20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)
Gabadadze, Gregory
2008-01-01
We consider Bose-Einstein condensation of massive electrically charged scalars in a uniform background of charged fermions. We focus on the case when the scalar condensate screens the background charge, while the net charge of the system resides on its boundary surface. A distinctive signature of this substance is that the photon acquires a Lorentz-violating mass in the bulk of the condensate. Due to this mass, the transverse and longitudinal gauge modes propagate with different group velocities. We give qualitative arguments that at high enough densities and low temperatures a charged system of electrons and helium-4 nuclei, if held together by laboratory devices or by force of gravity, can form such a substance. We briefly discuss possible manifestations of the charged condensate in compact astrophysical objects.
Charge independence and charge symmetry
Miller, G A; Miller, Gerald A; van Oers, Willem T H
1994-01-01
Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed.
Charge independence and charge symmetry
Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs
Albrecht, J; Babu, K; Bernstein, R H; Blum, T; Brown, D N; Casey, B C K; Cheng, C -h; Cirigliano, V; Cohen, A; Deshpande, A; Dukes, E C; Echenard, B; Gaponenko, A; Glenzinski, D; Gonzalez-Alonso, M; Grancagnolo, F; Grossman, Y; Harnik, R; Hitlin, D G; Kiburg, B; Knoepfe, K; Kumar, K; Lim, G; Lu, Z -T; McKeen, D; Miller, J P; Ramsey-Musolf, M; Ray, R; Roberts, B L; Rominsky, M; Semertzidis, Y; Stoeckinger, D; Talman, R; Van De Water, R; Winter, P
2013-01-01
This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.
Semanti Chakraborty
2012-01-01
Full Text Available We present here a case of 17-year-old boy from Kolkata presenting with obesity, bilateral gynecomastia, mental retardation, and hypogonadotrophic hypogonadism. The patient weighed 70 kg and was of 153 cm height. Facial asymmetry (unilateral facial palsy, gynecomastia, decreased pubic and axillary hair, small penis, decreased right testicular volume, non-palpable left testis, and right-sided congenital inguinal hernia was present. The patient also had disc coloboma, convergent squint, microcornea, microphthalmia, pseudohypertelorism, low set ears, short neck, and choanalatresia. He had h/o VSD repaired with patch. Laboratory examination revealed haemoglobin 9.9 mg/dl, urea 24 mg/dl, creatinine 0.68 mg/dl. IGF1 77.80 ng/ml (decreased for age, GH <0.05 ng/ml, testosterone 0.25 ng/ml, FSH-0.95 ΅IU/ml, LH 0.60 ΅IU/ml. ACTH, 8:00 A.M cortisol, FT3, FT4, TSH, estradiol, DHEA-S, lipid profile, and LFT was within normal limits. Prolactin was elevated at 38.50 ng/ml. The patient′s karyotype was 46XY. Echocardiography revealed ventricularseptal defect closed with patch, grade 1 aortic regurgitation, and ejection fraction 67%. Ultrasound testis showed small right testis within scrotal sac and undescended left testis within left inguinal canal. CT scan paranasal sinuses revealed choanalatresia and deviation of nasal septum to the right. Sonomammography revealed bilateral proliferation of fibroglandular elements predominantly in subareoalar region of breasts. MRI of brain and pituitary region revealed markedly atrophic pituitary gland parenchyma with preserved infundibulum and hypothalamus and widened suprasellar cistern. The CHARGE association is an increasingly recognized non-random pattern of congenital anomalies comprising of coloboma, heart defect, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities, and/or deafness. [1] These anomalies have a higher probability of occurring together. In this report, we have
Workplace Charging. Charging Up University Campuses
Giles, Carrie [ICF International, Fairfax, VA (United States); Ryder, Carrie [ICF International, Fairfax, VA (United States); Lommele, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-03-01
This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.
Multistep Charge Method by Charge Arrays
Segami, Go; Kusawake, Hiroaki; Shimizu, Yasuhiro; Iwasa, Minoru; Kibe, Koichi
2008-09-01
We studied reduction of the size and weight of the Power Control Unit (PCU). In this study, we specifically examined the weight of the Battery Charge Regulator (BCR), which accounts for half of the PCU weight for a low earth orbit (LEO) satellite. We found a multistep charge method by charge arrays and adopted a similar method for GEO satellites, thereby enabling the BCR reduction. We found the possibility of reducing the size and weight of PCU through more detailed design than that for a conventional PCU.BCRC1R1batterySAPower Control UnitBCRC1R1batterySAPower UnitHowever, this method decreases the state of charge (SOC) of the battery. Battery tests, a battery simulator test, and numerical analysis were used to evaluate the SOC decrease. We also studied effects of this method on the battery lifetime. The multistep charge method by charge arrays enabled charging to the same level of SOC as the conventional constant current/ constant voltage (CC/CV) charge method for a LEO satellite.
Tsintsadze, Nodar L.; Tsintsadze, Levan N.
2008-01-01
A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.
Induced Charge Capacitive Deionization
Rubin, S.; Suss, M. E.; Biesheuvel, P. M.; Bercovici, M.
2016-01-01
We demonstrate the phenomenon of induced-charge capacitive deionization (ICCDI) that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electrostatic field. The external electric field induces an electric dipole in the porous particle, leading to capacitive charging of its volume by both cations and anions at opposite poles. This regime is characterized both by a large RC charging time and a small electrochemical charge relaxation time, ...
Primitive Virtual Negative Charge
Kim, Kiyoung
2008-01-01
Physical fields, such as gravity and electromagnetic field, are interpreted as results from rearrangement of vacuum particles to get the equilibrium of net charge density and net mass density in 4-dimensional complex space. Then, both fields should interact to each other in that physical interaction is considered as a field-to-field interaction. Hence, Mass-Charge interaction is introduced with primitive-virtual negative charge defined for the mass. With the concept of Mass-Charge interaction...
Anderson, Oscar A.
1978-01-01
An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.
Ferrario, M; Palumbo, L
2014-01-01
The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.
Modelling airport congestion charges
Janić, Milan
2012-01-01
This article deals with modelling congestion charges at an airport. In this context, congestion charging represents internalizing the cost of marginal delays that a flight imposes on other flights due to congestion. The modelling includes estimating congestion and flight delays, the cost of these delays and the efficiency of particular flights following the introduction ofa congestion charge. The models are applied to an airport / New York LaGuardia / to illustrate their ability to handle mor...
Higher charge periodic monopoles
Maldonado, Rafael
2013-01-01
We consider singly periodic solutions to the SU(2) Bogomolny equations and use the Nahm transform to generate a class of monopoles of charge k>2, thereby extending known results for lower charge chains. Some simple scattering processes are presented and a comparison made with geodesic motion of monopoles in $\\mathbb{R}^3$.
In this review of charged weak currents we shall concentrate on inclusive high energy neutrino physics. The plan of this review is the following: general structure of charged current; new results on total cross-section; Callan-Gross relation; antiquark distribution; scaling violations and tests of QCD. At the end we will give a very short summary on multilepton physics
Induced Charge Capacitive Deionization
Rubin, S; Biesheuvel, P M; Bercovici, M
2016-01-01
We demonstrate the phenomenon of induced-charge capacitive deionization (ICCDI) that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electrostatic field. The external electric field induces an electric dipole in the porous particle, leading to capacitive charging of its volume by both cations and anions at opposite poles. This regime is characterized both by a large RC charging time and a small electrochemical charge relaxation time, which leads to rapid and significant deionization of ionic species from a volume which is on the scale of the particle. We show by theory and experiment that the transient response around a cylindrical particle results in spatially non-uniform charging and non-steady growth of depletion regions which emerge around the particle's poles. Potentially, ICCDI can be useful in applications where fast concentration changes of ionic species are required over large volumes.
Price Based Electric Vehicle Charging
Mahat, Pukar; Handl, Martin; Kanstrup, Kenneth;
2012-01-01
paper investigates the impact on a Danish distribution system when the EV charging aims to reduce the charging cost by charging at the cheapest hours. Results show that the charging based on the price signal only will have adverse effect on the grid. The paper also proposes an alternate EV charging...
Decay of electric charge on corona charged polyethylene
This paper describes a study on the surface potential decay of corona charged low density polyethylene (LDPE) films. A conventional corona charging process is used to deposit charge on the surface of film and surface potential is measured by a compact JCI 140 static monitor. The results from corona charged multilayer sample reveal that the bulk process dominates charge decay. In addition, the pulsed-electro-acoustic (PEA) technique has been employed to monitor charge profiles in corona charged LDPE films. By using the PEA technique, we are able to monitor charge migration through the bulk. Charge profiles in corona charged multilayer sample are consistent with surface potential results. Of further significance, the charge profiles clearly demonstrate that double injection has taken place in corona charged LDPE films
Experimentally it has been known for a long time that the electric charges of the observed particles appear to be quantized. An approach to understanding electric charge quantization that can be used for gauge theories with explicit U(1) factors - such as the standard model and its variants - is pedagogically reviewed and discussed in this article. This approach used the allowed invariances of the Lagrangian and their associated anomaly cancellation equations. It is demonstrated that charge may be de-quantized in the three-generation standard model with massless neutrinos, because differences in family-lepton-numbers are anomaly-free. The relevant experimental limits are also reviewed. This approach to charge quantization suggests that the minimal standard model should be extended so that family-lepton-number differences are explicitly broken. Some candidate extensions such as the minimal standard model augmented by Majorana right-handed neutrinos are also briefly discussed. 30 refs
Primitive Virtual Negative Charge
Kim, Kiyoung
2008-01-01
Physical fields, such as gravity and electromagnetic field, are interpreted as results from rearrangement of vacuum particles to get the equilibrium of net charge density and net mass density in 4-dimensional complex space. Then, both fields should interact to each other in that physical interaction is considered as a field-to-field interaction. Hence, Mass-Charge interaction is introduced with primitive-virtual negative charge defined for the mass. With the concept of Mass-Charge interaction electric equilibrium of the earth is discussed, especially about the electric field and magnetic field of the earth. For unsettled phenomena related with the earth's gravity, such as antigravity phenomenon, gravity anomalies during the solar eclipses, the connection between geomagnetic storms and earthquakes, etc., possible explanations are discussed.
Chauvin, N
2013-01-01
First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.
Startsev V. I.; Yampolsky Ju. S.
2008-01-01
The authors consider design and circuit design techniques of reduction of the influence of the pyroelectric effect on operation of the charge sensitive amplifiers. The presented experimental results confirm the validity of the measures taken to reduce the impact of pyroelectric currents. Pyroelectric currents are caused by the influence of the temperature gradient on the piezoelectric sensor and on the output voltage of charge sensitive amplifiers.
Robinson, Paul A., Jr.
1988-01-01
Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.
Gaseous charge transfer reactions of multiply charged ions
Doubly charged ions produced in electron impact ionization have received relatively little study due to their low abundance and masking from singly charged ions which are detected at the same mass-to-charge ratio by a mass spectrometer. This interference problem was avoided by exploiting a technique in which doubly charged molecular and fragment ions are monitored using a collisional charge-exchange process where only fast singly charged product ions are allowed to reach the detector. Primary research efforts were to determine structures and energetics of multiply charged ions formed in high energy electron impact ionization processes and their reactivities in ion-molecule charge exchange interactions. Doubly charged ion mass distributions for various chemical classes (including acetylenes, alkenes, terpenes and organophosphorus compounds) were recorded and appearance energies of prominent doubly charged ions were measured. Computer molecular orbital calculations (at the MINDO/3 level) of ionic structures, energies and charge distributions were utilized to augment the analysis of experimental results
In this work a study is made for the factors affecting the production and extraction of highly charged ion beams. Discussion is made for the production of highly charged ions from: the conventional vacuum are ion sources (Pinning PIG and Duoplasmatron DP) and the recent trends type which are (Electron Beam Ion Sources EBIS, Electron Cyclotron Resonance Ion Sources ECRIS and Laser Ion source LIS). The highly charged ions with charge state +7 , O+8 ,Ne+10 , Ar+18 have been extracted from the ECRIS while fully stripped Xe+54 has been extracted from EBIS. Improving the capabilities of the conventional RF ion source to produce multiply charged ions is achieved through the use of electron injection into the plasma or with the use of RF driven ion source. The later is based on coupling the RF power to the discharge through an internal antenna in vacuum are ion source. The argon ion species extracted from these upgraded RF ion sources could reach Ar+5
After an introductory section on the relationship between emittance and beam Coulomb energy we discuss the properties of space charge dominated beams in progressive steps: from uniformly charged bunched beams to non-uniformly charged beams to correlation effects between particles (simulation beams or 'crystalline' beams). A practical application can be found in the beam dynamics of a high-current injector. The concept of correlation energy is of practical interest in computer simulation of high-brilliance beams, where one deals with an artificially enhanced two-particle Coulomb energy, if many real particles are combined into one simulation super-particle. This can be a source of non-physical emittance growth. (orig./HSI)
This document is a basic course on charged particle sources for post-graduate students and thematic schools on large facilities and accelerator physics. A simple but precise description of the creation and the emission of charged particles is presented. This course relies on every year upgraded reference documents. Following relevant topics are considered: electronic emission processes, technological and practical considerations on electron guns, positron sources, production of neutral atoms, ionization, plasma and discharge, different types of positive and negative ion sources, polarized particle sources, materials for the construction of ion sources, low energy beam production and transport. (N.T.)
Charged conformal Killing spinors
We study the twistor equation on pseudo-Riemannian Spinc-manifolds whose solutions we call charged conformal Killing spinors (CCKSs). We derive several integrability conditions for the existence of CCKS and study their relations to spinor bilinears. A construction principle for Lorentzian manifolds admitting CCKS with nontrivial charge starting from CR-geometry is presented. We obtain a partial classification result in the Lorentzian case under the additional assumption that the associated Dirac current is normal conformal and complete the classification of manifolds admitting CCKS in all dimensions and signatures ≤5 which has recently been initiated in the study of supersymmetric field theories on curved space
Charge configurations in viral proteins.
Karlin, S; Brendel, V
1988-01-01
The spatial distribution of the charged residues of a protein is of interest with respect to potential electrostatic interactions. We have examined the proteins of a large number of representative eukaryotic and prokaryotic viruses for the occurrence of significant clusters, runs, and periodic patterns of charge. Clusters and runs of positive charge are prominent in many capsid and core proteins, whereas surface (glyco)proteins frequently contain a negative charge cluster. Significant charge ...
Humphries, Stanley
2013-01-01
Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.
Charged Particle Optics Theory
Hawkes, P. W.; Lencová, Bohumila
-, č. 6 (2006), s. 6-8 Grant ostatní: EC 5RP(XE) G5RD-CT-2000-00344 Institutional research plan: CEZ:AV0Z20650511 Keywords : optics of charged particles * design of ion lithography system * spot profile * the finite element method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering www.phantomsnet.net
Stability of charged membranes
Bensimon, D; David, F.; Leibler, S.; Pumir, A.
1990-01-01
The electrostatic contribution to the bending elastic modulus of charged phospholipid bilayers in an ionic solution is computed. It is found to be the same for conducting and non-conducting membranes and is always stabilizing. This stability for free membranes is shown to be a simple consequence of the vanishing of the physical surface tension.
Spontaneous Emission of Charged Bosons from Supercritical Point Charges
Kim, Sang Pyo
2013-01-01
We study the spontaneous emission of charged bosons from supercritical Coulomb potentials and charged black holes. We find the exact emission rate from the Bogoliubov transformation by applying the tunneling boundary condition on the Jost functions at the asymptotic boundaries. The emission rate for charged bosons in the supercritical Coulomb potential increases as the charge $Z\\alpha > 1/2$ of the superatom and the energy of the bosons increase but is suppressed for large angular momenta. We discuss physical implications of the emission of charged bosons from superatoms and charged black holes.
Decay of electric charge on corona charged polyethylene
In this paper, the surface potential decay of corona-charged low density polyethylene (LDPE) films has been investigated. It has been found that for the same sample thickness the faster decay occurs in the sample with a higher charging voltage. For the same charging voltage, the surface potential in the thinner sample shows rapid decay. Our new evidence from both the surface potential measurement on multilayer samples and space charge measurement suggests the surface potential decay is a bulk limited process. More importantly, space charge measurement indicates double injection has taken place during corona charging process.
Optimization of BEV Charging Strategy
Ji, Wei
This paper presents different approaches to optimize fast charging and workplace charging strategy of battery electric vehicle (BEV) drivers. For the fast charging analysis, a rule-based model was built to simulate BEV charging behavior. Monte Carlo analysis was performed to explore to the potential range of congestion at fast charging stations which could be more than four hours at the most crowded stations. Genetic algorithm was performed to explore the theoretical minimum waiting time at fast charging stations, and it can decrease the waiting time at the most crowded stations to be shorter than one hour. A deterministic approach was proposed as a feasible suggestion that people should consider to take fast charging when the state of charge is approaching 40 miles. This suggestion is hoped to help to minimize potential congestion at fast charging stations. For the workplace charging analysis, scenario analysis was performed to simulate temporal distribution of charging demand under different workplace charging strategies. It was found that if BEV drivers charge as much as possible and as late as possible at workplace, it could increase the utility of solar-generated electricity while relieve grid stress of extra intensive electricity demand at night caused by charging electric vehicles at home.
Charge Breeding of Radioactive Ions
Wenander, F. J. C.
2014-01-01
Charge breeding is a technique to increase the charge state of ions, in many cases radioactive ions. The singly charged radioactive ions, produced in an isotope separator on-line facility, and extracted with a low kinetic energy of some tens of keV, are injected into a charge breeder, where the charge state is increased to Q. The transformed ions are either directed towards a dedicated experiment requiring highly charged ions, or post-accelerated to higher beam energies. In this paper the phy...
Intelligent battery charging system
Everett, Hobert R., Jr.
1991-09-01
The present invention is a battery charging system that provides automatic voltage selection, short circuit protection, and delayed output to prevent arcing or pitting. A second embodiment of the invention provides a homing beacon which transmits a signal so that a battery powered mobile robot may home in on and contact the invention to charge its battery. The invention includes electric terminals isolated from one another. One terminal is grounded and the other has a voltage applied to it through a resistor connected to the output of a DC power supply. A voltage scaler is connected between the resistor and the hot terminal. An On/Off controller and a voltage mode selector sense the voltage provided at the output of the voltage scaler.
Emira, Ahmed A.
2014-10-09
Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.
Feng, Jonathan L; Tu, Huitzu; Yu, Hai-Bo
2009-01-01
We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact U(1) gauge symmetry of the hidden sector. Such candidates are predicted in simple WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many potentially disastrous implications for astrophysics: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may destroy its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ~ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially violating constraints from the Bullet Cluster and the observed morphology of galactic halos. We show that all of these constraints are satisfied and are ...
Controlling charge on levitating drops.
Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M
2007-08-01
Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation. PMID:17580951
Charge states of ions, and mechanisms of charge ordering transitions
To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2Mn+→M(n+1)+ + M(n−1)+, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed. (paper)
Mesoscopic charge quantization
Aleiner, I.L.; Glazman, L. I.
1997-01-01
We study the Coulomb blockade in a chaotic quantum dot connected to a lead by a single channel at nearly perfect transmission. We take into account quantum fluctuations of the dot charge and a finite level spacing for electron states within the dot. Mesoscopic fluctuations of thermodynamic and transport properties in the Coulomb blockade regime exist at any transmission coefficient. In contrast to the previous theories, we show that by virtue of these mesoscopic fluctuations, the Coulomb bloc...
Experimental measurements of the τ lifetime and leptonic branching ratios are combined to give updated world averages for these quantities. The results are then used to test the universality of the electroweak charged current couplings to the three lepton species and are found to be consistent with Standard Model predictions at the level of 0.2%, permitting limits to be derived on non-Standard Model physics such as the mass of the τ neutrino
Taylor, M
2006-01-01
Two charge BPS horizon free supergravity geometries are important in proposals for understanding black hole microstates. In this paper we construct a new class of geometries in the NS1-P system, corresponding to solitonic strings carrying fermionic as well as bosonic condensates. Such geometries are required to account for the full microscopic entropy of the NS1-P system. We then briefly discuss the properties of the corresponding geometries in the dual D1-D5 system.
Charging mechanisms in persistent phosphors
Smet, Philippe; Van den Eeckhout, Koen; Korthout, Katleen; Botterman, Jonas; van der Kolk, Erik; Bos, Adrie; Dorenbos, Pieter; Poelman, Dirk
2011-01-01
The development of novel persistent phosphors is currently hampered by a limited understanding of the charging mechanism. Using x-ray absorption and thermoluminescence spectroscopy we evaluate the validity of recently proposed models for the charging mechanism.
Distributed charging of electrical assets
Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun
2016-02-16
The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.
Submerged AUV Charging Station
Jones, Jack A.; Chao, Yi; Curtin, Thomas
2014-01-01
Autonomous Underwater Vehicles (AUVs) are becoming increasingly important for military surveillance and mine detection. Most AUVs are battery powered and have limited lifetimes of a few days to a few weeks. This greatly limits the distance that AUVs can travel underwater. Using a series of submerged AUV charging stations, AUVs could travel a limited distance to the next charging station, recharge its batteries, and continue to the next charging station, thus traveling great distances in a relatively short time, similar to the Old West “Pony Express.” One solution is to use temperature differences at various depths in the ocean to produce electricity, which is then stored in a submerged battery. It is preferred to have the upper buoy submerged a reasonable distance below the surface, so as not to be seen from above and not to be inadvertently destroyed by storms or ocean going vessels. In a previous invention, a phase change material (PCM) is melted (expanded) at warm temperatures, for example, 15 °C, and frozen (contracted) at cooler temperatures, for example, 8 °C. Tubes containing the PCM, which could be paraffin such as pentadecane, would be inserted into a container filled with hydraulic oil. When the PCM is melted (expanded), it pushes the oil out into a container that is pressurized to about 3,000 psi (approx equals 20.7 MPa). When a valve is opened, the high-pressure oil passes through a hydraulic motor, which turns a generator and charges a battery. The low-pressure oil is finally reabsorbed into the PCM canister when the PCM tubes are frozen (contracted). Some of the electricity produced could be used to control an external bladder or a motor to the tether line, such that depth cycling is continued for a very long period of time. Alternatively, after the electricity is generated by the hydraulic motor, the exiting low-pressure oil from the hydraulic motor could be vented directly to an external bladder on the AUV, such that filling of the bladder
Banking Bank Charge Debates Continue
WANG PEI
2006-01-01
@@ The saying, "There's no such thing as a free lunch" is one that can be applied to the charges increasingly being imposed on savers by Chinese banks.Ranging from managementfees for small deposit accounts to charges for withdrawals of large amounts of cash, from ATM cross-bank withdrawal charges to annual fees for bank payment cards, charges by banks are becoming a unstoppable trend. But it is not a trend the general public is so keen to accept.
Cooler Storage Ring (CSR), and upgrading program planned at the Heavy Ion Research Facility in Lanzhou (HIRFL), will supply beams with higher quality and intensity. Space charge effects should be considered due to this magnitude of intensity in CSR. The concept and some phenomena of space charge effects are discussed. Space charge intensity limit and space charge tune shift of normal CSR operation are given. It is of significance for the construction and operation of the future facility
Modular Battery Charge Controller
Button, Robert; Gonzalez, Marcelo
2009-01-01
A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell
Adsorption of highly charged Gaussian polyelectrolytes onto oppositely charged surfaces
Dutta, Sandipan; Jho, Y. S.
2016-03-01
In many biological processes highly charged biopolymers are adsorbed onto oppositely charged surfaces of macroions and membranes. They form strongly correlated structures close to the surface which cannot be explained by the conventional Poisson-Boltzmann theory. In this work strong coupling theory is used to study the adsorption of highly charged Gaussian polyelectrolytes. Two cases of adsorptions are considered, when the Gaussian polyelectrolytes are confined (a) by one charged wall, and (b) between two charged walls. The effects of salt and the geometry of the polymers on their adsorption-depletion transitions in the strong coupling regime are discussed.
Measuring Charge Transport in an Amorphous Semiconductor Using Charge Sensing
Maclean, K; Mentzel, T. S.; Kastner, M. A.
2009-01-01
We measure charge transport in hydrogenated amorphous silicon (a-Si:H) using a nanometer scale silicon MOSFET as a charge sensor. This charge detection technique makes possible the measurement of extremely large resistances. At high temperatures, where the a-Si:H resistance is not too large, the charge detection measurement agrees with a direct measurement of current. The device geometry allows us to probe both the field effect and dispersive transport in the a-Si:H using charge sensing and t...
Charging Users for Library Service.
Cooper, Michael D.
1978-01-01
Examines the question of instituting direct charges for library service, using on-line bibliographic searching as an example, and contrasts this with the current indirect charging system where services are paid for by taxes. Information, as a merit good, should be supplied with or without direct charges, depending upon user status. (CWM)
Transient analysis of charging system with centrifugal charging pumps
The CARD (CVCS Analysis for Design) code has been developed for the transient analysis of the letdown and charging system of Korea Standard Nuclear Power Plant. The computer code has been already verified and validated by comparing with actual test results. Analyzed in this paper are the flow and pressure transients in the charging line. The sensitivity studies are performed to select the acceptable control parameters of charging line backpressure controller and seal injection flow controller. In addition, the seal injection system transient is evaluated for the pressurizer auxiliary spray operation. It is shown that the charging line backpressure controller control parameters yield a significant effect on the charging system stability. The results obtained from this study will be used to verify the system design and to select the optimum control parameters for the charging system with centrifugal charging pumps
Price Based Electric Vehicle Charging
Mahat, Pukar; Handl, Martin; Kanstrup, Kenneth; Lozano, Alberto; Sleimovits, Aleksandr
2012-01-01
It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of these EVs has the potential to complement renewable energy resources and mitigate its intermittency. However, EV charging may have negative impact on the power grid. This paper investigates the impact on a Danish distribution system when the EV charging aims to reduce the charging cost by charging at the cheapest hours. Results show that the charging based on the price s...
Branes, Charge and Intersections
Marolf, D M
2001-01-01
This is a brief summary of lectures given at the Fourth Mexican School on Gravitation and Mathematical Physics. The lectures gave an introduction to branes in eleven-dimensional supergravity and in type IIA supergravities in ten-dimensions. Charge conservation and the role of the so-called `Chern-Simons terms' were emphasized. Known exact solutions were discussed and used to provide insight into the question `Why don't fundamental strings fall off of D-branes,' which is often asked by relativists. The following is a brief overview of the lectures with an associated guide to the literature.
Branes, Charge and Intersections
Marolf, Donald
2001-01-01
This is a brief summary of lectures given at the Fourth Mexican School on Gravitation and Mathematical Physics. The lectures gave an introduction to branes in eleven-dimensional supergravity and in type IIA supergravities in ten-dimensions. Charge conservation and the role of the so-called `Chern-Simons terms' were emphasized. Known exact solutions were discussed and used to provide insight into the question `Why don't fundamental strings fall off of D-branes,' which is often asked by relativ...
Bulk charges in eleven dimensions
Hawking, Stephen William
1998-01-01
Eleven dimensional supergravity has electric type currents arising from the Chern-Simon and anomaly terms in the action. However the bulk charge integrates to zero for asymptotically flat solutions with topological trivial spatial sections. We show that by relaxing the boundary conditions to generalisations of the ALE and ALF boundary conditions in four dimensions one can obtain static solutions with a bulk charge preserving between 1/16 and 1/4 of the supersymmetries. One can introduce membranes with the same sign of charge into these backgrounds. This raises the possibility that these generalized membranes might decay quantum mechanically to leave just a bulk distribution of charge. Alternatively and more probably, a bulk distribution of charge can decay into a collection of singlely charged membranes. Dimensional reductions of these solutions lead to novel representations of extreme black holes in four dimensions with up to four charges. We discuss how the eleven-dimensional Kaluza-Klein monopole wrapped a...
Charged Dust Aggregate Interactions
Matthews, Lorin; Hyde, Truell
2015-11-01
A proper understanding of the behavior of dust particle aggregates immersed in a complex plasma first requires a knowledge of the basic properties of the system. Among the most important of these are the net electrostatic charge and higher multipole moments on the dust aggregate as well as the manner in which the aggregate interacts with the local electrostatic fields. The formation of elongated, fractal-like aggregates levitating in the sheath electric field of a weakly ionized RF generated plasma discharge has recently been observed experimentally. The resulting data has shown that as aggregates approach one another, they can both accelerate and rotate. At equilibrium, aggregates are observed to levitate with regular spacing, rotating about their long axis aligned parallel to the sheath electric field. Since gas drag tends to slow any such rotation, energy must be constantly fed into the system in order to sustain it. A numerical model designed to analyze this motion provides both the electrostatic charge and higher multipole moments of the aggregate while including the forces due to thermophoresis, neutral gas drag, and the ion wakefield. This model will be used to investigate the ambient conditions leading to the observed interactions. This research is funded by NSF Grant 1414523.
The group of automorphisms of the conformal algebra su(2,2) has four components giving the usual four components of symmetries of space time. Only two of these components extend to symmetries of the conformal superalgebra - the identity component and the component which induces the parity transformation, P, on space time. There is no automorphism of the conformal superalgebra which induces T or PT on space time. Automorphisms of su(2,2) which belong to these last two components induce transformations on the conformal superalgebra which reverse the sign of the odd brackets. In this sense conformal supersymmetry prefers CP to CPT. The operator of charge conjugation acting on spinors, as is found in the standard texts, induces conformal inversion and hence a parity transformation on space time, when considered as acting on the odd generators of the conformal superalgebra. Although it commutes with Lorentz transformations, it does not commute with all of su(2,2). We propose a different operator for charge conjugation. Geometrically it is induced by the Hodge star operator acting on twistor space. Under the known realization of conformal states from the inclusion SU(2,2)→Sp(8) and the metaplectic representations, its action on states is induced by the unique (up to phase) antilinear intertwining operator between the two metaplectic representations. It is consistent with the split orthosymplectic algebras and hence, by the inclusion of the superconformal in the orthosymplectic, with the orthosymplectic algebra. (orig.)
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar
2015-05-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.
Babichev, Eugeny; Hassaine, Mokhtar
2015-01-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...
Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.
2012-05-22
Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.
Charge Breeding of Radioactive Ions
Wenander, F J C
2013-01-01
Charge breeding is a technique to increase the charge state of ions, in many cases radioactive ions. The singly charged radioactive ions, produced in an isotope separator on-line facility, and extracted with a low kinetic energy of some tens of keV, are injected into a charge breeder, where the charge state is increased to Q. The transformed ions are either directed towards a dedicated experiment requiring highly charged ions, or post-accelerated to higher beam energies. In this paper the physics processes involved in the production of highly charged ions will be introduced, and the injection and extraction beam parameters of the charge breeder defined. A description of the three main charge-breeding methods is given, namely: electron stripping in gas jet or foil; external ion injection into an electron-beam ion source/trap (EBIS/T); and external ion injection into an electron cyclotron resonance ion source (ECRIS). In addition, some preparatory devices for charge breeding and practical beam delivery aspects ...
Adsorption of highly charged Gaussian polyelectrolytes to oppositely charged surfaces
Dutta, Sandipan; Jho, Y. S.
2015-01-01
In many biological processes highly charged biomolecules are adsorbed into oppositely charged surfaces of macroions and membranes. They form strongly correlated structures close to the surface which can not be explained by the conventional Poisson-Boltzmann theory. Many of the flexible biomolecules can be described by Gaussian polymers. In this work strong coupling theory is used to study the adsorption of highly charged Gaussian polyelectrolytes. Two cases of adsorptions are considered, when...
Charge Transfer and Charge Transport on the Double Helix
N. P. Armitage; Briman, M.; Gruner, G.
2003-01-01
We present a short review of various experiments that measure charge transfer and charge transport in DNA. Some general comments are made on the possible connection between 'chemistry-style' charge transfer experiments that probe fluorescence quenching and remote oxidative damage and 'physics-style' measurements that measure transport properties as defined typically in the solid-state. We then describe measurements performed by our group on the millimeter wave response of DNA. By measuring ov...
Shalini S. Durgam
2015-03-01
Full Text Available One of the primary needs for socio-economic development in any nation in the world is the provision of reliable electricity supply systems with lower carbon footprint levels. The purpose of this work is the development of a hybrid Power system that harnesses the renewable energy in sun and electricity to generate electricity. The working model can able to run on dual mode- solar and electricity. It can also be driven independently either by solar or electricity. The battery can be charge from solar panel (40W or by power supply. The household single phase A.C. power supply of 230V is converted into 12V D.C. using step down transformer and rectifying circuit. The working model can achieve energy saving, low carbon emission, environmental protection for the upcoming future of human life.
Bergey, M.
1997-12-01
This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.
We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius ≅10-18 m. The vacuum remains stable in our model, because neutral strings are not energetically favored.
Stable charged cosmic strings.
Weigel, H; Quandt, M; Graham, N
2011-03-11
We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius ≈10(-18) m. The vacuum remains stable in our model, because neutral strings are not energetically favored. PMID:21469786
Miller, Jacob Lee
2015-04-21
An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.
Nanodosimetry of charged particles
In last year's annual report, the authors described the development of an ultra-miniature counter (UMC), described some of its physical characteristics, and presented some first measurements with this counter of microdosimetric spectra for neutrons (15 MeV) and photons (137Cs). It remains to investigate in more detail the operational characteristics of the UMC and if possible, to make a comparison of relevant physical parameters such as gain and multiplication radius with the Segur theory. In order to accomplish these objectives, it is necessary to build a wall-less version of the UMC, which will be amenable to calibration and investigation with collimated beams of charged particles. The design of such a counter has been worked out in principle. Investigations into the optimal design of electrode structures and dimensions are being carried out at present. The main problem occurs with the design of the grid structure which is required to define the outer boundary of the collecting volume. Our initial attempts would make it appear at present that a counter of 1 to 1.5 mm diameter is feasible. This should be more than adequate to provide an appropriately wall-less counter within a reasonable size cavity. It will probably be about a year before a working counter can be produced. In the interim, it is possible to make some initial efforts into the investigation of operational characteristics of a wall-less UMC by making use of similar design, but at a somewhat larger size. These first attempts at measurement of charged particle microdosimetric spectra at nanometer site provide added evidence that these counters can yield useful microdosimetric data at far smaller site sizes than heretofore attempted. They also provide added incentive and encouragement for development of wall-less UMC
12 CFR 226.4 - Finance charge.
2010-01-01
... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Finance charge. 226.4 Section 226.4 Banks and... LENDING (REGULATION Z) General § 226.4 Finance charge. (a) Definition. The finance charge is the cost of...) Charges by third parties. The finance charge includes fees and amounts charged by someone other than...
Charge contribution to patch-charged microparticle adhesion
Vallabh, Chaitanya Krishna Prasad; Vahdat, Armin Saeedi; Cetinkaya, Cetin
2014-11-01
Microparticle adhesion influenced by electrostatic charge has been a significant research interest for over past three decades or so in a wide spectrum of areas of interest from manufacturing (electrophotography, powder technology, metallurgy, and semi-conductor manufacturing) to natural phenomena (desert sandstorms and northern lights (auroras)). However, over the years, as a result of the strong discrepancies between the experimental adhesion measurements data and theoretical predictions, some key issues regarding the contributors of adhesion forces in charged microparticles and the nature of surface charge distribution still remain unresolved. In the current work, a non-contact ultrasonic approach is presented and employed for understanding the nature of charge distribution on a single microparticle and determining the effect of electrostatic charge on its adhesion in a non-invasive manner. From the vibrational spectra of the charged particle response to the ultrasonic substrate oscillations under various electrostatic loading conditions, three distinct shifting patterns of vibrational (rocking) resonance frequencies are observed for each level of applied substrate surface voltage, implying an un-symmetric force field on the particle, thus depicting non-uniform non-symmetric surface charge distribution on its surface. Also, a simple mathematical model was presented and employed for predicting the equivalent bulk charge on a single microparticle (toner) from resonance frequency shifts. In summary, it is found that the charge levels reported here are consistent with the previously published data, and it is demonstrated that, in a non-invasive manner, non-uniform charge distribution on a single microparticle can be observed and its total charge can be predicted.
Exact solutions of charged wormhole
Kim, Sung-Won; Lee, Hyunjoo
2001-01-01
In this paper, the backreaction to the traversable Lorentzian wormhole spacetime by the scalar field or electric charge is considered to find the exact solutions. The charges play the role of the additional matter to the static wormhole which is already constructed by the exotic matter. The stability conditions for the wormhole with scalar field and electric charge are found from the positiveness and flareness for the wormhole shape function.
Charging graphene nanoribbon quantum dots
Żebrowski, D. P.; B. Szafran
2015-01-01
We describe charging a quantum dot induced electrostatically within a semiconducting graphene nanoribbon by electrons or holes. The applied model is based on a tight-binding approach with the electron-electron interaction introduced by a mean field local spin density approximation. The numerical approach accounts for the charge of all the $p_z$ electrons and screening of external potentials by states near the charge neutrality point. Both a homogenous ribbon and a graphene flake embedded with...
Solar Charged Stand Alone Inverter
M.Vasugi; Prof R.Jayaraman
2014-01-01
This paper deals with solar powered stand alone inverter which converts the variable dc output of a photovoltaic solar panel into ac that can be fed to loads. Stand alone inverters are used in systems where the inverter get its energy from batteries charged by photo voltaic arrays. A charge controller limits the rate at which electric current is added to or drawn from electric batteries. This charge discharge controller is needed to prevent the battery from being overcharged o...
Engineering charge ordering into multiferroicity
He, Xu; Jin, Kui-juan
2016-01-01
Multiferroic materials have attracted great interests but are rare in nature. In many transitional metal oxides, charge ordering and magnetic ordering coexist, so that a method of engineering charge-ordered materials into ferroelectric materials would lead to a large class of multiferroic materials. We propose a strategy for designing new ferroelectric or even multiferroic materials by inserting a spacing layer into each two layers of charge-ordered materials and artificially making a superla...
Charge transferred in brush discharges
Talarek, M.; Kacprzyk, R.
2015-10-01
Electrostatic discharges from surfaces of plastic materials can be a source of ignition, when appear in explosive atmospheres. Incendivity of electrostatic discharges can be estimated using the transferred charge test. In the case of brush discharges not all the energy stored at the tested sample is released and the effective surface charge density (or surface potential) crater is observed after the discharge. Simplified model, enabling calculation of a charge transferred during electrostatic brush discharge, was presented. Comparison of the results obtained from the simplified model and from direct measurements of transferred charge are presented in the paper.
Butterflies with rotation and charge
Reynolds, Alan P
2016-01-01
We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2+1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momentum or charge does not appear explicitly. We comment on issues affecting the extension to higher-dimensional charged black holes.
Interactions of charged dust particles in clouds of charges
Gundienkov, Vladimir; Yakovlenko, Sergey
2004-03-01
Two charged dust particles inside a cloud of charges are considered as Debye atoms forming a Debye molecule. Cassini coordinates are used for the numerical solution of the Poisson-Boltzmann equation for the charged cloud. The electric force acting on a dust particle by the other dust particle was determined by integrating the electrostatic pressure on the surface of the dust particle. It is shown that attractive forces appear when the following two conditions are satisfied. First, the average distance between dust particles should be approximately equal to two Debye radii. Second, attraction takes place when similar charges are concentrated predominantly on the dust particles. If the particles carry a small fraction of total charge of the same polarity, repulsion between the particles takes place at all distances. We apply our results to the experiments with thermoemission plasma and to the experiments with nuclear-pumped plasma.
Charge Injection, Charge Trapping and Charge Transfer in Quantum-Dot Solids
Boehme, S.C.
2015-01-01
This study reports on fundamental processes in Quantum-Dot Solids, after light absorption. Transient Absorption and Time-resolved Photoluminescence spectrocopy reveal the dynamics of charge transfer and charge trapping processes. Typically, both occur on a picosecond time scale and compete with each other. We find that the efficiency of these processes depends on the Fermi level in the Quantum-Dot Solid. The latter can be controlled electrochemically, via charge injection into the Quantum-Dot...
Quantum charged rigid membrane
The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.
Quantum charged rigid membrane
Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Zacatecas Zac. (Mexico); Rojas, Efrain, E-mail: cordero@esfm.ipn.mx, E-mail: amolgado@fisica.uaz.edu.mx, E-mail: efrojas@uv.mx [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)
2011-03-21
The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.
Space charge dominated beam transport
We consider beam transport systems where space charge forces are comparable in strength with the external focusing force. Space charge then plays an important role for beam transmission and emittance growth. We use the envelope model for matching and the generalized field energy equations to study emittance growth. Analytic results are compared with numerical simulation. (orig.)
Bulk charges in eleven dimensions
Hawking, S. W.; Taylor-Robinson, M. M.
1998-07-01
Eleven dimensional supergravity has electric type currents arising from the Chern-Simon and anomaly terms in the action. However the bulk charge integrates to zero for asymptotically flat solutions with topological trivial spatial sections. We show that by relaxing the boundary conditions to generalisations of the ALE and ALF boundary conditions in four dimensions one can obtain static solutions with a bulk charge. Solutions involving anomaly terms preserve between 1/16 and 1/4 of the supersymmetries but Chern-Simons fluxes generally break all of the remaining supersymmetry. One can introduce membranes with the same sign of charge into these backgrounds. This raises the possibility that these generalized membranes might decay quantum mechanically to leave just a bulk distribution of charge. Alternatively and more probably, a bulk distribution of charge can decay into a collection of singly charged membranes. Dimensional reductions of these solutions lead to novel representations of extreme black holes in four dimensions with up to four charges. We discuss how the eleven-dimensional Kaluza-Klein monopole wrapped around a space with non-zero first Pontryagin class picks up an electric charge proportional to the Pontryagin number.
Shielding of moving line charges
Wang, Youmei; He, Bingyu [Department of Physics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Yu, Wei [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Yu, M.Y., E-mail: myyu@zju.edu.cn [Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44780 Bochum (Germany)
2015-07-03
A charged object moving in plasma can excite plasma waves that inevitably modify its Debye shielding characteristics. When the excited waves propagate sufficiently fast, the shielding can even break down. Here the properties of finite amplitude plasma waves excited by a moving line charge are investigated. It is found that when the speed of the latter is close to but less than the thermal speed of the background plasma electrons, only a localized disturbance in the form of a soliton that moves together with the line charge is excited. That is, the line charge is well shielded even though it is moving at a high speed and has generated a large local electrostatic field. However, for a pair of line charges moving together, such complete shielding behavior could not be found.
Piston-assisted charge pumping
Kaur, D; Mourokh, L
2015-01-01
We examine charge transport through a system of three sites connected in series in the situation when an oscillating charged piston modulates the energy of the middle site. We show that with an appropriate set of parameters, charge can be transferred against an applied voltage. In this scenario, when the oscillating piston shifts away from the middle site, the energy of the site decreases and it is populated by a charge transferred from the lower energy site. On the other hand, when the piston returns to close proximity, the energy of the middle site increases and it is depopulated by the higher energy site. Thus through this process, the charge is pumped against the potential gradient. Our results can explain the process of proton pumping in one of the mitochondrial enzymes, Complex I. Moreover, this mechanism can be used for electron pumping in semiconductor nanostructures.
Collaborative Mobile Charging and Coverage
吴杰
2014-01-01
Wireless energy charging using mobile vehicles has been a viable research topic recently in the area of wireless networks and mobile computing. This paper gives a short survey of recent research conducted in our research group in the area of collaborative mobile charging. In collaborative mobile charging, multiple mobile chargers work together to accomplish a given set of ob jectives. These ob jectives include charging sensors at different frequencies with a minimum number of mobile chargers and reaching the farthest sensor for a given set of mobile chargers, subject to various constraints, including speed and energy limits of mobile chargers. Through the process of problem formulation, solution construction, and future work extension for problems related to collaborative mobile charging and coverage, we present three principles for good practice in conducting research. These principles can potentially be used for assisting graduate students in selecting a research problem for a term project, which can eventually be expanded to a thesis/dissertation topic.
Simulation for signal charge transfer of charge coupled devices
Wang Zujun; Liu Yinong; Chen Wei; Tang Benqi; Xiao Zhigang; Huang Shaoyan; Liu Minbo; Zhang Yong
2009-01-01
Physical device models and numerical processing methods are presented to simulate a linear buried channel charge coupled devices (CCDs). The dynamic transfer process of CCD is carried out by a three-phase clock pulse driver. By using the semiconductor device simulation software MEDICI, dynamic transfer pictures of signal charges cells, electron concentration and electrostatic potential are presented. The key parameters of CCD such as charge transfer efficiency (CTE) and dark electrons are numerically simulated. The simulation results agree with the theoretic and experimental results.
Heavy charged particle therapy
A pilot study of heavy charged particles with heavy ion medical accelerator in Chiba (HIMAC) for advanced H and N cancer has been carried out from June 1994 at National Institute of Radiological Sciences (NIRS). As of the beginning of August 1994, three patients were treated by 290 MeV carbon ions. The patients had adenocarcinoma of the cheek mucosa, squamous cell carcinoma of the ethmoid sinus and adenoid cystic carcinoma of the sublingual gland. Patients were immobilized by individual head coach and thermosplint facial shell. Individual collimators and bolus were also prepared for each ports. Dose fractionation for the initial pilot study group was 16.2 GyE/18 fractions/6 weeks, which would be equivalent to standard fractionation of 60.0 Gy/30 fractions/6 weeks with photons. This dose fractionation was considered to be 20% lesser than 75 GyE/37.5 fractions/7.5 weeks, which is estimated to be maximum tolerance dose for advanced H and N cancers. HIMAC worked well and there was no major trouble causing any treatment delay. Acute skin reactions of 3 patients were 2 cases of bright erythema with patchy moist desquamation and one of dull erythema, which were evaluated as equivalent reaction with irradiated dose. Acute mucosa reactions appeared to have lesser reaction than predicted mucositis. Tumor reactions of three patients were partial reaction (PR) at the end of treatment and nearly complete remission (CR) after 6 months of treatment. From October 1994, we started to treat patients with advanced H and N cancer with 10% high dose than previous dose. And new candidates of pilot study with non small cell lung cancer, brain tumor and carcinoma of the tongue were entered into pilot study. At the end of February 1995, a total of 21 patients were treated by carbon ions. (J.P.N.)
Miller, G A
2003-01-01
Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...
Brainard, John P.; Christenson, Todd R.
2009-11-03
A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.
Decoherence of charge qubit coupled to interacting background charges
Yurkevich, I. V.; Baldwin, J.; Lerner, I. V.; Altshuler, B. L.
2009-01-01
The major contribution to decoherence of a double quantum dot or a Josephson junction charge qubit comes from the electrostatic coupling to fluctuating background charges hybridized with the conduction electrons in the reservoir. However, estimations according to previously developed theories show that finding a sufficient number of effective fluctuators in a realistic experimental layout is quite improbable. We show that this paradox is resolved by allowing for a short-range Coulomb interact...
Rewritable artificial magnetic charge ice
Wang, Yong-Lei; Xiao, Zhili; Snezhko, Alexey; Xu, Jing; Ocola, Leonidas E.; Divan, Ralu; Pearson, John E.; Crabtree, George W.; Kwok, Wai-Kwong
2016-05-20
Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. We designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the properties of other two-dimensional materials.
Rewritable artificial magnetic charge ice
Wang, Yong-Lei; Xiao, Zhi-Li; Snezhko, Alexey; Xu, Jing; Ocola, Leonidas E.; Divan, Ralu; Pearson, John E.; Crabtree, George W.; Kwok, Wai-Kwong
2016-05-01
Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. We designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the properties of other two-dimensional materials.
Foot, R
1993-01-01
Theoretically, the electric charge of the tau neutrino may be non-zero. The experimental bound on the electric charge of the tau neutrino is many orders of magnitude weaker than that for any other known neutrino. If the tau neutrino does have a small electric charge, and its mass is greater than 1 MeV, then it can annihilate sufficiently in the early Universe by electromagnetic interactions to avoid conflict with the standard cosmology model. A novel feature of this scenario is that there can be effectively less than three neutrino species present during nucleosynthesis.
Charge density waves in solids
Gor'kov, LP
2012-01-01
The latest addition to this series covers a field which is commonly referred to as charge density wave dynamics.The most thoroughly investigated materials are inorganic linear chain compounds with highly anisotropic electronic properties. The volume opens with an examination of their structural properties and the essential features which allow charge density waves to develop.The behaviour of the charge density waves, where interesting phenomena are observed, is treated both from a theoretical and an experimental standpoint. The role of impurities in statics and dynamics is considered and an
Effects of induced charge in the kinestatic charge detector.
Wagenaar, D J; Terwilliger, R A
1995-05-01
The principle of the kinestatic charge detector (KCD) for digital radiography depends on the synchronization of the scan velocity of a parallel plate drift chamber with the cation drift velocity. Compared with line-beam scanners, this motion-compensated imaging technique makes better use of the x-ray tube output. A Frisch grid traditionally has been used within the KCD to minimize unwanted signal contributions from both cations and negative charge carriers during irradiation. In this work the charge induction process in a parallel plate geometry was investigated for the special case of the KCD. In the limit of infinite plates, the cathode charge density due to both cations and negative charge carriers increases quadratically in time for a kinestatically scanned narrow slit. In the KCD the cathode is segmented into an array of narrow electrodes, each aligned with the incident x-ray beam. Our conformal mapping computation determined that the shape of the induced charge signal depends critically on delta x/w, the ratio of electrode width to drift gap. Our conclusion introduces the possibility of eliminating the Frisch grid from the KCD design because the value of delta x/w required for transverse sampling in the KCD is sufficiently low as to allow "self-gridding" to take effect. PMID:7643803
Effect of Zn Adsorption on Charge of Variable Charge Soils
SUNHAN－YUAN
1993-01-01
The variation in appa rent carge of two typical variable charge soils resulting from Zn adsorption were studied by KCl saturation and NH4NO3 replacement methods.Results showed that zinc were adsorbed specifically to those sites with negative charge.As in different pH ranges,the percantages of specific and electrostatic adsorptions of zine and the mechanisms of specific adsorption were different,the effects of Zn adsorption on apparent charge were varied and could be characterized as:when 1 mmol Zn2+ was adsorbed,a change about 1 mmol in the apparent charge was observed in the low pH range(1),1.4 to 1.5mmol in the moderate pH range(II) and 0.55 to 0.6mmol in the high pH range (III).These experimental data,in terms of soil charge,proved once more author's conclusion in the preceding paper(Sun,1993) that in accordance with the behaviors of Zn adsorption by the variable charge soils in relation to pH,three pH ranges with different adsorption mechanisms were delineated;that is,in Range I,specific adsorption was the predominant mechanism,in Ranges II and III,specific and electrostatic adsorptions co-existed,but their specific adsorption mechanisms were not identical.
Trunev A. P.
2014-12-01
Full Text Available Wave solutions of Einstein's equations in the sixdimensional space-time with metric signature (+, +, +, -, -, - have been found. It is shown that solutions of this type can be used to model the structure of the electric charge
Trunev A. P.
2014-01-01
Wave solutions of Einstein's equations in the sixdimensional space-time with metric signature (+, +, +, -, -, -) have been found. It is shown that solutions of this type can be used to model the structure of the electric charge
Measurements of W Charge Asymmetry
Holzbauer, J. L. [Mississippi U.
2015-10-06
We discuss W boson and lepton charge asymmetry measurements from W decays in the electron channel, which were made using 9.7 fb$^{-1}$ of RunII data collected by the D0 detector at the Fermilab Tevatron Collider. The electron charge asymmetry is presented as a function of pseudo-rapidity out to |$\\eta$| $\\le$ 3.2, in five symmetric and asymmetric kinematic bins of electron transverse momentum and the missing transverse energy of the event. We also give the W charge asymmetry as a function of W boson rapidity. The asymmetries are compared with next-to-leading order perturbative quantum chromodynamics calculations. These charge asymmetry measurements will allow more accurate determinations of the proton parton distribution functions and are the most precise to date.
Brooks, Austin
2014-01-01
Take Charge of Your Health is a promotional flyer for potential adult SNAP-Ed participants. This flyer encourages eligible adults to participate in the SNAP-Ed program to make healthy nutrition and physical activity behavior changes.
Elementary charges in classical electrodynamics
KAPU'{S}CIK, Edward
1999-01-01
In the framework of classical electrodynamics elementary particles are treated as capacitors. The electrostatic potentials satisfy equations of the Schrödinger type. An interesting "quantization condition" for elementary charges is derived.
Electric charge in the stochastic electric field
Simonov, Yu A
2016-01-01
The influence of electric stochastic fields on the relativistic charged particles is investigated in the gauge invariant path integral formalism. Using the cumulant expansion one finds the exponential relaxation of the charge Green's function both for spinless and Dirac charges.
Quantum physics: Destruction of discrete charge
Nazarov, Yuli V.
2016-08-01
Electric charge is quantized in units of the electron's charge. An experiment explores the suppression of charge quantization caused by quantum fluctuations and supports a long-standing theory that explains this behaviour. See Letter p.58
Measuring momentum for charged particle tomography
Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary
2010-11-23
Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.
Charged particle acceleration with plasmas
Under certain conditions it is possible to create spatial charge waves (OCE) in a plasma (ionized gas) through some disturbance mechanism, the phenomenon produces electric fields of high intensity that are propagated at velocities near to a c. When charged particles are connected to such OCE they may be accelerated to very high energies in short distances. At present electric fields of approximately 107 V/cm have been observed. (Author). 4 refs
Charged rotating noncommutative black holes
In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.
Charged rotating noncommutative black holes
Modesto, Leonardo; Nicolini, Piero
2010-11-01
In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.
Charged rotating noncommutative black holes
Modesto, Leonardo
2010-01-01
In this paper we complete the program of the Noncomutative Geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newmann-Janis algorithm in case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.
Grain charging in protoplanetary discs
Ilgner, Martin
2011-01-01
Recent work identified a growth barrier for dust coagulation that originates in the electric repulsion between colliding particles. Depending on its charge state, dust material may have the potential to control key processes towards planet formation such as MHD (magnetohydrodynamic) turbulence and grain growth which are coupled in a two-way process. We quantify the grain charging at different stages of disc evolution and differentiate between two very extreme cases: compact spherical grains a...
Weak charges of charmed particles
The matrix elements between the lowest states of the ΔC=1 weak charges are evaluated including the effect of SU4 breaking. The charges are obtained from the corresponding generators of the classification group by a unitary transformation U, which is factorized as the product of operators acting on a single quark: the breaking is naturally introduced by having different mixing parameters for the different quarks
Smart electric vehicle charging system
João C. Ferreira; Monteiro, Vítor Duarte Fernandes; João L Afonso; Silva, Alberto R.
2011-01-01
In this work is proposed the design of a system to create and handle Electric Vehicles (EV) charging procedures, based on intelligent process. Due to the electrical power distribution network limitation and absence of smart meter devices, Electric Vehicles charging should be performed in a balanced way, taking into account past experience, weather information based on data mining, and simulation approaches. In order to allow information exchange and to help user ...
Irrigation externalities: pricing and charges
Gavan Dwyer; Robert Douglas; Deb Peterson; Jo Chong; Kate Maddern
2006-01-01
The Productivity Commission Staff Working Paper ‘Irrigation externalities: pricing and charges. by Gavan Dwyer, Robert Douglas, Deb Peterson, Jo Chong and Kate Maddern was released on 14 March 2006. The paper discusses the nature and causes of environmental change related to rural water use, and provides a taxonomy of the many diverse types. It also examines the issues surrounding possible charges on water use for water related externalities. There have been few attempts by water utilities to...
Rewritable Artificial Magnetic Charge Ice
Wang, Yong-Lei; Xiao, Zhi-Li; Snezhko, Alexey; Xu, Jing; Ocola, Leonidas E.; Divan, Ralu; Pearson, John E.; Crabtree, George W.; Kwok, Wai-Kwong
2016-01-01
Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. We designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge state...
Neutral and Charged Anyon Fluids
Hosotani, Yutaka
1993-01-01
(Review) Properties of neutral and charged anyon fluids are examined, with the main focus on the question whether or not a charged anyon fluid exhibits a superconductivity at zero and finite temperature. Quantum mechanics of anyon fluids is precisely described by Chern-Simons gauge theory. The random phase approximation (RPA), the linearized self-consistent field method (SCF), and the hydrodynamic approach employed in the early analysis of anyon fluids are all equivalent. Relations and differ...
Charged-lepton flavour physics
Andreas Hoecker
2012-11-01
This write-up on a talk at the 2011 Lepton–Photon symposium in Mumbai, India, summarizes recent results in the charged-lepton flavour sector. Searches for charged-lepton flavour violation, lepton electric dipole moments and flavour-conserving CP violation are reviewed here. Recent progress in -lepton physics and in the Standard Model prediction of the muon anomalous magnetic moment is also discussed.
Safe explosives for shaped charges
It was demonstrated that high-performance shaped charges could be developed using as the explosive charge mixtures of ingredients that are not, by themselves, considered explosives. At least one of the ingredients needed to be a liquid, stored separately, that could be quickly injected into the shaped charge cavity to generate the active explosive. Precision copper shaped charge cones in diameters of 65.2, 83.8, and 100.2 mm (about 2.6, 3.3, and 4.0 in.) were obtained and appropriate hardware was fabricated. It was demonstrated that 4 cone diameters of penetration were obtained in 255 BHN armor plate steel if the explosive charge was nitromethane or a combination of fine crystalline ammonium nitrate at a density of 1.0 Mg/m3 with nitromethane. However, when prilled ammonium nitrate was used with nitromethane, the jet failed to form. The shaped charges would be used to destroy the high explosive in a nuclear warhead in case of imminent enemy threat to the weapon
Solar Charged Stand Alone Inverter
M.Vasugi
2014-07-01
Full Text Available This paper deals with solar powered stand alone inverter which converts the variable dc output of a photovoltaic solar panel into ac that can be fed to loads. Stand alone inverters are used in systems where the inverter get its energy from batteries charged by photo voltaic arrays. A charge controller limits the rate at which electric current is added to or drawn from electric batteries. This charge discharge controller is needed to prevent the battery from being overcharged or discharged thus prolonging its life. The charge/discharge control is necessary in order to achieve safety and increase the capacity of the battery. The project has been tested according its operational purposes. Maximum power rating of the experimented solar charge controller is 100W according battery capacities. Cost effective solar charge controller has been designed and implemented to have efficient system and much longer battery lifetime. The dc output is given to inverter and then it is supplied to loads. This method is very cheap and cost effective.
Krohn, David; Schwartz, Matthew D; Waalewijn, Wouter J
2013-01-01
Knowing the charge of the parton initiating a light-quark jet could be extremely useful both for testing aspects of the Standard Model and for characterizing potential beyond-the-Standard-Model signals. We show that despite the complications of hadronization and out-of-jet radiation such as pile-up, a weighted sum of the charges of a jet's constituents can be used at the LHC to distinguish among jets with different charges. Potential applications include measuring electroweak quantum numbers of hadronically decaying resonances or supersymmetric particles, as well as Standard Model tests, such as jet charge in dijet events or in hadronically-decaying W bosons in t-tbar events. We develop a systematically improvable method to calculate moments of these charge distributions by combining multi-hadron fragmentation functions with perturbative jet functions and pertubative evolution equations. We show that the dependence on energy and jet size for the average and width of the jet charge can be calculated despite th...
Engineering charge ordering into multiferroicity
He, Xu; Jin, Kui-juan
2016-04-01
Multiferroic materials have attracted great interest but are rare in nature. In many transition-metal oxides, charge ordering and magnetic ordering coexist, so that a method of engineering charge-ordered materials into ferroelectric materials would lead to a large class of multiferroic materials. We propose a strategy for designing new ferroelectric or even multiferroic materials by inserting a spacing layer into each two layers of charge-ordered materials and artificially making a superlattice. One example of the model demonstrated here is the perovskite (LaFeO3)2/LaTiO3 (111) superlattice, in which the LaTiO3 layer acts as the donor and the spacing layer, and the LaFeO3 layer is half doped and performs charge ordering. The collaboration of the charge ordering and the spacing layer breaks the space inversion symmetry, resulting in a large ferroelectric polarization. As the charge ordering also leads to a ferrimagnetic structure, (LaFeO3)2/LaTiO3 is multiferroic. It is expected that this work can encourage the designing and experimental implementation of a large class of multiferroic structures with novel properties.
Space Charge Modulated Electrical Breakdown.
Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George
2016-01-01
Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20(th) century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577
Alternator control for battery charging
Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.
2015-07-14
In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.
Singularities of noncompact charged objects
Sharif, M.; G., Abbas
2013-03-01
We formulate a model for noncompact spherical charged objects in the framework of noncommutative field theory. The Einstein—Maxwell field equations are solved with charged anisotropic fluid. We choose matter and charge densities as functions of the two parameters, instead of defining these quantities in terms of the Gaussian distribution function. It is found that the corresponding densities and the Ricci scalar are singular in origin, whereas the metric is nonsingular, indicating a spacelike singularity. The numerical solution of the horizon equation implies that there are two or one or no horizon(s), depending on the mass. We also evaluate the Hawking temperature and find that a black hole with two horizons is evaporated to an extremal black hole with one horizon.
Singularities of noncompact charged objects
M.Sharif; G.Abbas
2013-01-01
We formulate a model for noncompact spherical charged objects in the framework of noncommutative field theory.The Einstein-Maxwell field equations are solved with charged anisotropic fluid.We choose matter and charge densities as functions of the two parameters,instead of defining these quantities in terms of the Gaussian distribution function.It is found that the corresponding densities and the Ricci scalar are singular in origin,whereas the metric is nonsingular,indicating a spacelike singularity.The numerical solution of the horizon equation implies that there are two or one or no horizon(s),depending on the mass.We also evaluate the Hawking temperature and find that a black hole with two horizons is evaporated to an extremal black hole with one horizon.
Singularities of Noncompact Charged Objects
Sharif, M; 10.1088/1674-1056/22/3/030401
2013-01-01
We formulate a model of noncompact spherical charged objects in the framework of noncommutative field theory. The Einstein-Maxwell field equations are solved with charged anisotropic fluid. We choose the forms of mass and charge densities which belong to two parameter family of density distribution functions instead of densities as Gaussian width length. It is found that the corresponding densities and the Ricci scalar are singular at origin whereas the metric is nonsingular indicating a spacelike singularity. The numerical solution of the horizon equation implies that there are either two or one or no horizon depending on the mass. We also evaluate the Hawking temperature which implies that a black hole with two horizons is evaporated to an extremal black hole with one horizon.
Charging transient in polyvinyl formal
P K Khare; P L Jain; R K Pandey
2001-08-01
In the present paper charging and discharging transient currents in polyvinyl formal (PVF) were measured as a function of temperatures (40–80°C), poling fields (9.0 × 103–9.0 × 104 V/cm) and electrode combinations (Al–Al, Au–Al, Zn–Al, Bi–Al, Cu–Al and Ag–Al). The current–time characteristics have different values of slope lying between 0.42–0.56 and 1.42–1.63. The polarization is considered to be due to dipolar reorientation associated with structural motions and space charge relaxations due to trapping of injected charge carriers in energetically distributed traps.
Nonlinear screening of charge impurities in graphene
2006-01-01
It is shown that a ``vacuum polarization'' induced by Coulomb potential in graphene leads to a strong suppression of electric charges even for undoped case (no charge carriers). A standard linear response theory is therefore not applicable to describe the screening of charge impurities in graphene. In particular, it overestimates essentially the contributions of charge impurities into the resistivity of graphene.
Nanotribology of charged polymer brushes
Klein, Jacob
Polymers at surfaces, whose modern understanding may be traced back to early work by Sam Edwards1, have become a paradigm for modification of surface properties, both as steric stabilizers and as remarkable boundary lubricants2. Charged polymer brushes are of particular interest, with both technological implications and especially biological relevance where most macromolecules are charged. In the context of biolubrication, relevant in areas from dry eye syndrome to osteoarthritis, charged polymer surface phases and their complexes with other macromolecules may play a central role. The hydration lubrication paradigm, where tenaciously-held yet fluid hydration shells surrounding ions or zwitterions serve as highly-efficient friction-reducing elements, has been invoked to understand the excellent lubrication provided both by ionized3 and by zwitterionic4 brushes. In this talk we describe recent advances in our understanding of the nanotribology of such charged brush systems. We consider interactions between charged end-grafted polymers, and how one may disentangle the steric from the electrostatic surface forces5. We examine the limits of lubrication by ionized brushes, both synthetic and of biological origins, and how highly-hydrated zwitterionic chains may provide extremely effective boundary lubrication6. Finally we describe how the lubrication of articular cartilage in the major joints, a tribosystem presenting some of the greatest challenges and opportunities, may be understood in terms of a supramolecular synergy between charged surface-attached polymers and zwitterionic groups7. Work supported by European Research Council (HydrationLube), Israel Science Foundation (ISF), Petroleum Research Fund of the American Chemical Society, ISF-NSF China Joint Program.
Charge transfer processes of low charge state heavy ions
In this paper, some aspects of the collision processes of accelerated heavy ions in very low charge state is reviewed, and the beam loss due to such collisions is estimated. The processes included in ion-atom collisions are electron capture, the electron stripping of ions, and target ionization. The stripping cross sections decrease slowly at high energy, and are much larger than the electron capture cross sections. At low energy, the electron capture is dominant, and this process plays a principal role near ion sources and preacceleration regions. This has not been taken into account properly. In order to keep the beam loss less than 0.1 percent, it is estimated that the average vacuum of about 10-7 to 10-8 Torr is required. An empirical formula to calculate the stripping cross sections of heavy ions in low charge state in collisions is derived. The beam loss due to ion-atom collisions can be estimated. The charge transfer and stripping processes in ion-ion collisions are also discussed. The typical processes in ion-ion collisions are almost same as those in ion-atom collisions. In order to minimize the ion beam loss due to charge-changing processes, it is important to choose the heavy ions with closed shell configurations, which correspond to the slightly more ionized states than the singly ionized state. (Kato, T.)
Sources of high charge state positive ions have uses in a variety of research fields. For heavy ion particle accelerators higher charge state particles give greater acceleration per gap and greater bending strength in a magnet. Thus higher energies can be obtained from circular accelerators of a given size, and linear accelerators can be designed with higher energy gain per length using higher charge state ions. In atomic physics the many atomic transitions in highly charged ions supplies a wealth of spectroscopy data. High charge state ion beams are also used for charge exchange and crossed beam experiments. High charge state ion sources are reviewed
Charge-exchange straggling in equilibrium
Sigmund, P. [Department of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense M (Denmark); Osmani, O. [Department of Physics, University of Duisburg-Essen, D-47048 Duisburg (Germany); Department of Physics, University of Kaiserslautern and Research Center OPTIMAS, D-67653 Kaiserslautern (Germany); Schinner, A. [Institut fuer Experimentalphysik, Johannes, Kepler Universitaet, A-4040 Linz (Austria)
2011-05-01
A general expression has been derived that allows computation of charge-exchange straggling of swift heavy ions when many charge states are involved. Charge exchange is found to hinge on the variation of the stopping cross section with the ion charge and on the transient behavior of the charge population as a function of traveled pathlength. These effects appear factorized in the final formula. The focus of this paper is on straggling in charge equilibrium. The case of MeV/u sulfur ions in carbon has been used as an illustration. Charge-exchange straggling is found to be dominating straggling over a considerable range of beam energies.
Integral charge SUSY in strong nuclear gravity
Till today there is no reason for the question: why there exists 6 individual quarks? Till today no experiment reported a free fractional charge quark. Authors humble opinion is nuclear charge (either positive or negative) constitutes 6 different flavors and each flavor holds certain mass, charged flavor can be called as a quark. It is neither a fermion nor a boson. A fermion is a container for different charges, a charge is a container for different flavors and each flavor is a container for certain matter. If charged matter rests in a fermionic container it is a fermion and if charged matter rests in a bosonic container it is a boson
Charge transfer and transport in DNA
Jortner, Joshua; Bixon, Mordechai; Langenbacher, Thomas; Michel-Beyerle, Maria E.
1998-01-01
We explore charge migration in DNA, advancing two distinct mechanisms of charge separation in a donor (d)–bridge ({Bj})–acceptor (a) system, where {Bj} = B1,B2, … , BN are the N-specific adjacent bases of B-DNA: (i) two-center unistep superexchange induced charge transfer, d*{Bj}a → d∓{Bj}a±, and (ii) multistep charge transport involves charge injection from d* (or d+) to {Bj}, charge hopping within {Bj}, and charge trapping by a. For off-resonance coupling, mechanism i prevails with the char...
Yu, Deshui; Hufnagel, C; Kwek, L C; Amico, Luigi; Dumke, R
2016-01-01
We investigate a novel hybrid system of a superconducting charge qubit interacting directly with a single neutral atom via electric dipole coupling. Interfacing of the macroscopic superconducting circuit with the microscopic atomic system is accomplished by varying the gate capacitance of the charge qubit. To achieve strong interaction, we employ two Rydberg states with an electric-dipole-allowed transition, which alters the polarizability of the dielectric medium of the gate capacitor. Sweeping the gate voltage with different rates leads to a precise control of hybrid quantum states. Furthermore, we show a possible implementation of a universal two-qubit gate.
Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer
2016-04-01
We investigate a hybrid system of a superconducting charge qubit interacting directly with a single neutral atom via electric dipole coupling. Interfacing of the macroscopic superconducting circuit with the microscopic atomic system is accomplished by varying the gate capacitance of the charge qubit. To achieve a strong interaction, we employ two Rydberg states with an electric-dipole-allowed transition, which alters the polarizability of the dielectric medium of the gate capacitor. Sweeping the gate voltage with different rates leads to a precise control of hybrid quantum states. Furthermore, we show a possible implementation of a universal two-qubit gate.
Th economics of workplace charging
Fetene, Gebeyehu Manie; Hirte, Georg; Kaplan, Sigal;
2016-01-01
To overcome the range-anxiety problem and further shortcomings associated with electric vehicles, workplace charging (WPC) is gaining increasing attention. We propose a microeconomic model of WPC and use the approach to shed light on the incentives and barriers employees and employers face when...... subsidies to charging facility costs and adjustments in electricity tariffs or loading technologies. We find that direct subsidies to WPC facilities or subsidies combined with specific energy price policies could be a way to foster WPC provision. In contrast measures on the employee side that may help to...
New charged anisotropic compact models
Kileba Matondo, D.; Maharaj, S. D.
2016-07-01
We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.
A charged spherically symmetric solution
K Moodley; S D Maharaj; K S Govinder
2003-09-01
We ﬁnd a solution of the Einstein–Maxwell system of ﬁeld equations for a class of accelerating, expanding and shearing spherically symmetric metrics. This solution depends on a particular ansatz for the line element. The radial behaviour of the solution is fully speciﬁed while the temporal behaviour is given in terms of a quadrature. By setting the charge contribution to zero we regain an (uncharged) perfect ﬂuid solution found previously with the equation of state =+ constant, which is a generalisation of a stiff equation of state. Our class of charged shearing solutions is characterised geometrically by a conformal Killing vector.
Vortex Motion In Charged Fluids
Stratopoulos, G N
1994-01-01
A non-relativistic scalar field coupled minimally to electromagnetism supports in the presence of a homogeneous background electric charge density the existence of smooth, finite-energy topologically stable flux vortices. The static properties of such vortices are studied numerically in the context of a two parameter model describing this system as a special case. It is shown that the electrostatic and the mexican hat potential terms of the energy are each enough to ensure the existence of vortex solutions. The interaction potential of two minimal vortices is obtained for various values of the parameters. It is proven analytically that a free isolated vortex with topological charge $N\
Butterflies with rotation and charge
Reynolds, Alan P.; Ross, Simon F.
2016-01-01
We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2+1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momen...
Intrinsic Charges and the Strong Forc
Lehnert B.
2013-01-01
According to a revised quantum electrodynamic theory, there are models of leptons such as the electron which possess both a net integrated electric charge and a much larger intrinsic charge of both polarities. From estimates based on such models, the corresponding Coulomb force due to the intrinsic charges then becomes two orders of magnitude larger than that due to the conventional net charge. This intrinsic charge force can also have the features of a short-range interaction. If these resul...
Brown, Marshall A.
2013-01-01
Today's work world is full of uncertainty. Every day, people hear about another organization going out of business, downsizing, or rightsizing. To prepare for these uncertain times, one must take charge of their own career. This article presents some tips for surviving in today's world of work: (1) Be self-managing; (2) Know what you…
Dust particle charging in sheath
The charging and the screening of spherical dust particles in sheaths near the wall were studied using computer simulation. The three-dimensional PIC/MCC method and molecular dynamics method were applied to describe plasma particles motion and interaction with macroscopic dust grain. Calculations were carried out at different neutral gas pressures and wall potentials. Values of the charge of the dust particles and spatial distributions of plasma parameters are obtained by modelling. The results have shown that the charge of the dust particles in the sheath, as well as the spatial distribution of the ions and electrons near the dust particles, depend strongly on the wall potential. It is shown that for large negative values of the wall potential the negative charge of a dust particle decreases due to the decline of the electron density in its vicinity. In addition, the flow of energy of the ions on the surface of dust particles is increased due to better focusing effect of the dust particle field on ions.
Stability of charged thin shells
In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.
Pump trials for charged liquids
The pumps intended for the circulation of charged and radioactive liquids have particular qualities. The choice of such a pump has called for endurance tests with various types of equipment: a Goodyear volumetric screw pumps, and RICHIER, Klein and SCHABAVER centrifugal pumps. The latter, fitted with a special oakum, gave the best results. (authors)
Scarcity rents and airport charges
G. Burghouwt; W. de Wit
2015-01-01
This report addresses the responses related to scarcity rents and airport charges. The Commission has asked ITF/SEO to provide evidence on scarcity rents in the London airport system. Different reports submitted in response to the Commission’s consultation make different assumptions on the way airli
The Penetration of Shaped Charges
Wu Mingde
1996-01-01
@@ In order to get the best perforating effect, many facts have to be considered. Perforating job is often design by computer. A perforating engineer has to decide the perforating technology and procedure, the gun and charge system, the shot density and phasing, the penetration and hole size, etc.
Floating liquid bridge charge dynamics
Teschke, Omar; Soares, David Mendez; Gomes, Whyllerson Evaristo; Valente Filho, Juracyr Ferraz
2016-01-01
The interaction of liquid with electric fields is investigated in a configuration where up to 13 kV are applied between electrodes resulting in a 106 V/m electric field in the capillaries and where there is the formation of a free-standing fluid bridge in the interelectrode gap. The Mott-Gurney equation was fitted to the measured ionization current vs applied voltage curve which indicates that the ionization rate at the high-voltage anode electrode dimethylsulfoxide (DMSO) interface and space charging in the interelectrode gap determine the floating liquid bridge current for a given cathode-to-anode voltage. Space charge effects were measured in the cathode becker and also at the liquid bridge since the ionized charges at the anode migrate to the bridge outer surface and decrease the interfacial tension from 43 mJ/m2 to 29 mJ/m2. Two distinct structural regions then form the bridge, a charged plastic (bulk modulus ˜100 MPa) conducting outer layer with a surface conductivity of ˜10-9 Ω-1, which shapes and supports the floating fluid structure, and an inner liquid cylinder, where DMSO molecules flow.
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071 (China); Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
2015-05-28
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
Zhao, Mingtian; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai; Li, Baohui
2015-05-01
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar
Charge transport in disordered materials
Gagorik, Adam Gerald
This thesis is focused on on using Monte Carlo simulation to extract device relevant properties, such as the current voltage behavior of transistors and the efficiency of photovoltaics, from the hopping transport of molecules. Specifically, simulation is used to study organic field-effect transistors (OFETs) and organic photo-voltaics (OPVs). For OFETs, the current was found to decrease with increasing concentration of traps and barriers in the system. As the barrier/trap concentration approaches 100%, the current recovers as carrier begin to travel through the manifold of connected trap states. Coulomb interactions between like charges are found to play a role in removing carriers from trap states. The equilibrium current in OFETs was found to be independent of charge injection method, however, the finite size of devices leads to an oscillatory current. Fourier transforms of the electrical current show peaks that vary non-linearly with device length, while being independent of device width. This has implications for the mobility of carriers in finite sized devices. Lastly, the presence of defects and high barriers (> 0.4 eV) was found to produce negative differential resistance in the saturation region of OFET curves, unlike traps. While defects and barriers prohibit carriers from reaching the drain at high voltages, the repulsive interaction between like charged carriers pushes charges around the defects. For OPVs, the effects of device morphology and charge delocalization were studied. Fill factors increased with domain size in monolayer isotropic morphologies, but decreased for band morphologies. In single-phase systems without Coulomb interactions, astonishingly high fill factors (. 70%) were found. In multilayer OPVs,a complex interplay of domain size, connectivity, tortuosity, interface trapping, and delocalization determined efficiency.
Charged Particles' Tunneling from Noncommutative Charged Black Hole
Mehdipour, S Hamid
2010-01-01
We apply the tunneling process of charged massive particles through the quantum horizon of a Reissner-Nordstr\\"om black hole in a new noncommutative gravity scenario. In this model, the tunneling amplitude on account of noncommutativity influences in the context of coordinate coherent states is modified. Our calculation points out that the emission rate satisfies the first law of black hole thermodynamics and is consistent with an underlying unitary theory.
Charged particles' tunneling from a noncommutative charged black hole
Mehdipour, S. Hamid
2010-01-01
We apply the tunneling process of charged massive particles through the quantum horizon of a Reissner-Nordstrom black hole in a new noncommutative gravity scenario. In this model, the tunneling amplitude on account of noncommutativity influences in the context of coordinate coherent states is modified. Our calculation points out that the emission rate satisfies the first law of black hole thermodynamics and is consistent with an underlying unitary theory.
Holographic heavy ion collisions with baryon charge
Casalderrey-Solana, Jorge; van der Schee, Wilke; Triana, Miquel
2016-01-01
We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15\\%. %The rapidity profile of the charge is wider than the profile of the local energy density. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.
Charge symmetry at the partonic level
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
Stability of charged strange quark stars
Arbañil, José D. V.; Malheiro, Manuel [Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, 12228-900 São José dos Campos, SP (Brazil)
2015-12-17
We investigate the hydrostatic equilibrium and the stability of charged stars made of a charged perfect fluid. The matter contained in the star follows the MIT bag model equation of state and the charge distribution to a power-law of the radial coordinate. The hydrostatic equilibrium and the stability of charged strange stars are analyzed using the Tolman-Oppenheimer-Volkoff equation and the Chandrasekhar’s equation pulsation, respectively. These two equation are modified from their original form to the inclusion of the electric charge. We found that the stability of the star decreases with the increment of the central energy density and with the increment of the amount of charge.
Particles with non abelian charges
Bastianelli, Fiorenzo; Corradini, Olindo; Latini, Emanuele
2013-01-01
Efficient methods for describing non abelian charges in worldline approaches to QFT are useful to simplify calculations and address structural properties, as for example color/kinematics relations. Here we analyze in detail a method for treating arbitrary non abelian charges. We use Grassmann variables to take into account color degrees of freedom, which however are known to produce reducible representations of the color group. Then we couple them to a U(1) gauge field defined on the worldline, together with a Chern-Simons term, to achieve projection on an irreducible representation. Upon gauge fixing there remains a modulus, an angle parametrizing the U(1) Wilson loop, whose dependence is taken into account exactly in the propagator of the Grassmann variables. We test the method in simple examples, the scalar and spin 1/2 contribution to the gluon self energy, and suggest that it might simplify the analysis of more involved amplitudes.
Geometrical charged-particle optics
Rose, Harald
2012-01-01
This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...
Charge transport in desolvated DNA
Wolter, Mario; Elstner, Marcus; Kubař, Tomáš
2013-09-01
The conductivity of DNA in molecular junctions is often probed experimentally under dry conditions, but it is unclear how much of the solvent remains attached to the DNA and how this impacts its structure, electronic states, and conductivity. Classical MD simulations show that DNA is unstable if the solvent is removed completely, while a micro-hydrated system with few water molecules shows similar charge transport properties as fully solvated DNA does. This surprising effect is analyzed in detail by mapping the density functional theory-based electronic structure to a tight-binding Hamiltonian, allowing for an estimate of conductivity of various DNA sequences with snapshot-averaged Landauer's approach. The characteristics of DNA charge transport turn out to be determined by the nearest hydration shell(s), and the removal of bulk solvent has little effect on the transport.
Intrinsic and resonance space charge limits
Parzen, G.
1989-01-01
The space charge limit in circular proton accelerators has been studied using a simulation program described below. Results from the simulation study indicate a different model for the space charge limit than the often presented models which emphasize resonances due to magnetic field errors. This simulation study suggests that the intrinsic space charge limit plays an important role. The intrinsic space charge limit is the space charge limit, in the absence of magnetic field errors, and is due to the forces generated by the beam itself. In studies of three operating accelerators, which include the AGS, the PS Booster and the Fermilab booster, it was found that the computed intrinsic space charge limit was fairly close to the experimentally observed space charge limit. This result plus studies of the effects of resonances due to magnetic field errors suggest that the intrinsic space charge limit provides an upper bound for the space charge limit which is not far from what is actually achieved by operating accelerators. The resonances present due to magnetic field errors, if strong enough, can prevent the accelerator from achieving the intrinsic space charge limit. However, the effects of these resonances were found to be appreciable only when the beam intensity gets close to the intrinsic space charge limit. Well below the intrinsic space charge limit, there is little beam growth due to magnetic field error driven resonances, and the space charge forces tend to stabilize these resonances. 4 refs., 5 figs.
Intrinsic and resonance space charge limits
The space charge limit in circular proton accelerators has been studied using a simulation program described below. Results from the simulation study indicate a different model for the space charge limit than the often presented models which emphasize resonances due to magnetic field errors. This simulation study suggests that the intrinsic space charge limit plays an important role. The intrinsic space charge limit is the space charge limit, in the absence of magnetic field errors, and is due to the forces generated by the beam itself. In studies of three operating accelerators, which include the AGS, the PS Booster and the Fermilab booster, it was found that the computed intrinsic space charge limit was fairly close to the experimentally observed space charge limit. This result plus studies of the effects of resonances due to magnetic field errors suggest that the intrinsic space charge limit provides an upper bound for the space charge limit which is not far from what is actually achieved by operating accelerators. The resonances present due to magnetic field errors, if strong enough, can prevent the accelerator from achieving the intrinsic space charge limit. However, the effects of these resonances were found to be appreciable only when the beam intensity gets close to the intrinsic space charge limit. Well below the intrinsic space charge limit, there is little beam growth due to magnetic field error driven resonances, and the space charge forces tend to stabilize these resonances. 4 refs., 5 figs
Medium energy charged particle spectrometer
The charged particle spectrometer E8 on HELIOS A and B will be described in some detail. It covers proton energies from 80 keV to 6 MeV, electrons from 20 keV to 2 MeV, and positrons from 150 to 550 keV. Its flight performance will be discussed. From examples of measurements the capability of the instrument will be demonstrated. (orig.)
Estimating Urban Road Congestion Charges
Newbery, David M G; Santos, Georgina
2002-01-01
Economists wishing to analyse road congestion and road pricing have usually relied on link-based speed-flow relationships. These may provide a poor description of urban congestion, which mainly arises from delays at intersections. Using the simulation model SATURN, we investigate the second-best proportional traffic reduction and find that linear speed-flow relations describe network flows quite well in eight English towns, though the predicted congestion costs and charges overstate those app...
Exercise bicycle for accumulator charging
Nekvapil, Jan
2014-01-01
Bachelor thesis is about possible solution construction of exercise bicycle with electric part working as a electric source. The first part of document introduces readers to issues about lead acid accumulators and charging, electronically commutated motors and electric converters. The second part shows potential solving constitution of exercise bicycle and we choose components and devices. EC motor will be connected with exercise bicycle by chain transmission. Transfer energy is realized thro...
Optimal Control of charge transfer
Werschnik, J.; Gross, E.K.U.
2007-01-01
In this work, we investigate how and to which extent a quantum system can be driven along a prescribed path in space by a suitably tailored laser pulse. The laser field is calculated with the help of quantum optimal control theory employing a time-dependent formulation for the control target. Within a two-dimensional (2D) model system we have successfully optimized laser fields for two distinct charge transfer processes. The resulting laser fields can be understood as a complicated interplay ...
Computations in Charged Particle Optics
Oral, Martin; Radlička, Tomáš
Brno: Institute of Scientific Instruments AS CR, v. v. i, 2014, s. 23-24. ISBN 978-80-87441-12-1. [Workshop of Interesting Topics of SEM and ESEM. Mikulov (CZ), 26.08.2014-31.08.2014] R&D Projects: GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : charged Particle Optics * computations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Mechanisms for DNA Charge Transport
Genereux, Joseph C.; Barton, Jacqueline K.
2010-01-01
DNA charge transport (CT) chemistry has received considerable attention by scientific researchers over the past 15 years since our first provocative publication on long range CT in a DNA assembly.1,2 This interest, shared by physicists, chemists and biologists, reflects the potential of DNA CT to provide a sensitive route for signaling, whether in the construction of nanoscale biosensors or as an enzymatic tool to detect damage in the genome. Research into DNA CT chemistry began as a quest to...
Spherically symmetric charged compact stars
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)
2015-08-15
In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)
Fully Traversable Wormholes Hiding Charge
Guendelman, Eduardo
2012-01-01
The charge-hiding effect by a wormhole, which was studied for the case where gravity/gauge-field system is self-consistently interacting with a charged lightlike brane (LLB) as a matter source, is now studied for the case of a time like brane. From the demand that no surfaces of infinite coordinate time redshift appear in the problem we are lead now to a completly traversable wormhole space, according to not only the traveller that goes through the wormhole (as was the case for the LLB), but also to a static external observer, this requires negative surface energy density for the shell sitting at the throat of the wormhole. We study a gauge field subsystem which is of a special non-linear form containing a square-root of the Maxwell term and which previously has been shown to produce a QCD-like confining gauge field dynamics in flat space-time. The condition of finite energy of the system or asymptotic flatness on one side of the wormhole implies that the charged object sitting at the wormhole throat expels a...
Effective Topological Charge Cancelation Mechanism
Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo
2016-06-01
Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy.
Heavy charged particle radiotherapy trial
Through mid-1985, a total of 49 patients received heavy-charged-particle irradiation for chordoma, chondrosarcoma, meningioma, or neurilemmoma of the base of skull or juxtaspinal area. The mean tumor dose was 68 Gray-equivalent, ranging from 26 to 80. Control within the irradiated area was obtained in 35 of 49. The median follow up in all 49 patients is 21 months, with a range from 3-90 months. Serious complications were seen in a small number of patients, with cranial nerve injury in two, transverse myelitis in one, and brain necrosis in three patients. In 42 patients with tumors of other histologies and/or sites, including tumors of paranasal sinuses, retroperitoneum, soft tissue and miscellaneous other sites, heavy charged particles were also used to deliver a higher tumor dose than possible with standard irradiation techniques. In the group, 21/42 (50%) have had local tumor control, also a good result considering the extent and the range of tumor types treated. The authors believe that there are a number of sites in addition to the juxtaspinal/base of skull tumors that will show long term benefit from treatment with heavy charged particles
Numerical Simulation for Space Charge Effect Calculation
Numerical simulation of space charge effect, analysis of three dimensional uniformly charged zero emittance ellipsoidal bunch as well as comparative analysis of numerical and analytical results are presented. (author)
Spinning charged test particles and Cosmic Censorship
The authors consider spinning charged test particles in the gravitational field of a rotating charged black hole, and it is shown that the hole cannot be destroyed, according to the Cosmic Censorship hypothesis. (Auth.)
Complementary surface charge for enhanced capacitive deionization
Gao, X.; Porada, S.; Omosebi, A.; Liu, K.L.; Biesheuvel, P.M.; Landon, J.
2016-01-01
Commercially available activated carbon cloth electrodes are treated using nitric acid and ethylenediamine solutions, resulting in chemical surface charge enhanced carbon electrodes for capacitive deionization (CDI) applications. Surface charge enhanced electrodes are then configured in a CDI cel
Charged line segments and ellipsoidal equipotentials
Curtright, T L; Chen, X; Haddad, M J; Karayev, S; Khadka, D B; Li, J
2016-01-01
This is a survey of the electrostatic potentials produced by charged straight-line segments, in various numbers of spatial dimensions, with comparisons between uniformly charged segments and those having non-uniform linear charge distributions that give rise to ellipsoidal equipotentials surrounding the segments. A uniform linear distribution of charge is compatible with ellipsoidal equipotentials only for three dimensions. In higher dimensions, the linear charge density giving rise to ellipsoidal equipotentials is counter-intuitive --- the charge distribution has a maximum at the center of the segment and vanishes at the ends of the segment. Only in two dimensions is the continuous charge distribution intuitive --- for that one case of ellipsoidal equipotentials, the charge is peaked at the ends of the segment and minimized at the center.
Electrostatic charges generated on aerosolisation of dispersions
Wang, Y
2001-01-01
In responding to the international community's agreement of phasing out chlorofluorocarbon (CFC) propellants by the year 2000, hydrofluoroalkane (HFA) has been chosen to replace CFCs. Intensive investigations related to the new propellant products have been carried out. Aerosol electrostatics is one of the topics investigated. To understand and subsequently control the charging processes is the motive of the research reported here. To help elucidate the complex charging process occurring naturally during atomization of liquids from pressurised Metered Dose Inhalers (pMDIs), it has been broken down into a sequence of related, simpler sub processes-drop charging, streaming current charging (coarse spray), splashing charging and fine spray charging. Our initial studies are of single drops forming at and breaking away from the tips of capillary tubes. The drop forming processes are so slow that any hydrodynamic effect can be dismissed. Then the charge on the drop is measured. It is found that the charge on water ...
CHARGE BOTTLE FOR A MASS SEPARATOR
Davidson, P.H.
1959-07-01
Improved mass separator charge bottles are described for containing a dense charge of a chemical compound of copper, nickel, lead or other useful substance which is to be vaporized, and to the method of utilizing such improvcd charge bottles so that the chemical compound is vaporized from the under surface of the charge and thus permits the non-volatile portion thereof to fall to the bottom of the charge bottle where it does not form an obstacle to further evaporation. The charge bottle comprises a vertically disposed cylindrical portion, an inner re-entrant cylindrical portion extending axially and downwardly into the same from the upper end thereof, and evaporative source material in the form of a chemical compound compacted within the upper annular pontion of the charge bottle formed by the re-entrant cylindrical portion, whereby vapor from the chemical compound will pass outwardly from the charge bottle through an apertured closure.
The effect of single-particle charge limits on charge distributions in dusty plasmas
An analytical expression for the stationary particle charge distribution in dusty plasmas is derived that accounts for the existence of single-particle charge limits. This expression is validated by comparison with the results of Monte Carlo charging simulations. The relative importance of the existence of charge limits for various values of the ratio of electron-to-ion density and ion mass is examined, and the effect of charge limits on the transient behavior of the charge distribution is considered. It is found that the time required to reach a steady-state charge distribution strongly decreases as the charge limit decreases, and that the existence of charge limits causes high-frequency charge fluctuations to become relatively more important than in the case without charge limits. (paper)
On stable nuclei mass charge distribution
The charge distribution of mass averaged stable nuclei about trajectory that cross the points with proton and neutron numbers nearly magic is investigated. It is shown that the charge distribution of ΔM have a symmetric property on nucleus charge z=45 and mass number A=103. The distribution of ΔM is compared with charge distribution of product of 206Th fission in framework of statistic model. 4 refs.; 1 fig. (author)
The dynamics of a charged particle
Rohrlich, Fritz
2008-01-01
Using physical arguments, I derive the physically correct equations of motion for a classical charged particle from the Lorentz-Abraham-Dirac equations (LAD) which are well known to be physically incorrect. Since a charged particle can classically not be a point particle because of the Coulomb field divergence, my derivation accounts for that by imposing a basic condition on the external force. That condition ensures that the particle's finite size charge distribution looks like a point charg...
Charge correlations in polaron hopping through molecules
Schmidt, Benjamin B.; Hettler, Matthias H.; Schön, Gerd
2009-01-01
In many organic molecules the strong coupling of excess charges to vibrational modes leads to the formation of polarons, i.e., a localized state of a charge carrier and a molecular deformation. Incoherent hopping of polarons along the molecule is the dominant mechanism of transport at room temperature. We study the far-from-equilibrium situation where, due to the applied bias, the induced number of charge carriers on the molecule is high enough such that charge correlations become relevant. W...
Charge-transfer with graphene and nanotubes
C.N.R. Rao; Rakesh Voggu
2010-01-01
Charge-transfer between electron–donor and –acceptor molecules is a widely studied subject of great chemical interest. Some of the charge-transfer compounds in solid state exhibit novel electronic properties. In the last two to three years, occurrence of molecular charge-transfer involving single-walled carbon nanotubes (SWNTs) and graphene has been demonstrated. This interaction gives rise to significant changes in the electronic properties of these nanocarbons. We examine charge-transfer ph...
Reading and writing charge on graphene devices
Connolly, M. R.; Herbschleb, E. D.; Puddy, R.K.; Roy, M.; Anderson, D.(California Institute of Technology, Pasadena, USA); Jones, G. A. C.; Maksym, P.; Smith, C. G.
2011-01-01
We use a combination of charge writing and scanning gate microscopy to map and modify the local charge neutrality point of graphene field-effect devices. We give a demonstration of the technique by writing remote charge in a thin dielectric layer over the graphene-metal interface and detecting the resulting shift in local charge neutrality point. We perform electrostatic simulations to characterize the gating effect of a realistic scanning probe tip on a graphene bilayer and find a good agree...
Long-range charge transfer in biopolymers
Astakhova, T. Yu; Likhachev, V. N.; Vinogradov, G. A.
2012-11-01
The results of theoretical and experimental studies on the charge transfer in biopolymers, namely, DNA and peptides, are presented. Conditions that ensure the efficient long-range charge transport (by several tens of nanometres) are considered. The known theoretical models of charge transfer mechanisms are discussed and the scopes of their application are analyzed. Attention is focused on the charge transport by the polaron mechanism. The bibliography includes 262 references.
Invisible Surface Charge Pattern on Inorganic Electrets
Wang, Fei; Hansen, Ole
2013-01-01
We propose an easy method to pattern the surface charge of ${\\rm SiO}_{2}$ electrets without patterning the dielectric layer. By eliminating the use of metal guard electrodes, both the charge efficiency and the surface charge stability in humid environments improve. We apply the concept to a vibr...
Incremental Pressing Technique in Explosive Charge
无
2001-01-01
A pressing technique has become available that might be useful for compressing granular explosives. If the height-diameter ratio of the charge is unfavorable,the high quality charge can not be obtained with the common single-action pressing. This paper presents incremental pressing technique, which can obtain the charge with higher overall density and more uniform density.
When electric charge becomes also magnetic
Adorno, Tiago C; Shabad, Anatoly E
2015-01-01
In nonlinear electrodynamics, QED included, we find a static solution to the field equations with an electric charge as its source, which is comprised of homogeneous parallel magnetic and electric fields, and a radial spherically-nonsymmetric long-range magnetic field, whose magnetic charge is proportional to the electric charge and also depends on the homogeneous component of the solution.
Charge operators in simple Lie groups
Taormina, A.
1984-03-01
Charge operators for representations of dimension less than or equal to 16 are computed in all simple Lie groups. The representations for which the charge operator reproduces the charge spectrum of leptons and quarks of one family are analyzed from a GUT point of view.
Supplementary kinetic constants of charged particles
Ribaric, Marijan; Sustersic, Luka
2006-01-01
We put forward: (A) An improved description of classical, kinetic properties of a charged pointlike physical particle that consists, in addition to its mass and charge, also of the Eliezer and Bhabha kinetic constants; and (B) a proposal to evaluate these kinetic constants by considering the trajectories of charged particles in an acccelerator.
Electrostatics with Computer-Interfaced Charge Sensors
Morse, Robert A.
2006-01-01
Computer interfaced electrostatic charge sensors allow both qualitative and quantitative measurements of electrostatic charge but are quite sensitive to charges accumulating on modern synthetic materials. They need to be used with care so that students can correctly interpret their measurements. This paper describes the operation of the sensors,…
Device for measuring charge density distribution in charged particle beams
A device to measure charge density distribution in charged particle beams has been described. The device contains a set of hollow interinsulated current-receiving electrodes, recording system, and cooling system. The invention is aimed at the increase of admissible capacity of the beams measured at the expense of cooling efficiency increase. The aim is achieved by the fact, that in the device a dynamic evaporating-condensational cooling of electrodes is realized by means of cooling agent supply in perpendicular to their planes through the tubes introduced inside special cups. Spreading in radial direction over electrode surface the cooling agent gradually and intensively washes the side surface of the cup, after that, it enters the cooling cavity in the form of vapour-liquid mixture. In the cavity the cooling agent, supplied using dispensina and receiving collectors in which vapoUr is condensed, circulates. In the device suggested the surface of electrode cooling is decreased significantly at the expense of side surface of the cups which receives the electrode heat
Charge densities and charge noise in mesoscopic conductors
M Büttiker
2002-02-01
We introduce a hierarchy of density of states to characterize the charge distribution in a mesoscopic conductor. At the bottom of this hierarchy are the partial density of states which represent the contribution to the local density of states if both the incident and the out-going scattering channel is prescribed. The partial density of states play a prominent role in measurements with a scanning tunneling microscope on multiprobe conductors in the presence of current ﬂow. The partial density of states determine the degree of dephasing generated by a weakly coupled voltage probe. In addition the partial density of states determine the frequency-dependent response of mesoscopic conductors in the presence of slowly oscillating voltages applied to the contacts of the sample. The partial density of states permit the formulation of a Friedel sum rule which can be applied locally. We introduce the off-diagonal elements of the partial density of states matrix to describe charge ﬂuctuation processes. This generalization leads to a local Wigner–Smith life-time matrix.
Charge transport in organic crystals
Ortmann, Frank
2009-07-01
The understanding of charge transport is one of the central goals in the research on semiconducting crystals. For organic crystals this is particularly complicated due to the strength of the electron-phonon interaction which requires the description of a seamless transition between the limiting cases of a coherent band-transport mechanism and incoherent hopping. In this thesis, charge transport phenomena in organic crystals are studied by theoretical means. A theory for charge transport in organic crystals is developed which covers the whole temperature range from low T, where it reproduces an expression from the Boltzmann equation for band transport, via elevated T, where it generalizes Holstein's small-polaron theory to finite bandwidths, up to high T, for which a temperature dependence equal to Marcus' electron-transfer theory is obtained. Thereby, coherent band transport and thermally induced hopping are treated on equal footing while simultaneously treating the electron-phonon interaction non-perturbatively. By avoiding the approximation of narrow polaron bands the theory allows for the description of large and small polarons and serves as a starting point for computational studies. The theoretical description is completed by using ab initio material parameters for the selected crystals under study. These material parameters are taken from density functional theory calculations for durene, naphthalene, and guanine crystals. Besides the analysis of the transport mechanism, special focus is put on the study of the relationship between mobility anisotropy and structure of the crystals. This study is supported by a 3D-visualization method for the transport channels in such crystals which has been derived in this thesis. (orig.)
Space charge effects: tune shifts and resonances
The effects of space charge and beam-beam interactions on single particle motion in the transverse degree of freedom are considered. The space charge force and the resulting incoherent tune shift are described, and examples are given from the AGS and CERN's PSB. Equations of motion are given for resonances in the presence of the space charge force, and particle behavior is examined under resonance and space charge conditions. Resonance phase space structure is described with and without space charge. Uniform and bunched beams are compared. Beam-beam forces and resonances and beam-beam detuning are described. 18 refs., 15 figs
Braden, H. W.; D'Avanzo, Antonella; Enolski, V. Z.
2011-03-01
We determine the spectral curve of charge-3 BPS su(2) monopoles with C3 cyclic symmetry. The symmetry means that the genus 4 spectral curve covers a (Toda) spectral curve of genus 2. A well adapted homology basis is presented enabling the theta functions and monopole data of the genus 4 curve to be given in terms of genus 2 data. The Richelot correspondence, a generalization of the arithmetic mean, is used to solve for this genus 2 curve. Results of other approaches are compared.
Braden, H W; Enolski, V Z
2010-01-01
We determine the spectral curve of charge 3 BPS su(2) monopoles with C_3 cyclic symmetry. The symmetry means that the genus 4 spectral curve covers a (Toda) spectral curve of genus 2. A well adapted homology basis is presented enabling the theta functions and monopole data of the genus 4 curve to be given in terms of genus 2 data. The Richelot correspondence, a generalization of the arithmetic mean, is used to solve for this genus 2 curve. Results of other approaches are compared.
Charge transport in conducting polymers
Polymers with metal-like electrical conductivity are presented as novel materials. After a short discussion of the present situation of technical applications experimental data on the electrical conductivity and its temperature and frequency dependence are reviewed. These data are discussed within the framework of a model involving fluctuation-induced tunneling between marcroscopic inhomogeneities and energy dependent hopping of charge carriers between localized states on a microscopic level. Pulsed photoconductivity measurements indicate that also in photoconductivity a hopping mechanism is dominant and solitary wave motion of conjugational defects escapes observation. (orig.)
Charge Fluctuations of an Uncharged Black Hole
Schiffer, Marcelo
2016-01-01
In this paper we calculate charge fluctuations of a Schwarzschild black-hole of mass $M$ confined within a perfectly reflecting cavity of radius R in thermal equilibrium with various species of radiation and fermions . Charge conservation is constrained by a Lagrange multiplier (the chemical potential). Black hole charge fluctuations are expected owing to continuous absorption and emission of particles by the black hole. For black holes much more massive than $10^{16} g$ , these fluctuations are exponentially suppressed. For black holes lighter than this, the Schwarzschild black hole is unstable under charge fluctuations for almost every possible size of the confining vessel. The stability regime and the fluctuations are calculated through the second derivative of the entropy with respect to the charge. The expression obtained contains many puzzling terms besides the expected thermodynamical fluctuations: terms corresponding to instabilities that do not depend on the specific value of charge of the charge car...
Repulsion between oppositely charged planar macroions.
YongSeok Jho
Full Text Available The repulsive interaction between oppositely charged macroions is investigated using Grand Canonical Monte Carlo simulations of an unrestricted primitive model, including the effect of inhomogeneous surface charge and its density, the depth of surface charge, the cation size, and the dielectric permittivity of solvent and macroions, and their contrast. The origin of the repulsion is a combination of osmotic pressure and ionic screening resulting from excess salt between the macroions. The excess charge over-reduces the electrostatic attraction between macroions and raises the entropic repulsion. The magnitude of the repulsion increases when the dielectric constant of the solvent is lowered (below that of water and/or the surface charge density is increased, in good agreement with experiment. Smaller size of surface charge and the cation, their discreteness and mobility are other factors that enhance the repulsion and charge inversion phenomenons.
The electric vehicle routing problem with partial charging and nonlinear charging function
Montoya, Alejandro; Guéret, Christelle; Mendoza, Jorge E.; Villegas, Juan
2015-01-01
Electric vehicle routing problems (eVRPs) extend classical routing problems to consider the limited driving range of electric vehicles. In general, this limitation is overcome by introducing planned detours to battery charging stations. Most existing eVRP models rely on one (or both) of the following assumptions: (i) the vehicles fully charge their batteries every time they reach a charging station, and (ii) the battery charge level is a linear function of the charging time. In practical situ...
Charge-state evolution of highly charged ions transmitted through microcapillaries
Tokesi, K.; Wirtz, Ludger; Lemell, C.; Burgdorfer, J.
2000-01-01
The charge-state evolution of highly charged ions transmitted through microcapillaries is studied theoretically by a classical trajectory Monte Carlo simulation.: The interaction of highly charged ions with the internal surface of the capillary is treated within the framework of dielectric response theory. We analyze the distance of closest approach and the angular distributions of the highly charged ions at the exit of the microcapillary. We find the charge-state fraction of transmitted N6+ ...
Charge on a weak polyelectrolyte
Wang, Shengqin; Granick, Steve; Zhao, Jiang
2008-12-01
Fluorescence measurements with single-molecule sensitivity are used to measure the hydrodynamic size and local pH of a weak polyelectrolyte, poly-2-vinyl pyridine end labeled with pH-sensitive dye, the polyelectrolyte having concentration so low (nanomolars) that molecular properties are resolvable only from fluorescence experiments and cannot be accessed by light scattering. We find that the local pH near the dye, inferred from its brightness, is consistently three orders of magnitude higher than the bulk pH. Upon varying the bulk pH, we measure the collapse point at which hydrophobic attraction overwhelms electrostatic repulsion between charged elements along the chain, and conclude that adding monovalent salt shifts this coil-to-globule collapse to higher pH than in the absence of salt. The influence of salt appears to shift the ionization equilibrium of this weak polyelectrolyte in the direction of the chain possessing enhanced electric charge at a given pH. Phenomenologically, this is opposite to the case for strong polyelectrolytes, although the mechanism differs.
Gauge theories and magnetic charge
If the magnetic field for an exact gauge group H (assumed compact and connected) exhibits an inverse square law behaviour at large distances then the generalized magnetic charge, appearing as the coefficient, completely determines the topological quantum number of the solution. When this magnetic charge operator is expressed as a linear combination of mutually commuting generators of H, the components are uniquely determined, up to the action of the Weyl group, and have to be weights of a new group Hsup(γ) which is explicitly constructed out of H. The relation between the 'electric' group H and the 'magnetic' group Hsup(γ) is symmetrical in the sense that (Hsup(γ))sup(γ)=H. The results suggest that H monopoles are Hsup(γ) multiplets and vice versa and that the true symmetry group is HxHsup(γ). In this duality topological and Noether quantum numbers exchange roles rather as in Sine-Gordon theory. A physical possibility is that H and Hsup(γ) be the colour and weak electromagnetic gauge groups. (Auth.)
Direct charged particle imaging sensors
CMOS image sensors optimized for charged particle imaging applications, such as electron microscopy and particle physics, have been designed and characterized. These directly image charged particles without reliance on performance-degrading hybrid technologies such as the use of scintillating materials. Based on standard CMOS active pixel sensor (APS) technology, the sensor arrays uses an 8-20 μm epitaxial layer that acts as a thicker sensitive region for the generation and collection of ionization electrons resulting from impinging high-energy particles. This results in a 100% fill factor and a far larger signal per incident electron than a standard CMOS photodiode could provide. A 512x550 pixels prototype has been fabricated and used extensively in an electron microscope, including having been used to take sample images. Temporal noise was measured to be 0.9 mV RMS, and the dynamic range was 60 dB. Power consumption at 70 frames/s is 20 mW. The full-width half-maximum of the collected ionization electron distribution was found to be 5.5 μm, yielding a spatial resolution of approximately 2.3 μm for individual incident electrons, and the modulation transfer function of the sensor at the Nyquist limit is to be 32%
Coupling Electromagnetism to Global Charge
Guendelman, Eduardo
2013-01-01
It is shown that an alternative to the standard scalar QED is possible. In this new version there is only global gauge invariance as far as the charged scalar fields are concerned although local gauge invariance is kept for the electromagnetic field. The electromagnetic coupling has the form $j_\\mu (A^{\\mu} +\\partial^{\\mu}B)$ where $B$ is an auxiliary field and the current $j_\\mu$ is $A_{\\mu}$ independent so that no "sea gull terms" are introduced. In a model of this kind spontaneous breaking of symmetry does not lead to photon mass generation, instead the Goldstone boson becomes a massless source for the electromagnetic field. Infrared questions concerning the theory when spontaneous symmetry breaking takes place and generalizations to global vector QED are discussed. In this framework Q-Balls and other non topological solitons that owe their existence to a global U(1) symmetry can be coupled to electromagnetism and could represent multiply charged particles now in search in the LHC. Finally, we give an exam...
Battery Charge Equalizer with Transformer Array
Davies, Francis
2013-01-01
High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.
Spacecraft Charging Sensitivity to Material Properties
Minow, Joseph I.; Edwards, David L.
2015-01-01
Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats.
Charge of a quasiparticle in a superconductor.
Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas
2016-02-16
Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure. PMID:26831071
王飞; 张文军; 郑栋; 徐良韬
2015-01-01
A three-dimensional (3D) charging-discharging cloud resolution model was used to investigate the impact of the vertical velocity fi eld on the charging processes and the formation of charge structure in a strong thunderstorm. The distribution and evolution of ice particle content and charges on ice particles were analyzed in diff erent vertical velocity fi elds. The results show that the ice particles in the vertical velocity range from 1 to 5 m s−1 obtained the most charge through charging processes during the lifetime of the thunderstorm. The magnitude of the charges could reach 1014 nC. Before the beginning of lightning activity, the charges produced in updraft region 2 (updraft speed ? 13 m s−1) and updraft region 1 (updraft speed between 5 and 13 m s−1) were relatively signifi cant. The magnitudes of charge reached 1013 nC, which clearly impacted upon the early lightning activity. The vertical velocity conditions in the quasi-steady region (updraft speed between –1 and 1 m s−1) were the most conducive for charge separation on ice particles on diff erent scales. Accordingly, a net charge structure always appeared in the quasi-steady and adjacent regions. Based on the results, a conceptual model of ice particle charging, charge separation, and charge structure formation in the fl ow fi eld was constructed. The model helps to explain observations of the“lightning hole”phenomenon.
a Movable Charging Unit for Green Mobility
ElBanhawy, E. Y.; Nassar, K.
2013-05-01
Battery swapping of electric vehicles (EVs) matter appears to be the swiftest and most convenient to users. The existence of swapping stations increases the feasibility of distributed energy storage via the electric grid. However, it is a cost-prohibitive way of charging. Early adaptors' preferences of /perceptions about EV system in general, has its inflectional effects on potential users hence the market penetration level. Yet, the charging matter of electric batteries worries the users and puts more pressure on them with the more rigorous planning-ahead they have to make prior to any trip. This paper presents a distinctive way of charging. It aims at making the overall charging process at ease. From a closer look into the literature, most of EVs' populations depend on domestic charge. Domestic charging gives them more confidence and increases the usability factor of the EV system. Nevertheless, they still need to count on the publically available charging points to reach their destination(s). And when it comes to multifamily residences, it becomes a thorny problem as these apartments do not have a room for charging outlets. Having said the irritating charging time needed to fatten the batteries over the day and the minimal average mileage drove daily, hypothetically, home delivery charging (Movable Charging Unit-MCU) would be a stupendous solution. The paper discusses the integration of shortest path algorithm problem with the information about EV users within a metropolitan area, developing an optimal route for a charging unit. This MCU delivers charging till homes whether by swapping batteries or by fast charging facility. Information about users is to be provided by the service provider of the neighbourhood, which includes charging patterns (timing, power capacity). This problem lies under the shortest path algorithms problem. It provides optimal route of charging that in return shall add more reliability and usability values and alleviate the charging
Magnetic guidance of charged particles
Dubbers, Dirk
2015-01-01
Many experiments and devices in physics use static magnetic fields to guide charged particles from a source onto a detector, and we ask the innocent question: What is the distribution of particle intensity over the detector surface? One should think that the solution to this seemingly simple problem is well known. We show that, even for uniform guide fields, this is not the case and present analytical point spread functions (PSF) for magnetic transport that deviate strongly from previous results. The "magnetic" PSF shows unexpected singularities, which were recently also observed experimentally, and which make detector response very sensitive to minute changes of position, field amplitude, or particle energy. In the field of low-energy particle physics, these singularities may become a source of error in modern high precision experiments, or may be used for instrument tests, for instance in neutrino mass retardation spectrometers.
Magnetic guidance of charged particles
Dirk Dubbers
2015-09-01
Full Text Available Many experiments and devices in physics use static magnetic fields to guide charged particles from a source onto a detector, and we ask the innocent question: What is the distribution of particle intensity over the detector surface? One should think that the solution to this seemingly simple problem is well known. We show that, even for uniform guide fields, this is not the case, and we present analytical point spread functions (PSF for magnetic transport that deviate strongly from previous results. The “magnetic” PSF shows unexpected singularities, which were recently also observed experimentally, and which make detector response very sensitive to minute changes of position, field amplitude, or particle energy. In the field of low-energy particle physics, these singularities may become a source of error in modern high precision experiments, or may be used for instrument tests.
Correlations in charged bosons systems
The two and three-dimensional charge Bose gas have been studied. In the bidimensional case two different types of interaction were considered: l/r and l n(r). The method of self-consistent-field was applied to these systems, which takes into account the short range correlations between the bosons through a local-field correction. By using self-consistent numerical calculations, the structure factor S(k→) was determined. The pair-correlation function, the ground-state energy, the pressure of the gas and the spectrum of elementary excitations were obtained from S (k→). The screening density induced by a fixed charged impurity was calculated. In the high-density limit our calculations reproduce the results given by Bogoliubov's perturbation theory. In the intermediate-density region, corresponding to the strongly coupled systems, the results are in very good agreement with calculations based on HNC approximation as well as Monte Carlo method. The results are compared in several situations with RPA results showing that the self-consistent method is much more accurate. The two-dimensional systems showed to be more correlated than the three-dimensional systems showed to be more correlated than the three-dimensional one; the gas with interaction l/r is also more correlated than the logarithmic one at high densities, but it begins to be less correlated than this one in the low-density region. The thermodynamic functions of the two and three-dimensional systems at finite temperatures near absolute zero are calculated based upon the gas excitation spectra at zero temperature. (author)
Charge transport in nanoscale junctions.
Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas
2008-09-01
Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at
Research on the fast charging of VRLA
Xiao Qing
2012-11-01
Full Text Available VRLA can be the energy storing device of the HEV (Hybrid Electric Vehicle, photovoltaic system and so on. The most important factor that restricts the improvement of these fields is the service lifetime of the battery cannot reach the expectation. In the charging process, traditional charging method has serious polarization phenomenon. It will decrease its service life. Aimed at the purpose of reducing the polarization phenomenon, this paper proposed the changing current depolarization pulse charging method which is combining the dynamic model of the battery on the basis of analyzing the existential issues in the pulse charging method. By building the hardware circuit to achieve the function and verify their feasibility. The results indicate that, compared with pulse charging method, the new method makes battery fully charged in shorter time obviously and the temperature of batteries rise more slowly.
Charged rotating black holes at large D
Tanabe, Kentaro
2016-01-01
We study odd dimensional charged equally rotating black holes in the Einstein-Maxwell theory with/without a cosmological constant by using the large D expansion method, where D is a spacetime dimension. Solving the Einstein-Maxwell equations in the 1/D expansion we obtain the large D effective equations for charged equally rotating black holes. The effective equations describe the nonlinear dynamics of charged equally rotating black holes. Especially the perturbation analysis of the effective equations gives analytic formula for quasinormal mode frequencies, and we can show charged equally rotating black holes have instabilities. As one interesting feature of instabilities, we observe that the ultraspinning instability of neutral equally rotating black holes in de Sitter is connected with the instability of de Sitter Reissner-Nordstrom black hole in a rotation-charge plane of the solution parameter space. So these instabilities have same origin as dynamical properties of charged rotating black holes. We also ...
Aerosol charge state characterisation using an ELPI
Matthews, J C; Wright, M D; Henshaw, D L [University of Bristol (United Kingdom); Biddiscombe, M F; Usmani, O S, E-mail: j.c.matthews@bristol.ac.uk [NHLI, Imperial College London and Royal Brompton Hospital (United Kingdom)
2011-06-23
A new technique has been developed to measure the size distribution and charge state of highly charged aerosols using an Electrical Low Pressure Impactor (ELPI). The internal charger was switched alternately on and off and the time between stable charge states found to be {approx} 10 s. The size distribution of aerosols was found when the charger was on, from which the charge distribution can be estimated when the charger is off using the current at each impactor stage. This method was tested in background conditions, when a candle was burning and when a negative air ioniser was used. The ELPI electrometers were not sensitive enough to accurately measure the charge state on background and candle air, but gave a value for air charged by an ioniser. Comparing results from the ELPI with other techniques showed inaccuracies in this method that need to be addressed before further use of this technique.
Aerosol charge state characterisation using an ELPI
Matthews, J. C.; Wright, M. D.; Biddiscombe, M. F.; Usmani, O. S.; Henshaw, D. L.
2011-06-01
A new technique has been developed to measure the size distribution and charge state of highly charged aerosols using an Electrical Low Pressure Impactor (ELPI). The internal charger was switched alternately on and off and the time between stable charge states found to be ~ 10 s. The size distribution of aerosols was found when the charger was on, from which the charge distribution can be estimated when the charger is off using the current at each impactor stage. This method was tested in background conditions, when a candle was burning and when a negative air ioniser was used. The ELPI electrometers were not sensitive enough to accurately measure the charge state on background and candle air, but gave a value for air charged by an ioniser. Comparing results from the ELPI with other techniques showed inaccuracies in this method that need to be addressed before further use of this technique.
Review of Variable Generation Integration Charges
Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.
2013-03-01
The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.
Mass Effect on Axial Charge Dynamics
Guo, Er-dong
2016-01-01
We studied effect of finite quark mass on the dynamics of axial charge using the D3/D7 model in holography. The mass term in axial anomaly equation affects both the fluctuation (generation) and dissipation of axial charge. We studied the dependence of the effect on quark mass and external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a non-monotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and magnetic field.
Surface charge measurement by the Pockels effect
Sam, Y L
2001-01-01
have been observed by applying both impulse and AC voltages to a needle electrode in direct contact with the BSO. AC surface discharge behaviour of polymeric materials bonded to the BSO has also been investigated. The effect of the surrounding environment has been experimentally examined by placing the cell inside a vacuum chamber. Surface charge measurements have been made at various atmospheric pressures. The effect of an electro-negative gas (Sulphur Hexafluoride) on the surface charge distribution has also been investigated. This thesis is concerned with the design and development of a surface charge measurement system using Pockels effect. The measurement of surface charge is important in determining the electrical performance of high voltage insulation materials. The method proposed allows on-line measurement of charge and can generate two-dimensional images that represent the charge behaviour on the surface of the material under test. The measurement system is optical and uses a Pockels crystal as the ...
Intrinsic Charges and the Strong Forc
Lehnert B.
2013-07-01
Full Text Available According to a revised quantum electrodynamic theory, there are models of leptons such as the electron which possess both a net integrated electric charge and a much larger intrinsic charge of both polarities. From estimates based on such models, the corresponding Coulomb force due to the intrinsic charges then becomes two orders of magnitude larger than that due to the conventional net charge. This intrinsic charge force can also have the features of a short-range interaction. If these results would generally hold true, the intrinsic charge force could either interact with a strong force of diﬀerent origin and character, or could possibly become identical with the strong force.
Why do particle clouds generate electric charges?
Pähtz, T.; Herrmann, H. J.; Shinbrot, T.
2010-05-01
Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model's predictions using discrete-element simulations and a tabletop granular experiment.
Endotoxin removal by charge-modified filters.
Gerba, C P; Hou, K
1985-01-01
The effects of positively charged nylon and depth (cellulose-diatomaceous earth) filters on endotoxin removal from various solutions were evaluated. The charged filter media removed significant amounts of Escherichia coli and natural endotoxin from tap water, distilled water, sugars, and NaCl solutions; no significant removal of endotoxin was observed with negatively charged filter media. The extent of removal was influenced by pH, the presence of salts, and organic matter. Such media may be ...
Interfacial properties of charge asymmetric ionic liquids
Alejandre, Jose; Bresme, Fernando; Gonzalez-Melchor, Minerva
2009-01-01
We report molecular dynamics simulations of the coexistence and interfacial properties of ionic liquids as a function of cation/anion, (z$_+$ : z$_-$) = (2:-1), (4:-1), charge asymmetry. Our results correct previous computations of the coexistence curve of (2:-1) charge asymmetric systems, obtained via the fine-lattice discretization method. In agreement with previous computations we report a reduction in the critical temperature and an increase in the critical density with charge asymmetry. ...
On the effective charge of hydrophobic polyelectrolytes
Chepelianskii, Alexei; Mohammad-Rafiee, Farshid; Raphael, Elie
2008-01-01
In this paper we analyze the behavior of hydrophobic polyelectrolytes. It has been proposed that this system adopts a pearl-necklace structure reminiscent of the Rayleigh instability of a charged droplet. Using a Poisson-Boltzmann approach, we calculate the counterion distribution around a given pearl assuming the latter to be penetrable for the counterions. This allows us to calculate the effective electric charge of the pearl as a function of the chemical charge. Our predictions are in very...
Charged rotating black holes at large D
Tanabe, Kentaro
2016-01-01
We study odd dimensional charged equally rotating black holes in the Einstein-Maxwell theory with/without a cosmological constant by using the large D expansion method, where D is a spacetime dimension. Solving the Einstein-Maxwell equations in the 1/D expansion we obtain the large D effective equations for charged equally rotating black holes. The effective equations describe the nonlinear dynamics of charged equally rotating black holes. Especially the perturbation analysis of the effective...
Environment Dependent Charge Potential for Water
Muralidharan, Krishna; Valone, Steven M.; Atlas, Susan R.
2007-01-01
We present a new interatomic potential for water captured in a charge-transfer embedded atom method (EAM) framework. The potential accounts for explicit, dynamical charge transfer in atoms as a function of the local chemical environment. As an initial test of the charge-transfer EAM approach for a molecular system, we have constructed a relatively simple version of the potential and examined its ability to model the energetics of small water clusters. The excellent agreement between our resul...
An investigation into waste taxes and charges
Dunne, Louise
2004-01-01
This paper reviews the potential for problems regarding public acceptability of environmental taxes with: a review of waste charges literature; a review of the literature on environmental attitudes; and a case study - the municipal waste charge protests in Ireland in 2003 and 2004. These public protests against new waste charges demonstrate the necessity for good advertisement and public relations when introducing a new tax. Rather than explain the polluter pays principle and simultaneously p...
Charge trapping and detrapping in polymeric materials
Chen, George; Xu, Zhiqiang
2009-01-01
Space charge formation in polymeric materials can cause some serious concern for design engineers as the electric field may severely be distorted, leading to part of the material being overstressed. At the worst, this may result in material degradation and possibly premature failure. It is therefore important to understand charge generation, trapping, and detrapping processes in the material. In the present paper, the characteristics of charge trapping and detrapping in low density polyethyle...
Application and promotion of wireless charging technology
Yan, Kaijun
2014-01-01
The aim of this thesis is to study wireless charging technology and analyze the application and promotion of each technology. This technology is based on Faraday’s electromagnetic in 1830s. It is not a new technology but it is developing high speed nowadays. This thesis introduces four mainstream types of wireless charging technology and three main-stream standards, and analyzes their features and development status. Wireless charging technology has been applied to some products, suc...
Soret Motion of a Charged Spherical Colloid
Rasuli, Seyyed Nader; Golestanian, Ramin
2007-01-01
The thermophoretic motion of a charged spherical colloidal particle and its accompanying cloud of counterions and co-ions in a temperature gradient is studied theoretically. Using the Debye-Huckel approximation, the Soret drift velocity of a weakly charged colloid is calculated analytically. For highly charged colloids, the nonlinear system of electrokinetic equations is solved numerically, and the effects of high surface potential, dielectrophoresis, and convection are examined. Our results ...
HICS: Highly charged ion collisions with surfaces
Peters, Thorsten; Haake, Christian; Hopster, Johannes; Sokolovsky, Valentin; Wucher, Andreas; Schleberger, Marika
2008-01-01
The layout of a new instrument designed to study the interaction of highly charged ions with surfaces, which consists of an ion source, a beamline including charge separation and a target chamber, is presented here. By varying the charge state and impact velocity of the projectiles separately, the dissipation of potential and kinetic energy at or below the surface can be studied independently. The target chamber offers the use of tunable metal-insulator-metal devices as detectors for internal...
Mechanism of electric charge formation polyethylene
The electric charge formation in irradiated dielectrics is a phenomenon resulting from interaction of radiation with matter. Using pressure-pulse techniques the general mechanism of eletric charge accumulation and space distribution in electron- and gamma-irradiated polyethylene (low and high density) was studied. The relationship between the charge accumulation and structural and radiation-induced defects in polyethylene was established. Results obtained are applied to other organic materials
Charge fluctuations in nonlinear heat transport
Gergs, Niklas M.; Hörig, Christoph B. M.; Wegewijs, Maarten R.; Schuricht, Dirk
2015-01-01
We show that charge fluctuation processes are crucial for the nonlinear heat conductance through an interacting nanostructure, even far from a resonance. The often made assumption that off-resonant transport proceeds only by virtual occupation of charge states, underlying exchange-scattering models of transport, can fail dramatically for heat transport as compared to charge transport. This indicates that nonlinear heat transport spectroscopy may be a very promising experimental tool, in parti...
Physical charges in QED and QCD
Ilderton, Anton; McMullan, David
2009-01-01
We show that the `dressing' approach, which describes physical charges as gauge invariant composites of matter and clouds of gauge bosons, arises naturally in gauge theories. We give perturbative examples of dressings for both asymptotic charges and for states in which the fields are confined to a compact volume as is required, for example, by causality in pair creation. In QCD, we use dressed states to demonstrate explicitly how Gribov copies obstruct the non-perturbative construction of colour charges.
Induction Charge Detector with Multiple Sensing Stages
Gamero-Castano, Manuel
2008-01-01
An induction charge detector with multiple sensing stages has been conceived for use in characterizing sprayed droplets, dust particles, large ionized molecules, and the like. Like related prior single-stage devices, each stage yields a measurement of the electric charge and the time of flight of the particle. In effect, an n-stage sensor yields n independent sets of such measurements from the same particle. The benefit of doing this is to increase the effective signal-to-noise ratio and thereby lower the charge-detection limit and the standard error of the charge measurement.
First charge breeding results at CARIBU EBIS
The Electron Beam Ion Source (EBIS) developed to breed CARIBU radioactive beams at ATLAS is currently in the off-line commissioning stage. The beam commissioning is being performed using a low emittance surface ionization source producing singly-charged cesium ions. The primary goal of the off-line commissioning is the demonstration of high-efficiency charge breeding in the pulsed injection mode. An overview of the final design of the CARIBU EBIS charge breeder, the off-line commissioning installation and the first results on charge breeding of stable cesium ions are presented and discussed
Radiation from charges in the continuum limit
Reuven Ianconescu
2013-06-01
Full Text Available It is known that an accelerating charge radiates according to Larmor formula. On the other hand, any DC current following a curvilinear path, consists of accelerating charges, but in such case the radiated power is 0. The scope of this paper is to analyze and quantify how a system of charges goes from a radiating state to a non radiating state when the charges distribution goes to the continuum limit. Understanding this is important from the theoretical point of view and the results of this work are applicable to particle accelerator, cyclotron and other high energy devices.
Two-phase charge-coupled device
Kosonocky, W. F.; Carnes, J. E.
1973-01-01
A charge-transfer efficiency of 99.99% per stage was achieved in the fat-zero mode of operation of 64- and 128-stage two-phase charge-coupled shift registers at 1.0-MHz clock frequency. The experimental two-phase charge-coupled shift registers were constructed in the form of polysilicon gates overlapped by aluminum gates. The unidirectional signal flow was accomplished by using n-type substrates with 0.5 to 1.0 ohm-cm resistivity in conjunction with a channel oxide thickness of 1000 A for the polysilicon gates and 3000 A for the aluminum gates. The operation of the tested shift registers with fat zero is in good agreement with the free-charge transfer characteristics expected for the tested structures. The charge-transfer losses observed when operating the experimental shift registers without the fat zero are attributed to fast interface state trapping. The analytical part of the report contains a review backed up by an extensive appendix of the free-charge transfer characteristics of CCD's in terms of thermal diffusion, self-induced drift, and fringing field drift. Also, a model was developed for the charge-transfer losses resulting from charge trapping by fast interface states. The proposed model was verified by the operation of the experimental two-phase charge-coupled shift registers.
Copeland, Edmund J; Zhou, Shuang-Yong
2014-01-01
Q-balls are non-topological solitonic solutions to a wide class of field theories that possess global symmetries. Here we show that in these same theories there also exists a tower of novel composite Q-ball solutions where, within one composite Q-ball, positive and negative charges co-exist and swap at a frequency lower than the natural frequency of an individual Q-ball. These charge-swapping Q-balls are constructed by assembling Q-balls and anti-Q-balls tightly such that their nonlinear cores overlap. We explain why charge-swapping Q-balls can form and why they swap charges.
Charge-transfer with graphene and nanotubes
C.N.R. Rao
2010-09-01
Full Text Available Charge-transfer between electron–donor and –acceptor molecules is a widely studied subject of great chemical interest. Some of the charge-transfer compounds in solid state exhibit novel electronic properties. In the last two to three years, occurrence of molecular charge-transfer involving single-walled carbon nanotubes (SWNTs and graphene has been demonstrated. This interaction gives rise to significant changes in the electronic properties of these nanocarbons. We examine charge-transfer phenomenon in graphene and SWNTs in this article in view of its potential utility in device applications.
Conductivity maximum in a charged colloidal suspension
Bastea, S
2009-01-27
Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.
Worldline deviations of charged spinning particles
Heydari-Fard, M. [Department of Physics, Shahid Beheshti University, Evin, 19839 Tehran (Iran, Islamic Republic of); Mohseni, M. [Physics Department, Payame Noor University, 19395-4697 Tehran (Iran, Islamic Republic of)]. E-mail: m-mohseni@pnu.ac.ir; Sepangi, H.R. [Department of Physics, Shahid Beheshti University, Evin, 19839 Tehran (Iran, Islamic Republic of); Institute for Studies in Theoretical Physics and Mathematics, Tehran (Iran, Islamic Republic of)
2005-10-20
The geodesic deviation equation is generalized to worldline deviation equations describing the relative accelerations of charged spinning particles in the framework of Dixon-Souriau equations of motion.
Worldline deviations of charged spinning particles
Heydari-Fard, M; Sepangi, H R
2005-01-01
The geodesic deviation equation is generalized to worldline deviation equations describing the relative accelerations of charged spinning particles in the framework of Dixon-Souriau equations of motion.