WorldWideScience

Sample records for chemistry analytical

  1. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  2. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-15

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  3. Analytical chemistry

    International Nuclear Information System (INIS)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-01

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  4. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  5. Analytical Chemistry as Methodology in Modern Pure and Applied Chemistry

    OpenAIRE

    Honjo, Takaharu

    2001-01-01

    Analytical chemistry is an indispensable methodology in pure and applied chemistry, which is often compared to a foundation stone of architecture. In the home page of jsac, it is said that analytical chemistry is a learning of basic science, which treats the development of method in order to get usefull chemical information of materials by means of detection, separation, and characterization. Analytical chemistry has recently developed into analytical sciences, which treats not only analysis ...

  6. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    Directory of Open Access Journals (Sweden)

    Marek Tobiszewski

    2015-06-01

    Full Text Available The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  7. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    Science.gov (United States)

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-06-12

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  8. Analytical chemistry

    International Nuclear Information System (INIS)

    Choi, Jae Seong

    1993-02-01

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  9. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Seong

    1993-02-15

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  10. Modern Analytical Chemistry in the Contemporary World

    Science.gov (United States)

    Šíma, Jan

    2016-01-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among…

  11. Making Decisions by Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    . These discrepancies are very unfortunate because erroneous conclusions may arise from an otherwise meticulous and dedicated effort of research staff. This may eventually lead to unreliable conclusions thus jeopardizing investigations of environmental monitoring, climate changes, food safety, clinical chemistry......It has been long recognized that results of analytical chemistry are not flawless, owing to the fact that professional laboratories and research laboratories analysing the same type of samples by the same type of instruments are likely to obtain significantly different results. The European......, forensics and other fields of science where analytical chemistry is the key instrument of decision making. In order to elucidate the potential origin of the statistical variations found among laboratories, a major program was undertaken including several analytical technologies where the purpose...

  12. Quo vadis, analytical chemistry?

    Science.gov (United States)

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  13. Proceedings of the 11. ENQA: Brazilian meeting on analytical chemistry. Challenges for analytical chemistry in the 21st century. Book of Abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    The 11th National Meeting on Analytical Chemistry was held from 18 to 21 September, 2001 at the Convention Center of UNICAMP, with the theme Challenges for Analytical Chemistry in the 21st Century. This meeting have discussed on the development of new methods and analytical tools needed to solve new challenges. The papers presented topics related to the different sub-areas of Analytical Chemistry such as Environmental Chemistry; Chemiometry techniques; X-ray Fluorescence Analysis; Spectroscopy; Separation Processes; Electroanalytic Chemistry and others. Were also included lectures on the Past and Future of Analytical Chemistry and on Ethics in Science

  14. Information theory in analytical chemistry

    National Research Council Canada - National Science Library

    Eckschlager, Karel; Danzer, Klaus

    1994-01-01

    Contents: The aim of analytical chemistry - Basic concepts of information theory - Identification of components - Qualitative analysis - Quantitative analysis - Multicomponent analysis - Optimum analytical...

  15. Problem-based learning on quantitative analytical chemistry course

    Science.gov (United States)

    Fitri, Noor

    2017-12-01

    This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.

  16. Analytical Chemistry Laboratory: Progress report for FY 1988

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1988-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  17. Analytical Chemistry Laboratory progress report for FY 1989

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1989-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  18. Analytical Chemistry Laboratory: Progress report for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1988-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  19. Analytical Chemistry Laboratory progress report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

    1991-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  20. Analytical Chemistry and Measurement Science: (What Has DOE Done for Analytical Chemistry?)

    Science.gov (United States)

    Shults, W. D.

    1989-04-01

    Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or were brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business.

  1. Analytical Chemistry Division's sample transaction system

    International Nuclear Information System (INIS)

    Stanton, J.S.; Tilson, P.A.

    1980-10-01

    The Analytical Chemistry Division uses the DECsystem-10 computer for a wide range of tasks: sample management, timekeeping, quality assurance, and data calculation. This document describes the features and operating characteristics of many of the computer programs used by the Division. The descriptions are divided into chapters which cover all of the information about one aspect of the Analytical Chemistry Division's computer processing

  2. Analytical Chemistry Laboratory

    Science.gov (United States)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  3. Improving Conceptions in Analytical Chemistry: The Central Limit Theorem

    Science.gov (United States)

    Rodriguez-Lopez, Margarita; Carrasquillo, Arnaldo, Jr.

    2006-01-01

    This article describes the central limit theorem (CLT) and its relation to analytical chemistry. The pedagogic rational, which argues for teaching the CLT in the analytical chemistry classroom, is discussed. Some analytical chemistry concepts that could be improved through an understanding of the CLT are also described. (Contains 2 figures.)

  4. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  5. Nuclear analytical chemistry

    International Nuclear Information System (INIS)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection

  6. Analytical chemistry

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The division for Analytical Chemistry continued to try and develope an accurate method for the separation of trace amounts from mixtures which, contain various other elements. Ion exchange chromatography is of special importance in this regard. New separation techniques were tried on certain trace amounts in South African standard rock materials and special ceramics. Methods were also tested for the separation of carrier-free radioisotopes from irradiated cyclotron discs

  7. Analytical chemistry: Principles and techniques

    International Nuclear Information System (INIS)

    Hargis, L.G.

    1988-01-01

    Although this text seems to have been intended for use in a one-semester course in undergraduate analytical chemistry, it includes the range of topics usually encountered in a two-semester introductory course in chemical analysis. The material is arranged logically for use in a two-semester course: the first 12 chapters contain the subjects most often covered in the first term, and the next 10 chapters pertain to the second (instrumental) term. Overall breadth and level of treatment are standards for an undergraduate text of this sort, and the only major omission is that of kinetic methods (which is a common omission in analytical texts). In the first 12 chapters coverage of the basic material is quite good. The emphasis on the underlying principles of the techniques rather than on specifics and design of instrumentation is welcomed. This text may be more useful for the instrumental portion of an analytical chemistry course than for the solution chemistry segment. The instrumental analysis portion is appropriate for an introductory textbook

  8. International Congress on Analytical Chemistry. Abstracts. V. 1

    International Nuclear Information System (INIS)

    1997-01-01

    The collection of materials of the international congress on analytical chemistry taken place in Moscow in June 1997. The main directs of investigations in such regions of analytical chemistry as quantitative and qualitative analysis, microanalysis, sample preparation and preconcentration, analytical reagents, chromatography and related techniques, flow analysis, electroanalytical and kinetic methods sensors are elucidated

  9. Analytical Chemistry Laboratory. Progress report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  10. Radionuclides in analytical chemistry

    International Nuclear Information System (INIS)

    Tousset, J.

    1984-01-01

    Applications of radionuclides in analytical chemistry are reviewed in this article: tracers, radioactive sources and activation analysis. Examples are given in all these fields and it is concluded that these methods should be used more widely [fr

  11. Analytical Chemistry Laboratory progress report for FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.

  12. Analytical Chemistry Laboratory progress report for FY 1985

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab

  13. Analytical spectroscopy. Analytical Chemistry Symposia Series, Volume 19

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1984-01-01

    This book contains papers covering several fields in analytical chemistry including lasers, mass spectrometry, inductively coupled plasma, activation analysis and emission spectroscopy. Separate abstracting and indexing was done for 64 papers in this book

  14. 4. Danish symposium in analytical chemistry

    International Nuclear Information System (INIS)

    1996-01-01

    At the 4th Danish Symposium of Analytical Chemistry 11 lectures and 32 posters were presented during two session days on the 20 and 21 August 1996. Various analytical techniques were discussed for foodstuff, pesticide, pharmaceutical, industrial and other analyses. (EG)

  15. Course on Advanced Analytical Chemistry and Chromatography

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Fristrup, Peter; Nielsen, Kristian Fog

    2011-01-01

    Methods of analytical chemistry constitute an integral part of decision making in chemical research, and students must master a high degree of knowledge, in order to perform reliable analysis. At DTU departments of chemistry it was thus decided to develop a course that was attractive to master...... students of different direction of studies, to Ph.D. students and to professionals that need an update of their current state of skills and knowledge. A course of 10 ECTS points was devised with the purpose of introducing students to analytical chemistry and chromatography with the aim of including theory...

  16. Analytical Chemistry Laboratory, progress report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  17. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    OpenAIRE

    Marek Tobiszewski; Mariusz Marć; Agnieszka Gałuszka; Jacek Namieśnik

    2015-01-01

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-establis...

  18. Nuclear techniques in analytical chemistry

    CERN Document Server

    Moses, Alfred J; Gordon, L

    1964-01-01

    Nuclear Techniques in Analytical Chemistry discusses highly sensitive nuclear techniques that determine the micro- and macro-amounts or trace elements of materials. With the increasingly frequent demand for the chemical determination of trace amounts of elements in materials, the analytical chemist had to search for more sensitive methods of analysis. This book accustoms analytical chemists with nuclear techniques that possess the desired sensitivity and applicability at trace levels. The topics covered include safe handling of radioactivity; measurement of natural radioactivity; and neutron a

  19. SAF line analytical chemistry system

    International Nuclear Information System (INIS)

    Gerber, E.W.; Sherrell, D.L.

    1983-10-01

    An analytical chemistry system dedicated to supporting the Secure Automated Fabrication (SAF) line is discussed. Several analyses are required prior to the fuel pellets being loaded into cladding tubes to assure certification requirements will be met. These analyses, which will take less than 15 minutes, are described. The automated sample transport system which will be used to move pellets from the fabriction line to the chemistry area is also described

  20. International Congress on Analytical Chemistry. Abstracts. V. 2

    International Nuclear Information System (INIS)

    1997-01-01

    The collection of materials of the international congress on analytical chemistry taken place in Moscow in June 1997 is presented. The main directs of investigations are elucidated in such regions of analytical chemistry as quantitative and qualitative chemical analysis, sample preparation, express test methods of environmental and biological materials, clinical analysis, analysis of food and agricultural products

  1. International Congress on Analytical Chemistry. Abstracts. V. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The collection of materials of the international congress on analytical chemistry taken place in Moscow in June 1997 is presented. The main directs of investigations are elucidated in such regions of analytical chemistry as quantitative and qualitative chemical analysis, sample preparation, express test methods of environmental and biological materials, clinical analysis, analysis of food and agricultural products

  2. Analytical Chemistry Laboratory Progress Report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  3. Synergistic relationships between Analytical Chemistry and written standards

    International Nuclear Information System (INIS)

    Valcárcel, Miguel; Lucena, Rafael

    2013-01-01

    Graphical abstract: -- Highlights: •Analytical Chemistry is influenced by international written standards. •Different relationships can be established between them. •Synergies can be generated when these standards are conveniently managed. -- Abstract: This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived

  4. Synergistic relationships between Analytical Chemistry and written standards

    Energy Technology Data Exchange (ETDEWEB)

    Valcárcel, Miguel, E-mail: qa1vacam@uco.es; Lucena, Rafael

    2013-07-25

    Graphical abstract: -- Highlights: •Analytical Chemistry is influenced by international written standards. •Different relationships can be established between them. •Synergies can be generated when these standards are conveniently managed. -- Abstract: This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived.

  5. Analytical chemistry department. Annual report, 1977

    International Nuclear Information System (INIS)

    Knox, E.M.

    1978-09-01

    The annual report describes the analytical methods, analyses and equipment developed or adopted for use by the Analytical Chemistry Department during 1977. The individual articles range from a several page description of development and study programs to brief one paragraph descriptions of methods adopted for use with or without some modification. This year, we have included a list of the methods incorporated into our Analytical Chemistry Methods Manual. This report is organized into laboratory sections within the Department as well as major programs within General Atomic Company. Minor programs and studies are included under Miscellaneous. The analytical and technical support activities for GAC include gamma-ray spectroscopy, radiochemistry, activation analysis, gas chromatography, atomic absorption, spectrophotometry, emission spectroscopy, x-ray diffractometry, electron microprobe, titrimetry, gravimetry, and quality control. Services are provided to all organizations throughout General Atomic Company. The major effort, however, is in support of the research and development programs within HTGR Generic Technology Programs ranging from new fuel concepts, end-of-life studies, and irradiated capsules to fuel recycle studies

  6. 8. All Polish Conference on Analytical Chemistry: Analytical Chemistry for the Community of the 21. Century

    International Nuclear Information System (INIS)

    Koscielniak, P.; Wieczorek, M.; Kozak, J.

    2010-01-01

    Book of Abstracts contains short descriptions of lectures, communications and posters presented during 8 th All Polish Conference on Analytical Chemistry (Cracow, 4-9.07.2010). Scientific programme consisted of: basic analytical problems, preparation of the samples, chemometry and metrology, miniaturization of the analytical procedures, environmental analysis, medicinal analyses, industrial analyses, food analyses, biochemical analyses, analysis of relicts of the past. Several posters were devoted to the radiochemical separations, radiochemical analysis, environmental behaviour of the elements important for the nuclear science and the professional tests.

  7. Bias Assessment of General Chemistry Analytes using Commutable Samples.

    Science.gov (United States)

    Koerbin, Gus; Tate, Jillian R; Ryan, Julie; Jones, Graham Rd; Sikaris, Ken A; Kanowski, David; Reed, Maxine; Gill, Janice; Koumantakis, George; Yen, Tina; St John, Andrew; Hickman, Peter E; Simpson, Aaron; Graham, Peter

    2014-11-01

    Harmonisation of reference intervals for routine general chemistry analytes has been a goal for many years. Analytical bias may prevent this harmonisation. To determine if analytical bias is present when comparing methods, the use of commutable samples, or samples that have the same properties as the clinical samples routinely analysed, should be used as reference samples to eliminate the possibility of matrix effect. The use of commutable samples has improved the identification of unacceptable analytical performance in the Netherlands and Spain. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) has undertaken a pilot study using commutable samples in an attempt to determine not only country specific reference intervals but to make them comparable between countries. Australia and New Zealand, through the Australasian Association of Clinical Biochemists (AACB), have also undertaken an assessment of analytical bias using commutable samples and determined that of the 27 general chemistry analytes studied, 19 showed sufficiently small between method biases as to not prevent harmonisation of reference intervals. Application of evidence based approaches including the determination of analytical bias using commutable material is necessary when seeking to harmonise reference intervals.

  8. Analytic chemistry of molybdenum

    International Nuclear Information System (INIS)

    Parker, G.A.

    1983-01-01

    Electrochemical, colorimetric, gravimetric, spectroscopic, and radiochemical methods for the determination of molybdenum are summarized in this book. Some laboratory procedures are described in detail while literature citations are given for others. The reader is also referred to older comprehensive reviews of the analytical chemistry of molybdenum. Contents, abridged: Gravimetric methods. Titrimetric methods. Colorimetric methods. X-ray fluorescence. Voltammetry. Catalytic methods. Molybdenum in non-ferrous alloys. Molydbenum compounds

  9. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    Moy, Ming M.; Leasure, Craig S.

    1998-01-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately$16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition,$8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately$35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004

  10. Analytical chemistry experiment

    International Nuclear Information System (INIS)

    Park, Seung Jo; Paeng, Seong Gwan; Jang, Cheol Hyeon

    1992-08-01

    This book deals with analytical chemistry experiment with eight chapters. It explains general matters that require attention on experiment, handling of medicine with keep and class, the method for handling and glass devices, general control during experiment on heating, cooling, filtering, distillation and extraction and evaporation and dry, glass craft on purpose of the craft, how to cut glass tube and how to bend glass tube, volumetric analysis on neutralization titration and precipitation titration, gravimetric analysis on solubility product, filter and washing and microorganism experiment with necessary tool, sterilization disinfection incubation and appendixes.

  11. Mathematical methods for physical and analytical chemistry

    CERN Document Server

    Goodson, David Z

    2011-01-01

    Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical

  12. Analytical Chemistry Section Chemistry Research Group, Winfrith. Report for 1982 and 1983

    International Nuclear Information System (INIS)

    Amey, M.D.H.; Capp, P.D.; James, H.

    1984-01-01

    This report reviews the principal activities of the Analytical Chemistry Section of Chemistry Research Group, Winfrith, during 1982 and 1983. The objectives of the report are to outline the range of chemical analysis support services available at Winfrith, indicate the research areas from which samples currently originate, and identify instrumental techniques where significant updating has occurred. (author)

  13. New trends in analytical chemistry. Volume 2

    International Nuclear Information System (INIS)

    Zyka, J.

    1984-01-01

    The book consists of 8 chapters and describes modern methods of analytical chemistry. The chapters Moessbauer spectroscopy, Neutron activation analysis, and Analytical uses of particle-induced characteristic X radiation (PIXE) describe the principles of these methods, the used experimental equip=-ment, methods of evaluation, modification of methods and examples of practical uses. (M.D.)

  14. Analytical Chemistry in the European Higher Education Area European Higher Education

    DEFF Research Database (Denmark)

    the more specialized degree of the Euromaster. The aim of the process, as a part of the fulfilment of the Bologna Declaration, is to propose a syllabus for education at the highest level of competence in academia. The proposal is an overarching framework that is supposed to promote mobility and quality......A Eurobachelor degree of Chemistry was endorsed by the EuCheMS division of analytical chemistry in 2004, and it has since then been adopted by many European universities. In the second stage of the European Higher Education Area (EHEA) process of harmonization, there is now focus on developing...... hold positions where analytical chemistry is the primary occupation. The education within the EHEA offers subjects related to chemical analysis but not all universities offer courses on analytical chemistry as an independent scientific discipline. Accordingly, the recent development of the analytical...

  15. The isfet in analytical chemistry

    NARCIS (Netherlands)

    van der Schoot, B.H.; Bergveld, Piet; Bousse, L.J.

    1982-01-01

    The fast chemical response of the pH-ISFET makes the device an excellent detector in analytical chemistry. The time response of ISFETs, with Al2O3 at the pH-sensitive gate insulator, is determined in a flow injection analysis system. Application of an ISFET and a glass electrode are compared in

  16. Lecture Notes and Exercises for Course 21240 (Basic Analytical Chemistry)

    DEFF Research Database (Denmark)

    1999-01-01

    The publication contains notes dealing with difficult topics in analytical chemistry (cfr. Course Descriptions, DTU), relevant exercises as well as final examination problems from the last years.......The publication contains notes dealing with difficult topics in analytical chemistry (cfr. Course Descriptions, DTU), relevant exercises as well as final examination problems from the last years....

  17. Lecture Notes and Exercises for Course 21240 (Basic Analytical Chemistry)

    DEFF Research Database (Denmark)

    1998-01-01

    The publication contains notes dealing with difficult topics in analytical chemistry (cfr. Course Descriptions, DTU), relevant exercises as well as final examination problems from the last years.......The publication contains notes dealing with difficult topics in analytical chemistry (cfr. Course Descriptions, DTU), relevant exercises as well as final examination problems from the last years....

  18. Role of analytical chemistry in environment and health

    International Nuclear Information System (INIS)

    Kushwaha, H.S.; Puranik, V.D.; Tripathi, R.M.

    2007-01-01

    Analytical chemistry plays an important role in the protection of human health from biological, chemical and radiological hazards in the environment. It is highly useful in the areas of environmental health sciences, such as air pollution, environmental chemistry, environmental management; environmental toxicology, industrial hygiene, and water quality

  19. Analytical Chemistry Division annual progress report for period ending December 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Analytical Chemistry Division has programs in inorganic mass spectrometry, optical spectroscopy, organic mass spectrometry, and secondary ion mass spectrometry. It maintains a transuranium analytical laboratory and an environmental analytical laboratory. It carries out chemical and physical analysis in the fields of inorganic chemistry, organic spectroscopy, separations and synthesis. (WET)

  20. Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs?

    Science.gov (United States)

    Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek

    2016-01-15

    In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A New Project-Based Lab for Undergraduate Environmental and Analytical Chemistry

    Science.gov (United States)

    Adami, Gianpiero

    2006-01-01

    A new project-based lab was developed for third year undergraduate chemistry students based on real world applications. The experience suggests that the total analytical procedure (TAP) project offers a stimulating alternative for delivering science skills and developing a greater interest for analytical chemistry and environmental sciences and…

  2. Analytical Chemistry Laboratory progress report for FY 1984

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs

  3. Synergistic relationships between Analytical Chemistry and written standards.

    Science.gov (United States)

    Valcárcel, Miguel; Lucena, Rafael

    2013-07-25

    This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Analytical chemistry in space

    CERN Document Server

    Wainerdi, Richard E

    1970-01-01

    Analytical Chemistry in Space presents an analysis of the chemical constitution of space, particularly the particles in the solar wind, of the planetary atmospheres, and the surfaces of the moon and planets. Topics range from space engineering considerations to solar system atmospheres and recovered extraterrestrial materials. Mass spectroscopy in space exploration is also discussed, along with lunar and planetary surface analysis using neutron inelastic scattering. This book is comprised of seven chapters and opens with a discussion on the possibilities for exploration of the solar system by

  5. European analytical column No. 37 from the Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Grasserbauer, Manfred; Andersen, Jens Enevold Thaulov

    2009-01-01

    The European Analytical Column again has a somewhat different format. We have once more invited a guest columnist to give his views on various matters related to analytical chemistry in Europe. This year we have invited Prof. Manfred Grasserbauer of Vienna University of Technology to present some...... representing a major branch of chemistry, namely, analytical chemistry. The global financial crisis is affecting all branches of chemistry, but analytical chemistry in particular since our discipline by tradition has many close links to industry. We are already noticing a decreased industrial commitment...... with respect to new research projects and sponsoring of conferences. It is therefore important that we strengthen our efforts and that we keep our presence at analytical chemistry meetings and conferences unchanged. Recent activities of the Division of Analytical Chemistry (DAC) and details regarding the major...

  6. European analytical column no. 37 (January 2009) Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Grasserbauer, Manfred; Andersen, Jens Enevold Thaulov

    2009-01-01

    This issue of the European Analytical Column has again a somewhat different format: once more DAC invited a guest columnist to give his views on various matters related to Analytical Chemistry in Europe. This year, Professor Manfred Grasserbauer of the Vienna University of Technology focuses...... representing a major branch of chemistry, namely analytical chemistry. The global financial crisis is affecting all branches of chemistry, especially analytical chemistry since our discipline by tradition has many close links to industry. Already now a decrease of industrial commitment with respect to new...... research projects and sponsoring of conferences can be observed. It is therefore important to strengthen all efforts and to keep the presence of analytical chemists at meetings and conferences unchanged. Recent activities of DAC and details regarding the major analytical-chemistry event this year in Europe...

  7. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1963-01-01

    The last two decades have witnessed an enormous development in chemical analysis. The rapid progress of nuclear energy, of solid-state physics and of other fields of modern industry has extended the concept of purity to limits previously unthought of, and to reach the new dimensions of these extreme demands, entirely new techniques have been invented and applied and old ones have been refined. Recognizing these facts, the International Atomic Energy Agency convened a Panel on Analytical Chemistry of Nuclear Materials to discuss the general problems facing the analytical chemist engaged in nuclear energy development, particularly in newly developing centre and countries, to analyse the represent situation and to advise as to the directions in which research and development appear to be most necessary. The Panel also discussed the analytical programme of the Agency's laboratory at Seibersdorf, where the Agency has already started a programme of international comparison of analytical methods which may lead to the establishment of international standards for many materials of interest. Refs and tabs

  8. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1966-01-01

    The second panel on the Analytical Chemistry of Nuclear Materials was organized for two purposes: first, to advise the Seibersdorf Laboratory of the Agency on its future programme, and second, to review the results of the Second International Comparison of routine analysis of trace impurities in uranium and also the action taken as a result of the recommendations of the first panel in 1962. Refs, figs and tabs

  9. Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Science.gov (United States)

    Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...

  10. Role of analytical chemistry in environmental monitoring

    International Nuclear Information System (INIS)

    Kayasth, S.; Swain, K.

    2004-01-01

    Basic aspects of pollution and the role of analytical chemistry in environmental monitoring are highlighted and exemplified, with emphasis on trace elements. Sources and pathways of natural and especially man-made polluting substances as well as physico-chemical characteristics are given. Attention is paid to adequate sampling in various compartments of the environment comprising both lithosphere and biosphere. Trace analysis is dealt with using a variety of analytical techniques, including criteria for choice of suited techniques, as well as aspects of analytical quality assurance and control. Finally, some data on trace elements levels in soil and water samples from India are presented. (author)

  11. Gatlinburg conference: barometer of progress in analytical chemistry

    International Nuclear Information System (INIS)

    Shults, W.D.

    1981-01-01

    Much progress has been made in the field of analytical chemistry over the past twenty-five years. The AEC-ERDA-DOE family of laboratories contributed greatly to this progress. It is not surprising then to find a close correlation between program content of past Gatlinburg conferences and developments in analytical methodology. These conferences have proved to be a barometer of technical status

  12. Green analytical chemistry - the use of surfactants as a replacement of organic solvents in spectroscopy

    Science.gov (United States)

    Pharr, Daniel Y.

    2017-07-01

    This chapter gives an introduction to the many practical uses of surfactants in analytical chemistry in replacing organic solvents to achieve greener chemistry. Taking a holistic approach, it covers some background of surfactants as chemical solvents, their properties and as green chemicals, including their environmental effects. The achievements of green analytical chemistry with micellar systems are reviewed in all the major areas of analytical chemistry where these reagents have been found to be useful.

  13. 35th International Symposium on Environmental Analytical Chemistry - ISEAC 35. Book of Abstracts

    International Nuclear Information System (INIS)

    Namiestnik, J.; Gdaniec-Pietryka, M.; Klimaszewska, K.; Gorecka, A.; Sagajdakow, A.; Jakubowska, N.

    2008-01-01

    The ISEAC 35 is organized by the International Association of Environmental Analytical Chemistry (IAEAC), the Committee on Analytical Chemistry of the Polish Academy of Science (PAS), and the Chemical Faculty of Gdansk University of Technology (GUT). The Symposium includes a number of invited lectures treating frontier topics of environmental analytical chemistry, such as: (a) miniaturized spectroscopic tools for environmental survey analysis, (b) remote sensing in marine research, (c) xenobiotics in natural waters, (d) sampling and sample handling for environmental analysis. Book of Abstracts contains abstracts of 9 invited lectures, 62 oral presentations and 250 posters.

  14. MAR flow mapping of Analytical Chemistry Operations (Preliminary Report)

    International Nuclear Information System (INIS)

    Barr, Mary E.; Farish, Thomas J.

    2012-01-01

    The recently released Supplemental Directive, NA-1 SD 1027, updates the radionuclide threshold values in DOE-STD-1027-92 CN1 to reflect the use of modern parameters for dose conversion factors and breathing rates. The directive also corrects several arithmetic errors within the original standard. The result is a roughly four-fold increase in the amount of weapons-grade nuclear material allowed within a designated radiological facility. Radiological laboratory space within the recently constructed Radiological Laboratory Office and Utility Building (RLUOB) is slated to house selected analytical chemistry support activities in addition to small-scale actinide R and D activities. RLUOB is within the same facility operations envelope as TA-55. Consolidation of analytical chemistry activities to RLUOB and PF-4 offers operational efficiency improvements relative to the current pre-CMRR plans of dividing these activities between RLUOB, PF-4, and CMR. RLUOB is considered a Radiological Facility under STD-1027 - 'Facilities that do not meet or exceed Category 3 threshold criteria but still possess some amount of radioactive material may be considered Radiological Facilities.' The supplemental directive essentially increases the allowable material-at-risk (MAR) within radiological facilities from 8.4 g to 38.6 g for 239 Pu. This increase in allowable MAR provides a unique opportunity to establish additional analytical chemistry support functions in RLUOB without negatively impacting either R and D activities or facility operations. Individual radiological facilities are tasked to determine MAR limits (up to the Category 3 thresholds) appropriate to their operational conditions. This study presents parameters that impact establishing MAR limits for RLUOB and an assessment of how various analytical chemistry support functions could operate within the established MAR limits.

  15. Combination of Cyclodextrin and Ionic Liquid in Analytical Chemistry: Current and Future Perspectives.

    Science.gov (United States)

    Hui, Boon Yih; Raoov, Muggundha; Zain, Nur Nadhirah Mohamad; Mohamad, Sharifah; Osman, Hasnah

    2017-09-03

    The growth in driving force and popularity of cyclodextrin (CDs) and ionic liquids (ILs) as promising materials in the field of analytical chemistry has resulted in an exponentially increase of their exploitation and production in analytical chemistry field. CDs belong to the family of cyclic oligosaccharides composing of α-(1,4) linked glucopyranose subunits and possess a cage-like supramolecular structure. This structure enables chemical reactions to proceed between interacting ions, radical or molecules in the absence of covalent bonds. Conversely, ILs are an ionic fluids comprising of only cation and anion often with immeasurable vapor pressure making them as green or designer solvent. The cooperative effect between CD and IL due to their fascinating properties, have nowadays contributed their footprints for a better development in analytical chemistry nowadays. This comprehensive review serves to give an overview on some of the recent studies and provides an analytical trend for the application of CDs with the combination of ILs that possess beneficial and remarkable effects in analytical chemistry including their use in various sample preparation techniques such as solid phase extraction, magnetic solid phase extraction, cloud point extraction, microextraction, and separation techniques which includes gas chromatography, high-performance liquid chromatography, capillary electrophoresis as well as applications of electrochemical sensors as electrode modifiers with references to recent applications. This review will highlight the nature of interactions and synergic effects between CDs, ILs, and analytes. It is hoped that this review will stimulate further research in analytical chemistry.

  16. Are there two decks on the analytical chemistry boat?

    Czech Academy of Sciences Publication Activity Database

    Plzák, Zbyněk

    2000-01-01

    Roč. 5, č. 1 (2000), s. 35-36 ISSN 0949-1775. [Quality Management in Analytical Chemical Research and Development. Münster, 31.05.1999-01.06.1999] Institutional research plan: CEZ:AV0Z4032918 Keywords : accredation * management * quality * assurance Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.894, year: 2000

  17. Process analytical chemistry applied to actinide waste streams

    International Nuclear Information System (INIS)

    Day, R.S.

    1994-01-01

    The Department of Energy is being called upon to clean up it's legacy of waste from the nuclear complex generated during the cold war period. Los Alamos National Laboratory is actively involved in waste minimization and waste stream polishing activities associated with this clean up. The Advanced Testing Line for Actinide Separations (ATLAS) at Los Alamos serves as a developmental test bed for integrating flow sheet development of nitric acid waste streams with process analytical chemistry and process control techniques. The wastes require processing in glove boxes because of the radioactive components, thus adding to the difficulties of making analytical measurements. Process analytical chemistry methods provide real-time chemical analysis in support of existing waste stream operations and enhances the development of new waste stream polishing initiatives. The instrumentation and methods being developed on ATLAS are designed to supply near-real time analyses on virtually all of the chemical parameters found in nitric acid processing of actinide waste. These measurements supply information on important processing parameters including actinide oxidation states, free acid concentration, interfering anions and metal impurities

  18. Analytical chemistry in nuclear science and technology: a scientometric mapping

    International Nuclear Information System (INIS)

    Kademani, B.S.; Kumar, Anil; Kumar, Vijai

    2007-01-01

    This paper attempts to analyse quantitatively the growth and development of Analytical Chemistry research in Nuclear Science and Technology in terms of publication output as reflected in International Nuclear Information System (INIS) database (1970-2005). During 1970-2005 a total of 8224 papers were published. There were only seven papers published in 1970. Thereafter, a tremendous explosion of literature was observed in this area. The highest number of papers (636) were published in 1985. The average number of publications published per year was 228.44. United States topped the list with 1811 publications followed by USSR with 1688 publications, Germany with 777 publications, India with 730 publications and Hungary with 519 publications. Authorship and collaboration trend was towards multi-authored papers as 80.3 percent of the papers were collaborative is indicative of the multidisciplinary nature of research activity. The most prolific authors were: B. F. Myasoedov, AN SSSR Moscow Inst. Geokhimii I Analitisheskoi Khimii, Russian Federation with 84 publications, M. Sudersanan, Bhabha Atomic Research Centre, Mumbai, India with 67 publications, P.Vanura and V. Jedinakova Krizova both from Institute of Chemical Technology, Prague, Czech Republic with 54 publications each, S. Gangadharan, Bhabha Atomic Research Centre, Mumbai, India with 47 publications, V.M. Ivanova , M.V. Lomonosov Moscow State University, Russian Federation with 45 publications and Yu. A Zolotov Lomonosov Moscow State University, Russian Federation with 40 publications. The journals most preferred by the scientists for publication of papers were : Zhurnal Analiticheskoj Khimii with 713 papers, Journal of Radioanalytical and Nuclear Chemistry with 409 papers, Analytical Chemistry Washington with 364 papers, Fresenius' Journal of Analytical Chemistry with 324 papers, Indian Journal of Chemistry, Section A with 251 papers, and Journal of Analytical Chemistry of the USSR with 145 papers. The high

  19. European analytical column No. 36 from the Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Emons, Hendrik; Andersen, Jens Enevold Thaulov

    2008-01-01

    European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)......European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)...

  20. Analytical Thinking, Analytical Action: Using Prelab Video Demonstrations and e-Quizzes to Improve Undergraduate Preparedness for Analytical Chemistry Practical Classes

    Science.gov (United States)

    Jolley, Dianne F.; Wilson, Stephen R.; Kelso, Celine; O'Brien, Glennys; Mason, Claire E.

    2016-01-01

    This project utilizes visual and critical thinking approaches to develop a higher-education synergistic prelab training program for a large second-year undergraduate analytical chemistry class, directing more of the cognitive learning to the prelab phase. This enabled students to engage in more analytical thinking prior to engaging in the…

  1. Chemometrics in analytical chemistry-part I: history, experimental design and data analysis tools.

    Science.gov (United States)

    Brereton, Richard G; Jansen, Jeroen; Lopes, João; Marini, Federico; Pomerantsev, Alexey; Rodionova, Oxana; Roger, Jean Michel; Walczak, Beata; Tauler, Romà

    2017-10-01

    Chemometrics has achieved major recognition and progress in the analytical chemistry field. In the first part of this tutorial, major achievements and contributions of chemometrics to some of the more important stages of the analytical process, like experimental design, sampling, and data analysis (including data pretreatment and fusion), are summarised. The tutorial is intended to give a general updated overview of the chemometrics field to further contribute to its dissemination and promotion in analytical chemistry.

  2. Analytical Chemistry Division annual progress report: For period ending December 31, 1987

    International Nuclear Information System (INIS)

    1988-05-01

    This report is divided into analytical spectroscopy; radioactive materials analysis; inorganic chemistry; organic chemistry; ORNL environmental programs; quality assurance, safety, and training; supplementary activities; and presentation of research results

  3. Analytical Chemistry Division annual progress report: For period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This report is divided into analytical spectroscopy; radioactive materials analysis; inorganic chemistry; organic chemistry; ORNL environmental programs; quality assurance, safety, and training; supplementary activities; and presentation of research results.

  4. Analytical Chemistry Core Capability Assessment - Preliminary Report

    International Nuclear Information System (INIS)

    Barr, Mary E.; Farish, Thomas J.

    2012-01-01

    The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This information will be

  5. Abstracts of the 3. Brazilian Meeting on Analytical Chemistry

    International Nuclear Information System (INIS)

    1985-01-01

    Abstracts from experimental research works on analytical chemistry are presented. The following techniques were mainly used: differential pulse polarography, atomic absorption spectrophotometry, ion exchange chromatography and gamma spectroscopy. (C.L.B.) [pt

  6. Analytical Chemistry at the Interface Between Materials Science and Biology

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Janese C. [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  7. Abstracts of the 2. Brazilian Meeting on Analytical Chemistry

    International Nuclear Information System (INIS)

    Curtius, A.J.

    1983-01-01

    Abstracts of theoretical and experimental works on Qualitative and Quantitative Analytical Chemistry are presented. Among the various analytical techniques used, emphasis is given to: neutron activation analysis, crystal doping and annealing, isotopic tracing, fission tracks detection, atomic absorption spectrophotometry, emission spectroscopy with induced coupled plasma, X-ray diffraction, nuclear magnetic resonance, mass spectrometry, polarography, ion exchange and/or thin-layer chromatography, electrodeposition, potentiometric titration and others. (C.L.B) [pt

  8. 75 FR 8147 - Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...

    Science.gov (United States)

    2010-02-23

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 030-05154; NRC-2010-0056] Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry Laboratories, Inc. Sanitary Lagoon... license amendment to Byproduct Material License No. 24- 13365-01 issued to Analytical Bio-Chemistry...

  9. Changes in Visual/Spatial and Analytic Strategy Use in Organic Chemistry with the Development of Expertise

    Science.gov (United States)

    Vlacholia, Maria; Vosniadou, Stella; Roussos, Petros; Salta, Katerina; Kazi, Smaragda; Sigalas, Michael; Tzougraki, Chryssa

    2017-01-01

    We present two studies that investigated the adoption of visual/spatial and analytic strategies by individuals at different levels of expertise in the area of organic chemistry, using the Visual Analytic Chemistry Task (VACT). The VACT allows the direct detection of analytic strategy use without drawing inferences about underlying mental…

  10. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  11. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  12. Analytical capabilities and services of Lawrence Livermore Laboratory's General Chemistry Division

    International Nuclear Information System (INIS)

    Gutmacher, R.; Crawford, R.

    1978-01-01

    This comprehensive guide to the analytical capabilities of Lawrence Livermore Laboratory's General Chemistry Division describes each analytical method in terms of its principle, field of application, and qualitative and quantitative uses. Also described are the state and quantity of sample required for analysis, processing time, available instrumentation, and responsible personnel

  13. Proceedings of the DAE-BRNS theme meeting on recent trends in analytical chemistry: book of abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    Analytical chemistry is the branch of science that deals with the determination of the identity and concentration of various elements and compounds in different matrices including living systems. The practice of analytical chemistry as a distinct discipline possibly began in the late eighteenth century with the work of the French chemist Antoine-Laurent Lavoisier and his contemporaries. Further progress was made in the nineteenth century by scientists like Carl Fresenius and Karl Friedrich Mohr. Fresenius developed the qualitative analysis method and it formed the topic of the first textbook of analytical chemistry. He also developed the gravimetric technique. Mohr developed many laboratory analytical procedures and devices. Most of the major advances in analytical chemistry, as in many other branches of science, took place in the twentieth century after the Second World War. The demand for new and increasingly sophisticated analytical techniques for bio-medical, regulatory and strategic requirements, along with the progress in electro-mechanical instrumentation, automation and computerization, has opened up new challenges and opportunities for analytical chemists and allied scientists in the years to come. Papers relevant to INIS are indexed separately

  14. Analytical Chemistry Division : annual report (for) 1985

    International Nuclear Information System (INIS)

    Mahadevan, N.

    1986-01-01

    An account of the various activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1985 is presented. The main function of the Division is to provide chemical analysis support to India's atomic energy programme. In addition, the Division also offers its analytical services, mostly for measurement of concentrations at trace levels to Indian industries and other research organization in the country. A list of these determinations is given. The report also describes the research and development (R and D) activities - both completed and in progress, in the form of individual summaries. During the year an ultra trace analytical laboratory for analysis of critical samples without contamination was set up using indigenous material and technology. Publications and training activities of the staff, training of the staff from other institution, guidance by the staff for post-graduate degree and invited talks by the staff are listed in the appendices at the end of the report. (M.G.B.)

  15. Analytical Chemistry in the Regulatory Science of Medical Devices.

    Science.gov (United States)

    Wang, Yi; Guan, Allan; Wickramasekara, Samanthi; Phillips, K Scott

    2018-06-12

    In the United States, regulatory science is the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of all Food and Drug Administration-regulated products. Good regulatory science facilitates consumer access to innovative medical devices that are safe and effective throughout the Total Product Life Cycle (TPLC). Because the need to measure things is fundamental to the regulatory science of medical devices, analytical chemistry plays an important role, contributing to medical device technology in two ways: It can be an integral part of an innovative medical device (e.g., diagnostic devices), and it can be used to support medical device development throughout the TPLC. In this review, we focus on analytical chemistry as a tool for the regulatory science of medical devices. We highlight recent progress in companion diagnostics, medical devices on chips for preclinical testing, mass spectrometry for postmarket monitoring, and detection/characterization of bacterial biofilm to prevent infections.

  16. Electrochemical sensors: a powerful tool in analytical chemistry

    Directory of Open Access Journals (Sweden)

    Stradiotto Nelson R.

    2003-01-01

    Full Text Available Potentiometric, amperometric and conductometric electrochemical sensors have found a number of interesting applications in the areas of environmental, industrial, and clinical analyses. This review presents a general overview of the three main types of electrochemical sensors, describing fundamental aspects, developments and their contribution to the area of analytical chemistry, relating relevant aspects of the development of electrochemical sensors in Brazil.

  17. Analytical Chemistry Laboratory progress report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  18. Analytical Chemistry Laboratory progress report for FY 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  19. Analytical Chemistry Laboratory progress report for FY 1998

    International Nuclear Information System (INIS)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-01-01

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL

  20. Analytical Chemistry Division : annual report for the year 1980

    International Nuclear Information System (INIS)

    Sathe, R.M.

    1981-01-01

    The research and development activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, during 1980 are reported in the form of abstracts. Various methods nuclear, spectral, thermal, electrochemical ion exchange developed for chemical analysis are described. Solvent extraction studies are also reviewed. (M.G.B.)

  1. Procedure for hazards analysis of plutonium gloveboxes used in analytical chemistry operations

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-06-01

    A procedure is presented to identify and assess hazards associated with gloveboxes used for analytical chemistry operations involving plutonium. This procedure is based upon analytic tree methodology and it has been adapted from the US Energy Research and Development Administration's safety program, the Management Oversight and Risk Tree

  2. Analytical chemistry laboratory. Progress report for FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1997-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  3. Mendeleev-2013. VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials. Book of abstracts. Section 2. Analytic chemistry

    International Nuclear Information System (INIS)

    2013-01-01

    VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials was conducted on the Chemistry department of Saint-Petersburg University on April, 2-5, 2013. In the conference participants from 14 countries took part. There were five sections: Nanochemistry and nanomaterials, Analytic chemistry, Inorganic chemistry, Organic chemistry, Physical chemistry. In the collection (Section 2 - Analytic chemistry) there are the abstracts concerning determination of heavy metals in environmental samples, petroleum products, different biological active and toxic substances in human tissues, food products and water; usage of nanoparticles for modification of electrodes for electrochemical methods of analysis, etc [ru

  4. Nuclear activation analysis work at Analytical Chemistry Division: an overview

    International Nuclear Information System (INIS)

    Verma, R.; Swain, K.K.; Remya Devi, P.S.; Dalvi, Aditi A.; Ajith, Nicy; Ghosh, M.; Chowdhury, D.P.; Datta, J.; Dasgupta, S.

    2016-04-01

    Nuclear activation analysis using neutron and charged particles is used routinely for analysis and research at Analytical Chemistry Division (ACD), Bhabha Atomic Research Centre (BARC). Neutron activation analysis at ACD, BARC, Mumbai, India has been pursued since late fifties using Apsara, CIRUS, Dhruva and Critical facility Research reactors, 239 Pu-Be neutron source and neutron generator. Instrumental, Radiochemical, Chemical and Derivative neutron activation analysis approaches are adopted depending on the analyte and the matrix. Large sample neutron activation analysis as well as k 0 -based internal monostandard neutron activation analysis is also used. Charged particle activation analysis at ACD, Variable Energy Cyclotron Centre (VECC), Kolkata started in late eighties and is being used for industrial applications and research. Proton, alpha, deuteron and heavy ion beams from 224 cm room temperature Variable Energy Cyclotron are used for determination of trace elements, measurement of excitation function, thin layer activation and preparation of endohedral fullerenes encapsulated with radioactive isotopes. Analytical Chemistry Division regularly participates in Inter and Intra laboratory comparison exercises conducted by various organizations including International Atomic Energy Agency (IAEA) and the results invariably include values obtained by neutron activation analysis. (author)

  5. Emanation thermal analysis. Application in solid state chemistry, analytical chemistry and engineering

    International Nuclear Information System (INIS)

    Balek, V.; Tel'deshi, Yu.

    1986-01-01

    Voluminous material on application of emenation thermal analysis for investigation of solids is systematized. General concepts and historical review of development of the method are given. Methods of introduction of inert gases into solids are considered. Theoretical aspects of inert gas evolution from solids labelled by radioactive gas or its maternal isotope are stated. The methods for measuring inert gases are considered. The possibilities, limitations and perspectives of development of radiometric emanation methods for the solution of various problems of analytical chemistry and thechnology are discussed

  6. Fifty years of continuous improvement: (What has DOE done for analytical chemistry?)

    Energy Technology Data Exchange (ETDEWEB)

    Shults, W.D.

    1993-11-01

    Over the past fifty years, analytical scientist within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six ``high impact`` research/development areas that either originated within or were brought to maturity within the DOE laboratories. ``High impact`` means they lead to new subdisciplines or to new ways of doing business.

  7. Proceedings of the 4. National Meeting on Analytical Chemistry - Abstracts

    International Nuclear Information System (INIS)

    1987-01-01

    The 4. National Meeting on Analytical Chemistry includes analysis of nuclear interest elements with nuclear and non nuclear methods and the elements not interest of nuclear energy with nuclear methods. The materials analysed are rocks, ores, metals alloys, waters, plants and biological materials. (C.G.C.)

  8. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    International Nuclear Information System (INIS)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited

  9. Abstracts of the 1. Brazilian Meeting on Analytical Chemistry

    International Nuclear Information System (INIS)

    Curtius, A.J.

    1982-01-01

    Abstracts from experimental studies on analytical chemistry are presented. Several techniques have been used, such as: neutron activation analysis, potentiometry, optical emission spectroscopy, alpha and gamma spectroscopy, atomic absorption spectrophotometry, radiometric analysis, fission track detection, complexometry and others. Samples analysed are of various kinds: environmental materials (soil, water, air), rocks, coal, lanthanide complexes, polycarbonates and synthetic quartz. (C.L.B.) [pt

  10. Evaluating the Effectiveness of the Chemistry Education by Using the Analytic Hierarchy Process

    Science.gov (United States)

    Yüksel, Mehmet

    2012-01-01

    In this study, an attempt was made to develop a method of measurement and evaluation aimed at overcoming the difficulties encountered in the determination of the effectiveness of chemistry education based on the goals of chemistry education. An Analytic Hierarchy Process (AHP), which is a multi-criteria decision technique, is used in the present…

  11. Effects of Computer Based Learning on Students' Attitudes and Achievements towards Analytical Chemistry

    Science.gov (United States)

    Akcay, Husamettin; Durmaz, Asli; Tuysuz, Cengiz; Feyzioglu, Burak

    2006-01-01

    The aim of this study was to compare the effects of computer-based learning and traditional method on students' attitudes and achievement towards analytical chemistry. Students from Chemistry Education Department at Dokuz Eylul University (D.E.U) were selected randomly and divided into three groups; two experimental (Eg-1 and Eg-2) and a control…

  12. Proceedings of the BRNS-AEACI first symposium on current trends in analytical chemistry: book of abstracts

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    2015-01-01

    The symposium was very useful for the scientists on various aspects of current trends in analytical chemistry like separation science, speciation, nuclear analytical techniques, thermo analytical techniques, electro analytical techniques, spectrochemical and microscopic techniques, environmental studies, geochemical studies, chemical metrology, analytical instrumentation. Papers relevant to INIS are indexed separately

  13. Nuclear analytical chemistry 5. Tables, nomograms and schemes

    Energy Technology Data Exchange (ETDEWEB)

    Tolgyessy, J; Varga, S; Dillinger, P; Kyrs, M

    1976-01-01

    Tables, graphs and nomograms are given on aspects of nuclear analytical chemistry. The tables contain data on physical and chemical units and their conversion, exponential functions, the characteristics of radioactive nuclides, data on the interaction of nuclear radiation with matter, data useful in measuring nuclear radiation, in scintillation and semiconductor spectrometry, activation analysis, data on masking reactions of ions in chemical separation, on extraction, ion exchange, accuracy in applying the method of isotope dilution, on radiochemical analysis.

  14. Analytical Chemistry (edited by R. Kellner, J.- M. Mermet, M. Otto, and H. M. Widmer)

    Science.gov (United States)

    Thompson, Reviewed By Robert Q.

    2000-04-01

    This text, written in English, was developed by the Division of Analytical Chemistry of the Federation of European Chemical Societies to support the university-level Eurocurriculum in analytical chemistry, a major effort of academics and other analytical scientists throughout Europe and an outgrowth of the economic unification of European countries. The goal of a uniform curriculum and text for analytical chemistry across national borders is laudable, and the editors, led by the late Robert Kellner, deserve commendation for their accomplishments. (The U.S., in contrast, has been late in considering the analytical chemistry curriculum and only recently has published a pamphlet, Curricular Developments in the Analytical Sciences, an outgrowth of several NSF-sponsored workshops.) I can't remember another analytical text that begins with mention of the "big bang" and the beginnings of the universe (!), but I don't believe that the authors and publisher are looking to export their curriculum to neighboring planets. However, I am sure that they are interested in the North American market and its strong analytical chemistry community. It is in this context and in comparison with leading analytical texts in the U.S. that I write this review. At first glance, Analytical Chemistry overwhelms. It is a large book of more than 900 pages, a mass of 2.3 kg, and a volume of nearly 3 L. It is not a book that is easy to stuff into a backpack for the trip to class or lab. Students also may resent paying top dollar for a book that might not last the semester, given that the pages of my review copy began to pull away from the binding after only a few days of gentle use. Beneath the snazzy cover there is a dearth of color printing and photographs. This, combined with a smallish font and figures that are inconsistent in size, quality, and font, makes for a book that is not especially easy on the eyes. The large margins provide ample space for the numerous figures, figure captions, and

  15. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  16. Organization of a cognitive activity of students when teaching analytical chemistry

    Directory of Open Access Journals (Sweden)

    А. Tapalova

    2012-12-01

    Full Text Available Qualitative analysis allows using basic knowledge of general and inorganic chemistry for the solution of practical problems, disclosure the chemism of the processes that are fundamental for  the methods of analysis. Systematic qualitative analysis develops analytical thinking, establishes a scientific style of thinking of students.Сhemical analysis requires certain skills and abilities and develops the general chemical culture of the future teachers оn chemistry. The result can be evaluated in the course of self-control, peer review, and solving creative problems. Mastering the techniques of critical thinking (comparison, abstraction, generalization and their use in a particular chemical material - are necessary element in the formation of professional thinking of the future chemistry teacher.

  17. Fundamentals of analytical chemistry, 5th edition

    International Nuclear Information System (INIS)

    Skoog, D.A.; West, D.M.; Holler, F.J.

    1988-01-01

    Fundamentals of Analytical Chemistry is divided into three roughly equal parts. The first 14 chapters cover classical methods of analysis, including titrimetry and gravimetry as well as solution equilibria and statistical analysis. The next 11 chapters address electroanalytical, optical, and chromatographic methods of analysis. The remainder of the text is devoted to discussions of sample manipulation and pretreatment, good laboratory practices, and detailed directions for performing examples of 17 different types of classical and instrumental analyses. Like its predecessors, this fifth edition provides comprehensive coverage of classical analytical methods and the major instrumental ones in a literary style that is clear, straightforward, and readable. New terms are carefully defined as they are introduced, and each term is italicized for emphasis and for ease of relocation by the student who may forget its meaning. The chapters on analyses of real-world samples, on avoiding interferences, and on techniques for sample preparation should prove especially useful for the practicing chemist

  18. Nuclear analytical chemistry: recent developments and applications

    International Nuclear Information System (INIS)

    Acharya, R.

    2013-01-01

    Recent R and D studies on Nuclear Analytical Chemistry utilizing techniques like Neutron Activation Analysis (NAA), Prompt Gamma-ray NAA (PGNAA), Particle Induced Gamma Ray and X-Ray Emission (PICE/PIXE) for compositional analysis of materials have been summarized. The work includes developments and applications of (i) single comparator NAA, called as k 0 -NAA, (ii) k 0 -based internal monostandard NAA (IM-NAA), (iii) k 0 -based prompt gamma ray NAA (PGNAA) and (iv) instrumental NAA using thermal and epithermal neutrons and (v) PIGE and PIXE methods using proton beam for low Z and medium Z elements, respectively. (author)

  19. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

  20. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    International Nuclear Information System (INIS)

    1988-05-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8

  1. Analytical chemistry in semiconductor manufacturing: Techniques, role of nuclear methods and need for quality control

    International Nuclear Information System (INIS)

    1989-06-01

    This report is the result of a consultants meeting held in Gaithersburg, USA, 2-3 October 1987. The meeting was hosted by the National Bureau of Standards and Technology, and it was attended by 18 participants from Denmark, Finland, India, Japan, Norway, People's Republic of China and the USA. The purpose of the meeting was to assess the present status of analytical chemistry in semiconductor manufacturing, the role of nuclear analytical methods and the need for internationally organized quality control of the chemical analysis. The report contains the three presentations in full and a summary report of the discussions. Thus, it gives an overview of the need of analytical chemistry in manufacturing of silicon based devices, the use of nuclear analytical methods, and discusses the need for quality control. Refs, figs and tabs

  2. Methods for the calculation of uncertainty in analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Suh, M. Y.; Sohn, S. C.; Park, Y. J.; Park, K. K.; Jee, K. Y.; Joe, K. S.; Kim, W. H

    2000-07-01

    This report describes the statistical rules for evaluating and expressing uncertainty in analytical chemistry. The procedures for the evaluation of uncertainty in chemical analysis are illustrated by worked examples. This report, in particular, gives guidance on how uncertainty can be estimated from various chemical analyses. This report can be also used for planning the experiments which will provide the information required to obtain an estimate of uncertainty for the method.

  3. Proceedings of BARC golden jubilee year DAE-BRNS topical symposium on role of analytical chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Swain, K.K.; Venkataramani, B.

    2007-01-01

    Among the various disciplines in Chemistry, Analytical Chemistry is unique, because it is an integral part of every aspect of technology- product and process development and deployment. In Nuclear Industry, the quality assurance criteria are very stringent. And truly, Analytical Chemistry has continued to play a pivotal role in the entire nuclear fuel cycle, since the beginning of the Indian Atomic Energy Programme. The conference covers invited talk, nuclear materials, reactor systems, thorium technology, alternate energy sources, biology, agriculture and environment, water technology, isotope, radiation and laser technology, development of analytical instruments, and reference materials and inter-comparison exercises. Papers relevant to INIS are indexed separately. (author)

  4. Proceedings of the 8. Brazilian meeting on analytical chemistry. Abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    Abstracts from theoretical and experimental works on qualitative and quantitative analytical chemistry are presented. Several nuclear and non nuclear techniques have been used, such as neutron activation analysis, absorption spectroscopy, x-ray fluorescence analysis and others. The materials analysed were rocks, rare earths, environmental materials (soil, water, air), complexes and so on. Synthesis, kinetics and radiochemistry were also discussed

  5. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    International Nuclear Information System (INIS)

    1990-04-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed

  6. Does leaf chemistry differentially affect breakdown in tropical versus temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Science.gov (United States)

    Marcelo Ardon; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to...

  7. Reference Intervals of Common Clinical Chemistry Analytes for Adults in Hong Kong.

    Science.gov (United States)

    Lo, Y C; Armbruster, David A

    2012-04-01

    Defining reference intervals is a major challenge because of the difficulty in recruiting volunteers to participate and testing samples from a significant number of healthy reference individuals. Historical literature citation intervals are often suboptimal because they're be based on obsolete methods and/or only a small number of poorly defined reference samples. Blood donors in Hong Kong gave permission for additional blood to be collected for reference interval testing. The samples were tested for twenty-five routine analytes on the Abbott ARCHITECT clinical chemistry system. Results were analyzed using the Rhoads EP evaluator software program, which is based on the CLSI/IFCC C28-A guideline, and defines the reference interval as the 95% central range. Method specific reference intervals were established for twenty-five common clinical chemistry analytes for a Chinese ethnic population. The intervals were defined for each gender separately and for genders combined. Gender specific or combined gender intervals were adapted as appropriate for each analyte. A large number of healthy, apparently normal blood donors from a local ethnic population were tested to provide current reference intervals for a new clinical chemistry system. Intervals were determined following an accepted international guideline. Laboratories using the same or similar methodologies may adapt these intervals if deemed validated and deemed suitable for their patient population. Laboratories using different methodologies may be able to successfully adapt the intervals for their facilities using the reference interval transference technique based on a method comparison study.

  8. Analytical Chemistry Division, annual report for the year 1973

    International Nuclear Information System (INIS)

    1974-01-01

    Research and development activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, Bombay (India), for the year 1973 are reported. From the point of view of nuclear science and technology, the following are worth mentioning: (1) radiochemical analysis of mercury in marine products (2) rapid anion exchange separation and spectrophotometric determination of gadolinium in uranium dioxide-gadolinium oxide blend and (3) neutron activation analysis for forensic purpose. (M.G.B.)

  9. Analytical Chemistry Division annual progress report for period ending December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Shults, W.D.

    1993-04-01

    This report is divided into: Analytical spectroscopy (optical spectroscopy, organic mass spectrometry, inorganic mass spectrometry, secondary ion mass spectrometry), inorganic and radiochemistry (transuranium and activation analysis, low-level radiochemical analysis, inorganic analysis, radioactive materials analysis, special projects), organic chemistry (organic spectroscopy, separations and synthesis, special projects, organic analysis, ORNL/UT research program), operations (quality assurance/quality control, environmental protection, safety, analytical improvement, training, radiation control), education programs, supplementary activities, and presentation of research results. Tables are included for articles reviewed or refereed for periodicals, analytical service work, division manpower and financial summary, and organization chart; a glossary is also included.

  10. Carboxylic acid exchangers in analytical chemistry

    International Nuclear Information System (INIS)

    Venkateswarlu, Ch.

    1976-01-01

    The literature on the use of carboxylic acid exchangers in inorganic analytical chemistry is reviewed. It is classified under two heads, based on the ionic form in which the exchanger is employed, viz., the salt form and the acid form. In the salt form, the separations reported in the beginning are mostly carried out in alkaline medium, employing ammonia and its derivatives as complexing agents to hold cations in solution. This was followed by the use of ammonium ion as an eluent from heavy weakly or neutral solutions. There are a few separations reported making use of EDTA as eluent. It appears that separation of some anions from cations can be achieved with greater ease with these exchangers than with sulphonic acid type. Contary to the general belief, carboxylic acid exchangers are used in H + form to achieve some analytical separations of cations of interest. These exchangers exhibit better sorption of some cations in presence of complexing agents containing basic nitrogen as a donor. In fact, a careful study of these exchangers with different matrices might yield really selective exchangers, than the chelating ones known commercially. From the separation cited, carboxylic acid exchangers appear to have greater potentialities in their applications, than what is normally expected. (author)

  11. Analysis of a Natural Yellow Dye: An Experiment for Analytical Organic Chemistry

    NARCIS (Netherlands)

    Villela, A.; Derksen, G.C.H.; Beek, van T.A.

    2014-01-01

    This experiment exposes second-year undergraduate students taking a course in analytical organic chemistry to high-performance liquid chromatography (HPLC) and quantitative analysis using the internal standard method. This is accomplished using the real-world application of natural dyes for

  12. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed.

  13. Linking the Lab Experience with Everyday Life: An Analytical Chemistry Experiment for Agronomy Students

    Science.gov (United States)

    Gimenez, Sônia Maria N.; Yabe, Maria Josefa S.; Kondo, Neide K.; Mouriño, Rodrigo O.; Moura, Graziela Cristina R.

    2000-02-01

    Agronomy students generally lack interest in chemistry. The objective of this work was to modify the analytical chemistry curriculum to increase student interest. Samples of soils and plants prepared by students were introduced. Soil was treated with molasses residue, organic matter (chicken manure and humus obtained from goat excrement), and lime. The response of plants to the different soil treatments increased student interest in chemical analyses. Evaluation of several chemical and physicochemical parameters of samples demonstrated in a clear way the application of the theoretical and practical concepts of chemistry.

  14. Priority survey between indicators and analytic hierarchy process analysis for green chemistry technology assessment.

    Science.gov (United States)

    Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong

    2015-01-01

    This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies.

  15. Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.

    Science.gov (United States)

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin. © 2015 The International Union of Biochemistry and Molecular Biology.

  16. Karlsruhe international conference on analytical chemistry in nuclear technology

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents 218 abstracts of contributions by researchers working in the analytical chemistry field of nuclear technology. The majority of the papers deal with analysis with respect to process control in fuel reprocessing plants, fission and corrosion product characterization throughout the fuel cycle as well as studies of the chemical composition of radioactive wastes. Great interest is taken in the development and optimization of methods and instrumentation especially for in-line process control. About 3/4 of the papers have been entered into the data base separately. (RB)

  17. XIX Mendeleev Congress on general and applied chemistry. Abstract book in 4 volumes. Volume 4. Chemistry aspects of modern energy and alternative energy resources. Chemistry of fossil and renewable hydrocarbon raw materials. Analytical chemistry: novel methods and devices for chemical research and analysis. Chemical education

    International Nuclear Information System (INIS)

    2011-01-01

    The abstracts of the XIX Mendeleev Congress on general and applied chemistry held 25-30 September 2011 in Volgograd are presented. The program includes the Congress plenary and section reports, poster presentations, symposia and round tables on key areas of chemical science and technology, and chemical education. The work of the Congress was held the following sections: 1. Fundamental problems of chemical sciences; 2. Chemistry and technology of materials, including nanomaterials; 3. Physicochemical basis of metallurgical processes; 4. Current issues of chemical production, technical risk assessment; 5. Chemical aspects of modern power and alternative energy sources; 6. Chemistry of fossil and renewable hydrocarbons; 7. Analytical chemistry: new methods and instruments for chemical research and analysis; 8. Chemical education. Volume 4 includes abstracts of oral and poster presentations and presentations of correspondent participants of the sections: Chemistry aspects of modern energy and alternative energy resources; Chemistry of fossil and renewable hydrocarbon raw materials; Analytical chemistry: novel methods and devices for chemical research and analysis; Chemical education, and author index [ru

  18. The Use and Abuse of Limits of Detection in Environmental Analytical Chemistry

    Directory of Open Access Journals (Sweden)

    Richard J. C. Brown

    2008-01-01

    Full Text Available The limit of detection (LoD serves as an important method performance measure that is useful for the comparison of measurement techniques and the assessment of likely signal to noise performance, especially in environmental analytical chemistry. However, the LoD is only truly related to the precision characteristics of the analytical instrument employed for the analysis and the content of analyte in the blank sample. This article discusses how other criteria, such as sampling volume, can serve to distort the quoted LoD artificially and make comparison between various analytical methods inequitable. In order to compare LoDs between methods properly, it is necessary to state clearly all of the input parameters relating to the measurements that have been used in the calculation of the LoD. Additionally, the article discusses that the use of LoDs in contexts other than the comparison of the attributes of analytical methods, in particular when reporting analytical results, may be confusing, less informative than quoting the actual result with an accompanying statement of uncertainty, and may act to bias descriptive statistics.

  19. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    Science.gov (United States)

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  20. Laser ablation in analytical chemistry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  1. Role of analytical chemistry in the development of nuclear fuels

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2012-01-01

    Analytical chemistry is indispensable and plays a pivotal role in the entire gamut of nuclear fuel cycle activities starting from ore refining, conversion, nuclear fuel fabrication, reactor operation, nuclear fuel reprocessing to waste management. As the fuel is the most critical component of the reactor where the fissions take place to produce power, extreme care should be taken to qualify the fuel. For example, in nuclear fuel fabrication, depending upon the reactor system, selection of nuclear fuel has to be made. The fuel for thermal reactors is normally uranium oxide either natural or slightly enriched. For research reactors it can be uranium metal or alloy. The fuel for FBR can be metal, alloy, oxide, carbide or nitride. India is planning an advanced heavy water reactor for utilization of vast resources of thorium in the country. Also research is going on to identify suitable metallic/alloy fuels for our future fast reactors and possible use in fast breeder test reactor. Other advanced fuel materials are also being investigated for thermal reactors for realizing increased performance levels. For example, advanced fuels made from UO 2 doped with Cr 2 O 3 and Al 2 O 3 are being suggested in LWR applications. These have shown to facilitate pellet densification during sintering and enlarge the pellet grain size. The chemistry of these materials has to be understood during the preparation to the stringent specification. A number of analytical parameters need to be determined as a part of chemical quality control of nuclear materials. Myriad of analytical techniques starting from the classical to sophisticated instrumentation techniques are available for this purpose. Insatiable urge of the analytical chemist enables to devise and adopt new superior methodologies in terms of reduction in the time of analysis, improvement in the measurement precision and accuracy, simplicity of the technique itself etc. Chemical quality control provides a means to ensure that the

  2. Recent developments in computer vision-based analytical chemistry: A tutorial review.

    Science.gov (United States)

    Capitán-Vallvey, Luis Fermín; López-Ruiz, Nuria; Martínez-Olmos, Antonio; Erenas, Miguel M; Palma, Alberto J

    2015-10-29

    Chemical analysis based on colour changes recorded with imaging devices is gaining increasing interest. This is due to its several significant advantages, such as simplicity of use, and the fact that it is easily combinable with portable and widely distributed imaging devices, resulting in friendly analytical procedures in many areas that demand out-of-lab applications for in situ and real-time monitoring. This tutorial review covers computer vision-based analytical (CVAC) procedures and systems from 2005 to 2015, a period of time when 87.5% of the papers on this topic were published. The background regarding colour spaces and recent analytical system architectures of interest in analytical chemistry is presented in the form of a tutorial. Moreover, issues regarding images, such as the influence of illuminants, and the most relevant techniques for processing and analysing digital images are addressed. Some of the most relevant applications are then detailed, highlighting their main characteristics. Finally, our opinion about future perspectives is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    Science.gov (United States)

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  4. Reference Intervals of Hematology and Clinical Chemistry Analytes for 1-Year-Old Korean Children.

    Science.gov (United States)

    Lee, Hye Ryun; Shin, Sue; Yoon, Jong Hyun; Roh, Eun Youn; Chang, Ju Young

    2016-09-01

    Reference intervals need to be established according to age. We established reference intervals of hematology and chemistry from community-based healthy 1-yr-old children and analyzed their iron status according to the feeding methods during the first six months after birth. A total of 887 children who received a medical check-up between 2010 and 2014 at Boramae Hospital (Seoul, Korea) were enrolled. A total of 534 children (247 boys and 287 girls) were enrolled as reference individuals after the exclusion of data obtained from children with suspected iron deficiency. Hematology and clinical chemistry analytes were measured, and the reference value of each analyte was estimated by using parametric (mean±2 SD) or nonparametric methods (2.5-97.5th percentile). Iron, total iron-binding capacity, and ferritin were measured, and transferrin saturation was calculated. As there were no differences in the mean values between boys and girls, we established the reference intervals for 1-yr-old children regardless of sex. The analysis of serum iron status according to feeding methods during the first six months revealed higher iron, ferritin, and transferrin saturation levels in children exclusively or mainly fed formula than in children exclusively or mainly fed breast milk. We established reference intervals of hematology and clinical chemistry analytes from community-based healthy children at one year of age. These reference intervals will be useful for interpreting results of medical check-ups at one year of age.

  5. Molecularly imprinted polymers--potential and challenges in analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, J.O. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Nolan, K. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Smyth, M.R. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Mizaikoff, B. [Georgia Institute of Technology, School of Chemistry and Biochemistry, 770 State Street, Boggs Building, Atlanta, GA 30332-0400 (United States)]. E-mail: boris.mizaikoff@chemistry.gatech.edu

    2005-04-04

    Among the variety of biomimetic recognition schemes utilizing supramolecular approaches molecularly imprinted polymers (MIPs) have proven their potential as synthetic receptors in numerous applications ranging from liquid chromatography to assays and sensor technology. Their inherent advantages compared to biochemical/biological recognition systems include robustness, storage endurance and lower costs. However, until recently only few contributions throughout the relevant literature describe quantitative analytical applications of MIPs for practically relevant analyte molecules and real-world samples. Increased motivation to thoroughly evaluate the true potential of MIP technology is clearly attributed to the demands of modern analytical chemistry, which include enhanced sensitivity, selectivity and applicability of molecular recognition building blocks at decreasing costs. In particular, the areas of environmental monitoring, food and beverage analysis and industrial process surveillance require analytical tools capable of discriminating chemicals with high molecular specificity considering increasing numbers of complex environmental contaminants, pollution of raw products and rigorous quality control requested by legislation and consumer protection. Furthermore, efficient product improvement and development of new products requires precise qualitative and quantitative analytical methods. Finally, environmental, food and process safety control issues favor the application of on-line in situ analytical methods with high molecular selectivity. While biorecognition schemes frequently suffer from degrading bioactivity and long-term stability when applied in real-world sample environments, MIPs serving as synthetic antibodies have successfully been applied as stationary phase separation matrix (e.g. HPLC and SPE), recognition component in bioassays (e.g. ELISA) or biomimetic recognition layer in chemical sensor systems. Examples such as MIP-based selective analysis of

  6. Molecularly imprinted polymers--potential and challenges in analytical chemistry

    International Nuclear Information System (INIS)

    Mahony, J.O.; Nolan, K.; Smyth, M.R.; Mizaikoff, B.

    2005-01-01

    Among the variety of biomimetic recognition schemes utilizing supramolecular approaches molecularly imprinted polymers (MIPs) have proven their potential as synthetic receptors in numerous applications ranging from liquid chromatography to assays and sensor technology. Their inherent advantages compared to biochemical/biological recognition systems include robustness, storage endurance and lower costs. However, until recently only few contributions throughout the relevant literature describe quantitative analytical applications of MIPs for practically relevant analyte molecules and real-world samples. Increased motivation to thoroughly evaluate the true potential of MIP technology is clearly attributed to the demands of modern analytical chemistry, which include enhanced sensitivity, selectivity and applicability of molecular recognition building blocks at decreasing costs. In particular, the areas of environmental monitoring, food and beverage analysis and industrial process surveillance require analytical tools capable of discriminating chemicals with high molecular specificity considering increasing numbers of complex environmental contaminants, pollution of raw products and rigorous quality control requested by legislation and consumer protection. Furthermore, efficient product improvement and development of new products requires precise qualitative and quantitative analytical methods. Finally, environmental, food and process safety control issues favor the application of on-line in situ analytical methods with high molecular selectivity. While biorecognition schemes frequently suffer from degrading bioactivity and long-term stability when applied in real-world sample environments, MIPs serving as synthetic antibodies have successfully been applied as stationary phase separation matrix (e.g. HPLC and SPE), recognition component in bioassays (e.g. ELISA) or biomimetic recognition layer in chemical sensor systems. Examples such as MIP-based selective analysis of

  7. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1982-04-01

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period

  8. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W. S. [ed.

    1982-04-01

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period.

  9. Innovative methods for data analysis in analytical chemistry using Bayesian statistics and machine learning

    NARCIS (Netherlands)

    Woldegebriel, M.T.

    2017-01-01

    In analytical chemistry, rapid advancement in instrumentation, especially in high resolution mass-spectrometry is making a significant contribution for further developments of the field. As such, in separation science, nowadays, several hyphenated techniques have proven to be the state-of-the-art

  10. Magnetic relaxation in analytical, coordination and bioinorganic chemistry

    International Nuclear Information System (INIS)

    Mikhajlov, O.

    1982-01-01

    Nuclear magnetic relaxation is a special type of nuclear magnetic resonance in which the rate is measured of energy transfer between the excited nuclei and their molecular medium (spin-lattice relaxation) or the whole nuclear spin system (spin-spin relaxation). Nuclear magnetic relaxation relates to nuclei with a spin of 1/2, primarily H 1 1 , and is mainly measured in water solutions. It is suitable for (1) analytical chemistry because the relaxation time rapidly reduces in the presence of paramagnetic ions, (2) the study of complex compounds, (3) the study of biochemical reactions in the presence of different metal ions. It is also suitable for testing the composition of a flowing liquid. Its disadvantage is that it requires complex and expensive equipment. (Ha)

  11. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    Science.gov (United States)

    Macalady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  12. Twenty-ninth ORNL/DOE conference on analytical chemistry in energy technology. Abstracts of papers

    International Nuclear Information System (INIS)

    1986-01-01

    This booklet contains separate abstracts of 55 individual papers presented at this conference. Different sections in the book are titled as follows: laser techniques; resonance ionization spectroscopy; laser applications; new developments in mass spectrometry; analytical chemistry of hazardous waste; and automation and data management

  13. Analytical Chemistry: A retrospective view on some current trends.

    Science.gov (United States)

    Niessner, Reinhard

    2018-04-01

    In a retrospective view some current trends in Analytical Chemistry are outlined and connected to work published more than a hundred years ago in the same field. For example, gravimetric microanalysis after specific precipitation, once the sole basis for chemical analysis, has been transformed into a mass-sensitive transducer in combination with compound-specific receptors. Molecular spectroscopy, still practising the classical absorption/emission techniques for detecting elements or molecules experiences a change to Raman spectroscopy, is now allowing analysis of a multitude of additional features. Chemical sensors are now used to perform a vast number of analytical measurements. Especially paper-based devices (dipsticks, microfluidic pads) celebrate a revival as they can potentially revolutionize medicine in the developing world. Industry 4.0 will lead to a further increase of sensor applications. Preceding separation and enrichment of analytes from complicated matrices remains the backbone for a successful analysis, despite increasing attempts to avoid clean-up. Continuous separation techniques will become a key element for 24/7 production of goods with certified quality. Attempts to get instantaneous and specific chemical information by optical or electrical transduction will need highly selective receptors in large quantities. Further understanding of ligand - receptor complex structures is the key for successful generation of artificial bio-inspired receptors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Island Explorations: Discovering Effects of Environmental Research-Based Lab Activities on Analytical Chemistry Students

    Science.gov (United States)

    Tomasik, Janice Hall; LeCaptain, Dale; Murphy, Sarah; Martin, Mary; Knight, Rachel M.; Harke, Maureen A.; Burke, Ryan; Beck, Kara; Acevedo-Polakovich, I. David

    2014-01-01

    Motivating students in analytical chemistry can be challenging, in part because of the complexity and breadth of topics involved. Some methods that help encourage students and convey real-world relevancy of the material include incorporating environmental issues, research-based lab experiments, and service learning projects. In this paper, we…

  15. Online Video Tutorials Increase Learning of Difficult Concepts in an Undergraduate Analytical Chemistry Course

    Science.gov (United States)

    He, Yi; Swenson, Sandra; Lents, Nathan

    2012-01-01

    Educational technology has enhanced, even revolutionized, pedagogy in many areas of higher education. This study examines the incorporation of video tutorials as a supplement to learning in an undergraduate analytical chemistry course. The concepts and problems in which students faced difficulty were first identified by assessing students'…

  16. 8. Seminar of the IMP-IIE-ININ on technological specialties. Topic 9: Analytical Chemistry

    International Nuclear Information System (INIS)

    1996-01-01

    The document includes four papers considered within the INIS subject scope, which were presented at the 8th Seminar of the IMP-IIE-ININ on technological specialities (Section Analytical Chemistry), held on 26 June 1996 in Cuernavaca (Mexico). A separate abstract and indexing were provided for each paper

  17. Development of collaborative-creative learning model using virtual laboratory media for instrumental analytical chemistry lectures

    Science.gov (United States)

    Zurweni, Wibawa, Basuki; Erwin, Tuti Nurian

    2017-08-01

    The framework for teaching and learning in the 21st century was prepared with 4Cs criteria. Learning providing opportunity for the development of students' optimal creative skills is by implementing collaborative learning. Learners are challenged to be able to compete, work independently to bring either individual or group excellence and master the learning material. Virtual laboratory is used for the media of Instrumental Analytical Chemistry (Vis, UV-Vis-AAS etc) lectures through simulations computer application and used as a substitution for the laboratory if the equipment and instruments are not available. This research aims to design and develop collaborative-creative learning model using virtual laboratory media for Instrumental Analytical Chemistry lectures, to know the effectiveness of this design model adapting the Dick & Carey's model and Hannafin & Peck's model. The development steps of this model are: needs analyze, design collaborative-creative learning, virtual laboratory media using macromedia flash, formative evaluation and test of learning model effectiveness. While, the development stages of collaborative-creative learning model are: apperception, exploration, collaboration, creation, evaluation, feedback. Development of collaborative-creative learning model using virtual laboratory media can be used to improve the quality learning in the classroom, overcome the limitation of lab instruments for the real instrumental analysis. Formative test results show that the Collaborative-Creative Learning Model developed meets the requirements. The effectiveness test of students' pretest and posttest proves significant at 95% confidence level, t-test higher than t-table. It can be concluded that this learning model is effective to use for Instrumental Analytical Chemistry lectures.

  18. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  19. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.

    Science.gov (United States)

    Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping

    2012-05-15

    In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF

  20. Foreword of the Fifth Symposium on Nuclear Analytical Chemistry (NAC-V)

    International Nuclear Information System (INIS)

    Acharya, R.; Goswami, A.; Reddy, A.V.R.

    2014-01-01

    The Fifth Symposium on Nuclear Analytical Chemistry (NAC-V) was organized at BARC, Mumbai during January 20-24, 2014 with more than 300 participants. It was sponsored by the Board of Research in Nuclear Sciences, Department of Atomic Energy (DAE), India and organized in cooperation with the IAEA and coorganized by the IANCAS. A total of 240 contributed abstracts along with 27 invited talks and 10 invited short talks were presented in 15 technical sessions. Selected 54 full papers of NAC-V have been accepted after review for publication in special issue of JRNC. (author)

  1. The Influence of Modern Instrumentation on the Analytical and General Chemistry Curriculum at Bates College

    Science.gov (United States)

    Wenzel, Thomas J.

    2001-09-01

    The availability of state-of-the-art instruments such as high performance liquid chromatograph, gas chromatograph-mass spectrometer, inductively coupled plasma-atomic emission spectrometer, capillary electrophoresis system, and ion chromatograph obtained through four Instructional Laboratory Improvement and one Course, Curriculum, and Laboratory Improvement grants from the National Science Foundation has led to a profound change in the structure of the analytical and general chemistry courses at Bates College. Students in both sets of courses now undertake ambitious, semester-long, small-group projects. The general chemistry course, which fulfills the prerequisite requirement for all upper-level chemistry courses, focuses on the connection between chemistry and the study of the environment. The projects provide students with an opportunity to conduct a real scientific investigation. The projects emphasize problem solving, team work, and communication, while still fostering the development of important laboratory skills. Cooperative learning is also used extensively in the classroom portion of these courses.

  2. Analytical performance of centrifuge-based device for clinical chemistry testing.

    Science.gov (United States)

    Suk-Anake, Jamikorn; Promptmas, Chamras

    2012-01-01

    A centrifuge-based device has been introduced to the Samsung Blood Analyzer (SBA). The verification of this analyzer is essential to meet the ISO15189 standard. Analytical performance was evaluated according to the NCCLS EP05-A method. The results of plasma samples were compared between the SBA and a Hitachi 917 analyzer according to the NCCLS EP09-A2-IR method. Percent recovery was determined via analysis of original control serum and spiked serum. Within-run precision was found to be 0.00 - 6.61% and 0.96 - 5.99% in normal- and abnormal-level assays, respectively, while between-run precision was 1.31 - 9.09% and 0.89 - 6.92%, respectively. The correlation coefficients (r) were > 0.990. The SBA presented analytical accuracy at 96.64 +/- 3.39% to 102.82 +/- 2.75% and 98.31 +/- 4.04% to 103.61 +/- 8.28% recovery, respectively. The results obtained verify that all of the 13 tests performed using the SBA demonstrates good and reliable precision suitable for use in qualified clinical chemistry laboratory service.

  3. Analytical Chemistry Division annual progress report for period ending December 31, 1982

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1983-05-01

    The Analytical Chemistry Dvision of Oak Ridge National laboratory (ORNL) serves a multitude of functions for a clientele that exists both in and outside ORNL. These functions fall into the following general categories: (1) analytical research, development, and implementation; (2) programmatic research, development, and utilization; and (3) technical support. The Division is organized into five major sections, each of which may carry out any type of work falling in the three categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections (analytical methodology, mass and emission spectrometry, radioactive materials, bio/organic analysis, and general and environmental analysis) during the period January 1, 1982 to December 31, 1982. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 61 articles, 32 proceedings publications and 37 reports have been published, and 107 oral presentations were given during this reporting period

  4. Environmental Contaminants, Metabolites, Cells, Organ Tissues, and Water: All in a Day’s Work at the EPA Analytical Chemistry Research Core

    Science.gov (United States)

    The talk will highlight key aspects and results of analytical methods the EPA National Health and Environmental Effects Research Laboratory (NHEERL) Analytical Chemistry Research Core (ACRC) develops and uses to provide data on disposition, metabolism, and effects of environmenta...

  5. [Final goal and problems in clinical chemistry examination measured by advanced analytical instruments].

    Science.gov (United States)

    Sasaki, M; Hashimoto, E

    1993-07-01

    In the field of clinical chemistry of Japan, the automation of analytical instruments first appeared in the 1960's with the rapid developments in electronics industry. After a series of improvements and modifications in the past thirty years, these analytical instruments became excellent with multifunctions. From the results of these developments, it is now well recognized that automated analytical instruments are indispensable to manage the modern clinical Laboratory. On the other hand, these automated analytical instruments uncovered the various problems which had been hitherto undetected when the manually-operated instruments were used. For instances, the variation of commercially available standard solutions due to the lack of government control causes the different values obtained in institutions. In addition, there are many problems such as a shortage of medical technologists, a complication to handle the sampling and an increased labor costs. Furthermore, the inadequacies in maintenance activities cause the frequent erroneous reports of laboratory findings in spite of the latest and efficient analytical instruments equipped. Thus, the working process in clinical laboratory must be systematized to create the rapidity and the effectiveness. In the present report, we review the developmental history of automation system for analytical instruments, discuss the problems to create the effective clinical laboratory and explore the ways to deal with these emerging issues for the automation technology in clinical laboratory.

  6. Metformin: A Review of Characteristics, Properties, Analytical Methods and Impact in the Green Chemistry.

    Science.gov (United States)

    da Trindade, Mariana Teixeira; Kogawa, Ana Carolina; Salgado, Hérida Regina Nunes

    2018-01-02

    Diabetes mellitus (DM) is considered a public health problem. The initial treatment consists of improving the lifestyle and making changes in the diet. When these changes are not enough, the use of medication becomes necessary. The metformin aims to reduce the hepatic production of glucose and is the preferred treatment for type 2. The objective is to survey the characteristics and properties of metformin, as well as hold a discussion on the existing analytical methods to green chemistry and their impacts for both the operator and the environment. For the survey, data searches were conducted by scientific papers in the literature as well as in official compendium. The characteristics and properties are shown, also, methods using liquid chromatography techniques, titration, absorption spectrophotometry in the ultraviolet and the infrared region. Most of the methods presented are not green chemistry oriented. It is necessary the awareness of everyone involved in the optimization of the methods applied through the implementation of green chemistry to determine the metformin.

  7. Nuclear forensics and nuclear analytical chemistry - iridium determination in a referred forensic sample

    International Nuclear Information System (INIS)

    Basu, A.K.; Bhadkambekar, C.A.; Tripathi, A.B.R.; Chattopadhyay, N.; Ghosh, P.

    2010-01-01

    Nuclear approaches for compositional characterization has bright application prospect in forensic perspective towards assessment of nature and origin of seized material. The macro and micro physical properties of nuclear materials can be specifically associated with a process or type of nuclear activity. Under the jurisdiction of nuclear analytical chemistry as well as nuclear forensics, thrust areas of scientific endeavor like determination of radioisotopes, isotopic and mass ratios, analysis for impurity contents, arriving at chemical forms/species and physical parameters play supporting evidence in forensic investigations. The analytical methods developed for this purposes can be used in international safeguards as well for nuclear forensics. Nuclear material seized in nuclear trafficking can be identified and a profile of the nuclear material can be created

  8. Applications of ICP-MS in marine analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, J W; Siu, K W.M.; Lam, J W; Willie, S N; Maxwell, P S; Palepu, A; Koether, M; Berman, S S [National Research Council of Canada, Ottawa, ON (Canada). Analytical Chemistry Section

    1990-07-01

    The versatility of ICP-MS in marine analytical chemistry is illustrated with applications to the multielement trace analysis of two recently released marine reference materials, the coastal seawater CASS-2 and the non-defatted lobster hepatopancreas tissue LUTS-1, and to the determination of tributyltin and dibutyltin in the harbour sediment reference material PACS-1 by HPLC-ICP-MS. Seawater analyses were performed after separation of the trace elements either by adsorption on immobilized 8-hydroxyquinoline or by reductive coprecipitation with iron and palladium. Simultaneous determination of seven trace elements in LUTS-1, including mercury, by isotope dilution ICP-MS, was achieved after dissolution by microwave digestion with nitric acid and hydrogen peroxide. Butyltin species in PACS-1 were separated by cation exchange HPLC of an extract of the sediment; method detection limits for tributyltin and dibutyltin in sediment samples are estimated to be 5 ng Sn/g and 12 ng Sn/g, respectively. (orig.).

  9. The Efficacy of Problem-based Learning in an Analytical Laboratory Course for Pre-service Chemistry Teachers

    Science.gov (United States)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, AL

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking ability of students in both the treatment and control groups were evaluated before and at the end of the implementation of the programme, using the Torrance Tests of Creative Thinking. In addition, changes in students' self-regulated learning skills using the Self-Regulated Learning Interview Schedule (SRLIS) and their self-evaluation proficiency were evaluated. Analysis of covariance showed that the creative thinking ability of the treatment group had improved statistically significantly after the PBL course (p effect on creative thinking ability. The SRLIS test showed that students in the treatment group used self-regulated learning strategies more frequently than students in the comparison group. According to the results of the self-evaluation, students became more positive and confident in problem-solving and group work as the semester progressed. Overall, PBL was shown to be an effective pedagogical instructional strategy for enhancing chemistry students' creative thinking ability, self-regulated learning skills and self-evaluation.

  10. The analytic impact of a reduced centrifugation step on chemistry and immunochemistry assays: an evaluation of the Modular Pre-Analytics.

    Science.gov (United States)

    Koenders, Mieke M J F; van Hurne, Marco E J F; Glasmacher-Van Zijl, Monique; van der Linde, Geesje; Westerhuis, Bert W J J M

    2012-09-01

    The COBAS 6000 system can be completed by a Modular Pre-Analytics (MPA), an integrated laboratory automation system that streamlines preanalysis. For an optimal throughput, the MPA centrifuges blood collection tubes for 5 min at 1885 × g - a centrifugation time that is not in concordance with the World Health Organization guidelines which suggest centrifugation for 10/15 min at 2000-3000 × g. In this study, the analytical outcome of 50 serum and 50 plasma samples centrifuged for 5 or 10 min at 1885 × g was investigated. The study included routine chemistry and immunochemistry assays on the COBAS 6000 and the Minicap capillary electrophoresis. Deming-fit and Bland-Altman plots of the 5-min and 10-min centrifugation steps indicated a significant correlation in serum samples. The lipaemia index in plasma samples centrifuged for 5 min displayed a statistically significant variation when compared with the 10-min centrifugation. Preanalytical centrifugation can be successfully down-scaled to a duration of 5 min for most routine chemistry and immunochemistry assays in serum and plasma samples. To prevent inaccurate results in plasma samples with an increased lipaemia index from being reported, the laboratory information system was programmed to withhold results above certain lipaemia indices. The presented data support the use of a 5-min centrifugation step to improve turnaround times, thereby meeting one of the desires of the requesting clinicians.

  11. Third Chemistry Conference on Recent Trends in Chemistry

    International Nuclear Information System (INIS)

    Saeed, M.M.; Wheed, S.

    2011-01-01

    The third chemistry conference 2011 on recent trends in chemistry was held from October 17-19, 2001 at Islamabad, Pakistan. More than 65 papers and oral presentation. The scope of the conference was wide open and provides and opportunity for participation of broad spectrum of chemists. This forum provided a platform for the dissemination of the latest research followed by discussion pertaining to new trends in chemistry. This con fence covered different aspects of subjects including analytical chemistry, environmental chemistry, polymer chemistry, industrial chemistry, biochemistry and nano chemistry etc. (A.B.)

  12. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  13. Effect of virtual analytical chemistry laboratory on enhancing student research skills and practices

    Directory of Open Access Journals (Sweden)

    Boris Bortnik

    2017-12-01

    Full Text Available This article aims to determine the effect of a virtual chemistry laboratory on university student achievement. The article describes a model of a laboratory course that includes a virtual component. This virtual component is viewed as a tool of student pre-lab autonomous learning. It presents electronic resources designed for a virtual laboratory and outlines the methodology of e-resource application. To find out how virtual chemistry laboratory affects student scientific literacy, research skills and practices, a pedagogical experiment has been conducted. Student achievement was compared in two learning environments: traditional – in-class hands-on – learning (control group and blended learning – online learning combined with in-person learning (experimental group. The effectiveness of integrating an e-lab in the laboratory study was measured by comparing student lab reports of the two groups. For that purpose, a set of 10 criteria was developed. The experimental and control student groups were also compared in terms of test results and student portfolios. The study showed that the adopted approach blending both virtual and hands-on learning environments has the potential to enhance student research skills and practices in analytical chemistry studies.

  14. USSR Report Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    Contents: Adsorption, Chemistry,Alkaloids, Analytical Chemistry, Catalysis,Chemical Industry,,Coal Gasification, Combustion, Electrochemistry,Explosives and Explosions, Fertilizers, Free Radicals, Inorganic...

  15. Industrial chemistry engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  16. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, K.

    1982-01-01

    The textbook is a Czech-to-German translation of the second revised edition and covers the subject under the headings: general nuclear chemistry, methods of nuclear chemistry, preparative nuclear chemistry, analytical nuclear chemistry, and applied chemistry. The book is especially directed to students

  17. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    Science.gov (United States)

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  19. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  20. Portable microwave assisted extraction: An original concept for green analytical chemistry.

    Science.gov (United States)

    Perino, Sandrine; Petitcolas, Emmanuel; de la Guardia, Miguel; Chemat, Farid

    2013-11-08

    This paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioactive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Chemistry of Technetium

    International Nuclear Information System (INIS)

    Omori, Takashi

    2001-01-01

    Since the late 1970's the coordination chemistry of technetium has been developed remarkably. The background of the development is obviously related to the use of technetium radiopharmaceuticals for diagnosis in nuclear medicine. Much attention has also been denoted to the chemical behavior of environmental 99 Tc released from reprocessing plants. This review covers the several aspects of technetium chemistry, including production of radioisotopes, analytical chemistry and coordination chemistry. In the analytical chemistry, separation of technetium, emphasizing chromatography and solvent extraction, is described together with spectrophotometric determination of technetium. In the coordination chemistry of technetium, a characteristic feature of the chemistry of Tc(V) complexes is referred from the view point of the formation of a wide variety of highly stable complexes containing the Tc=O or Tc≡N bond. Kinetic studies of the preparation of Tc(III) complexes using hexakis (thiourea) technetium(III) ion as a starting material are summarized, together with the base hydrolysis reactions of Tc(III), Tc(IV) and Tc(V) complexes. (author)

  2. Mass and emission spectrometry in the Analytical Chemistry Division of Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.H. (ed.)

    1978-11-01

    The capabilities of the Mass and Emission Spectrometry Section of the Analytical Chemistry Division of Oak Ridge National Laboratory are described. Many different areas of mass spectrometric expertise are represented in the section: gas analysis, high abundance sensitivity measurements, high- and low-resolution organic analyses, spark source trace constituent analysis, and ion microprobe analysis of surfaces. These capabilities are complemented by emission spectrometry. The instruments are described along with a few applications, some of which are unique.

  3. Mass and emission spectrometry in the Analytical Chemistry Division of Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Smith, D.H.

    1978-11-01

    The capabilities of the Mass and Emission Spectrometry Section of the Analytical Chemistry Division of Oak Ridge National Laboratory are described. Many different areas of mass spectrometric expertise are represented in the section: gas analysis, high abundance sensitivity measurements, high- and low-resolution organic analyses, spark source trace constituent analysis, and ion microprobe analysis of surfaces. These capabilities are complemented by emission spectrometry. The instruments are described along with a few applications, some of which are unique

  4. Analytical performance of 17 general chemistry analytes across countries and across manufacturers in the INPUtS project of EQA organizers in Italy, the Netherlands, Portugal, United Kingdom and Spain.

    Science.gov (United States)

    Weykamp, Cas; Secchiero, Sandra; Plebani, Mario; Thelen, Marc; Cobbaert, Christa; Thomas, Annette; Jassam, Nuthar; Barth, Julian H; Perich, Carmen; Ricós, Carmen; Faria, Ana Paula

    2017-02-01

    Optimum patient care in relation to laboratory medicine is achieved when results of laboratory tests are equivalent, irrespective of the analytical platform used or the country where the laboratory is located. Standardization and harmonization minimize differences and the success of efforts to achieve this can be monitored with international category 1 external quality assessment (EQA) programs. An EQA project with commutable samples, targeted with reference measurement procedures (RMPs) was organized by EQA institutes in Italy, the Netherlands, Portugal, UK, and Spain. Results of 17 general chemistry analytes were evaluated across countries and across manufacturers according to performance specifications derived from biological variation (BV). For K, uric acid, glucose, cholesterol and high-density density (HDL) cholesterol, the minimum performance specification was met in all countries and by all manufacturers. For Na, Cl, and Ca, the minimum performance specifications were met by none of the countries and manufacturers. For enzymes, the situation was complicated, as standardization of results of enzymes toward RMPs was still not achieved in 20% of the laboratories and questionable in the remaining 80%. The overall performance of the measurement of 17 general chemistry analytes in European medical laboratories met the minimum performance specifications. In this general picture, there were no significant differences per country and no significant differences per manufacturer. There were major differences between the analytes. There were six analytes for which the minimum quality specifications were not met and manufacturers should improve their performance for these analytes. Standardization of results of enzymes requires ongoing efforts.

  5. Inorganic Analytical Chemistry

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The book is a treatise on inorganic analytical reactions in aqueous solution. It covers about half of the elements in the periodic table, i.e. the most important ones : H, Li, B, C, N, O, Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, I, Ba, W,...

  6. Croatian Analytical Terminology

    Directory of Open Access Journals (Sweden)

    Kastelan-Macan; M.

    2008-04-01

    Full Text Available Results of analytical research are necessary in all human activities. They are inevitable in making decisions in the environmental chemistry, agriculture, forestry, veterinary medicine, pharmaceutical industry, and biochemistry. Without analytical measurements the quality of materials and products cannot be assessed, so that analytical chemistry is an essential part of technical sciences and disciplines.The language of Croatian science, and analytical chemistry within it, was one of the goals of our predecessors. Due to the political situation, they did not succeed entirely, but for the scientists in independent Croatia this is a duty, because language is one of the most important features of the Croatian identity. The awareness of the need to introduce Croatian terminology was systematically developed in the second half of the 19th century, along with the founding of scientific societies and the wish of scientists to write their scientific works in Croatian, so that the results of their research may be applied in economy. Many authors of textbooks from the 19th and the first half of the 20th century contributed to Croatian analytical terminology (F. Rački, B. Šulek, P. Žulić, G. Pexidr, J. Domac, G. Janeček , F. Bubanović, V. Njegovan and others. M. DeŢelić published the first systematic chemical terminology in 1940, adjusted to the IUPAC recommendations. In the second half of 20th century textbooks in classic analytical chemistry were written by V. Marjanović-Krajovan, M. Gyiketta-Ogrizek, S. Žilić and others. I. Filipović wrote the General and Inorganic Chemistry textbook and the Laboratory Handbook (in collaboration with P. Sabioncello and contributed greatly to establishing the terminology in instrumental analytical methods.The source of Croatian nomenclature in modern analytical chemistry today are translated textbooks by Skoog, West and Holler, as well as by Günnzler i Gremlich, and original textbooks by S. Turina, Z.

  7. Feasibility study for automating the analytical laboratories of the Chemistry Branch, National Enforcement Investigation Center, Environmental Protection Agency

    International Nuclear Information System (INIS)

    Morris, W.F.; Fisher, E.R.; Barton, G.W. Jr.

    1978-01-01

    The feasibility of automating the analytical laboratories of the Chemistry Branch of the National Enforcement Investigation Center, Environmental Protection Agency, Denver, Colorado, is explored. The goals of the chemistry laboratory are defined, and instrumental methods and other tasks to be automated are described. Five optional automation systems are proposed to meet these goals and the options are evaluated in terms of cost effectiveness and other specified criteria. The instruments to be automated include (1) a Perkin-Elmer AA spectrophotometer 403, (2) Perkin-Elmer AA spectrophotometer 306, (3) Technicon AutoAnalyzer II, (4) Mettler electronic balance, and a (5) Jarrell-Ash ICP emission spectrometer

  8. Eleventh international symposium on radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    1995-01-01

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry

  9. Eleventh international symposium on radiopharmaceutical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  10. Description and principles of use of an automatic control device usable, in particular, in analytical chemistry

    International Nuclear Information System (INIS)

    Rigaudiere, Roger; Jeanmaire, Lucien

    1969-01-01

    This note describes an automatic control device for the programming of about 20 different functions, chronologically and during a given time. Any voltage can be chosen at the output to perform the different functions. Three examples of utilisation taken in analytical chemistry are given to illustrate the possibilities offered by this device, but its domain of use is much more universal and independent of the type of functions [fr

  11. Forensic Chemistry

    Science.gov (United States)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  12. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry.

    Science.gov (United States)

    Offroy, Marc; Duponchel, Ludovic

    2016-03-03

    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  14. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  15. Proceedings of the 17. Annual Meeting of the Brazilian Chemistry Society; 7. National Symposium on Inorganic Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    These 17. Annual Meeting of the Brazilian Chemistry Society and 7. National Symposium on Inorganic Chemistry present several subjects of different interests for the participants, including sections about inorganic chemistry; organic chemistry; environmental chemistry; technological chemistry; electrochemistry; physical chemistry; photochemistry; chemical education; natural products; analytical chemistry and biological chemistry. (C.G.C.)

  16. Annual report 1986 chemistry department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1987-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1986 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistral, mineral processing, and general. (author)

  17. Annual report 1984 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1985-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry , environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  18. Annual report 1987 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1988-04-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1987 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistry, mineral processing, and general. 13 ills., (author)

  19. Annual report 1985 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1986-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All particles and reports published and lectures given in 1985 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  20. Annual report 1982 chemistry department

    International Nuclear Information System (INIS)

    Larsen, E.; Nielsen, O.J.

    1983-04-01

    The work going on in the Risoe National Laboratory, Chemistry Department is briefly surveyed by a presentation of all articles and reports published in 1982. The facilities and equipment are barely mentioned. The papers are divided into eight activities: 1. neutron activation analysis 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry 6. radical chemistry 7. poitron annihilation 8. uranium process chemistry. (author)

  1. CIEQUI: An oracle database for information management in the analytical chemistry unit of CIEMAT

    International Nuclear Information System (INIS)

    Rucandio, M.I.; Roca, M.

    1997-01-01

    An in-house software product named CIEQUI has been developed in CIEMAT, with purpose-written programs as a laboratory information management system (LIMS). It is grounded upon relational data base from ORACLE, with the supported languages SQL, PL/SQL, SQL*Plus, and DEC BASIS, and with the tools SQL*Loader, SQL*Forms and SQL*Menu. Its internal organization and functional structure are schematically represented and the advantages and disadvantages of a tailored management system are described. Although it is difficult to unity the analysis criteria in a R AND D organization such as CIEMAT, because of the wide variety in the sample type and in the involved determinations, our system provides remarkable advantages. CIEQUI reflects the complexity of the laboratories it serves. It is a system easily accessible to all, that help us in many tasks about organization and management of the analytical service provided through the different laboratories of the CIEMAT Analytical Chemistry Unit. (Author)

  2. The Quantitative Resolution of a Mixture of Group II Metal Ions by Thermometric Titration with EDTA. An Analytical Chemistry Experiment.

    Science.gov (United States)

    Smith, Robert L.; Popham, Ronald E.

    1983-01-01

    Presents an experiment in thermometric titration used in an analytic chemistry-chemical instrumentation course, consisting of two titrations, one a mixture of calcium and magnesium, the other of calcium, magnesium, and barium ions. Provides equipment and solutions list/specifications, graphs, and discussion of results. (JM)

  3. Annual report 1988 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1989-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1988 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  4. Annual report 1989 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1990-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1989 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  5. Evaluation of a reduced centrifugation time and higher centrifugal force on various general chemistry and immunochemistry analytes in plasma and serum.

    Science.gov (United States)

    Møller, Mette F; Søndergaard, Tove R; Kristensen, Helle T; Münster, Anna-Marie B

    2017-09-01

    Background Centrifugation of blood samples is an essential preanalytical step in the clinical biochemistry laboratory. Centrifugation settings are often altered to optimize sample flow and turnaround time. Few studies have addressed the effect of altering centrifugation settings on analytical quality, and almost all studies have been done using collection tubes with gel separator. Methods In this study, we compared a centrifugation time of 5 min at 3000 ×  g to a standard protocol of 10 min at 2200 ×  g. Nine selected general chemistry and immunochemistry analytes and interference indices were studied in lithium heparin plasma tubes and serum tubes without gel separator. Results were evaluated using mean bias, difference plots and coefficient of variation, compared with maximum allowable bias and coefficient of variation used in laboratory routine quality control. Results For all analytes except lactate dehydrogenase, the results were within the predefined acceptance criteria, indicating that the analytical quality was not compromised. Lactate dehydrogenase showed higher values after centrifugation for 5 min at 3000 ×  g, mean bias was 6.3 ± 2.2% and the coefficient of variation was 5%. Conclusions We found that a centrifugation protocol of 5 min at 3000 ×  g can be used for the general chemistry and immunochemistry analytes studied, with the possible exception of lactate dehydrogenase, which requires further assessment.

  6. Atom-at-a-time chemistry

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    2009-01-01

    Several techniques of the analytical chemistry in 'Atom-at-a-time chemistry' for transactinide elements have been developed. In this report a representative example in these techniques is introduced with the results. The contents are the single-atom chemistry, the chemical experiments on transactinide elements, liquid phase chemistry (the ion exchange behavior of Rutherfordium), gas phase chemistry (the chemistry of atomic No.112 element), and future development. (M.H.)

  7. General Procedure for the Easy Calculation of pH in an Introductory Course of General or Analytical Chemistry

    Science.gov (United States)

    Cepriá, Gemma; Salvatella, Luis

    2014-01-01

    All pH calculations for simple acid-base systems used in introductory courses on general or analytical chemistry can be carried out by using a general procedure requiring the use of predominance diagrams. In particular, the pH is calculated as the sum of an independent term equaling the average pK[subscript a] values of the acids involved in the…

  8. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    1992-06-01

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware

  9. Standard guide for establishing a quality assurance program for analytical chemistry laboratories within the nuclear industry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide covers the establishment of a quality assurance (QA) program for analytical chemistry laboratories within the nuclear industry. Reference to key elements of ANSI/ISO/ASQC Q9001, Quality Systems, provides guidance to the functional aspects of analytical laboratory operation. When implemented as recommended, the practices presented in this guide will provide a comprehensive QA program for the laboratory. The practices are grouped by functions, which constitute the basic elements of a laboratory QA program. 1.2 The essential, basic elements of a laboratory QA program appear in the following order: Section Organization 5 Quality Assurance Program 6 Training and Qualification 7 Procedures 8 Laboratory Records 9 Control of Records 10 Control of Procurement 11 Control of Measuring Equipment and Materials 12 Control of Measurements 13 Deficiencies and Corrective Actions 14

  10. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    Science.gov (United States)

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  11. High power deep UV-LEDs for analytical optical instrumentation

    Czech Academy of Sciences Publication Activity Database

    Li, Y.; Dvořák, Miloš; Nesterenko, P. N.; Nuchtavorn, N.; Macka, M.

    2018-01-01

    Roč. 255, č. 2 (2018), s. 1238-1243 ISSN 0925-4005 Institutional support: RVO:68081715 Keywords : deep UV Light emitting diodes (LEDs) * optical detection * portable analytical instrumentation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 5.401, year: 2016

  12. Analytical chemistry of actinides

    International Nuclear Information System (INIS)

    Chollet, H.; Marty, P.

    2001-01-01

    Different characterization methods specifically applied to the actinides are presented in this review such as ICP/OES (inductively coupled plasma-optical emission spectrometry), ICP/MS (inductively coupled plasma spectroscopy-mass spectrometry), TIMS (thermal ionization-mass spectrometry) and GD/OES (flow discharge optical emission). Molecular absorption spectrometry and capillary electrophoresis are also available to complete the excellent range of analytical tools at our disposal. (authors)

  13. Annual report 1983 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1984-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1983 are presented. The facilities and equipment are barely mentioned. The activities are divided into nine groups: 1. radioisotope chemistry 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry and waste disposal 6. radical chemstry 7. positron annihilation 8. mineral processing 9. general. (author)

  14. Chemistry in South Africa - yesterday, today and tomorrow

    International Nuclear Information System (INIS)

    1987-01-01

    The jubilee convention of the South African Chemical Institute covered the development of chemistry in South Africa. Specialists in the field of chemistry covered topics with reference to organic chemistry, extraction metallurgy, analytical chemistry, mass spectroscopy, instrumentation, theoretical chemistry, physical chemistry, chromatography, industrial chemistry and solid state chemistry

  15. Computer controlled quality of analytical measurements

    International Nuclear Information System (INIS)

    Clark, J.P.; Huff, G.A.

    1979-01-01

    A PDP 11/35 computer system is used in evaluating analytical chemistry measurements quality control data at the Barnwell Nuclear Fuel Plant. This computerized measurement quality control system has several features which are not available in manual systems, such as real-time measurement control, computer calculated bias corrections and standard deviation estimates, surveillance applications, evaluaton of measurement system variables, records storage, immediate analyst recertificaton, and the elimination of routine analysis of known bench standards. The effectiveness of the Barnwell computer system has been demonstrated in gathering and assimilating the measurements of over 1100 quality control samples obtained during a recent plant demonstration run. These data were used to determine equaitons for predicting measurement reliability estimates (bias and precision); to evaluate the measurement system; and to provide direction for modification of chemistry methods. The analytical chemistry measurement quality control activities represented 10% of the total analytical chemistry effort

  16. ASVCP quality assurance guidelines: control of preanalytical, analytical, and postanalytical factors for urinalysis, cytology, and clinical chemistry in veterinary laboratories.

    Science.gov (United States)

    Gunn-Christie, Rebekah G; Flatland, Bente; Friedrichs, Kristen R; Szladovits, Balazs; Harr, Kendal E; Ruotsalo, Kristiina; Knoll, Joyce S; Wamsley, Heather L; Freeman, Kathy P

    2012-03-01

    In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and documents recommendations for control of preanalytical, analytical, and postanalytical factors related to urinalysis, cytology, and clinical chemistry in veterinary laboratories and is adapted from sections 1.1 and 2.2 (clinical chemistry), 1.3 and 2.5 (urinalysis), 1.4 and 2.6 (cytology), and 3 (postanalytical factors important in veterinary clinical pathology) of these guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts. © 2012 American Society for Veterinary Clinical Pathology.

  17. Participation in BCR - certifications by the Laboratory of Analytical Chemistry, Institute for Nuclear Sciences, University of Gent, Belgium

    International Nuclear Information System (INIS)

    Cornelis, R.; Dyg, S.; Dams, R.; Griepink, B.

    1990-01-01

    During the last decade the Laboratory of Analytical Chemistry assisted in the certification of 31 environmental and food reference materials issued by the BCR (Bureau of Reference Materials of the European Communities). The efforts spent can be translated into the following statistics: the 10 most frequently certified elements assisted by the Gent Laboratory are As, Cd, Co, Cu, Fe, Hg, Mn, Pb, Se and Zn. They cover 70% of the certification work. The Gent Laboratory cooperated in 74% of the latter. There are 21 more major and trace elements certified, some in a single product only. Activation analysis was the main analytical technique applied by the Gent Laboratory. In many instances radiochemical separations were involved. (orig.)

  18. USSR Report Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    THIS REPORT CONTAINS FOREIGN MEDIA INFORMATION FROM THE USSR CONCERNING Adsorption, Alkaloids, ANALYTICAL CHEMISTRY, CATALYSIS, ELECTROCHEMISTRY, Fertilizers, INORGANIC COMPOUNDS, ORGANOPHOSPHOROUS...

  19. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  20. News for analytical chemists

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Karlberg, Bo

    2009-01-01

    welfare. In conjunction with the meeting of the steering committee in Tallinn, Estonia, in April, Mihkel Kaljurand and Mihkel Koel of Tallinn University of Technology organised a successful symposium attended by 51 participants. The symposium illustrated the scientific work of the steering committee...... directed to various topics of analytical chemistry. Although affected by the global financial crisis, the Euroanalysis Conference will be held on 6 to 10 September in Innsbruck, Austria. For next year, the programme for the analytical section of the 3rd European Chemistry Congress is in preparation...

  1. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  2. Mendeleev-2013. VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials. Book of abstracts. Section 4. Organic chemistry

    International Nuclear Information System (INIS)

    2013-01-01

    VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials was conducted on the Chemistry department of Saint-Petersburg University on April, 2-5, 2013. In the conference participants from 14 countries took part. There were five sections: Nanochemistry and nanomaterials, Analytic chemistry, Inorganic chemistry, Organic chemistry, Physical chemistry. In the collection (Section 2 - Organic chemistry) there are the abstracts concerning different aspects of organic chemistry: synthesis and study of properties of heterocyclic, organometallic, biologically active, medicinal compounds, new ion exchange materials, reagents for analytic chemistry, etc [ru

  3. comparative assessment of university chemistry undergraduate

    African Journals Online (AJOL)

    Temechegn

    The areas of chemistry covered are Introductory, Inorganic, Physical, Organic, and Quantum and ... various specialisations like Pure and Applied Chemistry, Analytical ... even engineering disciplines, a degree in chemistry can be the starting point. .... It is also to show the relevance of the instructional methods relative to the.

  4. Annual Report 1984. Chemistry Department

    DEFF Research Database (Denmark)

    Funck, Jytte; Nielsen, Ole John

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, an......, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general.......This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry...

  5. SPECIAL ISSUE DEDICATED TO THE 10TH ANNIVERSARY OF THE CHEMISTRY JOURNAL OF MOLDOVA. GENERAL, INDUSTRIAL AND ECOLOGICAL CHEMISTRY

    OpenAIRE

    Gheorghe DUCA

    2016-01-01

    Ten years ago, in 2006, CHEMISTRY JOURNAL OF MOLDOVA. General, Industrial and Ecological Chemistry was founded by the Institute of Chemistry of Academy of Sciences of Moldova and Moldova State University. Chemistry Journal of Moldova is an open access, international indexed and peer-reviewed journal that publishes papers of high quality containing original results in the areas of Chemical Sciences, such as analytical chemistry, ecological chemistry, food chemistry, industrial chem...

  6. Supplemental Instruction in Physical Chemistry I

    Science.gov (United States)

    Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth

    2016-01-01

    Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…

  7. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  8. Post-analytical stability of 23 common chemistry and immunochemistry analytes in incurred samples

    DEFF Research Database (Denmark)

    Nielsen, Betina Klint; Frederiksen, Tina; Friis-Hansen, Lennart

    2017-01-01

    BACKGROUND: Storage of blood samples after centrifugation, decapping and initial sampling allows ordering of additional blood tests. The pre-analytic stability of biochemistry and immunochemistry analytes has been studied in detail, but little is known about the post-analytical stability...... in incurred samples. METHODS: We examined the stability of 23 routine analytes on the Dimension Vista® (Siemens Healthineers, Denmark): 42-60 routine samples in lithium-heparin gel tubes (Vacutainer, BD, USA) were centrifuged at 3000×g for 10min. Immediately after centrifugation, initial concentration...... of analytes were measured in duplicate (t=0). The tubes were stored decapped at room temperature and re-analyzed after 2, 4, 6, 8 and 10h in singletons. The concentration from reanalysis were normalized to initial concentration (t=0). Internal acceptance criteria for bias and total error were used...

  9. Analytical applications of ICP-FTS

    International Nuclear Information System (INIS)

    Faires, L.M.; Palmer, B.A.; Cunningham, P.T.

    1986-01-01

    The Analytical Chemistry Group of the Chemistry Division at Los Alamos National Laboratory has been investigating the analytical utility of the inductively coupled plasma (ICP) - Fourier transform spectrometer (FTS) combination. While a new state-of-the-art FTS facility is under construction at Los Alamos, preliminary data has been obtained on the one-meter FTS at the National Solar Observatory at Kitt Peak, Arizona. This paper presents an update of the Los Alamos FTS facility, which is expected to be completed in 1986, and presents data showing the analytical potential of an ICP-FTS system. Some of the potential problems of the multiplex disadvantage are discussed, and the advantages of the high resolution obtainable with the FTS are illustrated

  10. Spotlight on medicinal chemistry education.

    Science.gov (United States)

    Pitman, Simone; Xu, Yao-Zhong; Taylor, Peter; Turner, Nicholas; Coaker, Hannah; Crews, Kasumi

    2014-05-01

    The field of medicinal chemistry is constantly evolving and it is important for medicinal chemists to develop the skills and knowledge required to succeed and contribute to the advancement of the field. Future Medicinal Chemistry spoke with Simone Pitman (SP), Yao-Zhong Xu (YX), Peter Taylor (PT) and Nick Turner (NT) from The Open University (OU), which offers an MSc in Medicinal Chemistry. In the interview, they discuss the MSc course content, online teaching, the future of medicinal chemistry education and The OU's work towards promoting widening participation. SP is a Qualifications Manager in the Science Faculty at The OU. She joined The OU in 1993 and since 1998 has been involved in the Postgraduate Medicinal Chemistry provision at The OU. YX is a Senior Lecturer in Bioorganic Chemistry at The OU. He has been with The OU from 2001, teaching undergraduate courses of all years and chairing the master's course on medicinal chemistry. PT is a Professor of Organic Chemistry at The OU and has been involved with the production and presentation of The OU courses in Science and across the university for over 30 years, including medicinal chemistry modules at postgraduate level. NT is a Lecturer in Analytical Science at The OU since 2009 and has been involved in the production of analytical sciences courses, as well as contributing to the presentation of a number of science courses including medicinal chemistry.

  11. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  12. Analytical Chemistry Division annual progress report for period ending December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The following sentences highlight some of the technical activities carried out during 1991. They illustrate the diversity of programs and technical work performed within the Analytical Chemistry Division. Our neutron activation analysis laboratory at HFIR was placed into operation during 1991. We have combined inductively coupled plasma mass spectrometry (ICP/MS) with a preparation procedure developed at the Argonne National Laboratory to measure ultra-trace levels of U, Pu, Np, and Am in body fluids, primarily urine. Much progress has been made over the last year in the interfacing of an rf-powered glow discharge source to a double-focusing mass spectrometer. Preliminary experiments using electrospray ionization combined with ion trap mass spectrometry show much promise for the analysis of metals in solution. A secondary ion microprobe has been constructed that permits determination of the distribution of organic compounds less than a monolayer thick on samples as large as 1 cm diameter. Fourier transform mass spectrometry has been demonstrated to be a highly effective tool for the detailed characterization of biopolymers, especially normal and modified oligonucleotides. Much has been accomplished in understanding the fundamentals of quadrupole ion trap mass spectrometry. Work with ITMS instrumentation has led to the development of rapid methods for the detection of trace organics in environmental and physiological samples. A new type of time-of-flight mass spectrometer was designed for use with our positron ionization experiments. Fundamental research on chromatography at high concentrations and on gas-solid adsorption has continued. The preparation of a monograph on the chemistry of environmental tobacco smoke was completed this year.

  13. Quality assurance for health and environmental chemistry: 1986

    International Nuclear Information System (INIS)

    Gautier, M.A.; Gladney, E.S.; Moss, W.D.; Phillips, M.B.; O'Malley, B.T.

    1987-11-01

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group at the Los Alamos National Laboratory. The philosophy, methodology, and computing resources used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1986. 27 refs., 3 figs

  14. Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring

    International Nuclear Information System (INIS)

    Egorov, Oleg B.; Grate, Jay W.; DeVol, Timothy A.

    2004-01-01

    This research program is directed toward rapid, sensitive, and selective determination of beta and alpha-emitting radionuclides such as 99Tc, 90Sr, and trans-uranium (TRU) elements in low activity waste (LAW) processing streams. The overall technical approach is based on automated radiochemical measurement principles, which entails integration of sample treatment and separation chemistries and radiometric detection within a single functional analytical instrument. Nuclear waste process streams are particularly challenging for rapid analytical methods due to the complex, high-ionic-strength, caustic brine sample matrix, the presence of interfering radionuclides, and the variable and uncertain speciation of the radionuclides of interest. As a result, matrix modification, speciation control, and separation chemistries are required for use in automated process analyzers. Significant knowledge gaps exist relative to the design of chemistries for such analyzers so that radionuclides can be quantitatively and rapidly separated and analyzed in solutions derived from low-activity waste processing operations. This research is addressing these knowledge gaps in the area of separation science, nuclear detection, and analytical chemistry and instrumentation. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for sample matrix modification and analyte speciation control and chemistries for rapid and selective separation and preconcentration of target radionuclides from complex sample matrices. In addition, new approaches for quantification of alpha emitters in solution using solid-state diode detectors, as well as improved instrumentation and signal processing techniques for use with solid-state and scintillation detectors, will be developed. New knowledge of the performance of separation materials, matrix modification and speciation control chemistries, instrument configurations, and quantitative analytical approaches will

  15. Chemistry of the elements

    International Nuclear Information System (INIS)

    Greenwood, N.N.; Earnshaw, A.

    1984-01-01

    This textbook presents an account of the chemistry of the elements for both undergraduate and postgraduate students. It covers not only the 'inorganic' chemistry of the elements, but also analytical, theoretical, industrial, organometallic;, bio-inorganic and other areas of chemistry which apply. The following elements of special nuclear interest are included: Rb, Cs, Fr, Sr, Ba, Ra, Po, At, Rn, Sc, Y, Zr, Hf, V, Nb, Ta, Mo, Tc, Ru, the Lanthanide Elements, the Actinide Elements. (U.K.)

  16. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Matel, L.; Dulanska, S.

    2013-01-01

    This text-book is an introductory text in nuclear chemistry and radiochemistry, aimed on university undergraduate students in chemistry and related disciplines (physics, nuclear engineering). It covers the key aspects of modern nuclear chemistry. The text begins with basic theories in contemporary physics. It relates nuclear phenomena to key divisions of chemistry such as atomic structure, spectroscopy, equilibria and kinetics. It also gives an introduction to sources of ionizing radiation, detection of ionizing radiation, nuclear power industry and accident on nuclear installations as well as basic knowledge's of radiobiology. This book is essential reading for those taking a first course in nuclear chemistry and is a useful companion to other volumes in physical and analytical chemistry. It will also be of use to those new to working in nuclear chemistry or radiochemistry.

  17. Recent analytical applications of magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji

    2016-07-01

    Full Text Available Analytical chemistry has experienced, as well as other areas of science, a big change due to the needs and opportunities provided by analytical nanoscience and nanotechnology. Now, nanotechnology is increasingly proving to be a powerful ally of analytical chemistry to achieve its objectives, and to simplify analytical processes. Moreover, the information needs arising from the growing nanotechnological activity are opening an exciting new field of action for analytical chemists. Magnetic nanoparticles have been used in various fields owing to their unique properties including large specific surface area and simple separation with magnetic fields. For Analytical applications, they have been used mainly for sample preparation techniques (magnetic solid phase extraction with different advanced functional groups (layered double hydroxide, β-cyclodextrin, carbon nanotube, graphen, polymer, octadecylsilane and automation of it, microextraction techniques enantioseparation and chemosensors. This review summarizes the basic principles and achievements of magnetic nanoparticles in sample preparation techniques, enantioseparation and chemosensors. Also, some selected articles recently published (2010-2016 have been reviewed and discussed.

  18. Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring

    International Nuclear Information System (INIS)

    Egorov, Oleg B.; Grate, Jay W.; DeVol, Timothy A.

    2003-01-01

    This research program is directed toward rapid, sensitive, and selective determination of beta and alpha-emitting radionuclides such as 99Tc, 90Sr, and trans-uranium (TRU) elements in low activity waste (LAW) processing streams. The overall technical approach is based on automated radiochemical measurement principles. Nuclear waste process streams are particularly challenging for rapid analytical methods due to the complex, high- ionic-strength, caustic brine sample matrix, the presence of interfering radionuclides, and the variable and uncertain speciation of the radionuclides of interest. As a result, matrix modification, speciation control, and separation chemistries are required for use in automated process analyzers. Significant knowledge gaps exist relative to the design of chemistries for such analyzers so that radionuclides can be quantitatively and rapidly separated and analyzed in solutions derived from low-activity waste processing operations. This research is addressing these knowledge gaps in the area of separation science, nuclear detection, and analytical chemistry and instrumentation. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for sample matrix modification and analyte speciation control and chemistries for rapid and selective separation and preconcentration of target radionuclides from complex sample matrices. In addition, new approaches for quantification of alpha emitters in solution using solid state diode detectors, as well as improved instrumentation and signal processing techniques for use with solid-state and scintillation detectors, will be developed. New knowledge of the performance of separation materials, matrix modification and speciation control chemistries, instrument configurations, and quantitative analytical approaches will provide the basis for designing effective instrumentation for radioanalytical process monitoring. Specific analytical targets include 99 Tc, 90Sr and

  19. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1971-05-01

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  20. Analytical Chemistry Department annual report, 1975

    International Nuclear Information System (INIS)

    Mosen, A.W.

    1976-01-01

    The analytical methods developed or adopted for use in support of radiochemistry and gamma ray spectroscopy, HTGR fuel reprocessing, HTGR fuel development, TRIGA fuel fabrication, and miscellaneous projects are reported

  1. Application of californium-252 neutron sources for analytical chemistry

    International Nuclear Information System (INIS)

    Ishii, Daido

    1976-01-01

    The researches made for the application of Cf-252 neutron sources to analytical chemistry during the period from 1970 to 1974 including partly 1975 are reviewed. The first part is the introduction to the above. The second part deals with general review of symposia, publications and the like. Attention is directed to ERDA publishing the periodical ''Californium-252 Progress'' and to a study group of Cf-252 utilization held by Japanese Radioisotope Association in 1974. The third part deals with its application for radio activation analysis. The automated absolute activation analysis (AAAA) of Savannha River is briefly explained. The joint experiment of Savannha River operation office with New Brunswick laboratory is mentioned. Cf-252 radiation source was used for the non-destructive analysis of elements in river water. East neutrons of Cf-252 were used for the quantitative analysis of lead in paints. Many applications for industrial control processes have been reported. Attention is drawn to the application of Cf-252 neutron sources for the field search of neutral resources. For example, a logging sonde for searching uranium resources was developed. the fourth part deals with the application of the analysis with gamma ray by capturing neutrons. For example, a bore hole sonde and the process control analysis of sulfur in fuel utilized capture gamma ray. The prompt gamma ray by capturing neutrons may be used for the nondestructive analysis of enrivonment. (Iwakiri, K.)

  2. Quality assurance for health and environmental chemistry: 1989

    International Nuclear Information System (INIS)

    Gautier, M.A.; Gladney, E.S.; Koski, N.L.; Jones, E.A.; Phillips, M.B.; O'Malley, B.T.

    1990-12-01

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group (HSE-9) at the Los Alamos National Laboratory. The philosophy, methodology, computing resources, and laboratory information management system used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1989. 38 refs., 8 figs., 3 tabs

  3. Analytical capillary isotachophoresis after 50 years of development: Recent progress 2014-2016

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Gebauer, Petr; Boček, Petr

    2017-01-01

    Roč. 38, č. 1 (2017), s. 9-19 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : analytical electrophoresis * isotachophoresis (ITP) * review Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  4. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    International Nuclear Information System (INIS)

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods

  5. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods

  6. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, J; Smulek, W; Godlewska-Para, E [eds.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods.

  7. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods.

  8. Development of Distributed System for Informational Location and Control on the Corporate Web Portal "Analytical Chemistry in Russia"

    Science.gov (United States)

    Shirokova, V. I.; Kolotov, V. P.; Alenina, M. V.

    A new Internet portal developed by community of Russian analysts has been launched in 2001 (http://www.geokhi.ru/~rusanalytchem, http://www.rusanalytchem.org) Corporate Web Portal information, "Analytical Chemistry in Russia" , Corporate Web Portal information, "Analytical Chemistry in Russia" ). Now the portal contains a large amount of information, great part of it is stored in the form of SQL data base (MS SQL). The information retrieval is made by means of ASP pages, containing VB Scripts. The obtained experience of work with such topical portal has detected some weak points, related with its centralized administration and updating. It has been found that urgent supporting of all requests from different persons/organizations on information allocation on the portal's server takes a lot of efforts and time. That is why, the further development of portal we relate with development of a distributed system for information allocation and control, under preserving of centralized administration for ensuring of security and stable working of the portal. Analysis and testing of some available technologies lead us to conclusion to apply MS Share Point technologies. A MS Share Point Team Services (SPTS) has been selected as a technology supporting relatively small groups, where MS SQL is used for storage data and metadata. The last feature was considered as decisive one for SPTS selection, allowing easy integration with data base of the whole portal. SPTS was launched as an independent Internet site accessible from home page of the portal. It serves as a root site to exit to dozens of subsites serving different bodies of Russian Scientific Council on analytical chemistry and external organizations located over the whole Russia. The secure functioning of such hierarchical system, which includes a lot of remote information suppliers, based on use of roles to manage user rights independently for each subsite. The root site is controlled by portal administrator, whereas the

  9. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    Energy Technology Data Exchange (ETDEWEB)

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the following classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.

  10. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  11. Bio- and chemiluminescence imaging in analytical chemistry

    International Nuclear Information System (INIS)

    Roda, Aldo; Guardigli, Massimo; Pasini, Patrizia; Mirasoli, Mara; Michelini, Elisa; Musiani, Monica

    2005-01-01

    Bio- and chemiluminescence imaging techniques combine the high sensitivity of bio- and chemiluminescence detection with the ability of current light imaging devices to localize and quantify light emission down to the single-photon level. These techniques have been successfully exploited for the development of sensitive analytical methods relying on the evaluation of the spatial distribution of the light emitted from a target sample. In this paper, we report on recent applications of bio- and chemiluminescence imaging for in vitro and in vivo assays, including: quantitative assays performed in various analytical formats, such as microtiter plates, microarrays and miniaturized analytical devices, used in the pharmaceutical, clinical, diagnostic and environmental fields; luminescence imaging microscopy based on enzymatic, immunohistochemical and in situ hybridization reactions for the localization of metabolites, enzymes, antigens and gene sequences in cells and tissues; whole-body luminescence imaging in live animals for evaluating biological and pathological processes and for pharmacological studies

  12. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  13. Metrology and analytical chemistry: Bridging the cultural gap

    International Nuclear Information System (INIS)

    King, Bernard

    2002-01-01

    Metrology in general and issues such as traceability and measurement uncertainty in particular are new to most analytical chemists and many remain to be convinced of their value. There is a danger of the cultural gap between metrologists and analytical chemists widening with unhelpful consequences and it is important that greater collaboration and cross-fertilisation is encouraged. This paper discusses some of the similarities and differences in the approaches adopted by metrologists and analytical chemists and indicates how these approaches can be combined to establish a unique metrology of chemical measurement which could be accepted by both cultures. (author)

  14. Contactless conductivity detection for analytical techniques — Developments from 2014 to 2016

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Hauser, P.C.

    2017-01-01

    Roč. 38, č. 1 (2017), s. 95-114 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : capacitively coupled contactless conductivity detection * capillary electrophoresis * contactless conductivity detection * analytical techniques * review Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  15. Environmental Chemistry in the Undergraduate Laboratory.

    Science.gov (United States)

    Wenzel, Thomas J.; Austin, Rachel N.

    2001-01-01

    Discusses the importance of environmental chemistry and the use of laboratory exercises in analytical and general chemistry courses. Notes the importance of lab work in heightening student interest in coursework including problem-based learning in undergraduate curricula, ready adaptability of environmental coursework to existing curricula, and…

  16. Determination of Total Arsenic and Speciation in Apple Juice by Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry: An Experiment for the Analytical Chemistry Laboratory

    Science.gov (United States)

    He, Ping; Colon, Luis A.; Aga, Diana S.

    2016-01-01

    A two-part laboratory experiment was designed for upper-level analytical chemistry students to provide hands-on experience in the use of high performance liquid chromatography (HPLC) for separation and inductively coupled plasma mass spectrometry (ICP-MS) for detection. In the first part of the experiment, the students analyze total arsenic in…

  17. Determination of the Acid Dissociation Constant of a Phenolic Acid by High Performance Liquid Chromatography: An Experiment for the Upper Level Analytical Chemistry Laboratory

    Science.gov (United States)

    Raboh, Ghada

    2018-01-01

    A high performance liquid chromatography (HPLC) experiment for the upper level analytical chemistry laboratory is described. The students consider the effect of mobile-phase composition and pH on the retention times of ionizable compounds in order to determine the acid dissociation constant, K[subscript a], of a phenolic acid. Results are analyzed…

  18. Proceedings of 4. Meeting on Chemistry in Northeast

    International Nuclear Information System (INIS)

    1989-01-01

    The works of IV Meeting on Chemistry in Northeast are presented, including topics about compounds determination by nuclear analytical techniques and the non-nuclear techniques and physical-chemistry studies of chemical compounds. (C.G.C.)

  19. Influence of centrifugation conditions on the results of 77 routine clinical chemistry analytes using standard vacuum blood collection tubes and the new BD-Barricor tubes.

    Science.gov (United States)

    Cadamuro, Janne; Mrazek, Cornelia; Leichtle, Alexander B; Kipman, Ulrike; Felder, Thomas K; Wiedemann, Helmut; Oberkofler, Hannes; Fiedler, Georg M; Haschke-Becher, Elisabeth

    2018-02-15

    Although centrifugation is performed in almost every blood sample, recommendations on duration and g-force are heterogeneous and mostly based on expert opinions. In order to unify this step in a fully automated laboratory, we aimed to evaluate different centrifugation settings and their influence on the results of routine clinical chemistry analytes. We collected blood from 41 healthy volunteers into BD Vacutainer PST II-heparin-gel- (LiHepGel), BD Vacutainer SST II-serum-, and BD Vacutainer Barricor heparin-tubes with a mechanical separator (LiHepBar). Tubes were centrifuged at 2000xg for 10 minutes and 3000xg for 7 and 5 minutes, respectively. Subsequently 60 and 21 clinical chemistry analytes were measured in plasma and serum samples, respectively, using a Roche COBAS instrument. High sensitive Troponin T, pregnancy-associated plasma protein A, ß human chorionic gonadotropin and rheumatoid factor had to be excluded from statistical evaluation as many of the respective results were below the measuring range. Except of free haemoglobin (fHb) measurements, no analyte result was altered by the use of shorter centrifugation times at higher g-forces. Comparing LiHepBar to LiHepGel tubes at different centrifugation setting, we found higher lactate-dehydrogenase (LD) (P = 0.003 to centrifuged at higher speed (3000xg) for a shorter amount of time (5 minutes) without alteration of the analytes tested in this study. When using LiHepBar tubes for blood collection, a separate LD reference value might be needed.

  20. Black Boxes in Analytical Chemistry: University Students' Misconceptions of Instrumental Analysis

    Science.gov (United States)

    Carbo, Antonio Domenech; Adelantado, Jose Vicente Gimeno; Reig, Francisco Bosch

    2010-01-01

    Misconceptions of chemistry and chemical engineering university students concerning instrumental analysis have been established from coordinated tests, tutorial interviews and laboratory lessons. Misconceptions can be divided into: (1) formal, involving specific concepts and formulations within the general frame of chemistry; (2)…

  1. Carbon nanotubes and graphene in analytical sciences

    International Nuclear Information System (INIS)

    Perez-Lopez, B.; Merkoci, A.

    2012-01-01

    Nanosized carbon materials are offering great opportunities in various areas of nanotechnology. Carbon nanotubes and graphene, due to their unique mechanical, electronic, chemical, optical and electrochemical properties, represent the most interesting building blocks in various applications where analytical chemistry is of special importance. The possibility of conjugating carbon nanomaterials with biomolecules has received particular attention with respect to the design of chemical sensors and biosensors. This review describes the trends in this field as reported in the last 6 years in (bio)analytical chemistry in general, and in biosensing in particular. (author)

  2. Enhancing first year chemistry student's participation in practical ...

    African Journals Online (AJOL)

    In this study, enhancing student's participation in practical analytical ... The data were collected from I year chemistry undergraduate students of class size 56 of ... learning practical Chemistry were mainly due to problems in preparing a flow ...

  3. PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Bell, M.J.; Blomgren, J.C.; Fackelmann, J.M.

    1982-10-01

    Steam generators in pressurized water reactor (PWR) nuclear power plants have experienced tubing degradation by a variety of corrosion-related mechanisms which depend directly on secondary water chemistry. As a result of this experience, the Steam Generator Owners Group and EPRI have sponsored a major program to provide solutions to PWR steam generator problems. This report, PWR Secondary Water Chemistry Guidelines, in addition to presenting justification for water chemistry control parameters, discusses available analytical methods, data management and surveillance, and the management philosophy required to successfully implement the guidelines

  4. Teaching Analytical Method Transfer through Developing and Validating Then Transferring Dissolution Testing Methods for Pharmaceuticals

    Science.gov (United States)

    Kimaru, Irene; Koether, Marina; Chichester, Kimberly; Eaton, Lafayette

    2017-01-01

    Analytical method transfer (AMT) and dissolution testing are important topics required in industry that should be taught in analytical chemistry courses. Undergraduate students in senior level analytical chemistry laboratory courses at Kennesaw State University (KSU) and St. John Fisher College (SJFC) participated in development, validation, and…

  5. American Chemical Society, Division of Environmental Chemistry

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Separate abstracts were prepared for 161 papers of this divisional meeting for the US Department of Energy's Database. Main topics discussed included: acid rain mitigation - liming technologies and environmental considerations; biotechnology for wastewater treatment; environmental chemistry of lakes and reservoirs and pollution prevention and process analytical chemistry

  6. Yearly scientific meeting: chemistry in human health and environment protection. Bialystok'92

    International Nuclear Information System (INIS)

    1992-01-01

    The conference has been divided into 12 sections devoted to following topics: analytical chemistry; environmental chemistry; chemistry of natural compounds; chemistry of pharmaceutics and toxic compounds; chemistry in medicine; electrochemistry; young scientists forum; didactics and history of chemistry; chemistry and industry - technologies environment friendly; new trends in polymer science; crystallochemistry; pro-ecological actions in leather industry. Different analytical methods for determination of heavy methods and rare earths have been presented. Some of them have been successfully applied for the examination of environmental and biological materials. The basic chemical and physico-chemical studies including thermodynamic, crystal structure, coordination chemistry, sorption properties etc. have been extensively resented. The existence of radioactive elements in environment has been also investigated, especially in respect to municipal and industrial wastes and products of their processing. The radiation effects for different materials have been reported and discussed as well

  7. Establishment of reference intervals of clinical chemistry analytes for the adult population in Saudi Arabia: a study conducted as a part of the IFCC global study on reference values.

    Science.gov (United States)

    Borai, Anwar; Ichihara, Kiyoshi; Al Masaud, Abdulaziz; Tamimi, Waleed; Bahijri, Suhad; Armbuster, David; Bawazeer, Ali; Nawajha, Mustafa; Otaibi, Nawaf; Khalil, Haitham; Kawano, Reo; Kaddam, Ibrahim; Abdelaal, Mohamed

    2016-05-01

    This study is a part of the IFCC-global study to derive reference intervals (RIs) for 28 chemistry analytes in Saudis. Healthy individuals (n=826) aged ≥18 years were recruited using the global study protocol. All specimens were measured using an Architect analyzer. RIs were derived by both parametric and non-parametric methods for comparative purpose. The need for secondary exclusion of reference values based on latent abnormal values exclusion (LAVE) method was examined. The magnitude of variation attributable to gender, ages and regions was calculated by the standard deviation ratio (SDR). Sources of variations: age, BMI, physical exercise and smoking levels were investigated by using the multiple regression analysis. SDRs for gender, age and regional differences were significant for 14, 8 and 2 analytes, respectively. BMI-related changes in test results were noted conspicuously for CRP. For some metabolic related parameters the ranges of RIs by non-parametric method were wider than by the parametric method and RIs derived using the LAVE method were significantly different than those without it. RIs were derived with and without gender partition (BMI, drugs and supplements were considered). RIs applicable to Saudis were established for the majority of chemistry analytes, whereas gender, regional and age RI partitioning was required for some analytes. The elevated upper limits of metabolic analytes reflects the existence of high prevalence of metabolic syndrome in Saudi population.

  8. Overview of VVER water chemistry

    International Nuclear Information System (INIS)

    Ganesh, S.; Selvaraj, S.; Balasubramanian, M.R.; Selvavinayagam, P.; Sundar, R.S.

    2007-01-01

    Kudankulam Nuclear Power project is having twin units of 1000MWe of VVER type. This paper highlights the different analytical techniques that are followed to maintain the system chemistry within the technical specifications. This paper also briefs the different chemicals that are added to the systems and how they are monitored. Basic differences with respect to chemistry between a PHWR and VVER are also highlighted in this paper. (author)

  9. Airborne chemistry: acoustic levitation in chemical analysis.

    Science.gov (United States)

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  10. European Analytical Column

    DEFF Research Database (Denmark)

    Karlberg, B.; Grasserbauer, M.; Andersen, Jens Enevold Thaulov

    2009-01-01

    for European analytical chemistry. During the period 2002–07, Professor Grasserbauer was Director of the Institute for Environment and Sustainability, Joint Research Centre of the European Commission (EC), Ispra, Italy. There is no doubt that many challenges exist at the present time for all of us representing...

  11. Abstracts of the 16. Latin-American Congress of Chemistry

    International Nuclear Information System (INIS)

    1984-01-01

    Abstracts of experimental works on analytical chemistry, physical-chemistry, medical chemistry and technology of chemical processes are presented. Those papers dealing with the application of nuclear techniques for the analysis of various substances and also those concerned with the study of materials and/or elements of nuclear interest, are indexed. (C.L.B.) [pt

  12. Supercritical water-treated fused silica capillaries in analytical separations: Status review

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Horká, Marie; Šlais, Karel; Planeta, Josef; Roth, Michal

    2018-01-01

    Roč. 1539, MAR (2018), s. 1-11 ISSN 0021-9673 R&D Projects: GA MV VI20172020069; GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : supercritical water * fused silica capillary * surface treatment Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.981, year: 2016

  13. Hair elemental analysis for forensic science using nuclear and related analytical methods

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Kameník, Jan; Havránek, Vladimír

    2018-01-01

    Roč. 7, č. 3 (2018), s. 65-74 ISSN 2468-1709 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : hair * forensic analysis * neutron activation analysis * particle induced X-ray emission Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry

  14. Effects of two types of medical contrast media on routine chemistry results by three automated chemistry analyzers.

    Science.gov (United States)

    Park, Yu Jin; Rim, John Hoon; Yim, Jisook; Lee, Sang-Guk; Kim, Jeong-Ho

    2017-08-01

    The use of iodinated contrast media has grown in popularity in the past two decades, but relatively little attention has been paid to the possible interferential effects of contrast media on laboratory test results. Herein, we investigate medical contrast media interference with routine chemistry results obtained by three automated chemistry analyzers. Ten levels of pooled serum were used in the study. Two types of medical contrast media [Iopamiro (iopamidol) and Omnipaque (iohexol)] were evaluated. To evaluate the dose-dependent effects of the contrast media, iopamidol and iohexol were spiked separately into aliquots of serum for final concentrations of 1.8%, 3.6%, 5.5%, 7.3%, and 9.1%. The 28 analytes included in the routine chemistry panel were measured by using Hitachi 7600, AU5800, and Cobas c702 analyzers. We calculated the delta percentage difference (DPD) between the samples and the control, and examined dose-dependent trends. When the mean DPD values were compared with the reference cut-off criteria, the only uniformly interferential effect observed for all analyzers was in total protein with iopamidol. Two additional analytes that showed trends toward interferential effects only in few analyzers and exceeded the limits of the allowable error were the serum iron and the total CO 2 . The other combinations of analyzer and contrast showed no consistent dose-dependent propensity for change in any analyte level. Our study suggests that many of the analytes included in routine chemistry results, except total protein and serum iron, are not significantly affected by iopamidol and iohexol. These results suggest that it would be beneficial to apply a flexible medical evaluation process for patients requiring both laboratory tests and imaging studies, minimizing the need for strict regulations for sequential tests. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  15. Proceedings of the 5. Brazilian Meeting on Analytical Chemistry

    International Nuclear Information System (INIS)

    1989-01-01

    The works of 5 0 Brazilian Meeting on Analitycal Chemistry are presented, including topics about elements determination with instrumental technique. The use of these techniques in soil and food are also cited. (C.G.C.) [pt

  16. Using an innovative combination of quality-by-design and green analytical chemistry approaches for the development of a stability indicating UHPLC method in pharmaceutical products.

    Science.gov (United States)

    Boussès, Christine; Ferey, Ludivine; Vedrines, Elodie; Gaudin, Karen

    2015-11-10

    An innovative combination of green chemistry and quality by design (QbD) approach is presented through the development of an UHPLC method for the analysis of the main degradation products of dextromethorphan hydrobromide. QbD strategy was integrated to the field of green analytical chemistry to improve method understanding while assuring quality and minimizing environmental impacts, and analyst exposure. This analytical method was thoroughly evaluated by applying risk assessment and multivariate analysis tools. After a scouting phase aimed at selecting a suitable stationary phase and an organic solvent in accordance with green chemistry principles, quality risk assessment tools were applied to determine the critical process parameters (CPPs). The effects of the CPPs on critical quality attributes (CQAs), i.e., resolutions, efficiencies, and solvent consumption were further evaluated by means of a screening design. A response surface methodology was then carried out to model CQAs as function of the selected CPPs and the optimal separation conditions were determined through a desirability analysis. Resulting contour plots enabled to establish the design space (DS) (method operable design region) where all CQAs fulfilled the requirements. An experimental validation of the DS proved that quality within the DS was guaranteed; therefore no more robustness study was required before the validation. Finally, this UHPLC method was validated using the concept of total error and was used to analyze a pharmaceutical drug product. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Progress report, Chemistry and Materials Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Interim research results are reported in solid state science (ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis), general chemistry (analytical chemistry, hydrogen-water exchange, radioactivity measurements, electrochemistry), physical chemistry (radiation and isotope chemistry), materials science (surface chemistry and metal physics), and university research (deuterium exchange and zirconium alloy properties). (E.C.B.)

  18. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 1, Administrative

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware.

  19. PWR secondary water chemistry study

    International Nuclear Information System (INIS)

    Pearl, W.L.; Sawochka, S.G.

    1977-02-01

    Several types of corrosion damage are currently chronic problems in PWR recirculating steam generators. One probable cause of damage is a local high concentration of an aggressive chemical even though only trace levels are present in feedwater. A wide variety of trace chemicals can find their way into feedwater, depending on the sources of condenser cooling water and the specific feedwater treatment. In February 1975, Nuclear Water and Waste Technology Corporation (NWT), was contracted to characterize secondary system water chemistry at five operating PWRs. Plants were selected to allow effects of cooling water chemistry and operating history on steam generator corrosion to be evaluated. Calvert Cliffs 1, Prairie Island 1 and 2, Surry 2, and Turkey Point 4 were monitored during the program. Results to date in the following areas are summarized: (1) plant chemistry variations during normal operation, transients, and shutdowns; (2) effects of condenser leakage on steam generator chemistry; (3) corrosion product transport during all phases of operation; (4) analytical prediction of chemistry in local areas from bulk water chemistry measurements; and (5) correlation of corrosion damage to chemistry variation

  20. Integrating bioassays and analytical chemistry as an improved approach to support safety assessment of food contact materials.

    Science.gov (United States)

    Veyrand, Julien; Marin-Kuan, Maricel; Bezencon, Claudine; Frank, Nancy; Guérin, Violaine; Koster, Sander; Latado, Hélia; Mollergues, Julie; Patin, Amaury; Piguet, Dominique; Serrant, Patrick; Varela, Jesus; Schilter, Benoît

    2017-10-01

    Food contact materials (FCM) contain chemicals which can migrate into food and result in human exposure. Although it is mandatory to ensure that migration does not endanger human health, there is still no consensus on how to pragmatically assess the safety of FCM since traditional approaches would require extensive toxicological and analytical testing which are expensive and time consuming. Recently, the combination of bioassays, analytical chemistry and risk assessment has been promoted as a new paradigm to identify toxicologically relevant molecules and address safety issues. However, there has been debate on the actual value of bioassays in that framework. In the present work, a FCM anticipated to release the endocrine active chemical 4-nonyphenol (4NP) was used as a model. In a migration study, the leaching of 4NP was confirmed by LC-MS/MS and GC-MS. This was correlated with an increase in both estrogenic and anti-androgenic activities as measured with bioassays. A standard risk assessment indicated that according to the food intake scenario applied, the level of 4NP measured was lower, close or slightly above the acceptable daily intake. Altogether these results show that bioassays could reveal the presence of an endocrine active chemical in a real-case FCM migration study. The levels reported were relevant for safety assessment. In addition, this work also highlighted that bioactivity measured in migrate does not necessarily represent a safety issue. In conclusion, together with analytics, bioassays contribute to identify toxicologically relevant molecules leaching from FCM and enable improved safety assessment.

  1. The Department of Chemistry of the Austrian Research Centre Seibersdorf

    International Nuclear Information System (INIS)

    Proksch, E.

    1984-03-01

    The present report describes the R and D work carried out during 1981 to 1983. This work is still almost exclusively devoted to applied research items; a major fraction of the capacity available is devoted to contract research. The main R and D areas are: - applied radiation chemistry - conditioning of wastes - nuclear fuel chemistry and technology - non-nuclear technical chemistry - radioisotopes and labelled compounds - analytical chemistry. (Author) [de

  2. Experimental and Analytical Studies of Solar System Chemistry

    Science.gov (United States)

    Burnett, Donald S.

    2003-01-01

    The cosmochemistry research funded by this grant resulted in the publications given in the attached Publication List. The research focused in three areas: (1) Experimental studies of trace element partitioning. (2) Studies of the minor element chemistry and O isotopic compositions of MgAlO4 spinels from Ca-Al-Rich Inclusions in carbonaceous chondrite meteorites, and (3) The abundances and chemical fractionations of Th and U in chondritic meteorites.

  3. Stereospecific control of peptide gas-phase ion chemistry with cis and trans cyclo ornithine residues

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Nguyen, H. T. H.; Brož, Břetislav; Tureček, F.

    2018-01-01

    Roč. 53, č. 2 (2018), s. 124-137 ISSN 1076-5174 Institutional support: RVO:61388963 Keywords : cis and trans isomers * cyclo ornithine * peptide dissociations * peptide ion structures * stereochemistry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.422, year: 2016

  4. Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay.

    Science.gov (United States)

    Pohanka, Miroslav

    2015-06-11

    Smartphones are popular devices frequently equipped with sensitive sensors and great computational ability. Despite the widespread availability of smartphones, practical uses in analytical chemistry are limited, though some papers have proposed promising applications. In the present paper, a smartphone is used as a tool for the determination of cholinesterasemia i.e., the determination of a biochemical marker butyrylcholinesterase (BChE). The work should demonstrate suitability of a smartphone-integrated camera for analytical purposes. Paper strips soaked with indoxylacetate were used for the determination of BChE activity, while the standard Ellman's assay was used as a reference measurement. In the smartphone-based assay, BChE converted indoxylacetate to indigo blue and coloration was photographed using the phone's integrated camera. A RGB color model was analyzed and color values for the individual color channels were determined. The assay was verified using plasma samples and samples containing pure BChE, and validated using Ellmans's assay. The smartphone assay was proved to be reliable and applicable for routine diagnoses where BChE serves as a marker (liver function tests; some poisonings, etc.). It can be concluded that the assay is expected to be of practical applicability because of the results' relevance.

  5. Analytical program: 1975 Bikini radiological survey

    International Nuclear Information System (INIS)

    Mount, M.E.; Robison, W.L.; Thompson, S.E.; Hamby, K.O.; Prindle, A.L.; Levy, H.B.

    1976-01-01

    The analytical program for samples of soil, vegetation, and animal tissue collected during the June 1975 field survey of Bikini and Eneu islands is described. The phases of this program are discussed in chronological order: initial processing of samples, gamma spectrometry, and wet chemistry. Included are discussions of quality control programs, reproducibility of measurements, and comparisons of gamma spectrometry with wet chemistry determinations of 241 Am. Wet chemistry results are used to examine differences in Pu:Am ratios and Pu-isotope ratios as a function of the type of sample and the location where samples were collected

  6. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index.

    Science.gov (United States)

    Płotka-Wasylka, J

    2018-05-01

    A new means for assessing analytical protocols relating to green analytical chemistry attributes has been developed. The new tool, called GAPI (Green Analytical Procedure Index), evaluates the green character of an entire analytical methodology, from sample collection to final determination, and was created using such tools as the National Environmental Methods Index (NEMI) or Analytical Eco-Scale to provide not only general but also qualitative information. In GAPI, a specific symbol with five pentagrams can be used to evaluate and quantify the environmental impact involved in each step of an analytical methodology, mainly from green through yellow to red depicting low, medium to high impact, respectively. The proposed tool was used to evaluate analytical procedures applied in the determination of biogenic amines in wine samples, and polycyclic aromatic hydrocarbon determination by EPA methods. GAPI tool not only provides an immediately perceptible perspective to the user/reader but also offers exhaustive information on evaluated procedures. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Progress report, Chemistry and Materials Division, July 1 to September 30, 1976

    International Nuclear Information System (INIS)

    Preliminary results are reported on research into ion penetration, electron microscopy, radiation damage and metal physics, analytical chemistry, radiation chemistry, basic corrosion studies and isotope separation techniques. (O.T.)

  8. Quality of dry chemistry testing.

    Science.gov (United States)

    Nakamura, H; Tatsumi, N

    1999-01-01

    Since the development of the qualitative test paper for urine in 1950s, several kinds of dry-state-reagents and their automated analyzers have been developed. "Dry chemistry" has become to be called since the report on the development of quantitative test paper for serum bilirubin with reflectometer in the end of 1960s and dry chemistry has been world widely known since the presentation on the development of multilayer film reagent for serum biochemical analytes by Eastman Kodak Co at the 10th IFCC Meeting in the end of 1970s. We have reported test menu, results in external quality assessment, merits and demerits, and the future possibilities of dry chemistry.

  9. Progress report, Chemistry and Materials Division, April 1 to June 30, 1977

    International Nuclear Information System (INIS)

    1977-07-01

    Research results are reported in such areas as ion penetration, electron microscopy, metal physics and radiation damage, nuclear methods of analysis, fuel analysis, and general analytical chemistry, electrochemistry, radiation chemistry, hydrogen-deuterium exchange, and surface chemistry of nuclear materials like zirconium base alloys. (E.C.B.)

  10. Progress report, Chemistry and Materials Division, January 1 to March 31, 1976

    International Nuclear Information System (INIS)

    1976-05-01

    Interim results are reported in research fields roughly classified as ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis, analytical chemistry, deuterium separation, radioactivity measurement, radiation and isotope chemistry, and surface chemistry and metal physics, primarily of zirconium alloys. (E.C.B.)

  11. Progress report, Chemistry and Materials Division, January 1 to March 31, 1977

    International Nuclear Information System (INIS)

    1977-04-01

    Results are described of research on ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis, computer calculating methods, analytical chemistry, deuterium exchange, radioactivity measurement, electrochemistry, mass spectrometry and fuel analysis, radiation chemistry, surface chemistry, and properties of zirconium base alloys. (E.C.B.)

  12. Molecular biology: Self-sustaining chemistry

    Directory of Open Access Journals (Sweden)

    Wrede Paul

    2007-10-01

    Full Text Available Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells.

  13. Progress report, Chemistry and Materials Division, April 1 to June 30, 1978

    International Nuclear Information System (INIS)

    1978-07-01

    Provisional research results are reported in the general areas of ion beam-radiation interactions with metals, radiation chemistry, hydrogen isotope exchange, analytical chemistry, and zirconium alloy properties. (E.C.B.)

  14. Recent applications of lasers in analytical chemistry

    International Nuclear Information System (INIS)

    Lytle, F.E.

    1984-01-01

    This review primarily will update two recent articles concerning the use of lasers in analytical fluorimetry. The discussion will focus on the use of instrumental techniques developed to improve the working detection limit via increases in selectivity. Examples will include chromatography, time resolution and line narrowing. In addition, the topic of multiphoton ionization/mass spectrometry will be covered. 18 refs., 1 tab

  15. Progress report, Chemistry and Materials Division, 1 April to 30 June, 1979

    International Nuclear Information System (INIS)

    1979-07-01

    Research results are reported by groups investigating ion penetration, nuclear methods of analysis, accelerator operation, general analytical chemistry, radoactivity measurement, deuterium analysis, electrochemistry, mass spectrometry and fuel analysis, radiation chemistry and laser photochemistry, hydrogen-water exchange, isotope chemistry, surface chemistry, and electron microscopy. Work in an associated laboratory at the University of Toronto on isotopic changes in reaction rates is reported. (L.L.)

  16. Progress report, Chemistry and Materials Division, October 1 to December 31, 1977

    International Nuclear Information System (INIS)

    1978-01-01

    Research results are reported on the interaction of ion beams with solids, radiation chemistry, hydrogen isotope exchange, surface science, analytical chemistry, and properties of zirconium and its alloys. (E.C.B.)

  17. An overview of analytical activities of control laboratory in NFC

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Subba Rao, Y.; Saibaba, N.

    2015-01-01

    As per the mandate of Department of Atomic Energy (DAE), Nuclear Fuel Complex (NFC) was established in 1971 for manufacturing Fuel Sub-assemblies for both PHWRs and BWRs operating in India on industrial scale. Control Laboratory (C.Lab) was envisaged as a centralized analytical facility to achieve the objectives of NFC on the similar lines of its predecessor, Analytical Chemistry Division at BARC. With highest ever production of 1200 MT of PHWR Fuel and 16 lakhs PHWR Fuel Tubes achieved during production year of 2014-15 and with increase in demand further for fuel requirements, NFC has got demanding situation in next year and accordingly, C. Lab has also geared up to meet the challenging demands of all the production plant. The average annual analytical load comes around 5 Lakhs estimations and to manage such a massive analytical load a proper synergy between good chemistry, process conditions and analytical methods is a necessity and laboratory is able to meet this important requirement consistently

  18. Advanced analytical techniques for boiling water reactor chemistry control

    Energy Technology Data Exchange (ETDEWEB)

    Alder, H P; Schenker, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-02-01

    The analytical techniques applied can be divided into 5 classes: OFF-LINE (discontinuous, central lab), AT-LINE (discontinuous, analysis near loop), ON-LINE (continuous, analysis in bypass). In all cases pressure and temperature of the water sample are reduced. In a strict sense only IN-LINE (continuous, flow disturbance) and NON-INVASIVE (continuous, no flow disturbance) techniques are suitable for direct process control; - the ultimate goal. An overview of the analytical techniques tested in the pilot loop is given. Apart from process and overall water quality control, standard for BWR operation, the main emphasis is on water impurity characterization (crud particles, hot filtration, organic carbon); on stress corrosion crackling control for materials (corrosion potential, oxygen concentration) and on the characterization of the oxide layer on austenites (impedance spectroscopy, IR-reflection). The above mentioned examples of advanced analytical techniques have the potential of in-line or non-invasive application. They are different stages of development and are described in more detail. 28 refs, 1 fig., 5 tabs.

  19. Second Karlsruhe international conference on analytical chemistry in nuclear technology

    International Nuclear Information System (INIS)

    1989-01-01

    Around 180 abstracts of invited lectures and poster presentations of the international analytical conference are presented in this book. They cover analytical applications throughout the fuel cycle and radioanalysis of manifold materials. Most of the abstracts are prepared separately for input in INIS and EDB. (RB)

  20. Chemistry Division progress report for the period January 1, 1977 - December 31, 1980

    International Nuclear Information System (INIS)

    Moorthy, P.N.; Ramshesh, V.; Yakhmi, J.V.

    1981-01-01

    The research and development work of the Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during the period 1977-1980 is reported in the form of individual summaries under the headings: basic research including radiation chemistry, photochemistry, kinetic and electrochemical studies, ion exchange and sorption behaviour, chemistry of metal complexes (in particular, of uranium complexes), radiation damage in solids, heterogeneous catalysts, studies in magnetism, physical properties, solid state studies, theoretical studies, reactor related programmes (including reactor chemistry, lubricants and sealants, surface studies, water chemistry), applied research and development (including materials development, purification and analytical techniques, apolied radiation chemistry etc.), and instrumentation. Work of service facilities such as workshop, analytical se services, and repair and maintenance of instruments is described. Lists of training programmes, staff publications and divisional seminars, are given. At the end a sectionwise list of staff members is also given. (M.G.B.)

  1. Isotope and Nuclear Chemistry Division annual report, FY 1983

    International Nuclear Information System (INIS)

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  2. Isotope and Nuclear Chemistry Division annual report, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  3. Isotope and Nuclear Chemistry Division annual report, FY 1984

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1985-04-01

    This report describes progress in the major research and development programs carried out in FY 1984 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques: development and applications; atmospheric chemistry and transport; and earth and planetary processes. 287 refs

  4. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    International Nuclear Information System (INIS)

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  5. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    International Nuclear Information System (INIS)

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators

  6. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators.

  7. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators.

  8. Analytical Chemistry for Homeland Defense and National Security

    Energy Technology Data Exchange (ETDEWEB)

    S.Randolph Long; Dan rock; Gary Eiceman; Chris Rowe Taitt; Robert J.Cotter; Dean D.Fetterolf; David R.Walt; Basil I. Swanson; Scott A McLuckey; Robin L.Garrell; Scott D. Cunningham

    2002-08-18

    The budget was requested to support speaker expenses to attend and speak in the day long symposium at the ACS meeting. The purpose of the symposium was to encourage analytical chemists to contribute to national security.

  9. New trends and developments in radiation chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    Radiation chemistry is a branch of chemistry that studies chemical transformations in materials exposed to high-energy radiations. It uses radiation as the initiator of chemical reactions. Practical applications of radiation chemistry today extend to many fields, including health care, food and agriculture, manufacturing, industrial pollution abatement, biotechnology and telecommunications. The important advantage of radiation chemistry lies in its ability to be used to produce, and study, almost any reactive atomic and molecular species playing a part in chemical reactions, synthesis, industrial processes, or in biological systems. The techniques are applicable to gaseous, liquid, solid, and heterogeneous systems. By combining different techniques of radiation chemistry with analytical chemistry, the reaction mechanism and kinetics of chemical reactions are studied. In November 1988 in Bologna, Italy, the IAEA convened an advisory group meeting to assess new trends and developments in radiation chemistry. The present publication includes most of the contributions presented at the meeting. Refs, figs and tabs

  10. SRL online Analytical Development

    International Nuclear Information System (INIS)

    Jenkins, C.W.

    1991-01-01

    The Savannah River Site is operated by the Westinghouse Savannah River Co. for the Department of Energy to produce special nuclear materials for defense. R ampersand D support for site programs is provided by the Savannah River Laboratory, which I represent. The site is known primarily for its nuclear reactors, but actually three fourths of the efforts at the site are devoted to fuel/target fabrication, fuel/target reprocessing, and waste management. All of these operations rely heavily on chemical processes. The site is therefore a large chemical plant. There are then many potential applications for process analytical chemistry at SRS. The Savannah River Laboratory (SRL) has an Analytical Development Section of roughly 65 personnel that perform analyses for R ampersand D efforts at the lab, act as backup to the site Analytical Laboratories Department and develop analytical methods and instruments. I manage a subgroup of the Analytical Development Section called the Process Control ampersand Analyzer Development Group. The Prime mission of this group is to develop online/at-line analytical systems for site applications

  11. Abstracts of the 1. Regional Meeting on Chemistry

    International Nuclear Information System (INIS)

    Abstracts from papers on Analytical, Inorganic and Organic Chemistry as well as on Physico-Chemistry are presented. Emphasis is given to the following subjects: use of nuclear techniques for chemical analysis, separation processes, studies about reaction kinetics and thermodynamic properties, radioisotopes production and applications, labelled compounds, electron-molecule collisions, construction of measuring instruments and data acquisition systems. (C.L.B.) [pt

  12. Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay

    Directory of Open Access Journals (Sweden)

    Miroslav Pohanka

    2015-06-01

    Full Text Available Smartphones are popular devices frequently equipped with sensitive sensors and great computational ability. Despite the widespread availability of smartphones, practical uses in analytical chemistry are limited, though some papers have proposed promising applications. In the present paper, a smartphone is used as a tool for the determination of cholinesterasemia i.e., the determination of a biochemical marker butyrylcholinesterase (BChE. The work should demonstrate suitability of a smartphone-integrated camera for analytical purposes. Paper strips soaked with indoxylacetate were used for the determination of BChE activity, while the standard Ellman’s assay was used as a reference measurement. In the smartphone-based assay, BChE converted indoxylacetate to indigo blue and coloration was photographed using the phone’s integrated camera. A RGB color model was analyzed and color values for the individual color channels were determined. The assay was verified using plasma samples and samples containing pure BChE, and validated using Ellmans’s assay. The smartphone assay was proved to be reliable and applicable for routine diagnoses where BChE serves as a marker (liver function tests; some poisonings, etc.. It can be concluded that the assay is expected to be of practical applicability because of the results’ relevance.

  13. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1976-01-01

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF 4 --H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF 2 --ThF 4 for Fe and analysis of LiF--BeF--ThF 4 for Te

  14. Research in Chemistry

    Science.gov (United States)

    1957-12-31

    Thermometric Studies...................... .. C-16 JANAF-Panel on Analytical Chemistry of Solid Propellants. . ............. C-16 Chelation Studies... aluminum oxide (basic) has been routinely used in a slurry technique as a scavenger for boron trifluoride. When used in eamounts su1ficient to completely...due to accidental ignition of the reaction mixture and to difficulties in removal of aluminum and lithium ethylates which are formed in the

  15. Annual Report 2003 of the Institute of Nuclear Chemistry and Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The INCT 2003 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies, nucleonic control systems and accelerators.

  16. Annual Report 2003 of the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    2004-01-01

    The INCT 2003 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies, nucleonic control systems and accelerators

  17. Installation for analytic chemistry under irradiation

    International Nuclear Information System (INIS)

    Fradin, J.; Azoeuf, P.; Guillon, A.

    1966-01-01

    An installation has been set up for carrying out manipulations and chemical analyses on radioactive products. It is completely remote-controlled and is of linear shape, 15 metres long; it is made up of three zones: - an active zone containing the apparatus, - a rear zone giving access to the active zone, - a forward zone independent of the two others and completely protected from which the remote-control of the apparatus is effected. The whole assembly has been designed so that each apparatus corresponding to an analytical technique is set up in a sealed enclosure. The sealed enclosures are interconnected by a conveyor. After three years operation, a critical review is now made of the installation. (authors) [fr

  18. Quantifying uncertainty in nuclear analytical measurements

    International Nuclear Information System (INIS)

    2004-07-01

    The lack of international consensus on the expression of uncertainty in measurements was recognised by the late 1970s and led, after the issuance of a series of rather generic recommendations, to the publication of a general publication, known as GUM, the Guide to the Expression of Uncertainty in Measurement. This publication, issued in 1993, was based on co-operation over several years by the Bureau International des Poids et Mesures, the International Electrotechnical Commission, the International Federation of Clinical Chemistry, the International Organization for Standardization (ISO), the International Union of Pure and Applied Chemistry, the International Union of Pure and Applied Physics and the Organisation internationale de metrologie legale. The purpose was to promote full information on how uncertainty statements are arrived at and to provide a basis for harmonized reporting and the international comparison of measurement results. The need to provide more specific guidance to different measurement disciplines was soon recognized and the field of analytical chemistry was addressed by EURACHEM in 1995 in the first edition of a guidance report on Quantifying Uncertainty in Analytical Measurements, produced by a group of experts from the field. That publication translated the general concepts of the GUM into specific applications for analytical laboratories and illustrated the principles with a series of selected examples as a didactic tool. Based on feedback from the actual practice, the EURACHEM publication was extensively reviewed in 1997-1999 under the auspices of the Co-operation on International Traceability in Analytical Chemistry (CITAC), and a second edition was published in 2000. Still, except for a single example on the measurement of radioactivity in GUM, the field of nuclear and radiochemical measurements was not covered. The explicit requirement of ISO standard 17025:1999, General Requirements for the Competence of Testing and Calibration

  19. Proceedings of 26. annual academic conference of China Chemical Society--modern nuclear chemistry and radiochemistry

    International Nuclear Information System (INIS)

    2008-08-01

    26. annual academic conference of China Chemical Society was held in Tianjing, 13-16 July, 2008. This proceedings is about modern nuclear chemistry and radiochemistry, the contents include: new elements and new nuclides; advanced nuclear chemistry; radiochemistry and national security; new radiopharmaceutical chemistry; modern radiological analytical chemistry and large scientific facilities; radiological environmental chemistry and nuclear radioactive waste; actinide chemistry and transactinide chemistry; radiochemistry and cross discipline, etc.

  20. Practicing What We Preach: Assessing "Critical Thinking" in Organic Chemistry

    Science.gov (United States)

    Stowe, Ryan L.; Cooper, Melanie M.

    2017-01-01

    Organic chemistry is often promoted as a course designed to cultivate skill in scientific "ways of thinking." Expert organic chemists perceive their field as one in which plausible answers to complex questions are arrived at through analytical thought processes. They draw analogy between problem solving in organic chemistry and diagnosis…

  1. The Analytical Chemistry of Drug Monitoring in Athletes

    Science.gov (United States)

    Bowers, Larry D.

    2009-07-01

    The detection and deterrence of the abuse of performance-enhancing drugs in sport are important to maintaining a level playing field among athletes and to decreasing the risk to athletes’ health. The World Anti-Doping Program consists of six documents, three of which play a role in analytical development: The World Anti-Doping Code, The List of Prohibited Substances and Methods, and The International Standard for Laboratories. Among the classes of prohibited substances, three have given rise to the most recent analytical developments in the field: anabolic agents; peptide and protein hormones; and methods to increase oxygen delivery to the tissues, including recombinant erythropoietin. Methods for anabolic agents, including designer steroids, have been enhanced through the use of liquid chromatography/tandem mass spectrometry and gas chromatography/combustion/isotope-ratio mass spectrometry. Protein and peptide identification and quantification have benefited from advances in liquid chromatography/tandem mass spectrometry. Incorporation of techniques such as flow cytometry and isoelectric focusing have supported the detection of blood doping.

  2. "In situ" extraction of essential oils by use of Dean-Stark glassware and a Vigreux column inside a microwave oven: a procedure for teaching green analytical chemistry.

    Science.gov (United States)

    Chemat, Farid; Perino-Issartier, Sandrine; Petitcolas, Emmanuel; Fernandez, Xavier

    2012-08-01

    One of the principal objectives of sustainable and green processing development remains the dissemination and teaching of green chemistry in colleges, high schools, and academic laboratories. This paper describes simple glassware that illustrates the phenomenon of extraction in a conventional microwave oven as energy source and a process for green analytical chemistry. Simple glassware comprising a Dean-Stark apparatus (for extraction of aromatic plant material and recovery of essential oils and distilled water) and a Vigreux column (as an air-cooled condenser inside the microwave oven) was designed as an in-situ extraction vessel inside a microwave oven. The efficiency of this experiment was validated for extraction of essential oils from 30 g fresh orange peel, a by-product in the production of orange juice. Every laboratory throughout the world can use this equipment. The microwave power is 100 W and the irradiation time 15 min. The method is performed at atmospheric pressure without added solvent or water and furnishes essential oils similar to those obtained by conventional hydro or steam distillation. By use of GC-MS, 22 compounds in orange peel were separated and identified; the main compounds were limonene (72.1%), β-pinene (8.4%), and γ-terpinene (6.9%). This procedure is appropriate for the teaching laboratory, does not require any special microwave equipment, and enables the students to learn the skills of extraction, and chromatographic and spectroscopic analysis. They are also exposed to a dramatic visual example of rapid, sustainable, and green extraction of an essential oil, and are introduced to successful sustainable and green analytical chemistry.

  3. Annual Report of the Institute of Nuclear Chemistry and Technology 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The INCT 2000 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators.

  4. Annual Report of the Institute of Nuclear Chemistry and Technology 2000

    International Nuclear Information System (INIS)

    2001-06-01

    The INCT 2000 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  5. Progress report, Chemistry and Materials Division, April 1 to June 30, 1976

    International Nuclear Information System (INIS)

    1976-07-01

    Preliminary results are reported on research covering such topics as ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis, analytical chemistry, hydrogen-deuterium exchange, radiation chemistry, and corrosion (primarily of zirconium alloys). (E.C.B.)

  6. New Concepts of Quality Assurance in Analytical Chemistry: Will They Influence the Way We Conduct Science in General?

    DEFF Research Database (Denmark)

    Andersen, Jens; Glasdam, Sidsel-Marie; Larsen, Daniel Bo

    2016-01-01

    , but in contemporary science two approaches to the implementation of statistics in decision making are used: 1. Short-term precision and 2. long-term precision. Both approaches are valid and both are described using the same methods of statistics. However, they lead to completely different conclusions and decisions....... Despite good intentions and new concepts, as well as practices and procedures for quality assurance, it is shown by these two examples that these efforts may be inadequate or mislead scientists into making major mistakes in the decision-making process. A set of equations is supplied, which are based......According to the guide Vocabulary in Metrology (VIM3) (JCGM, 2008), the definition of the concepts of trueness and accuracy has been revised, which has an important impact on analytical chemistry. Additionally, Eurachem/CITAC has published a new edition of the guide to Quantifying Uncertainty...

  7. X-ray fluorescence in Member States (Spain): Main activities related to the use of XRF techniques at the Analytical and Environmental Chemistry Research Group of the University of Girona (UdG)

    International Nuclear Information System (INIS)

    Marguí, Eva; Hidalgo, Manuela

    2014-01-01

    The Analytical and Environmental Chemistry Group (QAA) is a consolidated research group of the Department of Chemistry of the University of Girona (North- East Spain). The main research topics of the group are related to the development and application of analytical methodologies for the determination of inorganic and organic species in different kind of environmental, clinical and industrial samples. From the beginning of the 2000’s, one of the research focuses of the group, is the use of X-ray fluorescence spectrometry (XRF) for the determination of trace amounts of metals and metalloids mostly in samples related to the environmental and industrial fields. For instance, in collaboration with the Institute of Earth Sciences “Jaume Almera” (ICTJA-CSIC, Spain), we have developed and successfully applied several analytical approaches based on the use of EDXRF (Energy dispersive XRF), WDXRF (Wavelength dispersive XRF) and PEDXRF (Polarised EDXRF) for the determination of metals at trace levels in complex liquid samples such as sea water or electroplating waters in vegetation samples collected around mining environments or in active pharmaceutical ingredients. At present, the evaluation of the analytical possibilities of TXRF (Total reflection XRF) in the chemical analysis field is also one of the research topics of QAA. In this sense, several contributions related to the use of this technique for element determination in liquid and solid samples have been developed. A summary of these contributions is summarized in the last section of this review

  8. Proceedings of the 37. Brazilian Congress on Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1997-01-01

    This volume contains the summaries of the papers presented at the 37. Brazilian Congress on Chemistry. The topics include subjects about new technologies in the field of relevance for nuclear interest and energy field, involving environmental aspects, analytical chemistry and electrochemistry. The chemistry of elements of nuclear interest has been presented, and dissertations about rare earth elements were discussed. Studies about fuels, mainly petroleum, their products and biomass fuels, including their production, physical-chemical properties, structure studies and feasibility studies has also been comprehended

  9. Setting analytical performance specifications based on outcome studies - is it possible?

    NARCIS (Netherlands)

    Horvath, Andrea Rita; Bossuyt, Patrick M. M.; Sandberg, Sverre; John, Andrew St; Monaghan, Phillip J.; Verhagen-Kamerbeek, Wilma D. J.; Lennartz, Lieselotte; Cobbaert, Christa M.; Ebert, Christoph; Lord, Sarah J.

    2015-01-01

    The 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine proposed a simplified hierarchy for setting analytical performance specifications (APS). The top two levels of the 1999 Stockholm hierarchy, i.e., evaluation of the effect of analytical performance

  10. IAEA interlaboratory exercise for water chemistry

    International Nuclear Information System (INIS)

    Joe, Kih Soo; Choi, Kwang Soon; Han, Sun Ho; Suh, Moo Yul; Jeon, Young Shin; Choi, Ke Chun; Kim, Yong Bok; Kim, Jong Gu; Kim, Won Ho

    2003-09-01

    KAERI Analytical laboratory participated in the IAEA Interlaboratory exercise for water chemistry of groundwater(RAS/8/084). 13 items such as pH, electroconductivity, HCO 3 , Cl, SO 4 , SiO 2 , B, Li, Na, K, Ca, Mg and NH 3 were analyzed. The result of this exercise showed that KAERI laboratory was ranked on the top level of the participants. Major analytical methods applied for this activity were ICP-AES, AAS, IC, pH meter, conductometer and acid titration

  11. Evaluation of analytical errors in a clinical chemistry laboratory: a 3 year experience.

    Science.gov (United States)

    Sakyi, As; Laing, Ef; Ephraim, Rk; Asibey, Of; Sadique, Ok

    2015-01-01

    Proficient laboratory service is the cornerstone of modern healthcare systems and has an impact on over 70% of medical decisions on admission, discharge, and medications. In recent years, there is an increasing awareness of the importance of errors in laboratory practice and their possible negative impact on patient outcomes. We retrospectively analyzed data spanning a period of 3 years on analytical errors observed in our laboratory. The data covered errors over the whole testing cycle including pre-, intra-, and post-analytical phases and discussed strategies pertinent to our settings to minimize their occurrence. We described the occurrence of pre-analytical, analytical and post-analytical errors observed at the Komfo Anokye Teaching Hospital clinical biochemistry laboratory during a 3-year period from January, 2010 to December, 2012. Data were analyzed with Graph Pad Prism 5(GraphPad Software Inc. CA USA). A total of 589,510 tests was performed on 188,503 outpatients and hospitalized patients. The overall error rate for the 3 years was 4.7% (27,520/58,950). Pre-analytical, analytical and post-analytical errors contributed 3.7% (2210/58,950), 0.1% (108/58,950), and 0.9% (512/58,950), respectively. The number of tests reduced significantly over the 3-year period, but this did not correspond with a reduction in the overall error rate (P = 0.90) along with the years. Analytical errors are embedded within our total process setup especially pre-analytical and post-analytical phases. Strategic measures including quality assessment programs for staff involved in pre-analytical processes should be intensified.

  12. 8. Latin American Symposium on Environmental and Sanitary Analytical Chemistry: abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    The rapid changes and development of world economy, incidental to continued growth in consumption of industrial goods, continue presenting biological and biochemical interactions unsuspected or underestimated. This has imposed increasing challenges in the study of the effects on human health and environmental, vital issues that affect all citizens of the planet and the biota in general, but have not yet been sufficiently studied or well understood. Stringent criteria are needed to determine the impacts on health, long-term, of technical and chemical inventions today. This movement has received support from consumers and politicians, in the case of the European Union, the largest common market in the world. Large employers already know that it is necessary to develop the new green technology and its controls, if they are to survive in the global economy of a future that is next. The countries of the great region of Latin America have presented a specific weight very noticeable on the world community and have not been independent of the process generalized and they also correspond to scientifically scrutinize the environmental interactive phenomena to deal with possible negative consequences, give solutions and options satisfactory to their leaders and its population. The scientific program included new techniques, qualitative and quantitative, applied to the determination of substances and microorganisms in organisms and ecosystems. The evaluation of the effects of pollution on the environment has been focused so, as the development of standards for pollution control and various activities related to the study and solution of environmental problems facing the area. Abstracts of oral presentations and posters that were presented at the 8th Latin American Symposium on Environmental Analytical Chemistry and Health were included in this compendium. (author) [es

  13. Kawerau fluid chemistry : analytical results

    International Nuclear Information System (INIS)

    Mroczek, E.K.; Christenson, B.W.; Mountain, B.; Stewart, M.K.

    2001-01-01

    This report summarises the water and gas analytical data collected from Kawerau geothermal field 1998-2000 under the Sustainable Management of Geothermal and Mineral Resources (GMR) Project, Objective 2 'Understanding New Zealand Geothermal Systems'. The work is part of the continuing effort to characterise the chemical, thermal and isotopic signatures of the deep magmatic heat sources which drive our geothermal systems. At Kawerau there is clear indication that the present-day heat source relates to young volcanism within the field. However, being at the margins of the explored reservoir, little is presently known of the characteristics of that heat source. The Kawerau study follows on directly from the recently completed work characterising the geochemical signatures of the Ohaaki hydrothermal system. In the latter study the interpretation of the radiogenic noble gas isotope systematics was of fundamental importance in characterising the magmatic heat source. Unfortunately the collaboration with LLNL, which analysed the isotopes, could not be extended to include the Kawerau data. The gas samples have been archived and will be analysed once a new collaborator is found to continue the work. The purpose of the present compilation is to facilitate the final completion of the study by ensuring the data is accessible in one report. (author). 5 refs., 2 figs., 9 tabs

  14. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Šlampová, Andrea; Malá, Zdeňka; Pantůčková, Pavla; Gebauer, Petr; Boček, Petr

    2013-01-01

    Roč. 34, č. 1 (2013), s. 3-18 ISSN 0173-0835 R&D Projects: GA ČR GAP206/10/1219 Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  15. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr

    2015-01-01

    Roč. 36, č. 1 (2015), s. 15-35 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

  16. The growing need for analytical quality control

    International Nuclear Information System (INIS)

    Suschny, O.; Richman, D.M.

    1974-01-01

    Technological development in a country is directly dependent upon its analytical chemistry or measurement capability, because it is impossible to achieve any level of technological sophistication without the ability to measure. Measurement capability is needed to determine both technological competence and technological consequence. But measurement itself is insufficient. There must be a standard or a reference for comparison. In the complicated world of chemistry the need for reference materials grows with successful technological development. The International Atomic Energy Agency has been distributing calibrated radioisotope solutions, standard reference materials and intercomparison materials since the early 1960's. The purpose of this activity has been to help laboratories in its Member States to assess and, if necessary, to improve the reliability of their analytical work. The value and continued need of this service has been demonstrated by the results of many intercomparisons which proved that without continuing analytical quality control activities, adequate reliability of analytical data could not be taken for granted. Analytical chemistry, lacking the glamour of other aspects of the physical sciences, has not attracted the attention it deserves, but in terms of practical importance, it warrants high priority in any developing technological scheme, because without it there is little chance to evaluate technological success or failure or opportunity to identify the reasons for success or failure. The scope and the size of the future programme of the IAEA in this field has been delineated by recommendations made by several Panels of Experts; all have agreed on the importance of this programme and made detailed recommendations in their areas of expertise. The Agency's resources are limited and it cannot on its own undertake the preparation and distribution of all the materials needed. It can, however, offer a focal point to bring together different

  17. Chemistry technician performance evaluation program Palo Verde Nuclear Generating Station

    International Nuclear Information System (INIS)

    Shawver, J.M.

    1992-01-01

    The Arizona Nuclear Power Project (ANPP), a three-reactor site located 50 miles west of Phoenix, Arizona, has developed and implemented a program for evaluating individual chemistry technician analytical performance on a routine basis. About 45 chemistry technicians are employed at the site, 15 at each operating unit. The technicians routinely perform trace level analyses for impurities of concern to PWRs. Each month a set of blind samples is provided by an outside vendor. The blind samples contain 16 parameters which are matrixed to approximate the PWR's primary and secondary cycles. Nine technicians receive the samples, three from each operating unit, and perform the required analyses. Acceptance criteria for successful performance on the blind parameters is based on the values found in the Institute of Nuclear Power Operations (INPO) Document 83-016, Revision 2, August 1989, Chemistry Quality Control Program. The goal of the program is to have each technician demonstrate acceptable performance on each of 16 analytical parameters. On completion of each monthly set, a summary report of all of the analytical results for the sample set is prepared. From the summary report, analytical bias can be detected, technician performance is documented, and overall laboratory performance can be evaluated. The program has been very successful at satisfying the INPO requirement that the analytical performance of each individual technician should be checked on at least a six-month frequency for all important parameters measured. This paper describes the program as implemented at the Palo Verde Nuclear Generating Station and provides a summary report and trend and bias graphs for illustrative purposes

  18. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  19. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  20. FastChem: An ultra-fast equilibrium chemistry

    Science.gov (United States)

    Kitzmann, Daniel; Stock, Joachim

    2018-04-01

    FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

  1. Theoretical, analytical, and statistical interpretation of environmental data

    International Nuclear Information System (INIS)

    Lombard, S.M.

    1974-01-01

    The reliability of data from radiochemical analyses of environmental samples cannot be determined from nuclear counting statistics alone. The rigorous application of the principles of propagation of errors, an understanding of the physics and chemistry of the species of interest in the environment, and the application of information from research on the analytical procedure are all necessary for a valid estimation of the errors associated with analytical results. The specific case of the determination of plutonium in soil is considered in terms of analytical problems and data reliability. (U.S.)

  2. Modern trends in contemporary chemistry

    International Nuclear Information System (INIS)

    Javed, H.; Pervez, H.; Qadeer, R.

    1993-01-01

    This publication contains a collection of papers presented at symposium on M odern Trends in Contemporary Chemistry , that was held in Islamabad, Pakistan, March 6-8, 1990. The symposium was divided into five sections for presentation of about 55 scientific and technical papers and 6 review papers. The contents of these papers were of good quality in the widespread concern in new trends of chemistry. The six reviews papers covered fields of ortho metallation reactions, evaluation of heterogeneous electron transfer rate contents, macro reticular ion-exchange resins, spectrochemical analytical techniques, liquid crystal-high technology materials for practical applications and trends in advanced ceramics. (A.B.)

  3. Hasse diagram as a green analytical metrics tool: ranking of methods for benzo[a]pyrene determination in sediments.

    Science.gov (United States)

    Bigus, Paulina; Tsakovski, Stefan; Simeonov, Vasil; Namieśnik, Jacek; Tobiszewski, Marek

    2016-05-01

    This study presents an application of the Hasse diagram technique (HDT) as the assessment tool to select the most appropriate analytical procedures according to their greenness or the best analytical performance. The dataset consists of analytical procedures for benzo[a]pyrene determination in sediment samples, which were described by 11 variables concerning their greenness and analytical performance. Two analyses with the HDT were performed-the first one with metrological variables and the second one with "green" variables as input data. Both HDT analyses ranked different analytical procedures as the most valuable, suggesting that green analytical chemistry is not in accordance with metrology when benzo[a]pyrene in sediment samples is determined. The HDT can be used as a good decision support tool to choose the proper analytical procedure concerning green analytical chemistry principles and analytical performance merits.

  4. Presidential Green Chemistry Challenge: 2009 Greener Reaction Conditions Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2009 award winner, CEM Corporation, developed a fast, automated analytical process using less toxic reagents and less energy to distinguish protein from the food adulterant, melamine.

  5. Nationwide Multicenter Reference Interval Study for 28 Common Biochemical Analytes in China.

    Science.gov (United States)

    Xia, Liangyu; Chen, Ming; Liu, Min; Tao, Zhihua; Li, Shijun; Wang, Liang; Cheng, Xinqi; Qin, Xuzhen; Han, Jianhua; Li, Pengchang; Hou, Li'an; Yu, Songlin; Ichihara, Kiyoshi; Qiu, Ling

    2016-03-01

    A nationwide multicenter study was conducted in the China to explore sources of variation of reference values and establish reference intervals for 28 common biochemical analytes, as a part of the International Federation of Clinical Chemistry and Laboratory Medicine, Committee on Reference Intervals and Decision Limits (IFCC/C-RIDL) global study on reference values. A total of 3148 apparently healthy volunteers were recruited in 6 cities covering a wide area in China. Blood samples were tested in 2 central laboratories using Beckman Coulter AU5800 chemistry analyzers. Certified reference materials and value-assigned serum panel were used for standardization of test results. Multiple regression analysis was performed to explore sources of variation. Need for partition of reference intervals was evaluated based on 3-level nested ANOVA. After secondary exclusion using the latent abnormal values exclusion method, reference intervals were derived by a parametric method using the modified Box-Cox formula. Test results of 20 analytes were made traceable to reference measurement procedures. By the ANOVA, significant sex-related and age-related differences were observed in 12 and 12 analytes, respectively. A small regional difference was observed in the results for albumin, glucose, and sodium. Multiple regression analysis revealed BMI-related changes in results of 9 analytes for man and 6 for woman. Reference intervals of 28 analytes were computed with 17 analytes partitioned by sex and/or age. In conclusion, reference intervals of 28 common chemistry analytes applicable to Chinese Han population were established by use of the latest methodology. Reference intervals of 20 analytes traceable to reference measurement procedures can be used as common reference intervals, whereas others can be used as the assay system-specific reference intervals in China.

  6. Physical chemistry and the environment

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Garrett, B.C.; Kolb, C.E. Jr.; Shaw, R.W.; Choppin, G.R.; Wagner, A.F.

    1994-08-01

    From the ozone hole and the greenhouse effect to plastics recycling and hazardous waste disposal, society faces a number of issues, the solutions to which require an unprecedented understanding of the properties of molecules. We are coming to realize that the environment is a coupled set of chemical systems, its dynamics determining the welfare of the biosphere and of humans in particular. These chemical systems are governed by fundamental molecular interactions, and they present chemists with an unparalleled challenge. The application of current concepts of molecular behavior and of up-to-date experimental and computational techniques can provide us with insights into the environment that are needed to mitigate past damage, to anticipate the impact of current human activity, and to avoid future insults to the environment. Environmental chemistry encompasses a number of separate, yet interlocking, areas of research. In all of these areas progress is limited by an inadequate understanding of the underlying chemical processes involved. Participation of all chemical approaches -- experimental, theoretical and computational -- and of all disciplines of chemistry -- organic, inorganic, physical, analytical and biochemistry -- will be required to provide the necessary fundamental understanding. The Symposium on ''Physical Chemistry and the Environment'' was designed to bring the many exciting and challenging physical chemistry problems involved in environmental chemistry to the attention of a larger segment of the physical chemistry community

  7. Chemistry in power plants 2010. Lectures

    International Nuclear Information System (INIS)

    2010-01-01

    This year's conference starts with the analytical control of lubricating and hydraulic oil in turbine machines as well as with sampling and analysis in the water steam cycle. Other papers are dealing with the analysis of film-forming amines, the transformation of data from the water steam cycle into information for action, the improvement of water steam cycle chemistry in cyclic operation and finally the environmental application of closed loop recycling methods avoiding the discharge of waste water. Furthermore items of nuclear power plant chemistry as well as of flue gas cleaning and coal analysis are presented in two sections. [de

  8. Touring the Tomato: A Suite of Chemistry Laboratory Experiments

    Science.gov (United States)

    Sarkar, Sayantani; Chatterjee, Subhasish; Medina, Nancy; Stark, Ruth E.

    2013-01-01

    An eight-session interdisciplinary laboratory curriculum has been designed using a suite of analytical chemistry techniques to study biomaterials derived from an inexpensive source such as the tomato fruit. A logical

  9. Use of crown compounds and cryptands in analytical chemistry

    International Nuclear Information System (INIS)

    Blazius, Eh.; Yansen, K.P.

    1988-01-01

    Possibilities of crown compound and crypton application in amalytical chemistry for separation (extraction, chromatography) and determination of different cations and anions are considered. It is marked that monomeric cyclic polyethers are mainly used for separation and determination of alkali and alkaline earth metals. Linear polymers of cyclic polyethers are exclusively used for extraction of their salts. Cross-linked polymeric cyclic polyethers permit to carry out the separation and determination of most of cations (including transition, rare earth elements, actinides), anions and organic compounds. 99 refs.; 10 figs.; 8 tabs

  10. Extraction and Antibacterial Properties of Thyme Leaf Extracts: Authentic Practice of Green Chemistry

    Science.gov (United States)

    Purcell, Sean C.; Pande, Prithvi; Lin, Yingxin; Rivera, Ernesto J.; Paw U, Latisha; Smallwood, Luisa M.; Kerstiens, Geri A.; Armstrong, Laura B.; Robak, MaryAnn T.; Baranger, Anne M.; Douskey, Michelle C.

    2016-01-01

    In this undergraduate analytical chemistry experiment, students quantitatively assess the antibacterial activity of essential oils found in thyme leaves ("Thymus vulgaris") in an authentic, research-like environment. This multi-week experiment aims to instill green chemistry principles as intrinsic to chemical problem solving. Students…

  11. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer

    Czech Academy of Sciences Publication Activity Database

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-01-01

    Roč. 1010, JUN (2018), s. 11-19 ISSN 0003-2670 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * Stibane * atomization and preconcentration Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  12. Enhancing the Chemistry Curriculum, Teaching and Research Capabilities by the Implementation of Fourier Transform NMR Spectroscopy

    National Research Council Canada - National Science Library

    Yamaguchi, Kenneth

    2002-01-01

    .... Since the installation and training period, the NMR has been used for a number of courses (Analytical Chemistry, Advanced Inorganic Chemistry, Instrumental Analysis, Student Independent Projects and Undergraduate Research Projects...

  13. Institute of Nuclear Chemistry and Technology annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations

  14. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  15. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  16. Flow chemistry vs. flow analysis.

    Science.gov (United States)

    Trojanowicz, Marek

    2016-01-01

    The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Contribution from philosophy of chemistry to chemistry education: In a case of ionic liquids as technochemistry

    Science.gov (United States)

    Mudzakir, Ahmad; Hernani, Widhiyanti, Tuszie; Sudrajat, Devi Pratiwi

    2017-08-01

    Traditional chemistry education is commonly handing down of concepts, principles, and theories, such as mechanical properties, the relationship between structure and properties as well as chemical structure and chemical bonding theory, to students without engaging them in the processes of chemical inquiry. This practice leads to the lack of opportunity for the students to construct an appropriate understanding of these concepts, principles, and theories. Students are also rarely facilitated in modeling the structure and function of matter themselves. This situation shows that the philosophy of chemistry has not received as much attention from chemistry educators. The main idea of this paper is to embed philosophy of chemistry through the implementation of technochemistry in chemistry education. One of the most interesting and rapidly developing areas of modern chemistry, technologies and engineering is Ionic Liquids (ILs) as an emerging knowledge on technochemistry which can be applied to chemistry education. The developments between academic researchers and industrial developments in the ILs area are conducted in parallel. In order to overcome the existing problems of scientific development in chemistry education, the science and technology of ILs can be used for reconceptualizing the teaching and learning of chemistry to embrace the epistemology in chemistry. This study promises a potential contribution by philosophy of chemistry. The main objectives of this study are to develop: (i) a perspective based on philosophy of science considerations (rational reconstruction) in order to understand ionic liquids and (ii) teaching materials that can be used to enhance pre-service teacher's view of nature of science and technology (VNOST). The method used in the study is analytical-descriptive (elementarization), i.e. the first step in the model of educational reconstruction (MER). This study concludes that the development of the concepts and their applications of ionic

  18. An analytical chemistry laboratory's experiences under Department of Energy Order 5633.3 - a status report

    International Nuclear Information System (INIS)

    Bingham, C.D.

    1989-01-01

    The U.S. Department of Energy (DOE) order 5633.3, Control and Accountability of Nuclear Materials, initiated substantial changes to the requirements for operations involving nuclear materials. In the opinion of this author, the two most significant changes are the clarification of and the increased emphasis on the concept of graded safeguards and the implementation of performance requirements. Graded safeguards recognizes that some materials are more attractive than others to potential adversary actions and, thus, should be afforded a higher level of integrated safeguards effort. An analytical chemistry laboratory, such as the New Brunswick Laboratory (NBL), typically has a small total inventory of special nuclear materials compared to, for example, a production or manufacturing facility. The NBL has a laboratory information management system (LIMS) that not only provides the sample identification and tracking but also incorporates the essential features of MC ampersand A required of NBL operations. As a consequence of order 5633.3, NBL had to modify LIMS to accommodate material attractiveness information for the logging process, to reflect changes in the attractiveness as the material was processed through the laboratory, and to enable inventory information to be accumulated by material attractiveness as the material was processed through the laboratory, and to enable inventory information to be accumulated by material attractiveness codes

  19. Waste minimization in analytical chemistry through innovative sample preparation techniques

    International Nuclear Information System (INIS)

    Smith, L. L.

    1998-01-01

    Because toxic solvents and other hazardous materials are commonly used in analytical methods, characterization procedures result in significant and costly amount of waste. We are developing alternative analytical methods in the radiological and organic areas to reduce the volume or form of the hazardous waste produced during sample analysis. For the radiological area, we have examined high-pressure, closed-vessel microwave digestion as a way to minimize waste from sample preparation operations. Heated solutions of strong mineral acids can be avoided for sample digestion by using the microwave approach. Because reactivity increases with pressure, we examined the use of less hazardous solvents to leach selected contaminants from soil for subsequent analysis. We demonstrated the feasibility of this approach by extracting plutonium from a NET reference material using citric and tartaric acids with microwave digestion. Analytical results were comparable to traditional digestion methods, while hazardous waste was reduced by a factor often. We also evaluated the suitability of other natural acids, determined the extraction performance on a wider variety of soil types, and examined the extraction efficiency of other contaminants. For the organic area, we examined ways to minimize the wastes associated with the determination of polychlorinated biphenyls (PCBs) in environmental samples. Conventional methods for analyzing semivolatile organic compounds are labor intensive and require copious amounts of hazardous solvents. For soil and sediment samples, we have a method to analyze PCBs that is based on microscale extraction using benign solvents (e.g., water or hexane). The extraction is performed at elevated temperatures in stainless steel cells containing the sample and solvent. Gas chromatography-mass spectrometry (GC/MS) was used to quantitate the analytes in the isolated extract. More recently, we developed a method utilizing solid-phase microextraction (SPME) for natural

  20. Flow Injection Analysis: A Revolution in Modern Analytical Chemistry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    A review is made of the fundamentals of Flow Injection Analysis (FIA), and the versatility and applicability of this analytical concept is demonstrated by a series of examples, comprizing the use of different types of FIA-manifolds and various detection devices (optical and electrochemical...

  1. Estimating reliable paediatric reference intervals in clinical chemistry and haematology.

    Science.gov (United States)

    Ridefelt, Peter; Hellberg, Dan; Aldrimer, Mattias; Gustafsson, Jan

    2014-01-01

    Very few high-quality studies on paediatric reference intervals for general clinical chemistry and haematology analytes have been performed. Three recent prospective community-based projects utilising blood samples from healthy children in Sweden, Denmark and Canada have substantially improved the situation. The present review summarises current reference interval studies for common clinical chemistry and haematology analyses. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  2. An Analysis of Prospective Chemistry Teachers' Cognitive Structures through Flow Map Method: The Subject of Oxidation and Reduction

    Science.gov (United States)

    Temel, Senar

    2016-01-01

    This study aims to analyse prospective chemistry teachers' cognitive structures related to the subject of oxidation and reduction through a flow map method. Purposeful sampling method was employed in this study, and 8 prospective chemistry teachers from a group of students who had taken general chemistry and analytical chemistry courses were…

  3. (Chemistry of the global atmosphere)

    Energy Technology Data Exchange (ETDEWEB)

    Marland, G.

    1990-09-27

    The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

  4. Applications, benefits and challenges of flow chemistry

    DEFF Research Database (Denmark)

    Mitic, Aleksandar; Heintz, Søren; Ringborg, Rolf Hoffmeyer

    2013-01-01

    , environmental and manufacturing perspective. A potential solution to resolve these issues is to use flow chemistry in such processes, preferably with applications of micro-and mini-sized equipment. In addition, Process Analytical Technology (PAT) may be implemented in a very efficient way in such equipment due...

  5. Chemistry for the nuclear energy of the future

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2011-01-01

    Chemistry - radiochemistry, radiation chemistry and nuclear chemical engineering play a very important role in the nuclear power development. Even at present, the offered technology is well developed, but still several improvements are needed and proposed. These developments concern all stages of the technology; front end, reactor operation (coolant chemistry and installation components decontamination, noble gas release control), back end of fuel cycle, etc. Chemistry for a partitioning and a transmutation is a new challenge for the chemists and chemical engineers. The IV th generation of nuclear reactors cannot be developed without chemical solutions for fuel fabrication, radiation-coolants interaction phenomena understanding and spent fuel/waste treatment technologies elaboration. Radiochemical analytical methods are fundamental for radioecological monitoring of radioisotopes of natural and anthropological origin. This paper addresses just a few subjects and is not a detailed overview of the field, however it illustrates a role of chemistry for a safe and economical nuclear power development. (author)

  6. Analytical Chemistry Division annual progress report for period ending November 30, 1977

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1978-03-01

    Activities for the year are summarized in sections on analytical methodology, mass and mass emission spectrometry, analytical services, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance and safety. Presentations of research results in publications and reports are tabulated

  7. Analytical Chemistry Division annual progress report for period ending November 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1978-03-01

    Activities for the year are summarized in sections on analytical methodology, mass and mass emission spectrometry, analytical services, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance and safety. Presentations of research results in publications and reports are tabulated. (JRD)

  8. Multicriteria decision analysis in ranking of analytical procedures for aldrin determination in water.

    Science.gov (United States)

    Tobiszewski, Marek; Orłowski, Aleksander

    2015-03-27

    The study presents the possibility of multi-criteria decision analysis (MCDA) application when choosing analytical procedures with low environmental impact. A type of MCDA, Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE), was chosen as versatile tool that meets all the analytical chemists--decision makers requirements. Twenty five analytical procedures for aldrin determination in water samples (as an example) were selected as input alternatives to MCDA analysis. Nine different criteria describing the alternatives were chosen from different groups--metrological, economical and the most importantly--environmental impact. The weights for each criterion were obtained from questionnaires that were sent to experts, giving three different scenarios for MCDA results. The results of analysis show that PROMETHEE is very promising tool to choose the analytical procedure with respect to its greenness. The rankings for all three scenarios placed solid phase microextraction and liquid phase microextraction--based procedures high, while liquid-liquid extraction, solid phase extraction and stir bar sorptive extraction--based procedures were placed low in the ranking. The results show that although some of the experts do not intentionally choose green analytical chemistry procedures, their MCDA choice is in accordance with green chemistry principles. The PROMETHEE ranking results were compared with more widely accepted green analytical chemistry tools--NEMI and Eco-Scale. As PROMETHEE involved more different factors than NEMI, the assessment results were only weakly correlated. Oppositely, the results of Eco-Scale assessment were well-correlated as both methodologies involved similar criteria of assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Elaboration in the area of geochemistry and analytical chemistry

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2002-01-01

    In this article of book the analytical organic reagents, the method of leading cobalt in to coloured condition, the method of photo-metrical nickel determination, X-ray spectrum and atomic emission spectral analysis, pre-sorting of aluminium raw material samples, roentgen fluorescent determination of formative elements in rocks was investigated

  10. Degradation of Environmental Contaminants with Water-Soluble Cobalt Catalysts: An Integrative Inorganic Chemistry Investigation

    Science.gov (United States)

    Evans, Alexandra L.; Messersmith, Reid E.; Green, David B.; Fritsch, Joseph M.

    2011-01-01

    We present an integrative laboratory investigation incorporating skills from inorganic chemistry, analytical instrumentation, and physical chemistry applied to a laboratory-scale model of the environmental problem of chlorinated ethylenes in groundwater. Perchloroethylene (C[subscript 2]Cl[subscript 4], PCE) a common dry cleaning solvent,…

  11. Incorporating Course-Based Undergraduate Research Experiences into Analytical Chemistry Laboratory Curricula

    Science.gov (United States)

    Kerr, Melissa A.; Yan, Fei

    2016-01-01

    A continuous effort within an undergraduate university setting is to improve students' learning outcomes and thus improve students' attitudes about a particular field of study. This is undoubtedly relevant within a chemistry laboratory. This paper reports the results of an effort to introduce a problem-based learning strategy into the analytical…

  12. Solution standards for quality control of nuclear-material analytical measurements

    International Nuclear Information System (INIS)

    Clark, J.P.

    1981-01-01

    Analytical chemistry measurement control depends upon reliable solution standards. At the Savannah River Plant Control Laboratory over a thousand analytical measurements are made daily for process control, product specification, accountability, and nuclear safety. Large quantities of solution standards are required for a measurement quality control program covering the many different analytical chemistry methods. Savannah River Plant produced uranium, plutonium, neptunium, and americium metals or oxides are dissolved to prepare stock solutions for working or Quality Control Standards (QCS). Because extensive analytical effort is required to characterize or confirm these solutions, they are prepared in large quantities. These stock solutions are diluted and blended with different chemicals and/or each other to synthesize QCS that match the matrices of different process streams. The target uncertainty of a standard's reference value is 10% of the limit of error of the methods used for routine measurements. Standard Reference Materials from NBS are used according to special procedures to calibrate the methods used in measuring the uranium and plutonium standards so traceability can be established. Special precautions are required to minimize the effects of temperature, radiolysis, and evaporation. Standard reference values are periodically corrected to eliminate systematic errors caused by evaporation or decay products. Measurement control is achieved by requiring analysts to analyze a blind QCS each shift a measurement system is used on plant samples. Computer evaluation determines whether or not a measurement is within the +- 3 sigma control limits. Monthly evaluations of the QCS measurements are made to determine current bias correction factors for accountability measurements and detect significant changes in the bias and precision statistics. The evaluations are also used to plan activities for improving the reliability of the analytical chemistry measurements

  13. Population-Based Pediatric Reference Intervals in General Clinical Chemistry: A Swedish Survey.

    Science.gov (United States)

    Ridefelt, Peter

    2015-01-01

    Very few high quality studies on pediatric reference intervals for general clinical chemistry and hematology analytes have been performed. Three recent prospective community-based projects utilising blood samples from healthy children in Sweden, Denmark and Canada have substantially improved the situation. The Swedish survey included 701 healthy children. Reference intervals for general clinical chemistry and hematology were defined.

  14. Isotope and Nuclear Chemistry Division annual report FY 1985, October 1984-September 1985

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1986-04-01

    This report describes progress in the major research and development programs carried out in FY 1985 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiations facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  15. Annual Report of Institute of Nuclear Chemistry and Technology 1998

    International Nuclear Information System (INIS)

    1999-04-01

    Actual edition of Annual Report is a full review of scientific activities of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1998. The abstracts are presented in the following group of subjects: radiation chemistry and physics, radiation technologies (26); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (25); radiobiology (11); nuclear technologies and methods - process engineering (5); material engineering, structural studies and diagnostics (9); nucleonic control systems (7). The edition also included the list of INCT scientific publications and patents as well as information on conferences organized or co-organized by the INCT in 1998

  16. Microplastics in the environment: Challenges in analytical chemistry - A review.

    Science.gov (United States)

    Silva, Ana B; Bastos, Ana S; Justino, Celine I L; da Costa, João P; Duarte, Armando C; Rocha-Santos, Teresa A P

    2018-08-09

    Microplastics can be present in the environment as manufactured microplastics (known as primary microplastics) or resulting from the continuous weathering of plastic litter, which yields progressively smaller plastic fragments (known as secondary microplastics). Herein, we discuss the numerous issues associated with the analysis of microplastics, and to a less extent of nanoplastics, in environmental samples (water, sediments, and biological tissues), from their sampling and sample handling to their identification and quantification. The analytical quality control and quality assurance associated with the validation of analytical methods and use of reference materials for the quantification of microplastics are also discussed, as well as the current challenges within this field of research and possible routes to overcome such limitations. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Current status of neutron activation analysis and applied nuclear chemistry

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1990-01-01

    A review of recent scientometric studies of citations and publication data shows the present state of NAA and applied nuclear chemistry as compared to other analytical techniques. (author) 9 refs.; 7 tabs

  18. Analytical Characterization of Volatile Active Principles from the ...

    African Journals Online (AJOL)

    After the extraction of volatile active principles in water, analytical separation and quantitative determination using a GC/MS technique was performed. The compounds detected, are belonging to the following classes: aldehydes, ketones, aromatic hydrocarbons and alcohols. South African Journal of Chemistry Vol.55 2002: ...

  19. MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory.

    Science.gov (United States)

    Horowitz, Gary L; Zaman, Zahur; Blanckaert, Norbert J C; Chan, Daniel W; Dubois, Jeffrey A; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W; Nilsen, Olaug L; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang

    2005-01-01

    MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality.

  20. ATMOSPHERIC CHEMISTRY FOR ASTROPHYSICISTS: A SELF-CONSISTENT FORMALISM AND ANALYTICAL SOLUTIONS FOR ARBITRARY C/O

    International Nuclear Information System (INIS)

    Heng, Kevin; Tsai, Shang-Min; Lyons, James R.

    2016-01-01

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations

  1. ATMOSPHERIC CHEMISTRY FOR ASTROPHYSICISTS: A SELF-CONSISTENT FORMALISM AND ANALYTICAL SOLUTIONS FOR ARBITRARY C/O

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin; Tsai, Shang-Min [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern (Switzerland); Lyons, James R., E-mail: kevin.heng@csh.unibe.ch [Arizona State University, School of Earth and Space Exploration, Bateman Physical Sciences, Tempe, AZ 85287-1404 (United States)

    2016-01-10

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations.

  2. Analytical chemistry needs for nuclear safeguards in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.

    1977-01-01

    A fuel reprocessing plant designed to process 1500 tons of light water reactor fuel per year will recover 15 tons of Pu during that time, or approximately 40 to 50 kg of Pu per day. Conventional nuclear safeguards accountability has relied on batch accounting at the head and tail ends of the reprocessing plant with semi-annual plant cleanout to determine in-process holdup. An alternative proposed safeguards system relies on dynamic material accounting whereby in-line NDA and conventional analytical techniques provide indications on a daily basis of SNM transfers into the system and information of Pu holdup within the system. Some of the analytical requirements and problems for dynamic materials accounting in a nuclear fuel reprocessing plant are described. Some suggestions for further development will be proposed

  3. Prevalence of Pre-Analytical Errors in Clinical Chemistry Diagnostic Labs in Sulaimani City of Iraqi Kurdistan

    OpenAIRE

    Najat, Dereen

    2017-01-01

    Background Laboratory testing is roughly divided into three phases: a pre-analytical phase, an analytical phase and a post-analytical phase. Most analytical errors have been attributed to the analytical phase. However, recent studies have shown that up to 70% of analytical errors reflect the pre-analytical phase. The pre-analytical phase comprises all processes from the time a laboratory request is made by a physician until the specimen is analyzed at the lab. Generally, the pre-analytical ph...

  4. Research in nuclear chemistry: current status and future perspectives

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    2007-01-01

    Research in nuclear chemistry has seen a huge growth over the last few decades. The large umbrella of nuclear chemistry includes several research areas such as nuclear fission, reactions, spectroscopy, nuclear probes and nuclear analytical techniques. Currently, nuclear chemistry research has extended its horizon into various applications like nuclear medicine, isotopes for understanding physico chemical processes, and addressing environmental and biomedical problems. Tremendous efforts are going on for synthesizing new elements (isotopes), isolating physically or chemically wherever possible and investigating their properties. Theses studies are useful to understand nuclear and chemical properties at extreme ends of instability. In addition, nuclear chemists are making substantial contribution to astrophysics and other related areas. During this talk, a few of the contributions made by nuclear chemistry group of BARC will be discussed and possible future areas of research will be enumerated. (author)

  5. Defense Waste Processing Facility prototypic analytical laboratory

    International Nuclear Information System (INIS)

    Policke, T.A.; Bryant, M.F.; Spencer, R.B.

    1991-01-01

    The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R ampersand D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R ampersand D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy

  6. Radioimmunoassay. A revolution in the analytic procedure

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, H; Eckert, H G [Farbwerke Hoechst A.G., Frankfurt am Main (Germany, F.R.). Radiochemisches Lab.

    1978-04-01

    Radioimmunoassay is an analytic method which combines the sensitivity of radioactive measurement and the specificity of the antigen-antibody reaction Substances down to a concentration of some picograms per ml serum (or biological material) can be measured in the presence of a millionfold excess of otherwise interfering substances. The method is easy to carry out (test tube chemistry). The main field of application at the moment is in endocrinology; further possibilities of application are in pharmaceutical research, environmental protection, forensic medicine, and for general analytic purposes. Radioactive sources are used only in vitro in the nanocurie range, i.e. radiation exposure is negligible.

  7. Radiochemical methods. Analytical chemistry by open learning

    Energy Technology Data Exchange (ETDEWEB)

    Geary, W.J.; James, A.M. (ed.)

    1986-01-01

    This book presents the analytical uses of radioactive isotopes within the context of radiochemistry as a whole. It is designed for scientists with relatively little background knowledge of the subject. Thus the initial emphasis is on developing the basic concepts of radioactive decay, particularly as they affect the potential usage of radioisotopes. Discussion of the properties of various types of radiation, and of factors such as half-life, is related to practical considerations such as counting and preparation methods, and handling/disposal problems. Practical aspects are then considered in more detail, and the various radioanalytical methods are outlined with particular reference to their applicability. The approach is 'user friendly' and the use of self assessment questions allows the reader to test his/her understanding of individual sections easily. For those who wish to develop their knowledge further, a reading list is provided.

  8. Nuclear analytical techniques applied to forensic chemistry

    International Nuclear Information System (INIS)

    Nicolau, Veronica; Montoro, Silvia; Pratta, Nora; Giandomenico, Angel Di

    1999-01-01

    Gun shot residues produced by firing guns are mainly composed by visible particles. The individual characterization of these particles allows distinguishing those ones containing heavy metals, from gun shot residues, from those having a different origin or history. In this work, the results obtained from the study of gun shot residues particles collected from hands are presented. The aim of the analysis is to establish whether a person has shot a firing gun has been in contact with one after the shot has been produced. As reference samples, particles collected hands of persons affected to different activities were studied to make comparisons. The complete study was based on the application of nuclear analytical techniques such as Scanning Electron Microscopy, Energy Dispersive X Ray Electron Probe Microanalysis and Graphite Furnace Atomic Absorption Spectrometry. The essays allow to be completed within time compatible with the forensic requirements. (author)

  9. Yearly scientific meeting: chemistry in human health and environment protection. Bialystok`92; Doroczny zjazd naukowy: chemia w ochronie zdrowia i srodowiska czlowieka. Bialystok`92

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The conference has been divided into 12 sections devoted to following topics: analytical chemistry; environmental chemistry; chemistry of natural compounds; chemistry of pharmaceutics and toxic compounds; chemistry in medicine; electrochemistry; young scientists forum; didactics and history of chemistry; chemistry and industry - technologies environment friendly; new trends in polymer science; crystallochemistry; pro-ecological actions in leather industry. Different analytical methods for determination of heavy methods and rare earths have been presented. Some of them have been successfully applied for the examination of environmental and biological materials. The basic chemical and physico-chemical studies including thermodynamic, crystal structure, coordination chemistry, sorption properties etc. have been extensively resented. The existence of radioactive elements in environment has been also investigated, especially in respect to municipal and industrial wastes and products of their processing. The radiation effects for different materials have been reported and discussed as well.

  10. Yearly scientific meeting: chemistry in human health and environment protection. Bialystok`92; Doroczny zjazd naukowy: chemia w ochronie zdrowia i srodowiska czlowieka. Bialystok`92

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The conference has been divided into 12 sections devoted to following topics: analytical chemistry; environmental chemistry; chemistry of natural compounds; chemistry of pharmaceutics and toxic compounds; chemistry in medicine; electrochemistry; young scientists forum; didactics and history of chemistry; chemistry and industry - technologies environment friendly; new trends in polymer science; crystallochemistry; pro-ecological actions in leather industry. Different analytical methods for determination of heavy methods and rare earths have been presented. Some of them have been successfully applied for the examination of environmental and biological materials. The basic chemical and physico-chemical studies including thermodynamic, crystal structure, coordination chemistry, sorption properties etc. have been extensively resented. The existence of radioactive elements in environment has been also investigated, especially in respect to municipal and industrial wastes and products of their processing. The radiation effects for different materials have been reported and discussed as well.

  11. Progress report: Chemistry and Materials Division, 1982 April 1 - June 30

    International Nuclear Information System (INIS)

    1982-08-01

    The work of the division in the areas of solid state studies, radiation chemistry, isotope separation, analytical chemistry and materials science is described. The solid state science group studied solute atom vacancy trapping in irradiated f.c.c. alloys as well as the rearrangement of atoms in solids bombarded by energetic heavy ions. In radiation chemistry, work was done on the pulse radiolysis of NO in argon. Isotope separation studies were done on fluoroform and uranium. Fuel burnup determination using 148 Nd and 139 La was investigated. Zirconium alloy studies included work on stress corrosion cracking and the Baushinger effect

  12. The use of computers for chemistry and corrosion monitoring in the nuclear power industry

    International Nuclear Information System (INIS)

    Eber, K.

    1986-01-01

    Corrosion of steam generators in the nuclear power industry has caused increasingly expensive maintenance work during refueling outages. To assist in the control and monitoring of this problem, Northeast Utilities has developed computer programs for tracking steam generator water chemistry and steam generator eddy current inspection data. These programs have allowed detailed analytical studies to be performed which would have been extremely difficult without the use of computers. The paper discusses the capabilities and uses of a chemistry data management system. An example analysis of steam generator chemistry during plant startup is presented. The corrosion monitoring capabilities of several eddy current data analysis programs are also discussed. It is demonstrated how these programs allow a detailed analysis of the effects of a chemical cleaning operation to remove sludge from the steam generators. Applications of these analytical methods to other industries is also discussed

  13. Analytical characterization of high-level mixed wastes using multiple sample preparation treatments

    International Nuclear Information System (INIS)

    King, A.G.; Baldwin, D.L.; Urie, M.W.; McKinley, S.G.

    1994-01-01

    The Analytical Chemistry Laboratory at the Pacific Northwest Laboratory in Richland, Washington, is actively involved in performing analytical characterization of high-level mixed waste from Hanford's single shell and double shell tank characterization programs. A full suite of analyses is typically performed on homogenized tank core samples. These analytical techniques include inductively-coupled plasma-atomic emission spectroscopy, total organic carbon methods and radiochemistry methods, as well as many others, all requiring some type of remote sample-preparation treatment to solubilize the tank sludge material for analysis. Most of these analytical methods typically use a single sample-preparation treatment, inherently providing elemental information only. To better understand and interpret tank chemistry and assist in identifying chemical compounds, selected analytical methods are performed using multiple sample-preparation treatments. The sample preparation treatments used at Pacific Northwest Laboratory for this work with high-level mixed waste include caustic fusion, acid digestion, and water leach. The type of information available by comparing results from different sample-prep treatments includes evidence for the presence of refractory compounds, acid-soluble compounds, or water-soluble compounds. Problems unique to the analysis of Hanford tank wastes are discussed. Selected results from the Hanford single shell ferrocyanide tank, 241-C-109, are presented, and the resulting conclusions are discussed

  14. Applications of DHDECMP extraction chromatography to nuclear analytical chemistry

    International Nuclear Information System (INIS)

    Marsh, S.F.; Simi, O.R.

    1981-01-01

    Dihexyl-N,N-diethylcarbamylmethylenephosphonate (DHDECMP) is a highly selective extractant for actinides and lanthanides. This reagent, extensively studied for process-scale operations, also has valuable analytical applications. Extraction chromatographic columns of DHDECMP, supported on inert, porous, polymer beads effectively separate most metallic impurity elements from the retained inner transition elements. The retained elements can be separated into individual fractions of (1) lanthanides, (2) americium, (3) plutonium, and (4) uranium by mixed-solvent anion exchange

  15. Analytical challenges in sports drug testing.

    Science.gov (United States)

    Thevis, Mario; Krug, Oliver; Geyer, Hans; Walpurgis, Katja; Baume, Norbert; Thomas, Andreas

    2018-03-01

    Analytical chemistry represents a central aspect of doping controls. Routine sports drug testing approaches are primarily designed to address the question whether a prohibited substance is present in a doping control sample and whether prohibited methods (for example, blood transfusion or sample manipulation) have been conducted by an athlete. As some athletes have availed themselves of the substantial breadth of research and development in the pharmaceutical arena, proactive and preventive measures are required such as the early implementation of new drug candidates and corresponding metabolites into routine doping control assays, even though these drug candidates are to date not approved for human use. Beyond this, analytical data are also cornerstones of investigations into atypical or adverse analytical findings, where the overall picture provides ample reason for follow-up studies. Such studies have been of most diverse nature, and tailored approaches have been required to probe hypotheses and scenarios reported by the involved parties concerning the plausibility and consistency of statements and (analytical) facts. In order to outline the variety of challenges that doping control laboratories are facing besides providing optimal detection capabilities and analytical comprehensiveness, selected case vignettes involving the follow-up of unconventional adverse analytical findings, urine sample manipulation, drug/food contamination issues, and unexpected biotransformation reactions are thematized.

  16. Pollution prevention in the analytical laboratory--Microscale and other techniques do add up

    International Nuclear Information System (INIS)

    Erickson, M.D.; Alvarado, J.S.; Lu, C.-S.; Peterson, D.P.; Silzer, J.

    1996-01-01

    The principles of pollution prevention in the analytical laboratory have not been addressed sufficiently. Although the amount of reagent used per sample is often only a few milliliters, the aggregate of many routine test each day in thousands of laboratories becomes significant. Current recycling practices are not practical with small streams. Therefore, we have adopted the principles of microscale chemistry, along with other modern analytical approaches, to develop routine analytical methods that significantly curtail waste but still maintain acceptable analytical figures of merit and achieve cost savings through reduced reagent consumption and reduced labor cost

  17. Development of a Research-Oriented Inorganic Chemistry Laboratory Course

    Science.gov (United States)

    Vallarino, L. M.; Polo, D. L.; Esperdy, K.

    2001-02-01

    We report the development of a research-oriented, senior-level laboratory course in inorganic chemistry, which is a requirement for chemistry majors who plan to receive the ACS-approved Bachelor of Science degree and is a recommended elective for other chemistry majors. The objective of this course is to give all students the advantage of a research experience in which questions stemming from the literature lead to the formulation of hypotheses, and answers are sought through experiment. The one-semester Inorganic Chemistry Laboratory is ideal for this purpose, since for most students it represents the last laboratory experience before graduation and can assume the role of "capstone" course--a course where students are challenged to recall previously learned concepts and skills and put them into practice in the performance of an individual, original research project. The medium chosen for this teaching approach is coordination chemistry, a branch of chemistry that involves the interaction of inorganic and organic compounds and requires the use of various synthetic and analytical methods. This paper presents an outline of the course organization and requirements, examples of activities performed by the students, and a critical evaluation of the first five years' experience.

  18. A semi-analytical iterative technique for solving chemistry problems

    Directory of Open Access Journals (Sweden)

    Majeed Ahmed AL-Jawary

    2017-07-01

    Full Text Available The main aim and contribution of the current paper is to implement a semi-analytical iterative method suggested by Temimi and Ansari in 2011 namely (TAM to solve two chemical problems. An approximate solution obtained by the TAM provides fast convergence. The current chemical problems are the absorption of carbon dioxide into phenyl glycidyl ether and the other system is a chemical kinetics problem. These problems are represented by systems of nonlinear ordinary differential equations that contain boundary conditions and initial conditions. Error analysis of the approximate solutions is studied using the error remainder and the maximal error remainder. Exponential rate for the convergence is observed. For both problems the results of the TAM are compared with other results obtained by previous methods available in the literature. The results demonstrate that the method has many merits such as being derivative-free, and overcoming the difficulty arising in calculating Adomian polynomials to handle the non-linear terms in Adomian Decomposition Method (ADM. It does not require to calculate Lagrange multiplier in Variational Iteration Method (VIM in which the terms of the sequence become complex after several iterations, thus, analytical evaluation of terms becomes very difficult or impossible in VIM. No need to construct a homotopy in Homotopy Perturbation Method (HPM and solve the corresponding algebraic equations. The MATHEMATICA® 9 software was used to evaluate terms in the iterative process.

  19. The Chemistry of Flammable Gas Generation

    International Nuclear Information System (INIS)

    ZACH, J.J.

    2000-01-01

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data

  20. The Chemistry of Flammable Gas Generation

    Energy Technology Data Exchange (ETDEWEB)

    ZACH, J.J.

    2000-10-30

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

  1. Determination of lycopene in food by on-line SFE-LC eliminating its degradation during the analytical procedure

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Hyötyläinen, T.; Ranta-Aho, O.; Riekkola, M. L.

    2005-01-01

    Roč. 99, S (2005), s251 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. 20.09.2005-22.09.2005, Brno] R&D Projects: GA AV ČR KJB4031405 Keywords : liquid chromatography * supercritical fluid extraction * antioxidant Subject RIV: CB - Analytical Chemistry, Separation

  2. Nuclear Chemistry and Services

    International Nuclear Information System (INIS)

    Vandevelde, L.

    2002-01-01

    The objectives, the programme, and the achievements of R and D at the Belgian Nuclear Research Centre SCK-CEN in the field of nuclear chemistry and analytical techniques are summarized. Major achievement in 2001 included the completion of a project on the measurement of critical radionuclides in reactor waste fluxes (the ARIANE project), the radiochemical characterisation of beryllium material originating from the second matrix of the BR2 reactor as well as to a the organisation of a workshop on the analysis of thorium and its isotopes in workplace materials

  3. Molecular dynamics simulations of matrix assisted laser desorption ionization: Matrix-analyte interactions

    International Nuclear Information System (INIS)

    Nangia, Shivangi; Garrison, Barbara J.

    2011-01-01

    There is synergy between matrix assisted laser desorption ionization (MALDI) experiments and molecular dynamics (MD) simulations. To understand analyte ejection from the matrix, MD simulations have been employed. Prior calculations show that the ejected analyte molecules remain solvated by the matrix molecules in the ablated plume. In contrast, the experimental data show free analyte ions. The main idea of this work is that analyte molecule ejection may depend on the microscopic details of analyte interaction with the matrix. Intermolecular matrix-analyte interactions have been studied by focusing on 2,5-dihydroxybenzoic acid (DHB; matrix) and amino acids (AA; analyte) using Chemistry at HARvard Molecular Mechanics (CHARMM) force field. A series of AA molecules have been studied to analyze the DHB-AA interaction. A relative scale of AA molecule affinity towards DHB has been developed.

  4. Desafios da química analítica frente às necessidades da indústria farmacêutica Challenges of analytical chemistry in face of the needs of the pharmaceutical industry

    Directory of Open Access Journals (Sweden)

    Alberto dos Santos Pereira

    2005-12-01

    Full Text Available The development of liquid chromatography-mass spectrometric (LC-MS techniques in the last few decades has made possible the analysis of trace amounts of analytes from complex matrices. With LC, the analytes of interest can be separated from each other as well as from the interfering matrix, after which they can be reliably identified thanks to the sensitivity and specificity of MS. LC-MS has become an irreplaceable tool for many applications, ranging from the analysis of proteins or pharmaceuticals in biological fluids to the analysis of toxic substances in environmental samples. In different segments of Brazilian Industry mass spectrometry has an important role, e.g. in the pharmaceutical industry in the development of generic formulations, contributing to the growth of Industry and social inclusion. However, the Brazilian chemists until this moment don't have an effective role in this new segment of the analytical chemistry in Brazil. The present paper shows the actual scenario for mass spectrometry in the pharmaceutical industry, emphasizing the need of a revision of graduation courses to attend the needs of this growing market.

  5. Multifunctional nanoparticles: Analytical prospects

    International Nuclear Information System (INIS)

    Dios, Alejandro Simon de; Diaz-Garcia, Marta Elena

    2010-01-01

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifuncional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  6. Fasting conditions: Influence of water intake on clinical chemistry analytes.

    Science.gov (United States)

    Benozzi, Silvia F; Unger, Gisela; Campion, Amparo; Pennacchiotti, Graciela L

    2018-02-15

    Currently available recommendations regarding fasting requirements before phlebotomy do not specify any maximum water intake volume permitted during the fasting period. The aim was to study the effects of 300 mL water intake 1 h before phlebotomy on specific analytes. Blood was collected from 20 women (median age (min-max): 24 (22 - 50) years) in basal state (T 0 ) and 1 h after 300 mL water intake (T 1 ). Glucose, total proteins (TP), urea, creatinine, cystatin C, total bilirubin (BT), total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides (Tg), uric acid (UA), high-sensitivity C-reactive protein, gamma-glutamyl transferase (GGT), aspartate-aminotransferase (AST), alanine-aminotransferase and lactate-dehydrogenase (LD) were studied. Results were analyzed using Wilcoxon test. Mean difference (%) was calculated for each analyte and was further compared with reference change value (RCV). Only mean differences (%) higher than RCV were considered clinically significant. Significant differences (median T 0 vs median T 1 , P) were observed for TP (73 vs 74 g/L, 0.001); urea (4.08 vs 4.16 mmol/L, 0.010); BT (12 vs 13 µmol/L, 0.021); total cholesterol (4.9 vs 4.9 mmol/L, 0.042); Tg (1.05 vs 1.06 mmol/L, 0.002); UA (260 vs 270 µmol/L, 0.006); GGT (12 vs 12 U/L, 0.046); AST (22 vs 24 U/L, 0.001); and LD (364 vs 386 U/L, 0.001). Although the differences observed were statistically significant, they were not indicative of clinically significant changes. A water intake of 300 mL 1 h prior to phlebotomy does not interfere with the analytes studied in the present work.

  7. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Greulich, K.A.; Gray, C.E. (comp.)

    1991-08-01

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned.

  8. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    International Nuclear Information System (INIS)

    Greulich, K.A.; Gray, C.E.

    1991-08-01

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned

  9. Selected constants oxydo-reduction potentials tables of constants and numerical data affiliated to the International Union of Pure and Applied Chemistry, v.8

    CERN Document Server

    Charlot, G

    1958-01-01

    Selected Constants: Oxydo-Reduction Potentials contains Tables of the most probable value of the normal oxidation-reduction potential, or of the formal or apparent potential, of a given oxidation-reduction system. This book is prepared under the sponsorship of the Commission on Electrochemical Data of the Section of Analytical Chemistry of the International Union of Pure and Applied Chemistry. It is included in a general program of the Section of Analytical Chemistry. Entry items are classified in alphabetical order. This book will be of value to specialized and non-specialized chemists, teach

  10. ACTINET-I3 Summer School on Analytical Innovation in the field of actinide recycling - Slides of the presentations

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Nash, K.L.; Puget, P.; Szabo, Z.; Vallet, V.; Berthon, L.; Duhamet, J.; Wipff, G.; Dufreche, J.F.; Walter, P.; Thiebaut, D.; Toulhoat, P.; Aupiais, J.; Amatore, C.

    2011-01-01

    This conference dealt with 3 main topics: analytical innovation in separation processes (hyphenated techniques, analytical chips,...), actinide recycling (extraction, interfaces, processes,...) and chemistry and thermodynamics of actinides. This document is composed of the slides of the presentations

  11. Prevalence of Pre-Analytical Errors in Clinical Chemistry Diagnostic Labs in Sulaimani City of Iraqi Kurdistan.

    Science.gov (United States)

    Najat, Dereen

    2017-01-01

    Laboratory testing is roughly divided into three phases: a pre-analytical phase, an analytical phase and a post-analytical phase. Most analytical errors have been attributed to the analytical phase. However, recent studies have shown that up to 70% of analytical errors reflect the pre-analytical phase. The pre-analytical phase comprises all processes from the time a laboratory request is made by a physician until the specimen is analyzed at the lab. Generally, the pre-analytical phase includes patient preparation, specimen transportation, specimen collection and storage. In the present study, we report the first comprehensive assessment of the frequency and types of pre-analytical errors at the Sulaimani diagnostic labs in Iraqi Kurdistan. Over 2 months, 5500 venous blood samples were observed in 10 public diagnostic labs of Sulaimani City. The percentages of rejected samples and types of sample inappropriateness were evaluated. The percentage of each of the following pre-analytical errors were recorded: delay in sample transportation, clotted samples, expired reagents, hemolyzed samples, samples not on ice, incorrect sample identification, insufficient sample, tube broken in centrifuge, request procedure errors, sample mix-ups, communication conflicts, misinterpreted orders, lipemic samples, contaminated samples and missed physician's request orders. The difference between the relative frequencies of errors observed in the hospitals considered was tested using a proportional Z test. In particular, the survey aimed to discover whether analytical errors were recorded and examine the types of platforms used in the selected diagnostic labs. The analysis showed a high prevalence of improper sample handling during the pre-analytical phase. In appropriate samples, the percentage error was as high as 39%. The major reasons for rejection were hemolyzed samples (9%), incorrect sample identification (8%) and clotted samples (6%). Most quality control schemes at Sulaimani

  12. Prevalence of Pre-Analytical Errors in Clinical Chemistry Diagnostic Labs in Sulaimani City of Iraqi Kurdistan.

    Directory of Open Access Journals (Sweden)

    Dereen Najat

    Full Text Available Laboratory testing is roughly divided into three phases: a pre-analytical phase, an analytical phase and a post-analytical phase. Most analytical errors have been attributed to the analytical phase. However, recent studies have shown that up to 70% of analytical errors reflect the pre-analytical phase. The pre-analytical phase comprises all processes from the time a laboratory request is made by a physician until the specimen is analyzed at the lab. Generally, the pre-analytical phase includes patient preparation, specimen transportation, specimen collection and storage. In the present study, we report the first comprehensive assessment of the frequency and types of pre-analytical errors at the Sulaimani diagnostic labs in Iraqi Kurdistan.Over 2 months, 5500 venous blood samples were observed in 10 public diagnostic labs of Sulaimani City. The percentages of rejected samples and types of sample inappropriateness were evaluated. The percentage of each of the following pre-analytical errors were recorded: delay in sample transportation, clotted samples, expired reagents, hemolyzed samples, samples not on ice, incorrect sample identification, insufficient sample, tube broken in centrifuge, request procedure errors, sample mix-ups, communication conflicts, misinterpreted orders, lipemic samples, contaminated samples and missed physician's request orders. The difference between the relative frequencies of errors observed in the hospitals considered was tested using a proportional Z test. In particular, the survey aimed to discover whether analytical errors were recorded and examine the types of platforms used in the selected diagnostic labs.The analysis showed a high prevalence of improper sample handling during the pre-analytical phase. In appropriate samples, the percentage error was as high as 39%. The major reasons for rejection were hemolyzed samples (9%, incorrect sample identification (8% and clotted samples (6%. Most quality control schemes

  13. Materials of the yearly scientific assembly of the Polish Chemical Society - Torun'93: chemistry of new materials

    International Nuclear Information System (INIS)

    1993-01-01

    Scientific conference accompanied the assembly of Polish Chemical Society has been held in 1993 in Torun. The conference has been divided into 12 sections and 4 symposia covering the most important research fields in chemistry. The general view on scientific progress has been presented during the plenary session. Then proceedings have performed in specialist sessions on: contemporary methods in organic chemistry chemistry, chemistry and physico-chemistry of polymers, coordination chemistry state-of-the-art prospects, absorption and absorbents, new chemical technologies of organic compounds, new chemical technologies of inorganic compounds, environment protection, new methods in analytical chemistry, photochemistry and chemical kinetics, crystallochemistry, history of chemistry and didactics, new substances in health protection, membranes and membrane techniques, electroactive organic compounds, zeolites - material properties

  14. The performance of the remote analytical laboratory during the first fluorinel dissolution process campaign

    International Nuclear Information System (INIS)

    Lewis, L.C.; Henscheid, J.P.

    1989-01-01

    The Remote Analytical Laboratory at the Idaho Chemical Processing Plant was designed to provide analytical chemistry support to the irradiated fuel processing and associated waste processing operations. The facility was put into radioactive operation on July 7, 1986, and operated for more than a year during the first fluorinel fuel dissolution process campaign. The facility incorporated a number of innovative features and was equipped with state-of-the-art analytical instrumentation. The success of the facility is a direct function of how well the remote analytical equipment performed. The performance is discussed in this article

  15. Clinical chemistry reference values for 75-year-old apparently healthy persons.

    Science.gov (United States)

    Huber, Klaus Roland; Mostafaie, Nazanin; Stangl, Gerhard; Worofka, Brigitte; Kittl, Eva; Hofmann, Jörg; Hejtman, Milos; Michael, Rainer; Weissgram, Silvia; Leitha, Thomas; Jungwirth, Susanne; Fischer, Peter; Tragl, Karl-Heinz; Bauer, Kurt

    2006-01-01

    Clinical chemistry reference values for elderly persons are sparse and mostly intermixed with those for younger subjects. To understand the links between metabolism and aging, it is paramount to differentiate between "normal" physiological processes in apparently healthy elderly subjects and metabolic changes due to long-lasting diseases. The Vienna Transdanube Aging (VITA) study, which began in 2000 and is continuing, will allow us to do just that, because more than 600 male and female volunteers aged exactly 75 years (to exclude any influence of the "aging" factor in this cohort) are participating in this study. Extensive clinical, neurological, biochemical, psychological, genetic, and radiological analyses, with a special emphasis on consumption of medication and abuse of drugs, were performed on each of the probands. The multitude of data and questionnaires obtained made possible an a posteriori approach to select individuals fulfilling criteria for a reference sample group of apparently healthy 75-year-old subjects for our study. Specific analytes were quantified on automated clinical analyzers, while manual methods were used for hormonal analytes. All clinical chemistry analytes were evaluated using in-depth statistical analyses with SPSS for Windows. In all, reference intervals for 45 analytes could be established. These include routine parameters for the assessment of organ functions, as well as hormone concentrations and hematological appraisals. Because all patients were reevaluated after exactly 30 months in the course of this study, we had the opportunity to reassess their health status at the age of 77.5 years. This was very useful for validation of the first round data set. Data of the second round evaluation corroborate the reference limits of the baseline analysis and further confirm our inclusion and exclusion criteria. In summary, we have established a reliable set of reference data for hormonal, hematological, and clinical chemistry analytes for

  16. Annual report of Institute of Nuclear Chemistry and Technology 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations

  17. Annual report of Institute of Nuclear Chemistry and Technology 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations.

  18. Progress report: Chemistry and Materials Division, 1983 January 1 - June 30

    International Nuclear Information System (INIS)

    1983-08-01

    The research progams in solid state science, analytical and physical chemistry and materials science are outlined for the first half of 1983. Studies are being carried out in the areas of surface science, isotope separation and irradiation effects on zirconium

  19. Hanford analytical services quality assurance plan. Revision 1

    International Nuclear Information System (INIS)

    1995-02-01

    This document, the Hanford Analytical Services Quality Assurance Plan (HASQAP), is issued by the U.S. Department of Energy, Richland Operations Office (RL). The HASQAP establishes quality requirements in response to U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance (10 CFR 830.120, open-quotes Quality Assurance Requirementsclose quotes). The HASQAP is designed to meet the needs of the RL for controlling the of analytical chemistry services provided by laboratory operations. The HASQAP is issued through the Analytical Services Branch of the Waste Management Division. The Analytical Services Branch is designated by the RL as having the responsibility for oversight management of laboratory operations under the Waste Management Division. The laboratories conduct sample analyses under several regulatory statutes, such as the Clean Air Act and the Clean Water Act. Sample analysis in support of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) is a major role of the laboratory operations

  20. Dalhousie SLOWPOKE-2 reactor: A nuclear analytical chemistry facility

    International Nuclear Information System (INIS)

    Chatt, A.; Holzbecher, J.

    1990-01-01

    SLOWPOKE is an acronym for Safe Low POwer Kritical Experiment. The SOWPOKE-2 is a compact, inherently safe, swimming-pool-type reactor designed by the Atomic Energy of Canada Limited for neutron activation analysis (NAA) and isotope production. The Dalhousie University SLOWPOKE-2 reactor (DUSR) has been operating since 1976; a large beryllium reflector was added in 1986 to extend its lifetime by another 8 to 10 yr. The DUSR is generally operated at half-power with a maximum thermal flux of 1.1 x 10 12 n/cm 2 ·s in the inner pneumatic sites and that of 5.4 x 10 11 n/cm 2 ·s in the outer sites. Despite this comparatively low flux, SLOWPOKE-2 reactors have many beneficial features that are continuously being exploited at the DUSR facility for developing nuclear analytical methods for fundamental as well as applied studies. Although NAA is a well-established analytical technique, much of the activation analysis being performed in most facilities has been limited to methods using fairly long-lived nuclides. The approach at the DUSR facility has been to utilize the highly homogeneous, stable, and reproducible neutron flux to develop NAA methods based on short-lived nuclides. SLOWPOKE reactors have a fairly high epithermal neutron flux, which is being advantageously used for determining several trace elements in complex matrices. Radiochemical NAA (RNAA) methods using coprecipitation, distillation, and ion-exchange separations have been used for the determination of very low levels of several elements in biological materials

  1. Advances in analytical tools for high throughput strain engineering

    DEFF Research Database (Denmark)

    Marcellin, Esteban; Nielsen, Lars Keld

    2018-01-01

    The emergence of inexpensive, base-perfect genome editing is revolutionising biology. Modern industrial biotechnology exploits the advances in genome editing in combination with automation, analytics and data integration to build high-throughput automated strain engineering pipelines also known...... as biofoundries. Biofoundries replace the slow and inconsistent artisanal processes used to build microbial cell factories with an automated design–build–test cycle, considerably reducing the time needed to deliver commercially viable strains. Testing and hence learning remains relatively shallow, but recent...... advances in analytical chemistry promise to increase the depth of characterization possible. Analytics combined with models of cellular physiology in automated systems biology pipelines should enable deeper learning and hence a steeper pitch of the learning cycle. This review explores the progress...

  2. AERE Harwell Applied Chemistry Division unclassified progress report and bibliography for the period 1st April 1975 to 31st March 1976

    International Nuclear Information System (INIS)

    1976-08-01

    The Progress Report is under the headings: Analytical Chemistry Group, Actinide Analysis Group, Applied Electrochemistry Group, Nuclear Fuels Group, Solid State Chemistry Group, Separation Processes Group, list of unclassified publications. (U.K.)

  3. Progress report, Chemistry and Materials Division, October 1 to December 31, 1976

    International Nuclear Information System (INIS)

    1977-01-01

    A summary is given of research largely centering around radiation effects on materials, radiation and analytical chemistry, surface studies, and materials science, esp. zirconium base alloys and their problems and properties in nuclear service. (E.C.B.)

  4. Azahelicene Superbases as MAILD Matrices for Acidic Analytes

    Czech Academy of Sciences Publication Activity Database

    Napagoda, M.; Rulíšek, Lubomír; Jančařík, Andrej; Klívar, Jiří; Šámal, Michal; Stará, Irena G.; Starý, Ivo; Šolínová, Veronika; Kašička, Václav; Svatoš, Aleš

    2013-01-01

    Roč. 78, č. 9 (2013), s. 937-942 ISSN 2192-6506 R&D Projects: GA ČR GA203/09/1766; GA ČR(CZ) GAP206/12/0453; GA AV ČR IAA400550916 Institutional support: RVO:61388963 Keywords : azahelicene superbases * MAILD-MS matrix * acidic analytes * matrix isolation * metabolomics Subject RIV: CC - Organic Chemistry Impact factor: 3.242, year: 2013

  5. Methods of analytical check for highly pure tungsten

    International Nuclear Information System (INIS)

    Miklin, D.G.; Karpov, Yu.A.; Orlova, V.A.

    1993-01-01

    The review is devoted to the methods of high-purity tungsten analysis. Current trends in the development of this branch of analytical chemistry are considered. Application of both instrument mass-spectrometry analysis and optico-spectral, activation methods and mass-spectrometry ones with inductively-bound plasma in combination with preliminary isolation of the basis and impurity concentration is expected to be the most actual

  6. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  7. Institute of Nuclear Chemistry and Technology annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994

  8. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  9. Chemical and Analytical Sciences Division progress report for the period January 1, 1993--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, M.L.

    1995-06-01

    This report provides brief summaries of progress in the Chemical and Analytical Sciences Division (CASD) during 1993 and 1994. The first four chapters, which cover the research mission, are organized to mirror the major organizational units of the division and indicate the scope of the research portfolio. These divisions are the Analytical Spectroscopy Section, Nuclear and Radiochemistry Section, Organic Chemistry Section, and Physical and Materials Chemistry Section. The fifth and sixth chapters summarize the support activities within CASD that are critical for research progress. Finally, the appendices indicate the productivity and recognition of the staff in terms of various forms of external publications, professional activities, and awards.

  10. Institute of Nuclear Chemistry, Mainz University. Annual report 1991

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1992-03-01

    Brief reports summarise the 1991 achievements of the four departments of the Institute relating to the subject areas: chemistry of most heavy elements, fast separation methods, equipment development, decay properties and structures of nuclei, heavy ion reactions, environmental analytics. The list of publications and lectures of Institute members is given in an annex. (orig.) [de

  11. Institute of Nuclear Chemistry, Mainz University. Annual report 1992

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1993-03-01

    Brief reports summarise the 1992 achievements of the four departments of the Institute relating to the subject areas: Chemistry of most heavy elements, fast separation methods, equipment development, decay properties and structures of nuclei, heavy ion reactions, environmental analytics. The list of publications and lectures of Institute members is given in an annex. (orig.) [de

  12. In Situ Scanning Probe Microscopy and New Perspectives in Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Zhang, Jingdong; Chi, Qijin

    1999-01-01

    The resolution of scanning probe microscopies is unpresedented but the techniques are fraught with limitations as analytical tools. These limitations and their relationship to the physical mechanisms of image contrast are first discussed. Some new options based on in situ STM, which hold prospect...

  13. Aplikasi Analytical Hierarchy Process Pada Pemilihan Metode Analisis Zat Organik Dalam Air

    Directory of Open Access Journals (Sweden)

    Dino Rimantho

    2016-07-01

    Full Text Available Water is one of the food products analyzed in water chemistry and environmental laboratories. One of the parameters analyzed are organic substances. The number of samples that were not comparable with the analytical skills can cause delays in test results. Analytical Hierarchy Process applied to evaluate the analytical methods used. Alternative methods tested include titrimetric method, spectrophotometry, and total organic carbon (TOC. Respondents consisted of deputy technical manager, laboratory coordinator, and two senior analysts. Alternative results obtained are methods of TOC. Proposed improvements alternative analytical method based on the results obtained, the method of the TOC with a 10-15 minute analysis time and use of CRM to the validity of the analysis results.

  14. Capillary electromigration techniques for studying interactions between analytes and lipid dispersions

    Czech Academy of Sciences Publication Activity Database

    Wiedmer, S. K.; Lokajová, Jana

    2013-01-01

    Roč. 36, č. 1 (2013), s. 37-51 ISSN 1615-9306 Grant - others:Helsinki Research Funds (FI) 2105060 Institutional support: RVO:61388963 Keywords : electrokinetic chromatography * frontal analysis * liposome * microchips * partial filling Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.594, year: 2013

  15. Fluidos supercríticos em química analítica. I. Cromatografia com fluido supercrítico: conceitos termodinâmicos Supercritical fluid in analytical chemistry. I. Supercritical fluid chromatography: thermodynamic definitions

    OpenAIRE

    Emanuel Carrilho; Maria Cecília H. Tavares; Fernando M. Lanças

    2001-01-01

    Under the chromatographic point of view, the physico-chemical properties of a supercritical fluid are intermediate to those of the gases and liquids. Many times they approach the best features of each one, as for example, the solubilization power of liquids and low viscosity of gases. The thermodynamic definitions and main physico-chemical features of a supercritical fluid will be presented in this article. The use of supercritical fluids in analytical chemistry has been extremely modest in B...

  16. GNU polyxmass: a software framework for mass spectrometric simulations of linear (bio-polymeric analytes

    Directory of Open Access Journals (Sweden)

    Rusconi Filippo

    2006-04-01

    Full Text Available Abstract Background Nowadays, a variety of (bio-polymers can be analyzed by mass spectrometry. The detailed interpretation of the spectra requires a huge number of "hypothesis cycles", comprising the following three actions 1 put forth a structural hypothesis, 2 test it, 3 (invalidate it. This time-consuming and painstaking data scrutiny is alleviated by using specialized software tools. However, all the software tools available to date are polymer chemistry-specific. This imposes a heavy overhead to researchers who do mass spectrometry on a variety of (bio-polymers, as each polymer type will require a different software tool to perform data simulations and analyses. We developed a software to address the lack of an integrated software framework able to deal with different polymer chemistries. Results The GNU polyxmass software framework performs common (bio-chemical simulations–along with simultaneous mass spectrometric calculations–for any kind of linear bio-polymeric analyte (DNA, RNA, saccharides or proteins. The framework is organized into three modules, all accessible from one single binary program. The modules let the user to 1 define brand new polymer chemistries, 2 perform quick mass calculations using a desktop calculator paradigm, 3 graphically edit polymer sequences and perform (bio-chemical/mass spectrometric simulations. Any aspect of the mass calculations, polymer chemistry reactions or graphical polymer sequence editing is configurable. Conclusion The scientist who uses mass spectrometry to characterize (bio-polymeric analytes of different chemistries is provided with a single software framework for his data prediction/analysis needs, whatever the polymer chemistry being involved.

  17. Analytical Chemistry Division annual progress report for period ending December 31, 1979

    International Nuclear Information System (INIS)

    Shults, W.D.; Lyon, W.S.

    1980-05-01

    The progress is reported in the following sections: analytical methodology, mass and emission spectrometry, technical support, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance

  18. Microfluidics and nanotechnology for analytical instrumentation – new kids on the block ?

    Czech Academy of Sciences Publication Activity Database

    Foret, František

    2006-01-01

    Roč. 27, č. 1 (2006), s. 6-7 ISSN 1132-1369 R&D Projects: GA ČR(CZ) GA203/06/1685 Institutional research plan: CEZ:AV0Z40310501 Keywords : microfluidics * nanotechnology Subject RIV: CB - Analytical Chemistry, Separation

  19. Analytical Chemistry Division annual progress report for period ending December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Shults, W.D.; Lyon, W.S. (ed.)

    1980-05-01

    The progress is reported in the following sections: analytical methodology, mass and emission spectrometry, technical support, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance. (DLC)

  20. Effect of Virtual Analytical Chemistry Laboratory on Enhancing Student Research Skills and Practices

    Science.gov (United States)

    Bortnik, Boris; Stozhko, Natalia; Pervukhina, Irina; Tchernysheva, Albina; Belysheva, Galina

    2017-01-01

    This article aims to determine the effect of a virtual chemistry laboratory on university student achievement. The article describes a model of a laboratory course that includes a virtual component. This virtual component is viewed as a tool of student pre-lab autonomous learning. It presents electronic resources designed for a virtual laboratory…

  1. Valid analytical performance specifications for combined analytical bias and imprecision for the use of common reference intervals.

    Science.gov (United States)

    Hyltoft Petersen, Per; Lund, Flemming; Fraser, Callum G; Sandberg, Sverre; Sölétormos, György

    2018-01-01

    Background Many clinical decisions are based on comparison of patient results with reference intervals. Therefore, an estimation of the analytical performance specifications for the quality that would be required to allow sharing common reference intervals is needed. The International Federation of Clinical Chemistry (IFCC) recommended a minimum of 120 reference individuals to establish reference intervals. This number implies a certain level of quality, which could then be used for defining analytical performance specifications as the maximum combination of analytical bias and imprecision required for sharing common reference intervals, the aim of this investigation. Methods Two methods were investigated for defining the maximum combination of analytical bias and imprecision that would give the same quality of common reference intervals as the IFCC recommendation. Method 1 is based on a formula for the combination of analytical bias and imprecision and Method 2 is based on the Microsoft Excel formula NORMINV including the fractional probability of reference individuals outside each limit and the Gaussian variables of mean and standard deviation. The combinations of normalized bias and imprecision are illustrated for both methods. The formulae are identical for Gaussian and log-Gaussian distributions. Results Method 2 gives the correct results with a constant percentage of 4.4% for all combinations of bias and imprecision. Conclusion The Microsoft Excel formula NORMINV is useful for the estimation of analytical performance specifications for both Gaussian and log-Gaussian distributions of reference intervals.

  2. Nitrogen Compounds in Radiation Chemistry

    International Nuclear Information System (INIS)

    Sims, H.E.; Dey, G.R.; Vaudey, C.E.; Peaucelle, C.; Boucher, J.L.; Toulhoat, N.; Bererd, N.; Koppenol, W.H.; Janata, E.; Dauvois, V.; Durand, D.; Legand, S.; Roujou, J.L.; Doizi, D.; Dannoux, A.; Lamouroux, C.

    2009-01-01

    Water radiolysis in presence of N 2 is probably the topic the most controversy in the field of water radiolysis. It still exists a strong discrepancy between the different reports of ammonia formation by water radiolysis in presence of N 2 and moreover in absence of oxygen there is no agreement on the formation or not of nitrogen oxide like NO 2 - and NO 3 -. These discrepancies come from multiple sources: - the complexity of the reaction mechanisms where nitrogen is involved - the experimental difficulties - and, the irradiation conditions. The aim of the workshop is to capitalize the knowledge needed to go further in simulations and understanding the problems caused (or not) by the presence of nitrogen / water in the environment of radioactive materials. Implications are evident in terms of corrosion, understanding of biological systems and atmospheric chemistry under radiation. Topics covered include experimental and theoretical approaches, application and fundamental researches: - Nitrate and Ammonia in radiation chemistry in nuclear cycle; - NOx in biological systems and atmospheric chemistry; - Formation of Nitrogen compounds in Nuclear installations; - Nitrogen in future power plant projects (Gen4, ITER...) and large particle accelerators. This document gathers the transparencies available for 7 of the presentations given at this workshop. These are: - H.E SIMS: 'Radiation Chemistry of Nitrogen Compounds in Nuclear Power Plant'; - G.R. DEY: 'Nitrogen Compounds Formation in the Radiolysis of Aqueous Solutions'; - C.E. VAUDEY et al.: 'Radiolytic corrosion of nuclear graphite studied with the dedicated gas irradiation cell of IPNL'; - J.L. BOUCHER: 'Roles and biosynthesis of NO in eukaryotes and prokaryotes'; - W.H. KOPPENOL: 'Chemistry of NOx'; - E. JANATA: 'Yield of OH in N 2 O saturated aqueous solution'; - V. DAUVOIS: 'Analytical strategy for the study of radiolysis gases'

  3. Utilizations of intense pulsed neutron source in radiochemistry and radiation chemistry

    International Nuclear Information System (INIS)

    Shiokawa, Takanobu; Yoshihara, Kenji; Kaji, Harumi; Kusaka, Yuzuru; Tabata, Yoneho.

    1975-01-01

    Intense pulsed neutron sources is expected to supply more useful and fundamental informations in radiochemistry and radiation chemistry. Short-lived intermediate species may be detected and the mechanisms of radiation induced reactions will be elucidated more precisely. Analytical application of pulsed neutrons is also very useful. (auth.)

  4. Analytical Services Fiscal Year 1996 Multi-year Program Plan Fiscal Year Work Plan WBS 1.5.1, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document contains the Fiscal Year 1996 Work Plan and Multi-Year Program Plan for the Analytical Services Program at the Hanford Reservation in Richland, Washington. The Analytical Services Program provides vital support to the Hanford Site mission and provides technically sound, defensible, cost effective, high quality analytical chemistry data for the site programs. This report describes the goals and strategies for continuance of the Analytical Services Program through fiscal year 1996 and beyond.

  5. Analytical Services Fiscal Year 1996 Multi-year Program Plan Fiscal Year Work Plan WBS 1.5.1, Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    This document contains the Fiscal Year 1996 Work Plan and Multi-Year Program Plan for the Analytical Services Program at the Hanford Reservation in Richland, Washington. The Analytical Services Program provides vital support to the Hanford Site mission and provides technically sound, defensible, cost effective, high quality analytical chemistry data for the site programs. This report describes the goals and strategies for continuance of the Analytical Services Program through fiscal year 1996 and beyond

  6. EC4 European Syllabus for Post-Graduate Training in Clinical Chemistry and Laboratory Medicine: version 3 - 2005.

    Science.gov (United States)

    Zerah, Simone; McMurray, Janet; Bousquet, Bernard; Baum, Hannsjorg; Beastall, Graham H; Blaton, Vic; Cals, Marie-Josèphe; Duchassaing, Danielle; Gaudeau-Toussaint, Marie-Françoise; Harmoinen, Aimo; Hoffmann, Hans; Jansen, Rob T; Kenny, Desmond; Kohse, Klaus P; Köller, Ursula; Gobert, Jean-Gérard; Linget, Christine; Lund, Erik; Nubile, Giuseppe; Opp, Matthias; Pazzagli, Mario; Pinon, Georges; Queralto, José M; Reguengo, Henrique; Rizos, Demetrios; Szekeres, Thomas; Vidaud, Michel; Wallinder, Hans

    2006-01-01

    The EC4 Syllabus for Postgraduate Training is the basis for the European Register of Specialists in Clinical Chemistry and Laboratory Medicine. The syllabus: Indicates the level of requirements in postgraduate training to harmonise the postgraduate education in the European Union (EU); Indicates the level of content of national training programmes to obtain adequate knowledge and experience; Is approved by all EU societies for clinical chemistry and laboratory medicine. The syllabus is not primarily meant to be a training guide, but on the basis of the overview given (common minimal programme), national societies should formulate programmes that indicate where knowledge and experience is needed. The main points of this programme are: Indicates the level of requirements in postgraduate training to harmonise the postgraduate education in the European Union (EU); Indicates the level of content of national training programmes to obtain adequate knowledge and experience; Is approved by all EU societies for clinical chemistry and laboratory medicine. Knowledge in biochemistry, haematology, immunology, etc.; Pre-analytical conditions; Evaluation of results; Interpretations (post-analytical phase); Laboratory management; and Quality insurance management. The aim of this version of the syllabus is to be in accordance with the Directive of Professional Qualifications published on 30 September 2005. To prepare the common platforms planned in this directive, the disciplines are divided into four categories: Indicates the level of requirements in postgraduate training to harmonise the postgraduate education in the European Union (EU); Indicates the level of content of national training programmes to obtain adequate knowledge and experience; Is approved by all EU societies for clinical chemistry and laboratory medicine. Knowledge in biochemistry, haematology, immunology, etc.; Pre-analytical conditions; Evaluation of results; Interpretations (post-analytical phase); Laboratory

  7. State-of-the-Art of (Bio)Chemical Sensor Developments in Analytical Spanish Groups

    Science.gov (United States)

    Plata, María Reyes; Contento, Ana María; Ríos, Angel

    2010-01-01

    (Bio)chemical sensors are one of the most exciting fields in analytical chemistry today. The development of these analytical devices simplifies and miniaturizes the whole analytical process. Although the initial expectation of the massive incorporation of sensors in routine analytical work has been truncated to some extent, in many other cases analytical methods based on sensor technology have solved important analytical problems. Many research groups are working in this field world-wide, reporting interesting results so far. Modestly, Spanish researchers have contributed to these recent developments. In this review, we summarize the more representative achievements carried out for these groups. They cover a wide variety of sensors, including optical, electrochemical, piezoelectric or electro-mechanical devices, used for laboratory or field analyses. The capabilities to be used in different applied areas are also critically discussed. PMID:22319260

  8. Implementation of picoSpin Benchtop NMR Instruments into Organic Chemistry Teaching Laboratories through Spectral Analysis of Fischer Esterification Products

    Science.gov (United States)

    Yearty, Kasey L.; Sharp, Joseph T.; Meehan, Emma K.; Wallace, Doyle R.; Jackson, Douglas M.; Morrison, Richard W.

    2017-01-01

    [Superscript 1]H NMR analysis is an important analytical technique presented in introductory organic chemistry courses. NMR instrument access is limited for undergraduate organic chemistry students due to the size of the instrument, price of NMR solvents, and the maintenance level required for instrument upkeep. The University of Georgia Chemistry…

  9. Analytical Chemistry Division annual progress report for period ending November 30, 1975

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1976-02-01

    Separate abstracts were prepared for each of the six sections on analytical research and development. Service analyses, activities related to education, supplementary professional activities, and means of presentation of research results are also discussed

  10. Chemical clocks, oscillations, and other temporal effects in analytical chemistry: oddity or viable approach?

    Science.gov (United States)

    Prabhu, Gurpur Rakesh D; Witek, Henryk A; Urban, Pawel L

    2018-05-31

    Most analytical methods are based on "analogue" inputs from sensors of light, electric potentials, or currents. The signals obtained by such sensors are processed using certain calibration functions to determine concentrations of the target analytes. The signal readouts are normally done after an optimised and fixed time period, during which an assay mixture is incubated. This minireview covers another-and somewhat unusual-analytical strategy, which relies on the measurement of time interval between the occurrences of two distinguishable states in the assay reaction. These states manifest themselves via abrupt changes in the properties of the assay mixture (e.g. change of colour, appearance or disappearance of luminescence, change in pH, variations in optical activity or mechanical properties). In some cases, a correlation between the time of appearance/disappearance of a given property and the analyte concentration can be also observed. An example of an assay based on time measurement is an oscillating reaction, in which the period of oscillations is linked to the concentration of the target analyte. A number of chemo-chronometric assays, relying on the existing (bio)transformations or artificially designed reactions, were disclosed in the past few years. They are very attractive from the fundamental point of view but-so far-only few of them have be validated and used to address real-world problems. Then, can chemo-chronometric assays become a practical tool for chemical analysis? Is there a need for further development of such assays? We are aiming to answer these questions.

  11. Analytical Chemistry Division annual progress report for period ending November 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (comp. and ed.)

    1976-02-01

    Separate abstracts were prepared for each of the six sections on analytical research and development. Service analyses, activities related to education, supplementary professional activities, and means of presentation of research results are also discussed. (JGB)

  12. Bioinformatics Symposium of the Analytical Division of the American Chemical Society Meeting. Final Technical Report from 03/15/2000 to 03/14/2001 [sample pages of agenda, abstracts, index

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Robert T.

    2000-03-28

    Sparked by the Human Genome Project, biological and biomedical research has become an information science. Information tools are now being generated for proteins, cell modeling, and genomics. The opportunity for analytical chemistry in this new environment is profound. New analytical techniques that can provide the information on genes, SNPs, proteins, protein modifications, cells, and cell chemistry are required. In this symposium, we brought together both informatics experts and leading analytical chemists to discuss this interface. Over 200 people attended this highly successful symposium.

  13. Nuclear Forensics and Radiochemistry: Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-17

    The chemical behavior of radioactive elements can differ from conventional wisdom because the number of atoms can be unusually small. Kinetic effects and unusual oxidation states are phenomena that make radiochemistry different from conventional analytic chemistry. The procedures developed at Los Alamos are designed to minimize these effects and provide reproducible results over a wide range of sample types. The analysis of nuclear debris has the additional complication of chemical fractionation and the incorporation of environmental contaminants. These are dealt with through the use of three component isotope ratios and the use of appropriate end members.

  14. Analytical Characterisation of Nanoscale Zero-Valent Iron: A ...

    Science.gov (United States)

    Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their tendency to aggregate. Both the mobility and reactivity of nZVI mainly depends on properties such as particle size, surface chemistry and bulk composition. In order to ensure efficient remediation, it is crucial to accurately assess and understand the implications of these properties before deploying these materials into contaminated environments. Many analytical techniques are now available to determine these parameters and this paper provides a critical review of their usefulness and limitations for nZVI characterisation. These analytical techniques include microscopy and light scattering techniques for the determination of particle size, size distribution and aggregation state, and X-ray techniques for the characterisation of surface chemistry and bulk composition. Example characterisation data derived from commercial nZVI materials is used to further illustrate method strengths and limitations. Finally, some important challenges with respect to the characterisation of nZVI in groundwater samples are discussed. In recent years, manufactured nanoparticles (MNPs) have attracted increasing interest for their potential applications in the treatment of contaminated soil and water. In compar

  15. Analytical Chemistry Division annual progress report for period ending December 31, 1983

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1984-05-01

    Progress and activities are reported in: analytical methodology, mass and emission spectrometry, radioactive materials analysis, bio/organic analysis, general and environmental analysis, and quality assurance and safety. Supplementary activities are also discussed, and a bibliography of publications is also included

  16. Analytical Chemistry Division annual progress report for period ending December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1984-05-01

    Progress and activities are reported in: analytical methodology, mass and emission spectrometry, radioactive materials analysis, bio/organic analysis, general and environmental analysis, and quality assurance and safety. Supplementary activities are also discussed, and a bibliography of publications is also included. (DLC)

  17. Analytical laboratory and mobile sampling platform

    International Nuclear Information System (INIS)

    Stetzenbach, K.; Smiecinski, A.

    1996-01-01

    This is the final report for the Analytical Laboratory and Mobile Sampling Platform project. This report contains only major findings and conclusions resulting from this project. Detailed reports of all activities performed for this project were provided to the Project Office every quarter since the beginning of the project. This report contains water chemistry data for samples collected in the Nevada section of Death Valley National Park (Triangle Area Springs), Nevada Test Site springs, Pahranagat Valley springs, Nevada Test Site wells, Spring Mountain springs and Crater Flat and Amargosa Valley wells

  18. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  19. Can Unmanned Aerial Systems (Drones Be Used for the Routine Transport of Chemistry, Hematology, and Coagulation Laboratory Specimens?

    Directory of Open Access Journals (Sweden)

    Timothy K Amukele

    Full Text Available Unmanned Aerial Systems (UAS or drones could potentially be used for the routine transport of small goods such as diagnostic clinical laboratory specimens. To the best of our knowledge, there is no published study of the impact of UAS transportation on laboratory tests.Three paired samples were obtained from each one of 56 adult volunteers in a single phlebotomy event (336 samples total: two tubes each for chemistry, hematology, and coagulation testing respectively. 168 samples were driven to the flight field and held stationary. The other 168 samples were flown in the UAS for a range of times, from 6 to 38 minutes. After the flight, 33 of the most common chemistry, hematology, and coagulation tests were performed. Statistical methods as well as performance criteria from four distinct clinical, academic, and regulatory bodies were used to evaluate the results.Results from flown and stationary sample pairs were similar for all 33 analytes. Bias and intercepts were <10% and <13% respectively for all analytes. Bland-Altman comparisons showed a mean difference of 3.2% for Glucose and <1% for other analytes. Only bicarbonate did not meet the strictest (Royal College of Pathologists of Australasia Quality Assurance Program performance criteria. This was due to poor precision rather than bias. There were no systematic differences between laboratory-derived (analytic CV's and the CV's of our flown versus terrestrial sample pairs however CV's from the sample pairs tended to be slightly higher than analytic CV's. The overall concordance, based on clinical stratification (normal versus abnormal, was 97%. Length of flight had no impact on the results.Transportation of laboratory specimens via small UASs does not affect the accuracy of routine chemistry, hematology, and coagulation tests results from selfsame samples. However it results in slightly poorer precision for some analytes.

  20. Can Unmanned Aerial Systems (Drones) Be Used for the Routine Transport of Chemistry, Hematology, and Coagulation Laboratory Specimens?

    Science.gov (United States)

    Amukele, Timothy K; Sokoll, Lori J; Pepper, Daniel; Howard, Dana P; Street, Jeff

    2015-01-01

    Unmanned Aerial Systems (UAS or drones) could potentially be used for the routine transport of small goods such as diagnostic clinical laboratory specimens. To the best of our knowledge, there is no published study of the impact of UAS transportation on laboratory tests. Three paired samples were obtained from each one of 56 adult volunteers in a single phlebotomy event (336 samples total): two tubes each for chemistry, hematology, and coagulation testing respectively. 168 samples were driven to the flight field and held stationary. The other 168 samples were flown in the UAS for a range of times, from 6 to 38 minutes. After the flight, 33 of the most common chemistry, hematology, and coagulation tests were performed. Statistical methods as well as performance criteria from four distinct clinical, academic, and regulatory bodies were used to evaluate the results. Results from flown and stationary sample pairs were similar for all 33 analytes. Bias and intercepts were <10% and <13% respectively for all analytes. Bland-Altman comparisons showed a mean difference of 3.2% for Glucose and <1% for other analytes. Only bicarbonate did not meet the strictest (Royal College of Pathologists of Australasia Quality Assurance Program) performance criteria. This was due to poor precision rather than bias. There were no systematic differences between laboratory-derived (analytic) CV's and the CV's of our flown versus terrestrial sample pairs however CV's from the sample pairs tended to be slightly higher than analytic CV's. The overall concordance, based on clinical stratification (normal versus abnormal), was 97%. Length of flight had no impact on the results. Transportation of laboratory specimens via small UASs does not affect the accuracy of routine chemistry, hematology, and coagulation tests results from selfsame samples. However it results in slightly poorer precision for some analytes.

  1. Radioanalytical chemistry in the USA

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1978-01-01

    The ''secret'' war-time laboratories of Oak Ridge, Hanford, Los Alamos, and Chicago were the predecessors of the AEC laboratories - now, of course, part of the ERDA complex. The first decade of AEC control was a period in which chemistry was still the primary component of analytical radiochemistry. Two accomplishments of the AEC laboratories that exemplify the importance of the chemist were the establishment of the radioisotope program and the development of neutron activation analysis as an analytical tool. The decade of the 60's was marked by great improvement in instrumental techniques, introduction of neutron generators as laboratory tools, the use of non-neutron sources in activation analysis, the application of nuclear techniques to problems of reactor development, and the opening up of a new research frontier: the actinide elements. Concerns with environment - and lately energy - have put the analytical radiochemist in the ERDA laboratories back at the bench. The demands for lower levels of emitted radioactivity from reactors, the problem of Pu and transuranics in the environment, worries about fuel assay and loss of nuclear materials are some of the problems that have pushed the chemist back to his chemicals and away from the computer. In the age of the computer, the separations chemist is once again coming into his own. (T.G.)

  2. Effect of the Level of Inquiry on Student Interactions in Chemistry Laboratories

    Science.gov (United States)

    Xu, Haozhi; Talanquer, Vicente

    2013-01-01

    The central goal of our exploratory study was to investigate differences in college chemistry students' interactions during lab experiments with different levels of inquiry. This analysis was approached from three major analytic dimensions: (i) functional analysis; (ii) cognitive processing; and (iii) social processing. According to our results,…

  3. Robotic thin layer chromatography instrument for synthetic chemistry

    International Nuclear Information System (INIS)

    Corkan, L.A.; Haynes, E.; Kline, S.; Lindsey, J.S.

    1991-01-01

    We have constructed a second generation instrument for performing automated thin layer chromatography (TLC), The TLC instrument Consists of four dedicated stations for (1) plate dispensing, (2) sample application, (3) plate development, and (4) densitometry. A robot is used to move TLC plates among stations. The TLC instrument functions either as a stand-alone unit or as one analytical module in a robotic workstation for synthetic chemistry. An integrated hardware and software architecture enables automatic TLC analysis of samples produced concurrently from synthetic reactions in progress on the workstation. The combination of fixed automation and robotics gives a throughput of 12 TLC samples per hour. From these results a blueprint has emerged for an advanced automated TLC instrument with far greater throughput and analytical capabilities

  4. Interlaboratory analytical performance studies; a way to estimate measurement uncertainty

    Directory of Open Access Journals (Sweden)

    El¿bieta £ysiak-Pastuszak

    2004-09-01

    Full Text Available Comparability of data collected within collaborative programmes became the key challenge of analytical chemistry in the 1990s, including monitoring of the marine environment. To obtain relevant and reliable data, the analytical process has to proceed under a well-established Quality Assurance (QA system with external analytical proficiency tests as an inherent component. A programme called Quality Assurance in Marine Monitoring in Europe (QUASIMEME was established in 1993 and evolved over the years as the major provider of QA proficiency tests for nutrients, trace metals and chlorinated organic compounds in marine environment studies. The article presents an evaluation of results obtained in QUASIMEME Laboratory Performance Studies by the monitoring laboratory of the Institute of Meteorology and Water Management (Gdynia, Poland in exercises on nutrient determination in seawater. The measurement uncertainty estimated from routine internal quality control measurements and from results of analytical performance exercises is also presented in the paper.

  5. Analytical Chemistry Division annual progress report for period ending December 31, 1984

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1985-04-01

    Progress reports are presented for the following sections: analytical methodology; mass and emission spectroscopy; radioactive materials analysis; bio/organic analysis; and general and environmental analysis; quality assurance, safety, and tabulation analyses. In addition a list of publications and oral presentations and supplemental activities are included

  6. Analytical Chemistry Division annual progress report for period ending December 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1985-04-01

    Progress reports are presented for the following sections: analytical methodology; mass and emission spectroscopy; radioactive materials analysis; bio/organic analysis; and general and environmental analysis; quality assurance, safety, and tabulation analyses. In addition a list of publications and oral presentations and supplemental activities are included.

  7. Radiation chemistry

    International Nuclear Information System (INIS)

    Rodgers, F.; Rodgers, M.A.

    1987-01-01

    The contents of this book include: Interaction of ionizing radiation with matter; Primary products in radiation chemistry; Theoretical aspects of radiation chemistry; Theories of the solvated electron; The radiation chemistry of gases; Radiation chemistry of colloidal aggregates; Radiation chemistry of the alkali halides; Radiation chemistry of polymers; Radiation chemistry of biopolymers; Radiation processing and sterilization; and Compound index

  8. Sampling and analyte enrichment strategies for ambient mass spectrometry.

    Science.gov (United States)

    Li, Xianjiang; Ma, Wen; Li, Hongmei; Ai, Wanpeng; Bai, Yu; Liu, Huwei

    2018-01-01

    Ambient mass spectrometry provides great convenience for fast screening, and has showed promising potential in analytical chemistry. However, its relatively low sensitivity seriously restricts its practical utility in trace compound analysis. In this review, we summarize the sampling and analyte enrichment strategies coupled with nine modes of representative ambient mass spectrometry (desorption electrospray ionization, paper vhspray ionization, wooden-tip spray ionization, probe electrospray ionization, coated blade spray ionization, direct analysis in real time, desorption corona beam ionization, dielectric barrier discharge ionization, and atmospheric-pressure solids analysis probe) that have dramatically increased the detection sensitivity. We believe that these advances will promote routine use of ambient mass spectrometry. Graphical abstract Scheme of sampling stretagies for ambient mass spectrometry.

  9. Research needs and opportunities in radiation chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Barbara, Paul F

    1998-04-19

    heterogeneous systems. These various goals necessitate the development and application of complementary programs of experiment and theory, and will involve the use of nonconventional radiation sources and the study of novel homogeneous and heterogeneous chemical systems. There is also a need to upgrade other types of instrumentation used in radiation chemistry in the national laboratories, including high field electron paramagnetic resonance, and modern analytical tools. The development and enhancement of these various tools will allow for a much wider use of the national radiation chemistry facilities.

  10. Analytical Chemistry Division annual progress report for period ending November 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1977-02-01

    Activities for the year in the areas of advanced methodology, mass and emission spectroscopy, analytical services for reactor projects and environmental and radiochemical analyses, bio-organic analysis, and quality assurance and safety are reviewed. Presentations of research results in publications, reports, and oral presentations are tabulated. (JSR)

  11. Analytical Chemistry Division annual progress report for period ending November 30, 1976

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1977-02-01

    Activities for the year in the areas of advanced methodology, mass and emission spectroscopy, analytical services for reactor projects and environmental and radiochemical analyses, bio-organic analysis, and quality assurance and safety are reviewed. Presentations of research results in publications, reports, and oral presentations are tabulated

  12. Using Photocatalytic Oxidation and Analytic Techniques to Remediate Lab Wastewater Containing Methanol

    Science.gov (United States)

    Xiong, Qing; Luo, Mingliang; Bao, Xiaoming; Deng, Yurong; Qin, Song; Pu, Xuemei

    2018-01-01

    This experiment is dedicated to second-year and above undergraduates who are in their experimental session of the analytical chemistry course. Grouped students are required to use a TiO[subscript 2] photocatalytic oxidation process to treat the methanol-containing wastewater that resulted from their previous HPLC experiments. Students learn to…

  13. Comparison of select hematology and serum chemistry analtyes between wild-caught and aquarium-housed lake sturgeon (Acipenser fulvescens)

    Science.gov (United States)

    DiVincenti, Louis; Priest, Heather; Walker, Kyle J.; Wyatt, Jeffrey D.; Dittman, Dawn

    2013-01-01

    Hematology and serum chemistry analytes were compared between wild-caught and aquarium-housed lake sturgeon (Acipenser fulvescens) to potentially improve understanding of medical issues in lake sturgeon. Blood samples were taken from 30 lake sturgeon exhibited in 11 institutions in the United States and from 23 experimentally stocked lake sturgeon caught in gill nets in the lower Genesee River in Rochester, New York, USA. For hematology, only segmented neutrophil count was significantly different, with wild-caught fish having a higher number of circulating neutrophils. For clinical chemistry analytes, chloride, uric acid, calcium, phosphate, glucose, aspartate aminotransferase, triglycerides, and creatine kinase were significantly different between the two cohorts. These differences are likely not clinically significant and are attributable to handling stress, variability in environmental parameters, or differences in nutritional status. This is the first report of hematology and serum chemistry values in aquarium-housed lake sturgeon and provides useful reference intervals for clinicians.

  14. Performance specifications and six sigma theory: Clinical chemistry and industry compared.

    Science.gov (United States)

    Oosterhuis, W P; Severens, M J M J

    2018-04-11

    Analytical performance specifications are crucial in test development and quality control. Although consensus has been reached on the use of biological variation to derive these specifications, no consensus has been reached which model should be preferred. The Six Sigma concept is widely applied in industry for quality specifications of products and can well be compared with Six Sigma models in clinical chemistry. However, the models for measurement specifications differ considerably between both fields: where the sigma metric is used in clinical chemistry, in industry the Number of Distinct Categories is used instead. In this study the models in both fields are compared and discussed. Copyright © 2018. Published by Elsevier Inc.

  15. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  16. Statistical Data Analyses of Trace Chemical, Biochemical, and Physical Analytical Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Udey, Ruth Norma [Michigan State Univ., East Lansing, MI (United States)

    2013-01-01

    Analytical and bioanalytical chemistry measurement results are most meaningful when interpreted using rigorous statistical treatments of the data. The same data set may provide many dimensions of information depending on the questions asked through the applied statistical methods. Three principal projects illustrated the wealth of information gained through the application of statistical data analyses to diverse problems.

  17. Mathematics, chemistry and science connection as a basis of scientific thinking

    Directory of Open Access Journals (Sweden)

    Ivan Matúš

    2017-01-01

    Full Text Available Scientific thinking is a basic skill that can support problemsolving of interdisciplinary tasks in science. Our research is leading us to creation of materials and resources that will support this interdisciplinary approach to education. The research includes interviews with high-school teachers of mathematics, chemistry and science, item analysis of extensive testing of knowledge and skills of high school students in chemistry in Czech Republic, follow-up survey of students’ problem-solving processes in tasks requiring the use of combined knowledge of mathematics and chemistry and the creation of educational materials. The article contains a few examples of proposed educational materials. The effectiveness of created materials is verified in high-schools. Students have got the most difficulties applying algebraic calculations in chemistry, using proportions, solving equations, expressing the unknown, the spatial imagination, geometry and stereometry and the resulting arrangement of atoms and shapes of molecules, chemical analytical tasks with logical thinking, interpretation of information from graphs and tables, plotting measured values into graphs and statistical evaluation.

  18. Using a Collaborative Critiquing Technique to Develop Chemistry Students' Technical Writing Skills

    Science.gov (United States)

    Carr, Jeremy M.

    2013-01-01

    The technique, termed "collaborative critiquing", was developed to teach fundamental technical writing skills to analytical chemistry students for the preparation of laboratory reports. This exercise, which can be completed prior to peer-review activities, is novel, highly interactive, and allows students to take responsibility for their…

  19. A Multidisciplinary Science Summer Camp for Students with Emphasis on Environmental and Analytical Chemistry

    Science.gov (United States)

    Schwarz, Gunnar; Frenzel, Wolfgang; Richter, Wolfgang M.; Ta¨uscher, Lothar; Kubsch, Georg

    2016-01-01

    This paper presents the course of events of a five-day summer camp on environmental chemistry with high emphasis on chemical analysis. The annual camp was optional and open for students of all disciplines and levels. The duration of the summer camp was five and a half days in the Feldberg Lake District in northeast Germany (federal state of…

  20. Data Acquisition Programming (LabVIEW): An Aid to Teaching Instrumental Analytical Chemistry.

    Science.gov (United States)

    Gostowski, Rudy

    A course was developed at Austin Peay State University (Tennessee) which offered an opportunity for hands-on experience with the essential components of modern analytical instruments. The course aimed to provide college students with the skills necessary to construct a simple model instrument, including the design and fabrication of electronic…

  1. Analytical Chemistry Division. Annual progress report for period ending December 31, 1980

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1981-05-01

    This report is divided into: analytical methodology; mass and emission spectrometry; technical support; bio/organic analysis; nuclear and radiochemical analysis; quality assurance, safety, and tabulation of analyses; supplementary activities; and presentation of research results. Separate abstracts were prepared for the technical support, bio/organic analysis, and nuclear and radiochemical analysis

  2. Analytical Chemistry Division. Annual progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1981-05-01

    This report is divided into: analytical methodology; mass and emission spectrometry; technical support; bio/organic analysis; nuclear and radiochemical analysis; quality assurance, safety, and tabulation of analyses; supplementary activities; and presentation of research results. Separate abstracts were prepared for the technical support, bio/organic analysis, and nuclear and radiochemical analysis. (DLC)

  3. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    International Nuclear Information System (INIS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-01-01

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performing microcanonical excited state molecular dynamics with p-nitroaniline

  4. Teaching and learning distillation in chemistry laboratory courses

    Science.gov (United States)

    van Keulen, Hanno; Mulder, Theo H. M.; Goedhart, Martin J.; Verdonk, Adri H.

    This study investigates the problems chemistry majors have with learning distillation in traditional chemistry laboratory courses. Using an interpretive cyclic research design, we collected and interpreted data, mainly in the form of observation notes and transcriptions of the discourse that takes place during laboratory courses. It was found that students experience numerous problems; these are described and interpreted. We summarize students' problems in four categories: (a) students use an independent component conception; (b) they have insufficient understanding of the properties of vapor; (c) they regard distillation from a physical point of view; and (d) they do not have a practical understanding of thermodynamics. The main origin of these problems was found to lie with the traditional curriculum structure. Lecture courses and textbooks treat distillation in a generalized and decontextualized way, whereas decisions in actual distillations are always based on contextual features. It was found that textbooks and teachers often do not discriminate carefully and explicitly among five different contexts for distillation: organic synthesis, chemical analysis, analytical chemistry, physical chemistry, and preparation of products. Students take the generalized concepts at face value and apply them to all distillations regardless of context. They cannot interpret their observations or make reasoned decisions based on the theoretical framework of a specific context.Received: 2 May 1994; Revised: 14 December 1994;

  5. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  6. Identification of Synthetic Polymers and Copolymers by Analytical Pyrolysis-Gas Chromatography/Mass Spectrometry

    Science.gov (United States)

    Kusch, Peter

    2014-01-01

    An experiment for the identification of synthetic polymers and copolymers by analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was developed and performed in the polymer analysis courses for third-year undergraduate students of chemistry with material sciences, and for first-year postgraduate students of polymer sciences. In…

  7. Closure of an analytical chemistry glove box in alpha laboratory

    International Nuclear Information System (INIS)

    Adelfang, P.; Aparicio, G.; Cassaniti, P.

    1990-01-01

    The works with plutonium are performed in gloves box, operated below atmospheric pressure, to protect the experimenters from this alpha-active material. After 12 years of continual processes, it was necessary the decommissioning of the chemistry glove box in our alpha-laboratory. A great deal of our attention was devoted to the working techniques because of extreme care needed to avoid activity release. The decommissioning includes the following main operations: a) Planning and documentation for the regulatory authority. b) Internal decontamination with surface cleaning and chelating agents. c) Measurement of the remainder internal radioactivity. d) Sealing of the glove ports and nozzles. e) Disconnection of the glove box from the exhaust duct. f) Design and construction of a container for the glove box. g) Transportation of the glove box from alpha-laboratory, to a transitory storage until its final disposal. The above mentioned operations are described in this paper including too: data of personal doses during the operations, characteristics and volumes of radioactive wastes and a description of the instrument used for the measurement of inside glove box activity. (Author) [es

  8. ChemAND - a system health monitor for plant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Dundar, Y.; Bergeron, M.; Laporte, R. [Hydro-Quebec, Groupe Chimie, Centrale Nucleaire Gentilly-2, Gentilly, Quebec (Canada)

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  9. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchell, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-01-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display-it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  10. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  11. Analytical quality control [An IAEA service

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-07-01

    In analytical chemistry the determination of small or trace amounts of elements or compounds in different types of materials is increasingly important. The results of these findings have a great influence on different fields of science, and on human life. Their reliability, precision and accuracy must, therefore, be checked by analytical quality control measures. The International Atomic Energy Agency (IAEA) set up an Analytical Quality Control Service (AQCS) in 1962 to assist laboratories in Member States in the assessment of their reliability in radionuclide analysis, and in other branches of applied analysis in which radionuclides may be used as analytical implements. For practical reasons, most analytical laboratories are not in a position to check accuracy internally, as frequently resources are available for only one method; standardized sample material, particularly in the case of trace analysis, is not available and can be prepared by the institutes themselves only in exceptional cases; intercomparisons are organized rather seldom and many important types of analysis are so far not covered. AQCS assistance is provided by the shipment to laboratories of standard reference materials containing known quantities of different trace elements or radionuclides, as well as by the organization of analytical intercomparisons in which the participating laboratories are provided with aliquots of homogenized material of unknown composition for analysis. In the latter case the laboratories report their data to the Agency's laboratory, which calculates averages and distributions of results and advises each laboratory of its performance relative to all the others. Throughout the years several dozens of intercomparisons have been organized and many thousands of samples provided. The service offered, as a consequence, has grown enormously. The programme for 1973 and 1974, which is currently being distributed to Member States, will contain 31 different types of materials.

  12. Tc Chemistry in HLW: Role of Organic Complexants

    International Nuclear Information System (INIS)

    Hess, Nancy S.; Conradsen, Steven D.

    2003-01-01

    Tc complexation with organic compounds in tank waste plays a significant role in the redox chemistry of Tc and the partitioning of Tc between the supernatant and sludge components in waste tanks. These processes need to be understood so that strategies to effectively remove Tc from high-level nuclear waste prior to waste immobilization can be developed and so that long-term consequences of Tc remaining in residual waste after sludge removal can be evaluated. Only limited data on the stability of Tc-organic complexes exists and even less thermodynamic data on which to develop predictive models of Tc chemical behavior is available. To meet these challenges we are conducting a research program to study to develop thermodynamic data on Tc-organic complexation over a wide range of chemical conditions. We will attempt to characterize Tc-speciation in actual tank waste using state-of-the-art analytical organic chemistry, separations, and speciation techniques to validate our model. On the basis of such studies we will develop credible model of Tc chemistry in HLW that will allow prediction of Tc speciation in tank waste and Tc behavior during waste pretreatment processing and in waste tank residuals

  13. The chemistry of the liquid alkali metals

    International Nuclear Information System (INIS)

    Addison, C.C.

    1984-01-01

    A study of liquid alkali metals. It encourages comparison with molecular solvents in chapter covering the nature and reactivity of dissolved species, solvation, solubility and electrical conductivity of solutions. It demonstrates lab techniques unique to liquid alkali metals. It discusses large-scale applications from storage batteries to sodium-cooled reactors and future fusion reactors, and associated technological problems. Contents: Some Basic Physical and Chemical Properties; Manipulation of the Liquids; The Chemistry of Purification Methods; Species Formed by Dissolved Elements; Solubilities and Analytical Methods; Alkali Metal Mixtures; Solvation in Liquid Metal; Reactions Between Liquid Alkali Metals and Water; Reactions of Nitrogen with Lithium and the Group II Metals in Liquid Sodium; The Formation, Dissociation and Stability of Heteronuclear Polyatomic Anions; Reactions of the Liquid Alkali Metals and Their Alloys with Simple Alipatic Hydrocarbons; Reactions of the Liquid Alkali Metals with Some Halogen Compounds; Hydrogen, Oxygen and Carbon Meters; Surface Chemistry and Wetting; Corrosion of Transition Metals by the Liquid Alkali Metals; Modern Applications of the Liquid Alkali Metals

  14. Hanford performance evaluation program for Hanford site analytical services

    International Nuclear Information System (INIS)

    Markel, L.P.

    1995-09-01

    The U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance, and Title 10 of the Code of Federal Regulations, Part 830.120, Quality Assurance Requirements, states that it is the responsibility of DOE contractors to ensure that ''quality is achieved and maintained by those who have been assigned the responsibility for performing the work.'' Hanford Analytical Services Quality Assurance Plan (HASQAP) is designed to meet the needs of the Richland Operations Office (RL) for maintaining a consistent level of quality for the analytical chemistry services provided by contractor and commmercial analytical laboratory operations. Therefore, services supporting Hanford environmental monitoring, environmental restoration, and waste management analytical services shall meet appropriate quality standards. This performance evaluation program will monitor the quality standards of all analytical laboratories supporting the Hanforad Site including on-site and off-site laboratories. The monitoring and evaluation of laboratory performance can be completed by the use of several tools. This program will discuss the tools that will be utilized for laboratory performance evaluations. Revision 0 will primarily focus on presently available programs using readily available performance evaluation materials provided by DOE, EPA or commercial sources. Discussion of project specific PE materials and evaluations will be described in section 9.0 and Appendix A

  15. Mendeleev-2013. VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials. Book of abstracts. Section 1. Nanochemistry and nanomaterials

    International Nuclear Information System (INIS)

    2013-01-01

    VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials was conducted on the Chemistry department of Saint-Petersburg University on April, 2-5, 2013. In the conference participants from 14 countries took part. There were five sections: Nanochemistry and nanomaterials, Analytic chemistry, Inorganic chemistry, Organic chemistry, Physical chemistry. In the collection (Section 1 - Nanochemistry and nanomaterials) there are the abstracts concerning the different methods of preparation of various inorganic and organic nanomaterials, their structure and use [ru

  16. Waste Tank Organic Safety Program: Analytical methods development. Progress report, FY 1994

    International Nuclear Information System (INIS)

    Campbell, J.A.; Clauss, S.A.; Grant, K.E.

    1994-09-01

    The objectives of this task are to develop and document extraction and analysis methods for organics in waste tanks, and to extend these methods to the analysis of actual core samples to support the Waste Tank organic Safety Program. This report documents progress at Pacific Northwest Laboratory (a) during FY 1994 on methods development, the analysis of waste from Tank 241-C-103 (Tank C-103) and T-111, and the transfer of documented, developed analytical methods to personnel in the Analytical Chemistry Laboratory (ACL) and 222-S laboratory. This report is intended as an annual report, not a completed work

  17. Evaluation of analytical performance based on partial order methodology.

    Science.gov (United States)

    Carlsen, Lars; Bruggemann, Rainer; Kenessova, Olga; Erzhigitov, Erkin

    2015-01-01

    Classical measurements of performances are typically based on linear scales. However, in analytical chemistry a simple scale may be not sufficient to analyze the analytical performance appropriately. Here partial order methodology can be helpful. Within the context described here, partial order analysis can be seen as an ordinal analysis of data matrices, especially to simplify the relative comparisons of objects due to their data profile (the ordered set of values an object have). Hence, partial order methodology offers a unique possibility to evaluate analytical performance. In the present data as, e.g., provided by the laboratories through interlaboratory comparisons or proficiency testings is used as an illustrative example. However, the presented scheme is likewise applicable for comparison of analytical methods or simply as a tool for optimization of an analytical method. The methodology can be applied without presumptions or pretreatment of the analytical data provided in order to evaluate the analytical performance taking into account all indicators simultaneously and thus elucidating a "distance" from the true value. In the present illustrative example it is assumed that the laboratories analyze a given sample several times and subsequently report the mean value, the standard deviation and the skewness, which simultaneously are used for the evaluation of the analytical performance. The analyses lead to information concerning (1) a partial ordering of the laboratories, subsequently, (2) a "distance" to the Reference laboratory and (3) a classification due to the concept of "peculiar points". Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Interference of ascorbic acid with chemical analytes.

    Science.gov (United States)

    Meng, Qing H; Irwin, William C; Fesser, Jennifer; Massey, K Lorne

    2005-11-01

    Ascorbic acid can interfere with methodologies involving redox reactions, while comprehensive studies on main chemistry analysers have not been reported. We therefore attempted to determine the interference of ascorbic acid with analytes on the Beckman Synchron LX20. Various concentrations of ascorbic acid were added to serum, and the serum analytes were measured on the LX20. With a serum ascorbic acid concentration of 12.0 mmol/L, the values for sodium, potassium, calcium and creatinine increased by 43%, 58%, 103% and 26%, respectively (Pascorbic acid concentration of 12.0 mmol/L, the values for chloride, total bilirubin and uric acid decreased by 33%, 62% and 83%, respectively (Pcholesterol, triglyceride, ammonia and lactate. There was no definite influence of ascorbic acid on analytical values for total CO(2), urea, glucose, phosphate, total protein, albumin, amylase, creatine kinase, creatine kinase-MB, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total iron, unbound iron-binding capacity or magnesium. Ascorbic acid causes a false increase in sodium, potassium, calcium and creatinine results and a false decrease in chloride, total bilirubin, uric acid, total cholesterol, triglyceride, ammonia and lactate results.

  19. Temperature-controlled micro-TLC: a versatile green chemistry and fast analytical tool for separation and preliminary screening of steroids fraction from biological and environmental samples.

    Science.gov (United States)

    Zarzycki, Paweł K; Slączka, Magdalena M; Zarzycka, Magdalena B; Bartoszuk, Małgorzata A; Włodarczyk, Elżbieta; Baran, Michał J

    2011-11-01

    whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in biological or environmental samples. Due to low consumption of eluent (usually 0.3-1mL/run) mainly composed of water-alcohol binary mixtures, this method can be considered as environmentally friendly and green chemistry focused analytical tool, supplementary to analytical protocols involving column chromatography or planar micro-fluidic devices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. American Chemical Society Student Affiliates Chapters: More Than Just Chemistry Clubs

    Science.gov (United States)

    Montes, Ingrid; Collazo, Carmen

    2003-10-01

    Chemistry educators often examine and implement various instructional techniques, such as mentoring programs, to advance learning objectives and to equip students with analytical and technical skills, as well as the skills required of chemical science professionals. Student organizations, such as an American Chemical Society Student Affiliates (SA) chapter, can create a learning environment for undergraduates by engaging them in activities that develop communication, teamwork and inquiry, analysis, and problem-solving skills within a real-world setting. The environment is student-based, has personal meaning for the learner, emphasizes a process-and-product orientation, and emphasizes evaluation. Participation in SAs enhance the traditional chemistry curriculum, complementing the learning goals and meeting learning objectives that might not otherwise be addressed in the curriculum. In this article we discuss how SA chapters enhance the educational experience of undergraduate chemical science students, help develop new chemistry professionals, and shape enthusiastic and committed future chemical science leaders.