WorldWideScience

Sample records for chemical transport model

  1. Coupling between solute transport and chemical reactions models

    International Nuclear Information System (INIS)

    Samper, J.; Ajora, C.

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs

  2. Cumulus parameterizations in chemical transport models

    Science.gov (United States)

    Mahowald, Natalie M.; Rasch, Philip J.; Prinn, Ronald G.

    1995-12-01

    Global three-dimensional chemical transport models (CTMs) are valuable tools for studying processes controlling the distribution of trace constituents in the atmosphere. A major uncertainty in these models is the subgrid-scale parametrization of transport by cumulus convection. This study seeks to define the range of behavior of moist convective schemes and point toward more reliable formulations for inclusion in chemical transport models. The emphasis is on deriving convective transport from meteorological data sets (such as those from the forecast centers) which do not routinely include convective mass fluxes. Seven moist convective parameterizations are compared in a column model to examine the sensitivity of the vertical profile of trace gases to the parameterization used in a global chemical transport model. The moist convective schemes examined are the Emanuel scheme [Emanuel, 1991], the Feichter-Crutzen scheme [Feichter and Crutzen, 1990], the inverse thermodynamic scheme (described in this paper), two versions of a scheme suggested by Hack [Hack, 1994], and two versions of a scheme suggested by Tiedtke (one following the formulation used in the ECMWF (European Centre for Medium-Range Weather Forecasting) and ECHAM3 (European Centre and Hamburg Max-Planck-Institut) models [Tiedtke, 1989], and one formulated as in the TM2 (Transport Model-2) model (M. Heimann, personal communication, 1992). These convective schemes vary in the closure used to derive the mass fluxes, as well as the cloud model formulation, giving a broad range of results. In addition, two boundary layer schemes are compared: a state-of-the-art nonlocal boundary layer scheme [Holtslag and Boville, 1993] and a simple adiabatic mixing scheme described in this paper. Three tests are used to compare the moist convective schemes against observations. Although the tests conducted here cannot conclusively show that one parameterization is better than the others, the tests are a good measure of the

  3. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Energy Technology Data Exchange (ETDEWEB)

    Claveau, J; Ramaroson, R [Office National d` Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1998-12-31

    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  4. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Energy Technology Data Exchange (ETDEWEB)

    Claveau, J.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  5. Toward a comprehensive model of chemical transport in porous media

    International Nuclear Information System (INIS)

    Miller, C.W.

    1983-02-01

    A chemical transport model, CHEMTRN, that includes advection, dispersion/diffusion, complexation, sorption, precipitation or dissolution of solids, and the dissociation of water has been written. The transport, mass action and site constraint equations are written in a differential/algebraic form and solved simultaneously. The sorption process is modelled by either ion-exchange or surface complexation. The model has been used to investigate the applicability of a k/sub D/ model for simulating the transport of chemical species in groundwater systems, to simulate precipitation/dissolution of minerals, and to consider the effect of surface complexation on sorption

  6. A Coupled Chemical and Mass Transport Model for Concrete Durability

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2012-01-01

    In this paper a general continuum theory is used to evaluate the service life of cement based materials, in terms of mass transport processes and chemical degradation of the solid matrix. The model established is a reactive mass transport model, based on an extended version of the Poisson-Nernst-...

  7. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    Science.gov (United States)

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  8. Coupling between solute transport and chemical reactions models. Acoplamiento de modelos de transporte de solutos y de modelos de reacciones quimicas

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Ajora, C. (Instituto de Ciencias de la Tierra, CSIC, Barcerlona (Spain))

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs.

  9. Transport Properties of a Kinetic Model for Chemical Reactions without Barriers

    International Nuclear Information System (INIS)

    Alves, Giselle M.; Kremer, Gilberto M.; Soares, Ana Jacinta

    2011-01-01

    A kinetic model of the Boltzmann equation for chemical reactions without energy barrier is considered here with the aim of evaluating the reaction rate and characterizing the transport coefficient of shear viscosity for the reactive system. The Chapman-Enskog solution of the Boltzmann equation is used to compute the chemical reaction effects, in a flow regime for which the reaction process is close to the final equilibrium state. Some numerical results are provided illustrating that the considered chemical reaction without energy barrier can induce an appreciable influence on the reaction rate and on the transport coefficient of shear viscosity.

  10. STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere

    Directory of Open Access Journals (Sweden)

    B. Grassi

    2002-06-01

    Full Text Available A three-dimensional (3-D Chemical Transport Model (CTM of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model’s capabilities for its remarkable dynamical situation (very cold and strong polar vortex along with the availability of sparse chlorine, HNO3 and O3 data, showing also very low O3 values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO3 capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O3 destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS, although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it satisfactorily reproduces the morphology of the continuous O3

  11. STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere

    Directory of Open Access Journals (Sweden)

    B. Grassi

    Full Text Available A three-dimensional (3-D Chemical Transport Model (CTM of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model’s capabilities for its remarkable dynamical situation (very cold and strong polar vortex along with the availability of sparse chlorine, HNO3 and O3 data, showing also very low O3 values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO3 capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O3 destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS, although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it

  12. Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1996-01-01

    Safety assessments for radioactive waste repositories require a detailed knowledge of physical, chemical, hydrological, and geological processes for long time spans. In the past, individual models for hydraulics, transport, or geochemical processes were developed more or less separately to great sophistication for the individual processes. Such processes are especially important in the near field of a waste repository. Attempts have been made to couple at least two individual processes to get a more adequate description of geochemical systems. These models are called coupled codes; they couple predominantly a multicomponent transport model with a chemical reaction model. Here reactive transport is modeled by the sequentially coupled code MCOTAC that couples one-dimensional advective, dispersive, and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium. Transport, described by a random walk of multispecies particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term. The modular-structured code was applied to incongruent dissolution of hydrated silicate gels, to movement of multiple solid front systems, and to an artificial, numerically difficult heterogeneous redox problem. These applications show promising features with respect to applicability to relevant problems and possibilities of extensions

  13. Chemical Transport Models on Accelerator Architectures

    Science.gov (United States)

    Linford, J.; Sandu, A.

    2008-12-01

    Heterogeneous multicore chipsets with many layers of polymorphic parallelism are becoming increasingly common in high-performance computing systems. Homogeneous co-processors with many streaming processors also offer unprecedented peak floating-point performance. Effective use of parallelism in these new chipsets is paramount. We present optimization techniques for 3D chemical transport models to take full advantage of emerging Cell Broadband Engine and graphical processing unit (GPU) technology. Our techniques achieve 2.15x the per-node performance of an IBM BlueGene/P on the Cell Broadband Engine, and a strongly-scalable 1.75x the per-node performance of an IBM BlueGene/P on an NVIDIA GeForce 8600.

  14. Cellular automaton model of mass transport with chemical reactions

    International Nuclear Information System (INIS)

    Karapiperis, T.; Blankleider, B.

    1993-10-01

    The transport and chemical reactions of solutes are modelled as a cellular automaton in which molecules of different species perform a random walk on a regular lattice and react according to a local probabilistic rule. The model describes advection and diffusion in a simple way, and as no restriction is placed on the number of particles at a lattice site, it is also able to describe a wide variety of chemical reactions. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. Simulations on one-and two-dimensional lattices show that the discrete model can be used to approximate the solutions of the continuum equations. We discuss discrepancies which arise from correlations between molecules and how these discrepancies disappear as the continuum limit is approached. Of particular interest are simulations displaying long-time behaviour which depends on long-wavelength statistical fluctuations not accounted for by the standard equations. The model is applied to the reactions a + b ↔ c and a + b → c with homogeneous and inhomogeneous initial conditions as well as to systems subject to autocatalytic reactions and displaying spontaneous formation of spatial concentration patterns. (author) 9 figs., 34 refs

  15. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1996-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  16. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1995-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  17. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  18. Cellular automaton model of coupled mass transport and chemical reactions

    International Nuclear Information System (INIS)

    Karapiperis, T.

    1994-01-01

    Mass transport, coupled with chemical reactions, is modelled as a cellular automaton in which solute molecules perform a random walk on a lattice and react according to a local probabilistic rule. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. The model is applied to the reactions a + b ↔c and a + b →c, where we observe interesting macroscopic effects resulting from microscopic fluctuations and spatial correlations between molecules. We also simulate autocatalytic reaction schemes displaying spontaneous formation of spatial concentration patterns. Finally, we propose and discuss the limitations of a simple model for mineral-solute interaction. (author) 5 figs., 20 refs

  19. A vector/parallel method for a three-dimensional transport model coupled with bio-chemical terms

    NARCIS (Netherlands)

    B.P. Sommeijer (Ben); J. Kok (Jan)

    1995-01-01

    textabstractA so-called fractional step method is considered for the time integration of a three-dimensional transport-chemical model in shallow seas. In this method, the transport part and the chemical part are treated separately by appropriate integration techniques. This separation is motivated

  20. The TOMCAT global chemical transport model v1.6: description of chemical mechanism and model evaluation

    Directory of Open Access Journals (Sweden)

    S. A. Monks

    2017-08-01

    Full Text Available This paper documents the tropospheric chemical mechanism scheme used in the TOMCAT 3-D chemical transport model. The current scheme includes a more detailed representation of hydrocarbon chemistry than previously included in the model, with the inclusion of the emission and oxidation of ethene, propene, butane, toluene and monoterpenes. The model is evaluated against a range of surface, balloon, aircraft and satellite measurements. The model is generally able to capture the main spatial and seasonal features of high and low concentrations of carbon monoxide (CO, ozone (O3, volatile organic compounds (VOCs and reactive nitrogen. However, model biases are found in some species, some of which are common to chemistry models and some that are specific to TOMCAT and warrant further investigation. The most notable of these biases are (1 a negative bias in Northern Hemisphere (NH winter and spring CO and a positive bias in Southern Hemisphere (SH CO throughout the year, (2 a positive bias in NH O3 in summer and a negative bias at high latitudes during SH winter and (3 a negative bias in NH winter C2 and C3 alkanes and alkenes. TOMCAT global mean tropospheric hydroxyl radical (OH concentrations are higher than estimates inferred from observations of methyl chloroform but similar to, or lower than, multi-model mean concentrations reported in recent model intercomparison studies. TOMCAT shows peak OH concentrations in the tropical lower troposphere, unlike other models which show peak concentrations in the tropical upper troposphere. This is likely to affect the lifetime and transport of important trace gases and warrants further investigation.

  1. CONSISTENT USE OF THE KALMAN FILTER IN CHEMICAL TRANSPORT MODELS (CTMS) FOR DEDUCING EMISSIONS

    Science.gov (United States)

    Past research has shown that emissions can be deduced using observed concentrations of a chemical, a Chemical Transport Model (CTM), and the Kalman filter in an inverse modeling application. An expression was derived for the relationship between the "observable" (i.e., the con...

  2. A dispersion model of transport media in radiotracer investigations on selected chemical installations

    International Nuclear Information System (INIS)

    Iller, E.

    1999-01-01

    Tracer investigations of media transport through chemical reactors play a significant role in the chemical technology. They provide the basis for the determination of some important process parameters, such as flow character of the transported medium, degree of utilisation of the reactor volume during chemical transitions of substrates or even indicate possible mechanisms of chemical reactions. Determination of the medium flow characteristics is closely connected with the mathematical description of the process - a mathematical model of transport. The method of assessment of radiotracers suitability for the investigation of distillation processes presented in this paper allows to determine, in a simple manner, the parameters of distillation characteristics of the radionuclides, the average distillation temperature, the range of distillation temperatures, a suitable radiochemical purity. These parameters precisely determine the behavior of tracers to be expected in a wide range of variable conditions of the distillation process. Applications of tracer tested in such a manner to the investigations of dynamics of media in the industrial rectification columns has resulted in obtaining a dependable evaluation of the performance of these columns in a wide range of changes of their operational parameters. Particular attention has been paid to dynamics of the liquid [phase on the column plate. A dispersion model of liquid flow with hold-up zones has been proposed for the description of the liquid phase transport in the plate - overall assembly.The model consists of a number of flow and stagnant zones, with mass transfer between them. Another example of practical application of results from radiotracer investigation is an analysis of of phase dynamics in the installations designed for the process of liquefaction of Polish coals by means of their catalytic hydrogenation. For the analysis of phase transport in a reaction vessel various mathematical models were applied with

  3. Characterization of chemical agent transport in paints.

    Science.gov (United States)

    Willis, Matthew P; Gordon, Wesley; Lalain, Teri; Mantooth, Brent

    2013-09-15

    A combination of vacuum-based vapor emission measurements with a mass transport model was employed to determine the interaction of chemical warfare agents with various materials, including transport parameters of agents in paints. Accurate determination of mass transport parameters enables the simulation of the chemical agent distribution in a material for decontaminant performance modeling. The evaluation was performed with the chemical warfare agents bis(2-chloroethyl) sulfide (distilled mustard, known as the chemical warfare blister agent HD) and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an organophosphate nerve agent, deposited on to two different types of polyurethane paint coatings. The results demonstrated alignment between the experimentally measured vapor emission flux and the predicted vapor flux. Mass transport modeling demonstrated rapid transport of VX into the coatings; VX penetrated through the aliphatic polyurethane-based coating (100 μm) within approximately 107 min. By comparison, while HD was more soluble in the coatings, the penetration depth in the coatings was approximately 2× lower than VX. Applications of mass transport parameters include the ability to predict agent uptake, and subsequent long-term vapor emission or contact transfer where the agent could present exposure risks. Additionally, these parameters and model enable the ability to perform decontamination modeling to predict how decontaminants remove agent from these materials. Published by Elsevier B.V.

  4. CHMTRNS, Non-Equilibrium Chemical Transport Code

    International Nuclear Information System (INIS)

    Noorishad, J.; Carnahan, C.L.; Benson, L.V.

    1998-01-01

    1 - Description of program or function: CHMTRNS simulates solute transport for steady one-dimensional fluid flow by convection and diffusion or dispersion in a saturated porous medium based on the assumption of local chemical equilibrium. The chemical interactions included in the model are aqueous-phase complexation, solid-phase ion exchange of bare ions and complexes using the surface complexation model, and precipitation or dissolution of solids. The program can simulate the kinetic dissolution or precipitation for calcite and silica as well as irreversible dissolution of glass. Thermodynamic parameters are temperature dependent and are coupled to a companion heat transport simulator; thus, the effects of transient temperature conditions can be considered. Options for oxidation-reduction (redox) and C-13 fractionation as well as non-isothermal conditions are included. 2 - Method of solution: The governing equations for both reactive chemical and heat transport are discretized in time and space. For heat transport, the Crank-Nicolson approximation is used in conjunction with a LU decomposition and backward substitution solution procedure. To deal with the strong nonlinearity of the chemical transport equations, a generalized Newton-Raphson method is used

  5. Modeling the transport of chemical warfare agents and simulants in polymeric substrates for reactive decontamination

    Science.gov (United States)

    Pearl, Thomas; Mantooth, Brent; Varady, Mark; Willis, Matthew

    2014-03-01

    Chemical warfare agent simulants are often used for environmental testing in place of highly toxic agents. This work sets the foundation for modeling decontamination of absorbing polymeric materials with the focus on determining relationships between agents and simulants. The correlations of agents to simulants must consider the three way interactions in the chemical-material-decontaminant system where transport and reaction occur in polymer materials. To this end, diffusion modeling of the subsurface transport of simulants and live chemical warfare agents was conducted for various polymer systems (e.g., paint coatings) with and without reaction pathways with applied decontamination. The models utilized 1D and 2D finite difference diffusion and reaction models to simulate absorption and reaction in the polymers, and subsequent flux of the chemicals out of the polymers. Experimental data including vapor flux measurements and dynamic contact angle measurements were used to determine model input parameters. Through modeling, an understanding of the relationship of simulant to live chemical warfare agent was established, focusing on vapor emission of agents and simulants from materials.

  6. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  7. Evaluate transport processes in MERRA driven chemical transport models using updated 222Rn emission inventories and global observations

    Science.gov (United States)

    Zhang, B.; Liu, H.; Crawford, J. H.; Fairlie, T. D.; Chen, G.; Chambers, S. D.; Kang, C. H.; Williams, A. G.; Zhang, K.; Considine, D. B.; Payer Sulprizio, M.; Yantosca, R.

    2015-12-01

    Convective and synoptic processes play a major role in determining the transport and distribution of trace gases and aerosols in the troposphere. The representation of these processes in global models (at ~100-1000 km horizontal resolution) is challenging, because convection is a sub-grid process and needs to be parameterized, while synoptic processes are close to the grid scale. Depending on the parameterization schemes used in climate models, the role of convection in transporting trace gases and aerosols may vary from model to model. 222Rn is a chemically inert and radioactive gas constantly emitted from soil and has a half-life (3.8 days) comparable to synoptic timescale, which makes it an effective tracer for convective and synoptic transport. In this study, we evaluate the convective and synoptic transport in two chemical transport models (GMI and GEOS-Chem), both driven by the NASA's MERRA reanalysis. Considering the uncertainties in 222Rn emissions, we incorporate two more recent scenarios with regionally varying 222Rn emissions into GEOS-Chem/MERRA and compare the simulation results with those using the relatively uniform 222Rn emissions in the standard model. We evaluate the global distribution and seasonality of 222Rn concentrations simulated by the two models against an extended collection of 222Rn observations from 1970s to 2010s. The intercomparison will improve our understanding of the spatial variability in global 222Rn emissions, including the suspected excessive 222Rn emissions in East Asia, and provide useful feedbacks on 222Rn emission models. We will assess 222Rn vertical distributions at different latitudes in the models using observations at surface sites and in the upper troposphere and lower stratosphere. Results will be compared with previous models driven by other meteorological fields (e.g., fvGCM and GEOS4). Since the decay of 222Rn is the source of 210Pb, a useful radionuclide tracer attached to submicron aerosols, improved

  8. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    International Nuclear Information System (INIS)

    Li Rong; Yang Fuquan; Sloan, James J; Scholtz, M Trevor

    2011-01-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  9. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Li Rong; Yang Fuquan; Sloan, James J [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Scholtz, M Trevor, E-mail: sloanj@connect.uwaterloo.ca [ORTECH Environmental, 2395 Speakman Drive, Mississauga, ON L5K 1B3 (Canada)

    2011-07-15

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  10. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Science.gov (United States)

    Li, Rong; Scholtz, M. Trevor; Yang, Fuquan; Sloan, James J.

    2011-07-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  11. A Coupled Chemical and Mass Transport Model for Concrete Durability

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2012-01-01

    -Raphson iteration scheme arising from the non-linearity. The overall model is a transient problem, solved using a single parameter formulation. The sorption hysteresis and chemical equilibrium is included as source or sink terms. The advantages with this formulation is that each node in the discrete system has...... their individual sorption hysteresis isotherm which is of great importance when describing non fully water saturated system e.g. caused by time depended boundary conditions. Chemical equilibrium is also established in each node of the discrete system, where the rate of chemical degradation is determined.......g. charge balance, from the mass transport calculation could cause the above mentioned numerical problems. Two different test cases are studied, the sorption hysteresis in different depth of the sample, caused by time depended boundary condition and the chemical degradation of the solid matrix in a ten year...

  12. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    International Nuclear Information System (INIS)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M.; Watson, David B.

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M. partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M. species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions

  13. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  14. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    International Nuclear Information System (INIS)

    Alves, Giselle M; Kremer, Gilberto M; Marques, Wilson Jr; Soares, Ana Jacinta

    2011-01-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman–Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal–diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode

  15. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    Science.gov (United States)

    Alves, Giselle M.; Kremer, Gilberto M.; Marques, Wilson, Jr.; Jacinta Soares, Ana

    2011-03-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman-Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal-diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode.

  16. Electromechanical and Chemical Sensing at the Nanoscale: DFT and Transport Modeling

    Science.gov (United States)

    Maiti, Amitesh

    Of the many nanoelectronic applications proposed for near to medium-term commercial deployment, sensors based on carbon nanotubes (CNT) and metal-oxide nanowires are receiving significant attention from researchers. Such devices typically operate on the basis of the changes of electrical response characteristics of the active component (CNT or nanowire) when subjected to an externally applied mechanical stress or the adsorption of a chemical or bio-molecule. Practical development of such technologies can greatly benefit from quantum chemical modeling based on density functional theory (DFT), and from electronic transport modeling based on non-equilibrium Green's function (NEGF). DFT can compute useful quantities like possible bond-rearrangements, binding energy, charge transfer, and changes to the electronic structure, while NEGF can predict changes in electronic transport behavior and contact resistance. Effects of surrounding medium and intrinsic structural defects can also be taken into account. In this work we review some recent DFT and transport investigations on (1) CNT-based nano-electromechanical sensors (NEMS) and (2) gas-sensing properties of CNTs and metal-oxide nanowires. We also briefly discuss our current understanding of CNT-metal contacts which, depending upon the metal, the deposition technique, and the masking method can have a significant effect on device performance.

  17. Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling

    Science.gov (United States)

    Rastigejev, Y.

    2011-12-01

    Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems

  18. The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media

    NARCIS (Netherlands)

    Veldsink, J.W.; Veldsink, J.W.; van Damme, Rudolf M.J.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1995-01-01

    In the present study, mass transport accompanied by chemical reactions in porous media is studied according to the Fick model and the dusty-gas model. For mass transport accompanied by a chemical reaction in catalyst structures showing a plane, line, or point of symmetry, the approximate analytical

  19. Assimilation of stratospheric ozone in the chemical transport model STRATAQ

    Directory of Open Access Journals (Sweden)

    B. Grassi

    2004-09-01

    Full Text Available We describe a sequential assimilation approach useful for assimilating tracer measurements into a three-dimensional chemical transport model (CTM of the stratosphere. The numerical code, developed largely according to Kha00, uses parameterizations and simplifications allowing assimilation of sparse observations and the simultaneous evaluation of analysis errors, with reasonable computational requirements. Assimilation parameters are set by using χ2 and OmF (Observation minus Forecast statistics. The CTM used here is a high resolution three-dimensional model. It includes a detailed chemical package and is driven by UKMO (United Kingdom Meteorological Office analyses. We illustrate the method using assimilation of Upper Atmosphere Research Satellite/Microwave Limb Sounder (UARS/MLS ozone observations for three weeks during the 1996 antarctic spring. The comparison of results from the simulations with TOMS (Total Ozone Mapping Spectrometer measurements shows improved total ozone fields due to assimilation of MLS observations. Moreover, the assimilation gives indications on a possible model weakness in reproducing polar ozone values during springtime.

  20. Assimilation of stratospheric ozone in the chemical transport model STRATAQ

    Directory of Open Access Journals (Sweden)

    B. Grassi

    2004-09-01

    Full Text Available We describe a sequential assimilation approach useful for assimilating tracer measurements into a three-dimensional chemical transport model (CTM of the stratosphere. The numerical code, developed largely according to Kha00, uses parameterizations and simplifications allowing assimilation of sparse observations and the simultaneous evaluation of analysis errors, with reasonable computational requirements. Assimilation parameters are set by using χ2 and OmF (Observation minus Forecast statistics. The CTM used here is a high resolution three-dimensional model. It includes a detailed chemical package and is driven by UKMO (United Kingdom Meteorological Office analyses. We illustrate the method using assimilation of Upper Atmosphere Research Satellite/Microwave Limb Sounder (UARS/MLS ozone observations for three weeks during the 1996 antarctic spring. The comparison of results from the simulations with TOMS (Total Ozone Mapping Spectrometer measurements shows improved total ozone fields due to assimilation of MLS observations. Moreover, the assimilation gives indications on a possible model weakness in reproducing polar ozone values during springtime.

  1. Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model

    Directory of Open Access Journals (Sweden)

    W. Feng

    2011-06-01

    Full Text Available We investigate the performance of cloud convection and tracer transport in a global off-line 3-D chemical transport model. Various model simulations are performed using different meteorological (reanalyses (ERA-40, ECMWF operational and ECMWF Interim to diagnose the updraft mass flux, convective precipitation and cloud top height.

    The diagnosed upward mass flux distribution from TOMCAT agrees quite well with the ECMWF reanalysis data (ERA-40 and ERA-Interim below 200 hPa. Inclusion of midlevel convection improves the agreement at mid-high latitudes. However, the reanalyses show strong convective transport up to 100 hPa, well into the tropical tropopause layer (TTL, which is not captured by TOMCAT. Similarly, the model captures the spatial and seasonal variation of convective cloud top height although the mean modelled value is about 2 km lower than observed.

    The ERA-Interim reanalyses have smaller archived upward convective mass fluxes than ERA-40, and smaller convective precipitation, which is in better agreement with satellite-based data. TOMCAT captures these relative differences when diagnosing convection from the large-scale fields. The model also shows differences in diagnosed convection with the version of the operational analyses used, which cautions against using results of the model from one specific time period as a general evaluation.

    We have tested the effect of resolution on the diagnosed modelled convection with simulations ranging from 5.6° × 5.6° to 1° × 1°. Overall, in the off-line model, the higher model resolution gives stronger vertical tracer transport, however, it does not make a large change to the diagnosed convective updraft mass flux (i.e., the model results using the convection scheme fail to capture the strong convection transport up to 100 hPa as seen in the archived convective mass fluxes. Similarly, the resolution of the forcing winds in the higher resolution CTM does not make a

  2. MISTRAL: A game-theoretical model to allocate security measures in a multi-modal chemical transportation network with adaptive adversaries

    International Nuclear Information System (INIS)

    Talarico, Luca; Reniers, Genserik; Sörensen, Kenneth; Springael, Johan

    2015-01-01

    In this paper we present a multi-modal security-transportation model to allocate security resources within a chemical supply chain which is characterized by the use of different transport modes, each having their own security features. We consider security-related risks so as to take measures against terrorist acts which could target critical transportation systems. The idea of addressing security-related issues, by supporting decisions for preventing or mitigating intentional acts on transportation infrastructure, has gained attention in academic research only recently. The decision model presented in this paper is based on game theory and it can be employed to organize intelligence capabilities aimed at securing chemical supply chains. It enables detection and warning against impending attacks on transportation infrastructures and the subsequent adoption of security countermeasures. This is of extreme importance for preventing terrorist attacks and for avoiding (possibly huge) human and economic losses. In our work we also provide data sources and numerical simulations by applying the proposed model to a illustrative multi-modal chemical supply chain. - Highlights: • A model to increase the security in a multimodal chemical supply chain is proposed. • The model considers adaptive opponents having multi-attribute utility functions. • The model is based on game theory using an attacker–defender schema. • The model provides recommendations about where to allocate security measures. • Numerical simulations on a sample multimodal chemical supply chain are shown

  3. Enhancing the design of in situ chemical barriers with multicomponent reactive transport modeling

    International Nuclear Information System (INIS)

    Sevougian, S.D.; Steefel, C.I.; Yabusaki, S.B.

    1994-11-01

    This paper addresses the need for systematic control of field-scale performance in the emplacement and operation of in situ chemical treatment barriers; in particular, it addresses the issue of how the local coupling of reaction kinetics and material heterogeneities at the laboratory or bench scale can be accurately upscaled to the field. The authors have recently developed modeling analysis tools that can explicitly account for all relevant chemical reactions that accompany the transport of reagents and contaminants through a chemically and physically heterogeneous subsurface rock or soil matrix. These tools are incorporated into an enhanced design methodology for in situ chemical treatment technologies, and the new methodology is demonstrated in the ongoing design of a field experiment for the In Situ Redox Manipulation (ISRM) project at the U.S. Department of Energy (DOE) Hanford Site. The ISRM design approach, which systematically integrates bench-scale and site characterization information, provides an ideal test for the new reactive transport techniques. The need for the enhanced chemistry capability is demonstrated by an example that shows how intra-aqueous redox kinetics can affect the transport of reactive solutes. Simulations are carried out on massively parallel computer architectures to resolve the influence of multiscale heterogeneities on multicomponent, multidimensional reactive transport. The technology will soon be available to design larger-scale remediation schemes

  4. Pore-scale modeling of vapor transport in partially saturated capillary tube with variable area using chemical potential

    DEFF Research Database (Denmark)

    Addassi, Mouadh; Schreyer, Lynn; Johannesson, Björn

    2016-01-01

    Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters and the nu......Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters...... and the numerical solutions to the equation are compared with experimental results with excellent agreement. We demonstrate that isothermal vapor transport can be accurately modeled without modeling the details of the contact angle, microscale temperature fluctuations, or pressure fluctuations using a modification...

  5. Environmental fate and transport of chemical signatures from buried landmines -- Screening model formulation and initial simulations

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, J.M.; Webb, S.W.

    1997-06-01

    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine, estimate the subsurface total concentration, and show the phase specific concentrations at the ground surface. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  6. A multimedia fate and chemical transport modeling system for pesticides: II. Model evaluation

    International Nuclear Information System (INIS)

    Li Rong; Yang Fuquan; Sloan, James J; Trevor Scholtz, M

    2011-01-01

    Pesticides have adverse health effects and can be transported over long distances to contaminate sensitive ecosystems. To address problems caused by environmental pesticides we developed a multimedia multi-pollutant modeling system, and here we present an evaluation of the model by comparing modeled results against measurements. The modeled toxaphene air concentrations for two sites, in Louisiana (LA) and Michigan (MI), are in good agreement with measurements (average concentrations agree to within a factor of 2). Because the residue inventory showed no soil residues at these two sites, resulting in no emissions, the concentrations must be caused by transport; the good agreement between the modeled and measured concentrations suggests that the model simulates atmospheric transport accurately. Compared to the LA and MI sites, the measured air concentrations at two other sites having toxaphene soil residues leading to emissions, in Indiana and Arkansas, showed more pronounced seasonal variability (higher in warmer months); this pattern was also captured by the model. The model-predicted toxaphene concentration fraction on particles (0.5-5%) agrees well with measurement-based estimates (3% or 6%). There is also good agreement between modeled and measured dry (1:1) and wet (within a factor of less than 2) depositions in Lake Ontario. Additionally this study identified erroneous soil residue data around a site in Texas in a published US toxaphene residue inventory, which led to very low modeled air concentrations at this site. Except for the erroneous soil residue data around this site, the good agreement between the modeled and observed results implies that both the US and Mexican toxaphene soil residue inventories are reasonably good. This agreement also suggests that the modeling system is capable of simulating the important physical and chemical processes in the multimedia compartments.

  7. Chemical transport reactions

    CERN Document Server

    Schäfer, Harald

    2013-01-01

    Chemical Transport Reactions focuses on the processes and reactions involved in the transport of solid or liquid substances to form vapor phase reaction products. The publication first offers information on experimental and theoretical principles and the transport of solid substances and its special applications. Discussions focus on calculation of the transport effect of heterogeneous equilibria for a gas motion between equilibrium spaces; transport effect and the thermodynamic quantities of the transport reaction; separation and purification of substances by means of material transport; and

  8. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  9. Numerical modelling of the atmospheric transport, chemical tranformations and deposition of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G; Schneider, B; Eppel, D [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany, F.R.). Inst. fuer Physik; Grassl, H [Hamburg Univ. (Germany, F.R.). Meteorologisches Inst. Max-Planck-Institut fuer Meteorologie, Hamburg (Germany, F.R.); Iverfeldt, A [Swedish Environmental Research Inst., Goeteborg (Sweden); Misra, P K; Bloxam, R; Wong, S [Ontario Ministry of the

    1990-01-01

    Based on recent progress in the understanding of mercury chemistry and biogeochemistry and on the availability of mercury emission data bases this study makes an attempt to model the atmospheric transport of mercury, its chemical transformations in the atmosphere, and the fluxes of mercury to and from the earth's surface by means of an EMEP-type Lagrangian trajectory model for Europe and an Eulerian grid model (ADOM) for North America. Preliminary results with a simplified mercury chemistry scheme in the comprehensive Eulerian model and with a linear chemistry in the Lagrangian model show reasonable agreement with observed mercury concentrations in air and precipitation. (orig.) With 3 figs., 4 tabs.

  10. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  11. Survey and discussion of models applicable to the transport and fate thrust area of the Department of Energy Chemical and Biological Nonproliferation Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The availability and easy production of toxic chemical and biological agents by domestic and international terrorists pose a serious threat to US national security, especially to civilian populations in and around urban areas. To address this threat, the Department of Energy (DOE) has established the Chemical and Biological Nonproliferation Program (CBNP) with the goal of focusing the DOE`s technical resources and expertise on capabilities to deny, deter, mitigate and respond to clandestine releases of chemical and biological agents. With the intent to build on DOE core competencies, the DOE has established six technology thrust areas within the CBNP Program: Biological Information Resources; Point Sensor Systems; Stand-off Detection; Transport and Fate; Decontamination; and Systems Analysis and Integration. The purpose of the Transport and Fate Thrust is to accurately predict the dispersion, concentration and ultimate fate of chemical and biological agents released into the urban and suburban environments and has two major goals: (1) to develop an integrated and validated state-of-the-art atmospheric transport and fate modeling capability for chemical and biological agent releases within the complex urban environment from the regional scale down to building and subway interiors, and (2) to apply this modeling capability in a broad range of simulation case studies of chemical and biological agent release scenarios in suburban, urban and confined (buildings and subways) environments and provide analysis for the incident response user community. Sections of this report discuss subway transport and fate models; buildings interior transport and fate modeling; models for flow and transport around buildings; and local-regional meteorology and dispersion models.

  12. Towards the use of dynamic growing seasons in a chemical transport model

    Science.gov (United States)

    Sakalli, A.; Simpson, D.

    2012-12-01

    Chemical transport models (CTMs), used for the prediction of, for example, nitrogen deposition or air quality changes, require estimates of the growing season of plants for a number of reasons. Typically, the growing seasons are defined in a very simplified way in CTMs, using fixed dates or simple functions. In order to explore the importance of more realistic growing season estimates, we have developed a new and simple method (the T5 method) for calculating the start of the growing season (SGS) of birch (which we use as a surrogate for deciduous trees), suitable for use in CTMs and other modelling systems. We developed the T5 method from observations, and here we compare with these and other methodologies, and show that with just two parameters T5 captures well the spatial variation in SGS across Europe. We use the EMEP MSC-W chemical transport model to illustrate the importance of improved SGS estimates for ozone and two metrics associated with ozone damage to vegetation. This study shows that although inclusion of more realistic growing seasons has only small effects on annual average concentrations of pollutants such as ozone, the metrics associated with vegetation risk from ozone are significantly affected. This work demonstrates a strong need to include more realistic treatments of growing seasons in CTMs. The method used here could also be suitable for other types of models that require information on vegetation cover, such as meteorological and regional climate models. In future work, the T5 and other methods will be further evaluated for other forest species, as well as for agricultural and grassland land covers, which are important for emissions and deposition of reactive nitrogen compounds.

  13. Investigating fire emissions and smoke transport during the Summer of 2013 using an operational smoke modeling system and chemical transport model

    Science.gov (United States)

    ONeill, S. M.; Chung, S. H.; Wiedinmyer, C.; Larkin, N. K.; Martinez, M. E.; Solomon, R. C.; Rorig, M.

    2014-12-01

    Emissions from fires in the Western US are substantial and can impact air quality and regional climate. Many methods exist that estimate the particulate and gaseous emissions from fires, including those run operationally for use with chemical forecast models. The US Forest Service Smartfire2/BlueSky modeling framework uses satellite data and reported information about fire perimeters to estimate emissions of pollutants to the atmosphere. The emission estimates are used as inputs to dispersion models, such as HYSPLIT, and chemical transport models, such as CMAQ and WRF-Chem, to assess the chemical and physical impacts of fires on the atmosphere. Here we investigate the use of Smartfire2/BlueSky and WRF-Chem to simulate emissions from the 2013 fire summer fire season, with special focus on the Rim Fire in northern California. The 2013 Rim Fire ignited on August 17 and eventually burned more than 250,000 total acres before being contained on October 24. Large smoke plumes and pyro-convection events were observed. In this study, the Smartfire2/BlueSky operational emission estimates are compared to other estimation methods, such as the Fire INventory from NCAR (FINN) and other global databases to quantify variations in emission estimation methods for this wildfire event. The impact of the emissions on downwind chemical composition is investigated with the coupled meteorology-chemistry WRF-Chem model. The inclusion of aerosol-cloud and aerosol-radiation interactions in the model framework enables the evaluation of the downwind impacts of the fire plume. The emissions and modeled chemistry can also be evaluated with data collected from the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft field campaign, which intersected the fire plume.

  14. Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2012-06-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the exchange at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  15. UTMTOX, Toxic Chemical Transport in Atmosphere, Ground Water, Sediments

    International Nuclear Information System (INIS)

    1988-01-01

    A - Description of program or function: UTMTOX is a unified transport model for toxic materials. It combines hydrologic, atmospheric, and sediment transport in one computer code and extends the scope to predict the transport of not only trace metals but also many chemical compounds, including organics. UTMTOX is capable of calculating 1) the atmospheric dispersion of up to 20 chemicals from a maximum of 10 point, 10 line, and 10 area sources; 2) deposition of one chemical at a time in both wet and dry form on foliage or the surface of the earth; 3) surface flow and erosion; 4) percolation through the soil to a stream channel; and 5) flow in the stream channel to the outfall of a watershed. B - Method of solution: UTMTOX calculates rates of flux of chemicals from release to the atmosphere, through deposition on a watershed, infiltration, and runoff from the soil to flow in the stream channel and the associated sediment transport. From these values, mass balances can be established, budgets for the chemical can be made, and concentrations in many environmental compartments can be estimated. Since the coupling is established among three major submodels, they can share data

  16. An Inverse Analysis Approach to the Characterization of Chemical Transport in Paints

    Science.gov (United States)

    Willis, Matthew P.; Stevenson, Shawn M.; Pearl, Thomas P.; Mantooth, Brent A.

    2014-01-01

    The ability to directly characterize chemical transport and interactions that occur within a material (i.e., subsurface dynamics) is a vital component in understanding contaminant mass transport and the ability to decontaminate materials. If a material is contaminated, over time, the transport of highly toxic chemicals (such as chemical warfare agent species) out of the material can result in vapor exposure or transfer to the skin, which can result in percutaneous exposure to personnel who interact with the material. Due to the high toxicity of chemical warfare agents, the release of trace chemical quantities is of significant concern. Mapping subsurface concentration distribution and transport characteristics of absorbed agents enables exposure hazards to be assessed in untested conditions. Furthermore, these tools can be used to characterize subsurface reaction dynamics to ultimately design improved decontaminants or decontamination procedures. To achieve this goal, an inverse analysis mass transport modeling approach was developed that utilizes time-resolved mass spectroscopy measurements of vapor emission from contaminated paint coatings as the input parameter for calculation of subsurface concentration profiles. Details are provided on sample preparation, including contaminant and material handling, the application of mass spectrometry for the measurement of emitted contaminant vapor, and the implementation of inverse analysis using a physics-based diffusion model to determine transport properties of live chemical warfare agents including distilled mustard (HD) and the nerve agent VX. PMID:25226346

  17. Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data

    NARCIS (Netherlands)

    de Hoogh, Kees; Gulliver, John; Donkelaar, Aaron van; Martin, Randall V; Marshall, Julian D; Bechle, Matthew J; Cesaroni, Giulia; Pradas, Marta Cirach; Dedele, Audrius; Eeftens, Marloes|info:eu-repo/dai/nl/315028300; Forsberg, Bertil; Galassi, Claudia; Heinrich, Joachim; Hoffmann, Barbara; Jacquemin, Bénédicte; Katsouyanni, Klea; Korek, Michal; Künzli, Nino; Lindley, Sarah J; Lepeule, Johanna; Meleux, Frederik; de Nazelle, Audrey; Nieuwenhuijsen, Mark; Nystad, Wenche; Raaschou-Nielsen, Ole; Peters, Annette; Peuch, Vincent-Henri; Rouil, Laurence; Udvardy, Orsolya; Slama, Rémy; Stempfelet, Morgane; Stephanou, Euripides G; Tsai, Ming Y; Yli-Tuomi, Tarja; Weinmayr, Gudrun; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Vienneau, Danielle; Hoek, Gerard|info:eu-repo/dai/nl/069553475

    2016-01-01

    Satellite-derived (SAT) and chemical transport model (CTM) estimates of PM2.5 and NO2 are increasingly used in combination with Land Use Regression (LUR) models. We aimed to compare the contribution of SAT and CTM data to the performance of LUR PM2.5 and NO2 models for Europe. Four sets of models,

  18. Modelling the gas transport and chemical processes related to clad oxidation and hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, R O; Rashid, Y R [ANATECH Research Corp., San Diego, CA (United States)

    1997-08-01

    Models are developed for the gas transport and chemical processes associated with the ingress of steam into a LWR fuel rod through a small defect. These models are used to determine the cladding regions in a defective fuel rod which are susceptible to massive hydriding and the creation of sunburst hydrides. The brittle nature of zirconium hydrides (ZrH{sub 2}) in these susceptible regions produces weak spots in the cladding which can act as initiation sites for cladding cracks under certain cladding stress conditions caused by fuel cladding mechanical interaction. The modeling of the axial gas transport is based on gaseous bimolar diffusion coupled with convective mass transport using the mass continuity equation. Hydrogen production is considered from steam reaction with cladding inner surface, fission products and internal components. Eventually, the production of hydrogen and its diffusion along the length results in high hydrogen concentration in locations remote from the primary defect. Under these conditions, the hydrogen can attack the cladding inner surface and breakdown the protective ZrO{sub 2} layer locally, initiating massive localized hydriding leading to sunburst hydride. The developed hydrogen evolution model is combined with a general purpose fuel behavior program to integrate the effects of power and burnup into the hydriding kinetics. Only in this manner can the behavior of a defected fuel rod be modeled to determine the conditions the result in fuel rod degradation. (author). 14 refs, 6 figs.

  19. A fugacity approach for modeling the transport of airborne organic chemicals in an air/plant/soil system

    International Nuclear Information System (INIS)

    Oliver, L.D.; McKone, T.E.

    1991-05-01

    An important issue facing both public and private agencies is the identification and quantification of exposures by indirect pathways to toxic chemicals released to the atmosphere. With recent public concerns over pesticides such as malathion and alar in foods, greater attention is being given to the process of chemical uptake by plants. Whether chemicals taken up by plants can accumulate and ultimately enter the human food chain are important questions for determining health risks and safe levels of toxic air-pollutant emissions and pesticide application. A number of plant-toxicokinetic, or ''botanicokinetic,'' models have been developed to give estimates of how chemicals are partitioned and transported within plants. In this paper, we provide a brief review of these models, describing their main features and listing some of their advantages and disadvantages. We then describe and demonstrate a five-compartment air/plant/soil model, which builds on and extends the features included in previous models. We apply this model to the steady-state chemical partitioning of perchloroethylene, hexachlorobenzene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin in grass as test cases. We conclude with a discussion of the advantages and limitations of the model

  20. Effects of airplane emissions on the composition of the atmosphere: Investigations using a mesoscale chemical transport model; Der Einfluss von Flugzeugabgasen auf die Zusammensetzung der Atmosphaere: Untersuchungen mit einem mesoskaligen Chemie-Transport-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, E

    1997-12-31

    In the present work the impact of aircraft emissions on the atmospheric composition is studied using a mesoscale chemistry transport model. To simulate the impact of aircraft exhausts several modifications on the EURAD model system have been performed. The upper boundary of the model has been extended from 100 hPa up to 10 hPa. The vertical resolution of the model has been refined especially in tropopause altitudes extending the number of model layers from 15 to 29. Additionally the initialization and the treatment of the boundary conditions has been improved by coupling the trace gas concentration fields with the individual meteorological situation. To guarantee an adequate representation of the atmospheric chemistry the chemical mechanism CHEST has been developed and implemented into the chemistry transport model. CHEST treats the most important chemical processes of the troposphere and lower stratosphere. In the frame of the present work sensitivity studies with a box model and with the threedimensional chemistry transport model have been performed to investigate the impact of aircraft emissions upon the atmosphere. (KW) [Deutsch] In der vorliegenden Arbeit werden die Auswirkungen der Flugzeugemissionen auf die Zusammensetzung der Atmosphaere mit Hilfe eines mesoskaligen Chemie-Transport-Modells untersucht. Zur Simulation der Ausbreitung der Flugzeugabgase wurden am EURAD-Modell-System umfangreiche Veraenderungen vorgenommen. Der obere Modellrand des Chemie-Transport-Modells ist von 100 hPa auf 10 hPa erhoeht worden. Die vertikale Aufloesung des Modells wurde insbesondere im Tropopausenbereich durch eine Erhoehung der Gesamtzahl der Modellschichten von 15 auf 29 wesentlich verfeinert. Ausserdem ist die Initialisierung der Spurenstoffverteilung im Modell an die Dynamik gekoppelt worden. Dem Chemie-Transport-Modell stehen damit an die jeweilige meteorologische Situation angepasste Konzentrationsfelder zur Initialisierung und zur Behandlung der Fluesse durch den

  1. Effects of airplane emissions on the composition of the atmosphere: Investigations using a mesoscale chemical transport model; Der Einfluss von Flugzeugabgasen auf die Zusammensetzung der Atmosphaere: Untersuchungen mit einem mesoskaligen Chemie-Transport-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, E.

    1996-12-31

    In the present work the impact of aircraft emissions on the atmospheric composition is studied using a mesoscale chemistry transport model. To simulate the impact of aircraft exhausts several modifications on the EURAD model system have been performed. The upper boundary of the model has been extended from 100 hPa up to 10 hPa. The vertical resolution of the model has been refined especially in tropopause altitudes extending the number of model layers from 15 to 29. Additionally the initialization and the treatment of the boundary conditions has been improved by coupling the trace gas concentration fields with the individual meteorological situation. To guarantee an adequate representation of the atmospheric chemistry the chemical mechanism CHEST has been developed and implemented into the chemistry transport model. CHEST treats the most important chemical processes of the troposphere and lower stratosphere. In the frame of the present work sensitivity studies with a box model and with the threedimensional chemistry transport model have been performed to investigate the impact of aircraft emissions upon the atmosphere. (KW) [Deutsch] In der vorliegenden Arbeit werden die Auswirkungen der Flugzeugemissionen auf die Zusammensetzung der Atmosphaere mit Hilfe eines mesoskaligen Chemie-Transport-Modells untersucht. Zur Simulation der Ausbreitung der Flugzeugabgase wurden am EURAD-Modell-System umfangreiche Veraenderungen vorgenommen. Der obere Modellrand des Chemie-Transport-Modells ist von 100 hPa auf 10 hPa erhoeht worden. Die vertikale Aufloesung des Modells wurde insbesondere im Tropopausenbereich durch eine Erhoehung der Gesamtzahl der Modellschichten von 15 auf 29 wesentlich verfeinert. Ausserdem ist die Initialisierung der Spurenstoffverteilung im Modell an die Dynamik gekoppelt worden. Dem Chemie-Transport-Modell stehen damit an die jeweilige meteorologische Situation angepasste Konzentrationsfelder zur Initialisierung und zur Behandlung der Fluesse durch den

  2. Lagrangian transport model forecasts and a transport climatology for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) measurement campaign

    Science.gov (United States)

    Forster, Caroline; Cooper, Owen; Stohl, Andreas; Eckhardt, Sabine; James, Paul; Dunlea, Edward; Nicks, Dennis K.; Holloway, John S.; Hübler, Gerd; Parrish, David D.; Ryerson, Tom B.; Trainer, Michael

    2004-04-01

    On the basis of Lagrangian tracer transport simulations this study presents an intercontinental transport climatology and tracer forecasts for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) aircraft measurement campaign, which took place at Monterey, California, in April-May 2002 to measure Asian pollution arriving at the North American West Coast. For the climatology the average transport of an Asian CO tracer was calculated over a time period of 15 years using the particle dispersion model FLEXPART. To determine by how much the transport from Asia to North America during ITCT 2K2 deviated from the climatological mean, the 15-year average for April and May was compared with the average for April and May 2002 and that for the ITCT 2K2 period. It was found that 8% less Asian CO tracer arrived at the North American West Coast during the ITCT 2K2 period compared to the climatological mean. Below 8-km altitude, the maximum altitude of the research aircraft, 13% less arrived. Nevertheless, pronounced layers of Asian pollution were measured during 3 of the 13 ITCT 2K2 flights. FLEXPART was also successfully used as a forecasting tool for the flight planning during ITCT 2K2. It provided 3-day forecasts for three different anthropogenic CO tracers originating from Asia, North America, and Europe. In two case studies the forecast abilities of FLEXPART are analyzed and discussed by comparing the forecasts with measurement data and infrared satellite images. The model forecasts underestimated the measured CO enhancements by about a factor of 4, mainly because of an underestimation of the Asian emissions in the emission inventory and because of biomass-burning influence that was not modeled. Nevertheless, the intercontinental transport and dispersion of pollution plumes were qualitatively well predicted, and on the basis of the model results the aircraft could successfully be guided into the polluted air masses.

  3. Identification of biased sectors in emission data using a combination of chemical transport model and receptor model

    Science.gov (United States)

    Uranishi, Katsushige; Ikemori, Fumikazu; Nakatsubo, Ryohei; Shimadera, Hikari; Kondo, Akira; Kikutani, Yuki; Asano, Katsuyoshi; Sugata, Seiji

    2017-10-01

    This study presented a comparison approach with multiple source apportionment methods to identify which sectors of emission data have large biases. The source apportionment methods for the comparison approach included both receptor and chemical transport models, which are widely used to quantify the impacts of emission sources on fine particulate matter of less than 2.5 μm in diameter (PM2.5). We used daily chemical component concentration data in the year 2013, including data for water-soluble ions, elements, and carbonaceous species of PM2.5 at 11 sites in the Kinki-Tokai district in Japan in order to apply the Positive Matrix Factorization (PMF) model for the source apportionment. Seven PMF factors of PM2.5 were identified with the temporal and spatial variation patterns and also retained features of the sites. These factors comprised two types of secondary sulfate, road transportation, heavy oil combustion by ships, biomass burning, secondary nitrate, and soil and industrial dust, accounting for 46%, 17%, 7%, 14%, 13%, and 3% of the PM2.5, respectively. The multiple-site data enabled a comprehensive identification of the PM2.5 sources. For the same period, source contributions were estimated by air quality simulations using the Community Multiscale Air Quality model (CMAQ) with the brute-force method (BFM) for four source categories. Both models provided consistent results for the following three of the four source categories: secondary sulfates, road transportation, and heavy oil combustion sources. For these three target categories, the models' agreement was supported by the small differences and high correlations between the CMAQ/BFM- and PMF-estimated source contributions to the concentrations of PM2.5, SO42-, and EC. In contrast, contributions of the biomass burning sources apportioned by CMAQ/BFM were much lower than and little correlated with those captured by the PMF model, indicating large uncertainties in the biomass burning emissions used in the

  4. Predicting soil formation on the basis of transport-limited chemical weathering

    Science.gov (United States)

    Yu, Fang; Hunt, Allen Gerhard

    2018-01-01

    Soil production is closely related to chemical weathering. It has been shown that, under the assumption that chemical weathering is limited by solute transport, the process of soil production is predictable. However, solute transport in soil cannot be described by Gaussian transport. In this paper, we propose an approach based on percolation theory describing non-Gaussian transport of solute to predict soil formation (the net production of soil) by considering both soil production from chemical weathering and removal of soil from erosion. Our prediction shows agreement with observed soil depths in the field. Theoretical soil formation rates are also compared with published rates predicted using soil age-profile thickness (SAST) method. Our formulation can be incorporated directly into landscape evolution models on a point-to-point basis as long as such models account for surface water routing associated with overland flow. Further, our treatment can be scaled-up to address complications associated with continental-scale applications, including those from climate change, such as changes in vegetation, or surface flow organization. The ability to predict soil formation rates has implications for understanding Earth's climate system on account of the relationship to chemical weathering of silicate minerals with the associated drawdown of atmospheric carbon, but it is also important in geomorphology for understanding landscape evolution, including for example, the shapes of hillslopes, and the net transport of sediments to sedimentary basins.

  5. Measurement of gas transport properties for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  6. Evaluation of unsaturated-zone solute-transport models for studies of agricultural chemicals

    Science.gov (United States)

    Nolan, Bernard T.; Bayless, E. Randall; Green, Christopher T.; Garg, Sheena; Voss, Frank D.; Lampe, David C.; Barbash, Jack E.; Capel, Paul D.; Bekins, Barbara A.

    2005-01-01

    Seven unsaturated-zone solute-transport models were tested with two data sets to select models for use by the Agricultural Chemical Team of the U.S. Geological Survey's National Water-Quality Assessment Program. The data sets were from a bromide tracer test near Merced, California, and an atrazine study in the White River Basin, Indiana. In this study the models are designated either as complex or simple based on the water flux algorithm. The complex models, HYDRUS2D, LEACHP, RZWQM, and VS2DT, use Richards' equation to simulate water flux and are well suited to process understanding. The simple models, CALF, GLEAMS, and PRZM, use a tipping-bucket algorithm and are more amenable to extrapolation because they require fewer input parameters. The purpose of this report is not to endorse a particular model, but to describe useful features, potential capabilities, and possible limitations that emerged from working with the model input data sets. More rigorous assessment of model applicability involves proper calibration, which was beyond the scope of this study.

  7. Status of the solar and infrared radiation submodels in the LLNL 1-D and 2-D chemical-transport models

    International Nuclear Information System (INIS)

    Grant, K.E.; Taylor, K.E.; Ellis, J.S.; Wuebbles, D.J.

    1987-07-01

    The authors have implemented a series of state of the art radiation transport submodels in previously developed one dimensional and two dimensional chemical transport models of the troposphere and stratosphere. These submodels provide the capability of calculating accurate solar and infrared heating rates. They are a firm basis for further radiation submodel development as well as for studying interactions between radiation and model dynamics under varying conditions of clear sky, clouds, and aerosols. 37 refs., 3 figs

  8. Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations

    KAUST Repository

    Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Allen, Dale J.; DeCaria, Alex J.; Ridley, Brian; Lin, Ruei-Fong; Lang, Stephen; Tao, Wei-Kuo

    2010-01-01

    A three-dimensional (3-D) cloud-scale chemical transport model that includes a parameterized source of lightning NOx on the basis of observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four

  9. Hazard Assessment on Chlorine Distribution Use of Chemical Transportation Risk Index

    International Nuclear Information System (INIS)

    Kim, Jeong Gon; Byun, Hun Soo

    2014-01-01

    Chlorine is one of the most produced and most used non-flammable chemical substances in the world even though its toxicity and high reactivity cause the ozone layer depletion. However, in modern life, it is impossible to live a good life without using Chlorine and its derivatives since they are being used as an typical ingredient in more than 40 percent of the manufactured goods including medicines, detergents, deodorant, fungicides, herbicides, insecticides, and plastic, etc. Even if Chlorine has been handled and distributed in various business (small and medium-sized businesses, water purification plants, distribution company, etc.), there have been few researches about its possible health hazard and transportation risks. Accordingly, the purpose of this paper is to make a detailed assessment of Chlorinerelated risks and to model an index of chemicals transportation risks that is adequate for domestic circumstances. The assessment of possible health hazard and transportation risks was made on 13 kinds of hazardous chemicals, including liquid chlorine. This research may be contributed to standardizing the risk assessment of Chlorine and other hazardous chemicals by using an index of transportation risks

  10. Hazard Assessment on Chlorine Distribution Use of Chemical Transportation Risk Index

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Gon [Hanwha Chemical Ulsan Site, Ulsan (Korea, Republic of); Byun, Hun Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2014-12-15

    Chlorine is one of the most produced and most used non-flammable chemical substances in the world even though its toxicity and high reactivity cause the ozone layer depletion. However, in modern life, it is impossible to live a good life without using Chlorine and its derivatives since they are being used as an typical ingredient in more than 40 percent of the manufactured goods including medicines, detergents, deodorant, fungicides, herbicides, insecticides, and plastic, etc. Even if Chlorine has been handled and distributed in various business (small and medium-sized businesses, water purification plants, distribution company, etc.), there have been few researches about its possible health hazard and transportation risks. Accordingly, the purpose of this paper is to make a detailed assessment of Chlorinerelated risks and to model an index of chemicals transportation risks that is adequate for domestic circumstances. The assessment of possible health hazard and transportation risks was made on 13 kinds of hazardous chemicals, including liquid chlorine. This research may be contributed to standardizing the risk assessment of Chlorine and other hazardous chemicals by using an index of transportation risks.

  11. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Andersson, Martin; Yuan, Jinliang; Sunden, Bengt

    2010-01-01

    A literature study is performed to compile the state-of-the-art, as well as future potential, in SOFC modeling. Principles behind various transport processes such as mass, heat, momentum and charge as well as for electrochemical and internal reforming reactions are described. A deeper investigation is made to find out potentials and challenges using a multiscale approach to model solid oxide fuel cells (SOFCs) and combine the accuracy at microscale with the calculation speed at macroscale to design SOFCs, based on a clear understanding of transport phenomena, chemical reactions and functional requirements. Suitable methods are studied to model SOFCs covering various length scales. Coupling methods between different approaches and length scales by multiscale models are outlined. Multiscale modeling increases the understanding for detailed transport phenomena, and can be used to make a correct decision on the specific design and control of operating conditions. It is expected that the development and production costs will be decreased and the energy efficiency be increased (reducing running cost) as the understanding of complex physical phenomena increases. It is concluded that the connection between numerical modeling and experiments is too rare and also that material parameters in most cases are valid only for standard materials and not for the actual SOFC component microstructures.

  12. BETR-World: a geographically explicit model of chemical fate: application to transport of α-HCH to the Arctic

    International Nuclear Information System (INIS)

    Toose, L.; Woodfine, D.G.; MacLeod, M.; Mackay, D.; Gouin, J.

    2004-01-01

    The Berkeley-Trent (BETR)-World model, a 25 compartment, geographically explicit fugacity-based model is described and applied to evaluate the transport of chemicals from temperate source regions to receptor regions (such as the Arctic). The model was parameterized using GIS and an array of digital data on weather, oceans, freshwater, vegetation and geo-political boundaries. This version of the BETR model framework includes modification of atmospheric degradation rates by seasonally variable hydroxyl radical concentrations and temperature. Degradation rates in all other compartments vary with seasonally changing temperature. Deposition to the deep ocean has been included as a loss mechanism. A case study was undertaken for α-HCH. Dynamic emission scenarios were estimated for each of the 25 regions. Predicted environmental concentrations showed good agreement with measured values for the northern regions in air, and fresh and oceanic water and with the results from a previous model of global chemical fate. Potential for long-range transport and deposition to the Arctic region was assessed using a Transfer Efficiency combined with estimated emissions. European regions and the Orient including China have a high potential to contribute α-HCH contamination in the Arctic due to high rates of emission in these regions despite low Transfer Efficiencies. Sensitivity analyses reveal that the performance and reliability of the model is strongly influenced by parameters controlling degradation rates. - A geographically explicit multi-compartment model is applied to the transport of α-HCH to the Arctic, showing Europe and the Orient are key sources

  13. Predicting long-range transport: a systematic evaluation of two multimedia transport models.

    Science.gov (United States)

    Bennett, D H; Scheringer, M; McKone, T E; Hungerbühler, K

    2001-03-15

    The United Nations Environment Program has recently developed criteria to identify and restrict chemicals with a potential for persistence and long-range transport (persistent organic pollutants or POPs). There are many stakeholders involved, and the issues are not only scientific but also include social, economic, and political factors. This work focuses on one aspect of the POPs debate, the criteria for determining the potential for long-range transport (LRT). Our goal is to determine if current models are reliable enough to support decisions that classify a chemical based on the LRT potential. We examine the robustness of two multimedia fate models for determining the relative ranking and absolute spatial range of various chemicals in the environment. We also consider the effect of parameter uncertainties and the model uncertainty associated with the selection of an algorithm for gas-particle partitioning on the model results. Given the same chemical properties, both models give virtually the same ranking. However, when chemical parameter uncertainties and model uncertainties such as particle partitioning are considered, the spatial range distributions obtained for the individual chemicals overlap, preventing a distinct rank order. The absolute values obtained for the predicted spatial range or travel distance differ significantly between the two models for the uncertainties evaluated. We find that to evaluate a chemical when large and unresolved uncertainties exist, it is more informative to use two or more models and include multiple types of uncertainty. Model differences and uncertainties must be explicitly confronted to determine how the limitations of scientific knowledge impact predictions in the decision-making process.

  14. Using Lagrangian Chemical Transport Modeling to Assess the Impact of Biomass Burning on Ozone and PM2.5

    Science.gov (United States)

    Alvarado, M. J.; Lonsdale, C. R.; Brodowski, C. M.

    2017-12-01

    One of the challenges of using in situ measurements to study the air quality and climate impacts of biomass burning is correctly determining the contribution of biomass burning sources to the measured ambient concentrations. This is especially important for policy purposes, as the ozone (O3) and fine particulate matter (PM2.5) from natural wildfires should not be confused with that from controllable anthropogenic sources. We have developed a Lagrangian chemical transport model called STILT-ASP that is able to quantify the impact of wildfire events on O3 and PM2.5 measurements made at surface monitoring sites, by mobile laboratories, or by aircraft. STILT-ASP is built by coupling the Stochastic Time Inverted Lagrangian Transport (STILT) model with AER's Aerosol Simulation Program (ASP), which has been used in many studies of the gas and aerosol chemistry of biomass burning smoke. Here we present recent revisions made in STILT-ASP v2.0, including the use of more detailed chemical speciation of fire emissions and biogenic emissions calculated using the MEGAN model with meteorological inputs consistent with those used to drive STILT. We will present the results of an evaluation of the performance of STILT-ASP v2.0 using surface, mobile lab, and aircraft data from the 2013 Houston DISCOVER-AQ campaign. STILT-ASP v2.0 showed good average performance for O3 during the peak of the high O3 episodes on Sept. 25-26, 2013, with a mean bias of -4 ppbv. We will also demonstrate the use of STILT-ASP to evaluate the impact of biomass burning on O3 and PM2.5 in urban areas and to assess the impact of remote fires on the boundary conditions used in Eulerian chemical transport models like CAMx.

  15. Molecular modeling of auxin transport inhibitors

    International Nuclear Information System (INIS)

    Gardner, G.; Black-Schaefer, C.; Bures, M.G.

    1990-01-01

    Molecular modeling techniques have been used to study the chemical and steric properties of auxin transport inhibitors. These bind to a specific site on the plant plasma membrane characterized by its affinity for N-1-naphthylphthalamic acid (NPA). A three-dimensional model was derived from critical features of ligands for the NPA receptor, and a suggested binding conformation is proposed. This model, along with three-dimensional structural searching techniques, was then used to search the Abbott corporate database of chemical structures. Of the 467 compounds that satisfied the search criteria, 77 representative molecules were evaluated for their ability to compete for [ 3 H]NPA binding to corn microsomal membranes. Nineteen showed activity that ranged from 16 to 85% of the maximum NPA binding. Four of the most active of these, from chemical classes not included in the original compound set, also inhibited polar auxin transport through corn coleoptile sections

  16. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  17. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A

    2014-01-01

    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  18. Modeling of reactive chemical transport of leachates from a utility fly-ash disposal site

    International Nuclear Information System (INIS)

    Apps, J.A.; Zhu, M.; Kitanidis, P.K.; Freyberg, D.L.; Ronan, A.D.; Itakagi, S.

    1991-04-01

    Fly ash from fossil-fuel power plants is commonly slurried and pumped to disposal sites. The utility industry is interested in finding out whether any hazardous constituents might leach from the accumulated fly ash and contaminate ground and surface waters. To evaluate the significance of this problem, a representative site was selected for modeling. FASTCHEM, a computer code developed for the Electric Power Research Institute, was utilized for the simulation of the transport and fate of the fly-ash leachate. The chemical evolution of the leachate was modeled as it migrated along streamtubes defined by the flow model. The modeling predicts that most of the leachate seeps through the dam confining the ash pond. With the exception of ferrous, manganous, sulfate and small amounts of nickel ions, all other dissolved constituents are predicted to discharge at environmentally acceptable concentrations

  19. Photo-chemical transport modelling of tropospheric ozone: A review

    Science.gov (United States)

    Sharma, Sumit; Sharma, Prateek; Khare, Mukesh

    2017-06-01

    Ground level ozone (GLO), a secondary pollutant having adverse impact on human health, ecology, and agricultural productivity, apart from being a major contributor to global warming, has been a subject matter of several studies. In order to identify appropriate strategies to control GLO levels, accurate assessment and prediction is essential, for which elaborate simulation and modelling is required. Several studies have been undertaken in the past to simulate GLO levels at different scales and for various applications. It is important to evaluate these studies, widely spread over in literature. This paper aims to critically review various studies that have been undertaken, especially in the past 15 years (2000-15) to model GLO. The review has been done of the studies that range over different spatial scales - urban to regional and continental to global. It also includes a review of performance evaluation and sensitivity analysis of photo-chemical transport models in order to assess the extent of application of these models and their predictive capability. The review indicates following major findings: (a) models tend to over-estimate the night-time GLO concentrations due to limited titration of GLO with NO within the model; (b) dominance of contribution from far-off regional sources to average ozone concentration in the urban region and higher contribution of local sources during days of high ozone episodes; requiring strategies for controlling precursor emissions at both regional and local scales; (c) greater influence of NOx over VOC in export of ozone from urban regions due to shifting of urban plumes from VOC-sensitive regime to NOx-sensitive as they move out from city centres to neighbouring rural regions; (d) models with finer resolution inputs perform better to a certain extent, however, further improvement in resolutions (beyond 10 km) did not show improvement always; (e) future projections show an increase in GLO concentrations mainly due to rise in

  20. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    Science.gov (United States)

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  1. Modeling lightning-NOx chemistry on a sub-grid scale in a global chemical transport model

    Directory of Open Access Journals (Sweden)

    A. Gressent

    2016-05-01

    Full Text Available For the first time, a plume-in-grid approach is implemented in a chemical transport model (CTM to parameterize the effects of the nonlinear reactions occurring within high concentrated NOx plumes from lightning NOx emissions (LNOx in the upper troposphere. It is characterized by a set of parameters including the plume lifetime, the effective reaction rate constant related to NOx–O3 chemical interactions, and the fractions of NOx conversion into HNO3 within the plume. Parameter estimates were made using the Dynamical Simple Model of Atmospheric Chemical Complexity (DSMACC box model, simple plume dispersion simulations, and the 3-D Meso-NH (non-hydrostatic mesoscale atmospheric model. In order to assess the impact of the LNOx plume approach on the NOx and O3 distributions on a large scale, simulations for the year 2006 were performed using the GEOS-Chem global model with a horizontal resolution of 2° × 2.5°. The implementation of the LNOx parameterization implies an NOx and O3 decrease on a large scale over the region characterized by a strong lightning activity (up to 25 and 8 %, respectively, over central Africa in July and a relative increase downwind of LNOx emissions (up to 18 and 2 % for NOx and O3, respectively, in July. The calculated variability in NOx and O3 mixing ratios around the mean value according to the known uncertainties in the parameter estimates is at a maximum over continental tropical regions with ΔNOx [−33.1, +29.7] ppt and ΔO3 [−1.56, +2.16] ppb, in January, and ΔNOx [−14.3, +21] ppt and ΔO3 [−1.18, +1.93] ppb, in July, mainly depending on the determination of the diffusion properties of the atmosphere and the initial NO mixing ratio injected by lightning. This approach allows us (i to reproduce a more realistic lightning NOx chemistry leading to better NOx and O3 distributions on the large scale and (ii to focus on other improvements to reduce remaining uncertainties from processes

  2. Comparisons of physical and chemical sputtering in high density divertor plasmas with the Monte Carlo Impurity (MCI) transport model

    International Nuclear Information System (INIS)

    Evans, T.E.; Loh, Y.S.; West, W.P.; Finkenthal, D.F.

    1997-11-01

    The MCI transport model was used to compare chemical and physical sputtering for a DIII-D divertor plasma near detachment. With physical sputtering alone the integrated carbon influx was 8.4 x 10 19 neutral/s while physical plus chemical sputtering produced an integrated carbon influx of 1.7 x 10 21 neutrals/s. The average carbon concentration in the computational volume increased from 0.012% with only physical sputtering to 0.182% with both chemical and physical sputtering. This increase in the carbon inventory produced more radiated power which is in better agreement with experimental measurements

  3. Atmospheric emissions and long-range transport of persistent organic chemicals

    Directory of Open Access Journals (Sweden)

    Scheringer M.

    2010-12-01

    Full Text Available Persistent organic chemicals include several groups of halogenated compounds, such as polychlorinated biphenyls (PCBs, polybrominated diphenylethers (PBDEs, and polyfluorinated carboxylic acids (PFCAs. These chemicals remain for long times (years to decades in the environment and cycle between different media (air, water, sediment, soil, vegetation, etc.. The environmental distribution of this type of chemicals can conveniently be analyzed by multimedia models. Multimedia models consist of a set of coupled mass balance equations for the environmental media considered; they can be set up at various scales from local to global. Two applications of multimedia models to airborne chemicals are discussed in detail: the day-night cycle of PCBs measured in air near the surface, and the atmospheric long-range transport of volatile precursors of PFCAs, formation of PFCAs by oxidation of these precursors, and subsequent deposition of PFCAs to the surface in remote regions such as the Arctic.

  4. Biosensor discovery of thyroxine transport disrupting chemicals

    International Nuclear Information System (INIS)

    Marchesini, Gerardo R.; Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J.

    2008-01-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds

  5. Biosensor discovery of thyroxine transport disrupting chemicals.

    Science.gov (United States)

    Marchesini, Gerardo R; Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J

    2008-10-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds.

  6. Modeling electrokinetic transport in phenol contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, R.; Haus, R.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)

    2001-07-01

    Numerical simulations are compared to laboratory experiments of electroremediation in soils contaminated by phenolic pollutants. The developing pH affects the electrokinetic transport behaviour of phenol. It is found that a water chemistry model must be included in an electrokinetic mass transport model to describe the process of electroremediation more accurately, if no buffering system is used at the electrodes. In the case of controlling the pH at the electrode compartments only a simplified chemical reaction model must be included in the numerical code to match the experimental phenolic transport. (orig.)

  7. Monte Carlo impurity transport modeling in the DIII-D transport

    International Nuclear Information System (INIS)

    Evans, T.E.; Finkenthal, D.F.

    1998-04-01

    A description of the carbon transport and sputtering physics contained in the Monte Carlo Impurity (MCI) transport code is given. Examples of statistically significant carbon transport pathways are examined using MCI's unique tracking visualizer and a mechanism for enhanced carbon accumulation on the high field side of the divertor chamber is discussed. Comparisons between carbon emissions calculated with MCI and those measured in the DIII-D tokamak are described. Good qualitative agreement is found between 2D carbon emission patterns calculated with MCI and experimentally measured carbon patterns. While uncertainties in the sputtering physics, atomic data, and transport models have made quantitative comparisons with experiments more difficult, recent results using a physics based model for physical and chemical sputtering has yielded simulations with about 50% of the total carbon radiation measured in the divertor. These results and plans for future improvement in the physics models and atomic data are discussed

  8. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    Science.gov (United States)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for

  9. CHNTRN: a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1983-09-01

    This report presents the development of a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network. A particular feature of the model is its capability to deal with the network system that may consist of any number of joined and branched streams/rivers of comparable size. The model employs a numerical method - an integrated compartment method (ICM) - which greatly facilitates the setup of the matrix equation for the discrete field approximating the corresponding continuous field. Most of the possible boundary conditions that may be anticipated in real-world problems are considered. These include junctions, prescribed concentration, prescribed dispersive flux, and prescribed total flux. The model is applied to two case studies: (1) a single river and (2) a five-segment river in a watershed. Results indicate that the model can realistically simulate the behavior of the sediment and chemical variations in a stream/river network. 11 references, 10 figures, 3 tables.

  10. Chemical and kinetic equilibrations via radiative parton transport

    International Nuclear Information System (INIS)

    Zhang Bin; Wortman, Warner A

    2011-01-01

    A hot and dense partonic system can be produced in the early stage of a relativistic heavy ion collision. How it equilibrates is important for the extraction of Quark-Gluon Plasma properties. We study the chemical and kinetic equilibrations of the Quark-Gluon Plasma using a radiative transport model. Thermal and Color-Glass-Condensate motivated initial conditions are used. We observe that screened parton interactions always lead to partial pressure isotropization. Different initial pressure anisotropies result in the same asymptotic evolution. Comparison of evolutions with and without radiative processes shows that chemical equilibration interacts with kinetic equilibration and radiative processes can contribute significantly to pressure isotropization.

  11. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    Science.gov (United States)

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  12. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  13. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Science.gov (United States)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  14. Reactive transport models and simulation with ALLIANCES

    International Nuclear Information System (INIS)

    Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.

    2009-01-01

    Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and

  15. Coupling between a geochemical model and a transport model of dissolved elements

    International Nuclear Information System (INIS)

    Jacquier, P.

    1988-10-01

    In order to assess the safety analysis of an underground repository, the transport of radioelements in groundwater and their interactions with the geological medium are modelled. The objective of this work is the setting up and experimental validation of the coupling of a geochemical model with a transport model of dissolved elements. A laboratory experiment was developed at the CEA center of Cadarache. Flow-through experiments were carried out on columns filled with crushed limestone, where several inflow conditions were taken into account as the temperature, the presence of a pollutant (strontium chloride) at different concentrations. The results consist of the evolution of the chemical composition of the water at the outlet of the column. The final aim of the study is to explain these results with a coupled model where geochemical and transport phenomena are modelled in a two-step procedure. This code, called STELE, was built by introducing a geochemical code, CHIMERE, into an existing transport code, METIS. At this stage, the code CHIMERE can take into account: any chemical reaction in aqueous phase (complexation, acid-base reaction, redox equilibrium), dissolution-precipitation of minerals and solid phases, dissolution-degassing of gas. The paper intends to describe the whole process leading to the coupling which can be forecasted over the next years between geochemical and transport models

  16. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    Science.gov (United States)

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  17. Mathematical Model of Ion Transport in Electrodialysis Process

    Directory of Open Access Journals (Sweden)

    F.S. Rohman

    2010-10-01

    Full Text Available Mathematical models of ion transport in electrodialysis process is reviewed and their basics concept is discussed. Three scales of ion transport reviewed are: 1 ion transport in the membrane, where two approaches are used, the irreversible thermodynamics and modeling of the membrane material; 2 ion transport in a three-layer system composed of a membrane with two adjoining diffusion layers; and 3 coupling with hydraulic flow system in an electrodialysis 2D and 3D cell, where the differential equation of convectivediffusion is used. Most of the work carried out in the past implemented NP equations since relatively easily coupled with other equations describing hydrodynamic conditions and ion transport in the surrounding solutions, chemical reactions in the solutions and the membrane, boundary and other conditions. However, it is limited to point ionic transport in homogenous and uniformly - grainy phases of structure. © 2008 BCREC UNDIP. All rights reserved.[Received: 21 January 2008, Accepted: 10 March 2008][How to Cite: F.S. Rohman, N. Aziz (2008. Mathematical Model of Ion Transport in Electrodialysis Process. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 3-8. doi:10.9767/bcrec.3.1-3.7122.3-8][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7122.3-8 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7122 ] 

  18. Biosensor discovery of thyroxine transport disrupting chemicals

    NARCIS (Netherlands)

    Marchesini, G.R.; Meimaridou, A.; Haasnoot, W.; Meulenberg, E.; Albertus, F.; Mizuguchi, M.; Takeuchi, M.; Irth, H.; Murk, A.J.

    2008-01-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two

  19. Conceptual and Numerical Models for UZ Flow and Transport

    International Nuclear Information System (INIS)

    Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models

  20. Summary of the LLNL one-dimensional transport-kinetics model of the troposphere and stratosphere: 1981

    International Nuclear Information System (INIS)

    Wuebbles, D.J.

    1981-09-01

    Since the LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere was originally developed in 1972 (Chang et al., 1974), there have been many changes to the model's representation of atmospheric physical and chemical processes. A brief description is given of the current LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere

  1. Modeling the photochemical attenuation of down-the-drain chemicals during river transport by stochastic methods and field measurements of pharmaceuticals and personal care products.

    Science.gov (United States)

    Hanamoto, Seiya; Nakada, Norihide; Yamashita, Naoyuki; Tanaka, Hiroaki

    2013-01-01

    Existing stochastic models for predicting concentrations of down-the-drain chemicals in aquatic environments do not account for the diurnal variation of direct photolysis by sunlight, despite its being an important factor in natural attenuation. To overcome this limitation, we developed a stochastic model incorporating temporal variations in direct photolysis. To verify the model, we measured 57 pharmaceuticals and personal care products (PPCPs) in a 7.6-km stretch of an urban river, and determined their physical and biological properties in laboratory experiments. During transport along the river, 8 PPCPs, including ketoprofen and azithromycin, were attenuated by >20%, mainly owing to direct photolysis and adsorption to sediments. The photolabile PPCPs attenuated significantly in the daytime but persisted in the nighttime. The observations were similar to the values predicted by the photolysis model for the photolabile PPCPs (i.e., ketoprofen, diclofenac and furosemide) but not by the existing model. The stochastic model developed in this study was suggested to be a novel and useful stochastic model for evaluating direct photolysis of down-the-drain chemicals, which occurs during the river transport.

  2. Polarographic validation of chemical speciation models

    International Nuclear Information System (INIS)

    Duffield, J.R.; Jarratt, J.A.

    2001-01-01

    It is well established that the chemical speciation of an element in a given matrix, or system of matrices, is of fundamental importance in controlling the transport behaviour of the element. Therefore, to accurately understand and predict the transport of elements and compounds in the environment it is a requirement that both the identities and concentrations of trace element physico-chemical forms can be ascertained. These twin requirements present the analytical scientist with considerable challenges given the labile equilibria, the range of time scales (from nanoseconds to years) and the range of concentrations (ultra-trace to macro) that may be involved. As a result of this analytical variability, chemical equilibrium modelling has become recognised as an important predictive tool in chemical speciation analysis. However, this technique requires firm underpinning by the use of complementary experimental techniques for the validation of the predictions made. The work reported here has been undertaken with the primary aim of investigating possible methodologies that can be used for the validation of chemical speciation models. However, in approaching this aim, direct chemical speciation analyses have been made in their own right. Results will be reported and analysed for the iron(II)/iron(III)-citrate proton system (pH 2 to 10; total [Fe] = 3 mmol dm -3 ; total [citrate 3- ] 10 mmol dm -3 ) in which equilibrium constants have been determined using glass electrode potentiometry, speciation is predicted using the PHREEQE computer code, and validation of predictions is achieved by determination of iron complexation and redox state with associated concentrations. (authors)

  3. Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations

    KAUST Repository

    Ott, Lesley E.

    2010-02-18

    A three-dimensional (3-D) cloud-scale chemical transport model that includes a parameterized source of lightning NOx on the basis of observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four field projects. Production per intracloud (PIC) and cloud-to-ground (PCG) flash is estimated by assuming various values of PIC and PCG for each storm and determining which production scenario yields NOx mixing ratios that compare most favorably with in-cloud aircraft observations. We obtain a mean PCG value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, PIC may be nearly equal to PCG, which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents vertical profiles of the mass of lightning NOx after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NOx remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from profiles calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a “C-shaped” profile). The new model results (a backward C-shaped profile) suggest that chemical transport models that assume a C-shaped vertical profile of lightning NOx mass may place too much mass near the surface and too little in the middle troposphere.

  4. Determination of chemical solute transport parameters effecting radiostrontium interbed sediments

    International Nuclear Information System (INIS)

    Hemming, C.; Bunde, R.L.; Rosentreter, J.J.

    1993-01-01

    The extent to which radionuclides migrate in an aquifer system is a function of various physical, chemical, and biological processes. A measure of this migration rate is of primary concern when locating suitable storage sites for such species. Parameters including water-rock interactions, infiltration rates, chemical phase modification, and biochemical reactions all affect solute transport. While these different types of chemical reactions can influence solute transport in subsurface waters, distribution coefficients (Kd) can be send to effectively summarize the net chemical factors which dictate transport efficiency. This coefficient describes the partitioning of the solute between the solution and solid phase. Methodology used in determining and interpreting the distribution coefficient for radiostrontium in well characterized sediments will be presented

  5. Abstracts of the symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    1982-03-01

    Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport

  6. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  7. Modification of the finite element heat and mass transfer code (FEHM) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1996-08-01

    The finite element code FEHMN, developed by scientists at Los Alamos National Laboratory (LANL), is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developing hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent Kd model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The new chemical capabilities of FEHMN are illustrated by using Los Alamos National Laboratory's site scale model of Yucca Mountain to model two-dimensional, vadose zone 14 C transport. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also prove that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  8. Two-dimensional numerical modelling of sediment and chemical constituent transport within the lower reaches of the Athabasca River.

    Science.gov (United States)

    Kashyap, Shalini; Dibike, Yonas; Shakibaeinia, Ahmad; Prowse, Terry; Droppo, Ian

    2017-01-01

    Flows and transport of sediment and associated chemical constituents within the lower reaches of the Athabasca River between Fort McMurray and Embarrass Airport are investigated using a two-dimensional (2D) numerical model called Environmental Fluid Dynamics Code (EFDC). The river reach is characterized by complex geometry, including vegetated islands, alternating sand bars and an unpredictable thalweg. The models were setup and validated using available observed data in the region before using them to estimate the levels of cohesive sediment and a select set of chemical constituents, consisting of polycyclic aromatic hydrocarbons (PAHs) and metals, within the river system. Different flow scenarios were considered, and the results show that a large proportion of the cohesive sediment that gets deposited within the study domain originates from the main stem upstream inflow boundary, although Ells River may also contribute substantially during peak flow events. The floodplain, back channels and islands in the river system are found to be the major areas of concern for deposition of sediment and associated chemical constituents. Adsorbed chemical constituents also tend to be greater in the main channel water column, which has higher levels of total suspended sediments, compared to in the flood plain. Moreover, the levels of chemical constituents leaving the river system are found to depend very much on the corresponding river bed concentration levels, resulting in higher outflows with increases in their concentration in the bed sediment.

  9. Chemical controls on subsurface radionuclide transport

    International Nuclear Information System (INIS)

    King, K.J.; Killey, R.W.D.

    1990-01-01

    Chemical and biochemical processes can affect the movement of contaminants in groundwater. Materials can be almost completely removed from circulation by processes such as precipitation and coprecipitation. Organic compounds or contaminants that are hazardous may be degraded or formed during groundwater transport. Studies at the Chalk River Laboratories of AECL have focused on radionuclide transport, although other contaminants have been and are being investigated. This paper summarizes findings from research that extends back more than 30 years. Much of the work on reactive contaminant transport has centered on 90 Sr; other contaminants have also been considered, however, and features of their behaviour are also reviewed. (25 refs., 5 figs., 4 tabs.)

  10. Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model

    Science.gov (United States)

    Uno, Itsushi; Satake, Shinsuke; Carmichael, Gregory R.; Tang, Youhua; Wang, Zifa; Takemura, Toshihiko; Sugimoto, Nobuo; Shimizu, Atsushi; Murayama, Toshiyuki; Cahill, Thomas A.; Cliff, Steven; Uematsu, Mitsuo; Ohta, Sachio; Quinn, Patricia K.; Bates, Timothy S.

    2004-10-01

    The regional-scale aerosol transport model Chemical Weather Forecasting System (CFORS) is used for analysis of large-scale dust phenomena during the Asian Pacific Regional Characterization Experiment (ACE-Asia) intensive observation. Dust modeling results are examined with the surface weather reports, satellite-derived dust index (Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI)), Mie-scattering lidar observation, and surface aerosol observations. The CFORS dust results are shown to accurately reproduce many of the important observed features. Model analysis shows that the simulated dust vertical loading correlates well with TOMS AI and that the dust loading is transported with the meandering of the synoptic-scale temperature field at the 500-hPa level. Quantitative examination of aerosol optical depth shows that model predictions are within 20% difference of the lidar observations for the major dust episodes. The structure of the ACE-Asia Perfect Dust Storm, which occurred in early April, is clarified with the help of the CFORS model analysis. This storm consisted of two boundary layer components and one elevated dust (>6-km height) feature (resulting from the movement of two large low-pressure systems). Time variation of the CFORS dust fields shows the correct onset timing of the elevated dust for each observation site, but the model results tend to overpredict dust concentrations at lower latitude sites. The horizontal transport flux at 130°E longitude is examined, and the overall dust transport flux at 130°E during March-April is evaluated to be 55 Tg.

  11. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Mayer, D.W.; Argo, R.S.

    1982-02-01

    A hydrodynamic model, CAFE-I, a wave refraction model, LO3D, and a sediment and contaminant transport model, FETRA, were selected as tools for evaluating exposure levels of radionuclides, heavy metals, and other toxic chemicals in coastal waters. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interactions (e.g., adsorption and desorption), and the mechanisms governing the transport, deposition, and resuspension of contaminated sediments

  12. Regional transport model of atmospheric sulfates

    International Nuclear Information System (INIS)

    Rao, K.S.; Thomson, I.; Egan, B.A.

    1977-01-01

    As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO 2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO 2 and SO 4 /sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO 2 and SO 4 /sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO 2 and SO 4 /sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants

  13. Coupled models in porous media: reactive transport and fractures

    International Nuclear Information System (INIS)

    Amir, L.

    2008-12-01

    This thesis deals with numerical simulation of coupled models for flow and transport in porous media. We present a new method for coupling chemical reactions and transport by using a Newton-Krylov method, and we also present a model of flow in fractured media, based on a domain decomposition method that takes into account the case of intersecting fractures. This study is composed of three parts: the first part contains an analysis, and implementation, of various numerical methods for discretizing advection-diffusion problems, in particular by using operator splitting methods. The second part is concerned with a fully coupled method for modeling transport and chemistry problems. The coupled transport-chemistry model is described, after discretization in time, by a system of nonlinear equations. The size of the system, namely the number of grid points times the number a chemical species, precludes a direct solution of the linear system. To alleviate this difficulty, we solve the system by a Newton-Krylov method, so as to avoid forming and factoring the Jacobian matrix. In the last part, we present a model of flow in 3D for intersecting fractures, by using a domain decomposition method. The fractures are treated as interfaces between sub-domains. We show existence and uniqueness of the solution, and we validate the model by numerical tests. (author)

  14. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  15. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually

  16. Modification of the finite element heat and mass transfer code (FEHMN) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1995-01-01

    The finite element code FEHMN is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developed hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent K d model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also provide that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  17. Transport parameters for the modelling of water transport in ionomer membranes for PEM-fuel cells

    International Nuclear Information System (INIS)

    Meier, Frank; Eigenberger, Gerhart

    2004-01-01

    The water transport number (drag coefficient) and the hydraulic permeability were measured for Nafion. The results show a significant increase of both parameters with increasing water content indicating that they are strongly influenced by the membrane microstructure. Based on these experimental studies a new model approach to describe water transport in the H 2 -PEFC membrane is presented. This approach considers water transport by electro-osmosis caused by the proton flux through the membrane and by osmosis caused by a gradient in the chemical potential of water. It is parametrized by the measured data for the water transport number and the hydraulic permeability of Nafion. First simulation results applying this approach to a one-dimensional model of the H 2 -PEFC show good agreement with experimental data. Therefore, the developed model can be used for a new insight into the dominating mechanisms of water transport in the membrane

  18. Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model.

    Science.gov (United States)

    Zeng, Huawei; Jackson, Matthew I; Cheng, Wen-Hsing; Combs, Gerald F

    2011-11-01

    Determining the effect of selenium (Se) chemical form on uptake, transport, and glutathione peroxidase activity in human intestinal cells is critical to assess Se bioavailability at nutritional doses. In this study, we found that two sources of L-selenomethionine (SeMet) and Se-enriched yeast each increased intracellular Se content more effectively than selenite or methylselenocysteine (SeMSC) in the human intestinal Caco-2 cell model. Interestingly, SeMSC, SeMet, and digested Se-enriched yeast were transported at comparable efficacy from the apical to basolateral sides, each being about 3-fold that of selenite. In addition, these forms of Se, whether before or after traversing from apical side to basolateral side, did not change the potential to support glutathione peroxidase (GPx) activity. Although selenoprotein P has been postulated to be a key Se transport protein, its intracellular expression did not differ when selenite, SeMSC, SeMet, or digested Se-enriched yeast was added to serum-contained media. Taken together, our data show, for the first time, that the chemical form of Se at nutritional doses can affect the absorptive (apical to basolateral side) efficacy and retention of Se by intestinal cells; but that, these effects are not directly correlated to the potential to support GPx activity.

  19. Comparing rankings of selected TRI organic chemicals for two environments using a level III fugacity model and toxicity

    International Nuclear Information System (INIS)

    Edwards, F.G.; Egemen, E.; Nirmalakhandan, N.

    1998-01-01

    The Toxics Release Inventory, TRI (USEPA, 1995) is a comprehensive listing of chemicals, mass released, source of releases, and other related information for chemicals which are released into the environment in the US. These chemicals are then ranked according to the mass released as a indication of their environmental impact. Industries have been encouraged to adopt production methods to decrease the release of chemicals which are ranked highly in the TRI. Clearly, this ranking of the chemicals based upon the mass released fails to take into account very important environmental aspects. The first and most obvious aspect is the wide range of toxicity's of the chemicals released. Numerous researchers have proposed systems to rank chemicals according to their toxicity. The second aspect, which a mass released based ranking does not take into account, is the fate and transport of each chemical within the environment. Cohen and Ryan (1985) and Mackay and Paterson (1991) have proposed models to evaluate the fate and transport of chemicals released into the environment. Some authors have incorporated the mass released and toxicity with some fate and transport aspects to rank the impact of released chemicals. But, due to the complexities of modeling the environment, the lack of published data on properties of chemicals, and the lack of information on the speciation of chemicals in complex systems, modeling the fate and transport of toxic chemicals in the environment remains difficult. To provide an indication of the need to rank chemicals according to their environmental impact instead of the mass released, the authors have utilized a subset of 45 organic chemicals from the TRI, modeled the fate and transport of the chemicals using a Level III fugacity model, and compared those equilibrium concentrations with toxicity data to yield a hazard value for each chemical

  20. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, S. [National Nuclear Laboratory (United Kingdom); Jivkov, A.P. [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  1. Parameters estimation for reactive transport: A way to test the validity of a reactive model

    Science.gov (United States)

    Aggarwal, Mohit; Cheikh Anta Ndiaye, Mame; Carrayrou, Jérôme

    The chemical parameters used in reactive transport models are not known accurately due to the complexity and the heterogeneous conditions of a real domain. We will present an efficient algorithm in order to estimate the chemical parameters using Monte-Carlo method. Monte-Carlo methods are very robust for the optimisation of the highly non-linear mathematical model describing reactive transport. Reactive transport of tributyltin (TBT) through natural quartz sand at seven different pHs is taken as the test case. Our algorithm will be used to estimate the chemical parameters of the sorption of TBT onto the natural quartz sand. By testing and comparing three models of surface complexation, we show that the proposed adsorption model cannot explain the experimental data.

  2. Modelling of activity transport in PHWR

    International Nuclear Information System (INIS)

    Veena, S.N.; Rangarajan, S.; Narasimhan, S.V.; Horvath, G.L.

    2000-01-01

    The modelling of mass and activity transport in PHWR is of importance in predicting the build up of radiation field in and around the Primary Heat Transport system which will consequently help in planning the Dilute Chemical Decontamination and man rem budgeting. Modeling also helps in understanding the different parameters controlling the transport behaviour. Some of the important parameters include coolant chemistry like pH, physical parameters like temperature, the nature of the corrosion film and hence the effect of passivation techniques. VVER code for activity transport uses six nodes for the primary system and is essentially devised for stainless steel system. In the present work though based on this model, major modifications have been incorporated to suit the PHWR conditions. In the code, the PHT system of PHWR is suitably divided into 14 nodes, 5 in-core and 9 out of core nodes based on material and heat transfer properties. This paper describes the mechanisms involved in the various processes like generation of corrosion products, their release as well as their transport into the primary coolant, the activation of inactive corrosion product nuclides and the build up of radiation field due to 60 Co around the PHT system. (author)

  3. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle-component-based factor analysis

    OpenAIRE

    C. A. Stroud; M. D. Moran; P. A. Makar; S. Gong; W. Gong; J. Zhang; J. G. Slowik; J. P. D. Abbatt; G. Lu; J. R. Brook; C. Mihele; Q. Li; D. Sills; K. B. Strawbridge; M. L. McGuire

    2012-01-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA) and two other carbonaceous species, black carbon (BC) and carbon monoxide (CO), made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two...

  4. Potential for Intermodal Transport of Chemical Goods in Slovakia

    Directory of Open Access Journals (Sweden)

    Jagelčák Juraj

    2017-01-01

    Full Text Available This article deals with intermodal transport of chemical goods in Slovak republic. Analysis is based on information from interviews with companies and logistics service providers. The first part of the article describes importance of Intermodal transport and basic transport routes for intermodal transport. Respondents considered advantages and disadvantages of intermodal transport. Possible improvements inside companies and improvements of external framework conditions to promote modal shift are described in the second part of the paper.

  5. Directed transport by surface chemical potential gradients for enhancing analyte collection in nanoscale sensors.

    Science.gov (United States)

    Sitt, Amit; Hess, Henry

    2015-05-13

    Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.

  6. Development and Performance of the Modularized, High-performance Computing and Hybrid-architecture Capable GEOS-Chem Chemical Transport Model

    Science.gov (United States)

    Long, M. S.; Yantosca, R.; Nielsen, J.; Linford, J. C.; Keller, C. A.; Payer Sulprizio, M.; Jacob, D. J.

    2014-12-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been reengineered to serve as a platform for a range of computational atmospheric chemistry science foci and applications. Development included modularization for coupling to general circulation and Earth system models (ESMs) and the adoption of co-processor capable atmospheric chemistry solvers. This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of GEOS-Chem scientific code to permit seamless transition from the GEOS-Chem stand-alone serial CTM to deployment as a coupled ESM module. In this manner, the continual stream of updates contributed by the CTM user community is automatically available for broader applications, which remain state-of-science and directly referenceable to the latest version of the standard GEOS-Chem CTM. These developments are now available as part of the standard version of the GEOS-Chem CTM. The system has been implemented as an atmospheric chemistry module within the NASA GEOS-5 ESM. The coupled GEOS-5/GEOS-Chem system was tested for weak and strong scalability and performance with a tropospheric oxidant-aerosol simulation. Results confirm that the GEOS-Chem chemical operator scales efficiently for any number of processes. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemical operator means that the relative cost goes down with increasing number of processes, making fine-scale resolution simulations possible.

  7. Evaluation model for safety capacity of chemical industrial park based on acceptable regional risk

    Institute of Scientific and Technical Information of China (English)

    Guohua Chen; Shukun Wang; Xiaoqun Tan

    2015-01-01

    The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.

  8. Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework.

    Science.gov (United States)

    Akita, Yasuyuki; Baldasano, Jose M; Beelen, Rob; Cirach, Marta; de Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L; de Nazelle, Audrey

    2014-04-15

    In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.

  9. Variational multiscale models for charge transport.

    Science.gov (United States)

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  10. Variational multiscale models for charge transport

    Science.gov (United States)

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  11. Modelling freight transport

    NARCIS (Netherlands)

    Tavasszy, L.A.; Jong, G. de

    2014-01-01

    Freight Transport Modelling is a unique new reference book that provides insight into the state-of-the-art of freight modelling. Focusing on models used to support public transport policy analysis, Freight Transport Modelling systematically introduces the latest freight transport modelling

  12. Modelling oral up-take of hydrophobic and super-hydrophobic chemicals in fish.

    Science.gov (United States)

    Larisch, Wolfgang; Goss, Kai-Uwe

    2018-01-24

    We have extended a recently published toxicokinetic model for fish (TK-fish) towards the oral up-take of contaminants. Validation with hydrophobic chemicals revealed that diffusive transport through aqueous boundary layers in the gastro-intestinal tract and in the blood is the limiting process. This process can only be modelled correctly if facilitated transport by albumin or bile micelles through these boundary layers is accounted for. In a case study we have investigated the up-take of a super hydrophobic chemical, Dechlorane Plus. Our results suggest that there is no indication of a hydrophobicity or size cut-off in the bioconcentration of this chemical. Based on an extremely high, but mechanistically sound facilitation factor we received model results in good agreement with experimental values from the literature. The results also indicate that established experimental procedures for BCF determination cannot cover the very slow up-take and clearance kinetics that are to be expected for such a chemical.

  13. Modelling of the chemical state in groundwater infiltration systems

    International Nuclear Information System (INIS)

    Zysset, A.

    1993-01-01

    Groundwater is replenished by water stemming either from precipitations, lakes or rivers. The area where such an infiltration occurs is characterized by a change in the environmental conditions, such as a decrease of the flow velocity and an increase in the solid surface marking the boundary of the flow field. With these changes new chemical processes may become relevant to the transport behavior of contaminants. Since the rates of chemical processes usually are a function of the concentrations of several species, an understanding of infiltration sites may require a multicomponent approach. The present study aims at formulating a mathematical model together with its numerical solution for groundwater infiltration sites. Such a model should improve the understanding of groundwater quality changes related to infiltrating contaminants. The groundwater quality is of vital interest to men because at many places most of the drinking water originates from groundwater. In the first part of the present study two partial models are formulated: one accounting for the transport in a one-dimensional, homogeneous and saturated porous medium, the other accounting for chemical reactions. This second model is initially stated for general kinetic systems. Then, it is specified for two systems, namely for a system governed only by reactions which are fast compared to the transport processes and for a system with biologically mediated redox reactions of dissolved substrates. In the second part of the study a numerical solution to the model is developed. For this purpose, the two partial models are coupled. The coupling is either iterative as in the case of a system with fast reactions or sequential as in all other cases. The numerical solutions of simple test cases are compared to analytical solutions. In the third part the model is evaluated using observations of infiltration sites reported in the literature. (author) figs., tabs., 155 refs

  14. Ballistic transport in graphene grown by chemical vapor deposition

    NARCIS (Netherlands)

    Calado, V.E.; Zhu, S.E.; Goswami, S.; Xu, Q.; Watanabe, K.; Taniguchi, T.; Janssen, G.C.A.M.; Vandersypen, L.M.K.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be

  15. Atmospheric transport of persistent semi-volatile organic chemicals to the Arctic and cold condensation in the mid-troposphere – Part 1: 2-D modeling in mean atmosphere

    Directory of Open Access Journals (Sweden)

    J. Ma

    2010-08-01

    Full Text Available In the first part of this study for revisiting the cold condensation effect on global distribution of semi-volatile organic chemicals (SVOCs, the atmospheric transport of SVOCs to the Arctic in the mid-troposphere in a mean meridional atmospheric circulation over the Northern Hemisphere was simulated by a two-dimensional (2-D atmospheric transport model. Results show that under the mean meridional atmospheric circulation the long-range atmospheric transport of SVOCs from warm latitudes to the Arctic occurs primarily in the mid-troposphere. Although major sources are in low and mid-latitude soils, the modeled air concentration of SVOCs in the mid-troposphere is of the same order as or higher than that near the surface, demonstrating that the mid-troposphere is an important pathway and reservoir of SVOCs. The cold condensation of the chemicals is also likely to take place in the mid-troposphere over a source region of SVOCs in warm low latitudes through interacting with clouds. We demonstrate that the temperature dependent vapour pressure and atmospheric degradation rate of SVOCs exhibit similarities between lower atmosphere over the Arctic and the mid-troposphere over a tropical region. Frequent occurrence of atmospheric ascending motion and convection over warm latitudes carry the chemicals to a higher altitude where some of these chemicals may partition onto solid or aqueous phase through interaction with atmospheric aerosols, cloud water droplets and ice particles, and become more persistent at lower temperatures. Stronger winds in the mid-troposphere then convey solid and aqueous phase chemicals to the Arctic where they sink by large-scale descending motion and wet deposition. Using calculated water droplet-air partitioning coefficient of several persistent organic semi-volatile chemicals under a mean air temperature profile from the equator to the North Pole we propose that clouds are likely important sorbing media for SVOCs and pathway of

  16. Modeling reactive transport with particle tracking and kernel estimators

    Science.gov (United States)

    Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-04-01

    Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.

  17. Vadose Zone Fate and Transport Simulation of Chemicals Associated with Coal Seam Gas Extraction

    Science.gov (United States)

    Simunek, J.; Mallants, D.; Jacques, D.; Van Genuchten, M.

    2017-12-01

    The HYDRUS-1D and HYDRUS (2D/3D) computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this presentation is to provide an overview of the HYDRUS models and their add-on modules, and to demonstrate applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the vadose zone. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated) provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the coupled HYDRUS-PHREEQC module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in the vadose zone leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration is complexation of

  18. Stable isotope reactive transport modeling in water-rock interactions during CO2 injection

    Science.gov (United States)

    Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre

    2010-05-01

    Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.

  19. Development of a nonlocal convective mixing scheme with varying upward mixing rates for use in air quality and chemical transport models.

    Science.gov (United States)

    Mihailović, Dragutin T; Alapaty, Kiran; Sakradzija, Mirjana

    2008-06-01

    Asymmetrical convective non-local scheme (CON) with varying upward mixing rates is developed for simulation of vertical turbulent mixing in the convective boundary layer in air quality and chemical transport models. The upward mixing rate form the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. This scheme provides a less rapid mass transport out of surface layer into other layers than other asymmetrical convective mixing schemes. In this paper, we studied the performance of a nonlocal convective mixing scheme with varying upward mixing in the atmospheric boundary layer and its impact on the concentration of pollutants calculated with chemical and air-quality models. This scheme was additionally compared versus a local eddy-diffusivity scheme (KSC). Simulated concentrations of NO(2) and the nitrate wet deposition by the CON scheme are closer to the observations when compared to those obtained from using the KSC scheme. Concentrations calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme (of the order of 15-20%). Nitrate wet deposition calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme. To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO(2)) and nitrate wet deposition was compared for the year 2002. The comparison was made for the whole domain used in simulations performed by the chemical European Monitoring and Evaluation Programme Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.

  20. Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2

    Directory of Open Access Journals (Sweden)

    I. S. A. Isaksen

    2007-11-01

    Full Text Available The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA. Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics. A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA is the dominant OA component than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes

  1. Reactive transport modeling of chemical and isotope data to identify degradation processes of chlorinated ethenes in a diffusion-dominated media

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Damgaard, Ida; Jeannottat, Simon

    . Degradation and transport processes of chlorinated ethenes are not well understood in such geological settings, therefore risk assessment and remediation at these sites are particularly challenging. In this work, a combined approach of chemical and isotope analysis on core samples, and reactive transport...... the source zone (between 6 and 12 mbs). Concentrations and stable isotope ratios of the mother compounds and their daughter products, as well as redox parameters, fatty acids and microbial data, were analyzed with discrete sub-sampling along the cores. More samples (each 5 mm) were collected around...... of dechlorination and degradation pathways (biotic reductive dechlorination or abiotic β-elimination with iron minerals) in three core profiles. The model includes diffusion in the matrix, sequential reductive dechlorination, abiotic degradation, isotope fractionation due to degradation and due to diffusion...

  2. Towards electron transport measurements in chemically modified graphene: effect of a solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Arnhild; Ensslin, Klaus [Solid State Physics Laboratory, ETH Zurich (Switzerland); Koehler, Fabian M; Stark, Wendelin J, E-mail: arnhildj@phys.ethz.ch, E-mail: fabian.koehler@chem.ethz.ch [Institute for Chemical and Bioengineering, ETH Zurich (Switzerland)

    2010-12-15

    The chemical functionalization of graphene modifies the local electron density of carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on electron transport. The latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that the solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport, which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look at the influence of solvents used for chemical modification in order to understand their influence.

  3. Towards electron transport measurements in chemically modified graphene: effect of a solvent

    International Nuclear Information System (INIS)

    Jacobsen, Arnhild; Ensslin, Klaus; Koehler, Fabian M; Stark, Wendelin J

    2010-01-01

    The chemical functionalization of graphene modifies the local electron density of carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on electron transport. The latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that the solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport, which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look at the influence of solvents used for chemical modification in order to understand their influence.

  4. Reactive Transport Modeling of the Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    G. Bodvarsson

    2004-01-01

    The Yucca Mountain site has a dry climate and deep water table, with the repository located in the middle of an unsaturated zone approximately 600 m thick. Radionuclide transport processes from the repository to the water table are sensitive to the unsaturated zone flow field, as well as to sorption, matrix diffusion, radioactive decay, and colloid transport mechanisms. The unsaturated zone flow and transport models are calibrated against both physical and chemical data, including pneumatic pressure, liquid saturation, water potential, temperature, chloride, and calcite. The transport model predictions are further compared with testing specific to unsaturated zone transport: at Alcove 1 in the Exploratory Studies Facility (ESF), at Alcove 8 and Niche 3 of the ESF, and at the Busted Butte site. The models are applied to predict the breakthroughs at the water table for nonsorbing and sorbing radionuclides, with faults shown as the important paths for radionuclide transport. Daughter products of some important radionuclides, such as 239 Pu and 241 Am, have faster transport than the parents and must be considered in the unsaturated zone transport model. Colloid transport is significantly affected by colloid size, but only negligibly affected by lunetic declogging (reverse filtering) mechanisms. Unsaturated zone model uncertainties are discussed, including the sensitivity of breakthrough to the active fracture model parameter, as an example of uncertainties related to detailed flow characteristics and fracture-matrix interaction. It is expected that additional benefits from the unsaturated zone barrier for transport can be achieved by full implementation of the shadow zone concept immediately below the radionuclide release points in the waste emplacement drifts

  5. Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo

    Directory of Open Access Journals (Sweden)

    Hongbin Tu

    2017-09-01

    Full Text Available Despite its transport by glucose transporters (GLUTs in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo−/− unable to synthesize ascorbate (vitamin C were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo.

  6. Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Brantley, Susan L.; Chorover, Jon D.; Ewing, Robert P.; Kerisit, Sebastien N.; Liu, Chongxuan; Perfect, E.; Rother, Gernot; Stack, Andrew G.

    2016-03-16

    Internal pore domains exist within rocks, lithic fragments, subsurface sediments and soil aggregates. These domains, which we term internal domains in porous media (IDPM), contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse porous media types, and are important locations for chemical reactivity and hydrocarbon storage. Traditionally difficult to interrogate, advances in instrumentation and imaging methods are providing new insights on the physical structures and chemical attributes of IDPM. In this review we: discuss analytical methods to characterize IDPM, evaluate what has been learned about their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess potential for their inclusion in reactive transport models. Three key findings are noteworthy. 1) A combination of methods now allows complete characterization of the porosity spectrum of natural materials and its connectivity; while imaging microscopies are providing three dimensional representations of the interconnected pore network. 2) Chemical reactivity in pores <10 nm is expected to be different from micro and macropores, yet research performed to date is inconclusive on the nature, direction, and magnitude of effect. 3) Existing continuum reactive transport models treat IDPM as a sub-grid feature with average, empirical, scale-dependent parameters; and are not formulated to include detailed information on pore networks. Overall we find that IDPM are key features controlling hydrocarbon release from shales in hydrofracking systems, organic matter stabilization and recalcitrance in soil, weathering and soil formation, and long term inorganic and organic contaminant behavior in the vadose zone and groundwater. We conclude with an assessment of impactful research opportunities to advance understanding of IDPM, and to incorporate their important effects in reactive transport models

  7. Atmospheric transport of persistent organic pollutants - development of a 3-d dynamical transport model covering the northern hemisphere

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Frohn, L. M.; Brandt, J.

    2003-04-01

    The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur, lead, and mercury to the Arctic. The model has been validated carefully for these compounds. A new version of DEHM is currently being developed to describe the atmospheric transport of persistent organic pollutants (POPs) which are toxic, lipophilic and bio-accumulating compounds showing great persistence in the environment. The model has a horizontal resolution of 150 km x 150 km and 18 vertical layers, and it is driven by meteorological data from the numerical weather prediction model MM5V2. During environmental cycling POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The present model version describes the atmospheric transport of the pesticide alpha-hexachlorocyclohexane (alpha-HCH). Other POPs may be included when proper data on emissions and physical-chemical parameters becomes available. The model-processes and the first model results are presented. The atmospheric transport of alpha-HCH for the 1990s is well described by the model.

  8. Simulating the Fate and Transport of Coal Seam Gas Chemicals in Variably-Saturated Soils Using HYDRUS

    Directory of Open Access Journals (Sweden)

    Dirk Mallants

    2017-05-01

    Full Text Available The HYDRUS-1D and HYDRUS (2D/3D computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this paper is to provide a brief overview of the HYDRUS models and their add-on modules, and to demonstrate possible applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the soil. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the HP1 module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in a soil leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration in soil is complexation of

  9. Drug Transport and Pharmacokinetics for Chemical Engineers

    Science.gov (United States)

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  10. Transported PDF Modeling of Nonpremixed Turbulent CO/H-2/N-2 Jet Flames

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, xinyu; Haworth, D. C.; Huckaby, E. David

    2012-01-01

    Turbulent CO/H{sub 2}/N{sub 2} (“syngas”) flames are simulated using a transported composition probability density function (PDF) method. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation. The model includes standard k–ϵ turbulence, gradient transport for scalars, and Euclidean minimum spanning tree (EMST) mixing. Sensitivities of model results to variations in the turbulence model, the treatment of radiation heat transfer, the choice of chemical mechanism, and the PDF mixing model are explored. A baseline model reproduces the measured mean and rms temperature, major species, and minor species profiles reasonably well, and captures the scaling that is observed in the experiments. Both our results and the literature suggest that further improvements can be realized with adjustments in the turbulence model, the radiation heat transfer model, and the chemical mechanism. Although radiation effects are relatively small in these flames, consideration of radiation is important for accurate NO prediction. Chemical mechanisms that have been developed specifically for fuels with high concentrations of CO and H{sub 2} perform better than a methane mechanism that was not designed for this purpose. It is important to account explicitly for turbulence–chemistry interactions, although the details of the mixing model do not make a large difference in the results, within reasonable limits.

  11. ALGE3D: A Three-Dimensional Transport Model

    Science.gov (United States)

    Maze, G. M.

    2017-12-01

    Of the top 10 most populated US cities from a 2015 US Census Bureau estimate, 7 of the cities are situated near the ocean, a bay, or on one of the Great Lakes. A contamination of the water ways in the United States could be devastating to the economy (through tourism and industries such as fishing), public health (from direct contact, or contaminated drinking water), and in some cases even infrastructure (water treatment plants). Current national response models employed by emergency response agencies have well developed models to simulate the effects of hazardous contaminants in riverine systems that are primarily driven by one-dimensional flows; however in more complex systems, such as tidal estuaries, bays, or lakes, a more complex model is needed. While many models exist, none are capable of quick deployment in emergency situations that could contain a variety of release situations including a mixture of both particulate and dissolved chemicals in a complex flow area. ALGE3D, developed at the Department of Energy's (DOE) Savannah River National Laboratory (SRNL), is a three-dimensional hydrodynamic code which solves the momentum, mass, and energy conservation equations to predict the movement and dissipation of thermal or dissolved chemical plumes discharged into cooling lakes, rivers, and estuaries. ALGE3D is capable of modeling very complex flows, including areas with tidal flows which include wetting and drying of land. Recent upgrades have increased the capabilities including the transport of particulate tracers, allowing for more complete modeling of the transport of pollutants. In addition the model is capable of coupling with a one-dimension riverine transport model or a two-dimension atmospheric deposition model in the event that a contamination event occurs upstream or upwind of the water body.

  12. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    Science.gov (United States)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  13. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  14. The impacts of pore-scale physical and chemical heterogeneities on the transport of radionuclide-carrying colloids

    Energy Technology Data Exchange (ETDEWEB)

    WU, Ning

    2018-04-24

    Independent of the methods of nuclear waste disposal, the degradation of packaging materials could lead to mobilization and transport of radionuclides into the geosphere. This process can be significantly accelerated due to the association of radionuclides with the backfill materials or mobile colloids in groundwater. The transport of these colloids is complicated by the inherent coupling of physical and chemical heterogeneities (e.g., pore space geometry, grain size, charge heterogeneity, and surface hydrophobicity) in natural porous media that can exist on the length scale of a few grains. In addition, natural colloids themselves are often heterogeneous in their surface properties (e.g., clay platelets possess opposite charges on the surface and along the rim). Both physical and chemical heterogeneities influence the transport and retention of radionuclides under various groundwater conditions. However, the precise mechanisms how these coupled heterogeneities influence colloidal transport are largely elusive. This knowledge gap is a major source of uncertainty in developing accurate models to represent the transport process and to predict distribution of radionuclides in the geosphere.

  15. Progress in Chemical Kinetic Modeling for Surrogate Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Westbrook, C K; Herbinet, O; Silke, E J

    2008-06-06

    Gasoline, diesel, and other alternative transportation fuels contain hundreds to thousands of compounds. It is currently not possible to represent all these compounds in detailed chemical kinetic models. Instead, these fuels are represented by surrogate fuel models which contain a limited number of representative compounds. We have been extending the list of compounds for detailed chemical models that are available for use in fuel surrogate models. Detailed models for components with larger and more complicated fuel molecular structures are now available. These advancements are allowing a more accurate representation of practical and alternative fuels. We have developed detailed chemical kinetic models for fuels with higher molecular weight fuel molecules such as n-hexadecane (C16). Also, we can consider more complicated fuel molecular structures like cyclic alkanes and aromatics that are found in practical fuels. For alternative fuels, the capability to model large biodiesel fuels that have ester structures is becoming available. These newly addressed cyclic and ester structures in fuels profoundly affect the reaction rate of the fuel predicted by the model. Finally, these surrogate fuel models contain large numbers of species and reactions and must be reduced for use in multi-dimensional models for spark-ignition, HCCI and diesel engines.

  16. Progress report on SYVAC chemical modelling studies during 1984/85

    International Nuclear Information System (INIS)

    Cross, J.E.; Read, D.; Smith, G.L.; Williams, D.R.

    1985-05-01

    This report summarises progress made from April 1984 to May 1985 on chemical modelling within the DOE SYVAC project. Three new computer programs; the reaction path codes, PHREEQE and EQ3/6, and the chemical transport simulator CHEMTRN, have been acquired. Their applicability, overall capabilities, ease of use and database requirements are assessed. Coupled approaches to geochemical - hydrological modelling and the use of CHEMTRN is discussed. Modelling has been performed in connection with the ''Dry Run Assessment''. Speciation and solubilities of the actinides were simulated, assuming the vault to be a concrete solution and the geosphere to be represented by Harwell site groundwater analyses. Model verification and validation by collaboration with experimentalists and other modellers is discussed. (author)

  17. The Importance of Protons in Reactive Transport Modeling

    Science.gov (United States)

    McNeece, C. J.; Hesse, M. A.

    2014-12-01

    The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of

  18. Metal transport across biomembranes: emerging models for a distinct chemistry.

    Science.gov (United States)

    Argüello, José M; Raimunda, Daniel; González-Guerrero, Manuel

    2012-04-20

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models.

  19. Field validation of the contaminant transport model, FEMA

    International Nuclear Information System (INIS)

    Wong, K.-F.V.

    1986-01-01

    The work describes the validation with field data of a finite element model of material transport through aquifers (FEMA). Field data from the Idaho Chemical Processing Plant, Idaho, USA and from the 58th Street landfill in Miami, Florida, USA are used. In both cases the model was first calibrated and then integrated over a span of eight years to check on the predictive capability of the model. Both predictive runs gave results that matched well with available data. (author)

  20. Ballistic transport in graphene grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K.; Zhu, Shou-En; Janssen, G. C. A. M.; Watanabe, K.; Taniguchi, T.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene

  1. Ballistic transport in graphene grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K., E-mail: l.m.k.vandersypen@tudelft.nl [Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft (Netherlands); Zhu, Shou-En; Janssen, G. C. A. M. [Micro and Nano Engineering Laboratory, Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft (Netherlands); Watanabe, K.; Taniguchi, T. [Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2014-01-13

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene.

  2. Hybrid advection scheme for 3-dimensional atmospheric models. Testing and application for a study of NO{sub x} transport

    Energy Technology Data Exchange (ETDEWEB)

    Zubov, V.A.; Rozanov, E.V. [Main Geophysical Observatory, St.Petersburg (Russian Federation); Schlesinger, M.E.; Andronova, N.G. [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Atmospheric Sciences

    1997-12-31

    The problems of ozone depletion, climate change and atmospheric pollution strongly depend on the processes of production, destruction and transport of chemical species. A hybrid transport scheme was developed, consisting of the semi-Lagrangian scheme for horizontal advection and the Prather scheme for vertical transport, which have been used for the Atmospheric Chemical Transport model to calculate the distributions of different chemical species. The performance of the new hybrid scheme has been evaluated in comparison with other transport schemes on the basis of specially designed tests. The seasonal cycle of the distribution of N{sub 2}O simulated by the model, as well as the dispersion of NO{sub x} exhausted from subsonic aircraft, are in a good agreement with published data. (author) 8 refs.

  3. Hybrid advection scheme for 3-dimensional atmospheric models. Testing and application for a study of NO{sub x} transport

    Energy Technology Data Exchange (ETDEWEB)

    Zubov, V A; Rozanov, E V [Main Geophysical Observatory, St.Petersburg (Russian Federation); Schlesinger, M E; Andronova, N G [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Atmospheric Sciences

    1998-12-31

    The problems of ozone depletion, climate change and atmospheric pollution strongly depend on the processes of production, destruction and transport of chemical species. A hybrid transport scheme was developed, consisting of the semi-Lagrangian scheme for horizontal advection and the Prather scheme for vertical transport, which have been used for the Atmospheric Chemical Transport model to calculate the distributions of different chemical species. The performance of the new hybrid scheme has been evaluated in comparison with other transport schemes on the basis of specially designed tests. The seasonal cycle of the distribution of N{sub 2}O simulated by the model, as well as the dispersion of NO{sub x} exhausted from subsonic aircraft, are in a good agreement with published data. (author) 8 refs.

  4. Model prodrugs for the intestinal oligopeptide transporter

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a target for increasing intestinal transport of low permeability compounds by creating prodrugs designed for the transporter. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro...... with a pH of approximately 6.0, but still release the model drug at the intercellular and blood pH of approximately 7.4. Even though benzyl alcohol is not a low molecular weight drug molecule, these results indicate that the dipeptide prodrug principle is a promising drug delivery concept. However......, the physico-chemical properties such as electronegativity, solubility, and log P of the drug molecule may also have an influence on the potential of these kinds of prodrugs. The purpose of the present study is to investigate whether the model drug electronegativity, estimated as Taft substitution parameter...

  5. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem

    2017-07-01

    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  6. Observed and modelledchemical weather” during ESCOMPTE

    Science.gov (United States)

    Dufour, A.; Amodei, M.; Ancellet, G.; Peuch, V.-H.

    2005-03-01

    The new MOdèle de Chimie Atmosphérique à Grande Echelle (MOCAGE) three-dimensional multiscale chemistry and transport model (CTM) has been applied to study heavy pollution episodes observed during the ESCOMPTE experiment. The model considers the troposphere and lower stratosphere, and allows the possibility of zooming from the planetary scale down to the regional scale over limited area subdomains. Like this, it generates its own time-dependent chemical boundary conditions in the vertical and in the horizontal. This paper focuses on the evaluation and quantification of uncertainties related to chemical and transport modelling during two intensive observing periods, IOP2 and IOP4 (June 20-26 and July 10-14, 2001, respectively). Simulations are compared to the database of four-dimensional observations, which includes ground-based sites and aircraft measurements, radiosoundings, and quasi-continuous measurements of ozone by LIDARs. Thereby, the observed and modelled day-to-day variabilities in air composition both at the surface and in the vertical have been assessed. Then, three sensitivity studies are conducted concerning boundary conditions, accuracy of the emission dataset, and representation of chemistry. Firstly, to go further in the analysis of chemical boundary conditions, results from the standard grid nesting set-up and altered configurations, relying on climatologies, are compared. Along with other recent studies, this work advocates the systematic coupling of limited-area models with global CTMs, even for regional air quality studies or forecasts. Next, we evaluate the benefits of using the detailed high-resolution emissions inventory of ESCOMPTE: improvements are noticeable both on ozone reactivity and on the concentrations of various species of the ozone photochemical cycle especially primary ones. Finally, we provide some insights on the comparison of two simulations differing only by the parameterisation of chemistry and using two state

  7. Model for tritiated water transport in soil

    International Nuclear Information System (INIS)

    Galeriu, D.; Paunescu, N.

    1999-01-01

    Chemical forms of tritium released from nuclear facilities are mostly water (HTO) and hydrogen (HT, TT). Elemental tritium is inert in vegetation and superior animals, but the microorganisms from soil oxidize HT to HTO. After an atmospheric HT emission, in short time an equivalent quantity of HTO is re-emitted from soil. In the vicinity of a tritium source the spatial and temporary distribution of HTO is dependent on the chemical form of tritium releases. During routine tritium releases (continuously and constant releases), the local distribution of tritium reaches equilibrium, and specific activities of tritium in environmental compartments are almost equal. The situation is very different after an accidental emission. Having in view, harmful effects of tritium when it is incorporated into the body several models were developed for environmental tritium transport and dose assessment. The tritium transport into the soil is an important part of the environmental tritium behavior, but, unfortunately, in spite of the importance of this problem the corresponding modeling is unsatisfactory. The aim of this paper was the improvement of the TRICAIAP model, and the application of the model to BIOMOVS scenario. The BIOMOVS scenario predicts HTO concentrations in soil during 30 days, after one hour atmospheric HTO emission. The most important conclusions of the paper are: the principal carrier of tritium into the soil is water; the transfer processes are the reactions of water in soil and the diffusion due to concentration gradient; atmosphere-soil transport is dependent of surface characteristics (granulation, humidity, roughness, etc.); the conversion rate of HT to HTO is not well known and is dependent on active microorganism concentration in soil and on soil humidity. More experimental data are needed to decrease the uncertainty of transfer parameter, for the definition of the influence of vegetation, etc. (authors)

  8. Coupled Thermo-Hydro-Mechanical-Chemical Modeling of Water Leak-Off Process during Hydraulic Fracturing in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-11-01

    Full Text Available The water leak-off during hydraulic fracturing in shale gas reservoirs is a complicated transport behavior involving thermal (T, hydrodynamic (H, mechanical (M and chemical (C processes. Although many leak-off models have been published, none of the models fully coupled the transient fluid flow modeling with heat transfer, chemical-potential equilibrium and natural-fracture dilation phenomena. In this paper, a coupled thermo-hydro-mechanical-chemical (THMC model based on non-equilibrium thermodynamics, hydrodynamics, thermo-poroelastic rock mechanics, and non-isothermal chemical-potential equations is presented to simulate the water leak-off process in shale gas reservoirs. The THMC model takes into account a triple-porosity medium, which includes hydraulic fractures, natural fractures and shale matrix. The leak-off simulation with the THMC model involves all the important processes in this triple-porosity medium, including: (1 water transport driven by hydraulic, capillary, chemical and thermal osmotic convections; (2 gas transport induced by both hydraulic pressure driven convection and adsorption; (3 heat transport driven by thermal convection and conduction; and (4 natural-fracture dilation considered as a thermo-poroelastic rock deformation. The fluid and heat transport, coupled with rock deformation, are described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. The semi-implicit finite-difference algorithm is proposed to solve these equations. The evolution of pressure, temperature, saturation and salinity profiles of hydraulic fractures, natural fractures and matrix is calculated, revealing the multi-field coupled water leak-off process in shale gas reservoirs. The influences of hydraulic pressure, natural-fracture dilation, chemical osmosis and thermal osmosis on water leak-off are investigated. Results from this study are expected to provide a better understanding of the

  9. Accounting for chemical kinetics in field scale transport calculations

    International Nuclear Information System (INIS)

    Bryan, N.D.

    2005-01-01

    The modelling of column experiments has shown that the humic acid mediated transport of metal ions is dominated by the non-exchangeable fraction. Metal ions enter this fraction via the exchangeable fraction, and may transfer back again. However, in both directions these chemical reactions are slow. Whether or not a kinetic description of these processes is required during transport calculations, or an assumption of local equilibrium will suffice, will depend upon the ratio of the reaction half-time to the residence time of species within the groundwater column. If the flow rate is sufficiently slow or the reaction sufficiently fast then the assumption of local equilibrium is acceptable. Alternatively, if the reaction is sufficiently slow (or the flow rate fast), then the reaction may be 'decoupled', i.e. removed from the calculation. These distinctions are important, because calculations involving chemical kinetics are computationally very expensive, and should be avoided wherever possible. In addition, column experiments have shown that the sorption of humic substances and metal-humate complexes may be significant, and that these reactions may also be slow. In this work, a set of rules is presented that dictate when the local equilibrium and decoupled assumptions may be used. In addition, it is shown that in all cases to a first approximation, the behaviour of a kinetically controlled species, and in particular its final distribution against distance at the end of a calculation, depends only upon the ratio of the reaction first order rate to the residence time, and hence, even in the region where the simplifications may not be used, the behaviour is predictable. In this way, it is possible to obtain an estimate of the migration of these species, without the need for a complex transport calculation. (orig.)

  10. Impact of high speed civil transports on stratospheric ozone. A 2-D model investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kinnison, D E; Connell, P S [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored. (author) 7 refs.

  11. Impact of high speed civil transports on stratospheric ozone. A 2-D model investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kinnison, D.E.; Connell, P.S. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored. (author) 7 refs.

  12. Integrated modelling of physical, chemical and biological weather

    DEFF Research Database (Denmark)

    Kurganskiy, Alexander

    . This is an online-coupled meteorology-chemistry model where chemical constituents and different types of aerosols are an integrated part of the dynamical model, i.e., these constituents are transported in the same way as, e.g., water vapor and cloud water, and, at the same time, the aerosols can interactively...... impact radiation and cloud micro-physics. The birch pollen modelling study has been performed for domains covering Europe and western Russia. Verification of the simulated birch pollen concentrations against in-situ observations showed good agreement obtaining the best score for two Danish sites...

  13. Inverse modeling of multicomponent reactive transport through single and dual porosity media

    Science.gov (United States)

    Samper, Javier; Zheng, Liange; Fernández, Ana María; Montenegro, Luis

    2008-06-01

    Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX ( Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model.

  14. FY17 Progress in Modeling of Lanthanide Transport in Metallic Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Matthews, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-19

    A critical review of fuel-clad-chemical interactions along with modelling requirements is published. The mechanism of lanthanide transport is studied experimentally (NEUP collaboration) and using simulations and initial results are published in Refs.

  15. A review of operational, regional-scale, chemical weather forecasting models in Europe

    Directory of Open Access Journals (Sweden)

    J. Kukkonen

    2012-01-01

    Full Text Available Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed in this article include how weather forecasting and atmospheric chemistry models are integrated into chemical weather forecasting systems, how physical processes are incorporated into the models through parameterization schemes, how the model architecture affects the predicted variables, and how air chemistry and aerosol processes are formulated. In addition, we discuss sensitivity analysis and evaluation of the models, user operational requirements, such as model availability and documentation, and output availability and dissemination. In this manner, this article allows for the evaluation of the relative strengths and weaknesses of the various modelling systems and modelling approaches. Finally, this article highlights the most prominent gaps of knowledge for chemical weather forecasting models and suggests potential priorities for future research directions, for the following selected focus areas: emission inventories, the integration of numerical weather prediction and atmospheric chemical transport models, boundary conditions and nesting of models, data assimilation of the various chemical species, improved understanding and parameterization of physical processes, better evaluation of models against data and the construction of model ensembles.

  16. A Stochastic Multi-Media Model of Microbial Transport in Watersheds

    Science.gov (United States)

    Yeghiazarian, L.; Safwat, A.; Whiteaker, T.; Teklitz, A.; Nietch, C.; Maidment, D. R.; Best, E. P.

    2012-12-01

    Fecal contamination is the leading cause of surface-water impairment in the US, and fecal pathogens are capable of triggering massive outbreaks of gastrointestinal disease. The difficulty in prediction of water contamination has its roots in the stochastic variability of fecal pathogens in the environment, and in the complexity of microbial dynamics and interactions on the soil surface and in water. To address these challenges, we have developed a stochastic model whereby the transport of microorganisms in watersheds is considered in two broad categories: microorganisms that are attached to mineral or organic substrates in suspended sediment; and unattached microorganisms suspended in overland flow. The interactions of microorganisms with soil particles on the soil surface and in the overland flow lead to transitions of microorganisms between solid and aqueous media. The strength of attachment of microorganisms to soil particles is determined by the chemical characteristics of soils which are highly correlated with the particle size. The particle size class distribution in the suspended sediment is predicted by the Water Erosion Prediction Project (WEPP). The model is integrated with ArcGIS, resulting in a general transport-modeling framework applicable to a variety of biological and chemical surface water contaminants. Simulations are carried out for a case study of contaminant transport in the East Fork Little Miami River Watershed in Ohio. Model results include the spatial probability distribution of microbes in the watershed and can be used for assessment of (1) mechanisms dominating microbial transport, and (2) time and location of highest likelihood of microbial occurrence, thus yielding information on best water sampling strategies.

  17. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    Science.gov (United States)

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  18. Model abstraction addressing long-term simulations of chemical degradation of large-scale concrete structures

    International Nuclear Information System (INIS)

    Jacques, D.; Perko, J.; Seetharam, S.; Mallants, D.

    2012-01-01

    This paper presents a methodology to assess the spatial-temporal evolution of chemical degradation fronts in real-size concrete structures typical of a near-surface radioactive waste disposal facility. The methodology consists of the abstraction of a so-called full (complicated) model accounting for the multicomponent - multi-scale nature of concrete to an abstracted (simplified) model which simulates chemical concrete degradation based on a single component in the aqueous and solid phase. The abstracted model is verified against chemical degradation fronts simulated with the full model under both diffusive and advective transport conditions. Implementation in the multi-physics simulation tool COMSOL allows simulation of the spatial-temporal evolution of chemical degradation fronts in large-scale concrete structures. (authors)

  19. FEMWASTE: a Finite-Element Model of Waste transport through porous saturated-unsaturated media

    International Nuclear Information System (INIS)

    Yeh, G.T.; Ward, D.S.

    1981-04-01

    A two-dimensional transient model for the transport of dissolved constituents through porous media originally developed at Oak Ridge National Laboratory (ORNL) has been expanded and modified. Transport mechanisms include: convection, hydrodynamic dispersion, chemical sorption, and first-order decay. Implementation of quadrilateral iso-parametric finite elements, bilinear spatial interpolation, asymmetric weighting functions, several time-marching techniques, and Gaussian elimination are employed in the numerical formulation. A comparative example is included to demonstrate the difference between the new and original models. Results from 12 alternative numerical schemes of the new model are compared. The waste transport model is compatible with the water flow model developed at ORNL for predicting convective Darcy velocities in porous media which may be partially saturated

  20. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  1. Evaluation of the MOCAGE Chemistry Transport Model during the ICARTT/ITOP Experiment

    Science.gov (United States)

    Bousserez, N.; Attie, J. L.; Peuch, V. H.; Michou, M.; Pfister, G.; Edwards, D.; Emmons, L.; Arnold, S.; Heckel, A.; Richter, A.; hide

    2007-01-01

    We evaluate the Meteo-France global chemistry transport 3D model MOCAGE (MOdele de Chimie Atmospherique a Grande Echelle) using the important set of aircraft measurements collected during the ICARRT/ITOP experiment. This experiment took place between US and Europe during summer 2004 (July 15-August 15). Four aircraft were involved in this experiment providing a wealth of chemical data in a large area including the North East of US and western Europe. The model outputs are compared to the following species of which concentration is measured by the aircraft: OH, H2O2, CO, NO, NO2, PAN, HNO3, isoprene, ethane, HCHO and O3. Moreover, to complete this evaluation at larger scale, we used also satellite data such as SCIAMACHY NO2 and MOPITT CO. Interestingly, the comprehensive dataset allowed us to evaluate separately the model representation of emissions, transport and chemical processes. Using a daily emission source of biomass burning, we obtain a very good agreement for CO while the evaluation of NO2 points out incertainties resulting from inaccurate ratio of emission factors of NOx/CO. Moreover, the chemical behavior of O3 is satisfactory as discussed in the paper.

  2. Evaluation of a three-dimensional chemical transport model (PMCAMx in the European domain during the EUCAARI May 2008 campaign

    Directory of Open Access Journals (Sweden)

    C. Fountoukis

    2011-10-01

    Full Text Available PMCAMx-2008, a detailed three-dimensional chemical transport model (CTM, was applied to Europe to simulate the mass concentration and chemical composition of particulate matter (PM during May 2008. The model includes a state-of-the-art organic aerosol module which is based on the volatility basis set framework treating both primary and secondary organic components as semivolatile and photochemically reactive. The model performance is evaluated against high time resolution aerosol mass spectrometer (AMS ground and airborne measurements. Overall, organic aerosol is predicted to account for 32% of total PM1 at ground level during May 2008, followed by sulfate (30%, crustal material and sea-salt (14%, ammonium (13%, nitrate (7%, and elemental carbon (4%. The model predicts that fresh primary OA (POA is a small contributor to organic PM concentrations in Europe during late spring, and that oxygenated species (oxidized primary and biogenic secondary dominate the ambient OA. The Mediterranean region is the only area in Europe where sulfate concentrations are predicted to be much higher than the OA, while organic matter is predicted to be the dominant PM1 species in central and northern Europe. The comparison of the model predictions with the ground measurements in four measurement stations is encouraging. The model reproduces more than 94% of the daily averaged data and more than 87% of the hourly data within a factor of 2 for PM1 OA. The model tends to predict relatively flat diurnal profiles for PM1 OA in many areas, both rural and urban in agreement with the available measurements. The model performance against the high time resolution airborne measurements at multiple altitudes and locations is as good as its performance against the ground level hourly measurements. There is no evidence of missing sources of OA aloft over Europe during this period.

  3. Transport and Fate of Volatile Organic Chemical in Soils

    DEFF Research Database (Denmark)

    Petersen, Lis Wollesen

    Recently much attention has been paid to the behavior of volatile organic chemicals (VOCs) in the environment. This is due to the fact that the environmental pollution with these hazardous chemicals has drastically increased during the last decades. The present study is limited to consider...... the transport and fate of VOCs in the gaseous phase, thus contributing to the overall understanding of VOCs behavior in soil, which eventually will facilitate future cleanup....

  4. Modeling Dispersion of Chemical-Biological Agents in Three Dimensional Living Space

    International Nuclear Information System (INIS)

    William S. Winters

    2002-01-01

    This report documents a series of calculations designed to demonstrate Sandia's capability in modeling the dispersal of chemical and biological agents in complex three-dimensional spaces. The transport of particles representing biological agents is modeled in a single room and in several connected rooms. The influence of particle size, particle weight and injection method are studied

  5. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

  6. The Impact of Uncertainties in African Biomass Burning Emission Estimates on Modeling Global Air Quality, Long Range Transport and Tropospheric Chemical Lifetimes

    Directory of Open Access Journals (Sweden)

    Guido R. van der Werf

    2012-02-01

    Full Text Available The chemical composition of the troposphere in the tropics and Southern Hemisphere (SH is significantly influenced by gaseous emissions released from African biomass burning (BB. Here we investigate how various emission estimates given in bottom-up BB inventories (GFEDv2, GFEDv3, AMMABB affect simulations of global tropospheric composition using the TM4 chemistry transport model. The application of various model parameterizations for introducing such emissions is also investigated. There are perturbations in near-surface ozone (O3 and carbon monoxide (CO of ~60–90% in the tropics and ~5–10% in the SH between different inventories. Increasing the update frequency of the temporal distribution to eight days generally results in decreases of between ~5 and 10% in near-surface mixing ratios throughout the tropics, which is larger than the influence of increasing the injection heights at which BB emissions are introduced. There are also associated differences in the long range transport of pollutants throughout the SH, where the composition of the free troposphere in the SH is sensitive to the chosen BB inventory. Analysis of the chemical budget terms reveals that the influence of increasing the tropospheric CO burden due to BB on oxidative capacity of the troposphere is mitigated by the associated increase in NOx emissions (and thus O3 with the variations in the CO/N ratio between inventories being low. For all inventories there is a decrease in the tropospheric chemical lifetime of methane of between 0.4 and 0.8% regardless of the CO emitted from African BB. This has implications for assessing the effect of inter-annual variability in BB on the annual growth rate of methane.

  7. Biogenic silica dissolution in diatom aggregates: insights from reactive transport modelling

    KAUST Repository

    Moriceau, B; Laruelle, GG; Passow, U; Van Cappellen, P; Ragueneau, O

    2014-01-01

    , dSi transport out of the aggregate is modulated by alternatively considering retention (decrease of the dSi diffusion constant) and adsorption (reversible chemical bonds between dSi and the aggregate matrix) processes. Modelled bSiO2 dissolution

  8. Material transport through porous media: a finite-element Galerkin model

    International Nuclear Information System (INIS)

    Duguid, J.O.; Reeves, M.

    1976-03-01

    A two-dimensional transient model for flow of a dissolved constituent through porous media has been developed. Mechanisms for advective transport, hydrodynamic dispersion, chemical absorption, and radioactive decay are included in the mathematical formulation. Implementations of quadrilateral finite elements, bilinear spatial interpolation, and Gaussian elimination are used in the numerical formulation. The programming language FORTRAN IV is used exclusively in the computer implementation. A listing of the program is included. This material-transport model is completely compatible with our moisture-transport model (Reeves and Duguid, 1975) for predicting advective Darcy velocities for porous media which may be partly unsaturated. In addition to a description of the mathematical formulation, the numerical treatment and the computer implementation results of two computer simulations are included in this document. One is a comparison with a well-known analytical treatment (Lapidus and Amundson, 1952) and is intended as a partial validation. The other simulation, a seepage-pond problem, is a more realistic demonstration of the capabilities of the computer model. Complete listings of input and output are given in the appendices so that this simulation may be used for check-out purposes. A comprehensive description of the material-transport computer model is given

  9. A cloud-scale chemical-transport simulation during EULINOX. A case study for July 21 1998.

    Science.gov (United States)

    Ramaroson, R.

    2002-12-01

    The main issues addressed by the European project EULINOX covered mainly the quantification of NOx production from lightning, the transport of NOx and surface emissions (e.g. CO) by convective systems, and the lightning distribution around thunderstorms. O3, CO, CO2, NOx, CN concentrations, J(NO2), meteorological variables and lightning have been observed and measured using ground systems and aircraft platforms during the project. Two aircraft have been operated: the DLR Falcon and the Do-228 providing the distribution of species in the PBL and at higher altitudes across the anvil along the jet tracks. July 21st 1998 was a special day during EULINOX : strong convection system, high electrical activities and a NO pic around 23 ppbv on board Falcon in the anvil. Thunderstorms associated with strong convective systems were encountered and well covered by the network of measurement systems as well as for the meteorology than for the chemistry and lightning localization. This work focuses on two objectives: how to describe the meteorology during EULINOX and to quantify the impact of the cloud scales on tropospheric NO and CO concentration. To reach this target, 2 types of simulation have been performed. The fist one uses the MM5 model in a 4 domain-nested version (ratio =3) to simulate the convective cloud system or isolated cell with a 1.5km by 1.5km resolution for the finest grid. The second run uses an off-line chemical transport model (MEDIUM) with a detailed chemistry assimilating in input the MM5 dynamics. On a broader scale, the general synoptic meteorology over Europe is well simulated by MM5. Over the finest domain, the model was able to generate a supercell storm but rather weak (vertical characteristics) and unstable compared to the observations. The cell depth is in a good agreement with observations with a horizontal position lightly shifted spatially. The chemical-transport simulation using MEDIUM including as input the MM5 meteorology output shows a

  10. Modeling of coupled geochemical and transport processes: An overview

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1989-10-01

    Early coupled models associated with fluid flow and solute transport have been limited by assumed conditions of constant temperature, fully saturated fluid flow, and constant pore fluid velocity. Developments including coupling of chemical reactions to variable fields of temperature and fluid flow have generated new requirements for experimental data. As the capabilities of coupled models expand, needs are created for experimental data to be used for both input and validation. 25 refs

  11. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed

    2017-03-20

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux, convection schemes and the chemical aging of mineral dust, by using the EMAC model following Abdelkader et al. (2015). To characterize the dust outflow over the Atlantic Ocean, we distinguish two geographic zones: (i) dust interactions within the Intertropical Convergence Zone (ITCZ), or the dust–ITCZ interaction zone (DIZ), and (ii) the adjacent dust transport over the Atlantic Ocean (DTA) zone. In the latter zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean since particle sedimentation is the dominant removal process, whereas in the DIZ zone aerosol–cloud interactions, wet deposition and scavenging processes determine the extent of the dust outflow. Generally, the EMAC simulated dust compares well with CALIPSO observations; however, our reference model configuration tends to overestimate the dust extinction at a lower elevation and underestimates it at a higher elevation. The aerosol optical depth (AOD) over the Caribbean responds to the dust emission flux only when the emitted dust mass is significantly increased over the source region in Africa by a factor of 10. These findings point to the dominant role of dust removal (especially wet deposition) in transatlantic dust transport. Experiments with different convection schemes have indeed revealed that the transatlantic dust transport is more sensitive to the convection scheme than to the dust emission flux parameterization. To study the impact of dust chemical aging, we focus on a major dust outflow in July 2009. We use the calcium cation as a proxy for the overall chemical reactive dust fraction and consider the uptake of major inorganic acids (i.e., H2SO4, HNO3 and HCl) and their anions, i.e., sulfate (SO42−), bisulfate

  12. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  13. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Science.gov (United States)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.

    1989-01-01

    Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.

  14. A Novel Approach of Understanding and Incorporating Error of Chemical Transport Models into a Geostatistical Framework

    Science.gov (United States)

    Reyes, J.; Vizuete, W.; Serre, M. L.; Xu, Y.

    2015-12-01

    The EPA employs a vast monitoring network to measure ambient PM2.5 concentrations across the United States with one of its goals being to quantify exposure within the population. However, there are several areas of the country with sparse monitoring spatially and temporally. One means to fill in these monitoring gaps is to use PM2.5 modeled estimates from Chemical Transport Models (CTMs) specifically the Community Multi-scale Air Quality (CMAQ) model. CMAQ is able to provide complete spatial coverage but is subject to systematic and random error due to model uncertainty. Due to the deterministic nature of CMAQ, often these uncertainties are not quantified. Much effort is employed to quantify the efficacy of these models through different metrics of model performance. Currently evaluation is specific to only locations with observed data. Multiyear studies across the United States are challenging because the error and model performance of CMAQ are not uniform over such large space/time domains. Error changes regionally and temporally. Because of the complex mix of species that constitute PM2.5, CMAQ error is also a function of increasing PM2.5 concentration. To address this issue we introduce a model performance evaluation for PM2.5 CMAQ that is regionalized and non-linear. This model performance evaluation leads to error quantification for each CMAQ grid. Areas and time periods of error being better qualified. The regionalized error correction approach is non-linear and is therefore more flexible at characterizing model performance than approaches that rely on linearity assumptions and assume homoscedasticity of CMAQ predictions errors. Corrected CMAQ data are then incorporated into the modern geostatistical framework of Bayesian Maximum Entropy (BME). Through cross validation it is shown that incorporating error-corrected CMAQ data leads to more accurate estimates than just using observed data by themselves.

  15. HYDROBIOGEOCHEM: A coupled model of HYDROlogic transport and mixed BIOGEOCHEMical kinetic/equilibrium reactions in saturated-unsaturated media

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Salvage, K.M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering; Gwo, J.P. [Oak Ridge National Lab., TN (United States); Zachara, J.M.; Szecsody, J.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-07-01

    The computer program HYDROBIOGEOCHEM is a coupled model of HYDROlogic transport and BIOGEOCHEMical kinetic and/or equilibrium reactions in saturated/unsaturated media. HYDROBIOGEOCHEM iteratively solves the two-dimensional transport equations and the ordinary differential and algebraic equations of mixed biogeochemical reactions. The transport equations are solved for all aqueous chemical components and kinetically controlled aqueous species. HYDROBIOGEOCHEM is designed for generic application to reactive transport problems affected by both microbiological and geochemical reactions in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical and microbial reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical and microbial concentrations as a function of time and space, and the chemical speciation at user-specified nodes.

  16. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    Science.gov (United States)

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  17. A Process-Based Transport-Distance Model of Aeolian Transport

    Science.gov (United States)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  18. Development and evaluation of global radon transport model

    International Nuclear Information System (INIS)

    Kojima, H.; Nagano, K.

    2003-01-01

    The radioactive noble gas Radon-222 ( 222 Rn) is chemically inert and is removed only by radioactive decay (T1/2=3.8 d). Its primary source is uniformly distributed over the continents and the ocean represents a secondary source of atmospheric 222 Rn. The strong contrast in source strength between continents and the ocean makes 222 Rn an ideal marker of continental air masses. Because of its simple properties, the temporal and spatial distribution of 222 Rn in the troposphere is straightforward to simulate by means of atmospheric transport models. The simulation provides an intuitive visualization of the complex transport characteristics and more definite proof of phenomenon. In this paper, we present the results of an exploratory study, in which we investigated the performance of a three-dimensional transport model of the global troposphere in simulating the long range transport of 222 Rn. The transport equation has been solved by a numerical procedure based on some boundary conditions. The model structure which we have originally developed, has a horizontal resolution of 2.5deg in latitude and 2.5deg in longitude, and 10 layers in the vertical dimension. The basic computational time step used in the model runs was set to 5 min. The simulations described in this article were performed by means of a transport model driven by global objective analytical data of a time resolution of 6 h, supplied by the Japan Meteorological Agency. We focus on the west of North Pacific Ocean, were the influence of air pollution from an Asian Continent and the Japan Islands was received. For simulation experiments, radon data from some shipboard measurements on the North Pacific Ocean have been used in the present study. Figure shows time series of model prediction with different latitude distributions of radon exhalation rate and measured radon data. We find that our model consistently produce the observation. We will discuss the characteristics of the temporal and special

  19. Developing a predictive model for the chemical composition of soot nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Violi, Angela [Univ. of Michigan, Ann Arbor, MI (United States); Michelsen, Hope [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hansen, Nils [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wilson, Kevin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-07

    In order to provide the scientific foundation to enable technology breakthroughs in transportation fuel, it is important to develop a combustion modeling capability to optimize the operation and design of evolving fuels in advanced engines for transportation applications. The goal of this proposal is to develop a validated predictive model to describe the chemical composition of soot nanoparticles in premixed and diffusion flames. Atomistic studies in conjunction with state-of-the-art experiments are the distinguishing characteristics of this unique interdisciplinary effort. The modeling effort has been conducted at the University of Michigan by Prof. A. Violi. The experimental work has entailed a series of studies using different techniques to analyze gas-phase soot precursor chemistry and soot particle production in premixed and diffusion flames. Measurements have provided spatial distributions of polycyclic aromatic hydrocarbons and other gas-phase species and size and composition of incipient soot nanoparticles for comparison with model results. The experimental team includes Dr. N. Hansen and H. Michelsen at Sandia National Labs' Combustion Research Facility, and Dr. K. Wilson as collaborator at Lawrence Berkeley National Lab's Advanced Light Source. Our results show that the chemical and physical properties of nanoparticles affect the coagulation behavior in soot formation, and our results on an experimentally validated, predictive model for the chemical composition of soot nanoparticles will not only enhance our understanding of soot formation since but will also allow the prediction of particle size distributions under combustion conditions. These results provide a novel description of soot formation based on physical and chemical properties of the particles for use in the next generation of soot models and an enhanced capability for facilitating the design of alternative fuels and the engines they will power.

  20. Impact of temporal upscaling and chemical transport model horizontal resolution on reducing ozone exposure misclassification

    Science.gov (United States)

    Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William

    2017-10-01

    We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.

  1. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  2. Magnon spin transport driven by the magnon chemical in a magnetic insulator

    NARCIS (Netherlands)

    Cornelissen, L.J.; Peters, K.J.H.; Bauer, G.E.W.; Duine, R.A.; van Wees, B.J.

    2016-01-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position-dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation

  3. Modeling multicomponent ionic transport in groundwater with IPhreeqc coupling: Electrostatic interactions and geochemical reactions in homogeneous and heterogeneous domains

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-01-01

    is coupled with the geochemical code PHREEQC-3 by utilizing the IPhreeqc module, thus enabling to perform the geochemical calculations included in the PHREEQC's reaction package. The multicomponent reactive transport code is benchmarked with different 1-D and 2-D transport problems. Successively...... the electrostatic interactions during transport of charged ions in physically and chemically heterogeneous porous media. The modeling approach is based on the local charge balance and on the description of compound-specific and spatially variable diffusive/dispersive fluxes. The multicomponent ionic transport code......, conservative and reactive transport examples are presented to demonstrate the capability of the proposed model to simulate transport of charged species in heterogeneous porous media with spatially variable physical and chemical properties. The results reveal that the Coulombic cross-coupling between dispersive...

  4. Development of a Grid-Independent Geos-Chem Chemical Transport Model (v9-02) as an Atmospheric Chemistry Module for Earth System Models

    Science.gov (United States)

    Long, M. S.; Yantosca, R.; Nielsen, J. E; Keller, C. A.; Da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-01-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOSChem scientific code, permitting the exact same GEOSChem code to be used as an ESM module or as a standalone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS- 5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  5. A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling

    Science.gov (United States)

    Eibern, Hendrik; Schmidt, Hauke

    1999-08-01

    The inverse problem of data assimilation of tropospheric trace gas observations into an Eulerian chemistry transport model has been solved by the four-dimensional variational technique including chemical reactions, transport, and diffusion. The University of Cologne European Air Pollution Dispersion Chemistry Transport Model 2 with the Regional Acid Deposition Model 2 gas phase mechanism is taken as the basis for developing a full four-dimensional variational data assimilation package, on the basis of the adjoint model version, which includes the adjoint operators of horizontal and vertical advection, implicit vertical diffusion, and the adjoint gas phase mechanism. To assess the potential and limitations of the technique without degrading the impact of nonperfect meteorological analyses and statistically not established error covariance estimates, artificial meteorological data and observations are used. The results are presented on the basis of a suite of experiments, where reduced records of artificial "observations" are provided to the assimilation procedure, while other "data" is retained for performance control of the analysis. The paper demonstrates that the four-dimensional variational technique is applicable for a comprehensive chemistry transport model in terms of computational and storage requirements on advanced parallel platforms. It is further shown that observed species can generally be analyzed, even if the "measurements" have unbiased random errors. More challenging experiments are presented, aiming to tax the skill of the method (1) by restricting available observations mostly to surface ozone observations for a limited assimilation interval of 6 hours and (2) by starting with poorly chosen first guess values. In this first such application to a three-dimensional chemistry transport model, success was also achieved in analyzing not only observed but also chemically closely related unobserved constituents.

  6. Chemical characterization of PM2.5 from a southern coastal city of China: applications of modeling and chemical tracers in demonstration of regional transport.

    Science.gov (United States)

    Zhou, Jiamao; Ho, Steven Sai Hang; Cao, Junji; Zhao, Zhuzi; Zhao, Shuyu; Zhu, Chongshu; Wang, Qiyuan; Liu, Suixin; Zhang, Ting; Zhao, Youzhi; Wang, Ping; Tie, Xuexi

    2018-05-11

    An intensive sampling campaign of airborne fine particles (PM 2.5 ) was conducted at Sanya, a coastal city in Southern China, from January to February 2012. Chemical analyses and mass reconstruction were used identify potential pollution sources and investigate atmospheric reaction mechanisms. A thermodynamic model indicated that low ammonia and high relative humidity caused the aerosols be acidic and that drove heterogeneous reactions which led to the formation of secondary inorganic aerosol. Relationships among neutralization ratios, free acidity, and air-mass trajectories suggest that the atmosphere at Sanya was impacted by both local and regional emissions. Three major transport pathways were identified, and flow from the northeast (from South China) typically brought the most polluted air to Sanya. A case study confirmed strong impact from South China (e.g., Pearl River Delta region) (contributed 76.8% to EC, and then this result can be extended to primary pollutants) when the northeast winds were dominant. The Weather Research Forecasting Black carbon model and trace organic markers were used to apportion local pollution versus regional contributions. Results of the study offer new insights into the atmospheric conditions and air pollution at this coastal city.

  7. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  8. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yangyang; Wang, Zhen; Zhang, Mingliang; Wang, Xiaodong, E-mail: xdwang@semi.ac.cn; Ji, An; Yang, Fuhua [Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 (China)

    2014-03-15

    The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  9. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Science.gov (United States)

    Qi, Yangyang; Wang, Zhen; Zhang, Mingliang; Wang, Xiaodong; Ji, An; Yang, Fuhua

    2014-03-01

    The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  10. A coupled reaction and transport model for assessing the injection, migration and fate of waste fluids

    International Nuclear Information System (INIS)

    Liu, X.; Ortoleva, P.

    1996-01-01

    The use of reaction-transport modeling for reservoir assessment and management in the context of deep well waste injection is evaluated. The study is based on CIRF.A (Chemical Interaction of Rock and Fluid), a fully coupled multiphase flow, contaminant transport, and fluid and mineral reaction model. Although SWIFT (Sandia Waste-Isolation Flow and Transport Model) is often the numerical model of choice, it can not account for chemical reactions involving rock, wastes, and formation fluids and their effects on contaminant transport, rock permeability and porosity, and the integrity of the reservoir and confining units. CIRF.A can simulate all these processes. Two field cases of waste injection were simulated by CIRF.A. Both observation data and simulation results show mineral precipitation in one case and rock dissolution in another case. Precipitation and dissolution change rock porosity and permeability, and hence the pattern of fluid migration. The model is shown to be invaluable in analyzing near borehole and reservoir-scale effects during waste injection and predicting the 10,000 year fate of the waste plume. The benefits of using underpressured compartments as waste repositories were also demonstrated by CIRF.A simulations

  11. RESEARCH ACTIVITIES AT U.S. GOVERNMENT AGENCIES IN SUBSURFACE REACTIVE TRANSPORT MODELING

    Science.gov (United States)

    The fate of contaminants in the environment is controlled by both chemical reactions and transport phenomena in the subsurface. Our ability to understand the significance of these processes over time requires an accurate conceptual model that incorporates the various mechanisms ...

  12. Collective effects in microscopic transport models

    International Nuclear Information System (INIS)

    Greiner, Carsten

    2003-01-01

    We give a reminder on the major inputs of microscopic hadronic transport models and on the physics aims when describing various aspects of relativistic heavy ion collisions at SPS energies. We then first stress that the situation of particle ratios being reproduced by a statistical description does not necessarily mean a clear hint for the existence of a fully isotropic momentum distribution at hydrochemical freeze-out. Second, a short discussion on the status of strangeness production is given. Third we demonstrate the importance of a new collective mechanism for producing (strange) antibaryons within a hardonic description, which guarantees sufficiently fast chemical equilibration

  13. Modeling in transport phenomena a conceptual approach

    CERN Document Server

    Tosun, Ismail

    2007-01-01

    Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to

  14. Thermal-chemical-mechanical feedback during fluid-rock interactions: Implications for chemical transport and scales of equilibria in the crust

    International Nuclear Information System (INIS)

    Dutrow, Barbara

    2008-01-01

    Our research evaluates the hypothesis that feedback amongst thermal-chemical-mechanical processes operative in fluid-rock systems alters the fluid flow dynamics of the system which, in turn, affects chemical transport and temporal and spatial scales of equilibria, thus impacting the resultant mineral textural development of rocks. Our methods include computational experimentation and detailed analyses of fluid-infiltrated rocks from well-characterized terranes. This work focuses on metamorphic rocks and hydrothermal systems where minerals and their textures are utilized to evaluate pressure (P), temperature (T), and time (t) paths in the evolution of mountain belts and ore deposits, and to interpret tectonic events and the timing of these events. Our work on coupled processes also extends to other areas where subsurface flow and transport in porous media have consequences such as oil and gas movement, geothermal system development, transport of contaminants, nuclear waste disposal, and other systems rich in fluid-rock reactions. Fluid-rock systems are widespread in the geologic record. Correctly deciphering the products resulting from such systems is important to interpreting a number of geologic phenomena. These systems are characterized by complex interactions involving time-dependent, non-linear processes in heterogeneous materials. While many of these interactions have been studied in isolation, they are more appropriately analyzed in the context of a system with feedback. When one process impacts another process, time and space scales as well as the overall outcome of the interaction can be dramatically altered. Our goals to test this hypothesis are: to develop and incorporate algorithms into our 3D heat and mass transport code to allow the effects of feedback to be investigated numerically, to analyze fluid infiltrated rocks from a variety of terranes at differing P-T conditions, to identify subtle features of the infiltration of fluids and/or feedback, and

  15. Two-temperature chemically non-equilibrium modelling of an air supersonic ICP

    Energy Technology Data Exchange (ETDEWEB)

    El Morsli, Mbark; Proulx, Pierre [Laboratoire de Modelisation de Procedes Chimiques par Ordinateur Oppus, Departement de Genie Chimique, Universite de Sherbrooke (Ciheam) J1K 2R1 (Canada)

    2007-08-21

    In this work, a non-equilibrium mathematical model for an air inductively coupled plasma torch with a supersonic nozzle is developed without making thermal and chemical equilibrium assumptions. Reaction rate equations are written, and two coupled energy equations are used, one for the calculation of the translational-rotational temperature T{sub hr} and one for the calculation of the electro-vibrational temperature T{sub ev}. The viscous dissipation is taken into account in the translational-rotational energy equation. The electro-vibrational energy equation also includes the pressure work of the electrons, the Ohmic heating power and the exchange due to elastic collision. Higher order approximations of the Chapman-Enskog method are used to obtain better accuracy for transport properties, taking advantage of the most recent sets of collisions integrals available in the literature. The results obtained are compared with those obtained using a chemical equilibrium model and a one-temperature chemical non-equilibrium model. The influence of the power and the pressure chamber on the chemical and thermal non-equilibrium is investigated.

  16. Chemical Mechanism Solvers in Air Quality Models

    Directory of Open Access Journals (Sweden)

    John C. Linford

    2011-09-01

    Full Text Available The solution of chemical kinetics is one of the most computationally intensivetasks in atmospheric chemical transport simulations. Due to the stiff nature of the system,implicit time stepping algorithms which repeatedly solve linear systems of equations arenecessary. This paper reviews the issues and challenges associated with the construction ofefficient chemical solvers, discusses several families of algorithms, presents strategies forincreasing computational efficiency, and gives insight into implementing chemical solverson accelerated computer architectures.

  17. Calibration of Yucca Mountain unsaturated zone flow and transport model using porewater chloride data

    International Nuclear Information System (INIS)

    Liu, Jianchun; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

    2002-01-01

    In this study, porewater chloride data from Yucca Mountain, Nevada, are analyzed and modeled by 3-D chemical transport simulations and analytical methods. The simulation modeling approach is based on a continuum formulation of coupled multiphase fluid flow and tracer transport processes through fractured porous rock, using a dual-continuum concept. Infiltration-rate calibrations were using the pore water chloride data. Model results of chloride distributions were improved in matching the observed data with the calibrated infiltration rates. Statistical analyses of the frequency distribution for overall percolation fluxes and chloride concentration in the unsaturated zone system demonstrate that the use of the calibrated infiltration rates had insignificant effect on the distribution of simulated percolation fluxes but significantly changed the predicated distribution of simulated chloride concentrations. An analytical method was also applied to model transient chloride transport. The method was verified by 3-D simulation results as able to capture major chemical transient behavior and trends. Effects of lateral flow in the Paintbrush nonwelded unit on percolation fluxes and chloride distribution were studied by 3-D simulations with increased horizontal permeability. The combined results from these model calibrations furnish important information for the UZ model studies, contributing to performance assessment of the potential repository

  18. Do goethite surfaces really control the transport and retention of multi-walled carbon nanotubes in chemically heterogeneous porous media?

    Science.gov (United States)

    Transport and retention behavior of multiwalled carbon nanotubes (MWCNTs) was studied in mixtures of negatively charged quartz sand (QS) and positively charged goethite-coated sand (GQS) to assess the role of chemical heterogeneity. The linear equilibrium sorption model provided a good description o...

  19. Prediction of overall persistence and long-range transport potential with multimedia fate models: robustness and sensitivity of results

    International Nuclear Information System (INIS)

    Fenner, Kathrin; Scheringer, Martin; Hungerbuehler, Konrad

    2004-01-01

    The hazard indicators persistence (P) and long-range transport potential (LRTP) are used in chemicals assessment to characterize chemicals with regard to the temporal and spatial extent of their environmental exposure. They are often calculated based on the results of multimedia fate models. The environmental and substance-specific input parameters of such models are subject to a range of methodological uncertainties and also influenced by natural variability. We employed probabilistic uncertainty analysis to quantify variance in P and LRTP predictions for chemicals with different partitioning and transport behavior. Variance found in the results is so large that it prevents a clear distinction between chemicals. Additionally, only small improvements are observed when evaluating the results relative to a benchmark chemical. This can be explained by the dominance of substance-specific parameters and the only small direct influence of environmental parameters on P and LRTP as model outcomes. The findings underline the importance of learning how environmental conditions cause variability in substance behavior for improved substance ranking and classification. - Environmental conditions cause variability in substance behavior which need to be considered in chemical ranking schemes

  20. BLT-EC (Breach, Leach Transport, and Equilibrium Chemistry), a finite-element model for assessing the release of radionuclides from low-level waste disposal units: Background, theory, and model description

    International Nuclear Information System (INIS)

    MacKinnon, R.J.; Sullivan, T.M.; Simonson, S.A.; Suen, C.J.

    1995-08-01

    Performance assessment models typically account for the processes of sorption and dissolution-precipitation by using an empirical distribution coefficient, commonly referred to as K d that combines the effects of all chemical reactions between solid and aqueous phases. In recent years, however, there has been an increasing awareness that performance assessments based solely on empirically based K d models may be incomplete, particularly for applications involving radionuclides having sorption and solubility properties that are sensitive to variations in the in-situ chemical environment. To accommodate variations in the in-situ chemical environment, and to assess its impact on radionuclide mobility, it is necessary to model radionuclide release, transport, and chemical processes in a coupled fashion. This modeling has been done and incorporated into the two-dimensional, finite-element, computer code BLT-EC (Breach, Leach, Transport, Equilibrium Chemistry). BLT-EC is capable of predicting container degradation, waste-form leaching, and advective-dispersive, multispecies, solute transport. BLT-EC accounts for retardation directly by modeling the chemical processes of complexation, sorption, dissolution-precipitation, ion-exchange, and oxidation-reduction reactions. In this report we: (1) present a detailed description of the various physical and chemical processes that control the release and migration of radionuclides from shallow land LLW disposal facilities; (2) formulate the mathematical models that represent these processes; (3) outline how these models are incorporated and implemented in BLT-EC; and (4) demonstrate the application of BLT-EC on a set of example problems

  1. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling (proceedings)

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  2. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    Science.gov (United States)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  3. Transport Coefficients for the NASA Lewis Chemical Equilibrium Program

    Science.gov (United States)

    Svehla, Roger A.

    1995-01-01

    The new transport property data that will be used in the NASA Lewis Research Center's Chemical Equilibrium and Applications Program (CEA) is presented. It complements a previous publication that documented the thermodynamic and transport property data then in use. Sources of the data and a brief description of the method by which the data were obtained are given. Coefficients to calculate the viscosity, thermal conductivity, and binary interactions are given for either one, or usually, two temperature intervals, typically 300 to 1000 K and 1000 to 5000 K. The form of the transport equation is the same as used previously. The number of species was reduced from the previous database. Many species for which the data were estimated were eliminated from the database. Some ionneutral interactions were added.

  4. Computational Modeling of Oxygen Transport in the Microcirculation: From an Experiment-Based Model to Theoretical Analyses

    OpenAIRE

    Lücker, Adrien

    2017-01-01

    Oxygen supply to cells by the cardiovascular system involves multiple physical and chemical processes that aim to satisfy fluctuating metabolic demand. Regulation mechanisms range from increased heart rate to minute adaptations in the microvasculature. The challenges and limitations of experimental studies in vivo make computational models an invaluable complement. In this thesis, oxygen transport from capillaries to tissue is investigated using a new numerical model that is tailored for vali...

  5. LLNL Chemical Kinetics Modeling Group

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  6. Biogeochemical processes in a clay formation in situ experiment: Part F - Reactive transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Tournassat, Christophe, E-mail: c.tournassat@brgm.fr [BRGM, French Geological Survey, Orleans (France); Alt-Epping, Peter [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland); Gaucher, Eric C. [BRGM, French Geological Survey, Orleans (France); Gimmi, Thomas [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland)] [Laboratory for Waste Management, Paul Scherrer Institut, Villigen (Switzerland); Leupin, Olivier X. [NAGRA, CH-5430 Wettingen (Switzerland); Wersin, Paul [Gruner Ltd., CH-4020 Basel (Switzerland)

    2011-06-15

    Highlights: > Reactive transport modelling was used to simulate simultaneously solute transport, thermodynamic reactions, ion exchange and biodegradation during an in-situ experiment in a clay-rock formation. > Opalinus clay formation has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. > Buffering capacity is mainly attributed to the carbonate system and to the reactivity of clay surfaces (cation exchange, pH buffering). - Abstract: Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C, dissolved inorganic C and SO{sub 4} concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of

  7. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator

    NARCIS (Netherlands)

    Cornelissen, L J; Peters, K J H; Bauer, G. E. W.; Duine, R A; van Wees, B J

    2016-01-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position-dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation

  8. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator

    NARCIS (Netherlands)

    Cornelissen, L.J.; Peters, K. J H; Bauer, G.E.; Duine, R. A.; Van Wees, B. J.

    2016-01-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position-dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation

  9. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator

    NARCIS (Netherlands)

    Cornelissen, Ludo J.; Peters, Kevin J. H.; Duine, Rembert A.|info:eu-repo/dai/nl/304830127; Bauer, Gerrit E. W.; Wees, Bart J. van

    2016-01-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation

  10. Probabilistic transport models for fusion

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Lynch, V.E.; Sanchez, R.

    2005-01-01

    A generalization of diffusive (Fickian) transport is considered, in which particle motion is described by probability distributions. We design a simple model that includes a critical mechanism to switch between two transport channels, and show that it exhibits various interesting characteristics, suggesting that the ideas of probabilistic transport might provide a framework for the description of a range of unusual transport phenomena observed in fusion plasmas. The model produces power degradation and profile consistency, as well as a scaling of the confinement time with system size reminiscent of the gyro-Bohm/Bohm scalings observed in fusion plasmas, and rapid propagation of disturbances. In the present work we show how this model may also produce on-axis peaking of the profiles with off-axis fuelling. It is important to note that the fluid limit of a simple model like this, characterized by two transport channels, does not correspond to the usual (Fickian) transport models commonly used for modelling transport in fusion plasmas, and behaves in a fundamentally different way. (author)

  11. Modeling the transport of organic chemicals between polyethylene passive samplers and water in finite and infinite bath conditions.

    Science.gov (United States)

    Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M

    2015-12-01

    Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments. © 2015 SETAC.

  12. Impacts of Storm Surge Mitigation Strategies on Aboveground Storage Tank Chemical Spill Transport

    Science.gov (United States)

    Do, C.; Bass, B. J.; Bernier, C.; Samii, A.; Dawson, C.; Bedient, P. B.

    2017-12-01

    The Houston Ship Channel (HSC), located in the hurricane-prone Houston-Galveston region of the upper Texas Coast, is one of the busiest waterways in the United States and is home to one of the largest petrochemical complexes in the world. Due to the proximity of the HSC to Galveston Bay and the Gulf of Mexico, chemical spills resulting from storm surge damage to aboveground storage tanks (ASTs) pose serious threats to the environment, residential communities, and national/international markets whose activities in the HSC generate billions of dollars annually. In an effort to develop a comprehensive storm surge mitigation strategy for Galveston Bay and its constituents, Rice University's Severe Storm Prediction, Education, and Evacuation from Disasters Center proposed two structural storm surge mitigation concepts, the Mid Bay Structure (MBS) and the Lower Bay Structure (LBS) as components of the Houston-Galveston Area Protection System (H-GAPS) project. The MBS consists of levees along the HSC and a navigational gate across the channel, and the LBS consists of a navigation gate and environmental gates across Bolivar Road. The impacts of these two barrier systems on the fate of AST chemical spills in the HSC have previously been unknown. This study applies the coupled 2D SWAN+ADCIRC model to simulate hurricane storm surge circulation within the Gulf of Mexico and Galveston Bay due to a synthetic storm which results in approximately 250-year surge levels in Galveston Bay. The SWAN+ADCIRC model is run using high-resolution computational meshes that incorporate the MBS and LBS scenarios, separately. The resulting wind and water velocities are then fed into a Lagrangian particle transport model to simulate the spill trajectories of the ASTs most likely to fail during the 250-year proxy storm. Results from this study illustrate how each storm surge mitigation strategy impacts the transport of chemical spills (modeled as Lagrangian particles) during storm surge as

  13. Evaluation of long-range transport models in NOVANA

    International Nuclear Information System (INIS)

    Frohn, L.M.; Brandt, J.; Christensen, J.H.; Geels, C.; Hertel, O.; Skjoeth, C.A.; Ellemann, T.

    2007-01-01

    The Lagrangian model ACDEP which has been applied in BOP/-NOVA/NOVANA during the period 1995-2004, has been replaced by the more modern Eulerian model DEHM. The new model has a number of advantages, such as a better description of the three-dimensional atmospheric transport, a larger domain, a possibility for high spatial resolution in the calculations and a more detailed description of photochemical processes and dry deposition. In advance of the replacement, the results of the two models have been compared and evaluated using European and Danish measurements. Calculations have been performed with both models applying the same meteorological and emission input, for Europe for the year 2000 as well as for Denmark for the period 2000-2003. The European measurements applied in the present evaluation are obtained through EMEP. Using these measurements DEHM and ACDEP have been compared with respect to daily and yearly mean concentrations of ammonia (NH 3 ), ammonium (NH 4 + ), the sum of NH 3 and NH 4 + (SNH), nitric acid (HNO 3 ), nitrate (NO 3 - ), the sum of HNO 3 and NO 3 - (SNO 3 ), nitrogen dioxide (NO 2 ), ozone (O 3 ), sulphur dioxide (SO 2 ) and sulphate (SO 4 2- ) as well as the hourly mean and daily maximum concentrations of O 3 . Furthermore the daily and yearly total values of precipitation and wet deposition of NH 4 + , NO 3 - and SO 4 2- have been compared for the two models. The statistical parameters applied in the comparison are correlation, bias and fractional bias. The result of the comparison with the EMEP data is, that DEHM achieves better correlation coefficients for all chemical parameters (16 parameters in total) when the daily values are analysed, and for 15 out of 16 parameters when yearly values are taken into account. With respect to the fractional bias, the results obtained with DEHM are better than the corresponding results obtained with ACDEP for 11 out of 16 chemical parameters. In general the performance of the DEHM model is at least

  14. Towards Improving Satellite Tropospheric NO2 Retrieval Products: Impacts of the spatial resolution and lighting NOx production from the a priori chemical transport model

    Science.gov (United States)

    Smeltzer, C. D.; Wang, Y.; Zhao, C.; Boersma, F.

    2009-12-01

    Polar orbiting satellite retrievals of tropospheric nitrogen dioxide (NO2) columns are important to a variety of scientific applications. These NO2 retrievals rely on a priori profiles from chemical transport models and radiative transfer models to derive the vertical columns (VCs) from slant columns measurements. In this work, we compare the retrieval results using a priori profiles from a global model (TM4) and a higher resolution regional model (REAM) at the OMI overpass hour of 1330 local time, implementing the Dutch OMI NO2 (DOMINO) retrieval. We also compare the retrieval results using a priori profiles from REAM model simulations with and without lightning NOx (NO + NO2) production. A priori model resolution and lightning NOx production are both found to have large impact on satellite retrievals by altering the satellite sensitivity to a particular observation by shifting the NO2 vertical distribution interpreted by the radiation model. The retrieved tropospheric NO2 VCs may increase by 25-100% in urban regions and be reduced by 50% in rural regions if the a priori profiles from REAM simulations are used during the retrievals instead of the profiles from TM4 simulations. The a priori profiles with lightning NOx may result in a 25-50% reduction of the retrieved tropospheric NO2 VCs compared to the a priori profiles without lightning. As first priority, a priori vertical NO2 profiles from a chemical transport model with a high resolution, which can better simulate urban-rural NO2 gradients in the boundary layer and make use of observation-based parameterizations of lightning NOx production, should be first implemented to obtain more accurate NO2 retrievals over the United States, where NOx source regions are spatially separated and lightning NOx production is significant. Then as consequence of a priori NO2 profile variabilities resulting from lightning and model resolution dynamics, geostationary satellite, daylight observations would further promote the next

  15. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Science.gov (United States)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.; Lee, Kam-Pui

    1990-01-01

    Reaction rate coefficients and thermodynamic and transport properties are reviewed and supplemented for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium up to temperatures of 3000 K. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Curve fits are given for the various species properties for their efficient computation in flowfield codes. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in a high energy environment. Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An electron number-density correction for the transport properties of the charged species is obtained. This correction has been generally ignored in the literature.

  16. A new general methodology for incorporating physico-chemical transformations into multi-phase wastewater treatment process models.

    Science.gov (United States)

    Lizarralde, I; Fernández-Arévalo, T; Brouckaert, C; Vanrolleghem, P; Ikumi, D S; Ekama, G A; Ayesa, E; Grau, P

    2015-05-01

    This paper introduces a new general methodology for incorporating physico-chemical and chemical transformations into multi-phase wastewater treatment process models in a systematic and rigorous way under a Plant-Wide modelling (PWM) framework. The methodology presented in this paper requires the selection of the relevant biochemical, chemical and physico-chemical transformations taking place and the definition of the mass transport for the co-existing phases. As an example a mathematical model has been constructed to describe a system for biological COD, nitrogen and phosphorus removal, liquid-gas transfer, precipitation processes, and chemical reactions. The capability of the model has been tested by comparing simulated and experimental results for a nutrient removal system with sludge digestion. Finally, a scenario analysis has been undertaken to show the potential of the obtained mathematical model to study phosphorus recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The understanding of the R7T7 glass blocks long term behavior: chemical and transport coupling in fractured media

    International Nuclear Information System (INIS)

    Chomat, L.

    2008-04-01

    The long term behavior of nuclear waste glass blocks depends highly on chemical reactions which occur at the surface in contact with water. Studies carried out on inactive fractured glass blocks show that fracture networks play a significant part in reactive surface area. Nevertheless, the complexity of results interpretation, due to a weak knowledge of fracture networks and local lixiviation conditions, does not allow us to comprehend the physical and chemical mechanisms involved. Model cracks are a key step to study chemical and transport coupling in fractured media. Crack lixiviation in aggressive conditions (pH≥11) show that the crack's position (horizontal or vertical) determines the dominant transport mechanism (respectively diffusion or convection induced by gravity). This gravity driven flow seems to be negligible in lower pH conditions. The convective velocity is estimated by a 1D model of reactive transport. Two other parameters are studied: the influence of thermal gradient and the influence of interconnected cracks on alteration. A strong retroactive effect of convection, due to thermal gradient, on the alteration kinetic is observed inside the crack. These works lead to a complete alteration experiment of a 163 crack network subject to a thermal gradient. The use of the geochemical software, HYTEC, within the framework of this study shows the potential of the software which is however limited by the kinetics law used. (author)

  18. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Directory of Open Access Journals (Sweden)

    Yangyang Qi

    2014-02-01

    Full Text Available The electron transport characteristics of silicon nanowires (SiNWs fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  19. Representation of tropical deep convection in atmospheric models – Part 2: Tracer transport

    Directory of Open Access Journals (Sweden)

    C. R. Hoyle

    2011-08-01

    Full Text Available The tropical transport processes of 14 different models or model versions were compared, within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere project. The tested models range from the regional to the global scale, and include numerical weather prediction (NWP, chemical transport, and chemistry-climate models. Idealised tracers were used in order to prevent the model's chemistry schemes from influencing the results substantially, so that the effects of modelled transport could be isolated. We find large differences in the vertical transport of very short-lived tracers (with a lifetime of 6 h within the tropical troposphere. Peak convective outflow altitudes range from around 300 hPa to almost 100 hPa among the different models, and the upper tropospheric tracer mixing ratios differ by up to an order of magnitude. The timing of convective events is found to be different between the models, even among those which source their forcing data from the same NWP model (ECMWF. The differences are less pronounced for longer lived tracers, however they could have implications for modelling the halogen burden of the lowermost stratosphere through transport of species such as bromoform, or short-lived hydrocarbons into the lowermost stratosphere. The modelled tracer profiles are strongly influenced by the convective transport parameterisations, and different boundary layer mixing parameterisations also have a large impact on the modelled tracer profiles. Preferential locations for rapid transport from the surface into the upper troposphere are similar in all models, and are mostly concentrated over the western Pacific, the Maritime Continent and the Indian Ocean. In contrast, models do not indicate that upward transport is highest over western Africa.

  20. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Coupled hydrogeological and reactive transport modelling of the Simpevarp area (Sweden)

    International Nuclear Information System (INIS)

    Molinero, Jorge; Raposo, Juan R.; Galindez, Juan M.; Arcos, David; Guimera, Jordi

    2008-01-01

    The Simpevarp area is one of the alternative sites being considered for the deep geological disposal of high level radioactive waste in Sweden. In this paper, a coupled regional groundwater flow and reactive solute transport model of the Simpevarp area is presented that integrates current hydrogeological and hydrochemical data of the area. The model simulates the current hydrochemical pattern of the groundwater system in the area. To that aim, a conceptual hydrochemical model was developed in order to represent the dominant chemical processes. Groundwater flow conditions were reproduced by taking into account fluid-density-dependent groundwater flow and regional hydrogeologic boundary conditions. Reactive solute transport calculations were performed on the basis of the velocity field so obtained. The model was calibrated and sensitivity analyses were carried out in order to investigate the effects of heterogeneities of hydraulic conductivity in the subsurface medium. Results provided by the reactive transport model are in good agreement with much of the measured hydrochemical data. This paper emphasizes the appropriateness of the use of reactive solute transport models when water-rock interaction reactions are involved, and demonstrates what powerful tools they are for the interpretation of hydrogeological and hydrochemical data from site geological repository characterization programs, by providing a qualitative framework for data analysis and testing of conceptual assumptions in a process-oriented approach

  2. A development of multi-Species mass transport model considering thermodynamic phase equilibrium

    DEFF Research Database (Denmark)

    Hosokawa, Yoshifumi; Yamada, Kazuo; Johannesson, Björn

    2008-01-01

    ) variation in solid-phase composition when using different types of cement, (ii) physicochemical evaluation of steel corrosion initiation behaviour by calculating the molar ratio of chloride ion to hydroxide ion [Cl]/[OH] in pore solution, (iii) complicated changes of solid-phase composition caused......In this paper, a multi-species mass transport model, which can predict time dependent variation of pore solution and solid-phase composition due to the mass transport into the hardened cement paste, has been developed. Since most of the multi-species models established previously, based...... on the Poisson-Nernst-Planck theory, did not involve the modeling of chemical process, it has been coupled to thermodynamic equilibrium model in this study. By the coupling of thermodynamic equilibrium model, the multi-species model could simulate many different behaviours in hardened cement paste such as: (i...

  3. Conceptual model for transport processes in the Culebra Dolomite Member, Rustler Formation

    International Nuclear Information System (INIS)

    Holt, R.M.

    1997-08-01

    The Culebra Dolomite Member of the Rustler Formation represents a possible pathway for contaminants from the Waste Isolation Pilot Plant underground repository to the accessible environment. The geologic character of the Culebra is consistent with a double-porosity, multiple-rate model for transport in which the medium is conceptualized as consisting of advective porosity, where solutes are carried by the groundwater flow, and fracture-bounded zones of diffusive porosity, where solutes move through slow advection or diffusion. As the advective travel length or travel time increases, the nature of transport within a double-porosity medium changes. This behavior is important for chemical sorption, because the specific surface area per unit mass of the diffusive porosity is much greater than in the advective porosity. Culebra transport experiments conducted at two different length scales show behavior consistent with a multiple-rate, double-porosity conceptual model for Culebra transport. Tracer tests conducted on intact core samples from the Culebra show no evidence of significant diffusion, suggesting that at the core scale the Culebra can be modeled as a single-porosity medium where only the advective porosity participates in transport. Field tracer tests conducted in the Culebra show strong double-porosity behavior that is best explained using a multiple-rate model

  4. Modelling of transport phenomena

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi.

    1993-09-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the anomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confinement modes, and the sudden jumps such as L-H transition. Starting from the formalism of the transport matrix, the modelling based on the low frequency instabilities are reviewed. Theoretical results in the range of drift wave frequency are examined. Problems in theories based on the quasilinear and mixing-length estimates lead to the renewal of the turbulence theory, and the physics picture of the self-sustained turbulence is discussed. The theory of transport using the fluid equation of plasma is developed, showing that the new approach is very promising in explaining abovementioned characteristics of anomalous transport in both L-mode and improved confinement plasmas. The interference of the fluxes is the key to construct the physics basis of the bifurcation theory for the L-H transition. The present status of theories on the mechanisms of improved confinement is discussed. Modelling on the nonlocal nature of transport is briefly discussed. Finally, the impact of the anomalous transport on disruptive phenomena is also described. (author) 95 refs

  5. A guide to the coupled chemical equilibria and migration code CHEQMATE

    International Nuclear Information System (INIS)

    Haworth, A.; Sharland, S.M.; Tasker, P.W.; Tweed, C.J.

    1988-02-01

    The CHEQMATE (CHemical EQuilibrium with Migration and Transport Equations) program has been developed to model the evolution of spatially inhomogeneous aqueous chemical systems. CHEQMATE models one-dimensional diffusion and electromigration of ionic species with chemical equilibration provided by the geochemical code PHREEQE. The transport and chemical parts of the CHEQMATE code are iteratively coupled, so that local chemical equilibrium is maintained as the transport processes evolve. CHEQMATE is very flexible and can easily be applied to many different evolving chemical systems. It has principally been used to study the evolution of the chemical environment in and around a nuclear waste repository. (author)

  6. Modeling reactive geochemical transport of concentrated aqueous solutions in variably saturated media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2004-01-28

    Concentrated aqueous solutions (CAS) have unique thermodynamic and physical properties. Chemical components in CAS are incompletely dissociated, especially those containing divalent or polyvalent ions. The problem is further complicated by the interaction between CAS flow processes and the naturally heterogeneous sediments. As the CAS migrates through the porous media, the composition may be altered subject to fluid-rock interactions. To effectively model reactive transport of CAS, we must take into account ion-interaction. A combination of the Pitzer ion-interaction and the ion-association model would be an appropriate way to deal with multiple-component systems if the Pitzer' parameters and thermodynamic data of dissolved components and the related minerals are available. To quantify the complicated coupling of CAS flow and transport, as well as the involved chemical reactions in natural and engineered systems, we have substantially extended an existing reactive biogeochemical transport code, BIO-CORE{sup 2D}{copyright}, by incorporating a comprehensive Pitzer ion-interaction model. In the present paper, the model, and two test cases against measured data were briefly introduced. Finally we present an application to simulate a laboratory column experiment studying the leakage of the high alkaline waste fluid stored in Hanford (a site of the U.S. Department of Energy, located in Washington State, USA). With the Pitzer ion-interaction ionic activity model, our simulation captures measured pH evolution. The simulation indicates that all the reactions controlling the pH evolution, including cation exchanges, mineral precipitation and dissolution, are coupled.

  7. Modeling contaminant transport in porous media in relation to nuclear-waste disposal: a review

    International Nuclear Information System (INIS)

    Grove, D.B.; Kipp, K.L.

    1980-01-01

    The modeling of solute transport in saturated porous media is reviewed as it is applied to the movement of radioactive waste in the subsurface. Those processes, both physical and chemical, that affect radionuclide movement are discussed and the references that best illustrate these processes listed. Movement is separated into convection, convection-dispersion, and convection-dispersion and chemical reactions. Solutions of equations describing such movement are divided into one-, two-, and three-dimensional analytical and numerical examples. Discussions of recent work in the area of stochastic modeling are followed by discussions of applications of the models to selected field sites

  8. Conceptual Site Model for Newark Bay—Hydrodynamics and Sediment Transport

    Directory of Open Access Journals (Sweden)

    Parmeshwar L. Shrestha

    2014-02-01

    Full Text Available A conceptual site model (CSM has been developed for the Newark Bay Study Area (NBSA as part of the Remedial Investigation/Feasibility Study (RI/FS for this New Jersey site. The CSM is an evolving document that describes the influence of physical, chemical and biological processes on contaminant fate and transport. The CSM is initiated at the start of a project, updated during site activities, and used to inform sampling and remediation planning. This paper describes the hydrodynamic and sediment transport components of the CSM for the NBSA. Hydrodynamic processes are influenced by freshwater inflows, astronomical forcing through two tidal straits, meteorological conditions, and anthropogenic activities such as navigational dredging. Sediment dynamics are driven by hydrodynamics, waves, sediment loading from freshwater sources and the tidal straits, sediment size gradation, sediment bed properties, and particle-to-particle interactions. Cohesive sediment transport is governed by advection, dispersion, aggregation, settling, consolidation, and erosion. Noncohesive sediment transport is governed by advection, dispersion, settling, armoring, and transport in suspension and along the bed. The CSM will inform the development and application of a numerical model that accounts for all key variables to adequately describe the NBSA’s historical, current, and future physical conditions.

  9. Development of a multi-species mass transport model for concrete with account to thermodynamic phase equilibriums

    DEFF Research Database (Denmark)

    Hosokawa, Yoshifumi; Yamada, Kazuo; Johannesson, Björn

    2011-01-01

    different types of cements. For example, the physicochemical evaluation of steel corrosion initiation can be studied by calculating the molar ratio of chloride ion to hydroxide ion in the pore solution. The model can, further, for example, calculate changes of solid-phase composition caused......) theory alone, not involving chemical processes, have no real practical interest since the chemical action is very dominant for cement based materials. Coupled mass transport and chemical equilibrium models can be used to calculate the variation in pore solution and solid-phase composition when using...

  10. The study of thermodynamic properties and transport properties of multicomponent systems with chemical reactions

    Directory of Open Access Journals (Sweden)

    Samujlov E.

    2013-04-01

    Full Text Available In case of system with chemical reaction the most important properties are heat conductivity and heat capacity. In this work we have considered the equation for estimate the component of these properties caused by chemical reaction and ionization processes. We have evaluated the contribution of this part in heat conductivity and heat capacity too. At the high temperatures contribution in heat conductivity from ionization begins to play an important role. We have created a model, which describe partial and full ionization of gases and gas mixtures. In addition, in this work we present the comparison of our result with experimental data and data from numerical simulation. We was used the data about transport properties of middle composition of Russian coals and the data of thermophysical properties of natural gas for comparison.

  11. Natural analogues and radionuclide transport model validation

    International Nuclear Information System (INIS)

    Lever, D.A.

    1987-08-01

    In this paper, some possible roles for natural analogues are discussed from the point of view of those involved with the development of mathematical models for radionuclide transport and with the use of these models in repository safety assessments. The characteristic features of a safety assessment are outlined in order to address the questions of where natural analogues can be used to improve our understanding of the processes involved and where they can assist in validating the models that are used. Natural analogues have the potential to provide useful information about some critical processes, especially long-term chemical processes and migration rates. There is likely to be considerable uncertainty and ambiguity associated with the interpretation of natural analogues, and thus it is their general features which should be emphasized, and models with appropriate levels of sophistication should be used. Experience gained in modelling the Koongarra uranium deposit in northern Australia is drawn upon. (author)

  12. Modelling the Molecular Transportation of Subcutaneously Injected Salubrinal

    Directory of Open Access Journals (Sweden)

    Andy Chen

    2011-01-01

    Full Text Available For the subcutaneous administration of a chemical agent (salubrinal, we constructed a mathematical model of molecule transportation and subsequently evaluated the kinetics of diffusion, convection, and molecular turnover. Salubrinal is a potential therapeutic agent that can reduce cellular damage and death. The understanding of its temporal profiles in local tissue as well as in a whole body is important to develop a proper strategy for its administration. Here, the diffusion and convection kinetics was formulated using partial and ordinary differential equations in one- and three-dimensional (semi-spherical coordinates. Several key parameters including an injection velocity, a diffusion coefficient, thickness of subcutaneous tissue, and a permeability factor at the tissue-blood boundary were estimated from experimental data in rats. With reference to analytical solutions in a simplified model without convection, numerical solutions revealed that the diffusion coefficient and thickness of subcutaneous tissue determined the timing of the peak concentration in the plasma, and its magnitude was dictated by the permeability factor. Furthermore, the initial velocity, induced by needle injection, elevated an immediate transport of salubrinal at t < 1h. The described analysis with a combination of partial and ordinary differential equations contributes to the prediction of local and systemic effects and the understanding of the transportation mechanism of salubrinal and other agents.

  13. Meso-scale modeling of air pollution transport/chemistry/deposition and its application

    International Nuclear Information System (INIS)

    Kitada, Toshihiro

    2007-01-01

    Transport/chemistry/deposition model for atmospheric trace chemical species is now regarded as an important tool for an understanding of the effects of various human activities, such as fuel combustion and deforestation, on human health, eco-system, and climate and for planning of appropriate control of emission sources. Several 'comprehensive' models have been proposed such as RADM (Chang, et al., 1987), STEM-II (Carmichael, et al., 1986), and CMAQ (Community Multi-scale Air Quality model, e.g., EPA website, 2003); the 'comprehensive' models include not only gas/aerosol phase chemistry but also aqueous phase chemistry in cloud/rain water in addition to the processes of advection, diffusion, wet deposition (mass transfer between aqueous and gas/aerosol phases), and dry deposition. The target of the development of the 'comprehensive' model will be that the model can correctly reproduce mass balance of various chemical species in the atmosphere with keeping adequate accuracy for calculated concentration distributions of chemical species. For the purpose, one of the important problems is a reliable wet deposition modeling, and here, we introduce two types of methods of 'cloud-resolving' and 'non-cloud-resolving' modeling for the wet deposition of pollutants. (author)

  14. Modeling interfacial area transport in multi-fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, Stephen Lee [Univ. of California, Berkeley, CA (United States)

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  15. Numerical simulation of in-situ chemical oxidation (ISCO) and biodegradation of petroleum hydrocarbons using a coupled model for bio-geochemical reactive transport

    Science.gov (United States)

    Marin, I. S.; Molson, J. W.

    2013-05-01

    Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.

  16. An integrated fluid-chemical model towards modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms

    Directory of Open Access Journals (Sweden)

    Jacopo eBiasetti

    2012-07-01

    Full Text Available Abdominal Aortic Aneurysms (AAAs are frequently characterized by the presenceof an Intra-Luminal Thrombus (ILT known to influence biochemically and biomechanicallytheir evolution. ILT progression mechanism is still unclear and little is known regardingthe impact on this mechanism of the chemical species transported by blood flow.Chemical agonists and antagonists of platelets activation, aggregation, and adhesion andthe proteins involved in the coagulation cascade (CC may play an important role in ILTdevelopment. Starting from this assumption, the evolution of chemical species involvedin the CC, their relation to coherent vortical structures (VSs and their possible effect onILT evolution have been studied. To this end a fluido-chemical model that simulates theCC through a series of convection-diffusion-reaction (CDR equations has been developed.The model involves plasma-phase and surface bound enzymes and zymogens, and includesboth plasma-phase and membrane-phase reactions. Blood is modeled as a non-Newtonianincompressible fluid. VSs convect thrombin in the domain and lead to the high concentration observed in the distal portion of the AAA. This finding is in line with the clinicalobservations showing that the thickest ILT is usually seen in the distal AAA region. Theproposed model, due to its ability to couple the fluid and chemical domains, provides anintegrated mechanochemical picture that potentially could help unveil mechanisms of ILTformation and development.

  17. An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms.

    Science.gov (United States)

    Biasetti, Jacopo; Spazzini, Pier Giorgio; Swedenborg, Jesper; Gasser, T Christian

    2012-01-01

    Abdominal Aortic Aneurysms (AAAs) are frequently characterized by the presence of an Intra-Luminal Thrombus (ILT) known to influence their evolution biochemically and biomechanically. The ILT progression mechanism is still unclear and little is known regarding the impact of the chemical species transported by blood flow on this mechanism. Chemical agonists and antagonists of platelets activation, aggregation, and adhesion and the proteins involved in the coagulation cascade (CC) may play an important role in ILT development. Starting from this assumption, the evolution of chemical species involved in the CC, their relation to coherent vortical structures (VSs) and their possible effect on ILT evolution have been studied. To this end a fluid-chemical model that simulates the CC through a series of convection-diffusion-reaction (CDR) equations has been developed. The model involves plasma-phase and surface-bound enzymes and zymogens, and includes both plasma-phase and membrane-phase reactions. Blood is modeled as a non-Newtonian incompressible fluid. VSs convect thrombin in the domain and lead to the high concentration observed in the distal portion of the AAA. This finding is in line with the clinical observations showing that the thickest ILT is usually seen in the distal AAA region. The proposed model, due to its ability to couple the fluid and chemical domains, provides an integrated mechanochemical picture that potentially could help unveil mechanisms of ILT formation and development.

  18. Surrogate model approach for improving the performance of reactive transport simulations

    Science.gov (United States)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2016-04-01

    (MARS) method provides the best trade-off between speed and accuracy. This proof-of-concept forms an essential step towards building an interactive visual analytics system to enable user-driven systematic creation of geochemical surrogate models. Such a system shall enable reactive transport simulations with unprecedented spatial and temporal detail to become possible. References: Kolditz, O., Görke, U.J., Shao, H. and Wang, W., 2012. Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples (Vol. 86). Springer Science & Business Media.

  19. Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport

    Science.gov (United States)

    Rod, Kenton; Um, Wooyong; Chun, Jaehun; Wu, Ning; Yin, Xialong; Wang, Guohui; Neeves, Keith

    2018-06-01

    A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d-1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500-600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500-600 μm and 300-400 μm). A chemical heterogeneity was created using 25% of the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500-600 μm). Input solution with 0.5 mM CsI and 50 mg L-1 colloids (1-μm diameter SiO2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.

  20. Morphological, Chemical Surface, and Diffusive Transport Characterizations of a Nanoporous Alumina Membrane

    Directory of Open Access Journals (Sweden)

    María I. Vázquez

    2015-12-01

    Full Text Available Synthesis of a nanoporous alumina membrane (NPAM by the two-step anodization method and its morphological and chemical surface characterization by analyzing Scanning Electron Microscopy (SEM micrographs and X-Ray Photoelectron Spectroscopy (XPS spectra is reported. Influence of electrical and diffusive effects on the NaCl transport across the membrane nanopores is determined from salt diffusion measurements performed with a wide range of NaCl concentrations, which allows the estimation of characteristic electrochemical membrane parameters such as the NaCl diffusion coefficient and the concentration of fixed charges in the membrane, by using an appropriated model and the membrane geometrical parameters (porosity and pore length. These results indicate a reduction of ~70% in the value of the NaCl diffusion coefficient through the membrane pores with respect to solution. The transport number of ions in the membrane pores (Na+ and Cl−, respectively were determined from concentration potential measurements, and the effect of concentration-polarization at the membrane surfaces was also considered by comparing concentration potential values obtained with stirred solutions (550 rpm and without stirring. From both kinds of results, a value higher than 0.05 M NaCl for the feed solution seems to be necessary to neglect the contribution of electrical interactions in the diffusive transport.

  1. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    Science.gov (United States)

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    Pharmaceutical, active ingredients in personal care products (PhACs), and their derivative compounds are increasingly ubiquitous in surface waters across the world. Sorption and transport of four relatively common PhACs (naproxen, ibuprofen, cetirizine, and triclosan) in different natural soils was measured. All of these compounds are relatively hydrophobic (log KOW>2) and have acid/base functional groups, including one compound that is zwitterionic (cetirizine.) The main goal of this study was to correlate organic matter (OM) and clay content in natural soils and sediment with sorption and degradation of PhACs and ultimately their potential for transport within the subsurface environment. A- and B-horizon soils were collected from four sub-regions within a pristine managed forested watershed near Charleston, SC, with no apparent sources of anthropogenic contamination. These four soil series had varying OM content (fOC) between 0.4-9%, clay mineral content between 6-20%, and soil pH between 4.5-6. The A-horizon soils had higher fOC and lower clay content than the B-horizon soils. Sorption isotherms measured from batch sorption experimental data indicated a non-linear sorption relationship in all A- and B-horizon soils - stronger sorption was observed at lower PhAC concentrations and lower sorption at higher concentrations. Three PhACs (naproxen, ibuprofen, and triclosan) sorbed more strongly with higher fOC A-horizon soils compared with the B-horizon soils. These results show that soil OM had a significant role in strongly binding these three PhACs, which had the highest KOW values. In contrast, cetirizine, which is predominantly positively charged at pH below 8, strongly sorbed to soils with higher clay mineral content and least strongly to higher fOC soils. All sorption isotherms fitted well to the Freundlich model. For naproxen, ibuprofen, and triclosan, there was a strong and positive linear correlation between the Freundlich adsorption constant, Kf, and f

  2. Long-range transport and global fractionation of POPs: insights from multimedia modeling studies

    International Nuclear Information System (INIS)

    Scheringer, M.; Salzmann, M.; Stroebe, M.; Wegmann, F.; Fenner, K.; Hungerbuehler, K.

    2004-01-01

    The long-range transport of persistent organic pollutants (POPs) is investigated with two multimedia box models of the global system. ChemRange is a purely evaluative, one-dimensional steady-state (level III) model; CliMoChem is a two-dimensional model with different temperatures, land/water ratios and vegetation types in different latitudinal zones. Model results are presented for three case studies: (i) the effect of atmospheric aerosol particles on the long-range transport of POPs, (ii) the effect of oceanic deposition on the long-range transport of different PCB congeners, (iii) the global fractionation of different PCB congeners. The model results for these case studies show: (i) the low atmospheric half-lives estimated for several organochlorine pesticides are likely to be inconsistent with the observed long-range transport of these compounds; (ii) export to the deep sea reduces the potential for long-range transport of highly hydrophobic compounds (but does not remove these chemicals from the biosphere); (iii) there are different meanings of the term global fractionation that refer to different aspects of the fractionation process and need to be distinguished. The case-study results further indicate that the influences of varying environmental conditions on the physicochemical properties and the degradation rate constants of POPs need to be determined. - Multimedia box models are applied to case studies of the behavior of POPs

  3. Framework for reactive mass transport

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    Reactive transport modeling is applicable for a range of porous materials. Here the modeling framework is focused on cement-based materials, where ion diffusion and migration are described by the Poisson-Nernst-Planck equation system. A two phase vapor/liquid flow model, with a sorption hysteresis...... description is coupled to the system. The mass transport is solved by using the finite element method where the chemical equilibrium is solved explicitly by an operator splitting method. The IPHREEQC library is used as chemical equilibrium solver. The equation system, solved by IPHREEQC, is explained...

  4. Dual continuum models of fully coupled non-isothermal multiphase flow and reactive transport in porous media

    International Nuclear Information System (INIS)

    Zheng, L.; Samper, J.

    2005-01-01

    Full text of publication follows: Double porosity, double permeability and dual continuum models (DCM) are widely used for modeling preferential water flow and mass transport in unsaturated and fractured media. Here we present a DCM of fully coupled non-isothermal multiphase flow and reactive transport model for the FEBEX compacted bentonite, a material which exhibits a double porosity behavior.. FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of a high level radioactive waste repository. Our DCM considers inter-aggregate macro-pores, and intra-aggregate and interlayer micro-pores. Two types of DCMs are tested: the dual continuum connected matrix (DCCM) and the dual continuum dis connected matrix (DCDM). Liquid flow in macro-pores is described with a mass conservation equation accounting for Darcian flow, chemical and thermal osmosis. In DCCM, water flux in micropores is calculated with a modified Darcy's law by adding a chemical osmosis term. A simple mass balance equation is used for DCDM which contains a storage and a water exchange term for water in micropores. A mixed type of water exchange term is adopted which includes a second order term accounting for water transfer due to the difference in liquid pressure and a first order term accounting for the gradient in chemical osmosis pressure. Equations of mass conservation for liquid, gas and heat in macro-pores and liquid mass conservation in micropores are solved by using a Newton-Raphson method. Two transport equations with a coupling interaction term are used to describe solute transport in macro- and micro-pores. The coupling term contains a first order diffusion term and a convection term (solute exchange due to water exchange). Transport equations as well as chemical reactions in the two domains are solved by means of a sequential iteration method. All these feature have been

  5. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    Science.gov (United States)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  6. Users' manual for LEHGC: A Lagrangian-Eulerian Finite-Element Model of Hydrogeochemical Transport Through Saturated-Unsaturated Media. Version 1.1

    International Nuclear Information System (INIS)

    Yeh, Gour-Tsyh

    1995-11-01

    The computer program LEHGC is a Hybrid Lagrangian-Eulerian Finite-Element Model of HydroGeo-Chemical (LEHGC) Transport Through Saturated-Unsaturated Media. LEHGC iteratively solves two-dimensional transport and geochemical equilibrium equations and is a descendant of HYDROGEOCHEM, a strictly Eulerian finite-element reactive transport code. The hybrid Lagrangian-Eulerian scheme improves on the Eulerian scheme by allowing larger time steps to be used in the advection-dominant transport calculations. This causes less numerical dispersion and alleviates the problem of calculated negative concentrations at sharp concentration fronts. The code also is more computationally efficient than the strictly Eulerian version. LEHGC is designed for generic application to reactive transport problems associated with contaminant transport in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical element concentrations as a function of time and space and the chemical speciation at user-specified nodes. LEHGC Version 1.1 is a modification of LEHGC Version 1.0. The modification includes: (1) devising a tracking algorithm with the computational effort proportional to N where N is the number of computational grid nodes rather than N 2 as in LEHGC Version 1.0, (2) including multiple adsorbing sites and multiple ion-exchange sites, (3) using four preconditioned conjugate gradient methods for the solution of matrix equations, and (4) providing a model for some features of solute transport by colloids

  7. State-of-the-art in modeling solute and sediment transport in rivers

    International Nuclear Information System (INIS)

    Sayre, W.W.

    1980-01-01

    This overview is structured around a comprehensive general model based on the conservation of mass principle as applied to dissolved and particulate constituents in rivers, with a few restricted but more specific examples that illustrate the state-of-the-art in modeling typical physical, chemical, and biological processes undergone by selected constituents in rivers. These examples include: simplified one- and two-dimensional formulations focusing on the hydrodynamic advection and dispersion mechanisms; a two-dimensional biochemial oxygen demand-dissolved oxygen model; a one-dimensional polychlorinated biphenyl model that includes uptake and release of constituent by suspended sediment, and deposition and erosion of contaminated particles; and a one-dimensional sediment transport model that accounts for interactions between the flow and the bed, and is capable of tracking dispersing slugs of sediment through cycles of erosion, entrainment, transport in suspension and as bed load, and burial and storage in the bed

  8. Simulation of uranium transport with variable temperature and oxidation potential: The computer program THCC [Thermo-Hydro-Chemical Coupling

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1986-12-01

    A simulator of reactive chemical transport has been constructed with the capabilities of treating variable temperatures and variable oxidation potentials within a single simulation. Homogeneous and heterogeneous chemical reactions are simulated at temperature-dependent equilibrium, and changes of oxidation states of multivalent elements can be simulated during transport. Chemical mass action relations for formation of complexes in the fluid phase are included explicitly within the partial differential equations of transport, and a special algorithm greatly simplifies treatment of reversible precipitation of solid phases. This approach allows direct solution of the complete set of governing equations for concentrations of all aqueous species and solids affected simultaneously by chemical and physical processes. Results of example simulations of transport, along a temperature gradient, of uranium solution species under conditions of varying pH and oxidation potential and with reversible precipitation of uraninite and coffinite are presented. The examples illustrate how inclusion of variable temperature and oxidation potential in numerical simulators can enhance understanding of the chemical mechanisms affecting migration of multivalent waste elements

  9. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    International Nuclear Information System (INIS)

    B.W. ARNOLD

    2004-01-01

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ

  10. Modelling Chemical Patterns of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in the Iberian Peninsula

    Science.gov (United States)

    Ratola, Nuno; Jiménez-Guerrero, Pedro

    2013-04-01

    Semi-volatile organic compounds (SVOCs) such as PBDEs, PCBs, organochlorine pesticides (OCPs) or PAHs, are widespread and generated in a multitude of anthropogenic (and natural for PAHs) processes and although they are found in the environment at low concentrations, possess an extraordinary carcinogenic capacity (Baussant et al., 2001) and high ecotoxicity due to their persistence in different matrices (air, soil, water, living organisms). In particular, PAHs are originated by combustion processes or release from fossil fuels and can be transported in the atmosphere over long distances in gaseous or particulate matter (Baek et al., 1991). The establishment of strategies for sampling and chemical transport modelling of SVOCs in the atmosphere aiming the definition and validation of the spatial, temporal and chemical transport patterns of contaminants can be achieved by an integrated system of third-generation models that represent the current state of knowledge in air quality modelling and experimental data collected in field campaigns. This has implications in the fields of meteorology, atmospheric chemistry and even climate change. In this case, an extensive database already obtained on levels of atmospheric PAHs from biomonitoring schemes in the Iberian Peninsula fuelled the establishment of the first models of behaviour for PAHs. The modelling system WRF+CHIMERE was implemented with high spatial and temporal resolution to the Iberian Peninsula in this first task (9 km for the Iberian Peninsula, 3 km to Portugal, 1 hour), using PAHs atmospheric levels collected over a year-long sampling scheme comprising 4 campaigns (one per season) in over 30 sites. Daily information on meteorological parameters such as air temperature, humidity, rainfall or wind speed and direction was collected from the weather stations closest to the sampling sites. Diagnosis and forecasts of these meteorological variables using MM5 or WRF were used to feed a chemistry transport model

  11. Using beryllium-7 to assess cross-tropopause transport in global models

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongyu [National Institute of Aerospace, Hampton, VA (United States); Considine, David B. [NASA Langley Research Center, Hampton, VA (United States); Horowitz, Larry W. [NOAA Geophysical Fluid and Dynamics Laboratory, Princeton, NJ (United States); and others

    2016-07-01

    We use the Global Modeling Initiative (GMI) modeling framework to assess the utility of cosmogenic beryllium-7 ({sup 7}Be), a natural aerosol tracer, for evaluating cross-tropopause transport in global models. The GMI chemical transport model (CTM) was used to simulate atmospheric {sup 7}Be distributions using four different meteorological data sets (GEOS1-STRAT DAS, GISS II{sup '} GCM, fvGCM, and GEOS4-DAS), featuring significantly different stratosphere-troposphere exchange (STE) characteristics. The simulations were compared with the upper troposphere and/or lower stratosphere (UT/LS) {sup 7}Be climatology constructed from ∝ 25 years of aircraft and balloon data, as well as climatological records of surface concentrations and deposition fluxes. Comparison of the fraction of surface air of stratospheric origin estimated from the {sup 7}Be simulations with observationally derived estimates indicates excessive cross-tropopause transport at mid-latitudes in simulations using GEOS1-STRAT and at high latitudes using GISS II{sup '} meteorological data. These simulations also overestimate {sup 7}Be deposition fluxes at mid-latitudes (GEOS1-STRAT) and at high latitudes (GISS II{sup '}), respectively. We show that excessive cross-tropopause transport of {sup 7}Be corresponds to overestimated stratospheric contribution to tropospheric ozone. Our perspectives on STE in these meteorological fields based on {sup 7}Be simulations are consistent with previous modeling studies of tropospheric ozone using the same meteorological fields. We conclude that the observational constraints for {sup 7}Be and observed {sup 7}Be total deposition fluxes can be used routinely as a first-order assessment of cross-tropopause transport in global models.

  12. Estimation of Atmospheric Methane Surface Fluxes Using a Global 3-D Chemical Transport Model

    Science.gov (United States)

    Chen, Y.; Prinn, R.

    2003-12-01

    Accurate determination of atmospheric methane surface fluxes is an important and challenging problem in global biogeochemical cycles. We use inverse modeling to estimate annual, seasonal, and interannual CH4 fluxes between 1996 and 2001. The fluxes include 7 time-varying seasonal (3 wetland, rice, and 3 biomass burning) and 3 steady aseasonal (animals/waste, coal, and gas) global processes. To simulate atmospheric methane, we use the 3-D chemical transport model MATCH driven by NCEP reanalyzed observed winds at a resolution of T42 ( ˜2.8° x 2.8° ) in the horizontal and 28 levels (1000 - 3 mb) in the vertical. By combining existing datasets of individual processes, we construct a reference emissions field that represents our prior guess of the total CH4 surface flux. For the methane sink, we use a prescribed, annually-repeating OH field scaled to fit methyl chloroform observations. MATCH is used to produce both the reference run from the reference emissions, and the time-dependent sensitivities that relate individual emission processes to observations. The observational data include CH4 time-series from ˜15 high-frequency (in-situ) and ˜50 low-frequency (flask) observing sites. Most of the high-frequency data, at a time resolution of 40-60 minutes, have not previously been used in global scale inversions. In the inversion, the high-frequency data generally have greater weight than the weekly flask data because they better define the observational monthly means. The Kalman Filter is used as the optimal inversion technique to solve for emissions between 1996-2001. At each step in the inversion, new monthly observations are utilized and new emissions estimates are produced. The optimized emissions represent deviations from the reference emissions that lead to a better fit to the observations. The seasonal processes are optimized for each month, and contain the methane seasonality and interannual variability. The aseasonal processes, which are less variable, are

  13. PREDICTION OF ATMOSPHERIC AIR POLLUTION BY EMISSIONS OF MOTOR TRANSPORT TAKING INTO ACCOUNT THE CHEMICAL TRANSFORMATION OF HARMFUL SUBSTANCES

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2017-06-01

    Full Text Available Purpose. Development of 3D numerical models, which allow us to calculate air pollution process from road transport emissions based on chemical transformation of pollutants. Creating numerical models, which would give the opportunity to predict the level of air pollution in urban areas. Methodology. To address the evaluation of the air pollution problem of emissions of vehicles the equations of aerodynamics and mass transfer were used. In order to solve differential equations of aerodynamics and mass transfer the finite difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximation was applied. The equation for the velocity potential written in difference form, is being split into two equations, and at each step of splitting the unknown value of the potential speed is determined by the explicit scheme of running account and the difference scheme itself is implicit. For the numerical integration of the equation of dispersion of emissions in the atmosphere is used implicit alternating-triangular difference splitting scheme. Emissions from the road are simulated by a series of point sources of a given intensity. The developed numerical models are the basis of established software package.Findings. There were developed 3D numerical models, which belong to the class «diagnostic models». These models take into account the main physical factors affecting the process of dispersion of pollutants in the atmosphere when emissions from road transport taking into account the chemical transformation of pollutants. On the basis of the constructed numerical models a computational experiment to assess the level of air pollution in the street was carried out. Originality. Numerical models that allow you to calculate the 3D aerodynamic of wind flow in urban areas and the process of mass transfer of emissions from the road were developed. The models make it possible to account the

  14. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    Science.gov (United States)

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-01

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.

  15. Conceptual model for regional radionuclide transport from a salt dome repository: a technical memorandum

    International Nuclear Information System (INIS)

    Kier, R.S.; Showalter, P.A.; Dettinger, M.D.

    1980-01-01

    Disposal of high-level radioactive wastes is a major environmental problem influencing further development of nuclear energy in this country. Salt domes in the Gulf Coast Basin are being investigated as repository sites. A major concern is geologic and hydrologic stability of candidate domes and potential transport of radionuclides by groundwater to the biosphere prior to their degradation to harmless levels of activity. This report conceptualizes a regional geohydrologic model for transport of radionuclides from a salt dome repository. The model considers transport pathways and the physical and chemical changes that would occur through time prior to the radionuclides reaching the biosphere. Necessary, but unknown inputs to the regional model involve entry and movement of fluids through the repository dome and across the dome-country rock interface and the effect on the dome and surrounding strata of heat generated by the radioactive wastes

  16. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    Science.gov (United States)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  17. Reduction of chemical reaction models

    Science.gov (United States)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  18. Chemical vapour transport of pyrite (FeS 2) with halogen (Cl, Br, I)

    Science.gov (United States)

    Fiechter, S.; Mai, J.; Ennaoui, A.; Szacki, W.

    1986-12-01

    A systematic study of chemical vapour transport (CVT) of pyrite with halogen, hydrogen halides and ammonium halides as transporting agents has shown that the transport with chlorine and bromine in a temperature gradient Δ T = 920-820 K yields the highest transport rates (˜6 mg/h) with crystals up to 5 mm edge length. Computing thermochemical equilibria and flux functions in the system Fe-S-Hal (Hal = Cl, Br, I) it has been confirmed that the transport velocity of pyrite is limited by the concentration of FeHal 2 in the vapour phase, the equilibrium position between FeHal 2(g) and FeHal 3(g) and the flux directions of the iron gas species.

  19. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides ( 137 Cs, 90 Sr, 239 240 Pu, and 3 H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay

  20. Transport properties site descriptive model. Guidelines for evaluation and modelling

    International Nuclear Information System (INIS)

    Berglund, Sten; Selroos, Jan-Olof

    2004-04-01

    This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive modelling of

  1. Comparative study of chemo-electro-mechanical transport models for an electrically stimulated hydrogel

    International Nuclear Information System (INIS)

    Elshaer, S E; Moussa, W A

    2014-01-01

    The main objective of this work is to introduce a new expression for the hydrogel’s hydration for use within the Poisson Nernst–Planck chemo electro mechanical (PNP CEM) transport models. This new contribution to the models support large deformation by considering the higher order terms in the Green–Lagrangian strain tensor. A detailed discussion of the CEM transport models using Poisson Nernst–Planck (PNP) and Poisson logarithmic Nernst–Planck (PLNP) equations for chemically and electrically stimulated hydrogels will be presented. The assumptions made to simplify both CEM transport models for electric field application in the order of 0.833 kV m −1 and a highly diluted electrolyte solution (97% is water) will be explained. This PNP CEM model has been verified accurately against experimental and numerical results. In addition, different definitions for normalizing the parameters are used to derive the dimensionless forms of both the PNP and PLNP CEM. Four models, PNP CEM, PLNP CEM, dimensionless PNP CEM and dimensionless PNLP CEM transport models were employed on an axially symmetric cylindrical hydrogel problem with an aspect ratio (diameter to thickness) of 175:3. The displacement and osmotic pressure obtained for the four models are compared against the variation of the number of elements for finite element analysis, simulation duration and solution rate when using the direct numerical solver. (papers)

  2. Chemical Evidence for Vertical Transport from Magma Chambers to the Surface During Mid-Ocean Ridge Volcanic Eruptions

    Science.gov (United States)

    Sinton, J. M.; Rubin, K. H.

    2009-12-01

    Many mid-ocean ridge eruptions show significant internal chemical heterogeneity; in general, the amount of chemical heterogeneity within eruptions scales with erupted volume. These variations reflect magmatic processes occurring in magma reservoirs prior to or possibly during eruption. For example, systematic variations in Mg# with along-axis distance in the early 90’s Aldo-Kihi (S. EPR near 17.5°S), 1996 N. Gorda, 1993 Co-Axial (Juan de Fuca Ridge), and 1991-2 and 2005-6 9°50’N EPR eruptions is unlikely to be related to fractionation during emplacement, and rather reflects variations in sub-axial magma reservoirs prior to eruption. Such variations are inconsistent with well-mixed sub-axial reservoirs and, in some cases, require relatively long-lived, systematic variations in reservoir temperatures along axis. Chemical heterogeneity within the Aldo-Kihi eruption preserves spatial variations in mantle-derived isotopic and trace element ratios with implications for the temporal and spatial scales of magma injections to the crust and along-axis mixing within shallow reservoirs. These spatial variations are difficult to reconcile with significant (> ~1 km) along-axis magma transport, as are striking correlations of chemical compositions with surface geological discontinuities or seismically imaged sub-axial magma chamber reflectors in the S. Hump (S. EPR), 9°50’N EPR, N. Gorda and 1975-1984 Krafla (N. Iceland) eruptive units. Rather, spatial correlations between surface lava compositions and sub-axial magma chamber properties or long-lived axial morphology suggest that most of the erupted magma was transported nearly vertically from the underlying reservoirs to the surface during these eruptions. In the case of the Krafla eruption, coincident deformation suggests a component of lateral melt migration at depth, despite chemical evidence for vertical transport of erupted lava from more than one chemical reservoir. In addition, along-ridge movement of earthquake

  3. Progress in transport modelling of internal transport barrier plasmas in JET

    International Nuclear Information System (INIS)

    Tala, T.; Bourdelle, C.; Imbeaux, F.; Moreau, D.; Garbet, X.; Joffrin, E.; Laborde, L.; Litaudon, X.; Mazon, D.; Parail, V.; Corrigan, G.; Heading, D.; Crisanti, F.; Mantica, P.; Salmi, A.; Strand, P.; Weiland, J.

    2005-01-01

    This paper will report on the recent progress in transport modelling of Internal Transport Barrier (ITB) plasmas. Two separate issues will be covered, fully predictive transport modelling of ITBs in the multi-tokamak database, including micro-stability analyses of ITBs, and predictive closed-loop (i.e. real-time control) transport simulations of the q-profile and ITBs. For the first time, the predictive capabilities of the mixed Bohm/GyroBohm and Weiland transport models are investigated with discharges from the ITPA ITB database by fully predictive transport simulations. The predictive transport simulations with the Bohm/GyroBohm model agree very well with experimental results from JET and JT-60U. In order to achieve a good agreement in DIII-D, the stabilisation had to be included into the model, showing the significant role played by the stabilisation in governing the physics of the ITBs. The significant role of the stabilisation is also emphasised by the gyrokinetic analysis. The Weiland transport model shows only limited agreement between the model predictions and experimental results with respect to the formation and location of the ITB. The fully predictive closed-loop simulations with real-time control of the q-profile and ITB show that it is possible to reach various set-point profiles for q and ITB and control them for longer than a current diffusion time in JET using the same real-time control technique as in the experiments. (author)

  4. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    Directory of Open Access Journals (Sweden)

    B. Sič

    2015-02-01

    Full Text Available This paper deals with recent improvements to the global chemical transport model of Météo-France MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species: desert dust, sea salt, black carbon, organic carbon, and also volcanic ash in the case of large volcanic eruptions. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging and by changing the in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI, the ground (AERONET, EMEP, and a model inter-comparison project (AeroCom are compared with MOCAGE simulations and show that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD observations over the oceans, the updated model configuration shows a decrease in the modified normalized mean bias (MNMB; from 0.42 to 0.10 and a better correlation (from 0.06 to 0.32 in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive MNMB in the sea salt representation at high latitudes (from 0.65 to 0.16, and a negative MNMB in

  5. Groundwater Flow and Transport Model in Cecina Plain (Tuscany, Italy) using GIS processing

    OpenAIRE

    Riccardo Armellini; Elena Baldini; Dario Del Seppia; Fabrizio Franceschini; Natacha Gori; Stefano Menichetti; Stefano Tessitore

    2015-01-01

    This work provides a groundwater flow and transport model of trichlorethylene and tetrachlorethylene contamination in the Cecina’s coastal aquifer. The contamination analysis, with source located in the Poggio Gagliardo area (Montescudaio, Pisa), was necessary to optimize the groundwater monitoring and remediation design. The work was carried out in two phases: • design of a conceptual model of the aquifer using GIS analysis of many stratigraphic, chemical and hydrogeological data, collected ...

  6. Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model

    International Nuclear Information System (INIS)

    Lindim, C.; Cousins, I.T.; Gils, J. van

    2015-01-01

    Novel approaches for estimating the emissions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to surface waters are explored. The Danube River catchment is used to investigate emissions contributing to riverine loads of PFOS and PFOA and to verify the accuracy of estimates using a catchment-scale dynamic fugacity-based chemical transport and fate model (STREAM-EU; Spatially and Temporally Resolved Exposure Assessment Model for European basins). Model accuracy evaluation performed by comparing STREAM-EU predicted concentrations and monitoring data for the Danube and its tributaries shows that the best estimates for PFOS and PFOA emissions in the Danube region are obtained by considering the combined contributions of human population, wealth (based on local gross domestic product (GDP)) and wastewater treatment. Human population alone cannot explain the levels of PFOS and PFOA found in the Danube catchment waters. Introducing wealth distribution information in the form of local GDPs improves emission estimates markedly, likely by better representing emissions resulting from consumer trends, industrial and commercial sources. For compounds such as PFOS and PFOA, whose main sink and transport media is the aquatic compartment, a major source to freshwater are wastewater treatment plants. Introducing wastewater treatment information in the emission estimations also further improves emission estimates. - Highlights: • Novel approaches for estimating PFOS/PFOA emissions to surface waters are explored. • Human population alone cannot explain the levels of PFOS/PFOA found in the Danube. • Best estimates are obtained when considering population, wealth and WWTP together.

  7. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    Science.gov (United States)

    Glynn, P.D.

    2003-01-01

    One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the

  8. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4

    Directory of Open Access Journals (Sweden)

    L. K. Emmons

    2010-01-01

    Full Text Available The Model for Ozone and Related chemical Tracers, version 4 (MOZART-4 is an offline global chemical transport model particularly suited for studies of the troposphere. The updates of the model from its previous version MOZART-2 are described, including an expansion of the chemical mechanism to include more detailed hydrocarbon chemistry and bulk aerosols. Online calculations of a number of processes, such as dry deposition, emissions of isoprene and monoterpenes and photolysis frequencies, are now included. Results from an eight-year simulation (2000–2007 are presented and evaluated. The MOZART-4 source code and standard input files are available for download from the NCAR Community Data Portal (http://cdp.ucar.edu.

  9. Interaction of Physical and Chemical Processes Controlling the Environmental Fate and Transport of Lampricides Through Stream-Hyporheic Systems

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; Schmadel, N.; McConville, M.; Remucal, C.

    2016-12-01

    The transport and fate of contaminants of emerging concern through the environment is complicated by the heterogeneity of natural systems and the unique reaction pathways of individual compounds. Our current evaluation of risk is often simplified to controls assumed to be homogeneous in space and time. However, we know spatial heterogeneity and time-variable reaction rates complicate predictions of environmental transport and fate, and therefore risk. These complications are the result of the interactions between the physical and chemical systems and the time-variable equilibrium that exists between the two. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  10. Transport modelling for ergodic configurations

    International Nuclear Information System (INIS)

    Runov, A.; Kasilov, S.V.; McTaggart, N.; Schneider, R.; Bonnin, X.; Zagorski, R.; Reiter, D.

    2004-01-01

    The effect of ergodization, either by additional coils like in TEXTOR-dynamic ergodic divertor (DED) or by intrinsic plasma effects like in W7-X, defines the need for transport models that are able to describe the ergodic configuration properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with minimized numerical errors. For these coordinates the appropriate full metric tensor has to be known. To study the transport in complex edge geometries (in particular for W7-X) two possible methods are used. First, a finite-difference discretization of the transport equations on a custom-tailored grid in local magnetic coordinates is used. This grid is generated by field-line tracing to guarantee an exact discretization of the dominant parallel transport (thus also minimizing the numerical diffusion problem). The perpendicular fluxes are then interpolated in a plane (a toroidal cut), where the interpolation problem for a quasi-isotropic system has to be solved by a constrained Delaunay triangulation (keeping the structural information for magnetic surfaces if they exist) and discretization. All toroidal terms are discretized by finite differences. Second, a Monte Carlo transport model originally developed for the modelling of the DED configuration of TEXTOR is used. A generalization and extension of this model was necessary to be able to handle W7-X. The model solves the transport equations with Monte Carlo techniques making use of mappings of local magnetic coordinates. The application of this technique to W7-X in a limiter-like configuration is presented. The decreasing dominance of parallel transport with respect to radial transport for electron heat, ion heat and particle transport results in increasingly steep profiles for the respective quantities within the islands. (author)

  11. Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials

    Science.gov (United States)

    2016-06-01

    2013 4. TITLE AND SUBTITLE Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials 5a...directions for future decontamination formulation approaches. 15. SUBJECT TERMS GD HD Decontamination Hazard mitigation VX Chemical warfare agent... DECONTAMINANTS TO PROVIDE HAZARD MITIGATION OF CHEMICAL WARFARE AGENTS FROM MATERIALS 1. INTRODUCTION Decontamination of materials is the

  12. Overview of research and development in subsurface fate and transport modeling

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Chehata, M.

    1995-05-01

    The US Department of Energy is responsible for the remediation of over 450 different subsurface-contaminated sites. Contaminant plumes at these sites range in volume from several to millions of cubic yards. The concentration of contaminants also ranges over several orders of magnitude. Contaminants include hazardous wastes such as heavy metals and organic chemicals, radioactive waste including tritium, uranium, and thorium, and mixed waste, which is a combination of hazardous and radioactive wastes. The physical form of the contaminants includes solutes, nonaqueous phase liquids (NAPLs), and vapor phase contaminants such as volatilized organic chemicals and radon. The subject of contaminant fate and transport modeling is multi-disciplinary, involving hydrology, geology, microbiology, chemistry, applied mathematics, computer science, and other areas of expertise. It is an issue of great significance in the United States and around the world. As such, many organizations have substantial programs in this area. In gathering data to prepare this report, a survey was performed of research and development work that is funded by US government agencies to improve the understanding and mechanistic modeling of processes that control contaminant movement through subsurface systems. Government agencies which fund programs that contain fate and transport modeling components include the Environmental Protection Agency, Nuclear Regulatory Commission, Department of Agriculture, Department of Energy, National Science Foundation, Department of Defense, United States Geological Survey, and National Institutes of Health

  13. Chemical factors affecting fission product transport in severe LMFBR accidents

    International Nuclear Information System (INIS)

    Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

    1984-10-01

    This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly

  14. On the ability of chemical transport models to simulate the vertical structure of the N2O, NO2 and HNO3 species in the mid-latitude stratosphere

    Directory of Open Access Journals (Sweden)

    G. Berthet

    2006-01-01

    Full Text Available In this paper we study the impact of the modelling of N2O on the simulation of NO2 and HNO3 by comparing in situ vertical profiles measured at mid-latitudes with the results of the Reprobus 3-D CTM (Three-dimensional Chemical Transport Model computed with the kinetic parameters from the JPL recommendation in 2002. The analysis of the measured in situ profile of N2O shows particular features indicating different air mass origins. The measured N2O, NO2 and HNO3 profiles are not satisfyingly reproduced by the CTM when computed using the current 6-hourly ECMWF operational analysis. Improving the simulation of N2O transport allows us to calculate quantities of NO2 and HNO3 in reasonable agreement with observations. This is achieved using 3-hourly winds obtained from ECMWF forecasts. The best agreement is obtained by constraining a one-dimensional version of the model with the observed N2O. This study shows that the modelling of the NOy partitioning with better accuracy relies at least on a correct simulation of N2O and thus of total NOy.

  15. Field studies and modeling of chemical processes in the unsaturated zone

    International Nuclear Information System (INIS)

    Polzer, W.L.; Fuentes, H.R.

    1985-01-01

    Technical assistance is being provided to Nuclear Materials Safety and Safeguards of the Nuclear Regulatory Commission to evaluate the validity of several guidelines listed in 10 CFR Part 61 for the future burial of low-level radioactive waste. Those guidelines include the requirement that the burial site shall be capable of being modeled. Both laboratory- and field-scale studies are being conducted under unsaturated moisture conditions and under steady-state and unsteady-state flow conditions. This paper reviews the kinds of present experiments in low-level radioactive waste disposal in development at the Los Alamos National Laboratory. Major emphasis is on some of the initial analyses of data for laboratory sorption experiments and for field transport tests. Brief reference is made to leaching and transport studies. Laboratory batch equilibrium sorption studies suggest that adsorption of nonconservative tracers can be described in terms of two empirical constants; one gives an indication of the average K/sub d/ for all adsorption sites and the other gives an indication of the spread of individual K/sub d/'s about the average K/sub d/. This information can be translated into a ''chemical dispersion'' under dynamic flow and equilibrium sorption conditions that is in addition to the traditionally accepted physical dispersion. Laboratory nonequilibrium sorption studies suggest that nonequilibrium models may be needed to model the transport of the nonconservative tracers cobalt and cesium; equilibrium models should be suitable to model strontium transport. Analyses from field-scale studies indicate that conservative tracers can reasonably be modeled with a one-dimensional advective-dispersive equation for steady flow. 12 figs., 1 tab

  16. Electronic transport in VO2—Experimentally calibrated Boltzmann transport modeling

    International Nuclear Information System (INIS)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y.; Kado, Motohisa; Ling, Chen; Zhu, Gaohua; Banerjee, Debasish

    2015-01-01

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO 2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO 2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO 2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties

  17. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  18. Model Comparison for Electron Thermal Transport

    Science.gov (United States)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  19. Savannah River Laboratory DOSTOMAN code: a compartmental pathways computer model of contaminant transport

    International Nuclear Information System (INIS)

    King, C.M.; Wilhite, E.L.; Root, R.W. Jr.

    1985-01-01

    The Savannah River Laboratory DOSTOMAN code has been used since 1978 for environmental pathway analysis of potential migration of radionuclides and hazardous chemicals. The DOSTOMAN work is reviewed including a summary of historical use of compartmental models, the mathematical basis for the DOSTOMAN code, examples of exact analytical solutions for simple matrices, methods for numerical solution of complex matrices, and mathematical validation/calibration of the SRL code. The review includes the methodology for application to nuclear and hazardous chemical waste disposal, examples of use of the model in contaminant transport and pathway analysis, a user's guide for computer implementation, peer review of the code, and use of DOSTOMAN at other Department of Energy sites. 22 refs., 3 figs

  20. Using Contaminant Transport Modeling to Determine Historical Discharges at the Surface

    Science.gov (United States)

    Fogwell, T. W.

    2013-12-01

    When it is determined that a contaminated site needs to be remediated, the issue of who is going to pay for that remediation is an immediate concern. This means that there needs to be a determination of who the responsible parties are for the existing contamination. Seldom is it the case that records have been made and kept of the surface contaminant discharges. In many cases it is possible to determine the relative amount of contaminant discharge at the surface of the various responsible parties by employing a careful analysis of the history of contaminant transport through the surface, through the vadose zone, and within the saturated zone. The process begins with the development of a dynamic conceptual site model that takes into account the important features of the transport of the contaminants through the vadose zone and in the groundwater. The parameters for this model can be derived from flow data available for the site. The resulting contaminant transport model is a composite of the vadose zone transport model, together with the saturated zone (groundwater) flow model. Any calibration of the model should be carefully employed in order to avoid using information about the conclusions of the relative discharge amounts of the responsible parties in determining the calibrated parameters. Determination of the leading edge of the plume is an important first step. It is associated with the first discharges from the surface of the site. If there were several discharging parties at the same time, then it is important to establish a chemical or isotopic signature of the chemicals that were discharged. The time duration of the first discharger needs to be determined as accurately as possible in order to establish the appropriate characterization of the leading portion of the resulting plume in the groundwater. The information about the first discharger and the resulting part of the plume associated with this discharger serves as a basis for the determination of the

  1. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2010-07-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  2. Dynamic Monte-Carlo modeling of hydrogen retention and chemical erosion from Tore Supra deposits

    International Nuclear Information System (INIS)

    Rai, A.; Schneider, R.; Warrier, M.; Roubin, P.; Martin, C.

    2009-01-01

    A multi-scale model has been developed to study the hydrogen retention [A. Rai, R. Schneider, M. Warrier, J. Nucl. Mater. 374 (2008) 304] and chemical erosion of porous graphite. To model the chemical erosion process due to thermal hydrogen ions, Kueppers cycle [J. Kueppers, Surf. Sci. Rep. 22 (1995) 249; M. Wittmann, J. Kueppers, J. Nucl. Mater. 227 (1996) 186] has been introduced. The model is applied to study hydrogen transport in deposits collected from the leading edge of neutralizers of Tore Supra. The effect of internal structure on chemical erosion is studied. The MD study [E. Salonen et al., J. Nucl. Mater. 290-293 (2001) 144] shows that the experimentally observed decrease of erosion yield at higher fluxes is due to the decrease of carbon collision cross-section at a surface due to shielding by hydrogen atom already present on the surface. Inspired by this study, a simple multi-scale model is developed to describe the flux dependence of chemical erosion. The idea is to use the local chemistry effect from the Kueppers model to calculate the hydrocarbon molecule formation process and then to find the release probability of the produced hydrocarbon based on the purely geometrical constraints. The model represents quite well the trends in experimental data.

  3. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  4. Selection of organic chemicals for subsurface transport. Subsurface transport program interaction seminar series. Summary

    International Nuclear Information System (INIS)

    Zachara, J.M.; Wobber, F.J.

    1984-11-01

    Model compounds are finding increasing use in environmental research. These individual compounds are selected as surrogates of important contaminants present in energy/defense wastes and their leachates and are used separately or as mixtures in research to define the anticipated or ''model'' environmental behavior of key waste components and to probe important physicochemical mechanisms involved in transport and fate. A seminar was held in Germantown, Maryland, April 24-25, 1984 to discuss the nature of model organic compounds being used for subsurface transport research. The seminar included participants experienced in the fields of environmental chemistry, microbiology, geohydrology, biology, and analytic chemistry. The objectives of the seminar were two-fold: (1) to review the rationale for the selection of organic compounds adopted by research groups working on the subsurface transport of organics, and (2) to evaluate the use of individual compounds to bracket the behavior of compound classes and compound constructs to approximate the behavior of complex organic mixtures

  5. Colloid transport in model fracture filling materials

    Science.gov (United States)

    Wold, S.; Garcia-Garcia, S.; Jonsson, M.

    2010-12-01

    Colloid transport in model fracture filling materials Susanna Wold*, Sandra García-García and Mats Jonsson KTH Chemical Science and Engineering Royal Institute of Technology, SE-100 44 Stockholm, Sweden *Corresponding author: E-mail: wold@kth.se Phone: +46 8 790 6295 In colloid transport in water-bearing fractures, the retardation depends on interactions with the fracture surface by sorption or filtration. These mechanisms are difficult to separate. A rougher surface will give a larger area available for sorption, and also when a particle is physically hindered, it approaches the surface and enables further sorption. Sorption can be explained by electrostatics were the strongest sorption on minerals always is observed at pH below pHpzc (Filby et al., 2008). The adhesion of colloids to mineral surfaces is related to the surface roughness according to a recent study (Darbha et al., 2010). There is a large variation in the characteristics of water-bearing fractures in bedrock in terms of aperture distribution, flow velocity, surface roughness, mineral distributions, presence of fracture filling material, and biological and organic material, which is hard to implement in modeling. The aim of this work was to study the transport of negatively charged colloids in model fracture filling material in relation to flow, porosity, mineral type, colloid size, and surface charge distribution. In addition, the impact on transport of colloids of mixing model fracture filling materials with different retention and immobilization capacities, determined by batch sorption experiments, was investigated. The transport of Na-montmorillonite colloids and well-defined negatively charged latex microspheres of 50, 100, and 200 nm diameter were studied in either columns containing quartz or quartz mixed with biotite. The ionic strength in the solution was exclusively 0.001 and pH 6 or 8.5. The flow rates used were 0.002, 0.03, and 0.6 mL min-1. Sorption of the colloids on the model fracture

  6. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cowan-Ellsberry, Christina E.; McLachlan, Michael S.; Arnot, Jon A.; MacLeod, Matthew; McKone, Thomas E.; Wania, Frank

    2008-11-01

    . It is possible to have confidence in the predictions of many of the existing models because of their fundamental physical and chemical mechanistic underpinnings and the extensive work already done to compare model predictions and empirical observations. The working group recommends that modeling tools be applied for benchmarking PBT/POPs according to exposure-to-emissions relationships, and that modeling tools be used to interpret emissions and monitoring data. The further development of models that couple fate, long-range transport, and bioaccumulation should be fostered, especially models that will allow time trends to be scientifically addressed in the risk profile.

  7. Modeling Phosphorus Transport and Cycling in the Greater Everglades Ecosystem

    Science.gov (United States)

    James, A. I.; Grace, K. A.; Jawitz, J. W.; Muller, S.; Munoz-Carpena, R.; Flaig, E. G.

    2005-12-01

    components. The model is linked with the South Florida Water Management District Regional Simulation Model (SFWMD/RSM), which provides the hydrodynamic data necessary to model chemical transport.

  8. Chemical transport in a fissured rock: verification of a numerical model

    International Nuclear Information System (INIS)

    Rasmuson, A.; Narasimham, T.N.; Neretnieks.

    1982-01-01

    Due to the very long-term, high toxicity of some nuclear waste products, models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. A numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions, with or without decay and source term has been verified. The method is based on an integrated finite difference approach. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bonding any volume element in the region (that is, numerical Peclet number -3 % or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. A sensitivity analysis based on the errors in prediction introduced due to uncertainties in input parameters are likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. Work in this direction is in progress

  9. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  10. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  11. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  12. Model for diffusion and porewater chemistry in compacted bentonite. Theoretical basis and the solution methodology for the transport model

    International Nuclear Information System (INIS)

    Lehikoinen, J.

    1997-01-01

    This report describes the progress of the computer model for ionic transport in bentonite. The research is part of the project Microstructural and chemical parameters of bentonite as determinants of waste isolation efficiency within the Nuclear fission safety program organized by The Commission of the European Communities. The study was started by collecting a comprehensive body of available data on space-charge transport modelling and creating a conceptualization of the problem at hand. The numerical discretization of the governing equations by finite differences was also initiated. This report introduces the theoretical basis for the model, somewhat more elaborated than presented in Progress Report 1/1996, and rectifies a few mistakes appearing in that report. It also gives a brief introduction to the solution methodology of the disc retized governing equations. (orig.) (12 refs.)

  13. BLT-EC (Breach, Leach and Transport-Equilibrium Chemistry) data input guide. A computer model for simulating release and coupled geochemical transport of contaminants from a subsurface disposal facility

    International Nuclear Information System (INIS)

    MacKinnon, R.J.; Sullivan, T.M.; Kinsey, R.R.

    1997-05-01

    The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC

  14. Sensitivity of Global Methane Bayesian Inversion to Surface Observation Data Sets and Chemical-Transport Model Resolution

    Science.gov (United States)

    Lew, E. J.; Butenhoff, C. L.; Karmakar, S.; Rice, A. L.; Khalil, A. K.

    2017-12-01

    Methane is the second most important greenhouse gas after carbon dioxide. In efforts to control emissions, a careful examination of the methane budget and source strengths is required. To determine methane surface fluxes, Bayesian methods are often used to provide top-down constraints. Inverse modeling derives unknown fluxes using observed methane concentrations, a chemical transport model (CTM) and prior information. The Bayesian inversion reduces prior flux uncertainties by exploiting information content in the data. While the Bayesian formalism produces internal error estimates of source fluxes, systematic or external errors that arise from user choices in the inversion scheme are often much larger. Here we examine model sensitivity and uncertainty of our inversion under different observation data sets and CTM grid resolution. We compare posterior surface fluxes using the data product GLOBALVIEW-CH4 against the event-level molar mixing ratio data available from NOAA. GLOBALVIEW-CH4 is a collection of CH4 concentration estimates from 221 sites, collected by 12 laboratories, that have been interpolated and extracted to provide weekly records from 1984-2008. Differently, the event-level NOAA data records methane mixing ratios field measurements from 102 sites, containing sampling frequency irregularities and gaps in time. Furthermore, the sampling platform types used by the data sets may influence the posterior flux estimates, namely fixed surface, tower, ship and aircraft sites. To explore the sensitivity of the posterior surface fluxes to the observation network geometry, inversions composed of all sites, only aircraft, only ship, only tower and only fixed surface sites, are performed and compared. Also, we investigate the sensitivity of the error reduction associated with the resolution of the GEOS-Chem simulation (4°×5° vs 2°×2.5°) used to calculate the response matrix. Using a higher resolution grid decreased the model-data error at most sites, thereby

  15. Source tagging modeling study of heavy haze episodes under complex regional transport processes over Wuhan megacity, Central China

    International Nuclear Information System (INIS)

    Lu, Miaomiao; Tang, Xiao; Wang, Zifa; Gbaguidi, Alex; Liang, Shengwen; Hu, Ke; Wu, Lin; Wu, Huangjian; Huang, Zhen; Shen, Longjiao

    2017-01-01

    Wuhan as a megacity of Central China was suffering from severe particulate matter pollution according to previous observation studies, however, the mechanism behind the pollution formation especially the impact of regional chemical transport is still unclear. This study, carried out on the Nested Air Quality Prediction Modeling System (NAQPMS) coupled with an on-line source-tagging module, explores different roles regional transport had in two strong haze episodes over Wuhan in October 2014 and quantitatively assesses the contributions from local and regional sources to PM 2.5 concentration. Validation of predictions based on observations shows modeling system good skills in reproducing key meteorological and chemical features. The first short-time haze episode occurred on 12 October under strong northerly winds, with a hourly PM 2.5 peak of 180 μg m −3 , and was found to be caused primarily by the long-range transport from the northern regions, which contributed 60.6% of the episode's PM 2.5 concentration (versus a total of 32.7% from sources in and near Wuhan). The second episode lasted from the 15–20 October under stable regional large-scale synoptic conditions and weak winds, and had an hourly PM 2.5 peak of 231.0 μg m −3 . In this episode, both the long-distance transport from far regions and short-range transport from the Wuhan-cluster were the primary causes of the haze episode and account for 24.8% and 29.2% of the PM 2.5 concentration respectively. Therefore, regional transport acts as a crucial driver of haze pollution over Wuhan through not only long-range transfer of pollutants, but also short-range aerosol movement under specific meteorological conditions. The present findings highlight the important role of regional transport in urban haze formation and indicate that the joint control of multi city-clusters are needed to reduce the particulate pollution level in Wuhan. - Highlights: • Regional transport impacts studied on two haze

  16. The modelling of direct chemical kinetic effects in turbulent flames

    Energy Technology Data Exchange (ETDEWEB)

    Lindstet, R.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering

    2000-06-01

    Combustion chemistry-related effects have traditionally been of secondary importance in the design of gas turbine combustors. However, the need to deal with issues such as flame stability, relight and pollutant emissions has served to bring chemical kinetics and the coupling of finite rate chemistry with turbulent flow fields to the centre of combustor design. Indeed, improved cycle efficiency and more stringent environmental legislation, as defined by the ICAO, are current key motivators in combustor design. Furthermore, lean premixed prevaporized (LPP) combustion systems, increasingly used for power generation, often operate close to the lean blow-off limit and are prone to extinction/reignition type phenomena. Thus, current key design issues require that direct chemical kinetic effects be accounted for accurately in any simulation procedure. The transported probability density function (PDF) approach uniquely offers the potential of facilitating the accurate modelling of such effects. The present paper thus assesses the ability of this technique to model kinetically controlled phenomena, such as carbon monoxide emissions and flame blow-off, through the application of a transported PDF method closed at the joint scalar level. The closure for the velocity field is at the second moment level, and a key feature of the present work is the use of comprehensive chemical kinetic mechanisms. The latter are derived from recent work by Lindstedt and co-workers that has resulted in a compact 141 reactions and 28 species mechanism for LNG combustion. The systematically reduced form used here features 14 independent C/H/O scalars, with the remaining species incorporated via steady state approximations. Computations have been performed for hydrogen/carbon dioxide and methane flames. The former (high Reynolds number) flames permit an assessment of the modelling of flame blow-off, and the methane flame has been selected to obtain an indication of the influence of differential

  17. Chemical Vapor Transport Deposition of Molybdenum Disulfide Layers Using H2O Vapor as the Transport Agent

    Directory of Open Access Journals (Sweden)

    Shichao Zhao

    2018-02-01

    Full Text Available Molybdenum disulfide (MoS2 layers show excellent optical and electrical properties and have many potential applications. However, the growth of high-quality MoS2 layers is a major bottleneck in the development of MoS2-based devices. In this paper, we report a chemical vapor transport deposition method to investigate the growth behavior of monolayer/multi-layer MoS2 using water (H2O as the transport agent. It was shown that the introduction of H2O vapor promoted the growth of MoS2 by increasing the nucleation density and continuous monolayer growth. Moreover, the growth mechanism is discussed.

  18. Modeling of the geochemical behaviour and of the radionuclide transport in the presence of colloids

    International Nuclear Information System (INIS)

    Van der Lee, Jan

    1997-01-01

    Over the past ten years, colloids have been introduced in the already complex subject of waste storage safety analysis. They are indeed often considered as rapid carriers for otherwise insoluble radioactive elements, and therefore potentially decrease the effective barrier function of the geological rock surrounding the waste. The problem is therefore to understand colloid behaviour and quantify their stability and reactivity with respect to the radionuclides. The subject reveals three different levels of phenomena: the geochemical mechanisms, the micro-physical and electrostatic behaviour of colloids and the transport mechanisms. The topics of this thesis therefore cover a wide range of disciplines, such as geochemistry, radiochemistry, physics, hydrogeology, mathematics and computer science. Given the complexity of the subject, only strongly simplified models are used for safety assessment including the impact of colloids. Henceforth, the objective of this study is to provide a comprehensive theoretical basis for modelling the impact of colloids according to a deterministic approach, in the hope to pave the road towards predictive modelling of a waste repository performance. This thesis is the result of work carried out in different European Community projects in the framework of the fourth R and D program on 'Management and Storage of Radioactive Waste'. part A, task 4, 'Disposal of Radioactive Waste'. Grateful use has been made of many chemical and hydrogeological experiments carried out by many different laboratories all over Europe. The main results can be classified according to three principal topics: - geochemistry and the chemical behaviour of actinides, lanthanides and fission products; - retention mechanisms of colloidal particles; - transport mechanism in geological medium. The first topic is fundamental: geochemistry forms the basis of e.g. the retention model for aqueous and colloidal species. The principal result of this topic is

  19. Dileptons from transport and hydrodynamical models

    International Nuclear Information System (INIS)

    Huovinen, P.; Koch, V.

    2000-01-01

    Transport and hydrodynamical models used to describe the expansion stage of a heavy-ion collision at the CERN SPS give different dilepton spectrum even if they are tuned to reproduce the observed hadron spectra. To understand the origin of this difference we compare the dilepton emission from transport and hydrodynamical models using similar initial states in both models. We find that the requirement of pion number conservation in a hydrodynamical model does not change the dilepton emission. Also the mass distribution from the transport model indicates faster cooling and longer lifetime of the fireball

  20. Assessment of applications of transport models on regional scale solute transport

    Science.gov (United States)

    Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.

    2017-12-01

    Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.

  1. Mathematical modeling plasma transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Quiang, Ji [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1997-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 1020/m3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.

  2. Mathematical modeling plasma transport in tokamaks

    International Nuclear Information System (INIS)

    Quiang, Ji

    1995-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10 20 /m 3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%

  3. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-04-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  4. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    International Nuclear Information System (INIS)

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-01-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO 2 (g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO 3 - and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  5. A disaggregate freight transport model of transport chain and shipment size choice

    NARCIS (Netherlands)

    Windisch, E.; De Jong, G.C.; Van Nes, R.; Hoogendoorn, S.P.

    2010-01-01

    The field of freight transport modelling is relatively young compared to passenger transport modelling. However, some key issues in freight policy, like growing freight shares on the road, advanced logistics concepts or emerging strict freight transport regulations, have been creating increasing

  6. Modeling UTLS water vapor: Transport/Chemistry interactions

    International Nuclear Information System (INIS)

    Gulstad, Line

    2005-01-01

    This thesis was initially meant to be a study on the impact on chemistry and climate from UTLS water vapor. However, the complexity of the UTLS water vapor and its recent changes turned out to be a challenge by it self. In the light of this, the overall motivation for the thesis became to study the processes controlling UTLS water vapor and its changes. Water vapor is the most important greenhouse gas, involved in important climate feedback loops. Thus, a good understanding of the chemical and dynamical behavior of water vapor in the atmosphere is crucial for understanding the climate changes in the last century. Additionally, parts of the work was motivated by the development of a coupled climate chemistry model based on the CAM3 model coupled with the Chemical Transport Model Oslo CTM2. The future work will be concentrated on the UTLS water vapor impact on chemistry and climate. We are currently studying long term trends in UTLS water vapor, focusing on identification of the different processes involved in the determination of such trends. The study is based on natural as well as anthropogenic climate forcings. The ongoing work on the development of a coupled climate chemistry model will continue within our group, in collaboration with Prof. Wei-Chyung Wang at the State University of New York, Albany. Valuable contacts with observational groups are established during the work on this thesis. These collaborations will be continued focusing on continuous model validation, as well as identification of trends and new features in UTLS water vapor, and other tracers in this region. (Author)

  7. A global framework to model spatial ecosystems exposure to home and personal care chemicals in Asia.

    Science.gov (United States)

    Wannaz, Cedric; Franco, Antonio; Kilgallon, John; Hodges, Juliet; Jolliet, Olivier

    2018-05-01

    This paper analyzes spatially ecosystem exposure to home and personal care (HPC) chemicals, accounting for market data and environmental processes in hydrological water networks, including multi-media fate and transport. We present a global modeling framework built on ScenAT (spatial scenarios of emission), SimpleTreat (sludge treatment plants), and Pangea (spatial multi-scale multimedia fate and transport of chemicals), that we apply across Asia to four chemicals selected to cover a variety of applications, volumes of production and emission, and physico-chemical and environmental fate properties: the anionic surfactant linear alkylbenzene sulphonate (LAS), the antimicrobial triclosan (TCS), the personal care preservative methyl paraben (MeP), and the emollient decamethylcyclopentasiloxane (D5). We present maps of predicted environmental concentrations (PECs) and compare them with monitored values. LAS emission levels and PECs are two to three orders of magnitude greater than for other substances, yet the literature about monitored levels of LAS in Asia is very limited. We observe a good agreement for TCS in freshwater (Pearson r=0.82, for 253 monitored values covering 12 streams), a moderate agreement in general, and a significant model underestimation for MeP in sediments. While most differences could be explained by uncertainty in both chemical/hydrological parameters (DT50 water , DT50 sediments , K oc , f oc , TSS) and monitoring sites (e.g. spatial/temporal design), the underestimation of MeP concentrations in sediments may involve potential natural sources. We illustrate the relevance of local evaluations for short-lived substances in fresh water (LAS, MeP), and their inadequacy for substances with longer half-lives (TCS, D5). This framework constitutes a milestone towards higher tier exposure modeling approaches for identifying areas of higher chemical concentration, and linking large-scale fate modeling with (sub) catchment-scale ecological scenarios; a

  8. System Convergence in Transport Modelling

    DEFF Research Database (Denmark)

    Rich, Jeppe; Nielsen, Otto Anker; Cantarella, Guilio E.

    2010-01-01

    A fundamental premise of most applied transport models is the existence and uniqueness of an equilibrium solution that balances demand x(t) and supply t(x). The demand consists of the people that travel in the transport system and on the defined network, whereas the supply consists of the resulting...... level-of-service attributes (e.g., travel time and cost) offered to travellers. An important source of complexity is the congestion, which causes increasing demand to affect travel time in a non-linear way. Transport models most often involve separate models for traffic assignment and demand modelling...... iterating between a route-choice (demand) model and a time-flow (supply) model. It is generally recognised that a simple iteration scheme where the level-of-service level is fed directly to the route-choice and vice versa may exhibit an unstable pattern and lead to cyclic unstable solutions. It can be shown...

  9. Chemical Continuous Time Random Walks

    Science.gov (United States)

    Aquino, T.; Dentz, M.

    2017-12-01

    Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.

  10. Three-Dimensional modelling of the long-term variability of tracer transport in the Asian Summer Monsoon anticyclone

    Science.gov (United States)

    Taverna, Giorgio; Chipperfield, Martyn; Feng, Wuhu; Pope, Richard; Hossaini, Ryan; Forster, Piers

    2017-04-01

    The Asian Monsoon is an important region for the transport of gases from the troposphere to the stratosphere. Recent work by many groups has focused on quantifying processes which contribute to coupling in the upper troposphere - lower stratosphere (UTLS), including transport during the Asian Summer Monsoon (ASM). Troposphere-to-stratosphere transport in this region has been the focus of a number of recent campaigns, including the EU "StratoClim campaign" in Kalamata, Greece, 2016. Anthropogenic compounds such as CO Very Short-Lived Substances (VSLS), which destroy stratospheric ozone, and sulphur compounds, which maintain the stratospheric aerosol layer, are among the important species involved in large convective systems transport such as the ASM. An important question for halogenated VSLS is whether ASM-associated transport can take place on timescales which are short relative to their chemical lifetimes of days to months. This talk will present results of the TOMCAT/SLIMCAT off-line 3-D chemical transport model to investigate these issues using moderate-resolution simulations (2.8°x2.8°, 60 levels from surface to 60 km). The model is forced by ECMWF ERA-Interim reanalyses. A 1979-2016 simulation was run using artificial and idealized tracers with parametrized loss rates, lifetimes and emissions. These types of tracer have already been successfully used to study the transport of VSLS from surface through the TTL. The interannual variability of the transport inside and through the ASM anticyclone and related confinement will be shown and quantified. Comparisons will be made with in-situ and remote satellite data, where possible.

  11. CASCADER: An M-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1993-02-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one-space dimensional transport and fate model for M-chain radionuclides in very dry homogeneous or heterogeneous soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advection velocity is derived from an embedded air-pumping submodel. The air-pumping submodel is based on an assumption of isothermal conditions, which is driven by barometric pressure. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions are used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77

  12. CASCADER: An m-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1992-06-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes as they are advected and/or dispersed. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one space dimensional transport and fate model for an m-chain of radionuclides in very dry soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advocation velocity is derived from an embedded air-pumping submodel. The airpumping submodel is based on an assumption of isothermal conditions and is barometric pressure driven. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions is used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77

  13. Report on stages 3 and 4: testing of coupled chemical transport models

    International Nuclear Information System (INIS)

    Read, D.

    1991-01-01

    Chemval is an international exercise aimed at the verification and validation of predictive models describing groundwater speciation and geochemical transport. As a component of the CEC Mirage project (Migration of radionuclides in the geosphere) - second phase, Chemval is being carried out within the framework of the third Community R and D programme on radioactive waste management and storage (1985-89). This report describes the methodology employed and results obtained for 15 verification tests of varying complexity. The outcome of validation studies against two well-characterized experimental systems is also assessed in terms of the requirements for radiological risk assessment. Chemval is funded jointly by the Commission of the European Communities and Her majesty's Inspectorate of Pollution - UK Department of the Environment. 75 refs., 67 figs; 21 tabs

  14. Modeling pollutant transport using a meshless-lagrangian particle model

    International Nuclear Information System (INIS)

    Carrington, D.B.; Pepper, D.W.

    2002-01-01

    A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons

  15. Chemical Modeling of the Reactivity of Short-Lived Greenhouse Gases: A Model Inter-Comparison Prescribing a Well-Measured, Remote Troposphere

    Science.gov (United States)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-01-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating over the data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14,880 parcels along 180W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10% of parcels control 25-30% of the total reactivities), but do not fully agree on which parcels comprise the top 10%. Distinct differences in specific features occur, including the regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the 6 models tested here, 3 are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify 4, effectively distinct, chemical models. Based on this work, we suggest that water vapor differences in

  16. Design of an intermediate-scale experiment to validate unsaturated- zone transport models

    International Nuclear Information System (INIS)

    Siegel, M.D.; Hopkins, P.L.; Glass, R.J.; Ward, D.B.

    1991-01-01

    An intermediate-scale experiment is being carried out to evaluate instrumentation and models that might be used for transport-model validation for the Yucca Mountain Site Characterization Project. The experimental test bed is a 6-m high x 3-m diameter caisson filled with quartz sand with a sorbing layer at an intermediate depth. The experiment involves the detection and prediction of the migration of fluid and tracers through an unsaturated porous medium. Pre-test design requires estimation of physical properties of the porous medium such as the relative permeability, saturation/pressure relations, porosity, and saturated hydraulic conductivity as well as geochemical properties such as surface complexation constants and empircial K d 'S. The pre-test characterization data will be used as input to several computer codes to predict the fluid flow and tracer migration. These include a coupled chemical-reaction/transport model, a stochastic model, and a deterministic model using retardation factors. The calculations will be completed prior to elution of the tracers, providing a basis for validation by comparing the predictions to observed moisture and tracer behavior

  17. Particle reduction strategies - PAREST. Evaluation of emission reduction scenarios using chemical transport calculations. Traffic model TREMOD and traffic model TREMOVE. Sub-report

    International Nuclear Information System (INIS)

    Stern, Rainer

    2013-01-01

    The calculation of transport emissions in PAREST project is made with traffic model TREMOD 4.17 (Transport Emission Model) used by the Federal Environment Agency based on the emission factors of HBEFA 2.1 (Handbook on Emission Factors for Road Traffic). For the PAREST reference scenario 2010-2020 (CLE scenario, ''current legislation'') TREMOD 4.17 was changed (TREMOD 4.17M) in such way that measures ''Introduction of Euro 5 and 6 limit levels for passenger cars and light commercial vehicles'', ''Introduction of a limit value stage Euro VI for heavy commercial vehicles'' and ''Existing truck tolls including promoting the purchase of low-emission heavy duty vehicles'' are integrated in the reference scenario and are no longer treated as an additional measure (Joerss et al., 2010). As an alternative to TREMOD 4.17M emission data sets were created for the project, in which the traffic emissions were calculated with the TREMOVE, version 2.7 (Kugler et al., 2010). TREMOVE is the traffic model used by the European Commission for the development of traffic scenarios. This report documents the differences between the immission distributions of PM10 and NO 2 , resulting from the application of the European transport model. Considered are the reference 2005, which describes the current state for the year 2005 and the 2020 reference that describes the emission state in 2020 to be achieved. [de

  18. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    Transport projects and policy evaluations are often based on transport model output, i.e. traffic flows and derived effects. However, literature has shown that there is often a considerable difference between forecasted and observed traffic flows. This difference causes misallocation of (public...... implemented by using an approach based on stochastic techniques (Monte Carlo simulation and Bootstrap re-sampling) or scenario analysis combined with model sensitivity tests. Two transport models are used as case studies: the Næstved model and the Danish National Transport Model. 3 The first paper...... in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...

  19. Highway and interline transportation routing models

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.

    1994-01-01

    The potential impacts associated with the transportation of hazardous materials are important issues to shippers, carriers, and the general public. Since transportation routes are a central characteristic in most of these issues, the prediction of likely routes is the first step toward the resolution of these issues. In addition, US Department of Transportation requirements (HM-164) mandate specific routes for shipments of highway controlled quantities of radioactive materials. In response to these needs, two routing models have been developed at Oak Ridge National Laboratory under the sponsorship of the U.S. Department of Energy (DOE). These models have been designated by DOE's Office of Environmental Restoration and Waste Management, Transportation Management Division (DOE/EM) as the official DOE routing models. Both models, HIGHWAY and INTERLINE, are described

  20. Up-gradient transport in a probabilistic transport model

    DEFF Research Database (Denmark)

    Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.

    2005-01-01

    The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....

  1. Long-range Transport Modeling System and its Application over the Northeast Asia

    Directory of Open Access Journals (Sweden)

    Il-Soo Park

    2006-06-01

    Full Text Available A Comprehensive Acid Deposition Modeling (CADM was developed at the National Institute of Environmental Research (NIER and Yonsei University in South Korea in order to simulate the long-range transboundary air pollutants and regional acid deposition processes over the Northeast Asia. The modeling system CADM is composed of a real-time numerical weather forecasting model (RAMS and an Eulerian air pollution transport/dispersion/deposition model including gas- and aqueous-phase atmospheric chemical processes for the real-time acquisition of model results and prediction of acidic pollutants. The main objective of CADM is to facilitate an efficient assessment tools by providing the explicit information on the acidic deposition processes. This paper introduces the components of CADM, and describes the comprehensive atmospheric modeling system including atmospheric chemistry for the simulation of acidic processes over the Eastern Asia. The presently developed modeling system CADM has been used to simulate long-range transport over the Northeast Asian region during the spring season from March 5 to 15 2002. For the model validation, the simulated results are compared with both aircraft measurements and surface monitoring observations, and discussed for its operational consideration in Korea

  2. Two modelling approaches to water-quality simulation in a flooded iron-ore mine (Saizerais, Lorraine, France): a semi-distributed chemical reactor model and a physically based distributed reactive transport pipe network model.

    Science.gov (United States)

    Hamm, V; Collon-Drouaillet, P; Fabriol, R

    2008-02-19

    The flooding of abandoned mines in the Lorraine Iron Basin (LIB) over the past 25 years has degraded the quality of the groundwater tapped for drinking water. High concentrations of dissolved sulphate have made the water unsuitable for human consumption. This problematic issue has led to the development of numerical tools to support water-resource management in mining contexts. Here we examine two modelling approaches using different numerical tools that we tested on the Saizerais flooded iron-ore mine (Lorraine, France). A first approach considers the Saizerais Mine as a network of two chemical reactors (NCR). The second approach is based on a physically distributed pipe network model (PNM) built with EPANET 2 software. This approach considers the mine as a network of pipes defined by their geometric and chemical parameters. Each reactor in the NCR model includes a detailed chemical model built to simulate quality evolution in the flooded mine water. However, in order to obtain a robust PNM, we simplified the detailed chemical model into a specific sulphate dissolution-precipitation model that is included as sulphate source/sink in both a NCR model and a pipe network model. Both the NCR model and the PNM, based on different numerical techniques, give good post-calibration agreement between the simulated and measured sulphate concentrations in the drinking-water well and overflow drift. The NCR model incorporating the detailed chemical model is useful when a detailed chemical behaviour at the overflow is needed. The PNM incorporating the simplified sulphate dissolution-precipitation model provides better information of the physics controlling the effect of flow and low flow zones, and the time of solid sulphate removal whereas the NCR model will underestimate clean-up time due to the complete mixing assumption. In conclusion, the detailed NCR model will give a first assessment of chemical processes at overflow, and in a second time, the PNM model will provide more

  3. Mathematical Modeling of Fate and Transport of Aqueous Species in Stormflow Entering Infiltration Basin.

    Science.gov (United States)

    Massoudieh, A.; Sengor, S. S.; Meyer, S.; Ginn, T. R.

    2004-12-01

    The State of California is evaluating the role of passive stormwater detention facilities for the purpose of attenuating potential dissolved and suspended chemical species that may originate in roadway runoff of rainfall. The engineering design of such infiltration basins requires tools to quantify their performance as recipients of stormwater runoff from roadways, and as filters of aqueous chemical species. For this purpose a one-dimensional unsaturated flow and transport model is developed to estimate the efficiency of storm-water infiltration basins in treating roadway generated metallic and organic pollutants. Kinematic wave approximation is used along with van Genuchten water retention model to simulate water percolation thorough the infiltration basin. For metals a Langmuir type nonlinear competitive sorption isotherm is used for transport of chemicals and a kinetic reversible linear sorption model is considered for organics. The model is applied to known roadway born metallic contaminations such as copper, zinc, lead, chromium, nickel and cadmium, as well as organic species such as diazinon, diuron, ghlyphosate and pyrene, for several representative soil and precipitation condition for California within a period of five years. Representative soil parameters and precipitation patterns are extracted from frequency distributions extracted from a recent study. In addition sensitivity analysis has been done to evaluate the effect of soil property values on the performance of infiltration basins. The results can be used to evaluate the performance of infiltration basins in improving the water quality as well as being used in providing guidelines in design and maintenance of infiltration basins.

  4. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport

  5. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    Science.gov (United States)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  6. Assessment and Applications of NASA Ozone Data Products Derived from Aura OMI-MLS Satellite Measurements in Context of the GMI Chemical Transport Model

    Science.gov (United States)

    Ziemke, J. R.; Olsen, M. A.; Witte, J. C.; Douglass, A. R.; Strahan, S. E.; Wargan, K.; Liu, X.; Schoeberl, M. R.; Yang, K.; Kaplan, T. B.; hide

    2013-01-01

    Measurements from the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS), both onboard the Aura spacecraft, have been used to produce daily global maps of column and profile ozone since August 2004. Here we compare and evaluate three strategies to obtain daily maps of tropospheric and stratospheric ozone from OMI and MLS measurements: trajectory mapping, direct profile retrieval, and data assimilation. Evaluation is based upon an assessment that includes validation using ozonesondes and comparisons with the Global Modeling Initiative (GMI) chemical transport model (CTM). We investigate applications of the three ozone data products from near-decadal and inter-annual timescales to day-to-day case studies. Zonally averaged inter-annual changes in tropospheric ozone from all of the products in any latitude range are of the order 1-2 Dobson Units while changes (increases) over the 8-year Aura record investigated http://eospso.gsfc.nasa.gov/atbd-category/49 vary approximately 2-4 Dobson Units. It is demonstrated that all of the ozone products can measure and monitor exceptional tropospheric ozone events including major forest fire and pollution transport events. Stratospheric ozone during the Aura record has several anomalous inter-annual events including stratospheric warming split events in the Northern Hemisphere extra-tropics that are well captured using the data assimilation ozone profile product. Data assimilation with continuous daily global coverage and vertical ozone profile information is the best of the three strategies at generating a global tropospheric and stratospheric ozone product for science applications.

  7. Modeling atrazine transport in soil columns with HYDRUS-1D

    Directory of Open Access Journals (Sweden)

    John Leju Celestino Ladu

    2011-09-01

    Full Text Available Both physical and chemical processes affect the fate and transport of herbicides. It is useful to simulate these processes with computer programs to predict solute movement. Simulations were run with HYDRUS-1D to identify the sorption and degradation parameters of atrazine through calibration from the breakthrough curves (BTCs. Data from undisturbed and disturbed soil column experiments were compared and analyzed using the dual-porosity model. The study results show that the values of dispersivity are slightly lower in disturbed columns, suggesting that the more heterogeneous the structure is, the higher the dispersivity. Sorption parameters also show slight variability, which is attributed to the differences in soil properties, experimental conditions and methods, or other ecological factors. For both of the columns, the degradation rates were similar. Potassium bromide was used as a conservative non-reactive tracer to characterize the water movement in columns. Atrazine BTCs exhibited significant tailing and asymmetry, indicating non-equilibrium sorption during solute transport. The dual-porosity model was verified to best fit the BTCs of the column experiments. Greater or lesser concentration of atrazine spreading to the bottom of the columns indicated risk of groundwater contamination. Overall, HYDRUS-1D successfully simulated the atrazine transport in soil columns.

  8. Modeling of turbulent chemical reaction

    Science.gov (United States)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  9. Tropical troposphere to stratosphere transport of carbon monoxide and long-lived trace species in the Chemical Lagrangian Model of the Stratosphere (CLaMS

    Directory of Open Access Journals (Sweden)

    R. Pommrich

    2014-12-01

    Full Text Available Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact of these transport fluxes on the composition of the tropical lower stratosphere. Anomaly patterns of carbon monoxide (CO and long-lived tracers in the lower tropical stratosphere allow conclusions about the rate and the variability of tropical upwelling to be drawn. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH4, N2O, CCl3F (CFC-11, CCl2F2 (CFC-12, and CO2 in the lower tropical stratosphere. For the long-lived trace substances, the boundary conditions at the surface are prescribed based on ground-based measurements in the lowest model level. The boundary condition for CO in the lower troposphere (below about 4 km is deduced from MOPITT measurements. Due to the lack of a specific representation of mixing and convective uplift in the troposphere in this model version, enhanced CO values, in particular those resulting from convective outflow are underestimated. However, in the tropical tropopause layer and the lower tropical stratosphere, there is relatively good agreement of simulated CO with in situ measurements (with the exception of the TROCCINOX campaign, where CO in the simulation is biased low ≈10–15 ppbv. Further, the model results (and therefore also the ERA-Interim winds, on which the transport in the model is based are of sufficient quality to describe large scale anomaly patterns of CO in the lower stratosphere. In particular, the zonally averaged tropical CO anomaly patterns (the so called "tape recorder" patterns simulated by this model version of CLaMS are in good agreement with observations, although the simulations show a too rapid upwelling

  10. Modeling exposure to persistent chemicals in hazard and risk assessment.

    Science.gov (United States)

    Cowan-Ellsberry, Christina E; McLachlan, Michael S; Arnot, Jon A; Macleod, Matthew; McKone, Thomas E; Wania, Frank

    2009-10-01

    whether the assumptions and input data are relevant in the context of the application. It is possible to have confidence in the predictions of many of the existing models because of their fundamental physical and chemical, mechanistic underpinnings and the extensive work already done to compare model predictions and empirical observations. The working group recommends that modeling tools be applied for benchmarking PBT and POPs according to exposure-emissions relationships and that modeling tools be used to interpret emissions and monitoring data. The further development of models that combine fate, long-range transport, and bioaccumulation should be fostered, especially models that will allow time trends to be scientifically addressed in the risk profile.

  11. Coal supply and transportation model (CSTM)

    International Nuclear Information System (INIS)

    1991-11-01

    The Coal Supply and Transportation Model (CSTM) forecasts annual coal supply and distribution to domestic and foreign markets. The model describes US coal production, national and international coal transportation industries. The objective of this work is to provide a technical description of the current version of the model

  12. Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results

    Science.gov (United States)

    Jacob, Daniel J.; Crawford, James H.; Kleb, Mary M.; Connors, Vickie S.; Bendura, Richard J.; Raper, James L.; Sachse, Glen W.; Gille, John C.; Emmons, Louisa; Heald, Colette L.

    2003-10-01

    The NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission was conducted in February-April 2001 over the NW Pacific (1) to characterize the Asian chemical outflow and relate it quantitatively to its sources and (2) to determine its chemical evolution. It used two aircraft, a DC-8 and a P-3B, operating out of Hong Kong and Yokota Air Force Base (near Tokyo), with secondary sites in Hawaii, Wake Island, Guam, Okinawa, and Midway. The aircraft carried instrumentation for measurements of long-lived greenhouse gases, ozone and its precursors, aerosols and their precursors, related species, and chemical tracers. Five chemical transport models (CTMs) were used for chemical forecasting. Customized bottom-up emission inventories for East Asia were generated prior to the mission to support chemical forecasting and to serve as a priori for evaluation with the aircraft data. Validation flights were conducted for the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument and revealed little bias (6 ± 2%) in the MOPITT measurements of CO columns. A major event of transpacific Asian pollution was characterized through combined analysis of TRACE-P and MOPITT data. The TRACE-P observations showed that cold fronts sweeping across East Asia and the associated warm conveyor belts (WCBs) are the dominant pathway for Asian outflow to the Pacific in spring. The WCBs lift both anthropogenic and biomass burning (SE Asia) effluents to the free troposphere, resulting in complex chemical signatures. The TRACE-P data are in general consistent with a priori emission inventories, lending confidence in our ability to quantify Asian emissions from socioeconomic data and emission factors. However, the residential combustion source in rural China was found to be much larger than the a priori, and there were also unexplained chemical enhancements (HCN, CH3Cl, OCS, alkylnitrates) in Chinese urban plumes. The Asian source of CCl4 was found to be much

  13. Transport Choice Modeling for the Evaluation of New Transport Policies

    Directory of Open Access Journals (Sweden)

    Ander Pijoan

    2018-04-01

    Full Text Available Quantifying the impact of the application of sustainable transport policies is essential in order to mitigate effects of greenhouse gas emissions produced by the transport sector. One of the most common approaches used for this purpose is that of traffic modelling and simulation, which consists of emulating the operation of an entire road network. This article presents the results of fitting 8 well known data science methods for transport choice modelling, the area in which more research is needed. The models have been trained with information from Biscay province in Spain in order to match as many of its commuters as possible. Results show that the best models correctly forecast more than 51% of the trips recorded. Finally, the results have been validated with a second data set from the Silesian Voivodeship in Poland, showing that all models indeed maintain their forecasting ability.

  14. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.

    2015-01-01

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation

  15. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  16. Implementation and evaluation of pH-dependent cloud chemistry and wetdeposition in the chemical transport model REM-Calgrid

    NARCIS (Netherlands)

    Banzhaf, S.; Schaap, M.; Kerschbaumer, A.; Reimer, E.; Stern, R.; Swaluw, E. van der; Builtjes, P.

    2012-01-01

    The Chemistry Transport Model REM-Calgrid (RCG) has been improved by implementing an enhanced description of aqueous-phase chemistry and wet deposition processes including droplet pH. A sensitivity study on cloud and rain droplet pH has been performed to investigate its impact on model sulphate

  17. Electronic transport in VO{sub 2}—Experimentally calibrated Boltzmann transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y., E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kado, Motohisa [Higashifuji Technical Center, Toyota Motor Corporation, Susono, Shizuoka 410-1193 (Japan); Ling, Chen; Zhu, Gaohua; Banerjee, Debasish, E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Materials Research Department, Toyota Motor Engineering and Manufacturing North America, Inc., Ann Arbor, Michigan 48105 (United States)

    2015-12-28

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO{sub 2} has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO{sub 2} in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO{sub 2} films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.

  18. New trajectory-driven aerosol and chemical process model Chemical and Aerosol Lagrangian Model (CALM

    Directory of Open Access Journals (Sweden)

    P. Tunved

    2010-11-01

    Full Text Available A new Chemical and Aerosol Lagrangian Model (CALM has been developed and tested. The model incorporates all central aerosol dynamical processes, from nucleation, condensation, coagulation and deposition to cloud formation and in-cloud processing. The model is tested and evaluated against observations performed at the SMEAR II station located at Hyytiälä (61° 51' N, 24° 17' E over a time period of two years, 2000–2001. The model shows good agreement with measurements throughout most of the year, but fails in reproducing the aerosol properties during the winter season, resulting in poor agreement between model and measurements especially during December–January. Nevertheless, through the rest of the year both trends and magnitude of modal concentrations show good agreement with observation, as do the monthly average size distribution properties. The model is also shown to capture individual nucleation events to a certain degree. This indicates that nucleation largely is controlled by the availability of nucleating material (as prescribed by the [H2SO4], availability of condensing material (in this model 15% of primary reactions of monoterpenes (MT are assumed to produce low volatile species and the properties of the size distribution (more specifically, the condensation sink. This is further demonstrated by the fact that the model captures the annual trend in nuclei mode concentration. The model is also used, alongside sensitivity tests, to examine which processes dominate the aerosol size distribution physical properties. It is shown, in agreement with previous studies, that nucleation governs the number concentration during transport from clean areas. It is also shown that primary number emissions almost exclusively govern the CN concentration when air from Central Europe is advected north over Scandinavia. We also show that biogenic emissions have a large influence on the amount of potential CCN observed

  19. A multichannel model for the self-consistent analysis of coherent transport in graphene nanoribbons.

    Science.gov (United States)

    Mencarelli, Davide; Pierantoni, Luca; Farina, Marco; Di Donato, Andrea; Rozzi, Tullio

    2011-08-23

    In this contribution, we analyze the multichannel coherent transport in graphene nanoribbons (GNRs) by a scattering matrix approach. We consider the transport properties of GNR devices of a very general form, involving multiple bands and multiple leads. The 2D quantum transport over the whole GNR surface, described by the Schrödinger equation, is strongly nonlinear as it implies calculation of self-generated and externally applied electrostatic potentials, solutions of the 3D Poisson equation. The surface charge density is computed as a balance of carriers traveling through the channel at all of the allowed energies. Moreover, formation of bound charges corresponding to a discrete modal spectrum is observed and included in the model. We provide simulation examples by considering GNR configurations typical for transistor devices and GNR protrusions that find an interesting application as cold cathodes for X-ray generation. With reference to the latter case, a unified model is required in order to couple charge transport and charge emission. However, to a first approximation, these could be considered as independent problems, as in the example. © 2011 American Chemical Society

  20. Non-equilibrium Quasi-Chemical Nucleation Model

    Science.gov (United States)

    Gorbachev, Yuriy E.

    2018-04-01

    Quasi-chemical model, which is widely used for nucleation description, is revised on the basis of recent results in studying of non-equilibrium effects in reacting gas mixtures (Kolesnichenko and Gorbachev in Appl Math Model 34:3778-3790, 2010; Shock Waves 23:635-648, 2013; Shock Waves 27:333-374, 2017). Non-equilibrium effects in chemical reactions are caused by the chemical reactions themselves and therefore these contributions should be taken into account in the corresponding expressions for reaction rates. Corrections to quasi-equilibrium reaction rates are of two types: (a) spatially homogeneous (caused by physical-chemical processes) and (b) spatially inhomogeneous (caused by gas expansion/compression processes and proportional to the velocity divergency). Both of these processes play an important role during the nucleation and are included into the proposed model. The method developed for solving the generalized Boltzmann equation for chemically reactive gases is applied for solving the set of equations of the revised quasi-chemical model. It is shown that non-equilibrium processes lead to essential deviation of the quasi-stationary distribution and therefore the nucleation rate from its traditional form.

  1. Modelling radionuclide transport in the geosphere: a review of the models available

    International Nuclear Information System (INIS)

    Cacas, M.C.; Cordier, E.; Coudrain-Ribstein, A.; Fargue, D.; Goblet, P.; Jamet, Ph.; Ledoux, E.; Marsily, G. de; Vinsot, A.; Brun, Ch.; Cernes, A.; Jacquier, Ph.; Lewi, J.; Priem, Th.

    1990-01-01

    Over the last twelve years, several models have been developed to simulate the transport of radionuclides in the environment of a radioactive waste repository: - continuous equivalent porous media flow and transport models using the finite element method in 1, 2 or 3 dimensions and taking into account various coupled mechanisms; - discontinuous stochastic fracture network models in 3 dimensions representing flow, transport, matrix diffusion, heat flow and mechanical stress; - geochemical models representing interactions between transported elements and a solid matrix; - transport process models coupling non dominant phenomena such as thermo-diffusion or thermo-gravitation. This paper reviews the role that each of these models can play in safety analyses. 3 refs [fr

  2. Biogenic silica dissolution in diatom aggregates: insights from reactive transport modelling

    KAUST Repository

    Moriceau, B

    2014-12-15

    © Inter-Research 2014. Diatom aggregates contribute significantly to the vertical sinking flux of particulate matter in the ocean. These fragile structures form a specific microhabitat for the aggregated cells, but their internal chemical and physical characteristics remain largely unknown. Studies on the impact of aggregation on the Si cycle led to apparent inconsistency. Despite a lower biogenic silica (bSiO2) dissolution rate and diffusion of the silicic acid (dSi) being similar in aggregates and in sea-water, dSi surprisingly accumulates in aggregates. A reaction-diffusion model helps to clarify this incoherence by reconstructing dSi accumulation measured during batch experiments with aggregated and non-aggregated Skeletonema marinoi and Chaetoceros decipiens. The model calculates the effective bSiO2 dissolution rate as opposed to the experimental apparent bSiO2 dissolution rate, which is the results of the effective dissolution of bSiO2 and transport of dSi out of the aggregate. In the model, dSi transport out of the aggregate is modulated by alternatively considering retention (decrease of the dSi diffusion constant) and adsorption (reversible chemical bonds between dSi and the aggregate matrix) processes. Modelled bSiO2 dissolution is modulated by the impact of dSi concentration inside aggregates and diatom viability, as enhanced persistence of metabolically active diatoms has been observed in aggregates. Adsorption better explains dSi accumulation within and outside aggregates, raising the possible importance of dSi travelling within aggregates to the deep sea (potentially representing 20% of the total silica flux). The model indicates that bSiO2 dissolution is effectively decreased in aggregates mainly due to higher diatom viability but also to other parameters discussed herein.

  3. Modelling reactive transport in a phosphogypsum dump, Venezia, Italia

    Science.gov (United States)

    Calcara, Massimo; Borgia, Andrea; Cattaneo, Laura; Bartolo, Sergio; Clemente, Gianni; Glauco Amoroso, Carlo; Lo Re, Fabio; Tozzato, Elena

    2013-04-01

    We develop a reactive-transport porous media flow model for a phosphogypsum dump located on the intertidal deposits of the Venetian Lagoon: 1. we construct a complex conceptual and geologic model from field data using the GMS™ graphical user interface; 2. the geological model is mapped onto a rectangular MODFLOW grid; 3. using the TMT2 FORTRAN90 code we translate this grid into the MESH, INCON and GENER input files for the TOUGH2 series of codes; 4. we run TOUGH-REACT to model flow and reactive transport in the dump and the sediments below it. The model includes 3 different dump materials (phosphogypsum, bituminous and hazardous wastes) with the pores saturated by specific fluids. The sediments below the dump are formed by an intertidal sequence of calcareous sands and silts, in addition to clays and organic deposits, all of which are initially saturated with lagoon salty waters. The recharge rain-water dilutes the dump fluids. In turn, the percolates from the dump react with the underlying sediments and the sea water that saturates them. Simulation results have been compared with chemical sampled analyses. In fact, in spite of the simplicity of our model we are able to show how the pH becomes neutral at a short distance below the dump, a fact observed during aquifer monitoring. The spatial and temporal evolution of dissolution and precipitation reactions occur in our model much alike reality. Mobility of some elements, such as divalent iron, are reduced by specific and concurrent conditions of pH from near-neutrality to moderately high values and positive redox potential; opposite conditions favour mobility of potentially toxic metals such as Cr, As Cd and Pb. Vertical movement are predominant. Trend should be therefore heavily influenced by pH and Eh values. If conditions are favourable to mobility, concentration of these substances in the bottom strata could be high. However, simulation suggest that the sediments tend to reduce the transport potential of

  4. Modular coupling of transport and chemistry: theory and model applications

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1994-06-01

    For the description of complex processes in the near-field of a radioactive waste repository, the coupling of transport and chemistry is necessary. A reason for the relatively minor use of coupled codes in this area is the high amount of computer time and storage capacity necessary for calculations by conventional codes, and lack of available data. The simple application of the sequentially coupled code MCOTAC, which couples one-dimensional advective, dispersive and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium, shows some promising features with respect to applicability to relevant problems. Transport, described by a random walk of multi-species particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term to ensure mass conservation. The modular-structured code was applied to three problems: a) incongruent dissolution of hydrated silicate gels, b) dissolution of portlandite and c) calcite dissolution and hypothetical dolomite precipitation. This allows for a comparison with other codes and their applications. The incongruent dissolution of cement phases, important for degradation of cementitious materials in a repository, can be included in the model without the problems which occur with a directly coupled code. The handling of a sharp multi-mineral front system showed a much faster calculation time compared to a directly coupled code application. Altogether, the results are in good agreement with other code calculations. Hence, the chosen modular concept of MCOTAC is more open to an easy extension of the code to include additional processes like sorption, kinetically controlled processes, transport in two or three spatial dimensions, and adaptation to new developments in computing (hardware and software), an important factor for applicability. (author) figs., tabs., refs

  5. Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, P.; Pruess, K.; Xu, T.; Figueroa, R.A. Hernandez; Lopez, M. Diaz; Lopez, E. Contreras

    2008-10-01

    Waterflooding for enhanced oil recovery requires that injected waters must be chemically compatible with connate reservoir waters, in order to avoid mineral dissolution-and-precipitation cycles that could seriously degrade formation permeability and injectivity. Formation plugging is a concern especially in reservoirs with a large content of carbonates, such as calcite and dolomite, as such minerals typically react rapidly with an aqueous phase, and have strongly temperature-dependent solubility. Clay swelling can also pose problems. During a preliminary waterflooding pilot project, the Poza Rica-Altamira oil field, bordering the Gulf coast in the eastern part of Mexico, experienced injectivity loss after five months of reinjection of formation waters into well AF-847 in 1999. Acidizing with HCl restored injectivity. We report on laboratory experiments and reactive chemistry modeling studies that were undertaken in preparation for long-term waterflooding at Agua Frma. Using analogous core plugs obtained from the same reservoir interval, laboratory coreflood experiments were conducted to examine sensitivity of mineral dissolution and precipitation effects to water composition. Native reservoir water, chemically altered waters, and distilled water were used, and temporal changes in core permeability, mineral abundances and aqueous concentrations of solutes were monitored. The experiments were simulated with the multi-phase, nonisothermal reactive transport code TOUGHREACT, and reasonable to good agreement was obtained for changes in solute concentrations. Clay swelling caused an additional impact on permeability behavior during coreflood experiments, whereas the modeled permeability depends exclusively on chemical processes. TOUGHREACT was then used for reservoir-scale simulation of injecting ambient-temperature water (30 C, 86 F) into a reservoir with initial temperature of 80 C (176 F). Untreated native reservoir water was found to cause serious porosity and

  6. Ship-based Observations of Atmospheric Black Carbon Particles over the Arctic Ocean, Bering Sea, and North Western Pacific Ocean on 2016: Comparisons with Regional Chemical Transport Model simulations

    Science.gov (United States)

    Taketani, F.; Miyakawa, T.; Takigawa, M.; Yamaguchi, M.; Kanaya, Y.; Komazaki, Y.; Takashima, H.; Mordovskoi, P.; Tohjima, Y.

    2017-12-01

    Black carbon (BC), formed through the incomplete combustion of fossil fuels, biofuels, and biomass, is a major component of light-absorbing particulate matter in the atmosphere, causing positive radiative forcing. Also, BC deposition on the surface reduces the Earth's albedo and accelerates snow/ice melting by absorbing the sunlight. Therefore, the impact of BC on the Arctic climate needs to be assessed; however, observational information has been still insufficient. Over the Arctic Ocean, we have been conducting ship-based BC observations using a single particle soot photometer (SP2) on R/V Mirai every summer since 2014. To estimate the transport pathways of BC, we have also conducted model simulations during the period of cruise using a regional transport model (WRF-Chem 3.8.1). Here we focus on observations conducted on-board the R/V Mirai from 22 August to 5 October 2016 in a round trip to the Arctic Ocean through the Bering Strait from a port of Hachinohe (40.52N, 141.51E), Japan. We captured relatively high BC mass concentration events in this observation. The observed average BC mass concentration during 2016 was 0.8 ± 1.4 ng/m3 in >70N, similar to the levels ( 1.0ng/m3) recorded during our previous observations in the Arctic during 2014 and 2015. The variations in the observed concentrations in 2016 were qualitatively well reproduced by the regional chemical transport model. Quantitatively, however, the model tended to overestimate the BC levels, suggesting the possibilities that the emission rates were overestimated and/or the removal rates were underestimated. We will present further analysis on the size distribution, coating, and possible sources.

  7. Modelling pesticide transport in a shallow groundwater catchment using tritium and helium-3 data

    International Nuclear Information System (INIS)

    Åkesson, Maria; Bendz, David; Carlsson, Christel; Sparrenbom, Charlotte J.; Kreuger, Jenny

    2014-01-01

    Highlights: • A catchment-scale groundwater model is calibrated against 3 H and 3 He data. • Transport of pesticides is modelled using site-specific sorption and degradation data. • Breakthrough of pesticides with low K d -values is successfully simulated. • Model constraints are an effect of a simplified system conceptualisation. - Abstract: Using tritium and helium-3 data for calibration, a 2-D transport model was set up to explain the occurrence of bentazone, dichlorprop, glyphosate, isoproturon, MCPA and metamitron in a small groundwater catchment in southern Sweden. The model was parameterised with site-specific degradation and sorption data to enable transport simulations. Local climatological data and a 21-year record of agricultural pesticide use within the study area were used as boundary conditions. Model output was evaluated against a 7-year long pesticide monitoring data-series from two monitoring wells within the study area. The model successfully predicts observed breakthrough of bentazone, dichlorprop, isoproturon and MCPA. However, it fails to simulate observed occurrences of glyphosate and metamitron. Glyphosate and metamitron exhibit relatively high sorption potential, and their occurrence is suggested to be the result of non-equilibrium preferential flow paths which the model cannot reproduce due the conceptualisation of the system as homogenous and isotropic. The results indicate a promising methodological approach applicable to groundwater contamination risk assessment, and demonstrate the potential for transport model calibration by means of tritium and helium-3 data. Main constraints of the study relate to the relatively simple system conceptualisation, indicating a need for further consideration of physical and chemical heterogeneity

  8. Fracture initiation associated with chemical degradation: observation and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Byoungho Choi; Zhenwen Zhou; Chudnovsky, Alexander [Illinois Univ., Dept. of Civil and Materials Engineering (M/C 246), Chicago, IL (United States); Stivala, Salvatore S. [Stevens Inst. of Technology, Dept. of Chemistry and Chemical Biology, Hoboken, NJ (United States); Sehanobish, Kalyan; Bosnyak, Clive P. [Dow Chemical Co., Freeport, TX (United States)

    2005-01-01

    The fracture initiation in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. An increase in material density, i.e., shrinkage of the degraded layer is constrained by adjacent unchanged material results in a buildup of tensile stress within the degraded layer and compressive stress in the adjacent unchanged material due to increasing incompatibility between the two. These stresses are an addition to preexisting manufacturing and service stresses. At a certain level of degradation, a combination of toughness reduction and increase of tensile stress result in fracture initiation. A quantitative model of the described above processes is presented in these work. For specificity, the internally pressurized plastic pipes that transport a fluid containing a chemically aggressive (oxidizing) agent is used as the model of fracture initiation. Experimental observations of material density and toughness dependence on degradation reported elsewhere are employed in the model. An equation for determination of a critical level of degradation corresponding to the offset of fracture is constructed. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. A method for evaluation of the time interval prior to fracture initiation is also formulated. (Author)

  9. Modular coupling of transport and chemistry: theory and model applications

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1994-06-01

    For the description of complex processes in the near-field of a radioactive waste repository, the coupling of transport and chemistry is necessary. A reason for the relatively minor use of coupled codes in this area is the high amount of computer time and storage capacity necessary for calculations by conventional codes, and lack of available data. The simple application of the sequentially coupled code MCOTAC, which couples one-dimensional advective, dispersive and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium, shows some promising features with respect to applicability to relevant problems. Transport, described by random walk of multi-species particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term to ensure mass conservation. (For full text of the abstract see 25:072321)

  10. Electrical resistivity tomography as monitoring tool for unsaturated zone transport: an example of preferential transport of deicing chemicals.

    Science.gov (United States)

    Wehrer, Markus; Lissner, Heidi; Bloem, Esther; French, Helen; Totsche, Kai Uwe

    2014-01-01

    Non-invasive spatially resolved monitoring techniques may hold the key to observe heterogeneous flow and transport behavior of contaminants in soils. In this study, time-lapse electrical resistivity tomography (ERT) was employed during an infiltration experiment with deicing chemical in a small field lysimeter. Deicing chemicals like potassium formate, which frequently impact soils on airport sites, were infiltrated during snow melt. Chemical composition of seepage water and the electrical response was recorded over the spring period 2010. Time-lapse electrical resistivity tomographs are able to show the infiltration of the melt water loaded with ionic constituents of deicing chemicals and their degradation product hydrogen carbonate. The tomographs indicate early breakthrough behavior in parts of the profile. Groundtruthing with pore fluid conductivity and water content variations shows disagreement between expected and observed bulk conductivity. This was attributed to the different sampling volume of traditional methods and ERT due to a considerable fraction of immobile water in the soil. The results show that ERT can be used as a soil monitoring tool on airport sites if assisted by common soil monitoring techniques.

  11. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1993-01-01

    This report documents progress to date under a three-year contract for developing ''Methods for Testing Transport Models.'' The work described includes (1) choice of best methods for producing ''code emulators'' for analysis of very large global energy confinement databases, (2) recent applications of stratified regressions for treating individual measurement errors as well as calibration/modeling errors randomly distributed across various tokamaks, (3) Bayesian methods for utilizing prior information due to previous empirical and/or theoretical analyses, (4) extension of code emulator methodology to profile data, (5) application of nonlinear least squares estimators to simulation of profile data, (6) development of more sophisticated statistical methods for handling profile data, (7) acquisition of a much larger experimental database, and (8) extensive exploratory simulation work on a large variety of discharges using recently improved models for transport theories and boundary conditions. From all of this work, it has been possible to define a complete methodology for testing new sets of reference transport models against much larger multi-institutional databases

  12. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  13. Growth and characterization of Bi2Se3 crystals by chemical vapor transport

    Directory of Open Access Journals (Sweden)

    W. H. Jiao

    2012-06-01

    Full Text Available Regularly-shaped high-quality Bi2Se3 crystals were grown by a chemical vapor transport using iodine as the transport agent. In addition to exhibiting a characteristic Dirac cone for a topological insulator, the Bi2Se3 crystals show some outstanding properties including additional crystallographic surfaces, large residual resistance ratio (∼10, and high mobility (∼8000 cm2·V−1·s−1. The low-temperature resistivity abnormally increases with applying pressures up to 1.7 GPa, and no superconductivity was observed down to 0.4 K.

  14. NUMERICAL SIMULATION OF TOXIC CHEMICAL DISPERSION AFTER ACCIDENT AT RAILWAY

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-04-01

    Full Text Available Purpose. This research focuses on the development of an applied numerical model to calculate the dynamics of atmospheric pollution in the emission of dangerous chemical substances in the event of transportation by railway. Methodology. For the numerical simulation of transport process of the dangerous chemical substance in the atmosphere the equation of convection-diffusion pollutant transport is used. This equation takes into account the effect of wind, atmospheric diffusion, the power of emission source, as well as the movement of the source of emission (depressurized tank on the process of pollutant dispersion. When carrying out computing experiment one also takes into account the profile of the speed of the wind flow. For the numerical integration of pollutant transport in the atmosphere implicit finite-difference splitting scheme is used. The numerical calculation is divided into four steps of splitting and at each step of splitting the unknown value of the concentration of hazardous substance is determined by the explicit running account scheme. On the basis of the numerical model it was created the code using the algorithmic language FORTRAN. One conducted the computational experiments to assess the level of air pollution near the railway station «Illarionovo» in the event of a possible accident during transportation of ammonia. Findings. The proposed model allows you to quickly calculate the air pollution after the emission of chemically hazardous substance, taking into account the motion of the emission source. The model makes it possible to determine the size of the land surface pollution zones and the amount of pollutants deposited on a specific area. Using the developed numerical model it was estimated the environmental damage near the railway station «Illarionovo». Originality. One can use the numerical model to calculate the size and intensity of the chemical contamination zones after accidents on transport. Practical value

  15. The european Trans-Tools transport model

    NARCIS (Netherlands)

    Rooijen, T. van; Burgess, A.

    2008-01-01

    The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland

  16. Modeling approaches of competitive sorption and transport of trace metals and metalloids in soils: a review.

    Science.gov (United States)

    Selim, H M; Zhang, Hua

    2013-01-01

    Competition among various heavy metal species for available adsorption sites on soil matrix surfaces can enhance the mobility of contaminants in the soil environment. Accurate predictions of the fate and behavior of heavy metals in soils and geologic media requires the understanding of the underlying competitive-sorption and transport processes. In this review, we present equilibrium and kinetic models for competitive heavy metal sorption and transport in soils. Several examples are summarized to illustrate the impact of competing ions on the reactivities and mobility of heavy metals in the soil-water environment. We demonstrate that equilibrium Freundlich approaches can be extended to account for competitive sorption of cations and anions with the incorporation of competition coefficients associated with each reaction. Furthermore, retention models of the multiple-reaction type including the two-site nonlinear equilibrium-kinetic models and the concurrent- and consecutive-multireaction models were modified to describe commonly observed time-dependent behaviors of heavy metals in soils. We also show that equilibrium Langmuir and kinetic second-order models can be extended to simulate the competitive sorption and transport in soils, although the use of such models is limited due to their simplifying assumptions. A major drawback of the empirically based Freundlich and Langmuir approaches is that their associated parameters are specific for each soil. Alternatively, geochemical models that are based on ion-exchange and surface-complexation concepts are capable of quantifying the competitive behavior of several chemical species under a wide range of environmental conditions. Such geochemical models, however, are incapable of describing the time-dependent sorption behavior of heavy metal ions in competitive systems. Further research is needed to develop a general-purpose model based on physical and chemical mechanisms governing competitive sorption in soils. Copyright

  17. Modeling groundwater flow at the chemical plant area of the Weldon Spring Site

    International Nuclear Information System (INIS)

    Durham, L.A.

    1992-10-01

    Groundwater flow in the shallow unconfined aquifer at the chemical plant area of the Weldon Spring site, St. Charles County, Missouri, was modeled with the Coupled Fluid, Energy, and Solute Transport (CFEST) groundwater flow and contaminant transport computer code. The modeling was performed in support of a hydrogeological characterization effort that is part of the remedial investigation/feasibility study-environmental impact statement process being carried out by the US Department of Energy at the site. This report presents the results of model development and calibration. In the calibration procedure, the range of field-measured hydrogeological parameters was tested to obtain the best match between model-predicted and measured groundwater elevations. After calibration, the model was used to evaluate whether the presence of an on-site disposal cell would impact the ability to remediate contaminated groundwater beneath the cell. The results of the numerical modeling, which were based on an evaluation of steady-state groundwater flow velocity plots, indicated that groundwater would flow beneath the disposal cell along natural gradients. The presence of a disposal cell would not significantly affect remediation capability for groundwater contamination

  18. Two-point model for divertor transport

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.

    1984-04-01

    Plasma transport along divertor field lines was investigated using a two-point model. This treatment requires considerably less effort to find solutions to the transport equations than previously used one-dimensional (1-D) models and is useful for studying general trends. It also can be a valuable tool for benchmarking more sophisticated models. The model was used to investigate the possibility of operating in the so-called high density, low temperature regime

  19. Significant geographic gradients in particulate sulfate over Japan determined from multiple-site measurements and a chemical transport model: Impacts of transboundary pollution from the Asian continent

    Science.gov (United States)

    Aikawa, Masahide; Ohara, Toshimasa; Hiraki, Takatoshi; Oishi, Okihiro; Tsuji, Akihiro; Yamagami, Makiko; Murano, Kentaro; Mukai, Hitoshi

    2010-01-01

    We found a significant geographic gradient (longitudinal and latitudinal) in the sulfate (SO 42-) concentrations measured at multiple sites over the East Asian Pacific Rim region. Furthermore, the observed gradient was well reproduced by a regional chemical transport model. The observed and modeled SO 42- concentrations were higher at the sites closer to the Asian continent. The concentrations of SO 42- from China as calculated by the model also showed the fundamental features of the longitudinal/latitudinal gradient. The proportional contribution of Chinese SO 42- to the total in Japan throughout the year was above 50-70% in the control case, using data for Chinese sulfur dioxide (SO 2) emission from the Regional Emission Inventory in Asia (40-60% in the low Chinese emissions case, using Chinese SO 2 emissions data from the State Environmental Protection Administration of China), with a winter maximum of approximately 65-80%, although the actual concentrations of SO 42- from China were highest in summer. The multiple-site measurements and the model analysis strongly suggest that the SO 42- concentrations in Japan were influenced by the outflow from the Asian continent, and this influence was greatest in the areas closer to the Asian continent. In contrast, we found no longitudinal/latitudinal gradient in SO 2 concentrations; instead SO 2 concentrations were significantly correlated with local SO 2 emissions. Our results show that large amounts of particulate sulfate are transported over long distances from the East Asian Pacific Rim region, and consequently the SO 42- concentrations in Japan are controlled by the transboundary outflow from the Asian continent.

  20. Review of global environmental-transport models for 3H, 14C, 85Kr, and 129I

    International Nuclear Information System (INIS)

    Kocher, D.C.; Killough, G.G.

    1983-01-01

    Global environmental transport models for the long-lived and mobile radionuclides 3 H, 14 C, 85 Kr, and 129 I are reviewed from the perspective of their application to collective dose assessments following releases, e.g., from the nuclear fuel cycle. Contributions to the collective dose commitment from first-pass local and regional exposures are compared. Current global models for 14 C and 85 Kr appear to be satisfactory for dose assessment purposes. Global modeling for 3 H is more difficult than for 14 C and 85 Kr, because of the different physico-chemical forms in which atmospheric releases occur. Global models for 129 I models indicate the primary importance of retention in surface soils for collective doses during the first 10 4 years following atmospheric releases and the importance of long-term transport to ocean sediments for reducing the dose commitment

  1. Errors and improvements in the use of archived meteorological data for chemical transport modeling: an analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology

    Directory of Open Access Journals (Sweden)

    K. Yu

    2018-01-01

    Full Text Available Global simulations of atmospheric chemistry are commonly conducted with off-line chemical transport models (CTMs driven by archived meteorological data from general circulation models (GCMs. The off-line approach has the advantages of simplicity and expediency, but it incurs errors due to temporal averaging in the meteorological archive and the inability to reproduce the GCM transport algorithms exactly. The CTM simulation is also often conducted at coarser grid resolution than the parent GCM. Here we investigate this cascade of CTM errors by using 222Rn–210Pb–7Be chemical tracer simulations off-line in the GEOS-Chem CTM at rectilinear 0.25°  ×  0.3125° (≈ 25 km and 2°  ×  2.5° (≈ 200 km resolutions and online in the parent GEOS-5 GCM at cubed-sphere c360 (≈ 25 km and c48 (≈ 200 km horizontal resolutions. The c360 GEOS-5 GCM meteorological archive, updated every 3 h and remapped to 0.25°  ×  0.3125°, is the standard operational product generated by the NASA Global Modeling and Assimilation Office (GMAO and used as input by GEOS-Chem. We find that the GEOS-Chem 222Rn simulation at native 0.25°  ×  0.3125° resolution is affected by vertical transport errors of up to 20 % relative to the GEOS-5 c360 online simulation, in part due to loss of transient organized vertical motions in the GCM (resolved convection that are temporally averaged out in the 3 h meteorological archive. There is also significant error caused by operational remapping of the meteorological archive from a cubed-sphere to a rectilinear grid. Decreasing the GEOS-Chem resolution from 0.25°  ×  0.3125° to 2°  ×  2.5° induces further weakening of vertical transport as transient vertical motions are averaged out spatially and temporally. The resulting 222Rn concentrations simulated by the coarse-resolution GEOS-Chem are overestimated by up to 40 % in surface air relative to the

  2. A Mercury Model of Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Alex B. [Oregon State Univ., Corvallis, OR (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chodash, Perry A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Procassini, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.

  3. Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals: A case study for gasoline hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Matthew; McKone, Thomas E.; Foster, Karen L.; Maddalena, Randy L.; Parkerton, Thomas F.; Mackay, Don

    2004-02-01

    Mass balance models of chemical fate and transport can be applied in ecological risk assessments for quantitative estimation of concentrations in air, water, soil and sediment. These concentrations can, in turn, be used to estimate organism exposures and ultimately internal tissue concentrations that can be compared to mode-of-action-based critical body residues that correspond to toxic effects. From this comparison, risks to the exposed organism can be evaluated. To illustrate the practical utility of fate models in ecological risk assessments of commercial products, the EQC model and a simple screening level biouptake model including three organisms, (a bird, a mammal and a fish) is applied to gasoline. In this analysis, gasoline is divided into 24 components or ''blocks'' with similar environmental fate properties that are assumed to elicit ecotoxicity via a narcotic mode of action. Results demonstrate that differences in chemical properties and mode of entry into the environment lead to profound differences in the efficiency of transport from emission to target biota. We discuss the implications of these results and insights gained into the regional fate and ecological risks associated with gasoline. This approach is particularly suitable for assessing mixtures of components that have similar modes of action. We conclude that the model-based methodologies presented are widely applicable for screening level ecological risk assessments that support effective chemicals management.

  4. Quantification of chemical and physical processes influencing ozone during long-range transport using a trajectory ensemble

    Directory of Open Access Journals (Sweden)

    M. Cain

    2012-08-01

    Full Text Available During long-range transport, many distinct processes – including photochemistry, deposition, emissions and mixing – contribute to the transformation of air mass composition. Partitioning the effects of different processes can be useful when considering the sensitivity of chemical transformation to, for example, a changing environment or anthropogenic influence. However, transformation is not observed directly, since mixing ratios are measured, and models must be used to relate changes to processes. Here, four cases from the ITCT-Lagrangian 2004 experiment are studied. In each case, aircraft intercepted a distinct air mass several times during transport over the North Atlantic, providing a unique dataset and quantifying the net changes in composition from all processes. A new framework is presented to deconstruct the change in O3 mixing ratio (Δ O3 into its component processes, which were not measured directly, taking into account the uncertainty in measurements, initial air mass variability and its time evolution.

    The results show that the net chemical processing (Δ O3chem over the whole simulation is greater than net physical processing (Δ O3phys in all cases. This is in part explained by cancellation effects associated with mixing. In contrast, each case is in a regime of either net photochemical destruction (lower tropospheric transport or production (an upper tropospheric biomass burning case. However, physical processes influence O3 indirectly through addition or removal of precursor gases, so that changes to physical parameters in a model can have a larger effect on Δ O3chem than Δ O3phys. Despite its smaller magnitude, the physical processing distinguishes the lower tropospheric export cases, since the net photochemical O3 change is −5 ppbv per day in all three cases.

    Processing is quantified using a Lagrangian

  5. A Comparative Study of Spectral Auroral Intensity Predictions From Multiple Electron Transport Models

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha

    2018-01-01

    It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.

  6. Absorption dynamics of organic chemical transport across trout gills as related to octanol-water partition coefficient

    International Nuclear Information System (INIS)

    McKim, J.; Schmieder, P.; Veith, G.

    1985-01-01

    An in vivo fish preparation was used that allowed a direct measure of the transport rates of 14 different organic chemicals across the gills of rainbow trout (Salmo gairdneri). The chemicals, all C14 labeled, were selected from five classes, encompassing a range of octanol-water partition coefficient (log P) values, from 0.23 (ethyl formate) to 7.5 (mirex). The uptake efficiency (extraction efficiency) of each chemical was determined by monitoring the inspired and expired water of trout exposed to each chemical over an exposure period of 1 to 6 hr. The mean gill extraction efficiency for all chemicals tested varied from a low of 7% to a high of 60%, extracted in a single pall of the chemical across the gills. The extraction efficiency of chemicals with log P or 1 or less were low and showed no relationship to log P. These low extraction efficiencies seen at log P of 1 and below with molecular weights below 100 were indicative of aqueous pore transport. The mean extraction efficiency for chemicals with log P values of 1 to 3 seemed to vary directly with log P, to a maximum of slightly greater than 60%, suggesting that uptake was controlled by the lipid membrane. The mean extraction efficiency for chemicals with log P of 3 to 6 was independent of log P and remained at 60%, which suggested that gill uptake was controlled by aqueous diffusion rates rather than gill membrane permeability. The mean extraction efficiency with mirex (log P . 7.5) decreased to 20%

  7. Charge Transport in Conjugated Materials: From Theoretical Models to Experimental Systems

    International Nuclear Information System (INIS)

    Olivier, Yoann; Cornil, Jerome; Muccioli, Luca; Zannoni, Claudio

    2008-01-01

    Charge carrier mobility is the key quantity to characterize the charge transport properties in devices. Based on earlier work of Baessler and co-workers, we set up a Monte-Carlo approach that allows us to calculate mobility using transfer rates derived from Marcus theory. The parameters entering into the rate expression are evaluated by means of different quantum-chemical techniques. Our approach is applied here to a model one-dimensional system made of pentacene molecules as well as to real systems such as crystalline structures and columnar liquid crystal phases.

  8. Influence of ionization on the Gupta and on the Park chemical models

    Science.gov (United States)

    Morsa, Luigi; Zuppardi, Gennaro

    2014-12-01

    This study is an extension of former works by the present authors, in which the influence of the chemical models by Gupta and by Park was evaluated on thermo-fluid-dynamic parameters in the flow field, including transport coefficients, related characteristic numbers and heat flux on two current capsules (EXPERT and Orion) during the high altitude re-entry path. The results verified that the models, even computing different air compositions in the flow field, compute only slight different compositions on the capsule surface, therefore the difference in the heat flux is not very relevant. In the above mentioned studies, ionization was neglected because the velocities of the capsules (about 5000 m/s for EXPERT and about 7600 m/s for Orion) were not high enough to activate meaningful ionization. The aim of the present work is to evaluate the incidence of ionization, linked to the chemical models by Gupta and by Park, on both heat flux and thermo fluid-dynamic parameters. The present computer tests were carried out by a direct simulation Monte Carlo code (DS2V) in the velocity interval 7600-12000 m/s, considering only the Orion capsule at an altitude of 85 km. The results verified what already found namely when ionization is not considered, the chemical models compute only a slight different gas composition in the core of the shock wave and practically the same composition on the surface therefore the same heat flux. On the opposite, the results verified that when ionization is considered, the chemical models compute different compositions in the whole shock layer and on the surface therefore different heat flux. The analysis of the results relies on a qualitative and a quantitative evaluation of the effects of ionization on both chemical models. The main result of the study is that when ionization is taken into account, the Park model is more reactive than the Gupta model; consequently, the heat flux computed by Park is lower than the one computed by Gupta; using the

  9. Pollutant transport in natural streams

    International Nuclear Information System (INIS)

    Buckner, M.R.; Hayes, D.W.

    1975-01-01

    A mathematical model has been developed to estimate the downstream effect of chemical and radioactive pollutant releases to tributary streams and rivers. The one-dimensional dispersion model was employed along with a dead zone model to describe stream transport behavior. Options are provided for sorption/desorption, ion exchange, and particle deposition in the river. The model equations are solved numerically by the LODIPS computer code. The solution method was verified by application to actual and simulated releases of radionuclides and other chemical pollutants. (U.S.)

  10. Prediction of Chemical Function: Model Development and ...

    Science.gov (United States)

    The United States Environmental Protection Agency’s Exposure Forecaster (ExpoCast) project is developing both statistical and mechanism-based computational models for predicting exposures to thousands of chemicals, including those in consumer products. The high-throughput (HT) screening-level exposures developed under ExpoCast can be combined with HT screening (HTS) bioactivity data for the risk-based prioritization of chemicals for further evaluation. The functional role (e.g. solvent, plasticizer, fragrance) that a chemical performs can drive both the types of products in which it is found and the concentration in which it is present and therefore impacting exposure potential. However, critical chemical use information (including functional role) is lacking for the majority of commercial chemicals for which exposure estimates are needed. A suite of machine-learning based models for classifying chemicals in terms of their likely functional roles in products based on structure were developed. This effort required collection, curation, and harmonization of publically-available data sources of chemical functional use information from government and industry bodies. Physicochemical and structure descriptor data were generated for chemicals with function data. Machine-learning classifier models for function were then built in a cross-validated manner from the descriptor/function data using the method of random forests. The models were applied to: 1) predict chemi

  11. Centrifuge modelling of contaminant transport processes

    OpenAIRE

    Culligan, P. J.; Savvidou, C.; Barry, D. A.

    1996-01-01

    Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...

  12. Characteristics and Source Apportionment of Marine Aerosols over East China Sea Using a Source-oriented Chemical Transport Model

    Science.gov (United States)

    Kang, M.; Zhang, H.; Fu, P.

    2017-12-01

    Marine aerosols exert a strong influence on global climate change and biogeochemical cycling, as oceans cover beyond 70% of the Earth's surface. However, investigations on marine aerosols are relatively limited at present due to the difficulty and inconvenience in sampling marine aerosols as well as their diverse sources. East China Sea (ECS), lying over the broad shelf of the western North Pacific, is adjacent to the Asian mainland, where continental-scale air pollution could impose a heavy load on the marine atmosphere through long-range atmospheric transport. Thus, contributions of major sources to marine aerosols need to be identified for policy makers to develop cost effective control strategies. In this work, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model, which can directly track the contributions from multiple emission sources to marine aerosols, is used to investigate the contributions from power, industry, transportation, residential, biogenic and biomass burning to marine aerosols over the ECS in May and June 2014. The model simulations indicate significant spatial and temporal variations of concentrations as well as the source contributions. This study demonstrates that the Asian continent can greatly affect the marine atmosphere through long-range transport.

  13. PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC

    Science.gov (United States)

    Parkhurst, David L.; Wissmeier, Laurin

    2015-01-01

    PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst–Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants.PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.

  14. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    Science.gov (United States)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  15. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism

  16. Transperitoneal transport of creatinine. A comparison of kinetic models

    DEFF Research Database (Denmark)

    Fugleberg, S; Graff, J; Joffe, P

    1994-01-01

    Six kinetic models of transperitoneal creatinine transport were formulated and validated on the basis of experimental results obtained from 23 non-diabetic patients undergoing peritoneal dialysis. The models were designed to elucidate the presence or absence of diffusive, non-lymphatic convective...... including all three forms of transport is superior to other models. We conclude that the best model of transperitoneal creatinine transport includes diffusion, non-lymphatic convective transport and lymphatic convective transport....

  17. Particle Tracking Model and Abstraction of Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  18. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2004-01-01

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data

  19. Observation of non-chemical equilibrium effect on Ar-CO2-H2 thermal plasma model by changing pressure

    International Nuclear Information System (INIS)

    Al-Mamun, Sharif Abdullah; Tanaka, Yasunori; Uesugi, Yoshihiko

    2009-01-01

    The authors developed a two-dimensional one-temperature chemical non-equilibrium (1T-NCE) model of Ar-CO 2 -H 2 inductively coupled thermal plasmas (ICTP) to investigate the effect of pressure variation. The basic concept of one-temperature model is the assumption and treatment of the same energy conservation equation for electrons and heavy particles. The energy conservation equations consider reaction heat effects and energy transfer among the species produced as well as enthalpy flow resulting from diffusion. Assuming twenty two (22) different particles in this model and by solving mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from hundred and ninety eight (198) chemical reactions, chemical non-equilibrium effects were taken into account. Transport and thermodynamic properties of Ar-CO 2 -H 2 thermal plasmas were self-consistently calculated using the first-order approximation of the Chapman-Enskog method. Finally results obtained at atmospheric pressure (760 Torr) and at reduced pressure (500, 300 Torr) were compared with results from one-temperature chemical equilibrium (1T-CE) model. And of course, this comparison supported discussion of chemical non-equilibrium effects in the inductively coupled thermal plasmas (ICTP).

  20. A coupled model of transport-reaction-mechanics with trapping. Part I - Small strain analysis

    Science.gov (United States)

    Salvadori, A.; McMeeking, R.; Grazioli, D.; Magri, M.

    2018-05-01

    A fully coupled model for mass and heat transport, mechanics, and chemical reactions with trapping is proposed. It is rooted in non-equilibrium rational thermodynamics and assumes that displacements and strains are small. Balance laws for mass, linear and angular momentum, energy, and entropy are stated. Thermodynamic restrictions are identified, based on an additive strain decomposition and on the definition of the Helmholtz free energy. Constitutive theory and chemical kinetics are studied in order to finally write the governing equations for the multi-physics problem. The field equations are solved numerically with the finite element method, stemming from a three-fields variational formulation. Three case-studies on vacancies redistribution in metals, hydrogen embrittlement, and the charge-discharge of active particles in Li-ion batteries demonstrate the features and the potential of the proposed model.

  1. A reaction-transport model and its application to performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    Chen, Y.; McGrail, B.P.; Engel, D.W.

    1996-01-01

    One important issue in assessing the performance of a geological repository for nuclear waste disposal is to project the migration behaviour of radionuclides in subsurface environments over long time scales of 10,000 years or even longer. Obviously such projections cannot be achieved by laboratory measurements alone. Instead, scientists must rely on sophisticated predictive models that are built on a sound physico-chemical basis. The most important processes affecting the migration of radionuclides are usually classified into two types: 1) transport processes, including advection, diffusion and dispersion and 2) chemical reactions, including corrosion of waste forms and waste packages, precipitation of secondary phases, adsorption of radionuclides on the surface of solids, aqueous complexation etc. Typically the migration behaviour of radionuclides in geologic environments has been simulated by two types of models, hydrogeological and geochemical

  2. Ground-water solute transport modeling using a three-dimensional scaled model

    International Nuclear Information System (INIS)

    Crider, S.S.

    1987-01-01

    Scaled models are used extensively in current hydraulic research on sediment transport and solute dispersion in free surface flows (rivers, estuaries), but are neglected in current ground-water model research. Thus, an investigation was conducted to test the efficacy of a three-dimensional scaled model of solute transport in ground water. No previous results from such a model have been reported. Experiments performed on uniform scaled models indicated that some historical problems (e.g., construction and scaling difficulties; disproportionate capillary rise in model) were partly overcome by using simple model materials (sand, cement and water), by restricting model application to selective classes of problems, and by physically controlling the effect of the model capillary zone. Results from these tests were compared with mathematical models. Model scaling laws were derived for ground-water solute transport and used to build a three-dimensional scaled model of a ground-water tritium plume in a prototype aquifer on the Savannah River Plant near Aiken, South Carolina. Model results compared favorably with field data and with a numerical model. Scaled models are recommended as a useful additional tool for prediction of ground-water solute transport

  3. Physical and Chemical Environmental Abstraction Model

    International Nuclear Information System (INIS)

    Nowak, E.

    2000-01-01

    As directed by a written development plan (CRWMS M and O 1999a), Task 1, an overall conceptualization of the physical and chemical environment (P/CE) in the emplacement drift is documented in this Analysis/Model Report (AMR). Included are the physical components of the engineered barrier system (EBS). The intended use of this descriptive conceptualization is to assist the Performance Assessment Department (PAD) in modeling the physical and chemical environment within a repository drift. It is also intended to assist PAD in providing a more integrated and complete in-drift geochemical model abstraction and to answer the key technical issues raised in the U.S. Nuclear Regulatory Commission (NRC) Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). EBS-related features, events, and processes (FEPs) have been assembled and discussed in ''EBS FEPs/Degradation Modes Abstraction'' (CRWMS M and O 2000a). Reference AMRs listed in Section 6 address FEPs that have not been screened out. This conceptualization does not directly address those FEPs. Additional tasks described in the written development plan are recommended for future work in Section 7.3. To achieve the stated purpose, the scope of this document includes: (1) the role of in-drift physical and chemical environments in the Total System Performance Assessment (TSPA) (Section 6.1); (2) the configuration of engineered components (features) and critical locations in drifts (Sections 6.2.1 and 6.3, portions taken from EBS Radionuclide Transport Abstraction (CRWMS M and O 2000b)); (3) overview and critical locations of processes that can affect P/CE (Section 6.3); (4) couplings and relationships among features and processes in the drifts (Section 6.4); and (5) identities and uses of parameters transmitted to TSPA by some of the reference AMRs (Section 6.5). This AMR originally considered a design with backfill, and is now being updated (REV 00 ICN1) to address

  4. Elemental transport coefficients in viscous plasma flows near local thermodynamic equilibrium

    International Nuclear Information System (INIS)

    Orsini, Alessio; Kustova, Elena V.

    2009-01-01

    We propose a convenient formulation of elemental transport coefficients in chemically reacting and plasma flows locally approaching thermodynamic equilibrium. A set of transport coefficients for elemental diffusion velocities, heat flux, and electric current is introduced. These coefficients relate the transport fluxes with the electric field and with the spatial gradients of elemental fractions, pressure, and temperature. The proposed formalism based on chemical elements and fully symmetric with the classical transport theory based on chemical species, is particularly suitable to model mixing and demixing phenomena due to diffusion of chemical elements. The aim of this work is threefold: to define a simple and rigorous framework suitable for numerical implementation, to allow order of magnitude estimations and qualitative predictions of elemental transport phenomena, and to gain a deeper insight into the physics of chemically reacting flows near local equilibrium.

  5. Sediment transport modelling in a distributed physically based hydrological catchment model

    Directory of Open Access Journals (Sweden)

    M. Konz

    2011-09-01

    Full Text Available Bedload sediment transport and erosion processes in channels are important components of water induced natural hazards in alpine environments. A raster based distributed hydrological model, TOPKAPI, has been further developed to support continuous simulations of river bed erosion and deposition processes. The hydrological model simulates all relevant components of the water cycle and non-linear reservoir methods are applied for water fluxes in the soil, on the ground surface and in the channel. The sediment transport simulations are performed on a sub-grid level, which allows for a better discretization of the channel geometry, whereas water fluxes are calculated on the grid level in order to be CPU efficient. Several transport equations as well as the effects of an armour layer on the transport threshold discharge are considered. Flow resistance due to macro roughness is also considered. The advantage of this approach is the integrated simulation of the entire basin runoff response combined with hillslope-channel coupled erosion and transport simulation. The comparison with the modelling tool SETRAC demonstrates the reliability of the modelling concept. The devised technique is very fast and of comparable accuracy to the more specialised sediment transport model SETRAC.

  6. Numerical Modelling Approaches for Sediment Transport in Sewer Systems

    DEFF Research Database (Denmark)

    Mark, Ole

    A study of the sediment transport processes in sewers has been carried out. Based on this study a mathematical modelling system has been developed to describe the transport processes of sediments and dissolved matter in sewer systems. The modelling system consists of three sub-models which...... constitute the basic modelling system necessary to give a discription of the most dominant physical transport processes concerning particles and dissolved matter in sewer systems: A surface model. An advection-dispersion model. A sediment transport model....

  7. Local and distant residence times of contaminants in multi-compartment models. Part II: Application to assessing environmental mobility and long-range atmospheric transport

    International Nuclear Information System (INIS)

    Reid, Liisa; Mackay, Don

    2008-01-01

    In Part I, the concepts of inherent, local and distant residence times (DRTs) were reviewed as metrics of the extent to which chemical discharges or emissions in one region or box are transported to distant regions. In this second part, the concepts are applied to geographically relevant systems to illustrate their applicability to the assessment of chemicals for long-range transport potential (LRTP). It is shown that the relative ranking of chemicals as characterized by the DRT method is similar to that of the characteristic travel distance concept. A DRT source-receptor matrix is developed that can express the chemical-specific potential of source regions to contaminate a specific receptor region of concern such as the Arctic. The matrix can be modified to identify for a specific source region the likely destinations of emissions as well as to assess the relative vulnerability of regions in the global environment to contaminants of concern. - The DRT concept is applied to multi-box and geographically explicit models to assess the long-range transport potential of 10 chemicals

  8. Mathematical modelling of oil spill fate and transport in the marine environment incorporating biodegradation kinetics of oil droplets

    Science.gov (United States)

    Spanoudaki, Katerina

    2016-04-01

    Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. However, very few numerical models of oil spill fate and transport include biodegradation kinetics of spilled oil. Furthermore, in models where biodegradation is included amongst the oil transformation processes simulated, it is mostly represented as a first order decay process neglecting the effect of several important parameters that can limit biodegradation rate, such as oil composition and oil droplets-water interface. To this end, the open source numerical model MEDSKIL-II, which simulates oil spill fate and transport in the marine environment, has been modified to include biodegradation kinetics of oil droplets dispersed in the water column. MEDSLIK-II predicts the transport and weathering of oil spills following a Lagrangian approach for the solution of the advection-diffusion equation. Transport is governed by the 3D sea currents and wave field provided by ocean circulation models. In addition to advective and diffusive displacements, the model simulates several physical and chemical processes that transform the oil (evaporation, emulsification, dispersion in the water column, adhesion to coast). The fate algorithms employed in MEDSLIK-II consider the oil as a uniform substance whose properties change as the slick weathers, an approach that can lead to reduced accuracy, especially in the estimation of oil evaporation and biodegradation. Therefore MEDSLIK-II has been modified by adopting the "pseudo-component" approach for simulating weathering processes. Spilled oil is modelled as a relatively small number of discrete, non-interacting components (pseudo-components). Chemicals in the oil mixture are grouped by physical-chemical properties and the resulting pseudo-component behaves as if it were a single substance with characteristics typical of the chemical group. The fate (evaporation, dispersion

  9. Enhancement of Bacterial Transport in Aerobic and Anaerobic Environments: Assessing the Effect of Metal Oxide Chemical Heterogeneities

    International Nuclear Information System (INIS)

    T.C. Onstott

    2005-01-01

    The goal of our research was to understand the fundamental processes that control microbial transport in physically and chemically heterogeneous aquifers and from this enhanced understanding determine the requirements for successful, field-scale delivery of microorganisms to metal contaminated subsurface sites. Our specific research goals were to determine; (1) the circumstances under which the preferential adsorption of bacteria to Fe, Mn, and Al oxyhydroxides influences field-scale bacterial transport, (2) the extent to which the adhesion properties of bacterial cells affect field-scale bacterial transport, (3) whether microbial Fe(III) reduction can enhance field-scale transport of Fe reducing bacteria (IRB) and other microorganisms and (4) the effect of field-scale physical and chemical heterogeneity on all three processes. Some of the spin-offs from this basic research that can improve biostimulation and bioaugmentation remediation efforts at contaminated DOE sites have included; (1) new bacterial tracking tools for viable bacteria; (2) an integrated protocol which combines subsurface characterization, laboratory-scale experimentation, and scale-up techniques to accurately predict field-scale bacterial transport; and (3) innovative and inexpensive field equipment and methods that can be employed to enhance Fe(III) reduction and microbial transport and to target microbial deposition under both aerobic and anaerobic conditions

  10. Transport simulations TFTR: Theoretically-based transport models and current scaling

    International Nuclear Information System (INIS)

    Redi, M.H.; Cummings, J.C.; Bush, C.E.; Fredrickson, E.; Grek, B.; Hahm, T.S.; Hill, K.W.; Johnson, D.W.; Mansfield, D.K.; Park, H.; Scott, S.D.; Stratton, B.C.; Synakowski, E.J.; Tang, W.M.; Taylor, G.

    1991-12-01

    In order to study the microscopic physics underlying observed L-mode current scaling, 1-1/2-d BALDUR has been used to simulate density and temperature profiles for high and low current, neutral beam heated discharges on TFTR with several semi-empirical, theoretically-based models previously compared for TFTR, including several versions of trapped electron drift wave driven transport. Experiments at TFTR, JET and D3-D show that I p scaling of τ E does not arise from edge modes as previously thought, and is most likely to arise from nonlocal processes or from the I p -dependence of local plasma core transport. Consistent with this, it is found that strong current scaling does not arise from any of several edge models of resistive ballooning. Simulations with the profile consistent drift wave model and with a new model for toroidal collisionless trapped electron mode core transport in a multimode formalism, lead to strong current scaling of τ E for the L-mode cases on TFTR. None of the theoretically-based models succeeded in simulating the measured temperature and density profiles for both high and low current experiments

  11. Coupled transport/reaction model of the properties of bentonite buffer in a repository

    International Nuclear Information System (INIS)

    Liu, Jinsong; Neretnieks, I.

    1996-11-01

    Two mechanisms that can affect the long-term properties of the bentonite buffer surrounding the canister in a final repository of spent nuclear fuel are studied. The two mechanisms are the oxidation of reducing minerals in the buffer by radiolytically generated oxidant, and the low-temperature alteration of Na-montmorillonite in the bentonite buffer to illite. A coupled mass transport with geochemical reaction model is used. Four cases have been considered, which differ in the assumptions of whether the radiolytically generated oxidant first oxidizes uraninite in the spent fuel, or it is directly transported to the bentonite to oxidize the pyrite. The cases also differ in the assumptions of varying initial concentrations of pyrite in the bentonite buffer. The modelling results show that, at low temperatures, the sodium montmorillonite in the bentonite buffer is chemically stable with respect to the chemical conditions of the near field. Alteration to illite and thus an increase in hydraulic conductivity and loss of swelling ability is not likely to occur. The radiolytically generated oxidant can possibly oxidize the reducing minerals in the bentonite buffer. A redox front can be generated. In all the cases considered in this study, the modelling results indicate that slightly less than 1% by weight of pyrite in the bentonite buffer will be able to ensure that the redox front does not penetrate through the bentonite buffer within 1 million years. 31 refs

  12. Chemical Leasing business models and corporate social responsibility.

    Science.gov (United States)

    Moser, Frank; Jakl, Thomas; Joas, Reihard; Dondi, Francesco

    2014-11-01

    Chemical Leasing is a service-oriented business model that shifts the focus from increasing sales volume of chemicals towards a value-added approach. Recent pilot projects have shown the economic benefits of introducing Chemical Leasing business models in a broad range of sectors. A decade after its introduction, the promotion of Chemical Leasing is still predominantly done by the public sector and international organizations. We show in this paper that awareness-raising activities to disseminate information on this innovative business model mainly focus on the economic benefits. We argue that selling Chemical Leasing business models solely on the grounds of economic and ecological considerations falls short of branding it as a corporate social responsibility initiative, which, for this paper, is defined as a stakeholder-oriented concept that extends beyond the organization's boundaries and is driven by an ethical understanding of the organization's responsibility for the impact of its business activities. For the analysis of Chemical Leasing business models, we introduce two case studies from the water purification and metal degreasing fields, focusing on employees and local communities as two specific stakeholder groups of the company introducing Chemical Leasing. The paper seeks to demonstrate that Chemical Leasing business models can be branded as a corporate social responsibility initiative by outlining the vast potential of Chemical Leasing to improve occupational health and safety and to strengthen the ability of companies to protect the environment from the adverse effects of the chemicals they apply.

  13. Transportation Sector Model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  14. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  15. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  16. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2000-01-01

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone

  17. Use of a multi-species reactive transport model to simulate chloride ingress in mortar exposed to NaCl solution or sea-water

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; De Weerdt, K.; Johannesson, Björn

    2015-01-01

    Simulations of ion ingress in Portland cement mortar using a multi-species reactive mass transport model are compared with experimental test results. The model is an extended version of the Poisson–Nernst–Planck equations, accounting for chemical equilibrium. Saturated mortar samples were exposed...

  18. Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008

    Science.gov (United States)

    Schmale, J.; Schneider, J.; Ancellet, G.; Quennehen, B.; Stohl, A.; Sodemann, H.; Burkhart, J. F.; Hamburger, T.; Arnold, S. R.; Schwarzenboeck, A.; Borrmann, S.; Law, K. S.

    2011-10-01

    We deployed an aerosol mass spectrometer during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) summer campaign in Greenland in June/July 2008 on the research aircraft ATR-42. Online size resolved chemical composition data of submicron aerosol were collected up to 7.6 km altitude in the region 60 to 71° N and 40 to 60° W. Biomass burning (BB) and fossil fuel combustion (FF) plumes originating from North America, Asia, Siberia and Europe were sampled. Transport pathways of detected plumes included advection below 700 hPa, air mass uplifting in warm conveyor belts, and high altitude transport in the upper troposphere. By means of the Lagrangian particle dispersion model FLEXPART, trace gas analysis of O3 and CO, particle size distributions and aerosol chemical composition 48 pollution events were identified and classified into five chemically distinct categories. Aerosol from North American BB consisted of 22% particulate sulphate, while with increasing anthropogenic and Asian influence aerosol in Asian FF dominated plumes was composed of up to 37% sulphate category mean value. Overall, it was found that the organic matter fraction was larger (85%) in pollution plumes than for background conditions (71%). Despite different source regions and emission types the particle oxygen to carbon ratio of all plume classes was around 1 indicating low-volatility highly oxygenated aerosol. The volume size distribution of out-of-plume aerosol showed markedly smaller modes than all other distributions with two Aitken mode diameters of 24 and 43 nm and a geometric standard deviation σg of 1.12 and 1.22, respectively, while another very broad mode was found at 490 nm (σg = 2.35). Nearly pure BB particles from North America exhibited an Aitken mode at 66 nm (σg = 1.46) and an accumulation mode diameter of 392 nm (σg = 1.76). An aerosol lifetime, including all processes from emission to

  19. A multi-model assessment of pollution transport to the Arctic

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2008-09-01

    Full Text Available We examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe, East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but East Asian emissions become progressively more important with altitude, and are dominant in the upper troposphere. Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC onto Greenland is most sensitive to North American emissions. North America and Europe each contribute ~40% of total BC deposition to Greenland, with ~20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physical and chemical processing (including removal. Comparison of modeled aerosol concentrations with observations indicates problems in the models, and perhaps, interpretation of the measurements. For gas phase pollutants such as CO and O3, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region and altitude examined. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions, and oxidation are comparable for

  20. A multi-model assessment of pollution transport to the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Shindell, D T; Chin, M; Dentener, F; Doherty, R M; Faluvegi, G; Fiore, A M; Hess, P; Koch, D M; MacKenzie, I A; Sanderson, M G; Schultz, M G; Schulz, M; Stevenson, D S; Teich, H; Textor, C; Wild, O; Bergmann, D J; Bey, I; Bian, H; Cuvelier, C; Duncan, B N; Folberth, G; Horowitz, L W; Jonson, J; Kaminski, J W; Marmer, E; Park, R; Pringle, K J; Schroeder, S; Szopa, S; Takemura, T; Zeng, G; Keating, T J; Zuber, A

    2008-03-13

    We examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe, East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission) vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but East Asian emissions become progressively more important with altitude, and are dominant in the upper troposphere. Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC) onto Greenland is most sensitive to North American emissions. North America and Europe each contribute {approx}40% of total BC deposition to Greenland, with {approx}20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physical and chemical processing (including removal). Comparison of modeled aerosol concentrations with observations indicates problems in the models, and perhaps, interpretation of the measurements. For gas phase pollutants such as CO and O{sub 3}, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region and altitude examined. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions, and oxidation are comparable for European

  1. Evaluation of New Chemical Entities as Substrates of Liver Transporters in the Pharmaceutical Industry: Response to Regulatory Requirements and Future Steps.

    Science.gov (United States)

    Okudaira, Noriko

    2017-09-01

    This article discusses the evaluation of drug candidates as hepatic transporter substrates. Recently, research on the applications of hepatic transporters in the pharmaceutical industry has improved to meet the requirements of the regulatory guidelines for the evaluation of drug interactions. To identify the risk of transporter-mediated drug-drug interactions at an early stage of drug development, we used a strategy of reviewing the in vivo animal pharmacokinetics and tissue distribution data obtained in the discovery stage together with the in vitro data obtained for regulatory submission. In the context of nonclinical evaluation of new chemical entities as medicines, we believe that transporter studies are emerging as a key strategy to predict their pharmacological and toxicological effects. In combination with the recent progress in systems approaches, the estimation of effective concentrations in the target tissues, by using mathematical models to describe the transporter-mediated distribution and elimination, has enabled us to identify promising compounds for clinical development at the discovery stage. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    Science.gov (United States)

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  3. Chemical equilibrium models of interstellar gas clouds

    International Nuclear Information System (INIS)

    Freeman, A.

    1982-10-01

    This thesis contains work which helps towards our understanding of the chemical processes and astrophysical conditions in interstellar clouds, across the whole range of cloud types. The object of the exercise is to construct a mathematical model representing a large system of two-body chemical reactions in order to deduce astrophysical parameters and predict molecular abundances and chemical pathways. Comparison with observations shows that this type of model is valid but also indicates that our knowledge of some chemical reactions is incomplete. (author)

  4. A Sediment Transport Model for Sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Larsson, Johan; Larsen, Torben

    1993-01-01

    This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model i...... is being developed as a part of a study being carried out at the University of Aalborg, Denmark and VBB VIAK, Sweden. The project is funded by the Swedish Water and Waste Water Works Association and the Nordic Industrial Foundation.......This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model...

  5. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors

    Science.gov (United States)

    Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-01

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  6. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors.

    Science.gov (United States)

    Kehayias, Christopher E; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-21

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  7. The PHREEQC modeling of CO{sub 2} transport in highly saline solutions of a final radioactive waste repository; PHREEQC. Modellierung des Transportes von CO{sub 2} in hochsalinaren Loesungen eines Endlagers

    Energy Technology Data Exchange (ETDEWEB)

    Weyand, Torben [Bonn Univ. (Germany); Gesellschaft fuer Reaktorsicherheit mbH (GRS), Koeln (Germany); Bracke, Guido [Gesellschaft fuer Reaktorsicherheit mbH (GRS), Koeln (Germany); Reichert, Barbara [Bonn Univ. (Germany)

    2014-03-15

    The safe confinement of radioactive materials in the containment providing zone of the host rock (CPRZ) over a period of one million years is required for a final repository for highly radioactive heat-generating waste (BMU 2010). In order to assess the safe containment of radionuclides in the CPRZ a sound understanding of the ongoing processes in a repository is necessary. These processes include the transport and chemical interactions of the radionuclide {sup 14}C in the gas phase and in highly saline solutions in a final repository for radioactive waste. The geochemical code PHREEQC /PAR 13/ was used to study the chemical interactions of CO{sub 2} and {sup 14}C as {sup 14}CO{sub 2} during transport in the gas phase and highly saline solutions. The model and scenario was based on the concept for a repository in Gorleben /BOL 11/. A gas generation of CO{sub 2} containing {sup 14}C was assumed since the disposed containers with the radioactive waste corrode /LAR 13/. The advective transport is triggered by gas generation. The physical dissolution of CO{sub 2}, chemical equilibria with aquatic carbon-containing species (e. g. HCO{sub 3}{sup -}(aq), CO{sub 3}{sup 2-}(aq)) and solid phases (e. g. magnesite, MgCO{sub 3}) coupled with transport were modelled. Due to the addition of dissolved MgCl{sub 2} in the crushed salt backfill of the main drift the aquatic species MgCO{sub 3}(aq) and the mineral MgCO{sub 3}(s) is formed. The influence of CO{sub 2} partial pressure and the chemical interactions in the presence of dissolved Fe{sup 2+}, Ca{sup 2+}, Mg{sup 2+} and K{sup +} were studied. Due to the physical solution, the CO{sub 2} partial pressure has a major influence on the transport of {sup 14}C. In the presence of calcium CaCO{sub 3}(aq), the minerals calcite (CaCO{sub 3}(s)) and dolomite (MgCa(CO{sub 3}){sub 2}(s)) were formed in the highly saline solutions. No siderite (FeCO{sub 3}) in the presence of Fe{sup 2+} was formed. The transport of {sup 14}C was delayed

  8. Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries

    Science.gov (United States)

    Sauerteig, Daniel; Hanselmann, Nina; Arzberger, Arno; Reinshagen, Holger; Ivanov, Svetlozar; Bund, Andreas

    2018-02-01

    The intercalation and aging induced volume changes of lithium-ion battery electrodes lead to significant mechanical pressure or volume changes on cell and module level. As the correlation between electrochemical and mechanical performance of lithium ion batteries at nano and macro scale requires a comprehensive and multidisciplinary approach, physical modeling accounting for chemical and mechanical phenomena during operation is very useful for the battery design. Since the introduced fully-coupled physical model requires proper parameterization, this work also focuses on identifying appropriate mathematical representation of compressibility as well as the ionic transport in the porous electrodes and the separator. The ionic transport is characterized by electrochemical impedance spectroscopy (EIS) using symmetric pouch cells comprising LiNi1/3Mn1/3Co1/3O2 (NMC) cathode, graphite anode and polyethylene separator. The EIS measurements are carried out at various mechanical loads. The observed decrease of the ionic conductivity reveals a significant transport limitation at high pressures. The experimentally obtained data are applied as input to the electrochemical-mechanical model of a prismatic 10 Ah cell. Our computational approach accounts intercalation induced electrode expansion, stress generation caused by mechanical boundaries, compression of the electrodes and the separator, outer expansion of the cell and finally the influence of the ionic transport within the electrolyte.

  9. Multimedia environmental chemical partitioning from molecular information

    International Nuclear Information System (INIS)

    Martinez, Izacar; Grifoll, Jordi; Giralt, Francesc; Rallo, Robert

    2010-01-01

    The prospect of assessing the environmental distribution of chemicals directly from their molecular information was analyzed. Multimedia chemical partitioning of 455 chemicals, expressed in dimensionless compartmental mass ratios, was predicted by SimpleBox 3, a Level III Fugacity model, together with the propagation of reported uncertainty for key physicochemical and transport properties, and degradation rates. Chemicals, some registered in priority lists, were selected according to the availability of experimental property data to minimize the influence of predicted information in model development. Chemicals were emitted in air or water in a fixed geographical scenario representing the Netherlands and characterized by five compartments (air, water, sediments, soil and vegetation). Quantitative structure-fate relationship (QSFR) models to predict mass ratios in different compartments were developed with support vector regression algorithms. A set of molecular descriptors, including the molecular weight and 38 counts of molecular constituents were adopted to characterize the chemical space. Out of the 455 chemicals, 375 were used for training and testing the QSFR models, while 80 were excluded from model development and were used as an external validation set. Training and test chemicals were selected and the domain of applicability (DOA) of the QSFRs established by means of self-organizing maps according to structural similarity. Best results were obtained with QSFR models developed for chemicals belonging to either the class [C] and [C; O], or the class with at least one heteroatom different than oxygen in the structure. These two class-specific models, with respectively 146 and 229 chemicals, showed a predictive squared coefficient of q 2 ≥ 0.90 both for air and water, which respectively dropped to q 2 ∼ 0.70 and 0.40 for outlying chemicals. Prediction errors were of the same order of magnitude as the deviations associated to the uncertainty of the

  10. Filling high aspect ratio trenches by superconformal chemical vapor deposition: Predictive modeling and experiment

    Science.gov (United States)

    Wang, Wenjiao B.; Abelson, John R.

    2014-11-01

    Complete filling of a deep recessed structure with a second material is a challenge in many areas of nanotechnology fabrication. A newly discovered superconformal coating method, applicable in chemical vapor deposition systems that utilize a precursor in combination with a co-reactant, can solve this problem. However, filling is a dynamic process in which the trench progressively narrows and the aspect ratio (AR) increases. This reduces species diffusion within the trench and may drive the component partial pressures out of the regime for superconformal coating. We therefore derive two theoretical models that can predict the possibility for filling. First, we recast the diffusion-reaction equation for the case of a sidewall with variable taper angle. This affords a definition of effective AR, which is larger than the nominal AR due to the reduced species transport. We then derive the coating profile, both for superconformal and for conformal coating. The critical (most difficult) step in the filling process occurs when the sidewalls merge at the bottom of the trench to form the V shape. Experimentally, for the Mg(DMADB)2/H2O system and a starting AR = 9, this model predicts that complete filling will not be possible, whereas experimentally we do obtain complete filling. We then hypothesize that glancing-angle, long-range transport of species may be responsible for the better than predicted filling. To account for the variable range of species transport, we construct a ballistic transport model. This incorporates the incident flux from outside the structure, cosine law re-emission from surfaces, and line-of-sight transport between internal surfaces. We cast the transport probability between all positions within the trench into a matrix that represents the redistribution of flux after one cycle of collisions. Matrix manipulation then affords a computationally efficient means to determine the steady-state flux distribution and growth rate for a given taper angle. The

  11. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    Science.gov (United States)

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  12. Computer program to solve two-dimensional shock-wave interference problems with an equilibrium chemically reacting air model

    Science.gov (United States)

    Glass, Christopher E.

    1990-08-01

    The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.

  13. Modeling the fate transport of cesium in crushed granite

    International Nuclear Information System (INIS)

    Lee, C.B.; Kuo, Y.M.; Hsu, C.N.; Li, M.H.; Cheng, H.P.; Teng, S.P.

    2005-01-01

    Full text of publication follows: In order to assess the safety of a underground radwaste repository, reactive transport models suitable for evaluating the fate and transport of radionuclides need to be established based on experimental observation and analysis. The goal of this study is to construct adequate models simulating the reactive transport of cesium (Cs) in crushed granite through a systematic analysis, where synthetic groundwater (SGW) and synthetic seawater (SSW) were employed as the liquid phase. To build such models, this study applied N 2 -BET, x-ray diffraction (XRD), polar-microscopy/ auto-radiography, and solid-phase digestion for the analysis of granite, kinetic batch tests for the characterization of sorption/desorption of Cs, and multi-stage advection-dispersion column tests for the determination of major transport processes and the calibration/validation of hypothesized reactive transport models. Based on the results of solid phase analysis and batch tests, a two-site Langmuir kinetic model has been determined capable of appropriately describing Cs sorption/desorption under test conditions. From the results of non-reactive HTO column tests, a mobile/immobile transport model was proposed to capture the major transport processes in our column system. However, the combination of the two-site Langmuir model and the mobile/immobile transport model failed to provide numerical breakthrough curves matching the Cs experimental breakthroughs. It implied that our model needs to be further refined. To achieve this, the setup of our column test needs to be modified first to reduce the volume of column connecting space, so that the effect of extra diffusion/dispersion on breakthroughs would be minimized and major transport characteristics can be clearly revealed. Moreover, more investigations on the reaction mechanisms and transport processes of the reactive transport system must be conducted. (authors)

  14. ATTILA - Atmospheric Tracer Transport In a Langrangian Model

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.; Sausen, R.

    2000-07-01

    The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an

  15. Limitations of sorption isotherms on modeling groundwater contaminant transport

    International Nuclear Information System (INIS)

    Silva, Eduardo Figueira da

    2007-01-01

    Design and safety assessment of radioactive waste repositories, as well as remediation of radionuclide contaminated groundwater require the development of models capable of accurately predicting trace element fate and transport. Adsorption of trace radionuclides onto soils and groundwater is an important mechanism controlling near- and far- field transport. Although surface complexation models (SCMs) can better describe the adsorption mechanisms of most radionuclides onto mineral surfaces by directly accounting for variability of system properties and mineral surface properties, isotherms are still used to model contaminant transport in groundwater, despite the much higher system dependence. The present work investigates differences between transport model results based on these two approaches for adsorption modeling. A finite element transport model is used for the isotherm model, whereas the computer program PHREEQC is used for the SCM approach. Both models are calibrated for a batch experiment, and one-dimensional transport is simulated using the calibrated parameters. At the lower injected concentrations there are large discrepancies between SCM and isotherm transport predictions, with the SCM presenting much longer tails on the breakthrough curves. Isotherms may also provide non-conservative results for time to breakthrough and for maximum concentration in a contamination plume. Isotherm models are shown not to be robust enough to predict transport behavior of some trace elements, thus discouraging their use. The results also illustrate the promise of the SCM modeling approach in safety assessment and environmental remediation applications, also suggesting that independent batch sorption measurements can be used, within the framework of the SCM, to produce a more versatile and realistic groundwater transport model for radionuclides which is capable of accounting more accurately for temporal and spatial variations in geochemical conditions. (author)

  16. Chemical and mechanical control of corrosion product transport

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O; Blum, R [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Daucik, K [I/S Skaerbaekvaerket, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    The corrosion products formed in the condensate and feedwater system of once-through boilers are precipitated and deposited inside the evaporator tubes mainly in the burner zone at the highest heat flux. Depositions lead to increased oxidation rate and increased metal temperature of the evaporator tubes, hereby decreasing tube lifetime. This effect is more important in the new high efficiency USC boilers due to increased feedwater temperature and hence higher thermal load on the evaporator tubes. The only way to reduce the load on the evaporator tubes is to minimise corrosion product transport to the boiler. Two general methods for minimising corrosion product transport to the boiler have been evaluated through measurement campaigns for Fe in the water/steam cycle in supercritical boilers within the ELSAM area. One method is to reduce corrosion in the low temperature condensate system by changing conditioning mode from alkaline volatile treatment (AVT) to oxygenated treatment (OT). The other method is to filtrate part of the condensate with a mechanical filter at the deaerator. The results show, that both methods are effective at minimising Fe-transport to the boiler, but changing to OT has the highest effect and should always be used, whenever high purity condensate is maintained. Whether mechanical filtration also is required, depends on the boiler, specifically the load on the evaporator. A simplified calculation model for lifetime evaluation of evaporator tubes has been developed. This model has been used for evaluating the effect of corrosion product transport to the boiler on evaporator tube lifetime. Conventional supercritical boilers generally can achieve sufficient lifetime by AVT and even better by OT, whereas all measures to reduce Fe-content of feedwater, including OT and mechanical filtration, should be taken, to ensure sufficient lifetime for the new boilers with advanced steam data - 290 bar/580 deg. C and above. (au)

  17. Hydrogen recycle modeling in transport codes

    International Nuclear Information System (INIS)

    Howe, H.C.

    1979-01-01

    The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes

  18. Logistics and Transport - a conceptual model

    DEFF Research Database (Denmark)

    Jespersen, Per Homann; Drewes, Lise

    2004-01-01

    This paper describes how the freight transport sector is influenced by logistical principles of production and distribution. It introduces new ways of understanding freight transport as an integrated part of the changing trends of mobility. By introducing a conceptual model for understanding...... the interaction between logistics and transport, it points at ways to over-come inherent methodological difficulties when studying this relation...

  19. Estimation of Satellite-Based SO42- and NH4+ Composition of Ambient Fine Particulate Matter Over China Using Chemical Transport Model

    Science.gov (United States)

    Si, Y.; Li, S.; Chen, L.; Yu, C.; Zhu, W.

    2018-04-01

    Epidemiologic and health impact studies have examined the chemical composition of ambient PM2.5 in China but have been constrained by the paucity of long-term ground measurements. Using the GEOS-Chem chemical transport model and satellite-derived PM2.5 data, sulfate and ammonium levels were estimated over China from 2004 to 2014. A comparison of the satellite-estimated dataset with model simulations based on ground measurements obtained from the literature indicated our results are more accurate. Using satellite-derived PM2.5 data with a spatial resolution of 0.1° × 0.1°, we further presented finer satellite-estimated sulfate and ammonium concentrations in anthropogenic polluted regions, including the NCP (the North China Plain), the SCB (the Sichuan Basin) and the PRD (the Pearl River Delta). Linear regression results obtained on a national scale yielded an r value of 0.62, NMB of -35.9 %, NME of 48.2 %, ARB_50 % of 53.68 % for sulfate and an r value of 0.63, slope of 0.67, and intercept of 5.14 for ammonium. In typical regions, the satellite-derived dataset was significantly robust. Based on the satellite-derived dataset, the spatial-temporal variation of 11-year annual average satellite-derived SO42- and NH4+ concentrations and time series of monthly average concentrations were also investigated. On a national scale, both exhibited a downward trend each year between 2004 and 2014 (SO42-: -0.61 %; NH4+: -0.21 %), large values were mainly concentrated in the NCP and SCB. For regions captured at a finer resolution, the inter-annual variation trends presented a positive trend over the periods 2004-2007 and 2008-2011, followed by a negative trend over the period 2012-2014, and sulfate concentrations varied appreciably. Moreover, the seasonal distributions of the 11-year satellite-derived dataset over China were presented. The distribution of both sulfate and ammonium concentrations exhibited seasonal characteristics, with the seasonal concentrations ranking as

  20. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  1. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  2. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  3. An optimization model for transportation of hazardous materials

    International Nuclear Information System (INIS)

    Seyed-Hosseini, M.; Kheirkhah, A. S.

    2005-01-01

    In this paper, the optimal routing problem for transportation of hazardous materials is studied. Routing for the purpose of reducing the risk of transportation of hazardous materials has been studied and formulated by many researcher and several routing models have been presented up to now. These models can be classified into the categories: the models for routing a single movement and the models for routing multiple movements. In this paper, according to the current rules and regulations of road transportations of hazardous materials in Iran, a routing problem is designed. In this problem, the routs for several independent movements are simultaneously determined. To examine the model, the problem the transportations of two different dangerous materials in the road network of Mazandaran province in the north of Iran is formulated and solved by applying Integer programming model

  4. Chemical Equilibrium And Transport (CET)

    Science.gov (United States)

    Mcbride, B. J.

    1991-01-01

    Powerful, machine-independent program calculates theoretical thermodynamic properties of chemical systems. Aids in design of compressors, turbines, engines, heat exchangers, and chemical processing equipment.

  5. Multi-compartment Aerosol Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Joshua Allen; Santarpia, Joshua; Brotherton, Christopher M.; Omana, Michael Alexis; Rivera, Danielle; Lucero, Gabriel Anthony

    2017-06-01

    A simple aerosol transport model was developed for a multi-compartmented cleanroom. Each compartment was treated as a well-mixed volume with ventilating supply and return air. Gravitational settling, intercompartment transport, and leakage of exterior air into the system were included in the model. A set of first order, coupled, ordinary differential equations was derived from the conservation equations of aerosol mass and air mass. The system of ODEs was then solved in MATLAB using pre-existing numerical methods. The model was verified against cases of (1) constant inlet-duct concentration, and (2) exponentially decaying inlet-duct concentration. Numerical methods resulted in normalized error of less than 10 -9 when model solutions were compared to analytical solutions. The model was validated against experimental measurements from a single field test and showed good agreement in the shape and magnitude of the aerosol concentration profile with time.

  6. Comparison of Themodynamic and Transport Property Models for Computing Equilibrium High Enthalpy Flows

    Science.gov (United States)

    Ramasahayam, Veda Krishna Vyas; Diwakar, Anant; Bodi, Kowsik

    2017-11-01

    To study the flow of high temperature air in vibrational and chemical equilibrium, accurate models for thermodynamic state and transport phenomena are required. In the present work, the performance of a state equation model and two mixing rules for determining equilibrium air thermodynamic and transport properties are compared with that of curve fits. The thermodynamic state model considers 11 species which computes flow chemistry by an iterative process and the mixing rules considered for viscosity are Wilke and Armaly-Sutton. The curve fits of Srinivasan, which are based on Grabau type transition functions, are chosen for comparison. A two-dimensional Navier-Stokes solver is developed to simulate high enthalpy flows with numerical fluxes computed by AUSM+-up. The accuracy of state equation model and curve fits for thermodynamic properties is determined using hypersonic inviscid flow over a circular cylinder. The performance of mixing rules and curve fits for viscosity are compared using hypersonic laminar boundary layer prediction on a flat plate. It is observed that steady state solutions from state equation model and curve fits match with each other. Though curve fits are significantly faster the state equation model is more general and can be adapted to any flow composition.

  7. Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Sanchez, R.; Carreras, B.A.

    2004-01-01

    Transport in fusion plasmas in the low confinement mode is characterized by several remarkable properties: the anomalous scaling of transport with system size, stiff (or 'canonical') profiles, power degradation, and rapid transport phenomena. The present article explores the possibilities of constructing a unified transport model, based on the continuous-time random walk, in which all these phenomena are handled adequately. The resulting formalism appears to be sufficiently general to provide a sound starting point for the development of a full-blown plasma transport code, capable of incorporating the relevant microscopic transport mechanisms, and allowing predictions of confinement properties

  8. Groundwater Flow and Transport Model in Cecina Plain (Tuscany, Italy using GIS processing

    Directory of Open Access Journals (Sweden)

    Riccardo Armellini

    2015-03-01

    Full Text Available This work provides a groundwater flow and transport model of trichlorethylene and tetrachlorethylene contamination in the Cecina’s coastal aquifer. The contamination analysis, with source located in the Poggio Gagliardo area (Montescudaio, Pisa, was necessary to optimize the groundwater monitoring and remediation design. The work was carried out in two phases: • design of a conceptual model of the aquifer using GIS analysis of many stratigraphic, chemical and hydrogeological data, collected from 2004 to 2012 in six aqueduct wells; • implementation of a groundwater flow and transport numerical model using the MODFLOW 88/96 and MT3D code and the graphical user interface GroundWaterVistas 5. The conceptual model hypothesizes a multilayer aquifer in the coastal plain extended to the sandy-clay hills, recharged by rainfall and by the Cecina River. The aquifer shows important hydrodynamic features affecting both the contamination spreading, due to the presence of a perched and heavily polluted layer separate from the underlying productive aquifer, and the hydrological balance, due to a thick separation layer that limits exchanges between the river and the second groundwater aquifer. The numerical model, built using increasingly complex versions of the initial conceptual model, has been calibrated using monitoring surveys conducted by the Environmental Protection Agency of Regione Toscana (ARPAT, in order to obtain possible forecast scenarios based on the minimum and maximum flow periods, and it is currently used as a tool for decision support regarding the reclamation and/or protection of the aquifer. Future developments will regard the implementation of the multilayer transport model, based on a new survey, and the final coupling with the regional hydrological model named MOBIDIC.

  9. How Sensitive Are Transdermal Transport Predictions by Microscopic Stratum Corneum Models to Geometric and Transport Parameter Input?

    Science.gov (United States)

    Wen, Jessica; Koo, Soh Myoung; Lape, Nancy

    2018-02-01

    While predictive models of transdermal transport have the potential to reduce human and animal testing, microscopic stratum corneum (SC) model output is highly dependent on idealized SC geometry, transport pathway (transcellular vs. intercellular), and penetrant transport parameters (e.g., compound diffusivity in lipids). Most microscopic models are limited to a simple rectangular brick-and-mortar SC geometry and do not account for variability across delivery sites, hydration levels, and populations. In addition, these models rely on transport parameters obtained from pure theory, parameter fitting to match in vivo experiments, and time-intensive diffusion experiments for each compound. In this work, we develop a microscopic finite element model that allows us to probe model sensitivity to variations in geometry, transport pathway, and hydration level. Given the dearth of experimentally-validated transport data and the wide range in theoretically-predicted transport parameters, we examine the model's response to a variety of transport parameters reported in the literature. Results show that model predictions are strongly dependent on all aforementioned variations, resulting in order-of-magnitude differences in lag times and permeabilities for distinct structure, hydration, and parameter combinations. This work demonstrates that universally predictive models cannot fully succeed without employing experimentally verified transport parameters and individualized SC structures. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. A Non-Isothermal Chemical Lattice Boltzmann Model Incorporating Thermal Reaction Kinetics and Enthalpy Changes

    Directory of Open Access Journals (Sweden)

    Stuart Bartlett

    2017-08-01

    Full Text Available The lattice Boltzmann method is an efficient computational fluid dynamics technique that can accurately model a broad range of complex systems. As well as single-phase fluids, it can simulate thermohydrodynamic systems and passive scalar advection. In recent years, it also gained attention as a means of simulating chemical phenomena, as interest in self-organization processes increased. This paper will present a widely-used and versatile lattice Boltzmann model that can simultaneously incorporate fluid dynamics, heat transfer, buoyancy-driven convection, passive scalar advection, chemical reactions and enthalpy changes. All of these effects interact in a physically accurate framework that is simple to code and readily parallelizable. As well as a complete description of the model equations, several example systems will be presented in order to demonstrate the accuracy and versatility of the method. New simulations, which analyzed the effect of a reversible reaction on the transport properties of a convecting fluid, will also be described in detail. This extra chemical degree of freedom was utilized by the system to augment its net heat flux. The numerical method outlined in this paper can be readily deployed for a vast range of complex flow problems, spanning a variety of scientific disciplines.

  11. A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields

    Science.gov (United States)

    Lu, Chunhui; Wang, Zhiyuan; Zhao, Yue; Rathore, Saubhagya Singh; Huo, Jinge; Tang, Yuening; Liu, Ming; Gong, Rulan; Cirpka, Olaf A.; Luo, Jian

    2018-05-01

    Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.

  12. Determination of Hydraulic and Transport Parameters of Organic Chemical and Inorganic Anions Solutes for Unfractured Cores of Berea Sandstone Using a Hydraulic Coreholder

    Science.gov (United States)

    Blanford, W. J.; Neil, L.

    2017-12-01

    To better evaluate the potential for toxic organic chemicals to migrate upward through the rock strata from hydraulic fracturing zones and into groundwater resources, a series of miscible displacement solute transport studies of cores of Berea Sandstone have been conducted using hydrostatic core holder. These tests involved passing aqueous solutions with natural background level of salts using a high pressure LC pump through 2 in wide by 3 in long unfractured cores held within the holder. Relative solute transport of 100 to 500ml pulses of target solutes including a series of chlorinated solvents and methylated benzenes was measured through in-line UV and fluorescence detectors and manual sampling and analysis with GCMS. The results found these sandstones to result in smooth ideal shaped breakthrough curves. Analysis with 1D transport models (CXTFIT) of the results found strong correlation with chemical parameters (diffusion coefficients, aqueous solubility, and octanol-water partitioning coefficients) showing that these parameter and QSPR relationships can be used to make accurate predictions for such a system. In addition to the results of the studies, lessons learned from this novel use of a coreholder for evaluation of porosity, water-saturated permeability, and solute transport of these sandstones (K = 1.5cm/day) and far less permeable sandstones samples (K = 0.15 cm/yr) from a hydraulic fracturing site in central Pennsylvania will be presented.

  13. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle component-based factor analysis

    Directory of Open Access Journals (Sweden)

    C. A. Stroud

    2012-09-01

    Full Text Available Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007 in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA and two other carbonaceous species, black carbon (BC and carbon monoxide (CO, made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON and two rural sites (Harrow and Bear Creek, ON to derive hydrocarbon-like organic aerosol (HOA factors. A novel diagnostic model evaluation was performed by investigating model POA bias as a function of HOA mass concentration and indicator ratios (e.g. BC/HOA. Eight case studies were selected based on factor analysis and back trajectories to help classify model bias for certain POA source types. By considering model POA bias in relation to co-located BC and CO biases, a plausible story is developed that explains the model biases for all three species.

    At the rural sites, daytime mean PM1 POA mass concentrations were under-predicted compared to observed HOA concentrations. POA under-predictions were accentuated when the transport arriving at the rural sites was from the Detroit/Windsor urban complex and for short-term periods of biomass burning influence. Interestingly, the daytime CO concentrations were only slightly under-predicted at both rural sites, whereas CO was over-predicted at the urban Windsor site with a normalized mean bias of 134%, while good agreement was observed at Windsor for the comparison of daytime PM1 POA and HOA mean values, 1.1 μg m−3 and 1.2 μg m−3, respectively. Biases in model POA predictions also trended from positive to negative with increasing HOA values. Periods of POA over-prediction were most evident at the urban site on calm nights due to an overly-stable model surface layer

  14. Dust resuspension and transport modeling for loss of vacuum accidents

    International Nuclear Information System (INIS)

    Humrickhouse, P.W.; Corradini, M.L.; Sharpe, J.P.

    2007-01-01

    Plasma surface interactions in tokamaks are known to create significant quantities of dust, which settles onto surfaces and accumulates in the vacuum vessel. In ITER, a loss of vacuum accident may result in the release of dust which will be radioactive and/or toxic, and provides increased surface area for chemical reactions or dust explosion. A new method of analysis has been developed for modeling dust resuspension and transport in loss of vacuum accidents. The aerosol dynamic equation is solved via the user defined scalar (UDS) capability in the commercial CFD code Fluent. Fluent solves up to 50 generic transport equations for user defined scalars, and allows customization of terms in these equations through user defined functions (UDF). This allows calculation of diffusion coefficients based on local flow properties, inclusion of body forces such as gravity and thermophoresis in the convection term, and user defined source terms. The code accurately reproduces analytical solutions for aerosol deposition in simple laminar flows with diffusion and gravitational settling. Models for dust resuspension are evaluated, and code results are compared to available resuspension data, including data from the Toroidal Dust Mobilization Experiment (TDMX) at the Idaho National Laboratory. Extension to polydisperse aerosols and inclusion of coagulation effects is also discussed. (orig.)

  15. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    Science.gov (United States)

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  16. Modeling and design of light powered biomimicry micropump utilizing transporter proteins

    Science.gov (United States)

    Liu, Jin; Sze, Tsun-Kay Jackie; Dutta, Prashanta

    2014-11-01

    The creation of compact micropumps to provide steady flow has been an on-going challenge in the field of microfluidics. We present a mathematical model for a micropump utilizing Bacteriorhodopsin and sugar transporter proteins. This micropump utilizes transporter proteins as method to drive fluid flow by converting light energy into chemical potential. The fluid flow through a microchannel is simulated using the Nernst-Planck, Navier-Stokes, and continuity equations. Numerical results show that the micropump is capable of generating usable pressure. Designing parameters influencing the performance of the micropump are investigated including membrane fraction, lipid proton permeability, illumination, and channel height. The results show that there is a substantial membrane fraction region at which fluid flow is maximized. The use of lipids with low membrane proton permeability allows illumination to be used as a method to turn the pump on and off. This capability allows the micropump to be activated and shut off remotely without bulky support equipment. This modeling work provides new insights on mechanisms potentially useful for fluidic pumping in self-sustained bio-mimic microfluidic pumps. This work is supported in part by the National Science Fundation Grant CBET-1250107.

  17. Modelling of sediment transport at Muria peninsula coastal, Jepara

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto SBS; Wahyu Pandoe; Eko Kusratmoko; Aris Poniman

    2010-01-01

    Modelling of transport sediment modelling at Muria Peninsula have been done. In this study we had been used mathematical model that consist of hydrodynamics and sediment transport . Data input for modelling has been used tidal, monsoon wind, and river debit. Simulation result of sediment transport modelling showed that tides pattern and seasonal variations are the main causes of variations in the suspended sediment distribution in Muria Peninsula. (author)

  18. Recovery of rare earths from used polishes by chemical vapor transport process

    International Nuclear Information System (INIS)

    Ozaki, T.; Machida, K.; Adachi, G.

    1998-01-01

    Full text: Rare earth oxide polishes are widely used in the glass industry because of its mechanical and chemical polishing action. The Japanese glass industry use 2000 tons per year of the polishes, and a large portion of them are thrown away after their polishing lifetime. A dry recovery processes for rare earths from the used polishes have been investigated by using a chemical vapor transport method via the formation of vapor complexes RAl n Cl 3+3n (R = rare earths). A flow type reactor with various temperature gradients was employed for the process. The used polishes were mixed with active carbon, and chlorinated with N 2 + Cl 2 mixture at 1273 K. Aluminium oxide were also chlorinated at lower temperature and the resulting AlCl 3 were introduced to the reactor. The rare earth chlorides and AlCl 3 were converted to the vapor complexes. These were driven along the temperature gradient, decomposed according to the reverse reaction, and regenerated RCl 3 . About 90 % of the used polish were chlorinated after 2 hours. Rare earth chlorides, AlCl 3 , and FeCl 3 were fully transported after 82 hours. The rare earth chlorides were mainly condensed over the temperature range 1263-903 K. On the other hand, AlCl 3 and FeCl 3 were deposited at the temperature range below 413 K. CaCl 2 and SrCl 2 were hardly transported and remained in the residue. When the temperature gradient with the smaller slope was used, mutual separation efficiencies among the rare earths was improved. The highest CeCl 3 purity of 80% was obtained in the process

  19. Modeling and analysis of transport in the mammary glands

    Science.gov (United States)

    Quezada, Ana; Vafai, Kambiz

    2014-08-01

    The transport of three toxins moving from the blood stream into the ducts of the mammary glands is analyzed in this work. The model predictions are compared with experimental data from the literature. The utility of the model lies in its potential to improve our understanding of toxin transport as a pre-disposing factor to breast cancer. This work is based on a multi-layer transport model to analyze the toxins present in the breast milk. The breast milk in comparison with other sampling strategies allows us to understand the mass transport of toxins once inside the bloodstream of breastfeeding women. The multi-layer model presented describes the transport of caffeine, DDT and cimetidine. The analysis performed takes into account the unique transport mechanisms for each of the toxins. Our model predicts the movement of toxins and/or drugs within the mammary glands as well as their bioaccumulation in the tissues.

  20. Predicting dermal absorption of gas-phase chemicals: transient model development, evaluation, and application

    DEFF Research Database (Denmark)

    Gong, M.; Zhang, Y.; Weschler, Charles J.

    2014-01-01

    A transient model is developed to predict dermal absorption of gas-phase chemicals via direct air-to-skin-to-blood transport under non-steady-state conditions. It differs from published models in that it considers convective mass-transfer resistance in the boundary layer of air adjacent to the skin....... Results calculated with this transient model are in good agreement with the limited experimental results that are available for comparison. The sensitivity of the modeled estimates to key parameters is examined. The model is then used to estimate air-to-skin-to-blood absorption of six phthalate esters...... and less absorbed into blood than would a steady-state model. In the 7-day scenario, results calculated by the transient and steady-state models converge over a time period that varies between 3 and 4days for all but the largest phthalate (DEHP). Dermal intake is comparable to or larger than inhalation...

  1. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  2. Numerical modeling of variably saturated flow and transport, 881 Hillside at Rocky Flats Plant, Jefferson County, Colorado

    International Nuclear Information System (INIS)

    Fedors, R.W.; Warner, J.W.

    1993-01-01

    This study characterizes the unconfined groundwater flow and chemical transport in a thin veneer of colluvial and alluvial Quaternary sediments on the 881 Hillslope at Rocky Flats Plant, Jefferson County, Colorado. Colluvial deposits with a varying thickness of 1.5 to 6.7 meters mantle a 255 meter steeply dipping hillslope. Saturated and the similar material types. A two-dimensional finite element code for variably saturated conditions is used to obtain steady state flow conditions from which water contents and Darcy velocities are used for transient contaminant transport modeling. The migration of an absorptive solute is modeled over a twenty year period using the transport portion of the two-dimensional finite element code. Different potential scenarios for the source area are compared with actual well sample data. The solutes considered for this study are Trichloroethene (TCE) and tetrachloroethene (PCE) dissolved in the water phase

  3. Coupled geochemical and solute transport code development

    International Nuclear Information System (INIS)

    Morrey, J.R.; Hostetler, C.J.

    1985-01-01

    A number of coupled geochemical hydrologic codes have been reported in the literature. Some of these codes have directly coupled the source-sink term to the solute transport equation. The current consensus seems to be that directly coupling hydrologic transport and chemical models through a series of interdependent differential equations is not feasible for multicomponent problems with complex geochemical processes (e.g., precipitation/dissolution reactions). A two-step process appears to be the required method of coupling codes for problems where a large suite of chemical reactions must be monitored. Two-step structure requires that the source-sink term in the transport equation is supplied by a geochemical code rather than by an analytical expression. We have developed a one-dimensional two-step coupled model designed to calculate relatively complex geochemical equilibria (CTM1D). Our geochemical module implements a Newton-Raphson algorithm to solve heterogeneous geochemical equilibria, involving up to 40 chemical components and 400 aqueous species. The geochemical module was designed to be efficient and compact. A revised version of the MINTEQ Code is used as a parent geochemical code

  4. Extensions to the coupled chemical equilibria and migration code CHEQMATE

    International Nuclear Information System (INIS)

    Haworth, A.; Sharland, S.M.; Tasker, P.W.; Tweed, C.J.

    1988-08-01

    The CHEQMATE program was developed to model the evolution of spatially inhomogeneous aqueous chemical systems. The original CHEQMATE models one-dimensional diffusion and electromigration of ionic species with chemical equilibration provided by the geochemical program PHREEQE. CHEQMATE has principally been used to study the evolution of the chemical environment in and around a nuclear waste repository. In this paper, we describe extensions to CHEQMATE to increase the range of situations that can be modelled. These extensions are the addition of advection of species in a constant groundwater flow, the facility to model migration of species through a series of media with different transport properties and migration in a spherical geometry which allows investigation of dilution effects. For each extension, we describe the alterations in the transport part of the code and consider how the model is set up. An example of a problem using the different versions is given. (author)

  5. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

    Science.gov (United States)

    Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc

    2016-11-01

    In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We

  6. Unconventional Constraints on Nitrogen Chemistry using DC3 Observations and Trajectory-based Chemical Modeling

    Science.gov (United States)

    Shu, Q.; Henderson, B. H.

    2017-12-01

    Chemical transport models underestimate nitrogen dioxide observations in the upper troposphere (UT). Previous research in the UT succeeded in combining model predictions with field campaign measurements to demonstrate that the nitric acid formation rate (HO + NO2 → HNO3 (R1)) is overestimated by 22% (Henderson et al., 2012). A subsequent publication (Seltzer et al., 2015) demonstrated that single chemical constraint alters ozone and aerosol formation/composition. This work attempts to replicate previous chemical constraints with newer observations and a different modeling framework. We apply the previously successful constraint framework to Deep Convection Clouds and Chemistry (DC3). DC3 is a more recent field campaign where simulated nitrogen imbalances still exist. Freshly convected air parcels, identified in the DC3 dataset, as initial coordinates to initiate Lagrangian trajectories. Along each trajectory, we simulate the air parcel chemical state. Samples along the trajectories will form ensembles that represent possible realizations of UT air parcels. We then apply Bayesian inference to constrain nitrogen chemistry and compare results to the existing literature. Our anticipated results will confirm overestimation of HNO3 formation rate in previous work and provide further constraints on other nitrogen reaction rate coefficients that affect terminal products from NOx. We will particularly focus on organic nitrate chemistry that laboratory literature has yet to fully address. The results will provide useful insights into nitrogen chemistry that affects climate and human health.

  7. The understanding of the R7T7 glass blocks long term behavior: chemical and transport coupling in fractured media; Comprehension de l'alteration a long terme des colis de verre R7T7: etude du couplage chimie transport dans un milieu fissure

    Energy Technology Data Exchange (ETDEWEB)

    Chomat, L

    2008-04-15

    The long term behavior of nuclear waste glass blocks depends highly on chemical reactions which occur at the surface in contact with water. Studies carried out on inactive fractured glass blocks show that fracture networks play a significant part in reactive surface area. Nevertheless, the complexity of results interpretation, due to a weak knowledge of fracture networks and local lixiviation conditions, does not allow us to comprehend the physical and chemical mechanisms involved. Model cracks are a key step to study chemical and transport coupling in fractured media. Crack lixiviation in aggressive conditions (pH{>=}11) show that the crack's position (horizontal or vertical) determines the dominant transport mechanism (respectively diffusion or convection induced by gravity). This gravity driven flow seems to be negligible in lower pH conditions. The convective velocity is estimated by a 1D model of reactive transport. Two other parameters are studied: the influence of thermal gradient and the influence of interconnected cracks on alteration. A strong retroactive effect of convection, due to thermal gradient, on the alteration kinetic is observed inside the crack. These works lead to a complete alteration experiment of a 163 crack network subject to a thermal gradient. The use of the geochemical software, HYTEC, within the framework of this study shows the potential of the software which is however limited by the kinetics law used. (author)

  8. The understanding of the R7T7 glass blocks long term behavior: chemical and transport coupling in fractured media; Comprehension de l'alteration a long terme des colis de verre R7T7: etude du couplage chimie transport dans un milieu fissure

    Energy Technology Data Exchange (ETDEWEB)

    Chomat, L

    2008-04-15

    The long term behavior of nuclear waste glass blocks depends highly on chemical reactions which occur at the surface in contact with water. Studies carried out on inactive fractured glass blocks show that fracture networks play a significant part in reactive surface area. Nevertheless, the complexity of results interpretation, due to a weak knowledge of fracture networks and local lixiviation conditions, does not allow us to comprehend the physical and chemical mechanisms involved. Model cracks are a key step to study chemical and transport coupling in fractured media. Crack lixiviation in aggressive conditions (pH{>=}11) show that the crack's position (horizontal or vertical) determines the dominant transport mechanism (respectively diffusion or convection induced by gravity). This gravity driven flow seems to be negligible in lower pH conditions. The convective velocity is estimated by a 1D model of reactive transport. Two other parameters are studied: the influence of thermal gradient and the influence of interconnected cracks on alteration. A strong retroactive effect of convection, due to thermal gradient, on the alteration kinetic is observed inside the crack. These works lead to a complete alteration experiment of a 163 crack network subject to a thermal gradient. The use of the geochemical software, HYTEC, within the framework of this study shows the potential of the software which is however limited by the kinetics law used. (author)

  9. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  10. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.

    Science.gov (United States)

    Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung

    2018-01-01

    The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  11. Uncertainty associated with selected environmental transport models

    International Nuclear Information System (INIS)

    Little, C.A.; Miller, C.W.

    1979-11-01

    A description is given of the capabilities of several models to predict accurately either pollutant concentrations in environmental media or radiological dose to human organs. The models are discussed in three sections: aquatic or surface water transport models, atmospheric transport models, and terrestrial and aquatic food chain models. Using data published primarily by model users, model predictions are compared to observations. This procedure is infeasible for food chain models and, therefore, the uncertainty embodied in the models input parameters, rather than the model output, is estimated. Aquatic transport models are divided into one-dimensional, longitudinal-vertical, and longitudinal-horizontal models. Several conclusions were made about the ability of the Gaussian plume atmospheric dispersion model to predict accurately downwind air concentrations from releases under several sets of conditions. It is concluded that no validation study has been conducted to test the predictions of either aquatic or terrestrial food chain models. Using the aquatic pathway from water to fish to an adult for 137 Cs as an example, a 95% one-tailed confidence limit interval for the predicted exposure is calculated by examining the distributions of the input parameters. Such an interval is found to be 16 times the value of the median exposure. A similar one-tailed limit for the air-grass-cow-milk-thyroid for 131 I and infants was 5.6 times the median dose. Of the three model types discussed in this report,the aquatic transport models appear to do the best job of predicting observed concentrations. However, this conclusion is based on many fewer aquatic validation data than were availaable for atmospheric model validation

  12. MODIFIED N.R.C. VERSION OF THE U.S.G.S. SOLUTE TRANSPORT MODEL. VOLUME 2. INTERACTIVE PREPROCESSOR PROGRAM

    Science.gov (United States)

    The methods described in the report can be used with the modified N.R.C. version of the U.S.G.S. Solute Transport Model to predict the concentration of chemical parameters in a contaminant plume. The two volume report contains program documentation and user's manual. The program ...

  13. Some issues in two-dimensional modeling of tritium transport

    International Nuclear Information System (INIS)

    Tam, S.W.

    1991-01-01

    Among the major processes leading to tritium transport through Li ceramic breeders the percolation of gaseous tritium species through the connected porosity remains the lest amenable to a satisfactory treatment. The combination of diffusion and reaction through the convoluted transport pathways prescribed by the system of pores poses a formidable challenge. The key issue is to make the fundamental connection between the tortuousity of the medium with the transport processes in terms of only basic parameters that are amenable to fundamental understanding and experimental determinations. This fundamental challenges is met within the following approaches. The technique that we have employed is a random network percolation model. Local transport in each individual pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the medium is accounted for via Monte Carlo methods. In this way the approach requires as inputs only physical-chemical parameters that are amenable to clear basic understanding and experimental determination. In the sense it provides predictive capability. The approach has been applied to an analysis of the concept of tritium residence time which is associated with the first passage time, a direct output of our analysis. In the next stage of our work the tool that we have developed would be employed to investigate the issues of vary large networks, realistic microstructural information and the effect of varying pressure gradient along the purge channels. We have demonstrated that the approach that has been adopted can be utilized to analyze in a very illuminating way the underlying issues of the concept of residence time. We believe that the present approach is ideally suited to tackle these very important yet difficult issues

  14. Peristaltic transport and mixing of cytosol through the whole body of Physarum plasmodium.

    Science.gov (United States)

    Iima, Makoto; Nakagaki, Toshiyuki

    2012-09-01

    We study how the net transport and mixing of chemicals occur in a relatively large amoeba, the true slime mold Physarum polycephalum. The shuttle streaming of the amoeba is characterized by a rhythmic flow of the order of 1 μm/s in which the protoplasm streams back and forth. To explain the experimentally observed transport of chemicals, we formulate a simplified model to consider the mechanism by which net transport can be induced by shuttle (or periodic) motion inside the amoeba. This model is independent from the details of fluid property as it is based on the mass conservation law only. Even in such a simplified model, we demonstrate that sectional oscillations play an important role in net transport and discuss the effects of the sectional boundary motion on net transport in the microorganism.

  15. Reactive transport modeling of interaction processes between clay stone and cement

    International Nuclear Information System (INIS)

    Windt, L. de; van der Lee, J.; Pellegrini, D.

    2001-01-01

    The disposal of radioactive wastes in clayey formations may require the use of large amounts of concrete and cement. The chemical interactions between these industrial materials and the host rock are modeled with the reactive transport code HYTEC for time scales and a geometry representative of disposal projects. The pH evolution, a key parameter in element mobility, is studied more specifically. It depends on several interdependent processes: i) diffusion of highly alkaline cement pore solution, ii) strong buffering related to important mineral transformations both in the cement and in the clay, and iii) cation exchange processes, beyond the zone of intense mineral transformations. In addition, precipitation of secondary minerals may lead to a partial or complete clogging of the pore space, almost stopping the propagation of the high pH plume. In a second step, preliminary results on the migration of strontium and uranium in these strongly coupled systems are presented as an example of transport parameter derivation. (authors)

  16. Constraining a compositional flow model with flow-chemical data using an ensemble-based Kalman filter

    KAUST Repository

    Gharamti, M. E.; Kadoura, A.; Valstar, J.; Sun, S.; Hoteit, Ibrahim

    2014-01-01

    Isothermal compositional flow models require coupling transient compressible flows and advective transport systems of various chemical species in subsurface porous media. Building such numerical models is quite challenging and may be subject to many sources of uncertainties because of possible incomplete representation of some geological parameters that characterize the system's processes. Advanced data assimilation methods, such as the ensemble Kalman filter (EnKF), can be used to calibrate these models by incorporating available data. In this work, we consider the problem of estimating reservoir permeability using information about phase pressure as well as the chemical properties of fluid components. We carry out state-parameter estimation experiments using joint and dual updating schemes in the context of the EnKF with a two-dimensional single-phase compositional flow model (CFM). Quantitative and statistical analyses are performed to evaluate and compare the performance of the assimilation schemes. Our results indicate that including chemical composition data significantly enhances the accuracy of the permeability estimates. In addition, composition data provide more information to estimate system states and parameters than do standard pressure data. The dual state-parameter estimation scheme provides about 10% more accurate permeability estimates on average than the joint scheme when implemented with the same ensemble members, at the cost of twice more forward model integrations. At similar computational cost, the dual approach becomes only beneficial after using large enough ensembles.

  17. Constraining a compositional flow model with flow-chemical data using an ensemble-based Kalman filter

    KAUST Repository

    Gharamti, M. E.

    2014-03-01

    Isothermal compositional flow models require coupling transient compressible flows and advective transport systems of various chemical species in subsurface porous media. Building such numerical models is quite challenging and may be subject to many sources of uncertainties because of possible incomplete representation of some geological parameters that characterize the system\\'s processes. Advanced data assimilation methods, such as the ensemble Kalman filter (EnKF), can be used to calibrate these models by incorporating available data. In this work, we consider the problem of estimating reservoir permeability using information about phase pressure as well as the chemical properties of fluid components. We carry out state-parameter estimation experiments using joint and dual updating schemes in the context of the EnKF with a two-dimensional single-phase compositional flow model (CFM). Quantitative and statistical analyses are performed to evaluate and compare the performance of the assimilation schemes. Our results indicate that including chemical composition data significantly enhances the accuracy of the permeability estimates. In addition, composition data provide more information to estimate system states and parameters than do standard pressure data. The dual state-parameter estimation scheme provides about 10% more accurate permeability estimates on average than the joint scheme when implemented with the same ensemble members, at the cost of twice more forward model integrations. At similar computational cost, the dual approach becomes only beneficial after using large enough ensembles.

  18. Biochemical transport modeling, estimation, and detection in realistic environments

    Science.gov (United States)

    Ortner, Mathias; Nehorai, Arye

    2006-05-01

    Early detection and estimation of the spread of a biochemical contaminant are major issues for homeland security applications. We present an integrated approach combining the measurements given by an array of biochemical sensors with a physical model of the dispersion and statistical analysis to solve these problems and provide system performance measures. We approximate the dispersion model of the contaminant in a realistic environment through numerical simulations of reflected stochastic diffusions describing the microscopic transport phenomena due to wind and chemical diffusion using the Feynman-Kac formula. We consider arbitrary complex geometries and account for wind turbulence. Localizing the dispersive sources is useful for decontamination purposes and estimation of the cloud evolution. To solve the associated inverse problem, we propose a Bayesian framework based on a random field that is particularly powerful for localizing multiple sources with small amounts of measurements. We also develop a sequential detector using the numerical transport model we propose. Sequential detection allows on-line analysis and detecting wether a change has occurred. We first focus on the formulation of a suitable sequential detector that overcomes the presence of unknown parameters (e.g. release time, intensity and location). We compute a bound on the expected delay before false detection in order to decide the threshold of the test. For a fixed false-alarm rate, we obtain the detection probability of a substance release as a function of its location and initial concentration. Numerical examples are presented for two real-world scenarios: an urban area and an indoor ventilation duct.

  19. Modeling and analysis of transport in the mammary glands

    International Nuclear Information System (INIS)

    Quezada, Ana; Vafai, Kambiz

    2014-01-01

    The transport of three toxins moving from the blood stream into the ducts of the mammary glands is analyzed in this work. The model predictions are compared with experimental data from the literature. The utility of the model lies in its potential to improve our understanding of toxin transport as a pre-disposing factor to breast cancer. This work is based on a multi-layer transport model to analyze the toxins present in the breast milk. The breast milk in comparison with other sampling strategies allows us to understand the mass transport of toxins once inside the bloodstream of breastfeeding women. The multi-layer model presented describes the transport of caffeine, DDT and cimetidine. The analysis performed takes into account the unique transport mechanisms for each of the toxins. Our model predicts the movement of toxins and/or drugs within the mammary glands as well as their bioaccumulation in the tissues. (paper)

  20. Evaluating the Credibility of Transport Processes in Simulations of Ozone Recovery using the Global Modeling Initiative Three-dimensional Model

    Science.gov (United States)

    Strahan, Susan E.; Douglass, Anne R.

    2004-01-01

    The Global Modeling Initiative (GMI) has integrated two 36-year simulations of an ozone recovery scenario with an offline chemistry and tra nsport model using two different meteorological inputs. Physically ba sed diagnostics, derived from satellite and aircraft data sets, are d escribed and then used to evaluate the realism of temperature and transport processes in the simulations. Processes evaluated include barri er formation in the subtropics and polar regions, and extratropical w ave-driven transport. Some diagnostics are especially relevant to sim ulation of lower stratospheric ozone, but most are applicable to any stratospheric simulation. The global temperature evaluation, which is relevant to gas phase chemical reactions, showed that both sets of me teorological fields have near climatological values at all latitudes and seasons at 30 hPa and below. Both simulations showed weakness in upper stratospheric wave driving. The simulation using input from a g eneral circulation model (GMI(GCM)) showed a very good residual circulation in the tropics and Northern Hemisphere. The simulation with inp ut from a data assimilation system (GMI(DAS)) performed better in the midlatitudes than it did at high latitudes. Neither simulation forms a realistic barrier at the vortex edge, leading to uncertainty in the fate of ozone-depleted vortex air. Overall, tracer transport in the offline GML(GCM) has greater fidelity throughout the stratosphere tha n it does in the GMI(DAS)

  1. Modeling Fate and Transport of Rotavirus in Surface Flow by Integrating WEPP and a Pathogen Transport Model

    Science.gov (United States)

    Bhattarai, R.; Kalita, P. K.; Davidson, P. C.; Kuhlenschmidt, M. S.

    2012-12-01

    More than 3.5 million people die each year from a water related diseases in this world. Every 20 seconds, a child dies from a water-related illness. Even in a developed country like the United States, there have been at least 1870 outbreaks associated with drinking water during the period of 1920 to 2002, causing 883,806 illnesses. Most of these outbreaks are resulted due to the presence of microbial pathogens in drinking water. Rotavirus infection has been recognized as the most common cause of diarrhea in young children throughout the world. Laboratory experiments conducted at the University of Illinois have demonstrated that recovery of rotavirus has been significantly affected by climatic and soil-surface conditions like slope, soil types, and ground cover. The objective of this study is to simulate the fate and transport of Rotavirus in overland and near-surface flow using a process-based model. In order to capture the dynamics of sediment-bound pathogens, the Water Erosion Prediction Project (WEPP) is coupled with the pathogen transport model. Transport of pathogens in overland flow can be simulated mathematically by including terms for the concentration of the pathogens in the liquid phase (in suspension or free-floating) and the solid phase (adsorbed to the fine solid particles like clay and silt). Advection, adsorption, and decay processes are considered. The mass balance equations are solved using numerical technique to predict spatial and temporal changes in pathogen concentrations in two phases. Outputs from WEPP simulations (flow velocity, depth, saturated conductivity and the soil particle fraction exiting in flow) are transferred as input for the pathogen transport model. Three soil types and three different surface cover conditions have been used in the experimental investigations. Results from these conditions have been used in calibrating and validating the simulation results. Bare surface conditions have produced very good agreement between

  2. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  3. The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hari Selvi Viswanathan

    1999-01-01

    Yucca Mountain, Nevada has been chosen as a possible site for the first high level radioactive waste repository in the United States. As part of the site investigation studies, we need to make scientifically rigorous estimations of radionuclide migration in the event of a repository breach. Performance assessment models used to make these estimations are computationally intensive. We have developed two reactive transport modeling techniques to simulate radionuclide transport at Yucca Mountain: (1) the selective coupling approach applied to the convection-dispersion-reaction (CDR) model and (2) a reactive stream tube approach (RST). These models were designed to capture the important processes that influence radionuclide migration while being computationally efficient. The conventional method of modeling reactive transport models is to solve a coupled set of multi-dimensional partial differential equations for the relevant chemical components in the system. We have developed an iterative solution technique, denoted the selective coupling method, that represents a versatile alternative to traditional uncoupled iterative techniques and the filly coupled global implicit method. We show that selective coupling results in computational and memory savings relative to these approaches. We develop RST as an alternative to the CDR method for solving large two- or three-dimensional reactive transport simulations for cases in which one is interested in predicting the flux across a specific control plane. In the RST method, the multidimensional problem is reduced to a series of one-dimensional transport simulations along streamlines. The key assumption with RST is that mixing at the control plane approximates the transverse dispersion between streamlines. We compare the CDR and RST approaches for several scenarios that are relevant to the Yucca Mountain Project. For example, we apply the CDR and RST approaches to model an ongoing field experiment called the Unsaturated Zone

  4. Analytical and numerical models of transport in porous cementitious materials

    International Nuclear Information System (INIS)

    Garboczi, E.J.; Bentz, D.P.

    1990-01-01

    Most chemical and physical processes that degrade cementitious materials are dependent on an external source of either water or ions or both. Understanding the rates of these processes at the microstructural level is necessary in order to develop a sound scientific basis for the prediction and control of the service life of cement-based materials, especially for radioactive-waste containment materials that are required to have service lives on the order of hundreds of years. An important step in developing this knowledge is to understand how transport coefficients, such as diffusivity and permeability, depend on the pore structure. Fluid flow under applied pressure gradients and ionic diffusion under applied concentration gradients are important transport mechanisms that take place in the pore space of cementitious materials. This paper describes: (1) a new analytical percolation-theory-based equation for calculating the permeability of porous materials, (2) new computational methods for computing effective diffusivities of microstructural models or digitized images of actual porous materials, and (3) a new digitized-image mercury intrusion simulation technique

  5. Mineral-leaching chemical transport with runoff and sediment from severely eroded rare-earth tailings in southern China

    Science.gov (United States)

    Lu, Huizhong; Cao, Longxi; Liang, Yin; Yuan, Jiuqin; Zhu, Yayun; Wang, Yi; Gu, Yalan; Zhao, Qiguo

    2017-08-01

    Rare-earth mining has led to severe soil erosion in southern China. Furthermore, the presence of the mineral-leaching chemical ammonium sulfate in runoff and sediment poses a serious environmental threat to downstream water bodies. In this paper, the characteristics of mineral-leaching chemicals in surface soil samples collected in the field were studied. In addition, NH4+ and SO42- transport via soil erosion was monitored using runoff and sediment samples collected during natural rainfall processes. The results demonstrated that the NH4+ contents in the surface sediment deposits increased from the top of the heap (6.56 mg kg-1) to the gully (8.23 mg kg-1) and outside the tailing heap (13.03 mg kg-1). The contents of SO42- in the different locations of the tailing heaps ranged from 27.71 to 40.33 mg kg-1. During typical rainfall events, the absorbed NH4+ concentrations (2.05, 1.26 mg L-1) in runoff were significantly higher than the dissolved concentrations (0.93, 1.04 mg L-1), while the absorbed SO42- concentrations (2.87, 1.92 mg L-1) were significantly lower than the dissolved concentrations (6.55, 7.51 mg L-1). The dissolved NH4+ and SO42- concentrations in runoff displayed an exponentially decreasing tendency with increasing transport distance (Y = 1. 02 ṡ exp( - 0. 00312X); Y = 3. 34 ṡ exp( - 0. 0185X)). No clear trend with increasing distance was observed for the absorbed NH4+ and SO42- contents in transported sediment. The NH4+ and SO42- contents had positive correlations with the silt and clay ratio in transported sediment but negative correlations with the sand ratio. These results provide a better understanding of the transport processes and can be used to develop equations to predict the transport of mineral-leaching chemicals in rare-earth tailings, which can provide a scientific foundation for erosion control and soil management in rare-earth tailing regions in southern China.

  6. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems

    Directory of Open Access Journals (Sweden)

    M. De Lucia

    2015-02-01

    Full Text Available Fully coupled, multi-phase reactive transport simulations of CO2 storage systems can be approximated by a simplified one-way coupling of hydrodynamics and reactive chemistry. The main characteristics of such systems, and hypotheses underlying the proposed alternative coupling, are (i that the presence of CO2 is the only driving force for chemical reactions and (ii that its migration in the reservoir is only marginally affected by immobilisation due to chemical reactions. In the simplified coupling, the exposure time to CO2 of each element of the hydrodynamic grid is estimated by non-reactive simulations and the reaction path of one single batch geochemical model is applied to each grid element during its exposure time. In heterogeneous settings, analytical scaling relationships provide the dependency of velocity and amount of reactions to porosity and gas saturation. The analysis of TOUGHREACT fully coupled reactive transport simulations of CO2 injection in saline aquifer, inspired to the Ketzin pilot site (Germany, both in homogeneous and heterogeneous settings, confirms that the reaction paths predicted by fully coupled simulations in every element of the grid show a high degree of self-similarity. A threshold value for the minimum concentration of dissolved CO2 considered chemically active is shown to mitigate the effects of the discrepancy between dissolved CO2 migration in non-reactive and fully coupled simulations. In real life, the optimal threshold value is unknown and has to be estimated, e.g. by means of 1-D or 2-D simulations, resulting in an uncertainty ultimately due to the process de-coupling. However, such uncertainty is more than acceptable given that the alternative coupling enables using grids of the order of millions of elements, profiting from much better description of heterogeneous reservoirs at a fraction of the calculation time of fully coupled models.

  7. Fate modelling of chemical compounds with incomplete data sets

    DEFF Research Database (Denmark)

    Birkved, Morten; Heijungs, Reinout

    2011-01-01

    Impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. These data are used in multi-media fate and exposure models, to calculate risk levels...... in an approximate way. The idea is that not all data needed in a multi-media fate and exposure model are completely independent and equally important, but that there are physical-chemical and biological relationships between sets of chemical properties. A statistical model is constructed to underpin this assumption...... and other indicators. ERA typically addresses one specific chemical, but in an LCIA, the number of chemicals encountered may be quite high, up to hundreds or thousands. This study explores the development of meta-models, which are supposed to reflect the “true”multi-media fate and exposure model...

  8. CASCADER: An M-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Cawlfield, D.E.; Emer, D.F.; Lindstrom, F.T.; Shott, G.J.

    1993-09-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and/or dispersion. Additionally during the transport of parent and daughter radionuclides in soil, radionuclide decay may occur. This version of CASCADER called CASCADR9 starts with the concepts presented in volumes one and three of this series. For a proper understanding of how the model works, the reader should read volume one first. Also presented in this volume is a set of realistic scenarios for buried sources of radon gas, and the input and output file structure for CASCADER9

  9. CASCADER: An m-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Cawlfield, D.E.; Been, K.B.; Emer, D.F.; Lindstrom, F.T.; Shott, G.J.

    1993-06-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and/or diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. This is volume two to the CASCADER series, titled CASCADR8. It embodies the concepts presented in volume one of this series. To properly understand how the CASCADR8 model works, the reader should read volume one first. This volume presents the input and output file structure for CASCADR8, and a set of realistic scenarios for buried sources of radon gas

  10. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  11. Impact of Transport Zone Number in Simulation Models on Cost-Benefit Analysis Results in Transport Investments

    Science.gov (United States)

    Chmielewski, Jacek

    2017-10-01

    Nowadays, feasibility studies need to be prepared for all planned transport investments, mainly those co-financed with UE grants. One of the fundamental aspect of feasibility study is the economic justification of an investment, evaluated in an area of so called cost-benefit analysis (CBA). The main goal of CBA calculation is to prove that a transport investment is really important for the society and should be implemented as economically efficient one. It can be said that the number of hours (PH - passengers hours) in trips and travelled kilometres (PK - passengers kilometres) are the most important for CBA results. The differences between PH and PK calculated for particular investment scenarios are the base for benefits calculation. Typically, transport simulation models are the best source for such data. Transport simulation models are one of the most powerful tools for transport network planning. They make it possible to evaluate forecast traffic volume and passenger flows in a public transport system for defined scenarios of transport and area development. There are many different transport models. Their construction is often similar, and they mainly differ in the level of their accuracy. Even models for the same area may differ in this matter. Typically, such differences come from the accuracy of supply side representation: road and public transport network representation. In many cases only main roads and a public transport network are represented, while local and service roads are eliminated as a way of reality simplification. This also enables a faster and more effective calculation process. On the other hand, the description of demand part of these models based on transport zones is often stable. Difficulties with data collection, mainly data on land use, resulted in the lack of changes in the analysed land division into so called transport zones. In this paper the author presents an influence of land division on the results of traffic analyses, and hence

  12. Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: the Lagrangian approach.

    Science.gov (United States)

    Soltanian, Mohamad Reza; Ritzi, Robert W; Dai, Zhenxue; Huang, Chao Cheng

    2015-03-01

    Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact of changing the mean, variance, and integral scale of K and Kd on reactive solute dispersion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Transport and modeling of estrogenic hormones in a dairy farm effluent through undisturbed soil lysimeters.

    Science.gov (United States)

    Steiner, Laure D; Bidwell, Vincent J; Di, Hong J; Cameron, Keith C; Northcott, Grant L

    2010-04-01

    The presence of endocrine-disrupting chemicals, including estrone (E1) and 17beta-estradiol (E2), in surface waters has been associated with physiological dysfunction in a number of aquatic organisms. One source of surface and groundwater contamination with E1 and E2 is the land application of animal wastes. The processes involved in the transport of these hormones in the soil, when applied with animal wastes, are still unclear. Therefore, a field-transport experiment was carried out, where a dairy farm effluent spiked with E1 and E2 was applied on large (50 cm diameter and 70 cm depth) undisturbed soil lysimeters. The concentrations of E1 and E2 in the leachate were monitored over a 3-month period, during which irrigation was applied. The experimental data suggest that E1 and E2 were transported through preferential/macropore flow pathways. The data from the experiment also show that E1 and E2 are leached earlier than the inert tracer (bromide). This observation can be explained either by the presence of antecedent concentrations in the soil or by an enhanced transport of E1 and E2 through the soil. A state-space mixing-cell model was further developed in order to describe the transport of E1 and E2 by three transport processes in parallel. The inverse modeling of the leaching data did not support the hypothesis that antecedent concentrations of estrogens could be responsible for the observed breakthrough curves but confirmed that estrogens were transported mainly via preferential/macropore flow and also via an enhanced transport. The parameter values that characterized this enhanced transport strongly suggest that this enhanced transport is mediated by colloids. For the first time, the simultaneous transport of E1 and E2 was modeled under transient conditions, taking into account the advection-dispersion, preferential/macropore flow, and colloidal-enhanced transport processes as well as E1 and E2 dissipation in the soil. These findings have major implications in

  14. Network transportation model with capacity restrictions for the Bolivia Brazil gas pipeline influence area; Modelo de transporte em rede com restricoes de capacidade para a area de influencia do Gasoduto Bolivia Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Patricia Mannarino; Carpio, Lucio Guido Tapia [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Planejamento Energetico

    2004-07-01

    We present the application of a network transportation model, with capacity restrictions, to determine the minimal cost of supply of a group of markets at the Bolivia Brazil Gas Pipeline influence area, as a function of city gate price. We consider the potential of integration of pipeline transportation at the South Cone, looking forward to supply the Brazilian market. The city gate price consists of the sum of commodity price plus transportation tariffs over every gas pipeline through which the gas passes (except distribution pipelines). There is no distinction related to product quality (e.g. heating value) among suppliers, or among end uses (thermal, thermoelectric or chemical). The model is numerically solved by linear programming. Flow direction alternatives and transportation tariffs alternatives (postal and by zone) are proposed. The model allows, among other applications: identification of the lowest cost supply strategy, identification of network flow capacity bottlenecks, determination of operation and expansion marginal costs using dual solution analysis, investigation of alternative sceneries through sensibility analysis and appreciation of non-optimal solutions that might be attractive. (author)

  15. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update

    Directory of Open Access Journals (Sweden)

    Yangmin X. Kim

    2018-02-01

    Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  16. Commercial Consolidation Model Applied to Transport Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme de Aragão, J.J.; Santos Fontes Pereira, L. dos; Yamashita, Y.

    2016-07-01

    Since the 1990s, transport concessions, including public-private partnerships (PPPs), have been increasingly adopted by governments as an alternative for financing and operations in public investments, especially in transport infrastructure. The advantage pointed out by proponents of these models lies in merging the expertise and capital of the private sector to the public interest. Several arrangements are possible and have been employed in different cases. After the duration of the first PPP contracts in transportation, many authors have analyzed the success and failure factors of partnerships. The occurrence of failures in some stages of the process can greatly encumber the public administration, incurring losses to the fiscal responsibility of the competent bodies. This article aims to propose a new commercial consolidation model applied to transport infrastructure to ensure fiscal sustainability and overcome the weaknesses of current models. Initially, a systematic review of the literature covering studies on transport concessions between 1990 and 2015 is offered, where the different approaches between various countries are compared and the critical success factors indicated in the studies are identified. In the subsequent part of the paper, an approach for the commercial consolidation of the infrastructure concessions is presented, where the concessionary is paid following a finalistic performance model, which includes the overall fiscal balance of regional growth. Finally, the papers analyses the usefulness of the model in coping with the critical success factors explained before. (Author)

  17. Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008

    Directory of Open Access Journals (Sweden)

    J. Schmale

    2011-10-01

    Full Text Available We deployed an aerosol mass spectrometer during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport summer campaign in Greenland in June/July 2008 on the research aircraft ATR-42. Online size resolved chemical composition data of submicron aerosol were collected up to 7.6 km altitude in the region 60 to 71° N and 40 to 60° W. Biomass burning (BB and fossil fuel combustion (FF plumes originating from North America, Asia, Siberia and Europe were sampled. Transport pathways of detected plumes included advection below 700 hPa, air mass uplifting in warm conveyor belts, and high altitude transport in the upper troposphere. By means of the Lagrangian particle dispersion model FLEXPART, trace gas analysis of O3 and CO, particle size distributions and aerosol chemical composition 48 pollution events were identified and classified into five chemically distinct categories. Aerosol from North American BB consisted of 22% particulate sulphate, while with increasing anthropogenic and Asian influence aerosol in Asian FF dominated plumes was composed of up to 37% sulphate category mean value. Overall, it was found that the organic matter fraction was larger (85% in pollution plumes than for background conditions (71%. Despite different source regions and emission types the particle oxygen to carbon ratio of all plume classes was around 1 indicating low-volatility highly oxygenated aerosol. The volume size distribution of out-of-plume aerosol showed markedly smaller modes than all other distributions with two Aitken mode diameters of 24 and 43 nm and a geometric standard deviation σg of 1.12 and 1.22, respectively, while another very broad mode was found at 490 nm (σg = 2.35. Nearly pure BB particles from North America exhibited an Aitken mode at 66 nm (σg = 1.46 and an accumulation mode diameter of 392 nm (σg = 1

  18. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    Directory of Open Access Journals (Sweden)

    H. Riede

    2009-12-01

    Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.

    The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto

  19. Coupled Transport Phenomena in the Opalinus Clay: Implications for Radionuclide Transport

    International Nuclear Information System (INIS)

    Soler, J.M.

    1999-09-01

    Coupled phenomena (thermal and chemical osmosis, hyperfiltration, coupled diffusion, thermal diffusion, thermal filtration, Dufour effect) may play an important role in fluid, solute and heat transport in clay-rich formations, such as the Opalinus Clay (OPA), which are being considered as potential hosts for radioactive waste repositories. In this study, the potential effects of coupled phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), have been addressed. Firstly, estimates of the solute fluxes associated with chemical osmosis, hyperfiltration, thermal diffusion and thermal osmosis have been calculated. Available experimental data concerning coupled transport phenomena in compacted clays, and the hydrogeological and geochemical conditions to which the Opalinus Clay is subject, have been used for these estimates. These estimates suggest that thermal osmosis is the only coupled transport mechanism that could have a strong impact on solute and fluid transport in the vicinity of the repository. Secondly, estimates of the heat fluxes associated with thermal filtration and the Dufour effect in the vicinity of the repository have been calculated. The calculated heat fluxes are absolutely negligible compared to the heat flux caused by thermal conduction. As a further step to obtain additional insight into the effects of coupled phenomena on solute transport, the solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows again that thermal osmosis is the only coupled transport mechanism that could have a strong effect on repository

  20. Coupled Transport Phenomena in the Opalinus Clay: Implications for Radionuclide Transport

    Energy Technology Data Exchange (ETDEWEB)

    Soler, J.M.

    1999-09-01

    Coupled phenomena (thermal and chemical osmosis, hyperfiltration, coupled diffusion, thermal diffusion, thermal filtration, Dufour effect) may play an important role in fluid, solute and heat transport in clay-rich formations, such as the Opalinus Clay (OPA), which are being considered as potential hosts for radioactive waste repositories. In this study, the potential effects of coupled phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), have been addressed. Firstly, estimates of the solute fluxes associated with chemical osmosis, hyperfiltration, thermal diffusion and thermal osmosis have been calculated. Available experimental data concerning coupled transport phenomena in compacted clays, and the hydrogeological and geochemical conditions to which the Opalinus Clay is subject, have been used for these estimates. These estimates suggest that thermal osmosis is the only coupled transport mechanism that could have a strong impact on solute and fluid transport in the vicinity of the repository. Secondly, estimates of the heat fluxes associated with thermal filtration and the Dufour effect in the vicinity of the repository have been calculated. The calculated heat fluxes are absolutely negligible compared to the heat flux caused by thermal conduction. As a further step to obtain additional insight into the effects of coupled phenomena on solute transport, the solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows again that thermal osmosis is the only coupled transport mechanism that could have a strong effect on repository