheses of inorganic compounds by near-room-temperature syntheses in ionic liquids

    KAUST Repository

    Groh, Matthias Friedrich; Mü llera, Ulrike; Ahmed, Ejaz; Rothenberger, Alexander; Ruck, Michael J.

    2013-01-01

    The high-temperature syntheses of the low-valent halogenides P2I4, Te2Br, α-Te4I4, Te4(Al2Cl7)2, Te4(Bi6Cl20), Te8(Bi4Cl14),Bi8(AlCl4)2, Bi6Cl7,and Bi6Br7, as well as of WSCl4 andWOCl4 have been replaced by resource-efficient low

  13. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    International Nuclear Information System (INIS)

    Bharti, Amardeep; Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-01-01

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  14. Can microcarrier-expanded chondrocytes synthesize cartilaginous tissue in vitro?

    Science.gov (United States)

    Surrao, Denver C; Khan, Aasma A; McGregor, Aaron J; Amsden, Brian G; Waldman, Stephen D

    2011-08-01

    Tissue engineering is a promising approach for articular cartilage repair; however, it is challenging to produce adequate amounts of tissue in vitro from the limited number of cells that can be extracted from an individual. Relatively few cell expansion methods exist without the problems of de-differentiation and/or loss of potency. Recently, however, several studies have noted the benefits of three-dimensional (3D) over monolayer expansion, but the ability of 3D expanded chondrocytes to synthesize cartilaginous tissue constructs has not been demonstrated. Thus, the purpose of this study was to compare the properties of engineered cartilage constructs from expanded cells (monolayer and 3D microcarriers) to those developed from primary chondrocytes. Isolated bovine chondrocytes were grown for 3 weeks in either monolayer (T-Flasks) or 3D microcarrier (Cytodex 3) expansion culture. Expanded and isolated primary cells were then seeded in high density culture on Millicell™ filters for 4 weeks to evaluate the ability to synthesize cartilaginous tissue. While microcarrier expansion was twice as effective as monolayer expansion (microcarrier: 110-fold increase, monolayer: 52-fold increase), the expanded cells (monolayer and 3D microcarrier) were not effectively able to synthesize cartilaginous tissue in vitro. Tissues developed from primary cells were substantially thicker and accumulated significantly more extracellular matrix (proteoglycan content: 156%-292% increase; collagen content: 70%-191% increase). These results were attributed to phenotypic changes experienced during the expansion phase. Monolayer expanded chondrocytes lost their native morphology within 1 week, whereas microcarrier-expanded cells were spreading by 3 weeks of expansion. While the use of 3D microcarriers can lead to large cellular yields, preservation of chondrogenic phenotype during expansion is required in order to synthesize cartilaginous tissue.

  15. Method of synthesizing silica nanofibers using sound waves

    Science.gov (United States)

    Sharma, Jaswinder K.; Datskos, Panos G.

    2015-09-15

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  16. Effect of annealing on the structure of chemically synthesized SnO_2 nanoparticles

    International Nuclear Information System (INIS)

    Singh, Kulwinder; Kumar, Akshay; Kumar, Virender; Vij, Ankush; Kumari, Sudesh; Thakur, Anup

    2016-01-01

    Tin oxide (SnO_2) nanoparticles have been synthesized by co-precipitation method. The synthesized nanoparticles were characterized by X-ray diffraction (XRD) and Raman spectroscopy. XRD analysis confirmed the single phase formation of SnO_2 nanoparticles. The Raman shifts showed the typical feature of the tetragonal phase of the as-synthesized SnO_2 nanoparticles. At low annealing temperature, a strong distortion of the crystalline structure and high degree of agglomeration was observed. It is concluded that the crystallinity of SnO_2 nanoparticles improves with the increase in annealing temperature.

  17. Synthesizing chaotic maps with prescribed invariant densities

    International Nuclear Information System (INIS)

    Rogers, Alan; Shorten, Robert; Heffernan, Daniel M.

    2004-01-01

    The Inverse Frobenius-Perron Problem (IFPP) concerns the creation of discrete chaotic mappings with arbitrary invariant densities. In this Letter, we present a new and elegant solution to the IFPP, based on positive matrix theory. Our method allows chaotic maps with arbitrary piecewise-constant invariant densities, and with arbitrary mixing properties, to be synthesized

  18. Characterization of tin selenides synthesized by high-energy milling

    Directory of Open Access Journals (Sweden)

    Marcela Achimovičová

    2011-12-01

    Full Text Available Tin selenides SnSeX (x=1,2 were synthesized from tin and selenium powder precursors by high-energy milling in the planetary ballmill Pulverisette 6 (Fritsch, Germany. The orthorhombic tin selenide SnSe and the hexagonal tin diselenide SnSe2 phases were formed after4 min and 5 min of milling, respectively. Specific surface area of both selenides increased with increasing time of mechanochemicalsynthesis. The particle size distribution analysis demonstrated that the synthesized products contain agglomerated selenide particlesconsisting of numerous idiomorphic tin selenide crystals, measuring from 2 to more than 100 nm in diameter, which were also documentedby TEM. UV-Vis spectrophotometry confirmed that tin selenide particles do not behave as quantum dots.

  19. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    International Nuclear Information System (INIS)

    Shao-Peng, Zhu; Shao-Chun, Tang; Xiang-Kang, Meng

    2009-01-01

    Silver nanoparticles with an average size of about 20 nm are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method. The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability. (cross-disciplinary physics and related areas of science and technology)

  20. Strong nonlinear photonic responses from microbiologically synthesized tellurium nanocomposites

    Science.gov (United States)

    Liao, K.-S.; Wang, Jingyuan; Dias, S.; Dewald, J.; Alley, N.J.; Baesman, S.M.; Oremland, R.S.; Blau, W.J.; Curran, S.A.

    2010-01-01

    A new class of nanomaterials, namely microbiologically-formed nanorods composed of elemental tellurium [Te(0)] that forms unusual nanocomposites when combined with poly(m-phenylenevinylene-co-2,5-dioctoxy-phenylenevinylene) (PmPV) is described. These bio-nanocomposites exhibit excellent broadband optical limiting at 532 and 1064 nm. Nonlinear scattering, originating from the laser induced solvent bubbles and microplasmas, is responsible for this nonlinear behavior. The use of bacterially-formed Te(0) when combined with an organic chemical host (e.g., PmPV) is a new green method of nanoparticle syntheses. This opens the possibilities of using unique, biologically synthesized materials to advance future nanoelectronic and nanophotonic applications. ?? 2009 Elsevier B.V. All rights reserved.

  1. Characterization of hydrothermally synthesized SnS nanoparticles for solar cell application

    Science.gov (United States)

    Rajwar, Birendra Kumar; Sharma, Shailendra Kumar

    2018-05-01

    In the present study, SnS nanoparticles were synthesized by simple hydrothermal method using stannous chloride and thiourea as tin (Sn) and sulfur (S) precursor respectively. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy and UV-Vis Spectroscopy techniques. XRD pattern reveals that as-prepared nanoparticles exhibit orthorhombic structure. Average particles size was calculated using Scherrer's formula and found to be 23 nm. FESEM image shows that the as-prepared nanoparticles are in plate like structure. Direct optical band gap (Eg) of as-synthesized nanoparticles was calculated through UV-Vis Spectroscopy measurement and found to be 1.34 eV, which is near to optimum need for photovoltaic solar energy conversion (1.5 eV). Thus this SnS, narrowband gap semiconductor material can be applied as an alternative absorber material for solar cell application.

  2. The effect of green synthesized gold nanoparticles on rice germination and roots

    Science.gov (United States)

    Tsi Ndeh, Nji; Maensiri, Santi; Maensiri, Duangkamol

    2017-09-01

    In this paper, gold nanoparticles were synthesized by means of a green approach with Tiliacora triandra leaf extracts under different conditions. No additional reducing or capping agents were employed. The gold nanoparticles were characterized using UV-visible spectrophotometry, transmission electron microscope, x-ray diffraction and Fourier transform infrared spectroscopy. Gold nanoparticles synthesized at temperature of 80 °C were further used to treat rice (Oryza sativa) grains at different concentrations (0, 10, 100, 500, 1000, 2000 mg l-1) for one week. While germination percentages were high (95-98.38%), a slight decrease in root and shoot lengths relative to the control was observed. Phytotoxicity results indicated that the plant synthesized gold nanoparticles were of minimal toxicity to rice seedlings. Increases in cell death, hydrogen peroxide formation and lipid peroxidation in roots and shoots were noted. However, these increases were not statistically significant. The overall results confirmed that Tiliacora triandra synthesized gold nanoparticles are biocompatible and can be potentially used as nanocarriers in agriculture. Contribution at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  3. Performance of Phonatory Deviation Diagrams in Synthesized Voice Analysis.

    Science.gov (United States)

    Lopes, Leonardo Wanderley; da Silva, Karoline Evangelista; da Silva Evangelista, Deyverson; Almeida, Anna Alice; Silva, Priscila Oliveira Costa; Lucero, Jorge; Behlau, Mara

    2018-05-02

    To analyze the performance of a phonatory deviation diagram (PDD) in discriminating the presence and severity of voice deviation and the predominant voice quality of synthesized voices. A speech-language pathologist performed the auditory-perceptual analysis of the synthesized voice (n = 871). The PDD distribution of voice signals was analyzed according to area, quadrant, shape, and density. Differences in signal distribution regarding the PDD area and quadrant were detected when differentiating the signals with and without voice deviation and with different predominant voice quality. Differences in signal distribution were found in all PDD parameters as a function of the severity of voice disorder. The PDD area and quadrant can differentiate normal voices from deviant synthesized voices. There are differences in signal distribution in PDD area and quadrant as a function of the severity of voice disorder and the predominant voice quality. However, the PDD area and quadrant do not differentiate the signals as a function of severity of voice disorder and differentiated only the breathy and rough voices from the normal and strained voices. PDD density is able to differentiate only signals with moderate and severe deviation. PDD shape shows differences between signals with different severities of voice deviation. © 2018 S. Karger AG, Basel.

  4. Radiolytic Syntheses of Nanoparticles and Inorganic-Polymer Hybrid Microgels

    International Nuclear Information System (INIS)

    Chen, Q.; Shi, J.; Zhao, R.; Shen, X.

    2010-01-01

    In the second year of the project, we have gotten progress mainly in two directions. Firstly, for the first time, Prussian blue (PB) nanoparticles (NPs) were successfully synthesized by the partly radiolytic reduction of Fe3+ and Fe(CN)63 in the presence of poly(N-vinyl pyrrolidine) (PVP) under N2 atmospheres at room temperature. With the increase of the concentration of PVP, the size and the size distribution of the synthesized quasi-spherical PB NPs decreased obviously, leading to a hypsochromic shift on their peak position of the characteristic absorption. In the experiment, we further found that the smaller ones have a larger capacity to Cs+, suggesting that the application of PB NPs in curing thallotoxicosis may decrease the usage of PB for the patient to great extent. Secondly, through a series of preliminary experiments, we got a clear picture about the one-step radiolytic preparation of inorganic-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by surfactant-free emulsion polymerization. Besides, unpurified N-carbamothioylmethacrylamide was synthesized via the methacrylation of thiourea. These created favorable conditions for the one-step synthesis of metal sulfide-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by -irradiation and surfactant-free emulsion polymerization. (author)

  5. The method of synthesizing of superhydrophobic surfaces by PECVD

    Science.gov (United States)

    Orazbayev, Sagi; Gabdullin, Maratbek; Ramazanov, Tlekkabul; Dosbolayev, Merlan; Zhunisbekov, Askar; Omirbekov, Dulat; Otarbay, Zhuldyz

    2018-03-01

    The aim of this work was to obtain superhydrophobic surfaces in a plasma medium. The experiment was carried out using the PECVD method in two different modes: constant and pulsing. The surface roughness was obtained by applying nanoparticles synthesized in plasma in a mixture of argon and methane. The resulting particles were deposited on the surface of silicon and glass materials. The contact angle increased linearly depending on the number of cycles, until it reached 160° at 150-160th cycles, after that the increase in cycles does not affect the contact angle, since the saturation process is in progress. Also the effect of the working gas composition on the hydrophobicity of the surface was studied. At low concentrations of methane (1%) only particles are synthesized in the working gas, and hydrophobicity is unstable, with an increase in methane concentration (7%) nanofilms are synthesized from nanoclusters, and surface hydrophobicity is relatively stable. In addition, a pulsing plasma mode was used to obtain superhydrophobic surfaces. The hydrophobicity of the sample showed that the strength of the nanofilm was stable in comparison with the sample obtained in the first mode, but the contact angle was lower. The obtained samples were examined using SEM, SPM, optical analysis, and their contact angles were determined.

  6. Radiolytic Syntheses of Nanoparticles and Inorganic-Polymer Hybrid Microgels

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Shi, J.; Zhao, R.; Shen, X., E-mail: qdchen@pku.edu.cn [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, No. 5, Yiheyuan Load, Haidian District Beijing 100871 (China)

    2010-07-01

    In the second year of the project, we have gotten progress mainly in two directions. Firstly, for the first time, Prussian blue (PB) nanoparticles (NPs) were successfully synthesized by the partly radiolytic reduction of Fe3+ and Fe(CN)63 in the presence of poly(N-vinyl pyrrolidine) (PVP) under N2 atmospheres at room temperature. With the increase of the concentration of PVP, the size and the size distribution of the synthesized quasi-spherical PB NPs decreased obviously, leading to a hypsochromic shift on their peak position of the characteristic absorption. In the experiment, we further found that the smaller ones have a larger capacity to Cs+, suggesting that the application of PB NPs in curing thallotoxicosis may decrease the usage of PB for the patient to great extent. Secondly, through a series of preliminary experiments, we got a clear picture about the one-step radiolytic preparation of inorganic-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by surfactant-free emulsion polymerization. Besides, unpurified N-carbamothioylmethacrylamide was synthesized via the methacrylation of thiourea. These created favorable conditions for the one-step synthesis of metal sulfide-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by -irradiation and surfactant-free emulsion polymerization. (author)

  7. Optical fusions and proportional syntheses

    Science.gov (United States)

    Albert-Vanel, Michel

    2002-06-01

    A tragic error is being made in the literature concerning matters of color when dealing with optical fusions. They are still considered to be of additive nature, whereas experience shows us somewhat different results. The goal of this presentation is to show that fusions are, in fact, of 'proportional' nature, tending to be additive or subtractive, depending on each individual case. Using the pointillist paintings done in the manner of Seurat, or the spinning discs experiment could highlight this intermediate sector of the proportional. So, let us try to examine more closely what occurs in fact, by reviewing additive, subtractive and proportional syntheses.

  8. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was used as a reductant or fuel and nitrate ions present in metal nitrate acts as an oxidizer. The phase purity of the wollastonite was ...

  9. SYNTHESES AND PROPERTIES OF SOME ORGANOSILANE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xinghua; Robert West

    1984-01-01

    Some organosilane polymers with high molecular weights have been synthesized by cocondensation of organosilicon dihalide monomers with sodium metal in toluene. These polymers are both soluble in common solvents and meltable at lower temperatures, and can be molded, cast into films or drawn into fibers. Exposure of the solid polymers to ultraviolet light leads to degradation or crosslinking.

  10. Real-Time Control of an Articulatory-Based Speech Synthesizer for Brain Computer Interfaces.

    Directory of Open Access Journals (Sweden)

    Florent Bocquelet

    2016-11-01

    Full Text Available Restoring natural speech in paralyzed and aphasic people could be achieved using a Brain-Computer Interface (BCI controlling a speech synthesizer in real-time. To reach this goal, a prerequisite is to develop a speech synthesizer producing intelligible speech in real-time with a reasonable number of control parameters. We present here an articulatory-based speech synthesizer that can be controlled in real-time for future BCI applications. This synthesizer converts movements of the main speech articulators (tongue, jaw, velum, and lips into intelligible speech. The articulatory-to-acoustic mapping is performed using a deep neural network (DNN trained on electromagnetic articulography (EMA data recorded on a reference speaker synchronously with the produced speech signal. This DNN is then used in both offline and online modes to map the position of sensors glued on different speech articulators into acoustic parameters that are further converted into an audio signal using a vocoder. In offline mode, highly intelligible speech could be obtained as assessed by perceptual evaluation performed by 12 listeners. Then, to anticipate future BCI applications, we further assessed the real-time control of the synthesizer by both the reference speaker and new speakers, in a closed-loop paradigm using EMA data recorded in real time. A short calibration period was used to compensate for differences in sensor positions and articulatory differences between new speakers and the reference speaker. We found that real-time synthesis of vowels and consonants was possible with good intelligibility. In conclusion, these results open to future speech BCI applications using such articulatory-based speech synthesizer.

  11. Antibacterial potential of silver nanoparticle synthesized by marine ...

    African Journals Online (AJOL)

    Multi resistance to antibiotics is a serious and disseminated clinical problem, common to several new compounds that block the resistance mechanism. The present study aimed at the comparative study of silver nanoparticles synthesized through actinomycetes and their antimicrobial metabolites with standard antibiotic.

  12. Fibronectin synthesized by a human hepatoma cell line

    International Nuclear Information System (INIS)

    Glasgow, J.E.; Colman, R.W.

    1984-01-01

    Fibronectin is a family of immunologically similar glycoproteins which mediate a variety of cell-cell and cell-substratum interactions. It is a constituent of the extracellular matrix of connective tissue and circulates in plasma. When suspension and adherent cultures of a human hepatoma cell line (SK-HEP-1) were incubated in serum-free medium, the resulting conditioned medium contained material which was specifically immunoprecipitated by antisera to human plasma fibronectin. By double immunodiffusion, a component in the conditioned culture medium was shown to form a line of identity with fibronectin in human plasma and to migrate as an alpha 2- to beta-globulin during immunoelectrophoresis. Human fibronectin was quantified in conditioned medium by electroimmunodiffusion, and was found to increase for at least three days at about 0.1 micrograms/10(6) cells/day. Adherent cultures of SK-HEP-1 cells were incubated with L-[ 35 S]methionine to label newly synthesized proteins. Labeled fibronectin in conditioned medium or in cell extracts comigrated with fibronectin in human plasma as shown by autoradiography following crossed-immunoelectrophoresis. Fibronectin was demonstrated in the extra-cellular matrix of adherent SK-HEP-1 cultures by immunofluorescence. It was shown previously that SK-HEP-1 cells synthesize alpha 1-protease inhibitor, one of the products of normal hepatocytes. The finding that these hepatoma cells also synthesize fibronectin supports the concept that the hepatocyte may be one source of circulating fibronectin, a possibility consistent with the established role of this cell type in blood plasma protein synthesis

  13. Enhanced Hydrogen Storage Capacity over Electro-synthesized HKUST-1

    Directory of Open Access Journals (Sweden)

    Witri Wahyu Lestari

    2017-12-01

    Full Text Available HKUST-1 [Cu3(1,3,5-BTC2] (BTC = benzene-tri-carboxylate was synthesized using an electrochemical method and tested for hydrogen storage. The obtained material showed a remarkably higher hydrogen uptake over reported HKUST-1 and reached until 4.75 wt% at room temperature and low pressure up to 1.2 bar. This yield was compared to HKUST-1 obtained from the solvothermal method, which showed a hydrogen uptake of only 1.19 wt%. Enhancement of hydrogen sorption of the electro-synthesized product was due to the more appropriate surface area and pore size, effected by the preferable physical interaction between the hydrogen gasses and the copper ions as unsaturated metal centers in the frameworks of HKUST-1.

  14. Proteins synthesized in tobacco mosaic virus infected protoplasts

    NARCIS (Netherlands)

    Huber, R.

    1979-01-01

    The study described here concerns the proteins, synthesized as a result of tobacco mosaic virus (TMV) multiplication in tobacco protoplasts and in cowpea protoplasts. The identification of proteins involved in the TMV infection, for instance in the virus RNA replication, helps to elucidate

  15. Low power fast settling multi-standard current reusing CMOS fractional-N frequency synthesizer

    Institute of Scientific and Technical Information of China (English)

    Lou Wenfeng; Feng Peng; Wang Haiyong; Wu Nanjian

    2012-01-01

    A low power fast settling multi-standard CMOS fractional-N frequency synthesizer is proposed.The current reusing and frequency presetting techniques are adopted to realize the low power fast settling multi-standard fractional-N frequency synthesizer.An auxiliary non-volatile memory (NVM) is embedded to avoid the repetitive calibration process and to save power in practical application.This PLL is implemented in a 0.18μm technology.The frequency range is 0.3 to 2.54 GHz and the settling time is less than 5μs over the entire frequency range.The LC-VCO with the stacked divide-by-2 has a good figure of merit of-193.5 dBc/Hz.The measured phase noise of frequency synthesizer is about -115 dBc/Hz at 1 MHz offset when the carrier frequency is 2.4 GHz and the reference spurs are less than -52 dBc.The whole frequency synthesizer consumes only 4.35 mA @ 1.8 V.

  16. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was .... 94·37% CaCO3, hence in order to prepare 1 M Ca2+ ion solu- ... requires an acid or base catalyst hence the pH of the solu-.

  17. Novel stereocontrolled syntheses of tashiromine and epitashiromine

    Directory of Open Access Journals (Sweden)

    Loránd Kiss

    2015-04-01

    Full Text Available A novel stereocontrolled approach has been developed for the syntheses of tashiromine and epitashiromine alkaloids from cyclooctene β-amino acids. The synthetic concept is based on the azetidinone opening of a bicyclic β-lactam, followed by oxidative ring opening through ring C–C double bond and reductive ring-closure reactions of the cis- or trans-cyclooctene β-amino acids.

  18. Rhizosecretion of stele-synthesized glucosinolates and their catabolites requires GTR-mediated import in Arabidopsis

    DEFF Research Database (Denmark)

    Xu, Deyang; Hanschen, Franziska S.; Witzel, Katja

    2017-01-01

    Casparian strip-generated apoplastic barriers not only control the radial flow of both water and ions but may also constitute a hindrance for the rhizosecretion of stele-synthesized phytochemicals. Here, we establish root-synthesized glucosinolates (GLS) are in Arabidopsis as a model to study...... via the xylem to the shoot; and (iii) GTR-dependent import to GLS-degrading myrosin cells at the cortex. The study suggests a previously undiscovered role of the import process in the rhizosecretion of root-synthesized phytochemicals....

  19. Specific features of ZnCdS nanoparticles synthesized in different solvents

    Energy Technology Data Exchange (ETDEWEB)

    Kyazym-zade, A. G.; Jafarov, M. A., E-mail: maarif.jafarov@mail.ru; Nasirov, E. F.; Jahangirova, C. A.; Jafarli, R. S. [Baku State University (Azerbaijan)

    2017-04-15

    Stable colloidal solutions of ZnCdS nanoparticles (3–6 nm in diameter) in polyvinyl alcohol, polyethylene glycol, and H{sub 2}O are produced. The size of the synthesized nanoparticles is independent of the relation between precursors. It is shown that stabilization of the particles is defined by the charge-stability factor and can be attained without any additional stabilizing additives. The ZnCdS quantum dots synthesized emit in a wide spectral range from 450 to 600 nm.

  20. Photocatalytic activity of galvanically synthesized nanostructure SnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Sumanta, E-mail: sumantajana85@gmail.com [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Mitra, Bibhas Chandra [Department of Physics, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Bera, Pulakesh [Department of Chemistry, Panskura Banamali College, Purba Medinipur, Panskura 721152, WB (India); Sikdar, Moushumi [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Mondal, Anup, E-mail: anupmondal2000@yahoo.co.in [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India)

    2014-07-25

    Graphical abstract: Nanostructured porous tin dioxide (SnO{sub 2}) thin films have been synthesized by simple and cost effective galvanic technique. The synthesized porous SnO{sub 2} thin films show excellent photocatalytic activity for degrading methyl orange (MO) dye under light irradiation. The porous morphological grain growth due to annealing is likely to play an active role for this degradation. - Highlights: • SnO{sub 2} thin films have been successfully synthesized by galvanic technique. • A drastic morphological change occurs after annealing as deposited SnO{sub 2} thin films. • Morphological advantage results enhanced photodegradation of dye. - Abstract: The study demonstrates an approach to synthesize nanostructure SnO{sub 2} thin films on TCO (transparent conducting oxide) coated glass substrates by galvanic technique. Aqueous solution of hydrated stannic chloride (SnCl{sub 4}⋅5H{sub 2}O) in potassium nitrate (KNO{sub 3}) solution was used as the working solution. The process involves no sophisticated reactor or toxic chemicals, and proceeds continuously under ambient condition; it provides an economic way of synthesizing nanostructure SnO{sub 2} semiconductor thin films. The influence of sintering temperature on crystalline structure, morphology, electrical and dielectric properties has been studied. A detail analysis of I−V, C−V and dielectrics for annealed SnO{sub 2} thin films have been carried out. The morphological advantage i.e. nanoporous flake like structure allows more efficient transport of reactant molecules to the active interfaces and results a strong photocatalytic activity for degrading methyl orange (MO) dye.

  1. Impact of 50% Synthesized Iso-Paraffins (SIP) on F-76 Fuel Coalescence

    Science.gov (United States)

    2013-12-16

    petroleum JP-5 and Synthesized Iso-Paraffins (SIP). SIP fuels are made from direct fermentation of sugar into olefinic hydrocarbons. The olefinic...manufactured scaled down filter/coalescer and separator to simulate the performance of a full-scale filter separator system. This test is designed to predict...5 and Synthesized Iso-Paraffins (SIP). SIP fuels are made from direct fermentation of sugar into olefinic hydrocarbons. The olefinic hydrocarbons

  2. Biomimetic Syntheses of Callistrilones A-E via an Oxidative [3 + 2] Cycloaddition.

    Science.gov (United States)

    Guo, Yonghong; Zhang, Yuhan; Xiao, Mingxing; Xie, Zhixiang

    2018-04-16

    Concise total syntheses of callistrilones A-E have been achieved from 7 and commercially available α-phellandrene (8). The synthetic strategy, which was primarily inspired by the biogenetic hypothesis, was enabled by an oxidative [3 + 2] cycloaddition followed by a Michael addition and an intramolecular nucleophilic addition to construct the target molecules. Moreover, viminalin I was also synthesized, and its absolute configuration was unambiguously confirmed.

  3. A Facile One Step Solution Route to Synthesize Cuprous Oxide Nanofluid

    Directory of Open Access Journals (Sweden)

    Shenoy U. Sandhya

    2013-05-01

    Full Text Available A cuprous oxide nanofluid stabilized by sodium lauryl sulfate, synthesized by using the one step method, has been reported. Nanofluids were synthesized by using a well‐ controlled surfactant‐assisted solution phase synthesis. The method involved reduction of copper acetate by glucose in a mixture of water and ethylene glycol serving as the base fluid. The synthesized fluid was characterized by X‐ray and electron diffraction techniques, in addition, transmission and field emission microscopic techniques and Fourier transform infra red spectroscopic analysis was undertaken. The rheological property, as well as the thermal conductivity of the fluid, were measured. The variation of reaction parameters considerably affected the size of the particles as well as the reaction rate. The uniform dispersion of the particles in the base fluid led to a stability period of three months under stationary state, augmenting the thermal conductivity of the nanofluid. The method is found to be simple, reliable and fast for the synthesis of Newtonian nanofluids containing cuprous oxide nanoparticles.

  4. Design of a 2.4-GHz CMOS monolithic fractional-N frequency synthesizer

    Science.gov (United States)

    Shu, Keliu

    The wireless communication technology and market have been growing rapidly since a decade ago. The high demand market is a driving need for higher integration in the wireless transceivers. The trend is to achieve low-cost, small form factor and low power consumption. With the ever-reducing feature size, it is becoming feasible to integrate the RF front-end together with the baseband in the low-cost CMOS technology. The frequency synthesizer is a key building block in the RF front-end of the transceivers. It is used as a local oscillator for frequency translation and channel selection. The design of a 2.4-GHz low-power frequency synthesizer in 0.35mum CMOS is a challenging task mainly due to the high-speed prescaler. In this dissertation, a brief review of conventional PLL and frequency synthesizers is provided. Design techniques of a 2.4-GHz monolithic SigmaDelta fractional-N frequency synthesizer are investigated. Novel techniques are proposed to tackle the speed and integration bottlenecks of high-frequency PLL. A low-power and inherently glitch-free phase-switching prescaler and an on-chip loop filter with capacitance multiplier are developed. Compared with the existing and popular dual-path topology, the proposed loop filter reduces circuit complexity and its power consumption and noise are negligible. Furthermore, a third-order three-level digital SigmaDelta modulator topology is employed to reduce the phase noise generated by the modulator. Suitable PFD and charge-pump designs are employed to reduce their nonlinearity effects and thus minimize the folding of the SigmaDelta modulator-shaped phase noise. A prototype of the fractional-N synthesizer together with some standalone building blocks is designed and fabricated in TSMC 0.35mum CMOS through MOSIS. The prototype frequency synthesizer and standalone prescaler and loop filter are characterized. The feasibility and practicality of the proposed prescaler and loop filter are experimentally verified.

  5. Is Ghrelin Synthesized in the Central Nervous System?

    Science.gov (United States)

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  6. Is Ghrelin Synthesized in the Central Nervous System?

    Directory of Open Access Journals (Sweden)

    Agustina Cabral

    2017-03-01

    Full Text Available Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a, and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  7. Synthesized view comparison method for no-reference 3D image quality assessment

    Science.gov (United States)

    Luo, Fangzhou; Lin, Chaoyi; Gu, Xiaodong; Ma, Xiaojun

    2018-04-01

    We develop a no-reference image quality assessment metric to evaluate the quality of synthesized view rendered from the Multi-view Video plus Depth (MVD) format. Our metric is named Synthesized View Comparison (SVC), which is designed for real-time quality monitoring at the receiver side in a 3D-TV system. The metric utilizes the virtual views in the middle which are warped from left and right views by Depth-image-based rendering algorithm (DIBR), and compares the difference between the virtual views rendered from different cameras by Structural SIMilarity (SSIM), a popular 2D full-reference image quality assessment metric. The experimental results indicate that our no-reference quality assessment metric for the synthesized images has competitive prediction performance compared with some classic full-reference image quality assessment metrics.

  8. Studies on the Alkaloids of the Calycanthaceae and Their Syntheses

    Directory of Open Access Journals (Sweden)

    Jin-Biao Xu

    2015-04-01

    Full Text Available Plants of the Calycanthaceae family, which possesses four genera and about 15 species, are mainly distributed in China, North America and Australia. Chemical studies on the Calycanthaceae have led to the discovery of about 14 alkaloids of different skeletons, including dimeric piperidinoquinoline, dimeric pyrrolidinoindoline and/or trimeric pyrrolidinoindolines, which exhibit significant anti-convulsant, anti-fungal, anti-viral analgesic, anti-tumor, and anti-melanogenesis activities. As some of complex tryptamine-derived alkaloids exhibit promising biological activities, the syntheses of these alkaloids have also been a topic of interest in synthetic chemistry during the last decades. This review will focus on the structures and total syntheses of these alkaloids.

  9. Ionic liquids and proteases: A clean alliance for semisynthesis

    Czech Academy of Sciences Publication Activity Database

    Wehofsky, N.; Wespe, Ch.; Čeřovský, Václav; Pech, A.; Hoess, E.; Rudolph, R.; Bordusa, F.

    2008-01-01

    Roč. 9, č. 9 (2008), s. 1493-1499 ISSN 1439-4227 Grant - others:DFG(DE) SPP1191; DFG(DE) SFB610 Institutional research plan: CEZ:AV0Z40550506 Keywords : chemoenzymatic synthesis * ionic liquids * peptides * proteases * substrate mimetics Subject RIV: CC - Organic Chemistry Impact factor: 3.322, year: 2008

  10. Microwave, sonochemical and combustion synthesized CuO nanostructures and their electrical and bactericidal properties

    International Nuclear Information System (INIS)

    Karunakaran, C.; Manikandan, G.; Gomathisankar, P.

    2013-01-01

    Highlights: •CuO nanoleaves synthesized by CTAB-assisted hydrothermal method. •CuO nanodiscs synthesized by CTAB-assisted sonochemical method. •Combustion synthesized CuO is highly porous. •Synthetic method and morphology influence CuO bactericidal activity. -- Abstract: Cetyltrimethylammonium bromide (CTAB)-assisted microwave synthesis of CuO provides nanoleaves and in the absence of CTAB the shape of CuO is irregular. Sonochemical synthesis of CuO using CTAB gives nanodiscs whereas irregularly shaped flake-like structure is obtained without CTAB. Combustion synthesized CuO is highly porous with innumerable large holes. CTAB does not provide any structure in combustion synthesis. Transmission electron micrographs (TEM) display the constituent nanoparticles of microwave and sonochemically synthesized CuO. The powder X-ray diffractogram (XRD) shows the sample obtained by sonochemical method in the absence of CTAB as a mixture of monoclinic CuO, cubic Cu 2 O, and orthorhombic Cu(OH) 2 . But the rest of the samples are pure CuO in monoclinic phase. The selected area electron diffractograms (SAED) of the microwave and sonochemically synthesized samples, in the presence as well as in the absence of CTAB, confirm the monoclinic phase of CuO and indicates the presence of amorphous CuO in traces. All the samples are characteristic of Fourier Transform infrared (FT-IR) Cu–O stretching frequencies. The method of synthesis and also the morphology influence the electrical properties as well as the bactericidal activity of CuO

  11. Synthesizing Knowledge on Internet of Things (IoT)

    DEFF Research Database (Denmark)

    Liu, Fei; Tan, Chee-Wee; Lim, Eric T. K.

    2016-01-01

    Research on Internet of Things (IoT) has been booming for past couple of years due to technological advances and its potential for application. Nonetheless, the rapid growth of IoT articles as well as the heterogeneous nature of IoT pose challenges in synthesizing prior research on the phenomenon...

  12. Low power fast settling multi-standard current reusing CMOS fractional-N frequency synthesizer

    International Nuclear Information System (INIS)

    Lou Wenfeng; Feng Peng; Wang Haiyong; Wu Nanjian

    2012-01-01

    A low power fast settling multi-standard CMOS fractional-N frequency synthesizer is proposed. The current reusing and frequency presetting techniques are adopted to realize the low power fast settling multi-standard fractional-N frequency synthesizer. An auxiliary non-volatile memory (NVM) is embedded to avoid the repetitive calibration process and to save power in practical application. This PLL is implemented in a 0.18 μm technology. The frequency range is 0.3 to 2.54 GHz and the settling time is less than 5 μs over the entire frequency range. The LC-VCO with the stacked divide-by-2 has a good figure of merit of −193.5 dBc/Hz. The measured phase noise of frequency synthesizer is about −115 dBc/Hz at 1 MHz offset when the carrier frequency is 2.4 GHz and the reference spurs are less than −52 dBc. The whole frequency synthesizer consumes only 4.35 mA and 1.8 V. (semiconductor integrated circuits)

  13. Characteristics of ceramic oxide nanoparticles synthesized using radio frequency produced thermal plasma

    International Nuclear Information System (INIS)

    Dhamale, Gayatri D.; Mathe, V.L.; Bhoraskar, S.V.; Ghorui, S.

    2015-01-01

    Thermal plasma devices with their unique processing capabilities due to extremely high temperature and steep temperature gradient play an important role in synthesis of ultrafine powders in the range of 100nm or less. High temperature gas phase synthesis in Radio Frequency (RF) thermal plasma reactor is an attractive route for mass production of refractory nanoparticles, especially in the case of rare earth oxides. Here we report synthesis of Yttrium Oxide (Y_2O_3), Neodymium Oxide (Nd_2O_3) and Aluminum Oxide (Al_2O_3) in an inductively coupled radio frequency thermal plasma reactor. Synthesized nanoparticles find wide application in various fields like gate dielectrics, photocatalytic applications, laser devices and photonics. Nano sized Yttrium oxide, Neodymium Oxide and Aluminum oxide powders were separately synthesized in an RF plasma reactor starting with micron sized irregular shaped precursor powders. The system was operated at 3MHz in atmospheric pressure at different power levels. Synthesized powders were scrapped out from different deposition locations inside the reactor and characterized for their phase, morphology, particle size, crystallinity and other characteristic features. Highly crystalline nature of the synthesized particles, narrow size distribution, location dependent phase formation, and distinct variation in the inherent defect states compared to the bulk are some of the important characteristic features observed

  14. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    Energy Technology Data Exchange (ETDEWEB)

    Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania); Vodnar, Dan Cristian [University of Agricultural Sciences and Veterinary Medicine, Department of Food Science and Technology, 3-5 Manastur Street, 400372 Cluj-Napoca (Romania); Katona, Gabriel [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028 Cluj-Napoca (Romania)

    2015-12-23

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  15. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    International Nuclear Information System (INIS)

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-01-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn 2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs

  16. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Dipendu [ORNL; Warren, Kaitlyn E [ORNL; Naskar, Amit K [ORNL

    2014-01-01

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1. The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.

  17. Antifouling activity of green-synthesized 7-hydroxy-4-methylcoumarin.

    Science.gov (United States)

    Pérez, Miriam; García, Mónica; Ruiz, Diego; Autino, Juan Carlos; Romanelli, Gustavo; Blustein, Guillermo

    2016-02-01

    In the search for new environmental-friendly antifoulants for replace metallic biocides, 7-hydroxy-4-methylcoumarin was synthesized according to green chemistry procedures. This compound was characterized by current organic analysis and its antifouling properties were firstly evaluated on the bivalve Mytilus edulis platensis in the laboratory. In the second stage, a soluble matrix antifouling coating formulated with this compound was assayed in marine environment. Laboratory experiments showed that 7-hydroxy-4-methylcoumarin was effective in inhibiting both the settlement as well as the byssogenesis of mussels. In addition, after exposure time in the sea, painted panels containing this compound showed strong antifouling effect on conspicuous species of the fouling community of Mar el Plata harbor. In conclusion, green-synthesized coumarin could be a suitable antifoulant candidate for marine protective coatings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Applications of Magnetosomes Synthesized by Magnetotactic Bacteria in Medicine

    International Nuclear Information System (INIS)

    Alphandéry, Edouard

    2014-01-01

    Magnetotactic bacteria belong to a group of bacteria that synthesize iron oxide nanoparticles covered by biological material that are called magnetosomes. These bacteria use the magnetosomes as a compass to navigate in the direction of the earth’s magnetic field. This compass helps the bacteria to find the optimum conditions for their growth and survival. Here, we review several medical applications of magnetosomes, such as those in magnetic resonance imaging (MRI), magnetic hyperthermia, and drug delivery. Different methods that can be used to prepare the magnetosomes for these applications are described. The toxicity and biodistribution results that have been published are summarized. They show that the magnetosomes can safely be used provided that they are prepared in specific conditions. The advantageous properties of the magnetosomes compared with those of chemically synthesized nanoparticles of similar composition are also highlighted.

  19. Interactions of Polyhomeotic with Polycomb Group Genes of Drosophila Melanogaster

    OpenAIRE

    Cheng, N. N.; Sinclair, DAR.; Campbell, R. B.; Brock, H. W.

    1994-01-01

    The Polycomb (Pc) group genes of Drosophila are negative regulators of homeotic genes, but individual loci have pleiotropic phenotypes. It has been suggested that Pc group genes might form a regulatory hierarchy, or might be members of a multimeric complex that obeys the law of mass action. Recently, it was shown that polyhomeotic (ph) immunoprecipitates in a multimeric complex that includes Pc. Here, we show that duplications of ph suppress homeotic transformations of Pc and Pcl, supporting ...

  20. Study of as-synthesized and calcined hydrocalumites as possible ...

    Indian Academy of Sciences (India)

    Administrator

    ments. Finally, these solids were tested as antacids by using a synthetic gastric juice. Results showed that calcined samples were able to neutralize the synthetic gastric juice in more extension as an as-synthesized ..... D 2010 Appl. Clay Sci.

  1. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    International Nuclear Information System (INIS)

    Wang, Qingfang; Wang, Zhiqiang; Yin, Xiaoqian; Zhou, Linxi; Zhang, Minghui

    2016-01-01

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru_2P were synthesized using triphenylphosphine as phosphorus sources. • Ru_2P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO_2 prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H_2-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru_2P can be prepared by this method via varying the molar ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N_2 adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru_2P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.

  2. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingfang [Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, Tianjin 300387 (China); Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071 (China); Wang, Zhiqiang [Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, Tianjin 300387 (China); Yin, Xiaoqian; Zhou, Linxi [Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071 (China); Zhang, Minghui, E-mail: zhangmh@nankai.edu.cn [Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071 (China); College of Chemistry and Environmental Science, Kashgar University, Kashgar 844006 (China)

    2016-02-15

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru{sub 2}P were synthesized using triphenylphosphine as phosphorus sources. • Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO{sub 2} prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H{sub 2}-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru{sub 2}P can be prepared by this method via varying the molar ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N{sub 2} adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.

  3. Analyzing and synthesizing phylogenies using tree alignment graphs.

    Directory of Open Access Journals (Sweden)

    Stephen A Smith

    Full Text Available Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG. The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees, we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to

  4. Analyzing and synthesizing phylogenies using tree alignment graphs.

    Science.gov (United States)

    Smith, Stephen A; Brown, Joseph W; Hinchliff, Cody E

    2013-01-01

    Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe.

  5. Economical parallel oligonucleotide and peptide synthesizer - PET OLIGATOR

    Czech Academy of Sciences Publication Activity Database

    Lebl, M.; Pistek, Ch.; Hachmann, J.; Mudra, Petr; Pešek, Václav; Pokorný, Vít; Poncar, Pavel; Ženíšek, Karel

    2007-01-01

    Roč. 13, 1/2 (2007), s. 367-375 ISSN 1573-3149 Grant - others:NIH SBIR(US) R43 GM61511-01; NIH SBIR(US) R43 GM58981-01 Institutional research plan: CEZ:AV0Z40550506 Keywords : automated synthesizer * centrifugation * parallel synthesis Subject RIV: CC - Organic Chemistry Impact factor: 0.971, year: 2007

  6. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    Science.gov (United States)

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  7. Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...

    Indian Academy of Sciences (India)

    Grain growth behaviour of the nanocrystalline CoAl intermetallic compound synthesized by mechanical alloying has been studied by isothermal annealing at different temperatures and durations. X-ray diffraction method was employed to investigate structural evolutions during mechanical alloying and annealing processes.

  8. Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Grain growth behaviour of the nanocrystalline CoAl intermetallic compound synthesized by mechanical alloying has been studied by isothermal annealing at different temperatures and durations. X-ray diffraction method was employed to investigate structural evolutions during mechanical alloying and anneal-.

  9. Four Proteins Synthesized in Response to Deoxyribonucleic Acid Damage in Micrococcus Radiodurans

    DEFF Research Database (Denmark)

    Hansen, M. T.

    1980-01-01

    Four proteins, alpha beta, gamma, and delta, preferentially synthesized in ultraviolet light-treated cells of Micrococcus radiodurans, were characterized in terms of their molecular weights and isoelectric points. Within the sublethal-dose range, the differential rate of synthesis for these prote......Four proteins, alpha beta, gamma, and delta, preferentially synthesized in ultraviolet light-treated cells of Micrococcus radiodurans, were characterized in terms of their molecular weights and isoelectric points. Within the sublethal-dose range, the differential rate of synthesis...

  10. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review.

    Science.gov (United States)

    Zhu, Tao; Chong, Meng Nan; Chan, Eng Seng

    2014-11-01

    The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Seebeck coefficient of synthesized Titanium Dioxide thin film on FTO glass substrate

    Science.gov (United States)

    Usop, R.; Hamed, N. K. A.; Megat Hasnan, M. M. I.; Ikeda, H.; Sabri, M. F. M.; Ahmad, M. K.; Said, S. M.; Salleh, F.

    2018-04-01

    In order to fabricate a thermoelectric device on glass substrate for harvesting waste heat energy through house appliances, the Seebeck coefficient of translucent TiO2 thin film was investigated. The TiO2 thin film was synthesized by using hydrothermal method with F-SnO2 coated glass as substrate. From scanning electron microscopy analysis, the synthesized TiO2 thin film was found to be in nanometer-scale rod structure with a thickness of 4 µm. The Seebeck coefficient was measured in the temperature range of 300 – 400 K. The Seebeck coefficient is found to be in negative value which shows that synthesized film is an n-type semiconductor material, and is lower than the value of bulk-size material. This reduction in Seebeck coefficient of TiO2 thin film is likely due to the low dimensional effect and the difference of carrier concentration.

  12. Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2016-01-01

    This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.

  13. A fast-hopping 3-band CMOS frequency synthesizer for MB-OFDM UWB system

    International Nuclear Information System (INIS)

    Zheng Yongzheng; Xia Lingli; Li Weinan; Huang Yumei; Hong Zhiliang

    2009-01-01

    A fast-hopping 3-band (mode 1) multi-band orthogonal frequency division multiplexing ultra-wideband frequency synthesizer is presented. This synthesizer uses two phase-locked loops for generating steady frequencies and one quadrature single-sideband mixer for frequency shifting and quadrature frequency generation. The generated carriers can hop among 3432 MHz, 3960 MHz, and 4488 MHz. Implemented in a 0.13 μm CMOS process, this fully integrated synthesizer consumes 27 mA current from a 1.2 V supply. Measurement shows that the out-of-band spurious tones are below -50 dBc, while the in-band spurious tones are below -34 dBc. The measured hopping time is below 2 ns. The core die area is 1.0 x 1.8 mm 2 .

  14. A fast-hopping 3-band CMOS frequency synthesizer for MB-OFDM UWB system

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yongzheng; Xia Lingli; Li Weinan; Huang Yumei; Hong Zhiliang, E-mail: yumeihuang@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-09-15

    A fast-hopping 3-band (mode 1) multi-band orthogonal frequency division multiplexing ultra-wideband frequency synthesizer is presented. This synthesizer uses two phase-locked loops for generating steady frequencies and one quadrature single-sideband mixer for frequency shifting and quadrature frequency generation. The generated carriers can hop among 3432 MHz, 3960 MHz, and 4488 MHz. Implemented in a 0.13 {mu}m CMOS process, this fully integrated synthesizer consumes 27 mA current from a 1.2 V supply. Measurement shows that the out-of-band spurious tones are below -50 dBc, while the in-band spurious tones are below -34 dBc. The measured hopping time is below 2 ns. The core die area is 1.0 x 1.8 mm{sup 2}.

  15. A simple route to synthesize manganese germanate nanorods

    International Nuclear Information System (INIS)

    Pei, L.Z.; Yang, Y.; Yuan, C.Z.; Duan Taike; Zhang Qianfeng

    2011-01-01

    Manganese germanate nanorods have been synthesized by a simple route using germanium dioxide and manganese acetate as the source materials. X-ray diffraction observation shows that the nanorods are composed of orthorhombic and monoclinic manganese germanate phases. Scanning electron microscopy and transmission electron microscopy observations display that the manganese germanate nanorods have flat tips with the length of longer than 10 micrometers and diameter of 60-350 nm, respectively. The role of the growth conditions on the formation of the manganese germanate nanorods shows that the proper selection and combination of the growth conditions are the key factor for controlling the formation of the manganese germanate nanorods. The photoluminescence spectrum of the manganese germanate nanorods exhibits four fluorescence emission peaks centered at 422 nm, 472 nm, 487 nm and 530 nm showing the application potential for the optical devices. - Research Highlights: → Manganese germanate nanorods have been synthesized by simple hydrothermal process. → The formation of manganese germanate nanorods can be controlled by growth conditions. → Manganese germanate nanorods exhibit good PL emission ability for optical device.

  16. Synthesizing Iron Oxide Nanostructures: The Polyethylenenemine (PEI) Role

    KAUST Repository

    Mozo, Sergio Lentijo

    2017-01-12

    Controlled synthesis of anisotropic iron oxide nanoparticles is a challenge in the field of nanomaterial research that requires an extreme attention to detail. In particular, following up a previous work showcasing the synthesis of magnetite nanorods (NRs) using a two-step approach that made use of polyethylenenemine (PEI) as a capping ligand to synthesize intermediate β-FeOOH NRs, we studied the effect and influence of the capping ligand on the formation of β-FeOOH NRs. By comparing the results reported in the literature with those we obtained from syntheses performed (1) in the absence of PEI or (2) by using PEIs with different molecular weight, we showed how the choice of different PEIs determines the aspect ratio and the structural stability of the β-FeOOH NRs and how this affects the final products. For this purpose, a combination of XRD, HRTEM, and direct current superconducting quantum interference device (DC SQUID) magnetometry was used to identify the phases formed in the final products and study their morphostructural features and related magnetic behavior.

  17. A fractional-N frequency synthesizer for WCDMA/Bluetooth/ZigBee applications

    Science.gov (United States)

    Chunyuan, Zhou; Guolin, Li; Chun, Zhang; Baoyong, Chi; Dongmei, Li; Zhihua, Wang

    2009-07-01

    A triple-mode fractional-N frequency synthesizer with a noise-filter voltage controlled oscillator (VCO) for WCDMA/Bluetooth/ZigBee applications has been implemented in 0.18-μm RF-CMOS technology. The proposed synthesizer achieves a good phase noise lower than -80 dBc/Hz in band and -115 dBc/Hz@1 MHz for the three modes, and only draws 21 mA from a 1.8 V supply. It has a high hardware sharing and a small size, only 1.5 × 1.4 mm2. The system architecture, circuit design, and measured results are also presented.

  18. First-principles calculations of a high-pressure synthesized compound PtC

    International Nuclear Information System (INIS)

    Li Linyan; Yu Wen; Jin Changqing

    2005-01-01

    The first-principles density-functional method is used to study the recently high-pressure synthesized compound PtC. It is confirmed by our calculations that platinum carbide has a zinc-blende ground-state phase at zero pressure and that the rock-salt structure is a high-pressure phase. The theoretical transition pressure from zinc-blende to rock-salt structure is determined to be 52 GPa. Furthermore, our calculation shows the possibility that the PtC experimentally synthesized under high pressure conditions might undergo a transition from rock-salt to zinc-blende structure after a pressure quench to ambient conditions

  19. A fractional-N frequency synthesizer for WCDMA/Bluetooth/ZigBee applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Chunyuan; Zhang Chun; Chi Baoyongi; Wang Zhihua [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Li Guolin; Li Dongmei, E-mail: zhoucy06@mails.tsinghua.edu.c [Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China)

    2009-07-15

    A triple-mode fractional-N frequency synthesizer with a noise-filter voltage controlled oscillator (VCO) for WCDMA/Bluetooth/ZigBee applications has been implemented in 0.18-{mu}m RF-CMOS technology. The proposed synthesizer achieves a good phase noise lower than -80 dBc/Hz in band and -115 dBc/Hz-1 MHz for the three modes, and only draws 21 mA from a 1.8 V supply. It has a high hardware sharing and a small size, only 1.5 x 1.4 mm{sup 2}. The system architecture, circuit design, and measured results are also presented.

  20. Evaluation of setting time and flow properties of self-synthesize alginate impressions

    Science.gov (United States)

    Halim, Calista; Cahyanto, Arief; Sriwidodo, Harsatiningsih, Zulia

    2018-02-01

    Alginate is an elastic hydrocolloid dental impression materials to obtain negative reproduction of oral mucosa such as to record soft-tissue and occlusal relationships. The aim of the present study was to synthesize alginate and to determine the setting time and flow properties. There were five groups of alginate consisted of fifty samples self-synthesize alginate and commercial alginate impression product. Fifty samples were divided according to two tests, each twenty-five samples for setting time and flow test. Setting time test was recorded in the s unit, meanwhile, flow test was recorded in the mm2 unit. The fastest setting time result was in the group three (148.8 s) and the latest was group fours). The highest flow test result was in the group three (69.70 mm2) and the lowest was group one (58.34 mm2). Results were analyzed statistically by one way ANOVA (α= 0.05), showed that there was a statistical significance of setting time while no statistical significance of flow properties between self-synthesize alginate and alginate impression product. In conclusion, the alginate impression was successfully self-synthesized and variation composition gives influence toward setting time and flow properties. The most resemble setting time of control group is group three. The most resemble flow of control group is group four.

  1. A power scalable PLL frequency synthesizer for high-speed Δ—Σ ADC

    International Nuclear Information System (INIS)

    Han Siyang; Chi Baoyong; Zhang Xinwang; Wang Zhihua

    2014-01-01

    A 35–130 MHz/300–360 MHz phase-locked loop frequency synthesizer for Δ—Σ analog-to-digital converter (ADC) in 65 nm CMOS is presented. The frequency synthesizer can work in low phase-noise mode (300–360 MHz) or in low-power mode (35–130 MHz) to satisfy the ADC's requirements. To switch between these two modes, a high frequency GHz LC VCO followed by a divided-by-four frequency divider and a low frequency ring VCO followed by a divided-by-two frequency divider are integrated on-chip. The measured results show that the frequency synthesizer achieves a phase-noise of −132 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 1.12 ps with 1.74 mW power consumption from a 1.2 V power supply in low phase-noise mode. In low-power mode, the frequency synthesizer achieves a phase-noise of −112 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 7.23 ps with 0.92 mW power consumption from a 1.2 V power supply. (semiconductor integrated circuits)

  2. Dielectric properties of CdS nanoparticles synthesized by soft ...

    Indian Academy of Sciences (India)

    If the field applied to the condenser is time-dependent (as in an alternating current), so ... tematically the dielectric properties of CdS synthesized by a soft chemical method .... The real parts of conductivity spectra can be explained by the power ...

  3. Is Synthesizing MRI Contrast Useful for Inter-modality Analysis?

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Konukoglu, Ender; Zikic, Darko

    2013-01-01

    Availability of multi-modal magnetic resonance imaging (MRI) databases opens up the opportunity to synthesize different MRI contrasts without actually acquiring the images. In theory such synthetic images have the potential to reduce the amount of acquisitions to perform certain analyses. However...

  4. Syntheses and study of pyrrolidinic nitroxide free radicals. Preparation of a nitroxide-type stable bi-radical; Synthese et etudes de radicaux libres nitroxydes pyrrolidiniques. Preparation d'un biradical stable du type nitroxyde

    Energy Technology Data Exchange (ETDEWEB)

    Dupeyre, R M [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires, Laboratoire de chimie organique physique

    1967-12-01

    Syntheses and study of pyrrolidinic nitroxide free radicals: These radicals are obtained by oxidation, with hydrogen peroxide, of pyrrolidinic amines prepared from triacetonamine by ring contraction. The U. V,, I. R, and E.P.R. spectral characteristics have been determined. The oxidation of these amines with hydrogen peroxide has led also to rupture of the pentagonal ring; some of the decomposition products have been identified. The high chemical stability of the nitroxide group has made it possible to synthesize and study a stable bi-radical. (author) [French] Syntheses et etudes de radicaux libres nitroxydes pyrrolidiniques: Ces radicaux sont obtenus par oxydation l'eau oxygenee d'amines pyrrolidiniques preparees a partir de la triacetonamine par contraction de cycle. Les caracteristiques spectroscopiques ultra-violettes, infra-rouge et resonance paramagnetique sont determinees. Cependant, 1'oxydation de ces amines a l'eau oxygenee a entraine la coupure du cycle pentagonal et identification de certaines substances de decomposition obtenues. La grande stabilite chimique de groupement nitroxyde a permis la synthese et l'etude d'un biradical stable. (auteur)

  5. Towards a Sign Language Synthesizer: a Bridge to Communication Gap of the Hearing/Speech Impaired Community

    Science.gov (United States)

    Maarif, H. A.; Akmeliawati, R.; Gunawan, T. S.; Shafie, A. A.

    2013-12-01

    Sign language synthesizer is a method to visualize the sign language movement from the spoken language. The sign language (SL) is one of means used by HSI people to communicate to normal people. But, unfortunately the number of people, including the HSI people, who are familiar with sign language is very limited. These cause difficulties in the communication between the normal people and the HSI people. The sign language is not only hand movement but also the face expression. Those two elements have complimentary aspect each other. The hand movement will show the meaning of each signing and the face expression will show the emotion of a person. Generally, Sign language synthesizer will recognize the spoken language by using speech recognition, the grammatical process will involve context free grammar, and 3D synthesizer will take part by involving recorded avatar. This paper will analyze and compare the existing techniques of developing a sign language synthesizer, which leads to IIUM Sign Language Synthesizer.

  6. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations.

    Science.gov (United States)

    Sprenger, Georg A; Baumgärtner, Florian; Albermann, Christoph

    2017-09-20

    Human milk oligosaccharides (HMO) are almost unique constituents of breast milk and are not found in appreciable amounts in cow milk. Due to several positive aspects of HMO for the development, health, and wellbeing of infants, production of HMO would be desirable. As a result, scientists from different disciplines have developed methods for the preparation of single HMO compounds. Here, we review approaches to HMO preparation by (chemo-)enzymatic syntheses or by whole-cell biotransformation with recombinant bacterial cells. With lactose as acceptor (in vitro or in vivo), fucosyltransferases can be used for the production of 2'-fucosyllactose, 3-fucosyllactose, or more complex fucosylated core structures. Sialylated HMO can be produced by sialyltransferases and trans-sialidases. Core structures as lacto-N-tetraose can be obtained by glycosyltransferases from chemical donor compounds or by multi-enzyme cascades; recent publications also show production of lacto-N-tetraose by recombinant Escherichia coli bacteria and approaches to obtain fucosylated core structures. In view of an industrial production of HMOs, the whole cell biotransformation is at this stage the most promising option to provide human milk oligosaccharides as food additive. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synthesis and applications of {sup 13}C glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  8. Synthesis and applications of 13C glycerol

    International Nuclear Information System (INIS)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-01-01

    Due in part to the use of labeled glycerol for the 13 C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide (∼53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific 13 C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of 13 C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of 13 C-labeled DHA to DHAP. We are especially interested in 13 C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  9. Bilateral Manipulandum to Synthesize Ground Referenced and Interlimb Viscoelastic Loads

    National Research Council Canada - National Science Library

    Gallasch, E

    2001-01-01

    .... The mechatronics consists of two angular voice coil actuators (+/- 40 Nm) with embedded rotary (+/- 20 degrees) and torque sensors driven by voltage controlled current sources, DSP software routines to synthesize isotonic...

  10. Green synthesized zinc oxide nanoparticles as a therapeutic tool to combat candidiasis

    Science.gov (United States)

    Rathod, Tejas; Padalia, Hemali; Chanda, Sumitra

    2017-05-01

    Advancement of modern medicine, the increasing ratio of immunocompromised and immunosuppressive individuals is increased in hospitalized with serious underlying disease. This has resulted in a rise in the incidence of fungal infections, especially those due to Candida species. For many years the conventional antibiotic therapy has been critical in the fight against Candidiasis. Candidiasis is a fungal infection due to various types of Candida (yeast) species. In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using the Cinnamomum verum bark plus Cassia auriculata leaf powder extracts. The characterization of synthesized ZnONPs was done by UV-Vis spectrophotometer and SEM analysis. The average size of nanoparticles was 77 nm. Synergistic anticandidal activity of ZnONPs (ZnONPs plus antibiotics) was determined by disc diffusion method against 16 multidrug resistant clinical pathogens of Candida species. Antibiotic Ketoconazole plus ZnONPs showed best synergistic anticandidal activity against all the 16 isolates. Green synthesized ZnONPs appears to be a new promising approach to fight against Candidiasis.

  11. Gadolinium-doped ceria nanopowders synthesized by urea-based homogeneous co-precipitation (UBHP)

    Energy Technology Data Exchange (ETDEWEB)

    Accardo, G., E-mail: d16605@kist.re.kr [Fuel Cell Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Spiridigliozzi, L. [Department of Civil and Mechanical Engineering, INSTM Research Unit, University of Cassino and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino, FR (Italy); Cioffi, R.; Ferone, C. [Department of Engineering, INSTM Research Unit, University Parthenope of Naples, Centro Direzionale, Is. C4, 80143 Napoli (Italy); Di Bartolomeo, E. [Department of Chemical Science and Technology, University of Rome “Tor Vergata”, Viale della Ricerca Scientifica, 00133 Rome (Italy); Yoon, Sung Pil [Fuel Cell Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Dell’Agli, G. [Department of Civil and Mechanical Engineering, INSTM Research Unit, University of Cassino and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino, FR (Italy)

    2017-02-01

    Gadolinium (10%)-doped ceria was successfully synthesized by using an urea-based co-precipitation method (UBHP). A single fluorite phase was obtained after a low temperature (400 °C) calcination treatment. The resulting powders showed grains of nanometric size with some agglomerations and an overall good sinterability. Pellets were sintered at 1300 and 1500 °C for 3 h. The ionic conductivity was measured by electrochemical impedance spectroscopy measurements and a correlation between electrical properties and microstructure was revealed. The promising conductivity values showed that the synthesized powders are suitable for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications. - Highlights: • Urea-based homogeneous co-precipitation is applied to synthesize nanocrystalline GDC. • Dense GDC samples at different sintering temperatures were characterized. • SEM and TEM revealed a well define microstructure and controlled composition. • Correlation between electrochemical properties by EIS and microstructure was discussed. • UBHP method can be used to prepare high performance GDC electrolytes.

  12. Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems

    Science.gov (United States)

    Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro

    2018-01-01

    Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.

  13. Granulometric analysis of metallic oxide in ceramic powder form synthesized by different methods

    International Nuclear Information System (INIS)

    Neiva, L.S.; Simoes, A.N.; Simoes, V.N.; Bispo, A.; Gama, L.

    2012-01-01

    The aim of this work is to synthesize ceramic powders based on CuO/CeO 2 by means two different synthesis methods, they are: the combustion reaction method and Pechini method. It's part of the aim of this work subject all samples to a synthesized qualitative and quantitative chemical analysis, using the technique EDX and then to a granulometric analysis. The samples of the ceramic powder based on CuO/CeO 2 synthesized in this work by means of the two above synthesis methods, contain various concentrations of CuO ranging between 0 and 0.5 mol. According to the results, only the Pechini method of synthesis exerted a significant and defined influence on the capacity of particle unit agglomeration in these powders (author)

  14. Fibronectin-synthesizing activity of free and membrane-bound polyribosomes from human embryonic fibroblasts and chick embryos

    International Nuclear Information System (INIS)

    Belkin, V.M.; Volodarskaya, S.M.

    1986-01-01

    The fibronectin-synthesizing activity of membrane-bound and free polyribosomes in a cell-free system was studied using immunochemical methods. It was found that fibronectin biosynthesis on membrane-bound polyribosomes from human embryonic fibroblasts accounts for 4.9% and those from 10-day-old chick embryos for 1.1% of the total amount of newly synthesized proteins, whereas on free polyribosomes it is 1.0 and 0.3%, respectively. Fibronectin monomers with a molecular weight of 220,000 were found only in the material of the cell-free system containing heavy fractions of membrane-bound polyribosomes newly synthesized in the presence of spermidine. Thus, it was shown that fibronectin is synthesized primarily on membrane-bound polyribosomes

  15. Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell

    OpenAIRE

    Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.

    2013-01-01

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190?mV and ISC of ~9??A, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46?mW confirmed...

  16. Syntheses and spectroscopic properties of mercury(II) and nickel(II ...

    African Journals Online (AJOL)

    Syntheses and spectroscopic properties of mercury(II) and nickel(II) ... The complexes were characterized by IR, diffuse reflectance, 1H NMR spectra and elemental ... coordinating through thiolato sulphur and hydrazinic nitrogen atoms.

  17. Writing syntheses for managers: Lessons from the Rainbow Series and Fire Effects Information System

    Science.gov (United States)

    Jane Kapler Smith; Kristin L. Zouhar; Janet Fryer

    2009-01-01

    Scientific knowledge is essential for sound wildland management, but this knowledge is a complex, ever-expanding resource. Managers often request syntheses or reviews of available knowledge, and scientists have responded with an increasing number of syntheses for managers. Unfortunately, little guidance is available for this kind of writing. While most scientists have...

  18. Accuracy of Repetition of Digitized and Synthesized Speech for Young Children in Background Noise

    Science.gov (United States)

    Drager, Kathryn D. R.; Clark-Serpentine, Elizabeth A.; Johnson, Kate E.; Roeser, Jennifer L.

    2006-01-01

    Purpose: The present study investigated the intelligibility of digitized and synthesized speech output in background noise for children 3-5 years old. The purpose of the study was to determine whether there was a difference in the intelligibility (ability to repeat) of 3 types of speech output (digitized, DECTalk synthesized, and MacinTalk…

  19. A Two-Stage Approach to Synthesizing Covariance Matrices in Meta-Analytic Structural Equation Modeling

    Science.gov (United States)

    Cheung, Mike W. L.; Chan, Wai

    2009-01-01

    Structural equation modeling (SEM) is widely used as a statistical framework to test complex models in behavioral and social sciences. When the number of publications increases, there is a need to systematically synthesize them. Methodology of synthesizing findings in the context of SEM is known as meta-analytic SEM (MASEM). Although correlation…

  20. Synthesizing monochromatic 3-D images by multiple-exposure rainbow holography with vertical area-partition approach

    Institute of Scientific and Technical Information of China (English)

    翟宏琛; 王明伟; 刘福民; 母国光

    2002-01-01

    We report for the first time the theoretical analysis and experimental results of a white-light reconstructed monochromatic 3-D image synthesizing tomograms by multiple rainbow holo-graphy with vertical-area partition (VAP) approach. The theoretical and experimental results show that 3-D monochromatic image can be synthesized by recording the master hologram by VAP ap-proach without any distortions either in gray scale or in geometrical position. A 3-D monochromatic image synthesized from a series of medical tomograms is presented in this paper for the first time.

  1. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    Science.gov (United States)

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  2. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    Directory of Open Access Journals (Sweden)

    Roshmi Thomas

    2014-12-01

    Full Text Available Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM and scanning electron microscope (SEM. The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  3. Development of an Intelligent System to Synthesize Petrophysical Well Logs

    Directory of Open Access Journals (Sweden)

    Morteza Nouri Taleghani

    2013-07-01

    Full Text Available Porosity is one of the fundamental petrophysical properties that should be evaluated for hydrocarbon bearing reservoirs. It is a vital factor in precise understanding of reservoir quality in a hydrocarbon field. Log data are exceedingly crucial information in petroleum industries, for many of hydrocarbon parameters are obtained by virtue of petrophysical data. There are three main petrophysical logging tools for the determination of porosity, namely neutron, density, and sonic well logs. Porosity can be determined by the use of each of these tools; however, a precise analysis requires a complete set of these tools. Log sets are commonly either incomplete or unreliable for many reasons (i.e. incomplete logging, measurement errors, and loss of data owing to unsuitable data storage. To overcome this drawback, in this study several intelligent systems such as fuzzy logic (FL, neural network (NN, and support vector machine are used to predict synthesized petrophysical logs including neutron, density, and sonic. To accomplish this, the petrophysical well logs data were collected from a real reservoir in one of Iran southwest oil fields. The corresponding correlation was obtained through the comparison of synthesized log values with real log values. The results showed that all intelligent systems were capable of synthesizing petrophysical well logs, but SVM had better accuracy and could be used as the most reliable method compared to the other techniques.

  4. A novel nanostructure of cadmium oxide synthesized by mechanochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Tadjarodi, A., E-mail: tajarodi@iust.ac.ir [Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); Imani, M. [Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of)

    2011-11-15

    Highlights: {yields} A novel nanostructure of CdO was synthesized by mechanochemical reaction followed by calcination. {yields} Mechanochemical method is a simple and low-cost to synthesize nanomaterials. {yields} The obtained precursor was characterized by FT-IR, NMR techniques and elemental analysis. {yields} SEM images showed cauliflower-like shape of sample with components average diameter of 68 nm. {yields} The rods and tubes bundles with single crystalline nature were revealed by ED pattern and TEM images. -- Abstract: Cauliflower-like cadmium oxide (CdO) nanostructure was synthesized by mechanochemical reaction followed calcination procedure. Cadmium acetate dihydrate and acetamide were used as reagents and the resulting precursor was calcinated at 450 {sup o}C for 2 h in air. The structures of the precursor and resultant product of the heating treatment were characterized using Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and elemental analysis, X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction pattern (ED). SEM and TEM images revealed the cauliflower-like morphology of the sample. This structure includes the bundles of rods and tubes in nanoscale, which combine with each other and form the resulting morphology with the average diameter, 68 nm of the components. ED pattern indicated the single crystal nature of the formed bundles.

  5. A novel nanostructure of cadmium oxide synthesized by mechanochemical method

    International Nuclear Information System (INIS)

    Tadjarodi, A.; Imani, M.

    2011-01-01

    Highlights: → A novel nanostructure of CdO was synthesized by mechanochemical reaction followed by calcination. → Mechanochemical method is a simple and low-cost to synthesize nanomaterials. → The obtained precursor was characterized by FT-IR, NMR techniques and elemental analysis. → SEM images showed cauliflower-like shape of sample with components average diameter of 68 nm. → The rods and tubes bundles with single crystalline nature were revealed by ED pattern and TEM images. -- Abstract: Cauliflower-like cadmium oxide (CdO) nanostructure was synthesized by mechanochemical reaction followed calcination procedure. Cadmium acetate dihydrate and acetamide were used as reagents and the resulting precursor was calcinated at 450 o C for 2 h in air. The structures of the precursor and resultant product of the heating treatment were characterized using Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and elemental analysis, X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction pattern (ED). SEM and TEM images revealed the cauliflower-like morphology of the sample. This structure includes the bundles of rods and tubes in nanoscale, which combine with each other and form the resulting morphology with the average diameter, 68 nm of the components. ED pattern indicated the single crystal nature of the formed bundles.

  6. Combustion synthesized hierarchically porous WO{sub 3} for selective acetone sensing

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chengjun; Liu, Xu; Guan, Hongtao; Chen, Gang; Xiao, Xuechun [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Djerdj, Igor [Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb (Croatia); Wang, Yude, E-mail: ydwang@ynu.edu.cn [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Yunnan Province Key Lab of Mico-Nano Materials and Technology, Yunnan University, 650091, Kunming (China)

    2016-12-01

    An easy, inexpensive combustion route was designed to synthesize hierarchically porous WO{sub 3}. The tungsten source was fresh peroxiotungstic acid by dissolving tungsten powder into hydrogen peroxide. To promote the combustion reaction, a combined fuel of both glycine and hydrazine hydrate was used. The microstructure was well-connected pores comprised of subunit nanoparticles. Upon exposing towards acetone gas, the porous WO{sub 3} based sensor exhibits high gas response, rapid response and recovery, and good selectivity in the range of 5–1000 ppm under working temperature of 300 °C. This excellent sensing performance was plausibly attributed to the porous morphology, which hence provides more active sites for the gas molecules' reaction. - Graphical abstract: Hierarchically porous WO{sub 3} synthesized by combustion process exhibits high gas response, rapid response and recovery, and excellent selectivity for acetone, making it to be promising candidates for practical detectors for acetone. - Highlights: • Hierarchically porous WO{sub 3} synthesized by combustion process. • Hierarchically porous WO{sub 3} exhibits high gas response and excellent selectivity for acetone. • The excellent sensing property was plausibly attributed to the porous morphology.

  7. Radiolitically Synthesized Hybrid Nanosystems for Bio-Nano-Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Krkljes, A., E-mail: krkljes@vinca.rs [Vinca Institute of Nuclear Sciences, Laboratory for Radiation Chemistry and Physics, ' ' GAMMA' ' (030), P.O. Box 522, 11001 Belgrade (Serbia)

    2010-07-01

    In this report a review of the main results and the studies carried out under the scope of the IAEA CRP project: Nanoscale Radiation Engineering of Advanced Materials for Potential Biomedical Application is presented. In particular two topics are discussed: radiation synthesizing of Ag nanoparticles in hydrogels for potential biomedical application and decoration of carbon nanotubes with Ag clusters by gamma irradiation. (author)

  8. Radiolitically Synthesized Hybrid Nanosystems for Bio-Nano-Technologies

    International Nuclear Information System (INIS)

    Krkljes, A.

    2010-01-01

    In this report a review of the main results and the studies carried out under the scope of the IAEA CRP project: Nanoscale Radiation Engineering of Advanced Materials for Potential Biomedical Application is presented. In particular two topics are discussed: radiation synthesizing of Ag nanoparticles in hydrogels for potential biomedical application and decoration of carbon nanotubes with Ag clusters by gamma irradiation. (author)

  9. Syntheses and pyrolytic studies of salicylate derivatives of ...

    African Journals Online (AJOL)

    New salicylate derivatives of heteronucleic-μ-oxoisopropoxide [SnO2AlB(OPri)4] have been synthesized by the thermal condensation of μ-oxoisopropoxide and methyl/ethyl/phenyl/phenyl ethyl salicylates in different molar ratios (1:1-1:2) yielding the compounds of the type [SnO2AlB(OPri)4-n(RSAL)n] (where n is 1-2 and ...

  10. Synthesis of Zeolite from Fly Ash and Removal of Heavy Metal Ions from Newly Synthesized Zeolite

    OpenAIRE

    Solanki, Parag; Gupta, Vikal; Kulshrestha, Ruchi

    2010-01-01

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. Characteristics of the various Fly ash samples were carried out. Coal proximate analysis was done. Batch experiment was carried out for the adsorption of some heavy metal ions on to synthesized Zeolite. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.

  11. Lipase-katalysierte Synthese strukturierter Triglyceride: Verfahrensoptimierung und Erzeugung selektiver Lipasemutanten durch gerichtete Evolution

    OpenAIRE

    Schmid, Ulrike

    1999-01-01

    In der vorliegenden Arbeit wurde zum einen die Lipase-Katalysierte Synthese strukturierter Triglyceride, zum anderen die Veränderung der Kettenlängenselektivität der slip1-Lipase aus C. rugosa durch gerichtete Evolution untersucht. Besonderes Interesse galt der Synthese von strukturierten Triglyceriden des ABA-Typs, die aufgrund ihrer symmetrischen Struktur zur Therapie von Fettabsorptionsproblemen wie z.B. Pankreasinsuffizienz eingesetzt werden können. Besonderes Interesse galt dabei der ...

  12. Accurate simulation of Raman amplified lightwave synthesized frequency sweeper

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Olesen, Anders Sig; Rottwitt, Karsten

    2011-01-01

    A lightwave synthesized frequency sweeper using a Raman amplifier for loss compensation is presented together with a numerical model capable of predicting the shape of individual pulses as well as the overall envelope of more than 100 pulses. The generated pulse envelope consists of 116 pulses wi...

  13. Mechanochemically synthesized Al2O3-TiC nanocomposite

    International Nuclear Information System (INIS)

    Mohammad Sharifi, E.; Karimzadeh, F.; Enayati, M.H.

    2010-01-01

    Al 2 O 3 -TiC nanocomposite was synthesized by ball milling of aluminum, titanium oxide and graphite powder mixtures. Effect of the milling time and heat treatment temperatures were investigated. The structural evolution of powder particles after different milling times was studied by X-ray diffractometry and scanning electron microscopy. The results showed that after 40 h of ball milling the Al/TiO 2 /C reacted with a self-propagating combustion mode producing Al 2 O 3 -TiC nanocomposite. In final stage of milling, alumina and titanium carbide crystallite sizes were less than 10 nm. After annealing at 900 o C for 1 h, Al 2 O 3 and TiC crystallite sizes remained constant, however increasing annealing temperature to 1200 o C increased Al 2 O 3 and TiC crystallite size to 65 and 30 nm, respectively. No phase change was observed after annealing of the synthesized Al 2 O 3 -TiC powder.

  14. Nanocrystals-based Macroporous Materials Synthesized by Freeze-drying Combustion

    International Nuclear Information System (INIS)

    Yan, Ruiqiang; Chen, Yu; Lin, Ye; Chen, Fanglin

    2016-01-01

    We present a novel freeze-drying combustion method for synthesis of macroporous powders with nano-network, using Sm 0.2 Ce 0.8 O 1.9 (SDC) as an example. The metal nitrate salt solution mixed with glycine is frozen to form homogeneous nitrate/glycine mixture and then freeze-dried through sublimation of ice crystals. Upon combustion of the freeze-dried mixture, SDC powders with macroporous microstructure consisting of 10–20 nm nanocrystals, high surface area and excellent sinterability are achieved. High resolution transmission electron microscopy (HRTEM) analysis indicates that nanodomains due to aggregation/segregation of dopants in the SDC powders obtained from freeze-drying combustion are much smaller than those in the SDC powders synthesized by the conventional nitrate solution combustion approach, demonstrating better elemental homogeneity and improved conductivity. Using low cost precursors and simple processing conditions, freeze-drying combustion can be a versatile method to synthesize nanocrystalline powders with excellent composition homogeneity for broad applications.

  15. Dynamic balancing of mechanisms and synthesizing of parallel robots

    CERN Document Server

    Wei, Bin

    2016-01-01

    This book covers the state-of-the-art technologies in dynamic balancing of mechanisms with minimum increase of mass and inertia. The synthesis of parallel robots based on the Decomposition and Integration concept is also covered in detail. The latest advances are described, including different balancing principles, design of reactionless mechanisms with minimum increase of mass and inertia, and synthesizing parallel robots. This is an ideal book for mechanical engineering students and researchers who are interested in the dynamic balancing of mechanisms and synthesizing of parallel robots. This book also: ·       Broadens reader understanding of the synthesis of parallel robots based on the Decomposition and Integration concept ·       Reinforces basic principles with detailed coverage of different balancing principles, including input torque balancing mechanisms ·       Reviews exhaustively the key recent research into the design of reactionless mechanisms with minimum increase of mass a...

  16. The syntheses, characterization and in vitro metabolism of nitracaine, methoxypiperamide and mephtetramine.

    Science.gov (United States)

    Power, John D; Scott, Kenneth R; Gardner, Elizabeth A; Curran McAteer, Bronagh M; O'Brien, John E; Brehon, Margaret; Talbot, Brian; Kavanagh, Pierce V

    2014-01-01

    Three legal highs; nitracaine (3-(diethylamino)-2,2-dimethylpropyl 4-nitrobenzoate), methoxypiperamide (MEOP, (4-methoxyphenyl)(4-methylpiperazin-1-yl)methanone) and mephtetramine (MTTA, 2-((methylamino)methyl)-3,4-dihydronaphthalen-1(2H)-one) appeared in 2013 as new psychoactive substances (NPS) on Internet websites selling 'research chemicals'. These compounds were synthesized and analyzed via our synthesize, analyze, and metabolize (SAM) protocol. Nitracaine was synthesized by the transesterification of methyl 4-nitrobenzoate with 3-(diethylamino)-2,2-dimethylpropan-1-ol. Methoxypiperamide was synthesized by the reaction of 4-methoxybenzoyl chloride with 1-methylpiperazine, and mephtetramine through the Mannich reaction of 1-tetralone with paraformaldehyde and methylamine hydrochloride. Each compound was characterized by nuclear magnetic resonance (NMR), gas chromatography with electron impact mass spectrometry (GC-EIMS), liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and high resolution electrospray ionization mass spectrometry (HR-ESI-MS). A sample of nitracaine was also test-purchased from an Internet vendor and its structure confirmed by GC-EIMS and LC-ESI-MS. Finally, the in vitro metabolism of the nitracaine, mephtetramine, and methoxypiperamide was investigated, using a human microsomal liver extract, in order to tentatively identify potential metabolites that may be encountered in the analysis of biological samples in clinical or toxicology labs. The use of our SAM protocol highlights the ability of academic research labs to quickly respond to and disseminate information about emerging NPS. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Organo-Functionalization of Silicon Nanocrystals Synthesized by Inductively Coupled Plasma Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Don-Sung; Choe, Dong-Hoe; Jeong, Hyun-Dam [Chonnam National University, Gwangju (Korea, Republic of); Yoo, Seung-Wan; Kim, Jung-Hyung [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-05-15

    Octadecyl-terminated silicon nanocrystals (ODE-Si NCs) are obtained via a surface-initiated thermal hydrosilylation reaction on hydride-terminated Si NCs (H-Si NCs). Pristine Si NCs were synthesized at the gram scale by using inductively coupled plasma chemical vapor deposition (ICP-CVD) . The H-Si NCs were produced through a chemical etching process with hydrofluoric acid (HF), ethanol (EtOH), and distilled water (d-H{sub 2}O). The results obtained from X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) indicate that the synthesized Si NCs obtained via ICP-CVD have diamond cubic-structured silicon with a grain size of 10 nm and a densely packed Si NC array consisting of individual NCs. Organo-functionalized Si NCs, i.e., ODE-Si NCs, are well soluble in organic solvent whereas pristine Si NCs synthesized through ICP-CVD are not. The surface chemistry of the ODE-Si NCs was confirmed via Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy ({sup 1}H-NMR), and field emission transmission electron microscopy (FE-TEM). Thereby, these newly synthesized and scalable organo-functionalized Si NCs are applicable as raw materials for practical use in devices by tuning the surface chemistry with various capping molecules.

  18. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    Science.gov (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Novel Evaporation Process for Deposition of Kesterite Thin Films Synthesized by Solvothermal Method

    Directory of Open Access Journals (Sweden)

    J. A. Estrada-Ayub

    2017-01-01

    Full Text Available Kesterite, a quaternary compound of Cu2ZnSnS4, is a promising option as a material absorber to reduce the cost of photovoltaic solar cells. The solvothermal method is a way to synthesize nanoparticles of this material. In this work, once synthesized, particles were deposited on a substrate through evaporation, and their morphological, structural, and optical properties were studied. Results show that changes of precursor ratios during solvothermal synthesis result in a modification of particle morphology but not on its size. The deposition of already synthesized kesterite through evaporation preserves kesterite structure and permits the formation of a homogenous film on a substrate. Optical reflectance and transmittance measurements allowed estimating the band-gap energy between 1.41 and 1.46 eV for representative samples, which is near the optimum for the absorber material.

  20. Gel-combustion-synthesized ZnO nanoparticles for visible light ...

    Indian Academy of Sciences (India)

    Zinc oxide nanoparticles (ZnO NPs) synthesized by the gel combustion technique using a bio-fuel, cassava starch (root tubers of Manihot esculenta), have been characterized by various techniques. The X-ray diffractionpattern reveals hexagonal wurtzite structure. The particle size averaged around 45nm with an excellent ...

  1. Simple syntheses of 3-substituted indoles and their application for high yield 14C-labelling

    International Nuclear Information System (INIS)

    Schallenberg, J.; Meyer, E.

    1983-01-01

    Methods are described which allow the synthesis of several plant indole alkaloids and their metabolites at different scales. Compounds synthesized include gramine (1) (3-dimethylaminomethylindole) which is directly derived from indole, while its biosynthetic precursors 3-aminomethylindole (3) and 3-methylaminomethylindole (2) as well as indole3-carboxylic acid (7) are synthesized via indole-3-aldehyde (6). Slight changes of the experimental conditions allow syntheses with high yields not only at the molar but also at the μmolar level. This is extremely useful when isotope labelled compounds of high specific radioactivity are required for studies of plant metabolism. (orig.)

  2. Comparison of Polymer Networks Synthesized by Conventional Free Radical and RAFT Copolymerization Processes in Supercritical Carbon Dioxide

    OpenAIRE

    Patricia Pérez-Salinas; Gabriel Jaramillo-Soto; Alberto Rosas-Aburto; Humberto Vázquez-Torres; María Josefa Bernad-Bernad; Ángel Licea-Claverie; Eduardo Vivaldo-Lima

    2017-01-01

    There is a debate in the literature on whether or not polymer networks synthesized by reversible deactivation radical polymerization (RDRP) processes, such as reversible addition-fragmentation radical transfer (RAFT) copolymerization of vinyl/divinyl monomers, are less heterogeneous than those synthesized by conventional free radical copolymerization (FRP). In this contribution, the syntheses by FRP and RAFT of hydrogels based on 2-hydroxyethylene methacrylate (HEMA) and ethylene glycol dimet...

  3. hydrazines and their nickel(II) complexes: Syntheses, structures and ...

    Indian Academy of Sciences (India)

    G Narendra Babu

    Abstract. The Schiff bases N-(acyl)-N -(ferrocenylidene)hydrazines (HFcah (1) and HFcbh (2), where acyl = acetyl in 1 and benzoyl in 2 and H represents the dissociable amide proton) were synthesized in high yields (74 and 81%) by condensation reactions of equimolar amounts of ferrocene-carboxaldehyde and the ...

  4. Influence of cooling modes on purity of solid-state synthesized tetracalcium phosphate

    International Nuclear Information System (INIS)

    Guo Dagang; Xu Kewei; Han Yong

    2005-01-01

    Pure tetracalcium phosphate powder (TTCP) was prepared by a solid-state phase reaction at 1500 deg. C. Effects of cooling modes on the synthesizing process of TTCP powder and its thermal behavior at different heating temperatures were investigated by XRD and FTIR. The results show that cooling in dry air tends to promote formation of single phase TTCP, while in situ cooling in furnace results in a mixture of hydroxyapatite (HAP) and CaO. The examination of the thermal behavior of TTCP indicates that there exists a decomposing zone in the range of 500 deg. C-1200 deg. C, in which the high-temperature synthesized TTCP phase is transformed during the subsequent cooling process. This was confirmed by three additional cooling treatment routes that provide significant experimental evidence to the cooling modes effect on the purity of TTCP. The phase transformation course of starting materials heated to elevated temperatures was further studied by TGA-DSC analysis with the aid of XRD and FTIR, in order to fully understand the complicated synthesizing process of TTCP

  5. Implementation of Different Variants of Table-Based Frequency Synthesizers with Quadrature Output in VHDL

    Directory of Open Access Journals (Sweden)

    Daniel Kekrt

    2012-01-01

    Full Text Available This article describes the modelling and implementation of two different variants of direct frequency synthesizer, and evaluation of the performance of the finished design, in terms of memory and speed efficiency. The frequency synthesizer requirement comes from our complex radio transmission system design. The research activity has been focused on finding an optimal balance between simplicity, speed and memory consumption. The modelling was done in MATLAB environment in floating-point and fixed-point arithmetic, and the actual design was implemented and synthesized using the Xilinx ISE suite. The output has been connected to our customized radio front-end built on the Texas Instruments TRF2443 chip. The front-end output signal has been captured and compared with simulation results.

  6. Tribology of carbide derived carbon films synthesized on tungsten carbide

    Science.gov (United States)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  7. Multiblock copolymers synthesized in aqueous dispersions using multifunctional RAFT agents

    NARCIS (Netherlands)

    Bussels, R.; Bergman-Göttgens, C.M.; Meuldijk, J.; Koning, C.E.

    2005-01-01

    Triblock copolymers were synthesized in aqueous dispersions in two polymerization steps using a low molar mass difunctional dithiocarbamate-based RAFT agent, and in merely one polymerization step using a macromolecular difunctional dithiocarbamate-based RAFT agent. Segmented block copolymers

  8. Characterization of nano-crystalline ZrO{sub 2} synthesized via reactive plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, S., E-mail: sjayakumar.physics@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 014 (India); Ananthapadmanabhan, P.V. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Perumal, K. [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020 India (India); Thiyagarajan, T.K. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Mishra, S.C. [Department of Metallurgical and Materials Engg, National Institute of Technology, Rourkela 769 008 (India); Su, L.T.; Tok, A.I.Y.; Guo, J. [School of Materials Science and Engg, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639 798 (Singapore)

    2011-07-25

    Highlights: > Direct conversion of micron-sized zirconium hydride powder to nanocrystalline ZrO{sub 2} powder. > The experimental approach uses reactive plasma processing technique. > The product has been characterized by various analytical tools to support the findings. - Abstract: Nano-crystalline ZrO{sub 2} powder has been synthesized via reactive plasma processing. The synthesized ZrO{sub 2} powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and FTIR spectroscopy. The synthesized powder consists of a mixture of tetragonal and monoclinic phases of zirconia. Average crystallite size calculated from the XRD pattern shows that particles with crystallite size 20 nm or less than 20 nm are in tetragonal phase, whereas particles greater than 20 nm are in the monoclinic phase. TEM results show that particles have spherical morphology with maximum percentage of particles distributed in a narrow size from about 15 nm to 30 nm.

  9. Nanocomposite Ti-B-N coatings synthesized by reactive arc evaporation

    International Nuclear Information System (INIS)

    Neidhardt, Joerg; Czigany, Zsolt; Sartory, Bernhard; Tessadri, R.; O'Sullivan, Michael; Mitterer, Christian

    2006-01-01

    Nanocomposite Ti-B-N coatings have been prepared by reactive arc evaporation from Ti-B compound targets. The highly ionized flux of film-forming species was utilized to synthesize a promising nanocrystalline metastable supersaturated solid solution of boron in TiN at lower nitrogen fractions. The combined results from elastic recoil detection, X-ray photoelectron spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy and selected area electron diffraction indicate that the additional nitrogen incorporated at higher partial pressures triggers the formation of a separate amorphous BN matrix phase surrounding the 6-8 nm sized face-centered cubic crystallites. A maximum in the hardness is obtained for the strained TiBN crystallites surrounded by a small fraction of boron synthesized at a nitrogen fraction of 0.1, while the formation of the amorphous BN phase leads to lower values

  10. Morphology and topography study of graphene synthesized from plant oil

    Science.gov (United States)

    Robaiah, M.; Rusop, M.; Abdullah, S.; Khusaimi, Z.; Azhan, H.; Laila, M. O.; Salifairus, M. J.; Asli, N. A.

    2018-05-01

    The graphene is material consists of bonded atom carbon atoms in sheet form one atom thick. The different types of carbon sources which are refined corn oil, palm oil and waste cooking palm oil were used as carbon feedstock to supply carbon atom for synthesizing graphene on the nickel substrate by thermal chemical vapour deposition. The substrate and carbon sources were placed in double zone furnaces. The carbon sources and the substrate were heated at 300 °C and 900 °C respectively. The both furnaces were switched off after synthesis time for cooling process finish. The formation of the graphene on the Ni surface appears due to segregation and precipitation of a high amount of carbon from the source material during the cooling process. FESEM, AFM, UV-VIS Spectroscopy and Raman Spectroscopy were used to characterize and synthesized graphene.

  11. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    International Nuclear Information System (INIS)

    Klinbumrung, Arrak; Thongtem, Titipun; Thongtem, Somchai

    2014-01-01

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm −1 vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH 3 mixed with air at various working temperatures and NH 3 concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH 3

  12. Syntheses of α and γ-tocopherols selectively labelled with deuterium

    International Nuclear Information System (INIS)

    Hughes, L.; Slaby, M.; Burton, G.W.; Ingold, K.U.

    1990-01-01

    Four deuterium-substituted α-tocopherols (dideutero-RRR, nonadeutero-ambo, nonadeutero-all-rac and undecadeutero-all-rac) and a dideutro-RRR-γ-tocopherol have been synthesized for use in studies of the biokinetics, bioavailability and metabolism of vitamin E. (author)

  13. Molybdenum carbide-carbon nanocomposites synthesized from a reactive template for electrochemical hydrogen evolution

    KAUST Repository

    Alhajri, Nawal Saad

    2014-01-01

    Molybdenum carbide nanocrystals (Mo2C) with sizes ranging from 3 to 20 nm were synthesized within a carbon matrix starting from a mesoporous graphitic carbon nitride (mpg-C3N4) template with confined pores. A molybdenum carbide phase (Mo2C) with a hexagonal structure was formed using a novel synthetic method involving the reaction of a molybdenum precursor with the carbon residue originating from C3N4 under nitrogen at various temperatures. The synthesized nanocomposites were characterized using powder X-ray diffraction (XRD), temperature-programmed reaction with mass spectroscopy (MS), CHN elemental analyses, thermogravimetric analyses (TGA), nitrogen sorption, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results indicated that the synthesized samples have different surface structures and compositions, which are accordingly expected to exhibit different electrocatalytic activities toward the hydrogen evolution reaction (HER). Electrochemical measurements demonstrated that the sample synthesized at 1323 K exhibited the highest and most stable HER current in acidic media, with an onset potential of -100 mV vs. RHE, among the samples prepared in this study. This result is attributed to the sufficiently small particle size (∼8 nm on average) and accordingly high surface area (308 m2 g-1), with less oxidized surface entrapped within the graphitized carbon matrix. © 2014 the Partner Organisations.

  14. Benzene containing polyhydroxyalkanoates homo- and copolymers synthesized by genome edited Pseudomonas entomophila

    DEFF Research Database (Denmark)

    Shen, Rui; Cai, Longwei; Meng, Dechuan

    2014-01-01

    Microbial synthesis of functional polymers has become increasingly important for industrial biotechnology. For the first time, it became possible to synthesize controllable composition of poly(3-hydroxyalkanoate) (P3HA) consisting of 3-hydroxydodecanoate (3HDD) and phenyl group on the side......HPhV) and 3-hydroxydodecanoate (3HDD) were synthesized when the strain was grown on mixtures of PVA and dodecanoic acid (DDA). Compositions of 3HPhV in P(3HPhV-co-3HDD) were controllable ranging from 3% to 32% depending on DDDA/PVA ratios. Nuclear magnetic resonance (NMR) spectra clearly indicated...

  15. Electrochemical performance of Si-multiwall carbon nanotube nanocomposite anode synthesized by thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Na, Ye-Seul; Yoo, Hyeonseok; Kim, Tae-Hee; Choi, Jinsub; Lee, Wan In; Choi, Sooseok, E-mail: sooseok@jejunu.ac.kr; Park, Dong-Wha, E-mail: dwpark@inha.ac.kr

    2015-07-31

    Lithium-ion (Li-ion) batteries are widely used in electric devices and vehicles. Silicon is a promising material for the anode of Li-ion battery due to high theoretical specific capacity. However, it shows large volume changes during charge–discharge cycles leading to the pulverization of electrode. In order to improve such disadvantage, a multiwall carbon nanotube (MWCNT) has been used with silicon as composite material. In this work, Si-MWCNT nanocomposite was prepared in thermal plasma by attaching silicon nanoparticles to MWCNT column. Electrochemical tests for raw materials and synthesized nanocomposites were carried out. The discharge capacities of silicon, MWCNT, synthesized nanocomposites collected from a reaction tube, and a chamber were 4000, 310, 200, and 1447 mAh/g, respectively. - Highlights: • Si-Multiwall carbon nanotube nanocomposite was synthesized by thermal plasma. • The effect on the collection position of product after experiment was examined. • Cycle performance of electrodes was measured. • Product collected from chamber showed good electrochemical performance.

  16. A fully-differential phase-locked loop frequency synthesizer for 60-GHz wireless communication

    International Nuclear Information System (INIS)

    Kuang Lixue; Chi Baoyong; Chen Lei; Wang Zhihua; Jia Wen

    2014-01-01

    A 40-GHz phase-locked loop (PLL) frequency synthesizer for 60-GHz wireless communication applications is presented. The electrical characteristics of the passive components in the VCO and LO buffers are accurately extracted with an electromagnetic simulator HFSS. A differential tuning technique is utilized in the voltage controlled oscillator (VCO) to achieve higher common-mode noise rejection and better phase noise performance. The VCO and the divider chain are powered by a 1.0 V supply while the phase-frequency detector (PFD) and the charge pump (CP) are powered by a 2.5 V supply to improve the linearity. The measurement results show that the total frequency locking range of the frequency synthesizer is from 37 to 41 GHz, and the phase noise from a 40 GHz carrier is −97.2 dBc/Hz at 1 MHz offset. Implemented in 65 nm CMOS, the synthesizer consumes a DC power of 62 mW, including all the buffers. (semiconductor integrated circuits)

  17. A fully-differential phase-locked loop frequency synthesizer for 60-GHz wireless communication

    Science.gov (United States)

    Lixue, Kuang; Baoyong, Chi; Lei, Chen; Wen, Jia; Zhihua, Wang

    2014-12-01

    A 40-GHz phase-locked loop (PLL) frequency synthesizer for 60-GHz wireless communication applications is presented. The electrical characteristics of the passive components in the VCO and LO buffers are accurately extracted with an electromagnetic simulator HFSS. A differential tuning technique is utilized in the voltage controlled oscillator (VCO) to achieve higher common-mode noise rejection and better phase noise performance. The VCO and the divider chain are powered by a 1.0 V supply while the phase-frequency detector (PFD) and the charge pump (CP) are powered by a 2.5 V supply to improve the linearity. The measurement results show that the total frequency locking range of the frequency synthesizer is from 37 to 41 GHz, and the phase noise from a 40 GHz carrier is -97.2 dBc/Hz at 1 MHz offset. Implemented in 65 nm CMOS, the synthesizer consumes a DC power of 62 mW, including all the buffers.

  18. Characterization of a novel mutation in the von Willebrand factor propeptide in a distinct subtype of recessive von Willebrand disease

    DEFF Research Database (Denmark)

    Lanke, Elsa; Kristoffersson, Ann-Charlotte; Philips, Malou

    2008-01-01

    von Willebrand factor (VWF) is a plasma protein that consists of a series of multimers of which the high-molecular-weight VWF multimers are the most potent in platelet adhesion and aggregation. The propeptide of the VWF (VWFpp) is known to be essential in the process of multimer assembly. Genetic...... mutation in the VWFpp abolishes multimerization of VWF. The mutation probably disrupts the normal configuration of the VWFpp, which is essential for correct orientation of the protomers and ultimately multimerization. The mutant amino acid is located in a region that is highly conserved across several...

  19. Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes.

    Science.gov (United States)

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Hoti, S L

    2014-12-01

    Diseases transmitted by blood-feeding mosquitoes, such as dengue fever, dengue hemorrhagic fever, Japanese encephalitis, malaria, and filariasis, are increasing in prevalence, particularly in tropical and subtropical zones. To control mosquitoes and mosquito-borne diseases, which have worldwide health and economic impacts, synthetic insecticide-based interventions are still necessary, particularly in situations of epidemic outbreak and sudden increases of adult mosquitoes. Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Heliotropium indicum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. Adult mosquitoes were exposed to varying concentrations of aqueous extract of H. indicum and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of H. indicum, and the formation of nanoparticles was observed within 6 h. The results recorded from UV-vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the adult of A. stephensi (lethal dose (LD)₅₀ = 26.712 μg/mL; LD₉₀ = 49.061 μg/mL), A. aegypti (LD₅₀ = 29.626 μg/mL; LD₉₀ = 54.269 μg/mL), and C. quinquefasciatus (LD₅₀ = 32.077 μg/mL; LD₉₀ = 58.426 μg/mL), respectively. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H.indicum and green synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of

  20. A facile mechanochemical approach to synthesize Zn-Al layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun, E-mail: forsjun@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); He, Xiaoman; Chen, Min; Huang, Pengwu [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Zhang, Qiwu, E-mail: zhangqw@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Liu, Xinzhong [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118 (China)

    2017-06-15

    In this study, a mechanochemical route to synthesize Zn-Al layered double hydroxide (LDH) was introduced, in which Zn basic carbonate and Al hydroxide were first dry milled into an activated state and then agitated in water to obtain the final products. The as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG) and Scanning electron microscopy (SEM). The products possessed a high crystallinity of Zn–Al LDH phase without any other impurities, proving a facile and effective preparation of Zn–Al LDH by using non-heating mechanochemical approach. - Highlights: • A non-heating mechanochemical route to synthesize Zn-Al LDH. • The products possessed high crystalline Zn-Al LDH phase. • No emission of other impurities or wastewater.

  1. Chemoenzymatic synthesis of statine side chain building blocks and application in the total synthesis of the cholesterol-lowering compound solistatin.

    Science.gov (United States)

    Rieder, Oliver; Wolberg, Michael; Foegen, Silke E; Müller, Michael

    2017-09-20

    The synthesis and enzymatic reduction of several 6-substituted dioxohexanoates are presented. Two-step syntheses of tert-butyl 6-bromo-3,5-dioxohexanoate and the corresponding 6-hydroxy compound have been achieved in 89% and 59% yield, respectively. Regio- and enantioselective reduction of these diketones and of the 6-chloro derivative with alcohol dehydrogenase from Lactobacillus brevis (LBADH) gave the (5S)-5-hydroxy-3-oxo products with enantiomeric excesses of 91%, 98.4%, and >99.5%, respectively. Chain elongation of the reduction products by one carbon via cyanide addition, and by more than one carbon by Julia-Kocienski olefination, gave access to well-established statine side-chain building blocks. Application in the synthesis of the cholesterol-lowering natural compound solistatin is given. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Method and apparatus for synthesizing hydrocarbons

    Science.gov (United States)

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1985-04-16

    A method and apparatus for synthesizing a mixture of aliphatic alcohols having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further optionally includes Na ions present as substitutional cations in an amount of about 5 to 10 atom %. At a temperature of about 570 to 630/sup 0/K, and at pressures of about 20 to 50 atm, methanol and isobutanol are the predominant products and are produced in amounts of about 90 wt % of the total hydrocarbon mixture. 6 figs.

  3. Parametric Audio Based Decoder and Music Synthesizer for Mobile Applications

    NARCIS (Netherlands)

    Oomen, A.W.J.; Szczerba, M.Z.; Therssen, D.

    2011-01-01

    This paper reviews parametric audio coders and discusses novel technologies introduced in a low-complexity, low-power consumption audiodecoder and music synthesizer platform developed by the authors. Thedecoder uses parametric coding scheme based on the MPEG-4 Parametric Audio standard. In order to

  4. Comparative catalytic reduction of 4-nitrophenol by polyacrylamide-gold nanocomposite synthesized by hydrothermal autoclaving and conventional heating routes

    Science.gov (United States)

    Salaheldin, Hosam I.

    2017-12-01

    Gold nanoparticles (AuNPs) in polymeric polyacrylamide (PAAm) matrix were synthesized using conventional heating and autoclaving thermal techniques. The synthesized Au/PAAm nanocomposite was characterized using UV-vis spectroscopy and high-resolution transmission electron microscopy. The size of the synthesized particles was approximately 6.37 nm and 8.19 nm with the conventional heating and autoclaving thermal techniques, respectively. Electron diffraction x-ray spectroscopy and the Fourier transformation infrared spectroscopy were used for the composition and elemental studies, which confirmed that the Au metallic atoms were synthesized and embedded within a PAAm matrix via a coordination bond between the carbonyl (-CONH2) group and the metallic NPs. X-ray diffraction confirmed the crystalline nature of the fabricated AuNPs with face centered cubic of nanocrystals. The catalytic activity of the as-prepared Au/PAAm nanocomposite for the reduction of 4-nitrophenol to 4-aminophenol was studied in the presence of sodium borohydrate. The synthesized AuNPs had an effective catalytic activity; the smaller NPs synthesized NPs with the conventional heating technique had a higher reaction kinetic rate in comparation with those synthesized with the autoclaving technique. Therefore, the Au/PAAm nanocomposite can be widely used as an eco-friendly, non-toxic, a fast and cost-effective product to remove versatile organic pollutants such as aromatic nitro compounds.

  5. The Mossbauer spectra of carbon nanotubes synthesize using ferrite catalyst

    International Nuclear Information System (INIS)

    Zhang Haiyan; Lin Jiapeng; Peng Zuxiong; Zeng Guoxun; Pang Jinshan; Chen Yiming

    2009-01-01

    The ferrite powder with honeycombed structure obtained by chemical combustion was used as catalyst to synthesize multi-walled carbon nanotubes by chemical vapor deposition. The magnetic components and characters of the the carbon nanotubes synthesized were investigated by X-ray diffraction (XRD), Mossbauer spectra and vibrating-sample magnetometer (VSM). The ferric components of the carbon nanotubes samples can be identified by Mossbauer spectra. The Mossbauer spectra of carbon nanotubes sample after purification contains two ferromagnetic sextet components corresponding to α-Fe species and Fe 3 C (cementite) species. While the Mossbauer spectra of the carbon nanotubes sample before purification contains three ferromagnetic sextet components corresponding to α-Fe species, Fe 3 C species and γ-Fe 2 O 3 . The saturation magnetization intensity Ms of carbon nanotubes sample after purification is decreased from 46.61 to 2.94 emu/g, but the coercive force increasd and reached 328Oe.

  6. Syntheses of nucleic acid and protein in somatic embryos of Fritillaria ussuriensis maxim in different development stages

    International Nuclear Information System (INIS)

    Wang Shuyu; Tang Wei; Wang Hui

    1993-09-01

    After developing a procedure for somatic embryogenesis in Fritillaria ussuriensis, dynamics on the syntheses of DNA, RNA, and protein during globular, heart-shaped, torpedo-shaped, cotyledonary, and mature somatic embryo stages was demonstrated by both autoradiography and scintillation counting. The rates of syntheses of DNA, RNA, and protein gradually increase between the globular and cotyledonary somatic embryos stages. DNA, RNA, and protein synthesis rates are in peak at the cotyledonary later stage, precotyledonary stage, and cotyledonary stage, respectively. It appears that more DNA, RNA, and protein are synthesized in the cotyledonary somatic embryo stage than in other stages. All these results indicate that an increased syntheses of DNA, RNA, and protein is associated with the differentiation of embryogenic cells and organogenesis in somatic embryos

  7. THE INFLUENCE OF RECUPIRATION’S METHODS OF GRAPHITE TO PROPERTIES OF SYNTHESIZED DIAMONDS

    Directory of Open Access Journals (Sweden)

    G. P. Bogatyreva

    2015-03-01

    Full Text Available The graphite’s waste can be used for synthesis of diamonds. It is established, that activation of graphite’s waste essential influence on a degree of transition of graph-ite in diamond and their physico-chemical properties. The activation of th graphite’s waste changes essentially their absorption and structural characteristics and to a great extent affect the characteristics of synthesized diamond. Thermal activation of graphite’s waste leads to that are synthesized, basically, diamond micropowders, and electrochemical — diamond grinding powders.

  8. Enhancement of a radiation safety system through the use of a microprocessor-controlled speech synthesizer

    International Nuclear Information System (INIS)

    Keefe, D.J.; McDowell, W.P.

    1980-01-01

    A speech synthesizer is being used to differentiate eight separate safety alarms on a high energy accelerator at Argonne National Laboratory. A single board microcomputer monitors eight signals from an existing radiation safety logic circuit. The microcomputer is programmed to output the proper code at the proper time and sequence to a speech synthesizer which supplies the audio input to a local public address system. This eliminates the requirement for eight different alarm tones and the personnel training required to differentiate among them. A twenty-word vocabulary was found adequate to supply the necessary safety announcements. The article describes the techniques used to interface the speech synthesizer into the existing safety logic circuit

  9. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals

    International Nuclear Information System (INIS)

    Feng Xionghan; Zhai Limei; Tan Wenfeng; Liu Fan; He Jizheng

    2007-01-01

    Several Mn oxide minerals commonly occurring in soils were synthesized by modified or optimized methods. The morphologies, structures, compositions and surface properties of the synthesized Mn oxide minerals were characterized. Adsorption and redox reactions of heavy metals on these minerals in relation to the mineral structures and surface properties were also investigated. The synthesized birnessite, todorokite, cryptomelane, and hausmannite were single-phased minerals and had the typical morphologies from analyses of XRD and TEM/ED. The PZCs of the synthesized birnessite, todorokite and cryptomelane were 1.75, 3.50 and 2.10, respectively. The magnitude order of their surface variable negative charge was: birnessite ≥ cryptomelane > todorokite. The hausmannite had a much higher PZC than others with the least surface variable negative charge. Birnessite exhibited the largest adsorption capacity on heavy metals Pb 2+ , Cu 2+ , Co 2+ , Cd 2+ and Zn 2+ , while hausmannite the smallest one. Birnessite, cryptomelane and todorokite showed the greatest adsorption capacity on Pb 2+ among the tested heavy metals. Hydration tendency (pK 1 ) of the heavy metals and the surface variable charge of the Mn minerals had significant impacts on the adsorption. The ability in Cr(III) oxidation and concomitant release of Mn 2+ varied greatly depending on the structure, composition, surface properties and crystallinity of the minerals. The maximum amounts of Cr(III) oxidized by the Mn oxide minerals in order were (mmol/kg): birnessite (1330.0) > cryptomelane (422.6) > todorokite (59.7) > hausmannite (36.6). - The characteristics of heavy metal adsorption and Cr(III) oxidation on Mn oxide minerals are determined by their structure, composition, surface property and crystallinity

  10. Plant-derived chimeric virus particles for the diagnosis of primary Sjögren syndrome

    Directory of Open Access Journals (Sweden)

    Elisa eTinazzi

    2015-12-01

    Full Text Available Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX chimeric virus particles (CVPs and Cowpea mosaic virus (CPMV empty virus-like particles (eVLPs to display a linear peptide (lipo derived from human lipocalin , which is immunodominant in Sjögren’s syndrome (SjS and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles (VNPs were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay (ELISA format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

  11. Structural and behavioral characteristics of radiolytically synthesized polyacrylic acid–polyacrylonitrile copolymeric hydrogels

    International Nuclear Information System (INIS)

    Bera, Anuradha; Misra, R.K.; Singh, Shailendra K.

    2013-01-01

    Copolymeric hydrogels of polyacrylic acid (PAA) – polyacrylonitrile (PAN) was radiolytically synthesized from their respective monomers with trimethyloltrimethacrylate (TMPTMA) as the crosslinker wherein both polymerization and crosslinking could be achieved in a single step reaction using 60 Co γ-radiation under varying doses and dose rates. The formation of the hydrogels was confirmed by their FT-IR analysis, while their thermal degradation patterns were investigated through thermogravimetric analysis in both the dry and swelled state. The water sorption studies showed rapid swelling behavior of these hydrogels, where swelling (%EWC) was found to be strongly dependent on the ratio of the two monomers in the hydrogels and the swelling kinetics dependent on the dose rates of hydrogel synthesis. These radiolytically synthesized hydrogels responded to electrical stimulus both in terms of the bending speed as well as bending angle under an applied voltage. The nature of the deformation was reversible and can be controlled through switching the voltage on and off. - Highlights: • Polyacrylic acid – polyacrilonitrile copolymeric hydrogel has been radiolytically synthesized. • Trimethyloltrimethacrylate (TMPTMA) used as crosslinker. • Hydrogel has been characterized and tested for electroresponsive character. • Bending angles and bending speed were found dependent upon applied voltage

  12. Comparison of Polymer Networks Synthesized by Conventional Free Radical and RAFT Copolymerization Processes in Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Patricia Pérez-Salinas

    2017-05-01

    Full Text Available There is a debate in the literature on whether or not polymer networks synthesized by reversible deactivation radical polymerization (RDRP processes, such as reversible addition-fragmentation radical transfer (RAFT copolymerization of vinyl/divinyl monomers, are less heterogeneous than those synthesized by conventional free radical copolymerization (FRP. In this contribution, the syntheses by FRP and RAFT of hydrogels based on 2-hydroxyethylene methacrylate (HEMA and ethylene glycol dimethacrylate (EGDMA in supercritical carbon dioxide (scCO2, using Krytox 157 FSL as the dispersing agent, and the properties of the materials produced, are compared. The materials were characterized by differential scanning calorimetry (DSC, swelling index (SI, infrared spectroscopy (FTIR and scanning electron microscopy (SEM. Studies on ciprofloxacin loading and release rate from hydrogels were also carried out. The combined results show that the hydrogels synthesized by FRP and RAFT are significantly different, with apparently less heterogeneity present in the materials synthesized by RAFT copolymerization. A ratio of experimental (Mcexp to theoretical (Mctheo molecular weight between crosslinks was established as a quantitative tool to assess the degree of heterogeneity of a polymer network.

  13. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer N. [Univ. of California, San Diego, CA (United States); Wang, Joseph [Univ. of California, San Diego, CA (United States)

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  14. The Adhesive Capability of Two Lactobacillus Strains and Physicochemical Properties of Their Synthesized Biosurfactants

    Directory of Open Access Journals (Sweden)

    Piotr Gołek

    2011-01-01

    Full Text Available The aim of this study is to describe the adhesive capability of Lactobacillus fermenti 126 and Lactobacillus rhamnosus CCM 1825 as well as to isolate and evaluate the functional properties of their synthesized biosurfactants. Fourier transform infrared spectroscopy shows that both crude biosurfactants contain three components: protein, polysaccharide and phosphate in different ratio. The crude biosurfactants synthesized by Lactobacillus fermenti 126 and Lactobacillus rhamnosus CCM 1825 contain 8 and 9 fractions analyzed by capillary gel electrophoresis. Lactobacillus fermenti 126 and Lactobacillus rhamnosus CCM 1825 strains used in this study synthesize biosurfactants with low effectiveness, critical micelle concentration of 9.0 and 6.0 g/L, and surface tension of (45.1±0.1 and (43.6±0.6 mN/m, respectively. Biosurfactant synthesized by Lactobacillus rhamnosus CCM 1825 demonstrated higher emulsifying and froth-forming activity than that obtained from Lactobacillus fermenti 126, which resulted in better antiadhesive properties. The advantageous adhesive properties of these Lactobacillus strains were confirmed. A positive effect of the impregnation of polystyrene surface with an aqueous solution of biosurfactants on the inhibition of adhesion of Escherichia coli 22, Klebsiella pneumoniae 2 and Pseudomonas aeruginosa W2 to the impregnated surface was found.

  15. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    Energy Technology Data Exchange (ETDEWEB)

    Klinbumrung, Arrak [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-09-15

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm{sup −1} vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH{sub 3} mixed with air at various working temperatures and NH{sub 3} concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH{sub 3}.

  16. Selective Oxidation Using Flame Aerosol Synthesized Iron and Vanadium-Doped Nano-TiO2

    Directory of Open Access Journals (Sweden)

    Zhong-Min Wang

    2011-01-01

    Full Text Available Selective photocatalytic oxidation of 1-phenyl ethanol to acetophenone using titanium dioxide (TiO2 raw and doped with Fe or V, prepared by flame aerosol deposition method, was investigated. The effects of metal doping on crystal phase and morphology of the synthesized nanostructured TiO2 were analyzed using XRD, TEM, Raman spectroscopy, and BET nitrogen adsorbed surface area measurement. The increase in the concentration of V and Fe reduced the crystalline structure and the anatase-to-rutile ratios of the synthesized TiO2. Synthesized TiO2 became fine amorphous powder as the Fe and V concentrations were increased to 3 and 5%, respectively. Doping V and Fe to TiO2 synthesized by the flame aerosol increased photocatalytic activity by 6 folds and 2.5 folds, respectively, compared to that of pure TiO2. It was found that an optimal doping concentration for Fe and V were 0.5% and 3%, respectively. The type and concentration of the metal dopants and the method used to add the dopant to the TiO2 are critical parameters for enhancing the activity of the resulting photocatalyst. The effects of solvents on the photocatalytic reaction were also investigated by using both water and acetonitrile as the reaction medium.

  17. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.

    Science.gov (United States)

    Kurogochi, Masaki; Mori, Masako; Osumi, Kenji; Tojino, Mami; Sugawara, Shu-Ichi; Takashima, Shou; Hirose, Yuriko; Tsukimura, Wataru; Mizuno, Mamoru; Amano, Junko; Matsuda, Akio; Tomita, Masahiro; Takayanagi, Atsushi; Shoda, Shin-Ichiro; Shirai, Takashi

    2015-01-01

    Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and

  18. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2 Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.

    Directory of Open Access Journals (Sweden)

    Masaki Kurogochi

    Full Text Available Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain, and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC and complement dependent cytotoxicity (CDC. To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases, one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2, high-mannose type (Man4-9GlcNAc2, and complex type (Man3GlcNAc3-4 N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL, the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1 were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q, and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2 was performed using SKBR-3 and BT-474 as target

  19. Morphology and electrical properties of electrochemically synthesized pyrrole–formyl pyrrole copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Gholami, Mehrdad, E-mail: mehrdad897@um.edu.my [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Marvdasht Branch, Islamic Azad University, P.O. Box 465, Marvdasht (Iran, Islamic Republic of); Nia, Pooria Moozarm, E-mail: pooriamn@yahoo.com [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Alias, Yatimah, E-mail: yatimah70@um.edu.my [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2015-12-01

    Graphical abstract: - Highlights: • The (Py–co-FPy) copolymer was synthesized electrochemically. • This copolymer has 1.6 times higher surface coverage compared to polypyrrole. • This copolymer showed 2.5 times lower resistance compared to polypyrrole. • The conjugated structure between Py and FPy causes enhancement of conductivity. • This conducting copolymer has a strong potential to be used in various applications. - Abstract: A direct electrochemical copolymerization of pyrrole–formyl pyrrole (Py–co-FPy) was carried out by oxidative copolymerization of formyl pyrrole and pyrrole in LiClO{sub 4} aqueous solution through galvanostatic method. The (Py–co-FPy) copolymer was characterized using Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FESEM), energy-filtering transmission electron microscope (EFTEM), thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FESEM images showed that the synthesized copolymer had a hollow whelk-like helixes structure, which justifies the enhancement of charge transportation through the copolymer film. Cyclic voltammetry studies revealed that the electrocatalytic activity of synthesized copolymer has improved and the surface coverage in copolymer enhanced 1.6 times compared to polypyrrole alone. Besides, (Py–co-FPy) copolymer showed 2.5 times lower electrochemical charge transfer resistance (R{sub ct}) value in impedance spectroscopy. Therefore, this copolymer has a strong potential to be used in several applications such as sensor applications.

  20. Cytotoxic Effect on Cancerous Cell Lines by Biologically Synthesized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Balaji Kulandaivelu

    Full Text Available The biosynthesis of nanoparticles has been proposed as an environmental friendly and cost effective alternative to chemical and physical methods. Silver nanoparticles are biologically synthesized and characterized were used in the study. The invitro cytotoxic effect of biologically synthesized silver nanoparticles against MCF-7 cancer cell lines were assessed. The cytotoxic effects of the silver nanoparticles could significantly inhibited MCF-7 cancer cell lines proliferation in a time and concentration-dependent manner by MTT assay. Acridine orange, ethidium bromide (AO/EB dual staining, caspase-3 and DNA fragmentation assays were carried out using various concentrations of silver nanoparticles ranging from 1 to 100 μg/mL. At 100 μg/mL concentration, the silver nanoparticles exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays. Western blot analysis has revealed that nanoparticle was able to induce cytochrome c release from the mitochondria, which was initiated by the inhibition of Bcl-2 and activation of Bax. Thus, the results of the present study indicate that biologically synthesized silver nanoparticles might be used to treat breast cancer. The present studies suggest that these nanoparticles could be a new potential adjuvant chemotherapeutic and chemo preventive agent against cytotoxic cells. However, it necessitates clinical studies to ascertain their potential as anticancer agents.

  1. Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles

    Science.gov (United States)

    Lokina, S.; Suresh, R.; Giribabu, K.; Stephen, A.; Lakshmi Sundaram, R.; Narayanan, V.

    2014-08-01

    The gold nanoparticles (AuNPs) were synthesized by using naturally available Punica Granatum fruit extract as reducing and stabilizing agent. The biosynthesized AuNPs was characterized by using UV-Vis, fluorescence, high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric (TGA) analysis. The surface plasmon resonance (SPR) band at 585 nm confirmed the reduction of auric chloride to AuNPs. The crystalline nature of the biosynthesized AuNPs was confirmed from the HRTEM images, XRD and selected area electron diffraction (SAED) pattern. The HRTEM images showed the mixture of triangular and spherical-like AuNPs having size between 5 and 20 nm. The weight loss of the AuNPs was measured by TGA as a function of temperature under a controlled atmosphere. The biomolecules are responsible for the reduction of AuCl4- ions and the formation of stable AuNPs which was confirmed by FTIR measurement. The synthesized AuNPs showed an excellent antibacterial activity against Candida albicans (ATCC 90028), Aspergillus flavus (ATCC 10124), Staphylococcus aureus (ATCC 25175), Salmonella typhi (ATCC 14028) and Vibrio cholerae (ATCC 14033). The minimum inhibitory concentration (MIC) of AuNPs was recorded against various microorganisms. Further, the synthesized AuNPs shows an excellent cytotoxic result against HeLa cancer cell lines at different concentrations.

  2. Biomimetic Nanohydroxyapatite Synthesized With/Without Tris-Buffered Simulated Body Fluid: A Comparative Analysis.

    Science.gov (United States)

    Rana, Deepti; Wang, Xiumei; Webster, Thomas J; Ramalingam, Murugan

    2018-06-01

    Nano hydroxyapatite (nHAp) mimics the inorganic phase of hard tissue such as bone and teeth and, thus, has a wide range of clinical applications. The present study reports on the biomimetic synthesis of nHAp with and without Tris-buffered simulated body fluid (SBF) and investigated the role of buffering conditions on nHAp formation. The hypothesis of this study was that the nucleation and growth rate of nHAp may depend on buffering conditions during the precipitation process. The results of this study suggest that both of the above methods effectively synthesized carbonated "bone-like" nHAp. However, an increased incubation period of 8 hrs was necessary for nHAp synthesized using non Tris-buffered SBF as compared to Tris-buffered SBF which synthesized nHAp in just 3 hrs. Interestingly, there was no change in the chemical functionality for both samples. XRD and TGA analysis confirmed that Tris-buffered SBF facilitated more carbonate ion substitution than the non-Tris-buffered SBF approach. Therefore, this study concluded for the first time that the addition of Tris in SBF accelerates nHAp formation with more carbonate ion substitution. Nevertheless, carbonate ion substituted nHAp could also be synthesized using non Tris-buffered SBF, but would require longer incubation periods. This analysis highlights the importance of pH stability in the SBF for biomimetic nHAp synthesis which is useful for the synthesis of nHAp for a wide range of biomedical applications.

  3. A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae

    Science.gov (United States)

    Samrot, Antony V.; Justin, C.; Padmanaban, S.; Burman, Ujjala

    2017-02-01

    Most look into the benefits of the nanoparticles, but keeping aside the benefits; this study focuses on the impacts of nanoparticles on living systems. Improper disposal of nanoparticles into the environment is a subject of pollution or nano-pollution which in turn affects the flora and fauna in the ecosystem, particularly soil ecosystem. Thus, this study was done to understand the impacts of chemically synthesized magnetite nanoparticles on earthworm— Eudrilus eugeniae, a soil-dependent organism which acquires food and nutrition from decaying matters. The chemically synthesized magnetite nanoparticles were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Earthworms were allowed to interact with different concentrations of synthesized nanoparticles and the effect of the nanoparticles was analysed by studying the phenotypic changes followed by histology and inductively coupled plasma optical emission spectrometry analyses.

  4. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery

    Science.gov (United States)

    Babu, Keshak; Pal, Nilanjan; Bera, Achinta; Saxena, V. K.; Mandal, Ajay

    2015-10-01

    New synthesized polymeric surfactants have immensely attracted the researchers for further development of chemical enhanced oil recovery method particularly in surfactant flooding. Contact angle and interfacial tension measurement tests are the effective ways to identify proper chemicals/surfactants for enhanced oil recovery by chemical/surfactant flooding. In the present study a new polymeric surfactant was synthesized from pre-synthesized sodium methyl ester sulfonate (surfactant) and acrylamide for application in chemical enhanced oil recovery. The synthesized surfactant and polymeric surfactant were used to measure interfacial tension between their aqueous phase and crude oil phase to investigate the efficiency of the surfactants in reduction of interfacial tension. The synthesized polymeric surfactant has also ability to control the mobility because of its viscous nature in aqueous solution. Contact angles of solid-crude oil-surfactant interface were also measured to study the effect of the synthesized surfactant and polymeric surfactant on wettability alteration mechanism. Synergistic effect was studied by using NaCl and synthesized surfactants on interfacial tension. Dynamic interfacial tensions of the surfactant and polymeric surfactant solutions with crude oil were measured at different NaCl concentrations. Interfacial tension was found to be lowered up to 10-2 to 10-3 mN/m which is effective for oil recovery. Measurement of contact angle indicates the wettability change of the quartz surface. Comparative studies on efficiencies of synthesized sodium methyl ester sulfonate surfactant and polymeric surfactant were also carried out with respect to interfacial tension reduction and contact angle change.

  5. Magnetic zeolites a and p synthesized from kaolin: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bessa, R.A.; Oliveira, C.P.; Nascimento, R.F.; Bohn, F.; Loiola, A.R. [Universidade Federal do Ceara (UFCE), CE (Brazil)

    2016-07-01

    Full text: Zeolites are hydrated aluminosilicates of open chain, formed by silica and alumina tetrahedral structures linked by common oxygen atoms, generating interconnected pores and cages with molecular dimensions and well defined sizes that limit matter transference between internal surface and application medium. They can be found naturally or synthesized using different aluminum and silicon sources that may modify the produced zeolite. Their industrial application has grown enormously over the last century. However, a big issue that still remains is the difficulty in retrieving zeolite powders when used in aqueous media. This work reports the use of kaolin as an alternative raw material for zeolite syntheses by means of hydrothermal route and subsequent preparation of magnetic composites through magnetite impregnation. The syntheses of two different zeolites were carried out by mixing appropriate amounts of metakaolin (kaolin previously calcined at 600 deg C for 2 h), sodium metasilicate and sodium hydroxide solution, aged for 18 h and heated at 100 °C for 4-48 h. After these processes, the final materials were washed several times with distilled water, filtered and dried at 80 deg C for 12 h. Magnetic composites were prepared by impregnating the zeolites with of Fe3O4 nanoparticles (NP) synthesized by the partial oxidation and precipitation of Fe2+ ions. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy, FTIR spectroscopy and magnetization measurements. The results of XRD and FTIR provide evidence of the success in the synthesis of both zeolites A and P as well as Fe3O4. Subsequently, composites were formed by mixtures of zeolite A + NP and zeolite P + NP. The existence of secondary crystalline phases was also confirmed. However, it did not interfered significantly in the results as these phases appear as minor amounts and are most likely residues from the clay used as the main silica and alumina sources. Scanning

  6. Annual reports in inorganic and general syntheses 1974

    CERN Document Server

    Niedenzu, Kurt

    1975-01-01

    Annual Reports in Inorganic and General Syntheses-1974 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses the chemistry of simple and complex metal hydrides of main groups I, II, and III, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens, and pseudohalogens. The text also describes the chemistry of scandium, yttrium, lanthanides, actinides, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, ma

  7. Total syntheses of Prelactone V and Prelactone B.

    Science.gov (United States)

    Raghavendra, S; Tadiparthi, Krishnaji; Yadav, J S

    2017-04-10

    The total syntheses of natural products Prelactone-V and Prelactone-B have been accomplished by a novel Chiron approach starting from d-glucose. The synthesis involves isopropylidene acetal formation of d-glucose using Poly(4-vinylpyridine) supported iodine as a catalyst, Tebbe olefination, Grignard reaction, Wittig olefination, selective mono deprotection of acetal using PMA/SiO 2 , hydrogenation and anti-1,3-diol formation are as key steps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Annual reports in inorganic and general syntheses 1972

    CERN Document Server

    Niedenzu, Kurt

    1973-01-01

    Annual Reports in Inorganic and General Syntheses-1972 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses alkali and alkaline earth elements, alloys, silver, gold, zinc, cadmium, mercury, boron, aluminum, gallium, indium, thallium, yttrium, scandium, lanthanides, actinides, titanium, zirconium, hafnium, Group V and VI transition elements, manganese, technetium, rhenium, iron, cobalt, nickel, ruthenium, osmium, rhodium, and iridium. The text also describes the chemistry of palladium, platinum, silicon, germanium, tin,

  9. Interaction Studies between Newly Synthesized Photosensitive Polymer and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    In Tae Kim

    2015-01-01

    Full Text Available In this information age, different kinds of photosensitive materials have been used in the manufacture of information storage devices. But these photosensitive materials have the bane of low diffraction efficiency. In order to solve this problem, we have synthesized a novel photosensitive polymer from epoxy-based azopolymers (with three types of azochromophores. Furthermore, we have studied the interaction between this newly synthesized azopolymer and ionic liquids (ILs. For this purpose, we have used the ammonium and imidazolium families of ILs, such as diethylammonium dihydrogen phosphate (DEAP, tributylammonium methyl sulfate (TBMS, triethylammonium 4-aminotoluene-3-sulfonic acid (TASA, and 1-methylimidazolium chloride ([Mim]Cl. To investigate the molecular interaction between azopolymer and ILs, we have used the following spectroscopic methods of analysis: UV-visible spectroscopy, photoluminescence (PL spectroscopy, Fourier transformed infrared spectroscopy (FT-IR, and confocal Raman spectroscopy. In this study, we have developed new photosensitive materials by combining polymer with ILs.

  10. Two step continuous method to synthesize colloidal spheroid gold nanorods.

    Science.gov (United States)

    Chandra, S; Doran, J; McCormack, S J

    2015-12-01

    This research investigated a two-step continuous process to synthesize colloidal suspension of spheroid gold nanorods. In the first step; gold precursor was reduced to seed-like particles in the presence of polyvinylpyrrolidone and ascorbic acid. In continuous second step; silver nitrate and alkaline sodium hydroxide produced various shape and size Au nanoparticles. The shape was manipulated through weight ratio of ascorbic acid to silver nitrate by varying silver nitrate concentration. The specific weight ratio of 1.35-1.75 grew spheroid gold nanorods of aspect ratio ∼1.85 to ∼2.2. Lower weight ratio of 0.5-1.1 formed spherical nanoparticle. The alkaline medium increased the yield of gold nanorods and reduced reaction time at room temperature. The synthesized gold nanorods retained their shape and size in ethanol. The surface plasmon resonance was red shifted by ∼5 nm due to higher refractive index of ethanol than water. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Topology and Oligomerization of Mono- and Oligomeric Proteins Regulate Their Half-Lives in the Cell.

    Science.gov (United States)

    Mallik, Saurav; Kundu, Sudip

    2018-06-05

    To find additional structural constraints (besides disordered segments) that regulate protein half-life in the cell, we herein assess the influence of native topology of monomeric and sequestration of oligomeric proteins into multimeric complexes in yeast, human, and mouse. Native topology acts as a molecular marker of globular protein's mechanical resistance and consequently captures their half-life variations on genome scale. Sequestration into multimeric complexes elongates oligomeric protein half-life in the cell, presumably by burying ubiquitinoylation sites and disordered segments required for proteasomal recognition. The latter effect is stronger for proteins associated with multiple complexes and for those binding early during complex self-assembly, including proteins that oligomerize with large proportions of surface buried. After gene duplication, diversification of topology and sequestration into non-identical sets of complexes alter half-lives of paralogous proteins during the course of evolution. Thus, native topology and sequestration into multimeric complexes reflect designing principles of proteins to regulate their half-lives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Biocompatibility of poly allylamine synthesized by plasma

    International Nuclear Information System (INIS)

    Colin, E.; Enriquez, M.A.; Olayo, M.G.; Cruz, G.J.; Morales, J.; Olayo, R.

    2007-01-01

    A study of the electric and hydrophilic properties of poly allylamine (PAI) synthesized by plasma whose structure contains N-H, C-H, C-O and O-H bonds is presented, that promote the biocompatibility with the human body. To study the PAI hydrolytic affinity, solutions of salt concentration similar to those of the human body were used. The results indicate that the solutions modify the charge balance in the surfaces reducing the hydrophobicity in the poly allylamine whose contact angle oscillates among 10 and 16 degrees and the liquid-solid surface tension between 4 and 8 dina/cm. (Author)

  13. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    International Nuclear Information System (INIS)

    Ismail, Raid A.; Sulaiman, Ghassan M.; Abdulrahman, Safa A.; Marzoog, Thorria R.

    2015-01-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe 2 O 3 ) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field

  14. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Raid A., E-mail: raidismail@yahoo.com [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Sulaiman, Ghassan M. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq); Abdulrahman, Safa A. [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Marzoog, Thorria R. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq)

    2015-08-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe{sub 2}O{sub 3}) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field.

  15. Investigation of formation constant of complex of a new synthesized ...

    African Journals Online (AJOL)

    The complex formation between a newly synthesized tripodal ligand and the cation Cu2+ in water and surfactant media was studied spectrophotometrically using rank annihilation factor analysis (RAFA). According to molar ratio data the stoichiometry of complexation between the ligand and the cation Cu2+ was 1:1.

  16. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; El-Agamy Farh, Mohamed; Yang, Deok Chun

    2016-05-01

    In the present study, we report a green methodology for the synthesis of silver and gold nanoparticles, using the root extract of the herbal medicinal plant Korean red ginseng. The silver and gold nanoparticles were synthesized within 1 h and 10 min respectively. The nanoparticles generated were not aggregated, and remained stable for a long time, which suggests the nature of nanoparticles. The phytochemicals and ginsenosides present in the root extract assist in reducing and stabilizing the synthesized nanoparticles. The red ginseng root extract-generated silver nanoparticles exhibit antimicrobial activity against pathogenic microorganisms including Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, and Candida albicans. In addition, the silver nanoparticles exhibit biofilm degrading activity against S. aureus and Pseudomonas aeruginosa. Thus, the present study opens up a new possibility of synthesizing silver and gold nanoparticles in a green and rapid manner using Korean red ginseng root extract, and explores their biomedical applications.

  17. Alternative methods of synthesizing 99Tcm-labelled ciprofloxacin

    International Nuclear Information System (INIS)

    Kumar, V.; Choong, K.K.L.; Evans, S.; Olma, T.R.

    1999-01-01

    Full text: 99 Tc m -labelled ciprofloxacin (Infecton) is a new class of radiopharmaceutical designed for imaging live bacterial infection. We synthesized Infecton by modifying the procedure described by Keith Britton's group (Lancet 1996; 347: 233-235) and reported our findings at the ANZSNM meeting last year. Since the methodology was cumbersome, we investigated simpler alternative ways of labelling ciprofloxacin with 99 Tc m -pertechnetate for routine imaging. There were several limitations in the previously described method: (1) Need to prepare pure ciprofloxacin which was unstable on storage. (2) Synthetic procedure using formimidine sulphinic acid (FSA) was complicated and required boiling step. (3) The radiochemical purity (RCP) of the product was low (45-50%) requiring purification. (4) Biodistribution studies showed a marked uptake by the liver which could interfere with scan interpretation in this region. The results of our present studies showed that Infecton could be prepared by a simple two-step method: (1) Reduce 99 Tc m -pertechnetate with stannous salt (SnCl 2 or Sn-tartrate). (2) Mix with Ciproxin IV-100. The RCP of the product was up to 98%, which obviates the need for further purification. Infecton synthesized by the above method showed avid localization in abscesses induced with Staphylococcus aureus in rats. The biodistribution studies showed that Infecton was renally excreted with minimal accumulation in the liver or other organs

  18. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications

    International Nuclear Information System (INIS)

    Khot, V.M.; Salunkhe, A.B.; Thorat, N.D.; Phadatare, M.R.; Pawar, S.H.

    2013-01-01

    The structural, magnetic and ac magnetically induced heating characteristics of combustion synthesized MgFe 2 O 4 nanoparticles have been investigated for application in magnetic particle hyperthermia. As prepared nanoparticles showed ferrimagnetic behavior at room temperature with magnetization of about 33.83 emu/g at ±15 kOe. The solid state MgFe 2 O 4 nanoparticles exhibited specific absorption rate (SAR) of about 297 W/g at physiological safe range of frequency and amplitude. The increase in SAR and heating temperature in ac magnetic field was thought to be due to enhancement in magnetic hysteresis loss caused by dipole–dipole interactions in combustion synthesized MgFe 2 O 4 nanoparticles. - Highlights: ► Highly crystalline pure MgFe 2 O 4 nanoparticles were synthesized by low temperature combustion. ► Effect of ac magnetic field and nanoparticles concentration on heating characteristics of MgFe 2 O 4 nanoparticles was studied. ► Combustion synthesized MgFe 2 O 4 nanoparticles show highest specific absorption rate of 297 Wg −1 . ► The reported high value of specific absorption rate is advantageous for its use in magnetic particle hyperthermia

  19. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Synthesized of 2,7 dihydroxyxanthone from xanthone and antimalarial activities

    Science.gov (United States)

    Amanatie; Jumina; Mustofa; Hanafi

    2018-03-01

    The purpose of the research is to synthesize 2,7-di-hydroxyxanthone compounds from xanthone and to evaluate antiplasmodial against activities. The synthesize of 2,7-di-hydroxyxanthone compounds worked with chromatogramphy methods including Thin Layer Chromatography (TLC), Vacuum Liquid Chromatography (VLC). A compound structures were determined based on the spectroscopic evidences including, Infrared (IR), one dimension (1-D) and two dimension (2-D) Nuclear Magnetic Resonance (NMR) spectra and comparison the spectroscopy data with related data from references. The biological properties of compounds are evaluated towards antiplasmodial against activity. The result of the product was obtained as white solid in 63.49% yield. The IR spectrum showed the absorption at 3433 cm-1 Which was reinforced with a sharp attack at 1087cm-1 indicating the stretching of OH, while the stretching of aromatic C=C appeared at 1620 cm-1. The 1H-NMR (500MHz, and DMSO –d6) spectrum showed that the aryl protons appeared in the region of δ12.98 ppm. In this region, there were 2 singlet at δH 12.98 ppm (1H, 2-OH) and (1H,7-OH) and shows the presence of two OH groups. Based on spectroscopy analyses, it could be started that the reaction of 2.7 di-aminoxanthone with NaNO2/HCl and H3PO4 produced 2.7-di-hydroxyxanthone. In vitro antiplasmodial assay of the product synthesized 2,7 di-hydroxyxanthones against. Falciparum strain of 3D7 showed that the IC50 values of 2,7-di-hydroxy xanthone, were 0.31 μg/mL, respectively.

  1. Kinetics of oxygen adsorption on ZnS nanoparticles synthesized by precipitation process

    Directory of Open Access Journals (Sweden)

    Ahmadi Reza

    2016-06-01

    Full Text Available ZnS nanoparticles were synthesized through a one-step precipitation process. Effect of time and temperature on the formation reaction was investigated. The synthesized samples were characterized by X-ray diffraction (XRD, ultraviolet (UV visible absorption and photoluminescence (PL spectrophotometry. Based on XRD and UV-Vis data, the particles produced at 70 °C had a mean particle size of about 5 nm. Increasing time and temperature of the synthesis reaction resulted in photoluminescence intensification. PL spectroscopy helped understanding the adsorption kinetics of oxygen on ZnS nanoparticles during the precipitation synthesis process. Fabrication of ZnS structures with appropriate oxygen adsorption capacity was suggested as a means of PL emission intensity control.

  2. A 6-9 GHz 5-band CMOS synthesizer for MB-OFDM UWB

    International Nuclear Information System (INIS)

    Chen Pufeng; Li Zhiqiang; Wang Xiaosong; Zhang Haiying; Ye Tianchun

    2010-01-01

    An ultra-wideband frequency synthesizer is designed to generate carrier frequencies for 5 bands distributed from 6 to 9 GHz with less than 3 ns switching time. It incorporates two phase-locked loops and one single-sideband (SSB) mixer. A 2-to-1 multiplexer with high linearity is proposed. A modified wideband SSB mixer, quadrature VCO, and layout techniques are also employed. The synthesizer is fabricated in a 0.18 μm CMOS process and operates at 1.5-1.8 V while consuming 40 mA current. The measured phase noise is -128 dBc/Hz at 10 MHz offset, and the sideband rejection is -22 dBc at 7.656 GHz.

  3. A 6-9 GHz 5-band CMOS synthesizer for MB-OFDM UWB

    Energy Technology Data Exchange (ETDEWEB)

    Chen Pufeng; Li Zhiqiang; Wang Xiaosong; Zhang Haiying; Ye Tianchun, E-mail: chenpufeng@ime.ac.c [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2010-07-15

    An ultra-wideband frequency synthesizer is designed to generate carrier frequencies for 5 bands distributed from 6 to 9 GHz with less than 3 ns switching time. It incorporates two phase-locked loops and one single-sideband (SSB) mixer. A 2-to-1 multiplexer with high linearity is proposed. A modified wideband SSB mixer, quadrature VCO, and layout techniques are also employed. The synthesizer is fabricated in a 0.18 {mu}m CMOS process and operates at 1.5-1.8 V while consuming 40 mA current. The measured phase noise is -128 dBc/Hz at 10 MHz offset, and the sideband rejection is -22 dBc at 7.656 GHz.

  4. Study on synthesizing Mg/Al layered double hydroxides at different pHs

    Directory of Open Access Journals (Sweden)

    E Otgonjargal

    2014-12-01

    Full Text Available Mg/Al layered double hydroxide (LDH was successfully synthesized at different pHs values. The Mg/AL LDH was well characterized by X-Ray diffraction and Fourier transform infrared analysis. The morphology of the LDH was observed using Scanning electron microscopy with energy dispersive X-ray spectroscopy. The influence of pH values on the morphology of the Mg/Al LDHs were studied. The result showed that the well-synthesized Mg/Al LDHs could be obtained when the pH value was about 10.0 at room temperature.DOI: http://doi.dx.org/10.5564/mjc.v15i0.319 Mongolian Journal of Chemistry 15 (41, 2014, p36-39

  5. InTaO4-based nanostructures synthesized by reactive pulsed laser ablation

    International Nuclear Information System (INIS)

    Yoshida, Takehito; Toyoyama, Hirokazu; Umezu, Ikurou; Sugimura, Akira

    2008-01-01

    Nanostructured Ni-doped indium-tantalum-oxides (InTaO 4 ) were synthesized by a reactive pulsed laser ablation process, aiming at the final goal of direct splitting of water under visible sunbeam irradiation. The third harmonics beam of a Nd:YAG laser was focused onto a sintered In 0.9 Ni 0.1 TaO 4-δ target in pure oxygen background gases (0.05-1.00 Torr). Increasing the oxygen gas pressure, via thin films having nanometer-sized strong morphologies, single-crystalline nanoparticles were synthesized in the reactive vapor phases. The nanostructured deposited materials have the monoclinic layered wolframite-type structure of bulk InTaO 4 , without oxygen deficiency. (orig.)

  6. Analysis on nonlinear optical properties of Cd (Zn) Se quantum dots synthesized using three different stabilizing agents

    Science.gov (United States)

    J, Joy Sebastian Prakash; G, Vinitha; Ramachandran, Murugesan; Rajamanickam, Karunanithi

    2017-10-01

    Three different stabilizing agents, namely, L-cysteine, Thioglycolic acid and cysteamine hydrochloride were used to synthesize Cd(Zn)Se quantum dots (QDs). It was characterized using UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The non-linear optical properties (non-linear absorption and non-linear refraction) of synthesized Cd(Zn)Se quantum dots were studied with z-scan technique using diode pumped continuous wavelaser system at a wavelength of 532 nm. Our (organic) synthesized quantum dots showed optical properties similar to the inorganic materials reported elsewhere.

  7. Antimicrobial and cytotoxicity effect of silver nanoparticle synthesized by Croton bonplandianum Baill. leaves

    Directory of Open Access Journals (Sweden)

    K. Khanra

    2016-01-01

    Full Text Available Objective(s: For the development of reliable, ecofriendly, less expensive process for the synthesis of silver nanoparticles and to evaluate the bactericidal, and cytotoxicity properties of silver nanoparticles synthesized from root extract of Croton bonplandianum, Baill. Materials and Methods: The synthesis of silver nanoparticles by plant part of Croton bonplandianum was carried out.  The formation of nanoparticles was confirmed by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, XRD and UV-Vis spectrophotometric analysis.  The biochemical properties were assayed by antibacterial study, cytotoxicity assay using cancer cell line.  Results: The formation of silver nanoparticles was confirmed by UV-VIS spectroscopic analysis which showed absorbance peak at 425 nm.  X-ray diffraction photograph indicated the face centered cubic structure of the synthesized AgNPs.  TEM has displayed the different dimensional images of biogenic silver nanoparticles with particle size distribution ranging from 15-40 nm with an average size of 32 nm. Silver particles are spherical in shape, clustered.  The EDX analysis was used to identify the elemental composition of synthesized AgNPs. Antibacterial activity of the synthesized AgNPs against three Gram positive and Gram negative bacteria strains like Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa carried out showed significant zones of inhibition. The cytotoxicity study by AgNPS also showed cytotoxicity on ovarian cancer cell line PA-1 and lung epithelial cancer cell line A549.  Conclusion: The present study confirms that the AgNPs have great promise as antibacterial, and anticancer agent.

  8. Annual reports in inorganic and general syntheses 1973

    CERN Document Server

    Niedenzu, Kurt

    1974-01-01

    Annual Reports in Inorganic and General Syntheses-1973 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book covers the synthetic aspects and structural or mechanistic features of elements, including the main group hydrides, alkali and alkaline earth elements, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, and lead, nitrogen, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens and pseudohalogens, and noble gases. The text also discusses the synthetic aspects and structural or mechanistic features of

  9. Characterization and Cadmium Ion-Removing Property of Adsorbents Synthesized from Inorganic Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ooishi, Kou; Ogino, Kana; Nishioka, Hiroshi; Muramatsu, Yasuji, E-mail: hnisioka@eng.u-hyogo.ac.jp [Department of Material Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo (Japan)

    2011-10-29

    Adsorbents for removing cadmium ions from water were synthesized from inorganic wastes such as oyster shells, drinking-water-treatment sludge (DWTS), and waste glass. The oyster shells and DWTS were pretreated by heating for 2 h at 1173 K before hydrothermal synthesis was started. The Al/(Al+Si) ratio was adjusted, and then, the mixture of pretreated materials was hydrothermally treated in a sodium hydroxide solution for 72 h at 423 K to synthesize the adsorbents. The synthesized adsorbent specimens were characterized by X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA) measurements, and scanning electron microscopy (SEM). The main components of these specimens were aluminum-substituted tobermorite and sodalite. The formation of sodalite was dependent on the mass ratio of DWTS to glass. The maximum amount of cadmium ions were removed when the mass ratio of the pretreated material was 1:1:1. In the cadmium removal test, the adsorbent with this mass ratio removed almost 100% of the cadmium in a solution with a concentration of 10 mg L-1. Even in the presence of a 1000-fold excess of potassium ions or 10000-fold excess of sodium ions, approximately 80% of the cadmium ions were removed.

  10. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    International Nuclear Information System (INIS)

    Efafi, B.; Majles Ara, M.H.; Mousavi, S.S.

    2016-01-01

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  11. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    Energy Technology Data Exchange (ETDEWEB)

    Efafi, B. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Departments of Physics, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Majles Ara, M.H., E-mail: majlesara@gmail.com [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Mousavi, S.S. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  12. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, A., E-mail: debnathanimesh@gmail.com [Department of Civil Engineering, National Institute of Technology Agartala, Jirania, West Tripura, 799046 India (India); Bera, A.; Saha, B. [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Chattopadhyay, K. K. [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-05-23

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl{sub 3}) and Calcium chloride dihydrate (CaCl{sub 2}.2H{sub 2}O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  13. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    International Nuclear Information System (INIS)

    Debnath, A.; Bera, A.; Saha, B.; Chattopadhyay, K. K.

    2016-01-01

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl_3) and Calcium chloride dihydrate (CaCl_2.2H_2O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  14. Electrodeposition route to synthesize cigs films – an economical way ...

    African Journals Online (AJOL)

    Electrodeposition route to synthesize cigs films – an economical way to harness solar energy. ... for solar cells, how the charge separation in this nano scale photovoltaic (PV) materials occurs which help in absorption of radiation, and the electro-deposition route, a low cost one, produces thin film solar cells are analyzed.

  15. A Critical Analysis of Global Competition in Higher Education: Synthesizing Themes

    Science.gov (United States)

    Portnoi, Laura M.; Bagley, Sylvia S.

    2014-01-01

    In this final chapter of the volume, the editors synthesize key themes that emerge from the preceding chapters. They also highlight the contributions the authors make through emphasizing critical perspectives and the tension between global and local forces.

  16. Titanium nitride coatings synthesized by IPD method with eliminated current oscillations

    Directory of Open Access Journals (Sweden)

    Chodun Rafał

    2016-09-01

    Full Text Available This paper presents the effects of elimination of current oscillations within the coaxial plasma accelerator during IPD deposition process on the morphology, phase structure and properties of synthesized TiN coatings. Current observations of waveforms have been made by use of an oscilloscope. As a test material for experiments, titanium nitride TiN coatings synthesized on silicon and high-speed steel substrates were used. The coatings morphology, phase composition and wear resistance properties were determined. The character of current waveforms in the plasma accelerator electric circuit plays a crucial role during the coatings synthesis process. Elimination of the current oscillations leads to obtaining an ultrafine grained structure of titanium nitride coatings and to disappearance of the tendency to structure columnarization. The coatings obtained during processes of a non-oscillating character are distinguished by better wear-resistance properties.

  17. Syntheses and in Vitro Antiplasmodial Activity of Aminoalkylated Chalcones and Analogues.

    Science.gov (United States)

    Wilhelm, Anke; Kendrekar, Pravin; Noreljaleel, Anwar E M; Abay, Efrem T; Bonnet, Susan L; Wiesner, Lubbe; de Kock, Carmen; Swart, Kenneth J; van der Westhuizen, Jan Hendrik

    2015-08-28

    A series of readily synthesized and inexpensive aminoalkylated chalcones and diarylpropane analogues (1-55) were synthesized and tested against chloroquinone-sensitive (D10 and NF54) and -resistant (Dd2 and K1) strains of Plasmodium falciparum. Hydrogenation of the enone to a diarylpropane moiety increased antiplasmodial bioactivity significantly. The influence of the structure of the amine moiety, A-ring substituents, propyl vs ethyl linker, and chloride salt formation on further enhancing antiplasmodial activity was investigated. Several compounds have IC₅₀ values similar to or better than chloroquine (CQ). The most active compound (26) had an IC₅₀ value of 0.01 μM. No signs of resistance were detected, as can be expected from compounds with structures unrelated to CQ and other currently used antimalarial drugs. Toxicity tests (in vitro CHO cell assay) gave high SI indices.

  18. Sustainable coatings from bio-based, enzymatically synthesized polyesters with enhanced functionalities

    NARCIS (Netherlands)

    Gustini, L.; Lavilla, C.; Finzel, L.; Noordover, B.A.J.; Hendrix, M.M.R.M.; Koning, C.E.

    2016-01-01

    Bio-based sorbitol-containing polyester polyols were synthesized via enzymatic polycondensation. The selectivity of the biocatalyst for primary vs. secondary hydroxyl groups allowed for the preparation of close to linear renewable polyester polyols with enhanced hydroxyl functionalities, both as

  19. Selective flocculation and precipitation for the improvement of virus-like particle recovery from yeast homogenate

    DEFF Research Database (Denmark)

    Tsoka, S.; Ciniawskyj, O. C.; Thomas, Owen R. T.

    2000-01-01

    The purification of an intracellular product from a complex mixture of contaminants after cell disruption is a common problem in processes downstream of fermentation systems. This is particularly challenging for the recovery of particulate (80 nm in diameter) multimeric protein products, named vi...... the challenge of scale-up of solid-liquid separation stages for biological particle processing.......The purification of an intracellular product from a complex mixture of contaminants after cell disruption is a common problem in processes downstream of fermentation systems. This is particularly challenging for the recovery of particulate (80 nm in diameter) multimeric protein products, named...

  20. Design and syntheses of mono and multivalent mannosyl-lipoconjugates for targeted liposomal drug delivery.

    Science.gov (United States)

    Štimac, Adela; Cvitaš, Jelena TrmĿiĿ; Frkanec, Leo; Vugrek, Oliver; Frkanec, Ruža

    2016-09-10

    Multivalent mannosyl-lipoconjugates may be of interest for glycosylation of liposomes and targeted drug delivery because the mannose specifically binds to C-type lectin receptors on the particular cells. In this paper syntheses of two types of novel O-mannosides are presented. Conjugates 1 and 2 with a COOH- and NH2-functionalized spacer and the connection to a lysine and FmocNH-PEG-COOH, are described. The coupling reactions of prepared intermediates 6 and 4 with a PEGylated-DSPE or palmitic acid, respectively, are presented. Compounds 5, mono-, 8, di- and 12, tetravalent mannosyl-lipoconjugates, were synthesized. The synthesized compounds were incorporated into liposomes and liposomal preparations featuring exposed mannose units were characterized. Carbohydrate liposomal quartz crystal microbalance based assay has been established for studying carbohydrate-lectin binding. It was demonstrated that liposomes with incorporated mannosyl-lipoconjugates were effectively recognized by Con A and have great potential to be used for targeted liposomal drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Doped-carbon composites, synthesizing methods and applications of the same

    Science.gov (United States)

    Viswanathan, Tito

    2017-05-09

    A method of synthesizing a doped carbon composite includes preparing a solution having a carbon source material and a heteroatom containing additive, evaporating the solution to yield a plurality of powders, and subjecting the plurality of powders to a heat treatment for a duration of time effective to produce the doped carbon composite.

  2. Copper nanoparticles synthesized in polymers by ion implantation

    DEFF Research Database (Denmark)

    Popok, Vladimir; Nuzhdin, Vladimir; Valeev, Valerij

    2015-01-01

    nanoparticles are observed to partly tower above the sample surface due to a side effect of high-fluence irradiation leading to considerable sputtering of polymers. Implantation and particle formation significantly change optical properties of both polymers reducing transmittance in the UV-visible range due...... as optical transmission spectroscopy. It is found that copper nanoparticles nucleation and growth are strongly fluence dependent as well as they are affected by the polymer properties, in particular, by radiation stability yielding different nanostructures for the implanted PI and PMMA. Shallow synthesized...

  3. The effect of the atmosphere on the optical properties of as-synthesized colloidal indium tin oxide

    International Nuclear Information System (INIS)

    Capozzi, Charles J; Joshi, Salil; Gerhardt, Rosario A; Ivanov, Ilia N

    2009-01-01

    The optical properties of indium tin oxide (ITO) have often been explored when it is in the form of deposited thin films. In this study, a colloidal chemistry approach is taken to investigate the influence of the atmosphere on the optical properties of ITO nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), absorption spectroscopy and photoluminescence (PL) were used to characterize colloidal ITO samples, synthesized under aerated and inert conditions, with the same composition. In both cases, the ITO can be completely dispersed in a non-polar solvent without any evidence of agglomeration. For the ITO made in air, the nanoparticle-solvent solution exhibits a pale green color, and XRD and TEM indicate an average particle size of ∼7 nm and small shrinkage in the lattice structure. When the ITO is synthesized under inert conditions, the solution turns blue, and XRD and TEM indicate an average particle size of ∼8 nm and even less strain in the lattice than for the ITO synthesized under aerated conditions. The change in color and lattice strain is attributed to the difference in oxygen vacancy concentration for the ITO nanoparticles synthesized under aerated and inert conditions, which exhibit different optical band gap values of 3.89 eV and 4.05 eV, respectively. Our work here shows that thin film deposition or sintering steps may not be required for studying the optical properties of as-synthesized ITO nanoparticles.

  4. Global Mental Health: sharing and synthesizing knowledge for sustainable development.

    Science.gov (United States)

    O'Donnell, K; O'Donnell, M Lewis

    2016-01-01

    Global mental health (GMH) is a growing domain with an increasing capacity to positively impact the world community's efforts for sustainable development and wellbeing. Sharing and synthesizing GMH and multi-sectoral knowledge, the focus of this paper, is an important way to support these global efforts. This paper consolidates some of the most recent and relevant 'context resources' [global multi-sector (GMS) materials, emphasizing world reports on major issues] and 'core resources' (GMH materials, including newsletters, texts, conferences, training, etc.). In addition to offering a guided index of materials, it presents an orientation framework (global integration) to help make important information as accessible and useful as possible. Mental health colleagues are encouraged to stay current in GMH and global issues, to engage in the emerging agendas for sustainable development and wellbeing, and to intentionally connect and contribute across sectors. Colleagues in all sectors are encouraged to do likewise, and to take advantage of the wealth of shared and synthesized knowledge in the GMH domain, such as the materials featured in this paper.

  5. Photocatalytic studies of electrochemically synthesized polysaccharide-functionalized ZnO nanoparticles

    Science.gov (United States)

    Kaur, Simranjeet; Kaur, Harpreet

    2018-05-01

    The present work reports the electrochemical synthesis of polysaccharide-functionalized ZnO nanoparticles using sodium hydroxide, starch, and zinc electrodes for the degradation of cationic dye (Rhodamine-B) under sunlight. Physiochemical properties of synthesized sample have been characterized by different techniques such as XRD, TEM, FESEM, EDS, IR, and UV-visible spectroscopic techniques. The influence of various factors such as effect of dye concentration, contact time, amount of photocatalyst, and pH has been studied. The results obtained from the photodegradation study showed that degradation rate of Rhodamine-B dye has been increased with increase of amount of photocatalyst and decreased with increase in initial dye concentration. Furthermore, the kinetics of the degradation has been investigated. It has been found that the photodegradation of Rhodamine-B dye follows pseudo-first-order kinetics and prepared photocatalyst can effectively degrade the cationic dye. Thus, this ecofriendly and efficient photocatalyst can be used for the treatment of dye-contaminated water. This catalyst also showed the antibacterial activity against Bacillus pumilus and Escherichia coli bacterial strains, so the synthesized nanoparticles also have the pharmaceutical properties.

  6. Carbon-14 labelled nitrogen heterocycles; the syntheses of three phosphodiesterase inhibitors

    International Nuclear Information System (INIS)

    Lawrie, K.W.M.; Novelli, C.E.A.; Saunders, David

    1995-01-01

    The syntheses of three heterocyclic phosphodiesterase inhibitors are described from a common radiolabelled precursor, namely 2-propoxybenzo[cyano- 14 C] nitrile. Conversion of the nitrile to the corresponding methyl ketone or amidine allows elaboration of the heterocycles radiolabelled within the ring systems. (Author)

  7. Interaction between serum albumins and sonochemically synthesized cadmium sulphide nanoparticles: a spectroscopic study

    International Nuclear Information System (INIS)

    Naveenraj, Selvaraj; Asiri, Abdullah M.; Anandan, Sambandam

    2013-01-01

    Cadmium Sulphide nanoparticles approximately 5–10 nm in size range were synthesized by sonochemical technique, which follows acoustic cavitation phenomenon and generates nanoparticles with a smaller size range and higher surface area. The in vitro binding interaction of these sonochemically synthesized CdS nanoparticles with serum albumins (SA) were investigated using UV–Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques since CdS nanoparticles has biological applications such as cellular labelling and deep-tissue imaging. UV–Vis absorption and fluorescence studies confirm that CdS nanoparticles bind with SA through ground state complex formation (static quenching mechanism). The results suggest that sonochemically synthesized CdS nanoparticles interact with HSA more than that of BSA and these nanoparticles can be easily transported and rapidly released to the targets by serum albumins. CD studies confirmed the conformational change of serum albumins on the interaction of CdS nanoparticles.Graphical AbstractThis paper investigates the in vitro binding interaction of Cadmium Sulphide (CdS) nanoparticles with serum albumins (HSA and BSA) using the UV-vis, steady-state fluorescence, time-resolved fluorescence, synchronous fluorescence and circular dichroism (CD) spectral techniques.

  8. Biological application of green silver nanoparticle synthesized from leaf extract of Rauvolfi serpentina Benth

    Directory of Open Access Journals (Sweden)

    Sudipta Panja

    2016-07-01

    Full Text Available Objective: To synthesize silver nanoparticles (AgNPs from the leaf extract of Rauvolfia serpentina Benth and examination of their various biological activities. Methods: An ecofriendly, easy, one step, non-toxic and inexpensive approach is used, where aqueous plant extract acts as a reducing as well as stabilizing agent of AgNPs. The nanoparticles were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy analysis. Results: Surface plasmon resonance of the nanoparticles was observed at 427 nm in UV-vis spectroscopy. Fourier transform infrared spectroscopy result confirms that the plant extract acts as the reducing as well as the capping agent of the AgNPs. Transmission electron microscopy indicated that the synthesized nanoparticles are spherical in shape and approximately 7–10 nm in size, whereas the crystalline nature with face-centered cubic structure of the AgNPs was detected by X-ray diffraction analysis. Presence of silver in the AgNPs is 31.43% by weight, as confirmed by energy-dispersive X-ray spectroscopy. The synthesized AgNPs have antimicrobial activities against human pathogenic microorganisms. It also shows larvicidal activity and cytotoxicity against HeLa, MCF-7 cell lines. Conclusions: Synthesized spherical shaped AgNPs from the leaf extract of Rauvolfia serpentina Benth have antimicrobial and larvicidal activities as well as cytotoxicity against HeLa and MCF-7 cell lines.

  9. Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors.

    Science.gov (United States)

    Gnana Sundara Raj, Balasubramaniam; Asiri, Abdullah M; Qusti, Abdullah H; Wu, Jerry J; Anandan, Sambandam

    2014-11-01

    In this study, manganese oxide (MnO2) nanoparticles were synthesized by sonochemical reduction of KMnO4 using polyethylene glycol (PEG) as a reducing agent as well as structure directing agent under room temperature in short duration of time and characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis. A supercapacitor device constructed using the ultrasonically-synthesized MnO2 nanoparticles showed maximum specific capacitance (SC) of 282Fg(-1) in the presence of 1M Ca(NO3)2 as an electrolyte at a current density of 0.5mAcm(-2) in the potential range from 0.0 to 1.0V and about 78% of specific capacitance was retained even after 1000 cycles indicating its high electrochemical stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A 55 nm CMOS ΔΣ fractional-N frequency synthesizer for WLAN transceivers with low noise filters

    International Nuclear Information System (INIS)

    Chen Mingyi; Chu Xiaojie; Yu Peng; Yan Jun; Shi Yin

    2013-01-01

    A fully integrated ΔΣ fractional-N frequency synthesizer fabricated in a 55 nm CMOS technology is presented for the application of IEEE 802.11b/g wireless local area network (WLAN) transceivers. A low noise filter, occupying a small die area, whose power supply is given by a high PSRR and low noise LDO regulator, is integrated on chip. The proposed synthesizer needs no off-chip components and occupies an area of 0.72 mm 2 excluding PAD. Measurement results show that in all channels, the phase noise of the synthesizer achieves −99 dBc/Hz and −119 dBc/Hz in band and out of band respectively with a reference frequency of 40 MHz and a loop bandwidth of 200 kHz. The integrated RMS phase error is no more than 0.6°. The proposed synthesizer consumes a total power of 15.6 mW. (semiconductor integrated circuits)

  11. A Study On Dispersion Stability Of Nickel Nanoparticles Synthesized By Wire Explosion In Liquid Media

    OpenAIRE

    Kim C.K.; Lee G.-J.; Lee M.K.; Rhee C.K.

    2015-01-01

    In this study, nickel nanoparticles were synthesized in ethanol using portable pulsed wire evaporation, which is a one-step physical method. From transmission electron microscopy images, it was found that the Ni nanoparticles exhibited a spherical shape with an average diameter of 7.3 nm. To prevent aggregation of the nickel nanoparticles, a polymer surfactant was added into the ethanol before the synthesis of nickel nanoparticles, and adsorbed on the freshly synthesized nickel nanoparticles ...

  12. High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation

    Science.gov (United States)

    Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun

    2018-05-01

    The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.

  13. Design Considerations for Autocalibrations of Wide-Band ΔΣ Fractional-N PLL Synthesizers

    Directory of Open Access Journals (Sweden)

    Jaewook Shin

    2011-01-01

    Full Text Available Autocalibration of VCO frequency and loop gain is an essential process in PLL frequency synthesizers. In a wide tuning-range fractional-N PLL frequency synthesizer, high-speed and high-precision automatic calibration is especially important for shortening the lock time and improving the phase noise. This paper reviews the design issues of the PLL auto-calibration and discusses on the limitations of the previous techniques. A very simple and efficient auto-calibration method based on a high-speed frequency-to-digital converter (FDC is proposed and verified through simulations. The proposed method is highly suited for a very wide-band ΔΣ fractional-N PLL.

  14. Sonochemically synthesized iron-doped zinc oxide nanoparticles: Influence of precursor composition on characteristics

    International Nuclear Information System (INIS)

    Roy, Anirban; Maitra, Saikat; Ghosh, Sobhan; Chakrabarti, Sampa

    2016-01-01

    Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with the proposed models.

  15. High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation

    Science.gov (United States)

    Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun

    2018-02-01

    The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.

  16. Graphene-Molybdenum Disulfide-Graphene Tunneling Junctions with Large-Area Synthesized Materials.

    Science.gov (United States)

    Joiner, Corey A; Campbell, Philip M; Tarasov, Alexey A; Beatty, Brian R; Perini, Chris J; Tsai, Meng-Yen; Ready, William J; Vogel, Eric M

    2016-04-06

    Tunneling devices based on vertical heterostructures of graphene and other 2D materials can overcome the low on-off ratios typically observed in planar graphene field-effect transistors. This study addresses the impact of processing conditions on two-dimensional materials in a fully integrated heterostructure device fabrication process. In this paper, graphene-molybdenum disulfide-graphene tunneling heterostructures were fabricated using only large-area synthesized materials, unlike previous studies that used small exfoliated flakes. The MoS2 tunneling barrier is either synthesized on a sacrificial substrate and transferred to the bottom-layer graphene or synthesized directly on CVD graphene. The presence of graphene was shown to have no impact on the quality of the grown MoS2. The thickness uniformity of MoS2 grown on graphene and SiO2 was found to be 1.8 ± 0.22 nm. XPS and Raman spectroscopy are used to show how the MoS2 synthesis process introduces defects into the graphene structure by incorporating sulfur into the graphene. The incorporation of sulfur was shown to be greatly reduced in the absence of molybdenum suggesting molybdenum acts as a catalyst for sulfur incorporation. Tunneling simulations based on the Bardeen transfer Hamiltonian were performed and compared to the experimental tunneling results. The simulations show the use of MoS2 as a tunneling barrier suppresses contributions to the tunneling current from the conduction band. This is a result of the observed reduction of electron conduction within the graphene sheets.

  17. Extracellular polymer substance synthesized by a halophilic bacterium Chromohalobacter canadensis 28.

    Science.gov (United States)

    Radchenkova, Nadja; Boyadzhieva, Ivanka; Atanasova, Nikolina; Poli, Annarita; Finore, Ilaria; Di Donato, Paola; Nicolaus, Barbara; Panchev, Ivan; Kuncheva, Margarita; Kambourova, Margarita

    2018-04-03

    Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry. After optimization of the culture medium and physicochemical conditions for cultivation, polymer biosynthesis increased more than 2-fold. The highest level of extracellular polymer synthesis by C. canadensis 28 was observed in an unusually high NaCl concentration (15% w/v). Chemical analysis of the purified polymer revealed the presence of an exopolysaccharide (EPS) fraction (14.3% w/w) and protein fraction (72% w/w). HPLC analysis of the protein fraction showed the main presence of polyglutamic acid (PGA) (75.7% w/w). EPS fraction analysis revealed the following sugar composition (% w/w): glucosamine 36.7, glucose 32.3, rhamnose 25.4, xylose 1.7, and not identified sugar 3.9. The hydrogel formed by PGA and EPS fractions showed high swelling behavior, very good emulsifying and stabilizing properties, and good foaming ability. This is the first report for halophilic bacterium able to synthesize a polymer containing PGA fraction. The synthesized biopolymer shows an extremely high hydrophilicity, due to the simultaneous presence of PGA and EPS. The analysis of its functional properties and the presence of glucosamine in the highest proportion in EPS fraction clearly determine the potential of EP synthesized by C. canadensis 28 for application in the cosmetics industry.

  18. Polyvinylpyrrolidone adsorption effects on the morphologies of synthesized platinum particles and its catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, Mahayatun Dayana Johan [Nano - Optoelectronic Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang (Malaysia); Aziz, Azlan Abdul [Nano - Optoelectronic Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang (Malaysia); Nanobiotechnology Research and Innovation (NanoBRI), INFORMM, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang (Malaysia)

    2015-04-24

    Flower-like Platinum micro-structures were synthesized from different concentration of the PVP using solvothermal method. At 5.0×10{sup −3} mmol of PVP, well-defined flower-like pattern consists of triangular petals radiating from the centre were produced whereas larger flower network developed at higher PVP concentration. High degree of crystallinity was obtained upon each increment of PVP. The well defined flower like pattern synthesized using 5.0×10{sup −3} mmol PVP exhibit the highest catalytic activity and stability towards electro-oxidation of formic acid.

  19. Syntheses of [ω-11C]-labelled fatty acids using alkyl halides and Grignard reagents

    International Nuclear Information System (INIS)

    Kihlberg, T.; Malmborg, P.; Langstroem, B.

    1990-01-01

    A method for synthesizing carbon-11 labelled fatty acids, where the carbon-11 has a mid-chain location, has been developed. Fatty acids labelled thus are less susceptible to early loss of the label through metabolic degradation. Carbon-11 labelled methyl iodide was trapped in a solution of alpha, omega-di(bromo magnesium)alkane in THF. Li 2 CuCl 4 was added and allowed to react. Carbon dioxide was introduced into the mixture, followed by heating and then hydrolysis. Hexanoic, octanoic, and decanoic acids were synthesized with this method

  20. Adsorptive removal of bisphenol A using synthesized magnetite nanoparticles

    Science.gov (United States)

    Orimolade, B. O.; Adekola, F. A.; Adebayo, G. B.

    2018-03-01

    Bisphenol A (BPA) is an organic compound which is often used as plasticizer and has been reported to be hazardous to man. In this research the efficiency of removal of BPA from water by magnetite through adsorption process was studied. The magnetite was synthesized using reverse co-precipitation method and fully characterized. Various physicochemical parameters affecting the adsorption of BPA using magnetite were studied as well. The optimum time for the adsorption process was found to be 60 min at pH of 6, adsorbent dose of 0.2 g and 50 ppm of BPA. The adsorption data were fitted by the Langmuir adsorption isotherm best with a regression value of 0.957. The R L value was 0.179 which revealed that the process is favorable. The Freundlich constant n which was 1.901 also revealed that the adsorption is normal and favorable. The data were in agreement with the pseudo-second-order kinetics with regression value of 0.98. From the thermodynamic studies, the process was found to be exothermic and the Gibb's free energy value which was negative showed that the adsorption was spontaneous. The synthesized magnetite therefore offers great potential for the remediation of bisphenol A-contaminated media.

  1. Annual reports in inorganic and general syntheses 1976

    CERN Document Server

    Zimmer, Hans

    2013-01-01

    Annual Reports in Inorganic and General Syntheses-1976 presents an annual review of synthetically useful information that would prove beneficial to nearly all organic chemists, both specialist and nonspecialist in synthesis. It should help relieve some of the information storage burden of the specialist and should aid the nonspecialist who is seeking help with a specific problem to become rapidly aware of recent synthetic advances.This is the fifth volume of ARIGS and is organized along the lines developed for the preceding volumes. The authors were encouraged to use synthetic aspects as their

  2. A new method for synthesizing radiation dose-response data from multiple trials applied to prostate cancer

    DEFF Research Database (Denmark)

    Diez, Patricia; Vogelius, Ivan S; Bentzen, Søren M

    2010-01-01

    A new method is presented for synthesizing dose-response data for biochemical control of prostate cancer according to study design (randomized vs. nonrandomized) and risk group (low vs. intermediate-high).......A new method is presented for synthesizing dose-response data for biochemical control of prostate cancer according to study design (randomized vs. nonrandomized) and risk group (low vs. intermediate-high)....

  3. Carbon-14 labelled nitrogen heterocycles; the syntheses of three phosphodiesterase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, K.W.M.; Novelli, C.E.A.; Saunders, David [SmithKline Beecham Pharmaceuticals Research and Development, Harlow (United Kingdom). Synthetic Isotope Chemistry Dept.; Coates, W.J. [SmithKline Beecham Pharmaceuticals Research and Development, Welwyn (United Kingdom)

    1995-09-01

    The syntheses of three heterocyclic phosphodiesterase inhibitors are described from a common radiolabelled precursor, namely 2-propoxybenzo[cyano-{sup 14}C] nitrile. Conversion of the nitrile to the corresponding methyl ketone or amidine allows elaboration of the heterocycles radiolabelled within the ring systems. (Author).

  4. Improved chemical syntheses of 5,6-dihydro-5-fluorouracil.

    Science.gov (United States)

    LaFrate, Andrew L; Katzenellenbogen, John A

    2007-10-26

    5,6-dihydro-5-fluorouracil (5-DHFU) is a metabolite of the chemotherapy drug 5-fluorouracil (5-FU) of importance for biological studies. 5-DHFU has been prepared by enzymatic reduction of 5-FU and in very low yield by hydrogenation of 5-FU; however, a practical chemical synthesis is not available. Facile racemic syntheses of 5-DHFU from 5-FU or uracil, using p-methoxybenzyl protecting groups followed by L-Selectride reduction, are reported.

  5. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  6. Porous oxides synthesized by the combustion method

    International Nuclear Information System (INIS)

    Lugo L, V.

    2005-01-01

    The result of this work, seeks to be a contribution for the treatment of radioactive wastes, with base to the sorption properties that present those porous oxides, synthesized by a method that allows to increase the sorption capacity. The main objective of the present investigation has been the modification of the structural characteristics of the oxides of Fe, Mg and Zn to increase its capacity of sorption of 60 Co in particular. It was studied the effect of the synthesis method by combustion in the inorganic oxides; the obtained solids were characterized using the following techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), semiquantitative elementary analysis by Dispersive energy spectroscopy (EDS) and determination of surface area by the Brunauner-Emmett-Teller method (BET). Also was carried out batch type experiments for the sorption of Co 2+ , with the purpose of studying the sorption capacity of each one of the prepared oxides. In accordance with that previously exposed, the working plan that was carried out in this investigation is summarized in the following stages: 1. Preparation of inorganic oxides by two different methods, studying the effect of the temperature in the synthesis process. 2. Characterization of the inorganic oxides by XRD, by means of which those were chosen the solids with better properties. 3. Characterization of the inorganic oxides by SEM and EDS where it was studied the morphology of the synthesized materials and the semiquantitative elemental composition. 4. Realization of a sorption experiment type Batch with non radioactive Co 2+ to simulate the sorption of 60 Co and determination of the sorption capacity by means of neutron activation of the non radioactive cobalt. 5. Determination of the surface area by the (BET) technique of the inorganic oxides with better sorption properties. (Author)

  7. Methods for synthesizing metal oxide nanowires

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  8. Integrated digital superconducting logic circuits for the quantum synthesizer. Report

    International Nuclear Information System (INIS)

    Buchholz, F.I.; Kohlmann, J.; Khabipov, M.; Brandt, C.M.; Hagedorn, D.; Balashov, D.; Maibaum, F.; Tolkacheva, E.; Niemeyer, J.

    2006-11-01

    This report presents the results, which were reached in the framework of the BMBF cooperative plan ''Quantum Synthesizer'' in the partial plan ''Integrated Digital Superconducting Logic Circuits''. As essential goal of the plan a novel instrument on the base of quantum-coherent superconducting circuits should be developed. which allows to generate praxis-relevant wave forms with quantum accuracy, the quantum synthesizer. The main topics of development of the reported partial plan lied at the one hand in the development of integrated, digital, superconducting circuit in rapid-single-flux (RSFQ) quantum logics for the pattern generator of the quantum synthesizer, at the other hand in the further development of the fabrication technology for the aiming of high circuit complexity. In order to fulfil these requirements at the PTB a new design system was implemented, based on the software of Cadence. Together with the required RSFQ extensions for the design of digital superconducting circuits was a platform generated, on which the reachable circuit complexity is exclusively limited by the technology parameters of the available fabrication technology: Physical simulations are with PSCAN up to a complexity of more than 1000 circuit elements possible; furthermore VHDL allows the verification of arbitrarily large circuit architectures. In accordance for this the production line at the PTB was brought to a level, which allows in Nb/Al-Al x O y /Nb SIS technology implementation the fabrication of highly integrable RSFQ circuit architectures. The developed and fabricated basic circuits of the pattern generator have proved correct functionality and reliability in the measuring operation. Thereby for the circular RSFQ shift registers a key role as local memories in the construction of the pattern generator is devolved upon. The registers were realized with the aimed bit lengths up to 128 bit and with reachable signal-processing speeds of above 10 GHz. At the interface RSFQ

  9. [Aerobic methylobacteria are capable of synthesizing auxins].

    Science.gov (United States)

    Ivanova, E G; Doronina, N V; Trotsenko, Iu A

    2001-01-01

    Obligately and facultatively methylotrophic bacteria with different pathways of C1 metabolism were found to be able to produce auxins, particularly indole-3-acetic acid (IAA), in amounts of 3-100 micrograms/ml. Indole-3-pyruvic acid and indole-3-acetamide were detected only in methylobacteria with the serine pathway of C1 metabolism, Methylobacterium mesophilicum and Aminobacter aminovorans. The production of auxins by methylobacteria was stimulated by the addition of tryptophan to the growth medium and was inhibited by ammonium ions. The methylobacteria under study lacked tryptophan decarboxylase and tryptophan side-chain oxidase. At the same time, they were found to contain several aminotransferases. IAA is presumably synthesized by methylobacteria through indole-3-pyruvic acid.

  10. A combinatorial approach of inclusion complexation and dendrimer synthesization for effective targeting EGFR-TK.

    Science.gov (United States)

    Shende, Pravin; Patil, Sampada; Gaud, R S

    2017-07-01

    The aim of the present study was to use a combinatorial approach of inclusion complexation and dendrimer synthesization of gefitinib using solvent-free technique for targeting EGFR-TK to treat Non-Small-Cell Lung Cancer (NSCLC). The inclusion complex of gefitinib with β-cyclodextrin was prepared by trituration method. This complex encapsulated G4 PAMAM dendrimers were synthesized by Michael addition and amidation reactions using green chemistry and then PEGylated by conjugation reaction. FTIR and DSC confirmed the formation of inclusion complex of gefitinib and β-cyclodextrin and PEGylation of G4 PAMAM dendrimers. Gefitinib showed higher solubility, encapsulation efficiency and controlled release profile from PEGylated dendrimers compared to inclusion complex. The PEGylated dendrimers of inclusion complex of gefitinib were found to reduce hemolytic toxicity and lesser GI 50 value on Human lung cancer cell line A-549 by effective targeting EGFR-TK. A combinatorial approach of inclusion complexation and dendrimer synthesization is one of the alternative advanced approaches to treat NSCLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. SOMA A Tool for Synthesizing and Optimizing Memory Accesses in ASICs

    DEFF Research Database (Denmark)

    Venkataramani, Girish; Bjerregaard, Tobias; Chelcea, Tiberiu

    2005-01-01

    parallelism profile of the application. This is then used to customize the MAN architecture. Depending on the parallelism profile, the MAN may be optimized for latency, throughput or both. The optimized MAN is automatically synthesized into gate-level structural Verilog using a flexible library of network...

  12. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis

    Science.gov (United States)

    Liu, F.; Chen, S.; Lin, Q.; Wang, X. D.; Cao, J. X.

    2018-01-01

    The xonotlite crystals were synthesized via the hydrothermal synthesis manner from CaO and SiO2 as the raw materials with their Si/Ca molar ratio of 1.0. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis process was explored in this paper. The accuracy of the dynamic equation of xonotlite spherical particles was verified by two methods, one was comparing the production rate of the xonotlite products calculated by the dynamic equation with the experimental values, and the other was comparing the apparent activation energies calculated by the dynamic equation with that calculated by the Kondo model. The results indicated that the production rates of the xonotlite spherical particles calculated by the dynamic equation were in good agreement with the experimental values and the apparent activation energy of the xonotlite spherical particles calculated by dynamic equation (84 kJ·mol-1) was close to that calculated by Kondo model (77 kJ·mol-1), verifying the high accuracy of the dynamic equation.

  13. Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices.

    Science.gov (United States)

    Robens, Carsten; Zopes, Jonathan; Alt, Wolfgang; Brakhane, Stefan; Meschede, Dieter; Alberti, Andrea

    2017-02-10

    We create low-entropy states of neutral atoms by utilizing a conceptually new optical-lattice technique that relies on a high-precision, high-bandwidth synthesis of light polarization. Polarization-synthesized optical lattices provide two fully controllable optical lattice potentials, each of them confining only atoms in either one of the two long-lived hyperfine states. By employing one lattice as the storage register and the other one as the shift register, we provide a proof of concept using four atoms that selected regions of the periodic potential can be filled with one particle per site. We expect that our results can be scaled up to thousands of atoms by employing an atom-sorting algorithm with logarithmic complexity, which is enabled by polarization-synthesized optical lattices. Vibrational entropy is subsequently removed by sideband cooling methods. Our results pave the way for a bottom-up approach to creating ultralow-entropy states of a many-body system.

  14. Structural interpretation of chemically synthesized ZnO nanorod and its application in lithium ion battery

    International Nuclear Information System (INIS)

    Kundu, Samapti; Sain, Sumanta; Yoshio, Masaki; Kar, Tanusree; Gunawardhana, Nanda; Pradhan, Swapan Kumar

    2015-01-01

    Graphical abstract: - Highlights: • ZnO nanorods are synthesized at room temperature via a simple chemical route. • Growth direction of ZnO nanorods has been determined along 〈0 0 2〉. • ZnO nanorods constructed anode shows a high discharge capacity in first cycle. • It retains good reversible capacity compared to other ZnO morphologies. - Abstract: ZnO nanorods are synthesized at room temperature via a simple chemical route without using any template or capping agent and its importance is evaluated as a suitable candidate for anode material in lithium ion battery. Structural and microstructure characterizations of these nanorods are made by analyzing the X-ray diffraction data employing the Rietveld method of powder structure refinement. It reveals that the ZnO nanorods are grown up with a preferred orientation and elongated along 〈0 0 2〉. FESEM images reveal that these uniform cylindrical shaped nanorods are of different lengths and diameters. These synthesized ZnO nanorods are tested as an anode material for lithium ion batteries. The nano grain size of the ZnO rods results in less volume expansion and/or contraction during the alloying/de-alloying process and causes in good cyclability. In addition, synthesized ZnO nanorods deliver high charge/discharge capacities compared to other reported ZnO materials

  15. Structural interpretation of chemically synthesized ZnO nanorod and its application in lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Samapti; Sain, Sumanta [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India); Yoshio, Masaki [Advanced Research and Education Centre, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Kar, Tanusree [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal (India); Gunawardhana, Nanda, E-mail: nandagunawardhana@pdn.ac.lk [International Research Centre, Senate Building, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Pradhan, Swapan Kumar, E-mail: skpradhan@phys.buruniv.ac.in [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India)

    2015-02-28

    Graphical abstract: - Highlights: • ZnO nanorods are synthesized at room temperature via a simple chemical route. • Growth direction of ZnO nanorods has been determined along 〈0 0 2〉. • ZnO nanorods constructed anode shows a high discharge capacity in first cycle. • It retains good reversible capacity compared to other ZnO morphologies. - Abstract: ZnO nanorods are synthesized at room temperature via a simple chemical route without using any template or capping agent and its importance is evaluated as a suitable candidate for anode material in lithium ion battery. Structural and microstructure characterizations of these nanorods are made by analyzing the X-ray diffraction data employing the Rietveld method of powder structure refinement. It reveals that the ZnO nanorods are grown up with a preferred orientation and elongated along 〈0 0 2〉. FESEM images reveal that these uniform cylindrical shaped nanorods are of different lengths and diameters. These synthesized ZnO nanorods are tested as an anode material for lithium ion batteries. The nano grain size of the ZnO rods results in less volume expansion and/or contraction during the alloying/de-alloying process and causes in good cyclability. In addition, synthesized ZnO nanorods deliver high charge/discharge capacities compared to other reported ZnO materials.

  16. Recent Progress in Syntheses and Applications of Dumbbell-like Nanoparticles**

    OpenAIRE

    Wang, Chao; Xu, Chenjie; Zeng, Hao; Sun, Shouheng

    2009-01-01

    This paper reviews the recent research progress in syntheses and applications of dumbbell-like nanoparticles. It first describes the general synthesis of dumbbell-like nanoparticles containing noble metal and magnetic NPs/or quantum dots. It then outlines the interesting optical and magnetic properties found in these dumbbell nanoparticles. The review further highlights several exciting application potentials of these nanoparticles in catalysis and biomedicine.

  17. Study of the effects of heat-treatment of hydroxyapatite synthesized in gelatin matrix

    Science.gov (United States)

    Zaits, A. V.; Golovanova, O. A.; Kuimova, M. V.

    2017-01-01

    In the study, the isothermal thermogravimetric analysis (TGA) of hydroxyapatite synthesized in gelatin matrix (HAG) has been performed. 3 wt.% HAG samples were synthesized from the solution simulating the human extracellular fluid (SBF). X-ray diffraction and IR spectroscopy were used to determine the composition. During the experiment, increase in the calcination temperature up to 200°C-800°C was found to cause weight loss. The study of phase composition revealed that heat treatment does not affect the phase composition of the solid phase, which is composed of hydroxylapatite (HA). The prepared HAG (3 wt.% gelatin) samples are shown to have low thermal stability; the degradation of the samples occurs at 400°C.

  18. Anode behaviors of aluminum antimony synthesized by mechanical alloying for lithium secondary battery

    International Nuclear Information System (INIS)

    Honda, H.; Sakaguchi, H.; Fukuda, Y.; Esaka, T.

    2003-01-01

    AlSb was synthesized as an anode active material for lithium secondary battery using mechanical alloying (MA). Electrochemical performance was examined on the electrodes of AlSb synthesized with different MA time. The first charge (lithium-insertion) capacity of the AlSb electrodes decreased with increasing the MA time. The discharge capacity on repeating charge-discharge cycle, however, did not show the same dependence. The electrode, consisting of the 20 h MA sample exhibited the longest charge-discharge life cycle, suggesting that there is the optimum degree of internal energy derived from the strain and/or the amorphization due to mechanical alloying. These results were evaluated using ex situ X-ray diffraction and differential scanning calorimetry

  19. Hydrogen Adsorption in Flame Synthesized and Lithium Intercalated Carbon Nanofibers--A Comparative Study.

    Science.gov (United States)

    Dhand, Vivek; Prasad, J Sarada; Rao, Venkateswer M; Kalluri, Sujith; Jain, Pawan Kumar; Sreedhar, B

    2015-01-01

    Carbon nanofibers (CNF) have been synthesized under partial combustion conditions in a flame reactor using different mixtures of hydrocarbon gases in the presence and absence of precursors. The hydrogen (H2) adsorption studies have been carried out using a high pressure Sievert's apparatus maintained at a constant temperature (24 degrees C). The flame synthesized CNFs showed high degree of H2 adsorption capacities at 100 atm pressure. The highest H2 capacities recorded have been 4.1 wt% [for CNF produced by liquefied petroleum gas (LPG)-Air (E-17)], 3.7 wt% [for nano carbons produced by Methane-Acetylene-Air (EMAC-4)] and 5.04 wt% for [Lithium intercalated sample (Li-EMAC-4)] respectively.

  20. Production of in vivo biotinylated scFv specific to almond (Prunus dulcis) proteins by recombinant Pichia pastoris.

    Science.gov (United States)

    de la Cruz, Silvia; Alcocer, Marcos; Madrid, Raquel; García, Aina; Martín, Rosario; González, Isabel; García, Teresa

    2016-06-10

    The methylotropic yeast Pichia pastoris has demonstrated its suitability for large-scale production of recombinant proteins. As an eukaryotic organism P. pastoris presents a series of advantages at expression and processing of heterologous proteins when compared with Escherichia coli. In this work, P. pastoris has been used to express a scFv from a human synthetic library previously shown to bind almond proteins. In order to facilitate purification and post processing manipulations, the scFv was engineered with a C-terminal tag and biotinylated in vivo. After purification, biotinylated scFv were bound to avidin conjugated with HRP producing a multimeric scFv. The multimeric scFv showed to maintain their ability to recognize almond protein when assayed in ELISA, reaching a LOD of 470mgkg(-1). This study describes an easy method to produce large quantities of in vivo biotinylated scFv in P. pastoris. By substituting the enzyme or fluorochromes linked to avidin, it will be possible to generate a diverse number of multimeric scFv as probes to suit different analytical platforms in the detection of almond in food products. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Syntheses and characterizations of LiFePO4 powders

    OpenAIRE

    Jugović, Dragana; Kuzmanović, Maja; Mitrić, Miodrag; Cvjetićanin, Nikola; Uskoković, Dragan

    2011-01-01

    The olivine type compositions LiMPO4 (M = Fe, Mn, Co) are among the most attractive materials for the positive electrode of lithium-ion battery. The benefits of using LiFePO4 are excellent cycle life, high structural stability, low cost and environmental friendliness. Here will be presented our efforts to obtain LiFePO4 powders through several synthesis methods. The differences in phase purity, microstructure, morphology, and electrochemical performances of synthesized powders were investigat...

  2. Analysis of Periodic Errors for Synthesized-Reference-Wave Holography

    Directory of Open Access Journals (Sweden)

    V. Schejbal

    2009-12-01

    Full Text Available Synthesized-reference-wave holographic techniques offer relatively simple and cost-effective measurement of antenna radiation characteristics and reconstruction of complex aperture fields using near-field intensity-pattern measurement. These methods allow utilization of advantages of methods for probe compensations for amplitude and phasing near-field measurements for the planar and cylindrical scanning including accuracy analyses. The paper analyzes periodic errors, which can be created during scanning, using both theoretical results and numerical simulations.

  3. Current techniques for visualizing RNA in cells [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Lilith V.J.C. Mannack

    2016-04-01

    Full Text Available Labeling RNA is of utmost interest, particularly in living cells, and thus RNA imaging is an emerging field. There are numerous methods relying on different concepts ranging from hybridization-based probes, over RNA-binding proteins to chemo-enzymatic modification of RNA. These methods have different benefits and limitations. This review aims to outline the current state-of-the-art techniques and point out their benefits and limitations.

  4. Silica-coated quantum dots fluorescent spheres synthesized using a quaternary 'water-in-oil' microemulsion system

    International Nuclear Information System (INIS)

    Chu Maoquan; Sun Ye; Xu Shi

    2008-01-01

    Nanoscale and microscale silica spheres embedded with multiple CdSe quantum dots (QDs, having average diameters of about 2.4 and 5.0 nm, respectively.) were synthesized by using a quaternary 'water-in-oil' microemulsion. Comparing the uncoated QDs, the quantum yields (QYs) of the silica-coated QD spheres were enhanced when the QD cores were synthesized using mercaptoacetic acid (MA) as a stabilizer, while the QYs were dramatically decreased when the cores were synthesized using citric acid (CA) as a stabilizer. The enhanced QYs could be further improved by heating the silica-coated QDs in aqueous solution. Although the QYs of the silica-coated QDs were not high, these spheres emitted bright fluorescence. The silica shells contained numerous micropores (∼0.58-0.91 nm), and small amounts of toxic ions (such as Cd 2+ ) could be released from the silica spheres. However, the release rate of toxic ions from the silica spheres was significantly reduced compared with that of the uncoated QDs

  5. A 0.13 μm CMOS ΔΣ fractional-N frequency synthesizer for WLAN transceivers

    International Nuclear Information System (INIS)

    Chu Xiaojie; Jia Hailong; Lin Min; Shi Yin; Foster, Dai Fa

    2011-01-01

    A fractional-N frequency synthesizer fabricated in a 0.13 μm CMOS technology is presented for the application of IEEE 802.11 b/g wireless local area network (WLAN) transceivers. A monolithic LC voltage controlled oscillator (VCO) is implemented with an on-chip symmetric inductor. The fractional-N frequency divider consists of a pulse swallow frequency divider and a 3rd-order multistage noise shaping (MASH) ΔΣ modulator with noise-shaped dithering techniques. Measurement results show that in all channels, phase noise of the synthesizer achieves −93 dBc/Hz and −118 dBc/Hz in band and out of band respectively with a phase-frequency detector (PFD) frequency of 20 MHz and a loop bandwidth of 100 kHz. The integrated RMS phase error is no more than 0.8°. The proposed synthesizer consumes 8.4 mW from a 1.2 V supply and occupies an area of 0.86 mm 2 . (semiconductor integrated circuits)

  6. A 0.13 μm CMOS ΔΣ fractional-N frequency synthesizer for WLAN transceivers

    Science.gov (United States)

    Xiaojie, Chu; Hailong, Jia; Min, Lin; Yin, Shi; Foster, Dai Fa

    2011-10-01

    A fractional-N frequency synthesizer fabricated in a 0.13 μm CMOS technology is presented for the application of IEEE 802.11 b/g wireless local area network (WLAN) transceivers. A monolithic LC voltage controlled oscillator (VCO) is implemented with an on-chip symmetric inductor. The fractional-N frequency divider consists of a pulse swallow frequency divider and a 3rd-order multistage noise shaping (MASH) ΔΣ modulator with noise-shaped dithering techniques. Measurement results show that in all channels, phase noise of the synthesizer achieves -93 dBc/Hz and -118 dBc/Hz in band and out of band respectively with a phase-frequency detector (PFD) frequency of 20 MHz and a loop bandwidth of 100 kHz. The integrated RMS phase error is no more than 0.8°. The proposed synthesizer consumes 8.4 mW from a 1.2 V supply and occupies an area of 0.86 mm2.

  7. Localization and movement of newly synthesized cholesterol in rat ovarian granulosa cells

    International Nuclear Information System (INIS)

    Lange, Y.; Schmit, V.M.; Schreiber, J.R.

    1988-01-01

    The distribution and movement of cholesterol were studied in granulosa cells from the ovaries of estrogen-stimulated hypophysectomized immature rats cultured in serum-free medium. Plasma membrane cholesterol was distinguished from intracellular cholesterol with cholesterol oxidase, an enzyme that converts cell surface cholesterol to cholestenone, leaving intracellular cholesterol untouched. Using this approach we showed that 82% of unesterified cholesterol was associated with the plasma membrane in granulosa cells cultured for 48 h in serum-free medium in both the presence and absence of added androstenedione and FSH. FSH and androstenedione stimulated a marked increase in steroid hormone (progestin) production. The movement of newly synthesized cholesterol to the plasma membrane also was followed using cholesterol oxidase. Newly synthesized cholesterol reached the plasma membrane too rapidly to be measured in unstimulated cells (t1/2 less than 20 min); however, in cells stimulated by FSH and androstenedione, this rate was considerably slower (t1/2 approximately 2h). Therefore, cholesterol movement to the plasma membrane appears to be regulated by gonadotropins in these cells. We tested whether steroid biosynthesis used all cell cholesterol pools equally. To this end we administered [3H]acetate and [14C]acetate at different times and determined their relative specific contents in various steroids after defined intervals. The relative ages of the steroids (youngest to oldest) were: lanosterol, progestins, intracellular cholesterol, and plasma membrane cholesterol. This finding suggests that progestins use newly synthesized intracellular cholesterol in preference to preexisting intracellular or cell surface cholesterol

  8. Synthesizing biomolecule-based Boolean logic gates.

    Science.gov (United States)

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2013-02-15

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.

  9. Synthesizing Biomolecule-based Boolean Logic Gates

    Science.gov (United States)

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2012-01-01

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588

  10. [Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms].

    Science.gov (United States)

    Volova, T G; Barashkov, V A

    2010-01-01

    The study was conducted to determine the biological value of proteins synthesized by hydrogen-oxidizing microorganisms--the hydrogen bacteria Alcaligenes eutrophus Z1 and Ralstonia eutropha B5786 and the CO-resistant strain of carboxydobacterium Seliberia carboxydohydrogena Z1062. Based on a number of significant parameters characterizing the biological value of a product, the proteins of hydrogen-oxidizing microorganisms have been found to occupy an intermediate position between traditional animal and plant proteins. The high total protein in biomass of these microorganisms, their complete amino acid content, and availability to proteolytic enzymes allow for us to consider these microorganisms as potential protein producers.

  11. Structural analysis of nanocrystalline ZnTe alloys synthesized by melt quenching technique

    Science.gov (United States)

    Singh, Harinder; Singh, Tejbir; Thakur, Anup; Sharma, Jeewan

    2018-05-01

    Nanocrystalline ZnxTe100-x (x=0, 5, 20, 30, 40, 50) alloys have been synthesized using melt quenching technique. Energy-dispersive X-Ray spectroscopy (EDS) has been used to verify the elemental composition of samples. Various absorption modes are recorded from Fourier transform infrared spectroscopy (FTIR) confirming the formation of ZnTe. The structural study has been performed using X-Ray Diffraction (XRD) method. All synthesized samples have been found to be nanocrystalline in nature with average crystallite size in the range from 49.3 nm to 77.1 nm. Results have shown that Zn0Te100 exhibits hexagonal phase that transforms into a cubic ZnTe phase as the amount of zinc is increased. Pure ZnTe phase has been obtained for x = 50. The texture coefficient (Tc) has been calculated to find the prominent orientations of different planes.

  12. Characterization of hematite nanoparticles synthesized via two different pathways

    Science.gov (United States)

    Das, Soumya; Hendry, M. Jim

    2014-08-01

    Hematite is one of the most common and thermodynamically stable iron oxides found in both natural and anthropogenic systems. Owing to its ubiquity, stability, moderate specific surface area, and ability to sequester metals and metalloids from aquatic systems, it has been the subject of a large number of adsorption studies published during the past few decades. Although preparation techniques are known to affect the surface morphology of hematite nanoparticles, the effects of aging under environmentally relevant conditions have yet to be tested with respect to surface morphology, surface area, and adsorptive capacity. We prepared hematite via two different pathways and aged it under highly alkaline conditions encountered in many mill tailings settings. Crystal habits and morphologies of the hematite nanoparticles were analyzed via scanning electron microscopy and transmission electron microscopy. X-ray diffraction, Raman spectroscopy, and Brunauer-Emmett-Teller surface area analyses were also conducted on the hematite nanoparticles before and after aging. The hematite synthesized via an Fe(III) salt solution (average particle size 37 nm) was morphologically and structurally different from the hematite synthesized via ferrihydrite aging (average particle size 144 nm). Overall, our data demonstrate that the crystallinity of hematite produced via ferrihydrite transformation is susceptible to morphological alterations/modifications. In contrast, the hematite formed via hydrolysis of an Fe(III) salt solution remains very stable in terms of structure, size, and morphology even under extreme experimental conditions.

  13. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit

    International Nuclear Information System (INIS)

    Reddy, N. Jayachandra; Nagoor Vali, D.; Rani, M.; Rani, S. Sudha

    2014-01-01

    Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV–visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46 nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67 μg/ml/24 h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well. - Highlights: • 46 nm spherical shaped P. longum fruit silver nanoparticles was prepared. • Capping and reducing bioactive plant compounds with in nanoparticles were condensed tannins. • Particles are potent antioxidant and anti microbial in biological systems. • They are cytotoxic against MCF-7 cell lines

  14. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N. Jayachandra; Nagoor Vali, D.; Rani, M.; Rani, S. Sudha, E-mail: sadrassudha@gmail.com

    2014-01-01

    Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV–visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46 nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67 μg/ml/24 h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well. - Highlights: • 46 nm spherical shaped P. longum fruit silver nanoparticles was prepared. • Capping and reducing bioactive plant compounds with in nanoparticles were condensed tannins. • Particles are potent antioxidant and anti microbial in biological systems. • They are cytotoxic against MCF-7 cell lines.

  15. Effect of hydrogen on the microstructure and electrochemical properties of Si nanoparticles synthesized by microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Jeongboon; Lee, Jeongeun; Kim, Joonsoo; Jang, Boyun, E-mail: byjang@kier.re.kr

    2016-09-01

    We synthesized silicon (Si) nanoparticles using an atmospheric microwave plasma process, and investigated the effects of hydrogen (H{sub 2}) injection on their microstructure during the synthesis. Two nozzles were applied to inject H{sub 2} (swirling and rectilinear H{sub 2}). Our microstructural analysis indicated that the amount and method of H{sub 2} injection were critical for completion of the reaction from silicon tetrachloride (SiCl{sub 4}) to Si, as well as to obtain highly crystalline Si nanoparticles. The swirling H{sub 2} was especially critical due to its formation of vortex flow, which allowed relatively long residence time of the H-ions in plasma. The Si nanoparticles synthesized by the atmospheric plasma process had core-shell structures that consisted of crystalline Si cores with amorphous SiO{sub x} shells of 5–15 nm thickness. We also investigated the feasibility of the synthesized Si nanoparticles as anode materials in a lithium-ion battery (LIB). For the core-shell structured Si nanoparticles, we obtained the first reversible capacity of 1204 mAhg{sup −1}, and a capacity retention of 82.2% at the 50{sup th} cycle. - Highlights: • We synthesized Si nanoparticles by an atmospheric microwave plasma process. • We investigated the effects of injected H{sub 2} on the microstructures of Si nanoparticles. • Swirling H{sub 2} was critical, due to the formation of vortex flow in plasma. • The synthesized Si nanoparticles had core (crystalline Si)-shell (SiO{sub x}) structures. • The electrochemical properties depend on its core-shell structures as LIB anode.

  16. A mega-ethnography of eleven qualitative evidence syntheses exploring the experience of living with chronic non-malignant pain.

    Science.gov (United States)

    Toye, Fran; Seers, Kate; Hannink, Erin; Barker, Karen

    2017-08-01

    Each year over five million people develop chronic non-malignant pain and can experience healthcare as an adversarial struggle. The aims of this study were: (1) to bring together qualitative evidence syntheses that explore patients' experience of living with chronic non-malignant pain and develop conceptual understanding of what it is like to live with chronic non-malignant pain for improved healthcare; (2) to undertake the first mega-ethnography of qualitative evidence syntheses using the methods of meta-ethnography. We used the seven stages of meta-ethnography refined for large studies. The innovation of mega-ethnography is to use conceptual findings from qualitative evidence syntheses as primary data. We searched 7 bibliographic databases from inception until February 2016 to identify qualitative evidence syntheses that explored patients' experience of living with chronic non-malignant pain. We identified 82 potential studies from 556 titles, screened 34 full text articles and included 11 qualitative evidence syntheses synthesising a total of 187 qualitative studies reporting more than 5000 international participants living with chronic pain. We abstracted concepts into 7 conceptual categories: (1) my life is impoverished and confined; (2) struggling against my body to be me; (3) the quest for the diagnostic 'holy grail'; (4) lost personal credibility; (5) trying to keep up appearances; (6) need to be treated with dignity; and (7) deciding to end the quest for the grail is not easy. Each conceptual category was supported by at least 7 of the 11 qualitative evidence syntheses. This is the first mega-ethnography, or synthesis of qualitative evidence syntheses using the methods of meta-ethnography. Findings help us to understand that the decision to end the quest for a diagnosis can leave patients feeling vulnerable and this may contribute to the adversarial nature of the clinical encounter. This knowledge demonstrates that treating a patient with a sense that they

  17. Concrete embedded dye-synthesized photovoltaic solar cell.

    Science.gov (United States)

    Hosseini, T; Flores-Vivian, I; Sobolev, K; Kouklin, N

    2013-09-25

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology.

  18. Synthesized Mammography: Clinical Evidence, Appearance, and Implementation.

    Science.gov (United States)

    Durand, Melissa A

    2018-04-04

    Digital breast tomosynthesis (DBT) has improved conventional mammography by increasing cancer detection while reducing recall rates. However, these benefits come at the cost of increased radiation dose. Synthesized mammography (s2D) has been developed to provide the advantages of DBT with nearly half the radiation dose. Since its F.D.A. approval, multiple studies have evaluated the clinical performance of s2D. In clinical practice, s2D images are not identical to conventional 2D images and are designed for interpretation with DBT as a complement. This article reviews the present literature to assess whether s2D is a practical alternative to conventional 2D, addresses the differences in mammographic appearance of findings, and provides suggestions for implementation into clinical practice.

  19. PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Samberg, Joshua P. [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Engineering Building I, Raleigh, NC 27695-7907 (United States); Kajbafvala, Amir, E-mail: amir.kajbafvala@gmail.com [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Engineering Building I, Raleigh, NC 27695-7907 (United States); Koolivand, Amir [Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695 (United States)

    2014-03-01

    Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction.

  20. PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method

    International Nuclear Information System (INIS)

    Samberg, Joshua P.; Kajbafvala, Amir; Koolivand, Amir

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction

  1. A low-jitter RF PLL frequency synthesizer with high-speed mixed-signal down-scaling circuits

    International Nuclear Information System (INIS)

    Tang Lu; Wang Zhigong; Xue Hong; He Xiaohu; Xu Yong; Sun Ling

    2010-01-01

    A low-jitter RF phase locked loop (PLL) frequency synthesizer with high-speed mixed-signal down-scaling circuits is proposed. Several techniques are proposed to reduce the design complexity and improve the performance of the mixed-signal down-scaling circuit in the PLL. An improved D-latch is proposed to increase the speed and the driving capability of the DMP in the down-scaling circuit. Through integrating the D-latch with 'OR' logic for dual-modulus operation, the delays associated with both the 'OR' and D-flip-flop (DFF) operations are reduced, and the complexity of the circuit is also decreased. The programmable frequency divider of the down-scaling circuit is realized in a new method based on deep submicron CMOS technology standard cells and a more accurate wire-load model. The charge pump in the PLL is also realized with a novel architecture to improve the current matching characteristic so as to reduce the jitter of the system. The proposed RF PLL frequency synthesizer is realized with a TSMC 0.18-μm CMOS process. The measured phase noise of the PLL frequency synthesizer output at 100 kHz offset from the center frequency is only -101.52 dBc/Hz. The circuit exhibits a low RMS jitter of 3.3 ps. The power consumption of the PLL frequency synthesizer is also as low as 36 mW at a 1.8 V power supply. (semiconductor integrated circuits)

  2. Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica.

    Science.gov (United States)

    Vaičiukynienė, Danutė; Kantautas, Aras; Vaitkevičius, Vitoldas; Jakevičius, Leonas; Rudžionis, Žymantas; Paškevičius, Mantas

    2015-11-01

    The synthesis of zeolite NaA from silica by-product was carried out in the presence of 20 kHz ultrasound at room temperature. Zeolites obtained in this type of synthesis were compared to zeolites obtained by performing conventional static syntheses under similar conditions. The sonication effects on zeolite NaA synthesis were characterized by phase identification, crystallinity etc. The effects of different parameters such as crystallization time and initial materials preparation methods on the crystallinity and morphology of the synthesized zeolites were investigated. The final products were characterized by XRD and FT-IR. It was possible to obtain crystalline zeolite NaA from by-product silica in the presence of ultrasound. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Structural and thermal properties of nanocrystalline CuO synthesized by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Verma, M. [Department of Chemistry, IIT Roorkee, Roorkee-247667, India and Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee-247667 (India); Gupta, V. K. [Department of Chemistry, IIT Roorkee, Roorkee-247667 (India); Gautam, Y. K.; Dave, V.; Chandra, R. [Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee-247667 (India)

    2014-01-28

    Recent research has shown immense application of metal oxides like CuO, MgO, CaO, Al{sub 2}O{sub 3}, etc. in different areas which includes chemical warfare agents, medical drugs, magnetic storage media and solar energy transformation. Among the metal oxides, CuO nanoparticles are of special interest because of their excellent gas sensing and catalytic properties. In this paper we report structural and thermal properties of CuO synthesized by reactive magnetron DC sputtering. The synthesized nanoparticles were characterized by X-ray diffractometer. The XRD result reveals that as DC power increased from 30W to 80W, size of the CuO nanoparticles increased. The same results have been verified through TEM analysis. Thermal properties of these particles were studied using thermogravimetry.

  4. Hybridization change of DNA and nuclear RNA synthesized immediately after ionizing irradiation in spleen cells isolated from 615 mice

    International Nuclear Information System (INIS)

    Meng Ziqiang

    1986-01-01

    DNA hybridization with nuclear RNA(nRNA) synthesized immediately after 60 Co Gamma-irradiation in the spleen cells freshly isolated from inbred line 615 mice was investigated, using the technique of Gillespie and Spiegelman. In RNA/DNA hybridization percentage experiment, it was showed that the hybridization of normal DNA with labelled nRNA synthesized in irradiated cells reached the saturation point at a much faster rate than with labelled normal nRNA. The hybridization percentage of nRNA synthesized in irradiated cells was higher than that of normal nRNA during the different reaction time before the saturation point of DNA with nRNA synthesized in irradiated cells, but it was lower than that of normal nRNA after the zone of high repetitive DNA sequences was stimulated, however, the transcription of some base sequences in the zone of low repetitive DNA sequences was seriously inhibited. Measurements of the exhaustion rates of pulse-labelled nRNA were carried out as described by Greene and Flickinger Biochim. In these studies, pulse-labelled nRNA synthesized in unirradiated and irradiated cells were compared by exhausion with DNA at hybridization time of 4 or 24 hours, When the hybridization time was 4 hours, the nRNA synthesized in irradiated cells displayed a faster exhaustion rate than the control nRNA. But if the hybridization time was 24 hours, the exhaustion rate of nRNA synthesized in irradiated cells reduced. These results demostrated that Gamma-irradiation changed the proportion of transcription of some nRNA species and implayed that the sensitivities of the transcription activeties of the different repetitive DNA sequences to Gamma-irradiation were different, and so were the transcription activeties of the different base sequences in the same repetitive DNA sequences

  5. Characterization of product RNAs synthesized in vitro by poliovirus RNA polymerase purified by chromatography on hydroxylapatite or poly(U) Sepharose.

    OpenAIRE

    Young, D C; Tobin, G J; Flanegan, J B

    1987-01-01

    The size of the product RNA synthesized by the poliovirus RNA polymerase and host factor was significantly affected by the type of column chromatography used to purify the polymerase. Dimer length product RNA was synthesized by the polymerase purified by chromatography on hydroxylapatite. This contrasted with the monomer length product RNA synthesized by the polymerase purified by chromatography on poly(U) Sepharose. The poly(U) Sepharose-purified polymerase was shown to contain oligo(U) that...

  6. Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites.

    Science.gov (United States)

    Jayaseelan, Chidambaram; Rahuman, Abdul Abdul; Rajakumar, Govindasamy; Santhoshkumar, Thirunavukkarasu; Kirthi, Arivarasan Vishnu; Marimuthu, Sampath; Bagavan, Asokan; Kamaraj, Chinnaperumal; Zahir, Abdul Abduz; Elango, Gandhi; Velayutham, Kanayairam; Rao, Kokati Venkata Bhaskara; Karthik, Loganathan; Raveendran, Sankariah

    2012-08-01

    The purpose of the present study was to investigate the acaricidal and larvicidal activity against the larvae of Haemaphysalis bispinosa Neumann (Acarina: Ixodidae) and larvae of hematophagous fly Hippobosca maculata Leach (Diptera: Hippoboscidae) and against the fourth-instar larvae of malaria vector, Anopheles stephensi Liston, Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae) of synthesized silver nanoparticles (AgNPs) utilizing aqueous leaf extract from Musa paradisiaca L. (Musaceae). The color of the extract changed to light brown within an hour, and later it changed to dark brown during the 30-min incubation period. AgNPs results were recorded from UV-vis spectrum at 426 nm; Fourier transform infrared (FTIR) analysis confirmed that the bioreduction of Ag(+) ions to silver nanoparticles are due to the reduction by capping material of plant extract, X-ray diffraction (XRD) patterns clearly illustrates that the nanoparticles formed in the present synthesis are crystalline in nature and scanning electron microscopy (SEM) support the biosynthesis and characterization of AgNPs with rod in shape and size of 60-150 nm. After reaction, the XRD pattern of AgNPs showed diffraction peaks at 2θ = 34.37°, 38.01°, 44.17°, 66.34° and 77.29° assigned to the (100), (111), (102), (110) and (120) planes, respectively, of a faced centre cubic (fcc) lattice of silver were obtained. For electron microscopic studies, a 25 μl sample was sputter-coated on copper stub, and the images of nanoparticles were studied using scanning electron microscopy. The spot EDX analysis showed the complete chemical composition of the synthesized AgNPs. The parasite larvae were exposed to varying concentrations of aqueous extract of M. paradisiaca and synthesized AgNPs for 24 h. In the present study, the percent mortality of aqueous extract of M. paradisiaca were 82, 71, 46, 29, 11 and 78, 66, 38, 31and 16 observed in the concentrations of 50, 40, 30, 20, 10 mg

  7. Toxicity Study of Silver Nanoparticles Synthesized from Suaeda monoica on Hep-2 Cell Line.

    Science.gov (United States)

    Satyavani, Kaliyamurthi; Gurudeeban, Selvaraj; Ramanathan, Thiruganasambandam; Balasubramanian, Thangavel

    2012-01-01

    Recently there has been fabulous excitement in the nano-biotechnological area for the study of nanoparticles synthesis using some natural biological system, which has led the growth advanced nanomaterials. This intention made us to assess the biologically synthesized silver nanoparticles from the leaf of Suaeda monoica (S.monoica) using 1 mM silver nitrate. The leaf extract of S.monoica incubated with 1 mM silver nitrate solution and characterized by UV- spectrometer and AFM. The effect of synthesized silver nanoparticles on Human Epidermoid Larynx Carcinoma cell line was evaluated by the MTT colorimetric technique. As a result we observed gradual change in the colour of extract from greenish to brown. The synthesized silver nanoparticles confirmed by UV at 430 nm and spherical shape identified in the range of 31 nm under AFM. The effect of silver nanoparticles on Human Epidermoid Larynx Carcinoma cell line exhibits a dose-dependent toxicity for the cell tested and the viability of Hep-2 cells decreased to 50 % (IC(50)) at the concentration of 500 nM. Further findings will be determined the exact mechanisms of this cost effective Nano-treatments.

  8. Enhancement of the electrochemical performance in LiFePO4 cathode materials synthesized by using the sol-gel method

    Directory of Open Access Journals (Sweden)

    Kyong-Soo Hong

    2010-11-01

    Full Text Available LiFePO4 powders were synthesized by using the sol-gel and the solid-state reaction methods. The chemical states of Fe ions were studied by using XPS, and their electrochemical properties according to the oxidation states of Fe ions were compared. The average oxidation state of Fe ions in LiFePO4 powders synthesized by using the solid-state reaction method was found to be Fe3+, on the other hand, that of Fe ions synthesized by using the sol-gel method was found to be Fe2+. The obtained discharge capacities were 50 mAh/g and 120 mAh/g at a rate 0.1 C in LiFePO4 synthesized by using the solid-state reaction and sol-gel methods, respectively. Relatively a good cycling stability was observed in sol-gel prepared powder.

  9. Chemo-enzymatic peptide synthesis : bioprocess engineering aspects

    NARCIS (Netherlands)

    Vossenberg, P.

    2012-01-01

    Peptides, in particular oligopeptides, play an important role in the fields of health care, nutrition and cosmetics. Chemical synthesis is currently the most mature technique for the synthesis of peptides that range in length from 5 to 80 amino acids. Chemical synthesis is, however,

  10. Characterization of crystalline silica nanorods synthesized via a solvothermal route using polyvinylbutyral as a template

    International Nuclear Information System (INIS)

    Chen, Lin-Jer; Liao, Jiunn-Der; Chuang, Yu-Ju; Fu, Yaw-Shyan

    2011-01-01

    The preparation of crystalline silica nanorods is presented. Crystalline silica nanorods were synthesized via a simple solvothermal route using polyvinylbutyral (PVB) as a template in an autoclave with ethylenediamine as a solvent at 180 °C for 25 h. Silica nanorods with diameters in the range of 50–80 nm were obtained. The solvothermal route with a PVB template played affected the crystallization process and the growth of the silica nanorods. The as-synthesized products were characterized using X-ray diffraction, energy dispersive spectrometry, scanning electron microscopy, and transmission electron microscopy.

  11. Antioxidant study of biaryls synthesized in the presence of Aliquat-336 activated by ultrasound

    Directory of Open Access Journals (Sweden)

    khemais Said

    2016-05-01

    Full Text Available In this work we describe the study of some Suzuki coupling reactions of an aryl halide with arylboronic acids. The reaction yields obtained were increased through sonochemical activation and in the presence of a phase transfer catalyst for a very short period of time. The isolated products obtained are of a high purity. In this context, we propose the reaction mechanisms for these reactions in the presence of a catalyst. Synthesized compounds were screened for theirantioxidant activity with 1,1-diphenyl-2-picrylhydrazyl (DPPH, ferric reducing power (FRP assay and ferrous ion chelating (FIC methods. It was found that Biaryls synthesized compounds showed appreciate antioxidant activity.

  12. Uncapped silver nanoparticles synthesized by DC arc thermal plasma technique for conductor paste formulation

    Science.gov (United States)

    Shinde, Manish; Pawar, Amol; Karmakar, Soumen; Seth, Tanay; Raut, Varsha; Rane, Sunit; Bhoraskar, Sudha; Amalnerkar, Dinesh

    2009-11-01

    Uncapped silver nanoparticles were synthesized by DC arc thermal plasma technique. The synthesized nanoparticles were structurally cubic and showed wide particle size variation (between 20-150 nm). Thick film paste formulated from such uncapped silver nanoparticles was screen-printed on alumina substrates and the resultant `green' films were fired at different firing temperatures. The films fired at 600 °C revealed better microstructure properties and also yielded the lowest value of sheet resistance in comparison to those corresponding to conventional peak firing temperature of 850 °C. Our findings directly support the role of silver nanoparticles in substantially depressing the operative peak firing temperature involved in traditional conductor thick films technology.

  13. XAFS Study on TiO2 Photocatalyst Loaded on Zeolite Synthesized from Steel Slag

    International Nuclear Information System (INIS)

    Kuwahara, Yasutaka; Ohmichi, Tetsutaro; Mori, Kosuke; Katayama, Iwao; Yamashita, Hiromi

    2007-01-01

    The convenient route for the synthesis of Y-zeolites by utilizing steel slag as a material source was developed. Through hydrothermal treatment, well-crystallized Y-zeolite was obtained. We also synthesized TiO2-loaded Y-zeolites by an impregnation method. The structure of titanium oxide species highly dispersed on the zeolite, which couldn't be detected by XRD patterns, was investigated by XAFS analysis. Photocatalytic activity for decomposition of 2-propanol in liquid phase was found to be enhanced by the hydrophobic surface property of zeolite. It has been demonstrated that the zeolite synthesized from steel slag would be applicable as a promising support of TiO2 photocatalyst

  14. Towards a method for synthesizing diverse evidence using hypotheses as common language.

    NARCIS (Netherlands)

    Wesel, F. van; Boeije, H.R.; Alisic, E.

    2015-01-01

    Combining the findings obtained by different research methods in mixed-research synthesis could potentially contribute to a broader, more diverse evidence base for interventions. In this article we focus on the methodological challenges involved in synthesizing various types of research findings.We

  15. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam

    Science.gov (United States)

    Rathi Sre, P. R.; Reka, M.; Poovazhagi, R.; Arul Kumar, M.; Murugesan, K.

    2015-01-01

    Simple, yet an effective and rapid approach for the green synthesis of silver nanoparticles (Ag NPs) using root extract of Erythrina indica and its in vitro antibacterial activity was tried against human pathogenic bacteria and its cytotoxic effect in breast and lung cancer cell lines has been demonstrated in this study. Various instrumental techniques were adopted to characterize the synthesized Ag NPs viz. UV-Vis (Ultra violet), FTIR (Fourier Transform Infrared), XRD (X-ray diffraction), DLS (Dynamic light scattering), HR TEM (High-resolution transmission electron microscopy), EDX (Energy-dispersive X-ray spectroscopy). Surface plasmon spectra for Ag NPs are centered nearly at 438 nm with dark brown color. FTIR analysis revealed the presence of terpenes, phenol, flavonols and tannin act as effective reducing and capping agents for converting silver nitrate to Ag NPs. The synthesized Ag NPs were found to be spherical in shape with size in the range of 20-118 nm. Moreover, the synthesized Ag NPs showed potent antibacterial activity against Gram positive and Gram negative bacteria and these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on breast and lung cancer cell lines.

  16. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization

    International Nuclear Information System (INIS)

    Gosavi, Priti V.; Biniwale, Rajesh B.

    2010-01-01

    Three different wet chemistry routes, namely co-precipitation, combustion and sol-gel methods were used to synthesize LaFeO 3 perovskite with improved surface area. The synthesized perovskite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), Brunauer-Emmett-Teller (BET) nitrogen adsorption, ultraviolet diffused reflectance spectroscopy (UVDRS) and Fourier transform infrared (FTIR) spectroscopy techniques. Improved surface area was observed for all three methods as compared to the previously reported values. The perovskite synthesized using sol-gel method yields comparatively pure, crystalline phase of LaFeO 3 and relatively higher surface area of 16.5 m 2 g -1 and porosity. The material synthesized using co-precipitation method yielded other phases in addition to the targeted phase. The morphology of perovskite synthesized using co-precipitation method was uniform agglomerates. Combustion method yields flakes type morphology and that of sol-gel method was open pore type morphology. The selection of method for perovskite synthesis largely depends on the targeted application and the desired properties of perovskites. The results reported in this study are useful for establishing a simple scalable method for preparation of high surface area LaFeO 3 as compared to solid-oxide method. Further, the typical heating cycle followed for calcinations resulted in relatively high surface area in the case of all three methods.

  17. Synthesizing lattice structures in phase space

    International Nuclear Information System (INIS)

    Guo, Lingzhen; Marthaler, Michael

    2016-01-01

    In one dimensional systems, it is possible to create periodic structures in phase space through driving, which is called phase space crystals (Guo et al 2013 Phys. Rev. Lett. 111 205303). This is possible even if for particles trapped in a potential without periodicity. In this paper we discuss ultracold atoms in a driven optical lattice, which is a realization of such a phase space crystals. The corresponding lattice structure in phase space is complex and contains rich physics. A phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry, which naturally provides an artificial gauge (magnetic) field. We study the behavior of the quasienergy band structure and investigate the dissipative dynamics. Synthesizing lattice structures in phase space provides a new platform to simulate the condensed matter phenomena and study the intriguing phenomena of driven systems far away from equilibrium. (paper)

  18. Carbonated hydrocalumite synthesized by the microwave method as a possible antacid

    Energy Technology Data Exchange (ETDEWEB)

    Linares, Carlos F., E-mail: clinares@uc.edu.ve [Unidad de Síntesis de Materiales y Metales de Transición, Facultad de Ciencias y Tecnología, Departamento de Química, Universidad de Carabobo, Valencia, Edo, Carabobo Apartado Postal 3336 (Venezuela, Bolivarian Republic of); Moscosso, Joel; Alzurutt, Victor; Ocanto, Freddy; Bretto, Pablo [Unidad de Síntesis de Materiales y Metales de Transición, Facultad de Ciencias y Tecnología, Departamento de Química, Universidad de Carabobo, Valencia, Edo, Carabobo Apartado Postal 3336 (Venezuela, Bolivarian Republic of); González, Gema [Laboratorio de Materiales, Centro Tecnológico, Instituto Venezolano de Investigaciones Científicas (IVIC), Carretera Panamericana Km 11 Altos de Pipe, Los Teques (Venezuela, Bolivarian Republic of)

    2016-04-01

    A carbonated hydrocalumite was synthesized by the microwave method for being used as antacid. The gel was formed using Ca and Al nitrate solutions in a basic medium (NaOH + Na{sub 2}CO{sub 3}), then, this gel was aged and heated in a domestic microwave for 2.5 min (1250 W). The obtained white solid was washed with distilled water, dried in an oven at 100 °C for 18 h and characterized by different techniques such as: X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), BET surface area measurements, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Finally, the carbonated hydrocalumite was tested as antacid by using a synthetic gastric juice and its activity was compared with a commercial antacid formulated with hydrotalcite. Results showed that the carbonated hydrocalumite was more effective than that commercial antacid. - Highlights: • Carbonated hydrocalumite was synthesized by the microwave method. • The aging time was drastically reduced. • Carbonated hydrocalumite was more active as antacid than a commercial antacid based on hydrotalcites.

  19. Investigation of the photoluminescence properties of thermochemically synthesized CdS nanocrystals

    Directory of Open Access Journals (Sweden)

    M. Molaei

    2011-03-01

    Full Text Available In this work we have synthesized CdS nanocrystals with thermochemical method. CdSO4 and Na2S2O3 were used as the precursors and thioglycolic acid (TGA was used as capping agent molecule. The structure and optical property of the nanocrystals were characterized by means of XRD, TEM, UV-visible optical spectroscopy and photoluminescence (PL. X-ray diffraction (XRD and TEM analyses demonstrated hexagonal phase CdS nanocrystals with an average size around 2 nm. Synthesized nanocrystals exhibited band gap of about 3.2 eV and showed a broad band emission from 400-750 nm centered at 504 nm with a (0.27, 0.39 CIE coordinate. This emission can be attributed to recombination of an electron in conduction band with a hole trapped in Cd vacancies near to the valance band of CdS. The best attained photoluminescence quantum yield of the nanocrystals was about 12%, this amount is about 20 times higher than that for thioglycerol (TG capped CdS nanocrystals.

  20. A general digital computer procedure for synthesizing linear automatic control systems

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1961-10-01

    The fundamental concepts required for synthesizing a linear automatic control system are considered. A generalized procedure for synthesizing automatic control systems is demonstrated. This procedure has been programmed for the Ferranti Mercury and the IBM 7090 computers. Details of the programmes are given. The procedure uses the linearized set of equations which describe the plant to be controlled as the starting point. Subsequent computations determine the transfer functions between any desired variables. The programmes also compute the root and phase loci for any linear (and some non-linear) configurations in the complex plane, the open loop and closed loop frequency responses of a system, the residues of a function of the complex variable 's' and the time response corresponding to these residues. With these general programmes available the design of 'one point' automatic control systems becomes a routine scientific procedure. Also dynamic assessments of plant may be carried out. Certain classes of multipoint automatic control problems may also be solved with these procedures. Autonomous systems, invariant systems and orthogonal systems may also be studied. (author)

  1. Synthese von organischen und anorganischen Derivativen der Meldrumsäure

    OpenAIRE

    Al-Sheikh, Ahmad

    2004-01-01

    This dissertation concerns in the emphasis the synthesis and instrumental-analytic characterisation (NMR, X-ray, IR) of organic and inorganic derivatives of Meldrum's acid. The derivatives of Meldrum's acid classified as: 1.Zwitterionic derivatives of Meldrum's acid. 2. Salt derivatives of Meldrum's acid. 3. Neutral derivatives of Meldrum's acid Die Dissertation beschäftigt sich im Schwerpunkt mit der Synthese und instrumentell-analytischen Charakterisierung (NMR, X-ray, I...

  2. Controlled synthesized natroalunite microtubes applied for cadmium(II) and phosphate co–removal

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huan [School of Physics and Materials Science, Anhui University, Hefei 230601 (China); Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Zhu, Baisheng [University of Science and Technology of China, Hefei 230026 (China); Ren, Xuemei, E-mail: renxm1985@163.com [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Shao, Dadong; Tan, Xiaoli; Chen, Changlun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China)

    2016-08-15

    Highlights: • Five natroalunite samples with different morphologies were synthesized. • EG: water ratio controls the morphology and adsorption performance of natroalunite. • NMs show the best performance in Cd(II) and phosphate co-uptake. • Phosphate bridges NMs and Cd(II) in co–removal process and enhances Cd(II) uptake. - Abstract: Treatment of wastewater containing several kinds of contaminants poses great challenges, because heavy metal and inorganic anion contaminants possess different fate and transport mechanisms. Individual adsorption of Cd(II)/phosphate on clay or metallic oxides has been extensively investigated, but the mutual effects of these two species in co–existing systems have received little attention. In this study, five natroalunite samples with different morphologies were synthesized by a simple hydrothermal method with appropriate volume ratio of ethylene glycol (EG) to water. The volume ratio of EG to water plays a key role in the formation of natroalunite samples, and dramatically affects their adsorption capacities. The mutual effects of Cd(II) and phosphate on their interaction with natroalunite microtubes (NMs) were investigated by varying experimental conditions, such as pH, temperature and addition sequences. The results demonstrate that highly efficient co–removal of Cd(II) and phosphate can be accomplished using NMs, and the process is strongly dependent on solution pH and temperature via the formation of ternary surface complexes. This study implies that the hydrothermally synthesized NMs can be regarded as a potential promising material for the co–removal of Cd(II) and phosphate from large volumes of aqueous solutions in pollution management.

  3. Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses.

    Science.gov (United States)

    Laufersky, Geoffry; Bradley, Siobhan; Frécaut, Elian; Lein, Matthias; Nann, Thomas

    2018-05-10

    The synthesis of colloidal indium phosphide quantum dots (InP QDs) has always been plagued by difficulties arising from limited P3- sources. Being effectively restricted to the highly pyrophoric tris(trimethylsilyl) phosphine (TMS3P) creates complications for the average chemist and presents a significant risk for industrially scaled reactions. The adaptation of tris(dialkylamino) phosphines for these syntheses has garnered attention, as these new phosphines are much safer and can generate nanoparticles with competitive photoluminescence properties to those from (TMS)3P routes. Until now, the reaction mechanics of this precursor were elusive due to many experimental optimizations, such as the inclusion of a high concentration of zinc salts, being atypical of previous InP syntheses. Herein, we utilize density functional theory calculations to outline a logical reaction mechanism. The aminophosphine precursor is found to require activation by a zinc halide before undergoing a disproportionation reaction to self-reduce this P(iii) material to a P(-iii) source. We use this understanding to adapt this precursor for a two-pot nanoparticle synthesis in a noncoordinating solvent outside of glovebox conditions. This allowed us to generate spherical InP/ZnS nanoparticles possessing fluorescence quantum yields >55% and lifetimes as fast as 48 ns, with tunable emission according to varying zinc halide acidity. The development of high quality and efficient InP QDs with this safer aminophosphine in simple Schlenk environments will enable a broader range of researchers to synthesize these nontoxic materials for a variety of high-value applications.

  4. Defluoridation using biomimetically synthesized nano zirconium chitosan composite: Kinetic and equilibrium studies

    International Nuclear Information System (INIS)

    Prasad, Kumar Suranjit; Amin, Yesha; Selvaraj, Kaliaperumal

    2014-01-01

    Highlights: • Colloidal Zr nanoparticles, synthesized using Aloe vera extract were entrapped in chitosan beads. • Zr loaded beads were employed for removal of F − ion and showed excellent removal efficiency. • Zr and chitosan are cost effective materials hence can be a good adsorbent for removal of fluoride. - Abstract: The present study reports a novel approach for synthesis of Zr nanoparticles using aqueous extract of Aloe vera. Resulting nanoparticles were embedded into chitosan biopolymer and termed as CNZr composite. The composite was subjected to detailed adsorption studies for removal of fluoride from aqueous solution. The synthesized Zr nanoparticles showed UV–vis absorption peak at 420 nm. TEM result showed the formation of polydispersed, nanoparticles ranging from 18 nm to 42 nm. SAED and XRD analysis suggested an fcc (face centered cubic) Zr crystallites. EDAX analysis suggested that Zr was an integral component of synthesized nanoparticles. FT-IR study indicated that functional group like -NH, -C=O, -C=N and -C=C were involved in particle formation. The adsorption of fluoride on to CNZr composite worked well at pH 7.0, where ∼99% of fluoride was found to be adsorbed on adsorbent. Langmuir isotherm model best fitted the equilibrium data since it presented higher R 2 value than Freundlich model. In comparison to pseudo-first order kinetic model, the pseudo-second order model could explain adsorption kinetic behavior of F − onto CNZr composite satisfactorily with a good correlation coefficient. The present study revealed that CNZr composite may work as an effective tool for removal of fluoride from contaminated water

  5. Synthesizing Earth's geochemical data for hydrogeochemical analysis

    Science.gov (United States)

    Brantley, S. L.; Kubicki, J.; Miller, D.; Richter, D.; Giles, L.; Mitra, P.

    2007-12-01

    For over 200 years, geochemical, microbiological, and chemical data have been collected to describe the evolution of the surface earth. Many of these measurements are data showing variations in time or in space. To forward predict hydrologic response to changing tectonic, climatic, or anthropogenic forcings requires synthesis of these data and utilization in hydrogeochemical models. Increasingly, scientists are attempting to synthesize such data in order to make predictions for new regions or for future time periods. However, to make such complex geochemical data accessible requires development of sophisticated cyberinfrastructures that both invite uploading as well as usage of data. Two such cyberinfrastructure (CI) initiatives are currently developing, one to invite and promote the use of environmental kinetics data (laboratory time course data) through ChemxSeer, and the other to invite and promote the use of spatially indexed geochemical data for the Earth's Critical Zone through CZEN.org. The vision of these CI initiatives is to provide cyber-enhanced portals that encourage domain scientists to upload their data before publication (in private cyberspace), and to make these data eventually publicly accessible (after an embargo period). If the CI can be made to provide services to the domain specialist - e.g. to provide data analysis services or data comparison services - we envision that scientists will upload data. In addition, the CI can promote the use and comparison of datasets across disciplines. For example, the CI can facilitate the use of spatially indexed geochemical data by scientists more accustomed to dealing with time-course data for hydrologic flow, and can provide user-friendly interfaces with CI established to facilitate the use of hydrologic data. Examples of the usage of synthesized data to predict soil development over the last 13ky and its effects on active hydrological flow boundaries in surficial systems will be discussed for i) a N

  6. Facile approach to synthesize Ni(OH)2 nanoflakes on MWCNTs for high performance electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Shahid, Muhammad; Liu Jingling; Shakir, Imran; Warsi, Muhammad Farooq; Nadeem, Muhammad; Kwon, Young-Uk

    2012-01-01

    Highlights: ► Deposition of ultra-thin Ni(OH) 2 nanoflakes on MWCNTs. ► Full utilization of the Ni(OH) 2 nanoflakes which provide maximum pseudocapacitance while minimizing the high surface area. ► The ultra-thin layer of Ni(OH) 2 nanoflakes on highly conductive MWCNTs is favorable for fast ion and electron transfer. ► The ultra-thin layer of Ni(OH) 2 nanoflakes on MWCNTs exhibited good cycling stability and lifetime. - Abstract: Ultrathin nanoflakes of Ni(OH) 2 were synthesized onto multi-walled carbon nanotubes (MWCNTs) by simple low cost chemically precipitation method for high performance electrochemical supercapacitor applications. The synthesized ultrathin Ni(OH) 2 exhibit high specific capacitance of 1735 Fg −1 at a scan rate of 5 mV s −1 with excellent rate capability. This high performance of Ni(OH) 2 nanoflakes was attributed to its complete accessibility to the electrolyte and maximum utilization of metal hydroxides. Findings of this work suggest that synthesized electrodes offer low-cost and scalable solution for high-performance energy storage devices.

  7. Characterization and engineering of thermophilic aldolases : synthesizing nitrogen-heterocycles in biosynthetic routes

    NARCIS (Netherlands)

    Wolterink-van Loo, S.

    2009-01-01

    Aldolases are enzymes that catalyze reactions in both degradation and biosynthetic pathways in vivo and have been discovered in all domains of life. they. An interesting property of aldolases is that they can synthesize carbon-carbon bonds, generating a new stereogenic centre. As enzymes are

  8. Optimization of film synthesized rare earth transition metal permanent magnet systems

    International Nuclear Information System (INIS)

    Cadieu, F.J.

    1990-01-01

    This report reviews work on the optimization of film synthesized rare earth transition metal permanent magnet systems. Topics include: high coercivity in Sm-Fe-Ti-V, Sm-Fe-V, and two element systems; ThMn 12 type pseudobinary SmFe 12 - X T X ; and sputter process control for the synthesis of precisely textured RE-TM magnetic films. (JL)

  9. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    OpenAIRE

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-01-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins w...

  10. Anionic polymerization and polyhomologation: An ideal combination to synthesize polyethylene-based block copolymers

    KAUST Repository

    Zhang, H.; Alkayal, N.; Gnanou, Yves; Hadjichristidis, Nikolaos

    2013-01-01

    A novel one-pot methodology combining anionic polymerization and polyhomologation, through a "bridge" molecule (BF3OEt 2), was developed for the synthesis of polyethylene (PE)-based block copolymers. The anionically synthesized macroanion reacts

  11. A comparative study on larvicidal potential of selected medicinal plants over green synthesized silver nano particles

    Directory of Open Access Journals (Sweden)

    Syed Zameer Ahmed Khader

    2018-03-01

    Full Text Available Larvicidal activity was assessed for alcoholic extracts of Phyllanthus amarus, Annona squamosa, Coccinia grandis and Eclipta prostrata extracted using solvents of various polarity. Third instar stage larvae of Dengue-vector, Aedes aegypti and Japanese encephalitis (JE causing mosquito Culex tritaeniorhynchus were subjected to larvicidal bioassay at various concentrations (1000, 500, 250 ppm. The results explored that the phytoconstituents and secondary metabolites present in all the plants elucidated potent larvicidal activity. Among the tested extract ethyl acetate, petroleum ether and hexane extract expressed significant larvicidal activity. Similarly, these plants were subjected to green synthesis of silver nanoparticles, characterized and subjected for its larvicidal activity against Anopheles stephensi causing malaria. The synthesized silver nanoparticles were characterized by UV–VIS spectroscopy, Fourier Transform Infra-Red spectroscopy, Scanning Electron Microscopy respectively. The FTIR analysis strongly supported the capping behaviour of bio-reduced synthesized silver nanoparticles which in turn imparted the high stability of the synthesized silver nanoparticles. The average size of synthesized nanoparticles was less than 1 µm, most spherical in shape with SEM analysis. The findings revealed that Eclipta prostrata and Annona squamosa has effective larvicidal activity, whereas all the synthesised nanoparticles demonstrated dose dependent activity even at very low concentration and the findings reveals that these extracts and nanoparticles can be a better remedy against these mosquitoes.

  12. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-05-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp . We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp . mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  13. Structure of the enzymatically synthesized fructan inulin

    International Nuclear Information System (INIS)

    Heyer, A.G.; Schroeer, B.; Radosta, S.; Wolff, D.; Czapla, S.; Springer, J.

    1998-01-01

    Construction, purification and characterization of a fusion protein of maltose-binding protein of Escherichia coli and the fructosyltransferase of Streptococcus mutans is described. With the purified protein, in vitro synthesis of inulin was performed. The obtained polysaccharide was characterized by high-performance size-exclusion chromatography (HPSEC) and static light scattering (SLS) in dilute aqueous and dimethyl sulfoxide solution. For all samples very high molecular weights between 60x10 6 and 90x10 6 g/mol and a remarkable small polydispersity index of 1.1 have been determined. Small root-mean-square radii of gyration point to a compact conformation in dilute solution. No difference between native and enzymatically synthesized inulin was observed by X-ray powder diffraction and thermoanalysis of solid samples. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Synthesized Mammography: Clinical Evidence, Appearance, and Implementation

    Directory of Open Access Journals (Sweden)

    Melissa A. Durand

    2018-04-01

    Full Text Available Digital breast tomosynthesis (DBT has improved conventional mammography by increasing cancer detection while reducing recall rates. However, these benefits come at the cost of increased radiation dose. Synthesized mammography (s2D has been developed to provide the advantages of DBT with nearly half the radiation dose. Since its F.D.A. approval, multiple studies have evaluated the clinical performance of s2D. In clinical practice, s2D images are not identical to conventional 2D images and are designed for interpretation with DBT as a complement. This article reviews the present literature to assess whether s2D is a practical alternative to conventional 2D, addresses the differences in mammographic appearance of findings, and provides suggestions for implementation into clinical practice.

  15. Nanosize stabilization of cubic and tetragonal phases in reactive plasma synthesized zirconia powders

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, S., E-mail: sjayakumar.physics@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 014 (India); Department of Physics, Pollachi Institute of Engineering and Technology, Pollachi 642 205 (India); Ananthapadmanabhan, P.V.; Thiyagarajan, T.K. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Perumal, K. [Vision for Wisdom, Temple of Consciousness, Aliyar 642 101 (India); Mishra, S.C. [Department of Metallurgical and Materials Engg, National Institute of Technology, Rourkela 769 008 (India); Suresh, G. [Department of Physics, Park College of Engineering and Technology, Coimbatore 641 659 (India); Su, L.T.; Tok, A.I.Y. [School of Materials Science and Engg, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639 798 (Singapore)

    2013-06-15

    Pure zirconium oxide powders with particle size 2–33 nm are synthesized by reactive plasma processing. Transmission electron microscopy investigation of these particles revealed size dependent behavior for their phase stabilization. The monoclinic phase is found to be stable when particle size is ≥20 nm; Tetragonal is found to be stabilized in the range of 7–20 nm and as the particle size decreases to 6 nm and less, the cubic phase is stabilized. - Highlights: ► Direct conversion of micron-sized zirconium hydride powder to single crystal ZrO{sub 2} nanopowder. ► Size dependent stabilization of cubic, tetragonal and monoclinic phases in the reactive plasma synthesized ZrO{sub 2} nanopowder. ► Transmission electron microscopic investigation to identify particles of different sizes and their corresponding phase structure.

  16. Effect of chemically and biologically synthesized Ag nanoparticles on the algae growth inhibition

    Science.gov (United States)

    Anna, Mražiková; Oksana, Velgosová; Jana, Kavuličová

    2017-12-01

    Over the past few years green methods for preparation of silver nanoparticles has become necessary due to its friendly influence on ecosystem. In the present work antimicrobial properties of biologically synthesized silver nanoparticles (Bio-AgNPs) using green algae extract and chemically synthesized silver nanoparticles (Chem-AgNPs) using sodium citrate against algae Parachlorella kessleri is investigated. Both used Bio-AgNPs and Chem-AgNPs exhibit long-term stability as demonstrated by UV-vis spectroscopy measurements. The results revealed stronger toxic effects of Bio-AgNPs on agar plates what was confirmed clear inhibition zone around wells impregnated with Bio-AgNPs. On the other hand Bio-AgNPs were confirmed to be less toxic in aquatic environments for the growths of green algae P. kessleri comparing to Chem-AgNPs.

  17. Design and Characterization of a 5.2 GHz/2.4 GHz Fractional- Frequency Synthesizer for Low-Phase Noise Performance

    Directory of Open Access Journals (Sweden)

    Dai Foster F

    2006-01-01

    Full Text Available This paper presents a complete noise analysis of a -based fractional- phase-locked loop (PLL based frequency synthesizer. Rigorous analytical and empirical formulas have been given to model various phase noise sources and spurious components and to predict their impact on the overall synthesizer noise performance. These formulas have been applied to an integrated multiband WLAN frequency synthesizer RFIC to demonstrate noise minimization through judicious choice of loop parameters. Finally, predicted and measured phase jitter showed good agreement. For an LO frequency of 4.3 GHz, predicted and measured phase noise was rms and rms, respectively.

  18. Low yield syntheses of [18F]FDG at CDTN/CNEN-MG: problem diagnosis and corrective actions

    International Nuclear Information System (INIS)

    Dalle, Hugo M.; Silva, Juliana B.; Valente, Eduardo S.; Malamut, Carlos; Nascimento, Leonardo T.C.; Silveira, Marina B.; Ferreira, Soraya M.Z.M.D.; Borges, Leonardo T.; Truong, Phong; Olsson, Ake

    2017-01-01

    The Nuclear Technology Development Center manages, since 2007, a Radiopharmaceuticals Research and Production Unit. In the first months of 2014, the radiopharmaceuticals syntheses yields started to fall well under the nominal values. This paper presents a summary of the tests performed to identify the causes of the low yield syntheses and the actions taken to resolve. By sharing our experience, we aim to help other radiopharmaceuticals producers facing similar situation, as solution may not be trivial, neither fast nor cheap. (author)

  19. Discrimination of fundamental frequency of synthesized vowel sounds in a noise background

    NARCIS (Netherlands)

    Scheffers, M.T.M.

    1984-01-01

    An experiment was carried out, investigating the relationship between the just noticeable difference of fundamental frequency (jndf0) of three stationary synthesized vowel sounds in noise and the signal-to-noise ratio. To this end the S/N ratios were measured at which listeners could just

  20. Portable laser synthesizer for high-speed multi-dimensional spectroscopy

    Science.gov (United States)

    Demos, Stavros G [Livermore, CA; Shverdin, Miroslav Y [Sunnyvale, CA; Shirk, Michael D [Brentwood, CA

    2012-05-29

    Portable, field-deployable laser synthesizer devices designed for multi-dimensional spectrometry and time-resolved and/or hyperspectral imaging include a coherent light source which simultaneously produces a very broad, energetic, discrete spectrum spanning through or within the ultraviolet, visible, and near infrared wavelengths. The light output is spectrally resolved and each wavelength is delayed with respect to each other. A probe enables light delivery to a target. For multidimensional spectroscopy applications, the probe can collect the resulting emission and deliver this radiation to a time gated spectrometer for temporal and spectral analysis.

  1. Enantioselctive Syntheses of Sulfur Analogues of Flavan-3-Ols

    Directory of Open Access Journals (Sweden)

    Richard Lombardy

    2010-08-01

    Full Text Available The first enantioselective syntheses of sulfur flavan-3-ol analogues 1–8 have been accomplished, whereby the oxygen atom of the pyran ring has been replaced by a sulfur atom. The key steps were: (a Pd(0 catalyzed introduction of –S t-butyl group, (b Sharpless enantioselective dihydroxylation of the alkene, (c acid catalyzed ring closure to produce the thiopyran ring, and (d removal of benzyl groups using N,N-dimethylaniline and AlCl3. The compounds were isolated in high chemical and optical purity.

  2. Microwave-Assisted Syntheses of Bioactive Seven-Membered, Macro-Sized Heterocycles and Their Fused Derivatives

    Directory of Open Access Journals (Sweden)

    Mohsine Driowya

    2016-08-01

    Full Text Available This review describes the recent advances in the microwave-assisted synthesis of 7-membered and larger heterocyclic compounds. Several types of reaction for the cyclization step are discussed: Ring Closing Metathesis (RCM, Heck and Sonogashira reactions, Suzuki-Miyaura cross-coupling, dipolar cycloadditions, multi-component reactions (Ugi, Passerini, etc. Green syntheses and solvent-free procedures have been introduced whenever possible. The syntheses discussed herein have been selected to illustrate the huge potential of microwave in the synthesis of highly functionalized molecules with potential therapeutic applications, in high yields, enhanced reaction rates and increased chemoselectivity, compared to conventional methods. More than 100 references from the recent literature are listed in this review.

  3. Nitrile-synthesizing enzyme: Gene cloning, overexpression and application for the production of useful compounds.

    Science.gov (United States)

    Kumano, Takuto; Takizawa, Yuko; Shimizu, Sakayu; Kobayashi, Michihiko

    2016-09-12

    One of the nitrile-synthesizing enzymes, β-cyano-L-alanine synthase, catalyzes β-cyano-L-alanine (β-CNAla) from potassium cyanide and O-acetyl-L-serine or L-cysteine. We have identified this enzyme from Pseudomonas ovalis No. 111. In this study, we cloned the β-CNAla synthase gene and expressed it in Escherichia coli and Rhodococcus rhodochrous. Furthermore, we carried out co-expression of β-CNAla synthase with nitrilase or nitrile hydratases in order to synthesize aspartic acid and asparagine from KCN and O-acetyl-L-serine. This strategy can be used for the synthesis of labeled amino acids by using a carbon-labeled KCN as a substrate, resulting in an application for positron emission tomography.

  4. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    Science.gov (United States)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  5. Carbon Nano-particle Synthesized by Pulsed Arc Discharge Method as a Light Emitting Device

    Science.gov (United States)

    Ahmadi, Ramin; Ahmadi, Mohamad Taghi; Ismail, Razali

    2018-04-01

    Owing to the specific properties such as high mobility, ballistic carrier transport and light emission, carbon nano-particles (CNPs) have been employed in nanotechnology applications. In the presented work, the CNPs are synthesized by using the pulsed arc discharge method between two copper electrodes. The rectifying behaviour of produced CNPs is explored by assuming an Ohmic contact between the CNPs and the electrodes. The synthesized sample is characterized by electrical investigation and modelling. The current-voltage (I-V) relationship is investigated and bright visible light emission from the produced CNPs was measured. The electroluminescence (EL) intensity was explored by changing the distance between two electrodes. An incremental behaviour on EL by a resistance gradient and distance reduction is identified.

  6. Facile syntheses of isotope-labeled chiral octahydroindole-2-carboxylic acid and its N-methyl analog

    International Nuclear Information System (INIS)

    Yinsheng Zhang

    2012-01-01

    We have synthesized deuterium and carbon-14 labeled enantiomerically pure octahydroindole-2-carboxylic acid (PD0140417), N-methyl octahydroindole-2-carboxylic acid (PD0348183) and their racemic analogs (PD0108405 and PD0338055). [ring-U- 14 C]PD0140417 was prepared from [ring-U- 14 C]benzoic acid in a seven-step synthesis in 6.2% overall radiochemical yield. [ 14 C]PD0348183 was prepared from [ 14 C]BaCO 3 in a five-step synthesis in 16% radiochemical yield. Additionally, [D]PD0108405 and [D]PD0338055 were synthesized by direct platinum-catalyzed hydrogenation with deuterium gas. (author)

  7. Lead titanate nanotubes synthesized via ion-exchange method: Characteristics and formation mechanism

    International Nuclear Information System (INIS)

    Song Liang; Cao Lixin; Li Jingyu; Liu Wei; Zhang Fen; Zhu Lin; Su Ge

    2011-01-01

    Highlights: → Lead titanate nanotubes PbTi 3 O 7 were firstly synthesized by ion-exchange method. → Sodium titanate nanotubes have ion exchangeability. → Lead titanate nanotubes show a distinct red shift on absorption edge. - Abstract: A two-step method is presented for the synthesis of one dimensional lead titanate (PbTi 3 O 7 ) nanotubes. Firstly, titanate nanotubes were prepared by an alkaline hydrothermal process with TiO 2 nanopowder as precursor, and then lead titanate nanotubes were formed through an ion-exchange reaction. We found that sodium titanate nanotubes have ion exchangeability with lead ions, while protonated titanate nanotubes have not. For the first time, we distinguished the difference between sodium titanate nanotubes and protonated titanate nanotubes in the ion-exchange process, which reveals a layer space effect of nanotubes in the ion-exchange reaction. In comparison with sodium titanate, the synthesized lead titanate nanotubes show a narrowed bandgap.

  8. Quorum quenching and antibacterial activity of silver nanoparticles synthesized from Sargassum polyphyllum

    Directory of Open Access Journals (Sweden)

    Mani Arunkumar

    2014-03-01

    Full Text Available Development of efficient methodology for the green synthesis of silver nanoparticles using marine algae is a modern area of research in the field of phyconanotechnology. In this regard, the present study deals with green synthesis of silver nanoparticles (AgNPs by using aqueous extracts of marine brown seaweed Sargassum polyphyllum. UV-visible spectral analysis reveals the formation of AgNPs by showing absorption maximum at 420 nm wavelength and SEM analysis clearly elucidate the polydispersed structure of AgNPs without aggregation and ranged in size from 37-43 nm. X-ray Diffraction pattern confirmed the AgNPs crystalline personality. The synthesized AgNPs showed more enduring antibacterial activity against test bacterial pathogens. Furthermore, the synthesized AgNPs exhibited varying level of inhibition of violacein production and swarming motility. In the near future, silver nanoparticles can be extremely useful in clinical medicine as an alternative method for the treatment of wound infection.

  9. Synthesizing Zno Nanoparticles by High-Energy Milling and Investigating Their Antimicrobial Effect

    Directory of Open Access Journals (Sweden)

    N Mohammadi

    2015-07-01

    Results: The study results demonstrated that size of the synthesized nanoparticles was within the range of 20 -90 nm and their morphology was reported as nanorod and nanoparticles with multifaceted cross-section. An increase in the density of nanoparticles resulted in a rise in the antimicrobial effect. Moreover, Staphylococcus aureus bacteria inhibition zone was 3±0.5 and 7±0.5 mm respectively at the density of 6 and 10 mM. The MIC and MBC of ZnO nanoparticles provided for Staphylococcus aureus were observed 3±3 and 2.5±0 mg/ml, whereas they were reported 7.5±0 and 8±0 mg/ml for Escherichia coli bacteria. Conclusion: The findings of the present study revealed that ZnO nanomaterials could be synthesized by applying high-energy milling on micron-scaled ZnO particles. In addition, they can be utilized in food packaging and preservation process.

  10. Model-Based Referenceless Quality Metric of 3D Synthesized Images Using Local Image Description.

    Science.gov (United States)

    Gu, Ke; Jakhetiya, Vinit; Qiao, Jun-Fei; Li, Xiaoli; Lin, Weisi; Thalmann, Daniel

    2017-07-28

    New challenges have been brought out along with the emerging of 3D-related technologies such as virtual reality (VR), augmented reality (AR), and mixed reality (MR). Free viewpoint video (FVV), due to its applications in remote surveillance, remote education, etc, based on the flexible selection of direction and viewpoint, has been perceived as the development direction of next-generation video technologies and has drawn a wide range of researchers' attention. Since FVV images are synthesized via a depth image-based rendering (DIBR) procedure in the "blind" environment (without reference images), a reliable real-time blind quality evaluation and monitoring system is urgently required. But existing assessment metrics do not render human judgments faithfully mainly because geometric distortions are generated by DIBR. To this end, this paper proposes a novel referenceless quality metric of DIBR-synthesized images using the autoregression (AR)-based local image description. It was found that, after the AR prediction, the reconstructed error between a DIBR-synthesized image and its AR-predicted image can accurately capture the geometry distortion. The visual saliency is then leveraged to modify the proposed blind quality metric to a sizable margin. Experiments validate the superiority of our no-reference quality method as compared with prevailing full-, reduced- and no-reference models.

  11. Bioorthogonal Chemistry for the Isolation and Study of Newly Synthesized Histones and Their Modifications.

    Science.gov (United States)

    Arnaudo, Anna M; Link, A James; Garcia, Benjamin A

    2016-03-18

    The nucleosome is an octamer containing DNA wrapped around one histone H3-H4 tetramer and two histone H2A-H2B dimers. Within the nucleosome, histones are decorated with post-translational modifications. Previous studies indicate that the H3-H4 tetramer is conserved during DNA replication, suggesting that old tetramers serve as a template for the modification of newly synthesized tetramers. Here, we present a method that merges bioorthogonal chemistry with mass spectrometry for the study of modifications on newly synthesized histones in mammalian cells. HeLa S3 cells are dually labeled with the methionine analog azidohomoalanine and heavy (13)C6,(15)N4 isotope labeled arginine. Heavy amino acid labeling marks newly synthesized histones while azidohomoalanine incorporation allows for their isolation using bioorthogonal ligation. Labeled mononucleosomes were covalently linked via a copper catalyzed reaction to a FLAG-GGR-alkyne peptide, immunoprecipitated, and subjected to mass spectrometry for quantitative modification analysis. Mononucleosomes containing new histones were successfully isolated using this approach. Additionally, the development of this method highlights the potential deleterious effects of azidohomoalanine labeling on protein PTMs and cell cycle progression, which should be considered for future studies utilizing bioorthogonal labeling strategies in mammalian cells.

  12. Zeolite Synthesized from Coal Fly Ash Produced by a Gasification Process for Ni2+ Removal from Water

    Directory of Open Access Journals (Sweden)

    Yixin Zhang

    2018-03-01

    Full Text Available There are increasing demands and great potential of coal gasification in China, but there is a lack of studies focused on the disposal and utilization of coal fly ash produced by the gasification process. In this study, a coal fly ash sample derived from a gasifier in Jincheng, China, was utilized as raw material for the synthesis of zeolite by alkali fusion followed by hydrothermal treatments. The effects of operation conditions on the cation exchange capacity (CEC of synthesized zeolite were investigated. The synthesized zeolite with the highest CEC (270.4 meq/100 g, with abundant zeolite X and small amount of zeolite A, was produced by 1.5 h alkali fusion under 550 °C with NaOH/coal fly ash ratio 1.2 g/g followed by 15 h hydrothermal treatment under 90 °C with liquid/solid ratio 5 mL/g and applied in Ni2+ removal from water. The removal rate and the adsorption capacity of Ni2+ from water by the synthesized zeolite were determined at the different pH, contact time, adsorbent dose and initial Ni2+ concentration. The experimental data of adsorption were interpreted in terms of Freundlich and Langmuir equations. The adsorption of Ni2+ by the synthesized zeolite was found to fit sufficient using the Langmuir isotherm. More than 90% of Ni2+ in water could be removed by synthesized zeolite under the proper conditions. We show that the coal fly ash produced by the gasification process has great potential to be used as an alternative and cheap source in the production of adsorbents.

  13. Microalgae associated Brevundimonas sp. MSK 4 as the nano particle synthesizing unit to produce antimicrobial silver nanoparticles.

    Science.gov (United States)

    Rajamanickam, Karthic; Sudha, S S; Francis, Mebin; Sowmya, T; Rengaramanujam, J; Sivalingam, Periyasamy; Prabakar, Kandasamy

    2013-09-01

    The biosynthesis of silver nanoparticles and its antimicrobial property was studied using bacteria isolated from Spirulina products. Isolated bacteria were identified as Bacillus sp. MSK 1 (JX495945), Staphylococcus sp. MSK 2 (JX495946), Bacillus sp. MSK 3 (JX495947) and Brevundimonas sp. MSK 4 (JX495948). Silver nanoparticles (AgNPs) were synthesized using bacterial culture filtrate with AgNO3. The initial syntheses of Ag nanoparticles were characterized by UV-vis spectrophotometer (by measuring the color change to intense brown). Fourier Transform Infrared Spectroscopy (FTIR) study showed evidence that proteins are possible reducing agents and Energy-dispersive X-ray (EDX) study showing the metal silver as major signal. The structure of AgNPs was determined by Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Synthesized Ag nanoparticles with an average size of 40-65 nm have antimicrobial property against human pathogens like Proteus vulgaris, Salmonella typhi, Vibrio cholera, Streptococcus sp., Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. Among the isolates Brevundimonas sp. MSK 4 alone showed good activity in both synthesis of AgNPs and antimicrobial activity. This work demonstrates the possible use of biological synthesized silver nanoparticles to combat the drug resistant problem. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    OpenAIRE

    Yunqi Li; Bishnu Prasad Bastakoti; Yusuke Yamauchi

    2016-01-01

    This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially p...

  15. Stabilization and augmentation of circulating AIM in mice by synthesized IgM-Fc.

    Directory of Open Access Journals (Sweden)

    Toshihiro Kai

    Full Text Available Owing to rapid and drastic changes in lifestyle and eating habits in modern society, obesity and obesity-associated diseases are among the most important public health problems. Hence, the development of therapeutic approaches to regulate obesity is strongly desired. In view of previous work showing that apoptosis inhibitor of macrophage (AIM blocks lipid storage in adipocytes, thereby preventing obesity caused by a high-fat diet, we here explored a strategy to augment circulating AIM levels. We synthesized the Fc portion of the soluble human immunoglobulin (IgM heavy chain and found that it formed a pentamer containing IgJ as natural IgM does, and effectively associated with AIM in vitro. When we injected the synthesized Fc intravenously into mice lacking circulating IgM, it associated with endogenous mouse AIM, protecting AIM from renal excretion and preserving the circulating AIM levels. As the synthesized Fc lacked the antigen-recognizing variable region, it provoked no undesired immune response. In addition, a challenge with the Fc-human AIM complex in wild-type mice, which exhibited normal levels of circulating IgM and AIM, successfully maintained the levels of the human AIM in mouse blood. We also observed that the human AIM was effectively incorporated into adipocytes in visceral fat tissue, suggesting its functionality against obesity. Thus, our findings reveal potent strategies to safely increase AIM levels, which could form the basis for developing novel therapies for obesity.

  16. Defluoridation using biomimetically synthesized nano zirconium chitosan composite: Kinetic and equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumar Suranjit, E-mail: suranjit@gmail.com [Department of Environmental Biotechnology, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Anand, 388121 Gujarat (India); Amin, Yesha, E-mail: yesha_2879@yahoo.co.in [Department of Environmental Biotechnology, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Anand, 388121 Gujarat (India); Selvaraj, Kaliaperumal, E-mail: k.selvaraj@ncl.res.in [Nano and Computational Materials Lab, Catalysis Division, National Chemical Laboratory, Council of Scientific and Industrial Research, Pune 411008 (India)

    2014-07-15

    Highlights: • Colloidal Zr nanoparticles, synthesized using Aloe vera extract were entrapped in chitosan beads. • Zr loaded beads were employed for removal of F{sup −} ion and showed excellent removal efficiency. • Zr and chitosan are cost effective materials hence can be a good adsorbent for removal of fluoride. - Abstract: The present study reports a novel approach for synthesis of Zr nanoparticles using aqueous extract of Aloe vera. Resulting nanoparticles were embedded into chitosan biopolymer and termed as CNZr composite. The composite was subjected to detailed adsorption studies for removal of fluoride from aqueous solution. The synthesized Zr nanoparticles showed UV–vis absorption peak at 420 nm. TEM result showed the formation of polydispersed, nanoparticles ranging from 18 nm to 42 nm. SAED and XRD analysis suggested an fcc (face centered cubic) Zr crystallites. EDAX analysis suggested that Zr was an integral component of synthesized nanoparticles. FT-IR study indicated that functional group like -NH, -C=O, -C=N and -C=C were involved in particle formation. The adsorption of fluoride on to CNZr composite worked well at pH 7.0, where ∼99% of fluoride was found to be adsorbed on adsorbent. Langmuir isotherm model best fitted the equilibrium data since it presented higher R{sup 2} value than Freundlich model. In comparison to pseudo-first order kinetic model, the pseudo-second order model could explain adsorption kinetic behavior of F{sup −} onto CNZr composite satisfactorily with a good correlation coefficient. The present study revealed that CNZr composite may work as an effective tool for removal of fluoride from contaminated water.

  17. Diffusion of water and ethanol in silicalite crystals synthesized in fluoride media

    KAUST Repository

    Zhang, Ke

    2013-04-01

    Diffusion of water and ethanol in silicalite has been studied in large crystals (70 μm × 30 μm × 15 μm) synthesized via a fluoride mediated route. The near-perfect hydrophobic silicalite (F-) crystals have very few internal silanol defects and, as a result, display water and ethanol transport behavior that is uncontaminated by these defects. The transport diffusivity (Dt) of ethanol is higher than that of water at the same sorbate activity. However, this difference is due to the difference in the shape of the isotherms. The thermodynamically corrected diffusivity (D o) of water is almost an order of magnitude higher than that of ethanol reflecting the difference in molecular size. Estimates of the permeability/permselectivity/separation factors for ethanol/water separation based on the present kinetic and equilibrium data for the fluoride synthesized crystals are compared with the values observed for traditional silicalite membranes. The present diffusivity values for fluoride synthesized silicalite are similar to the values for regular silicalite (OH-) derived from uptake rate measurements but much smaller (by more than four orders of magnitude) than the self-diffusivities derived from PFG-NMR measurements. This result is consistent with the results of other measurements of the diffusion of small molecules in silicalite which suggest that, in macroscopic measurements, the rate of intra-crystalline transport is controlled by the sub-structure (extensive twinning), rather than by diffusion in the ideal MFI micropores. In this situation microscale measurements such as PFG-NMR will lead to erroneously high estimates of transport rates and therefore of permeability and permselectivity. © 2012 Elsevier Inc. All rights reserved.

  18. Diffusion of water and ethanol in silicalite crystals synthesized in fluoride media

    KAUST Repository

    Zhang, Ke; Lively, Ryan P.; Dose, Michelle E.; Li, Liwei; Koros, William J.; Ruthven, Douglas M.; McCool, Benjamin A.; Chance, Ronald R.

    2013-01-01

    Diffusion of water and ethanol in silicalite has been studied in large crystals (70 μm × 30 μm × 15 μm) synthesized via a fluoride mediated route. The near-perfect hydrophobic silicalite (F-) crystals have very few internal silanol defects and, as a result, display water and ethanol transport behavior that is uncontaminated by these defects. The transport diffusivity (Dt) of ethanol is higher than that of water at the same sorbate activity. However, this difference is due to the difference in the shape of the isotherms. The thermodynamically corrected diffusivity (D o) of water is almost an order of magnitude higher than that of ethanol reflecting the difference in molecular size. Estimates of the permeability/permselectivity/separation factors for ethanol/water separation based on the present kinetic and equilibrium data for the fluoride synthesized crystals are compared with the values observed for traditional silicalite membranes. The present diffusivity values for fluoride synthesized silicalite are similar to the values for regular silicalite (OH-) derived from uptake rate measurements but much smaller (by more than four orders of magnitude) than the self-diffusivities derived from PFG-NMR measurements. This result is consistent with the results of other measurements of the diffusion of small molecules in silicalite which suggest that, in macroscopic measurements, the rate of intra-crystalline transport is controlled by the sub-structure (extensive twinning), rather than by diffusion in the ideal MFI micropores. In this situation microscale measurements such as PFG-NMR will lead to erroneously high estimates of transport rates and therefore of permeability and permselectivity. © 2012 Elsevier Inc. All rights reserved.

  19. Water linked 3D coordination polymers: Syntheses, structures and applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suryabhan, E-mail: sbs.bhu@gmail.com; Bhim, Anupam

    2016-12-15

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H{sub 2}O)(H{sub 2}O)]{sub n}1, [Pb(OBA)(μ-H{sub 2}O)]{sub n}2 [where OBA=4,4’-Oxybis(benzoate)] and [Pb(SDBA)(H{sub 2}O)]{sub n}.1/4DMF 3 (SDBA=4,4’-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]{sub n}4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH{sub 4} at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives. - Graphical abstract: Three new CPs based on Cd and Pb, have been synthesized and characterized. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. One of the CP is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol. Luminescence studies shown that all CPs could be an effective sensor for nitroaromatic explosives. - Highlights: • Three new CPs based on Cd and Pb, have been synthesized and characterized. • A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. • One of the CP is used as supporting matrix for palladium nanoparticles, PdNPs@4. • Luminescence studies shown that all CPs could be an effective sensor for nitroaromatic explosives.

  20. Plasma Synthesized Doped Boron Nanopowder for MgB2 Superconductors

    International Nuclear Information System (INIS)

    Marzik, James V.

    2012-01-01

    Under this program, a process to synthesize nano-sized doped boron powder by a plasma synthesis process was developed and scaled up from 20 gram batches at program start to over 200 grams by program end. Over 75 batches of boron nanopowder were made by RF plasma synthesis. Particle sizes were typically in the 20-200 nm range. The powder was synthesized by the reductive pyrolysis of BCl 3 in hydrogen in an RF plasma. A wide range of process parameters were investigated including plasma power, torch geometry, gas flow rates, and process pressure. The powder-in-tube technique was used to make monofilament and multifilament superconducting wires. MgB 2 wire made with Specialty Materials plasma synthesized boron nanopowder exhibited superconducting properties that significantly exceeded the program goals. Superconducting critical currents, J c , in excess of 10 5 A cm -2 at magnetic fields of 8 tesla were reproducibly achieved. The upper critical magnetic field in wires fabricated with program boron powder were H c2 (0) = 37 tesla, demonstrating the potential of these materials for high field magnet applications. T c in carbon-doped MgB 2 powder showed a systematic decrease with increasing carbon precursor gas flows, indicating the plasma synthesis process can give precise control over dopant concentrations. Synthesis rates increased by a factor of 400% over the course of the program, demonstrating the scalability of the powder synthesis process. The plasma synthesis equipment at Specialty Materials has successfully and reproducibly made high quality boron nanopowder for MgB 2 superconductors. Research and development from this program enabled Specialty Materials to successfully scale up the powder synthesis process by a factor of ten and to double the size of its powder pilot plant. Thus far the program has been a technical success. It is anticipated that continued systematic development of plasma processing parameters, dopant chemistry and concentration, wire

  1. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  2. Three-dimensional imaging using computer-generated holograms synthesized from 3-D Fourier spectra

    International Nuclear Information System (INIS)

    Yatagai, Toyohiko; Miura, Ken-ichi; Sando, Yusuke; Itoh, Masahide

    2008-01-01

    Computer-generated holograms(CGHs) synthesized from projection images of real existing objects are considered. A series of projection images are recorded both vertically and horizontally with an incoherent light source and a color CCD. According to the principles of computer tomography(CT), the 3-D Fourier spectrum is calculated from several projection images of objects and the Fresnel CGH is synthesized using a part of the 3-D Fourier spectrum. This method has following advantages. At first, no-blur reconstructed images in any direction are obtained owing to two-dimensionally scanning in recording. Secondarily, since not interference fringes but simple projection images of objects are recorded, a coherent light source is not necessary. Moreover, when a color CCD is used in recording, it is easily possible to record and reconstruct colorful objects. Finally, we demonstrate reconstruction of biological objects.

  3. Three-dimensional imaging using computer-generated holograms synthesized from 3-D Fourier spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yatagai, Toyohiko; Miura, Ken-ichi; Sando, Yusuke; Itoh, Masahide [University of Tsukba, Institute of Applied Physics, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan)], E-mail: yatagai@cc.utsunomiya-u.ac.jp

    2008-11-01

    Computer-generated holograms(CGHs) synthesized from projection images of real existing objects are considered. A series of projection images are recorded both vertically and horizontally with an incoherent light source and a color CCD. According to the principles of computer tomography(CT), the 3-D Fourier spectrum is calculated from several projection images of objects and the Fresnel CGH is synthesized using a part of the 3-D Fourier spectrum. This method has following advantages. At first, no-blur reconstructed images in any direction are obtained owing to two-dimensionally scanning in recording. Secondarily, since not interference fringes but simple projection images of objects are recorded, a coherent light source is not necessary. Moreover, when a color CCD is used in recording, it is easily possible to record and reconstruct colorful objects. Finally, we demonstrate reconstruction of biological objects.

  4. Structure of the enzymatically synthesized fructan inulin

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, A.G.; Schroeer, B. [Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Karl-Liebknecht-Str. 25, 14476 Golm (Germany); Radosta, S. [Fraunhofer-Institut fuer Angewandte Polymerforschung, Postfach 126, 14504 Teltow (Germany); Wolff, D.; Czapla, S.; Springer, J. [Technische Universitaet Berlin, FG Makromolekulare Chemie, Str. des 17. Juni 135, 10623 Berlin (Germany)

    1998-12-15

    Construction, purification and characterization of a fusion protein of maltose-binding protein of Escherichia coli and the fructosyltransferase of Streptococcus mutans is described. With the purified protein, in vitro synthesis of inulin was performed. The obtained polysaccharide was characterized by high-performance size-exclusion chromatography (HPSEC) and static light scattering (SLS) in dilute aqueous and dimethyl sulfoxide solution. For all samples very high molecular weights between 60x10{sup 6} and 90x10{sup 6} g/mol and a remarkable small polydispersity index of 1.1 have been determined. Small root-mean-square radii of gyration point to a compact conformation in dilute solution. No difference between native and enzymatically synthesized inulin was observed by X-ray powder diffraction and thermoanalysis of solid samples. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes

    International Nuclear Information System (INIS)

    Köferstein, Roberto; Buttlar, Toni; Ebbinghaus, Stefan G.

    2014-01-01

    The syntheses of phase-pure and stoichiometric iron sillenite (Bi 25 FeO 40 ) powders by a hydrothermal (at ambient pressure) and a combustion-like process are described. Phase-pure samples were obtained in the hydrothermal reaction at 100 °C (1), whereas the combustion-like process leads to pure Bi 25 FeO 40 after calcination at 750 °C for 2 h (2a). The activation energy of the crystallite growth process of hydrothermally synthesized Bi 25 FeO 40 was calculated as 48(9) kJ mol −1 . The peritectic point was determined as 797(1) °C. The optical band gaps of the samples are between 2.70(7) eV and 2.81(6) eV. Temperature and field-depending magnetization measurements (5−300 K) show a paramagnetic behaviour with a Curie constant of 55.66×10 −6 m 3 K mol −1 for sample 1 and C=57.82×10 −6 m 3 K mol −1 for sample 2a resulting in magnetic moments of µ mag =5.95(8) µ B mol −1 and µ mag =6.07(4) µ B mol −1 . The influence of amorphous iron-oxide as a result of non-stoichiometric Bi/Fe ratios in hydrothermal syntheses on the magnetic behaviour was additionally investigated. - Graphical abstract: Bi 25 FeO 40 powders were prepared by a hydrothermal method and a combustion process. The optical band gaps and the peritectic point were determined. The magnetic behaviour was investigated depending on the synthesis and the initial Bi/Fe ratios. The influence of amorphous iron-oxide on the magnetic properties was examined. - Highlights: • Two simple syntheses routes for stoichiometric Bi 25 FeO 40 powders using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the syntheses. • Determination of the optical band gap and melting point. • Investigations of the magnetic behaviour of Bi 25 FeO 40 powders. • Influence of amorphous iron oxide and a non-stoichiometric Bi/Fe ratio on the magnetic behaviour

  6. and α-Fe 2 O 3 nano powders synthesized by emulsion precipitation

    African Journals Online (AJOL)

    Nano crystals of γ-Fe2O3 (maghemite) were synthesized by emulsion precipitation method using kerosene as oil phase, SPAN- 80 (sorbitane monooleate) as the surfactant and sodium hydroxide as the precipitating agent. The characterization of the samples by FTIR (Fourier transform infra-red) and XRD (X-ray diffraction) ...

  7. Characterization and Neutron Shielding Behavior of Dehydrated Magnesium Borate Minerals Synthesized via Solid-State Method

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun Kipcak

    2013-01-01

    Full Text Available Magnesium borates are one of the major groups of boron minerals that have good neutron shielding performance. In this study, dehydrated magnesium borates were synthesized by solid-state method using magnesium oxide (MgO and boron oxide (B2O3, in order to test their ability of neutron shielding. After synthesizing the dehydrated magnesium borates, characterizations were done by X-ray Diffraction (XRD, fourier transform infrared (FT-IR, Raman spectroscopy, and scanning electron microscopy (SEM. Also boron oxide (B2O3 contents and reaction yields (% were calculated. XRD results showed that seven different types of dehydrated magnesium borates were synthesized. 1000°C reaction temperature, 240 minutes of reaction time, and 3 : 2, 1 : 1 mole ratios of products were selected and tested for neutron transmission. Also reaction yields were calculated between 84 and 88% for the 3 : 2 mole ratio products. The neutron transmission experiments revealed that the 3 : 2 mole ratio of MgO to B2O3 neutron transmission results (0.618–0.655 was better than the ratio of 1 : 1 (0.772–0.843.

  8. A fully integrated multi-standard frequency synthesizer for GNSS receivers with cellular network positioning capability

    Science.gov (United States)

    Bin, Li; Xiangning, Fan; Wei, Li; Li, Zhang; Zhigong, Wang

    2013-01-01

    A fully integrated hybrid integer/fractional frequency synthesizer is presented. With a single multiband voltage-controlled-oscillator (VCO), the frequency synthesizer can support GPS, Galileo, Compass and TD-SCDMA standards. Design is carefully performed to trade off power, die area and phase noise performance. By reconfiguring between the integer mode and fractional mode, different frequency resolution requirements and a constant loop bandwidth for each standard can be achieved simultaneously. Moreover, a long sequence length, reduced hardware complexity multi-stage-noise-shaping (MASH) Δ-Σ modulator is employed to reduce fractional spur in the fractional mode. Fabricated in a 0.18 μm CMOS technology, the frequency synthesizer occupies an active area of 1.48 mm2 and draws a current of 13.4-16.2 mA from a 1.8 V power supply. The measured phase noise is lower than -80 dBc/Hz at 100 kHz offset and -113 to -124 dBc/Hz at 1 MHz offset respectively, while the measured reference spur is -71 dBc in integer mode and the fractional spur is -65 dBc in fractional mode.

  9. A fully integrated multi-standard frequency synthesizer for GNSS receivers with cellular network positioning capability

    International Nuclear Information System (INIS)

    Li Bin; Fan Xiangning; Li Wei; Zhang Li; Wang Zhigong

    2013-01-01

    A fully integrated hybrid integer/fractional frequency synthesizer is presented. With a single multiband voltage-controlled-oscillator (VCO), the frequency synthesizer can support GPS, Galileo, Compass and TD-SCDMA standards. Design is carefully performed to trade off power, die area and phase noise performance. By reconfiguring between the integer mode and fractional mode, different frequency resolution requirements and a constant loop bandwidth for each standard can be achieved simultaneously. Moreover, a long sequence length, reduced hardware complexity multi-stage-noise-shaping (MASH) Δ−Σ modulator is employed to reduce fractional spur in the fractional mode. Fabricated in a 0.18 μm CMOS technology, the frequency synthesizer occupies an active area of 1.48 mm 2 and draws a current of 13.4–16.2 mA from a 1.8 V power supply. The measured phase noise is lower than −80 dBc/Hz at 100 kHz offset and −113 to −124 dBc/Hz at 1 MHz offset respectively, while the measured reference spur is −71 dBc in integer mode and the fractional spur is −65 dBc in fractional mode. (semiconductor integrated circuits)

  10. A colloidal assembly approach to synthesize magnetic porous composite nanoclusters for efficient protein adsorption

    Science.gov (United States)

    Yang, Qi; Lan, Fang; Yi, Qiangying; Wu, Yao; Gu, Zhongwei

    2015-10-01

    A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation.A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c5nr05800g

  11. Mechanochemically Driven Syntheses of Boride Nanomaterials

    Science.gov (United States)

    Blair, Richard G.

    Solid state metathesis reactions have proven to be a viable route to the production of unfunctionalized nanomaterials. However, current implementations of this approach are limited to self-propagating reactions. We have been investigating mechanically driven metathesis reactions. The use of high-energy ball mills allows control of crystallite sizes without the use of a capping group. Reinforcement materials with crystallite sizes on the order of 5-30 nm can be produced in such a manner. Borides are of particular interest due to their strength, high melting point, and electrical conductivity. The ultimate goal of this work is to prepare oxide and capping group-free nanoparticles suitable for incorporation in thermoelectric, polymer, and ceramic composites. Ultimately this work will facilitate the production of improved thermoelectric materials that will provide robust, deployable, power generation modules to supplement or replace fuel cell, Stirling, and battery-derived power sources. It will also result in scalable, bulk syntheses of tough, refractory, conductive nanomaterials for polymer composites with improved electrical properties, ceramic composites with enhanced fracture toughness, and composites with enhanced neutron reflectance and/or absorbance.

  12. Emergent Themes from Recent Research Syntheses in Science Education and Their Implications for Research Design, Replication, and Reporting Practices

    Science.gov (United States)

    Taylor, Joseph; Furtak, Erin; Kowalski, Susan; Martinez, Alina; Slavin, Robert; Stuhlsatz, Molly; Wilson, Christopher

    2016-01-01

    This article draws upon the experiences of four recent efforts to synthesize the findings of quantitative studies in science education research. After establishing the need for research syntheses in advancing generalizable knowledge and causal effects research in our field, we identify a set themes that emerged in the process of conducting these…

  13. Antibacterial effect of silk treated with silver and copper nanoparticles synthesized by pulsed laser ablation in distilled water

    Science.gov (United States)

    Baruah, Prahlad K.; Raman, Moghe A.; Chakrabartty, Ishani; Rangan, Latha; Sharma, Ashwini K.; Khare, Alika

    2018-05-01

    The antibacterial activity of three kinds of silks viz. Eri, Pat and Muga treated with silver and copper nanoparticles is reported in this paper. The nanoparticles have been synthesized by pulsed laser ablation of the respective metal targets in distilled water. Treatment of the silk pellets with the synthesized nanoparticles exhibited definite antibacterial activity whereas no such activity is observed in the untreated silk pellets.

  14. Evaluation of tetraethoxysilane (TEOS) sol–gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, A. Nithya Deva; Vimala, R., E-mail: vimala.r@vit.ac.in

    2016-04-01

    Green synthesis of zinc oxide nanoparticles (ZnO-NPs) is gaining importance as an eco-friendly alternative to conventional methods due to its enormous applications. The present work reports the synthesis of ZnO-NPs using the endosperm of Cocos nucifera (coconut water) and the bio-molecules responsible for nanoparticle formation have been identified. The synthesized nanoparticles were characterized using UV–Visible spectroscopy (UV–Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Zeta potential measurement. The results obtained reveal that the synthesized nanoparticles are moderately stable with the size ranging from 20 to 80 nm. The bactericidal effect of the nanoparticles was proved by well diffusion assay and determination of minimum inhibitory concentration (MIC) against marine biofilm forming bacteria. Further the green synthesized ZnO-NPs were doped with TEOS sol–gels (TESGs) in order to assess their antimicrofouling capability. Different volumes of liquid sol–gels were coated on to 96-well microtitre plate and cured under various conditions. The optimum curing conditions were found to be temperature 60 °C, time 72 h and volume 200 μl. Antiadhesion test of the undoped (SG) and ZnO-NP doped TEOS sol–gel (ZNSG) coatings were evaluated using marine biofilm forming bacteria. ZNSG coatings exhibited highest biofilm inhibition (89.2%) represented by lowest OD value against Pseudomonasotitidis strain NV1. - Highlights: • The study reports low cost, and simple procedure for the synthesis of ZnO-NPs using coconut water. • XRD result shows the high crystalline nature of the synthesized ZnO-NPs. • TEM and zeta potential distribution confirms the nanostructure, stability of the synthesized ZnO-NPs. • ZnO-NPs doped with TEOS sol¬-gels (TESGs) exhibited excellent antimicrofouling activity.

  15. Evaluation of immunoglobulin G synthesizing plasma cells in periapical granuloma and cyst.

    OpenAIRE

    Grover N; Rao N; Kotian M

    2001-01-01

    Immunoglobulin synthesizing plasma cells for IgG were quantitated in 20 periapical granulomas and 20 periapical cysts, using unlabelled antibody peroxidase-antiperoxidase complex method. Result showed that immunoglobulin G producing plasma cells were predominant in periapical cyst as compared with periapical granuloma. A statistical significant relation was observed between these two lesions.

  16. Quasi-experimental study designs series-paper 11: supporting the production and use of health systems research syntheses that draw on quasi-experimental study designs.

    Science.gov (United States)

    Lavis, John N; Bärnighausen, Till; El-Jardali, Fadi

    2017-09-01

    To describe the infrastructure available to support the production of policy-relevant health systems research syntheses, particularly those incorporating quasi-experimental evidence, and the tools available to support the use of these syntheses. Literature review. The general challenges associated with the available infrastructure include their sporadic nature or limited coverage of issues and countries, whereas the specific ones related to policy-relevant syntheses of quasi-experimental evidence include the lack of mechanism to register synthesis titles and scoping review protocols, the limited number of groups preparing user-friendly summaries, and the difficulty of finding quasi-experimental studies for inclusion in rapid syntheses and research syntheses more generally. Although some new tools have emerged in recent years, such as guidance workbooks and citizen briefs and panels, challenges related to using available tools to support the use of policy-relevant syntheses of quasi-experimental evidence arise from such studies potentially being harder for policymakers and stakeholders to commission and understand. Policymakers, stakeholders, and researchers need to expand the coverage and institutionalize the use of the available infrastructure and tools to support the use of health system research syntheses containing quasi-experimental evidence. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  18. SWAXS investigations on diffuse boundary nanostructures of metallic nanoparticles synthesized by electrical discharges

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaoai, E-mail: xiaoai.guo@kit.edu; Gutsche, Alexander; Nirschl, Hermann [Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics (Germany)

    2013-11-15

    Metallic nanoparticles have attracted a particular interest in scientific research and industrial applications due to their unique size-dependent physical and chemical properties. An eco-friendly and cost-effective synthesis method called electrical discharge enables large scale production of metallic nanoparticles. Systematic investigations of such synthesized metallic nanoparticles help to optimize the synthesis process and improve the product quality. In this work, for the first time we have investigated the diffuse interfacial boundary nanostructures of the metallic nanoparticles, which were synthesized under different conditions by electrical glow and arc discharges in the carrier gas, by means of a small- and wide-angle X-ray scattering (SWAXS) technique using a laboratory X-ray source. Meanwhile, this unique SWAXS technique allows simultaneous study of the primary particle size, morphology, and crystallinity. The metallic nanoparticles (copper and nickel) under investigation cover a size range of 10–80 nm, and the determined thickness of the diffuse boundary nanostructured layer of metallic nanoparticles is in the range of 1–3 nm. The experimental results obtained by SWAXS were compared to the TEM/EDX observation and the XRD reference patterns from RRUFF database, and a good agreement was found. Our SWAXS investigations indicated that the existence of a diffuse nanostructured solid layer on the synthesized metallic nanoparticle surface causes a negative deviation of the scattering intensity (Ι∝q{sup -α}, α>4) from Porod’s law which corresponds to the case of ideal two-phase particle systems with sharp boundaries (Ι∝q{sup -α}, α=4) . This implies that the electron density profile is not sharp but changes gradually between two phases, and hence the exponent α is greater than four. Two electron density profile models, sigmoidal electron-density gradient model and linear electron-density gradient model, have been taken into account in

  19. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line

    Institute of Scientific and Technical Information of China (English)

    Fathima Stanley Rosarin; Vadivel Arulmozhi; Samuthira Nagarajan; Sankaran Mirunalini

    2013-01-01

    Objective: To synthesize silver nanoparticles by amla extract, screen the cytotoxic, oxidative stress and apoptotic effect of silver nanoparticles (AgNPs) on Hep2 cell line (laryngeal carcinoma cells) in vitro, and to compare the effect of Phyllanthus emblica (P. emblica) (amla) with AgNPs synthesized by amla and 5-FU. Methods: AgNPs was synthesized by P. emblica (aqueous extract) and nanoparticles were characterized UV-Vis spec, the presence of biomoloecules of amla capped in AgNPs was found by FT-IR analysis, shape and size were examined by SEM and DLS. Cytotoxicity of experimental drugs was tested to find IC50 value. ROS generation in cells have been measured by DCFH-DA staining, AO-EtBr, Rhodamine-123 staining and DNA fragmentation were performed to assess apoptotic cell death, mitochondrial membrane potential and apoptotic DNA damage, respectively. Oxidative stress was analyzed by measuring lipid peroxides and antioxidants level to understand the cancer cell death by pro-oxidant mechanism.Results:PE-AgNPs was synthesized and confirmed through kinetic behavior of NPs. The shape of PE-AgNPs was spherical and cubic since it was agglomerated, and the nanoparticle surface was complicated. Average particle size distribution of PE-AgNPs was found to be 188 nm. Potent biomolecules of P. emblica such as polyphenols were capped with AgNPs and reduced its toxicity. In cytotoxicity assay the concentration in which the maximum number of cell death was 60 μg/mL and 50 μg/mL for P. emblica (alone) and AgNPs, respectively and IC50 values were fixed as 30 μg/mL and 20 μg/mL. ROS generation, apoptotic morphological changes, mitochondrial depolarization, DNA damage and oxidative stress was observed as more in AgNPs treated cells than in P. emblica (30 μg/mL) (alone) treated cells and 5-FU treated cells gave similar result.Conclusions:The results suggest that the AgNPs are capped with biomolecules of amla enhanced cytotoxicity in laryngeal cancer cells through oxidative

  20. Thermal and optical characterization of biologically synthesized ZnS nanoparticles synthesized from an endophytic fungus Aspergillus flavus: A colorimetric probe in metal detection.

    Science.gov (United States)

    Uddandarao, Priyanka; Balakrishnan, Raj Mohan

    2017-03-15

    Nanostructured semiconductor materials are of great importance for several technological applications due to their optical and thermal properties. The design and fabrication of metal sulfide nanoparticles with tunable properties for advanced applications have drawn a great deal of attention in the field of nanotechnology. ZnS is a potential II-IV group material which is used in hetero-junction solar cells, light emitting diodes, optoelectronic devices, electro luminescent devices and photovoltaic cells. Due to their multiple applications, there is a need to elucidate their thermal and optical properties. In the present study, thermal and optical properties of biologically synthesized ZnS nanoparticles are determined in detail with Thermal Gravimetric Analysis (TGA), Derivative Thermogravimetric Analysis (DTG), Differential Scanning Calorimeter (DSC), Diffuse Reflectance Spectroscopy (DRS), Photoluminescence (PL) and Raman spectroscopy. The results reveal that ZnS NPs exhibit a very strong quantum confinement with a significant increase in their optical band gap energy. These biologically synthesized ZnS NPs contain protein residues that can selectively bind with metal ions in aqueous solutions and can exhibit an aggregation-induced color change. This phenomenon is utilized to quantitatively measure the metal concentrations of Cu 2+ and Mn 2+ in this study. Further the stability of nanoparticles for the metal sensing process is accessed by UV-Vis spectrometer, zeta potential and cyclic voltammeter. The selectivity and sensitivity of ZnS NPs indicate its potential use as a sensor for metal detection in the ecosystem. Copyright © 2016 Elsevier B.V. All rights reserved.