Gravitational collapse of charged scalar fields
Torres, Jose M
2014-01-01
In order to study the gravitational collapse of charged matter we analyze the simple model of an self-gravitating massless scalar field coupled to the electromagnetic field in spherical symmetry. The evolution equations for the Maxwell-Klein-Gordon sector are derived in the 3+1 formalism, and coupled to gravity by means of the stress-energy tensor of these fields. To solve consistently the full system we employ a generalized Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation of General Relativity that is adapted to spherical symmetry. We consider two sets of initial data that represent a time symmetric spherical thick shell of charged scalar field, and differ by the fact that one set has zero global electrical charge while the other has non-zero global charge. For compact enough initial shells we find that the configuration doesn't disperse and approaches a final state corresponding to a sub-extremal Reissner-N\\"ordstrom black hole with $|Q|
Charged Scalars in Transient Stellar Electromagnetic Fields
Marina-Aura Dariescu; Ciprian Dariescu; Ovidiu Buhucianu
2011-01-01
We consider a non-rotating strongly magnetized object, whose magnetic induction isof the form Bx = Bo{t)sin kz. In the electromagnetic field generated by only one component of the four-vector potential, we solve the Klein-Gordon equation and discuss the sudden growth of the scalar wave functions for wavenumbers inside computable ranges. In the case of unexcited transversal kinetic degrees, we write down the recurrent differential system for the amplitude functions and compute the respective conserved currents.
Charged Scalars in Transient Stellar Electromagnetic Fields
We consider a non-rotating strongly magnetized object, whose magnetic induction is of the form Bx = B0(t)sinκZ. In the electromagnetic field generated by only one component of the four-vector potential, we solve the Klein—Gordon equation and discuss the sudden growth of the scalar wave functions for wavenumbers inside computable ranges. In the case of unexcited transversal kinetic degrees, we write down the recurrent differential system for the amplitude functions and compute the respective conserved currents. (general)
Black hole solutions in Einstein-charged scalar field theory
Ponglertsakul, S.; Dolan, S.; Winstanley, E.
2015-01-01
We investigate possible end-points of the superradiant instability for a charged black hole with a reflecting mirror. By considering a fully coupled system of gravity and a charged scalar field, hairy black hole solutions are obtained. The linear stability of these black hole solutions is studied.
Conserved Charges of Minimal Massive Gravity Coupled to Scalar Field
Setare, M R
2016-01-01
Recently, the theory of Topologically massive gravity non-minimally coupled to a scalar field has been proposed which comes from Lorentz-Chern-Simons theory \\cite{1}. That theory is a torsion free one. We extend that theory by adding an extra term which makes torsion to be non-zero. The extended theory can be regarded as an extension of Minimal massive gravity such that it is non-minimally coupled to a scalar field. We obtain equations of motion of extended theory such that they are expressed in terms of usual torsion free spin-connection. We show that BTZ spacetime is a solution of this theory when scalar field is constant. We define quasi-local conserved charge by the concept of generalized off-shell ADT current which both are conserved for any asymptotically Killing vector field as well as a Killing vector field which is admitted by spacetime everywhere. Also we find general formula for entropy of stationary black hole solution in the context of considered theory. We apply the obtained formulas on BTZ blac...
Instability of charged wormholes supported by a ghost scalar field
In previous work, we analyzed the linear and nonlinear stability of static, spherically symmetric wormhole solutions to Einstein's field equations coupled to a massless ghost scalar field. Our analysis revealed that all these solutions are unstable with respect to linear and nonlinear spherically symmetric perturbations and showed that the perturbation causes the wormholes to either decay to a Schwarzschild black hole or undergo a rapid expansion. Here, we consider charged generalization of the previous models by adding to the gravitational and ghost scalar field an electromagnetic one. We first derive the most general static, spherically symmetric wormholes in this theory and show that they give rise to a four-parameter family of solutions. This family can be naturally divided into subcritical, critical and supercritical solutions depending on the sign of the sum of the asymptotic masses. Then, we analyze the linear stability of these solutions. We prove that all subcritical and all critical solutions possess one exponentially in time growing mode. It follows that all subcritical and critical wormholes are linearly unstable. In the supercritical case we provide numerical evidence for the existence of a similar unstable mode.
Einstein-charged scalar field theory: black hole solutions and their stability
Ponglertsakul, Supakchai; Dolan, Sam; Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)
2015-01-01
A complex scalar field on a charged black hole in a cavity is known to experience a superradiant instability. We investigate possible final states of this instability. We find hairy black hole solutions of a fully coupled system of Einstein gravity and a charged scalar field. The black holes are surrounded by a reflecting mirror. We also investigate the stability of these black holes.
Massive Scalar Field Evolution in the Dyadosphere Spacetime of Charged Black Hole
Scalar field quasinormal modes in the dyadosphere spacetime of charged black hole are studied by using the third-order WKB approximation. From numerical results obtained, we find that the scalar field mass u plays an important role in studying the quasinormal frequencies. With the scalar field mass increases, the real parts increase and the magnitudes of the imaginary parts decrease. Particulary, these change are almost linearly. (geophysics, astronomy, and astrophysics)
Dark sector impact on gravitational collapse of an electrically charged scalar field
Nakonieczna, Anna; Rogatko, Marek; Nakonieczny, Łukasz
2015-11-01
Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.
Dark sector impact on gravitational collapse of an electrically charged scalar field
Nakonieczna, Anna; Nakonieczny, Łukasz
2015-01-01
Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under an U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. ...
Stability of black holes in Einstein-charged scalar field theory in a cavity
Dolan, Sam R; Winstanley, Elizabeth
2015-01-01
Can a black hole that suffers a superradiant instability evolve towards a 'hairy' configuration which is stable? We address this question in the context of Einstein-charged scalar field theory. First, we describe a family of static black hole solutions which possess charged scalar-field hair confined within a mirror-like boundary. Next, we derive a set of equations which govern the linear, spherically symmetric perturbations of these hairy solutions. We present numerical evidence which suggests that, unlike the vacuum solutions, the (single-node) hairy solutions are stable under linear perturbations. Thus, it is plausible that stable hairy black holes represent the end-point of the superradiant instability of electrically-charged Reissner-Nordstrom black holes in a cavity; we outline ways to explore this hypothesis.
The charged black-hole bomb: A lower bound on the charge-to-mass ratio of the explosive scalar field
Hod, Shahar
2016-01-01
The well-known superradiant amplification mechanism allows a charged scalar field of proper mass $\\mu$ and electric charge $q$ to extract the Coulomb energy of a charged Reissner-Nordstr\\"om black hole. The rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-scalar-field-mirror system is known as the {\\it charged black-hole bomb}. Previous...
The charged black-hole bomb: A lower bound on the charge-to-mass ratio of the explosive scalar field
Shahar Hod
2016-01-01
The well-known superradiant amplification mechanism allows a charged scalar field of proper mass μ and electric charge q to extract the Coulomb energy of a charged Reissner–Nordström black hole. The rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-scalar-field-mirror system is known as the charged black-hole bomb. Previous numerical stu...
Scalar fields versus black holes
It is shown that if a body is endowed with a scalar charge, the event horizon associated with the modified Schwarzchild solution is reduced to a point, this avoiding the black holes formation. The discussion is restricted to ordinary scalar fields and conformally invariant scalar fields, respectively. (authors)
The charged black-hole bomb: A lower bound on the charge-to-mass ratio of the explosive scalar field
Hod, Shahar
2016-04-01
The well-known superradiant amplification mechanism allows a charged scalar field of proper mass μ and electric charge q to extract the Coulomb energy of a charged Reissner-Nordström black hole. The rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-scalar-field-mirror system is known as the charged black-hole bomb. Previous numerical studies of this composed physical system have shown that, in the linearized regime, the inequality q / μ > 1 provides a necessary condition for the development of the superradiant instability. In the present paper we use analytical techniques to study the instability properties of the charged black-hole bomb in the regime of linearized scalar fields. In particular, we prove that the lower bound q/μ >√{rm/r- - 1/rm /r+ - 1 frac>} provides a necessary condition for the development of the superradiant instability in this composed physical system (here r± are the horizon radii of the charged Reissner-Nordström black hole and rm is the radius of the confining mirror). This analytically derived lower bound on the superradiant instability regime of the composed black-hole-charged-scalar-field-mirror system is shown to agree with direct numerical computations of the instability spectrum.
Vacuum pair production of charged scalar bosons in time-dependent electric fields
Li, Zi-Liang; Xie, Bai-Song
2013-01-01
Based on the quantum mechanical scattering model, the dynamical assist effect and the multiple-slit interference effect in electron-positron pair production from vacuum are generalized to vacuum pair production of charged scalar bosons. For the former effect some combinations of a strong but slowly varying electric field and a weak but rapidly varying one with different time delay are studied. Results indicate that the oscillation intensity of momentum spectrum and the number density of created bosons reduce with increasing of the time delay. Obviously, they achieve the maximum if the time delay equals zero. For the latter effect, it is shown that this effect does not exist for equal-sign $N$-pulse electric field in contrast to its existence for alternating-sign $N$-pulse. An approximate solution of boson momentum spectrum is got and it is agreeable well with the exact numerical one in alternating-sign $N$-pulse electric field, especially for $2$-pulse field and for small longitudinal momentum. The difference...
The charged black-hole bomb: A lower bound on the charge-to-mass ratio of the explosive scalar field
Hod, Shahar
2016-01-01
The well-known superradiant amplification mechanism allows a charged scalar field of proper mass $\\mu$ and electric charge $q$ to extract the Coulomb energy of a charged Reissner-Nordstr\\"om black hole. The rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-scalar-field-mirror system is known as the {\\it charged black-hole bomb}. Previous numerical studies of this composed physical system have shown that, in the linearized regime, the inequality $q/\\mu>1$ provides a necessary condition for the development of the superradiant instability. In the present paper we use analytical techniques to study the instability properties of the charged black-hole bomb in the regime of linearized scalar fields. In particular, we prove that the lower bound ${{q}\\over{\\mu}}>\\sqrt{{{r_{\\text{m}}/r_--1}\\over{r_{\\text{m}}/r_+-1}}}$ provides a necessary condition for the develo...
Spinelly, J
2003-01-01
In this paper we consider a charged massless scalar quantum field operator in the spacetime of an idealized cosmic string, i.e., an infinitely long, straight and static cosmic string, which presents a magnetic field confined in a cylindrical tube of finite radius. Three distinct situations are taking into account in this analysis: {\\it{i)}} a homogeneous field inside the tube, {\\it{ii)}} a magnetic field proportional to $1/r$ and {\\it{iii)}} a cylindrical shell with $\\delta$-function. In these three cases the axis of the infinitely long tube of radius $R$ coincides with the cosmic string. In order to study the vacuum polarization effects outside the tube, we explicitly calculate the Euclidean Green function associated with this system for the three above situations, considering points in the region outside the tube.
ZHANG Hong-Bao; CAO Zhou-Jian; GAO Chong-Shou
2004-01-01
Si-Jie Gao has recently investigated Hawking radiation from spherically symmetrical gravitational collapse to an extremal R-N black hole for a real scalar field. Especially he estimated the upper bound for the expected number of particles in any wave packet belonging to Hout spontaneously produced from the state |0＞in, which confirms the traditional belief that extremal black holes do not radiate particles. Making some modifications, we demonstrate that the analysis can go through for a charged scalar field.
Nakonieczna, Anna
2016-01-01
Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which meas...
We investigate quasinormal modes of a massless charged scalar field on a small Reissner-Nordstroem-anti-de Sitter (RN-AdS) black hole both with analytical and numerical approaches. In the analytical approach, by using the small black hole approximation (r++/L→0, where r+ and L stand for the black hole event horizon radius and the AdS scale, respectively. We then show that the small RN-AdS black hole is unstable if its quasinormal modes satisfy the superradiance condition and that the instability condition of the RN-AdS black hole in the limit of r+/L→0 is given by Q>(3/eL)Qc, where Q, Qc, and e are the charge of the black hole, the critical (maximum) charge of the black hole, and the charge of the scalar field, respectively. In the numerical approach, we calculate the quasinormal modes for the small RN-AdS black holes with r++=0.2L, 0.1L, and 0.01L become unstable against scalar perturbations with eL=4 when the charge of the black hole satisfies Q > or approx. 0.8Qc, 0.78Qc, and 0.76Qc, respectively.
Matos, T; Urena-Lopez, L A; Núñez, D
2001-01-01
This work is a review of the last results of research on the Scalar Field Dark Matter model of the Universe at cosmological and at galactic level. We present the complete solution to the scalar field cosmological scenario in which the dark matter is modeled by a scalar field $\\Phi$ with the scalar potential $V(\\Phi)=V_{0}(cosh {(\\lambda \\sqrt{\\kappa_{0}}\\Phi)}-1)$ and the dark energy is modeled by a scalar field $\\Psi$, endowed with the scalar potential $\\tilde{V}(\\Psi)= \\tilde{V_{0}}(\\sinh{(\\alpha \\sqrt{\\kappa_{0}}\\Psi)})^{\\beta}$, which together compose the 95% of the total matter energy in the Universe. The model presents successfully deals with the up to date cosmological observations, and is a good candidate to treat the dark matter problem at the galactic level.
In this paper, we consider a charged massless scalar quantum field operator in the spacetime of an idealized cosmic string, i.e., an infinitely long, straight and static cosmic string, which presents a magnetic field confined in a cylindrical tube of finite radius. Three distinct situations are taken into account in this analysis: (i) a homogeneous field inside the tube, (ii) a magnetic field proportional to 1/r and (iii) a cylindrical shell with δ-function. In these three cases, the axis of the infinitely long tube of radius R coincides with the cosmic string. In order to study the vacuum polarization effects outside the tube, we explicitly calculate the Euclidean Green function associated with this system for the three above situations, considering points in the region outside the tube. Having these Green functions we calculate the renormalized vacuum expectation values, { hat Φ * (x) hat Φ Ren and ( hat T ν μ (x) } Ren, associated with the charged field. In the evaluation of these vacuum polarization effects, two contributions appear for the three models. The first are the standard ones due to the conical geometry of the spacetime and the magnetic flux. The second contributions appear as extra terms. They are corrections due to the finite thickness of the radius of the tube. These extra terms provide relevant contributions, even for points very far away from the system, like a long-range effect
Structure Scalars In Charged Plane Symmetry
Sharif, M
2013-01-01
We consider non-adiabatic flow of the fluid possessing dissipation in the form of shearing viscosity in electromagnetic field. The scalar functions (structure scalars) for charged plane symmetry are formulated and are related with the physical variables of the fluid. We also develop a relationship between the Weyl tensor and other physical variables by using Taub mass formalism. The role of electric charge as well as its physical significance for the evolution of the shear tensor and expansion scalar are also explored. Finally, we discuss a special case for dust with cosmological constant.
Nakonieczna, Anna; Yeom, Dong-han
2016-05-01
Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.
Hod, Shahar
2016-01-01
We determine the characteristic timescales associated with the linearized relaxation dynamics of the composed Reissner-Nordstr\\"om-black-hole-charged-massive-scalar-field system. To that end, the quasinormal resonant frequencies $\\{\\omega_n(\\mu,q,M,Q)\\}_{n=0}^{n=\\infty}$ which characterize the dynamics of a charged scalar field of mass $\\mu$ and charge coupling constant $q$ in the charged Reissner-Nordstr\\"om black-hole spacetime of mass $M$ and electric charge $Q$ are determined {\\it analytically} in the eikonal regime $1\\ll M\\mu
Stationary Charged Scalar Clouds around Black Holes in String Theory
Bernard, Canisius
2016-01-01
It was reported that Kerr-Newman black holes can support linear charged scalar field in their exterior regions. This stationary massive charged scalar field can form a bound-state and these bound-states are called stationary scalar clouds. In this paper, we study that Kerr-Sen black holes can also support stationary massive charged scalar clouds by matching the near and far region solutions of the radial part of Klein-Gordon wave equation. We also review stationary scalar clouds within the background of static electrically charged black hole solution in the low energy limit of heterotic string field theory namely the GMGHS black holes.
We discuss the extension of a version of quaternion quantum mechanics to field theory and in particular to the simplest example, the free scalar field. A previous difficulty with the conservation of four-momentum for the ''anomalous'' bosonic particles is resolved
De Leo, S. (Dipartimento di Fisica, Universita di Lecce, Lecce (Italy)); Rotelli, P. (Dipartimento di Fisica, Universita di Lecce e Sezione, Istituto Nazionale di Fisica Nucleare, Lecce (Italy))
1992-01-15
We discuss the extension of a version of {ital quaternion} quantum mechanics to field theory and in particular to the simplest example, the free scalar field. A previous difficulty with the conservation of four-momentum for the anomalous'' bosonic particles is resolved.
Charged scalar perturbations around a regular magnetic black hole
Huang, Yang; Liu, Dao-Jun
2016-05-01
We study charged scalar perturbations in the background of a regular magnetic black hole. In this case, the charged scalar perturbation does not result in superradiance. By using a careful time-domain analysis, we show that the charge of the scalar field can change the real part of the quasinormal frequency, but has little impact on the imaginary part of the quasinormal frequency and the behavior of the late-time tail. Therefore, the regular magnetic black hole may be stable under the perturbations of a charged scalar field at the linear level.
Shahar Hod
2015-07-01
Full Text Available The quasinormal resonance spectrum {ωn(μ,q,M,Q}n=0n=∞ of charged massive scalar fields in the charged Reissner–Nordström black-hole spacetime is studied analytically in the large-coupling regime qQ≫Mμ (here {μ,q} are respectively the mass and charge coupling constant of the field, and {M,Q} are respectively the mass and electric charge of the black hole. This physical system provides a striking illustration for the validity of the universal relaxation bound τ×T≥ħ/π in black-hole physics (here τ≡1/ℑω0 is the characteristic relaxation time of the composed black-hole-scalar-field system, and T is the Bekenstein–Hawking temperature of the black hole. In particular, it is shown that the relaxation dynamics of charged massive scalar fields in the charged Reissner–Nordström black-hole spacetime may saturate this quantum time-times-temperature inequality. Interestingly, we prove that potential violations of the bound by light scalar fields are excluded by the Schwinger-type pair-production mechanism (a vacuum polarization effect, a quantum phenomenon which restricts the physical parameters of the composed black-hole-charged-field system to the regime qQ≪M2μ2/ħ.
Charged Black Holes with Scalar Hair
Fan, Zhong-Ying
2015-01-01
We consider a class of Einstein-Maxwell-Dilaton theories, in which the dilaton coupling to the Maxwell field is not the usual single exponential function, but one with a stationary point. The theories admit two charged black holes: one is the Reissner-Nordstr\\o m (RN) black hole and the other has a varying dilaton. For a given charge, the new black hole in the extremal limit has the same AdS$_2\\times$Sphere near-horizon geometry as the RN black hole, but it carries larger mass. We then introduce some scalar potentials and obtain exact charged AdS black holes. We also generalize the results to black $p$-branes with scalar hair.
Blaga, Robert, E-mail: robert.blaga90@e-uvt.ro [Faculty of Physics, West University of Timişoara V. Pârvan Ave. 4, RO-300223 Timişoara (Romania)
2015-12-07
We investigate the energy radiated by an inertial scalar charge evolving in the expanding Poincaré patch of de Sitter spacetime, in the framework of scalar QED perturbation theory. We approximate the transition amplitude in the small expansion parameter limit and show that the leading contribution to the radiated energy has the form of the energy radiated by an accelerated particle in Minkowski space.
Dowker, J. S.
2016-04-01
I compute the conformal weights of the twist operators of free scalar fields for charged Rényi entropy in both odd and even dimensions. Explicit expressions can be found, in odd dimensions as a function of the chemical potential in the absence of a conical singularity and thence by images for all integer coverings. This method, developed some time ago, is equivalent, in results, to the replica technique. A review is given. The same method applies for even dimensions but a general form is more immediately available. For no chemical potential, the closed form in the covering order is written in an alternative way related to old trigonometric sums. Some derivatives are obtained. An analytical proof is given of a conjecture made by Bueno, Myers and Witczak-Krempa regarding the relation between the conformal weights and a corner coefficient (a universal quantity) in the Rényi entropy.
Conformal scalar field wormholes
Halliwell, Jonathan J.; Laflamme, Raymond
1989-01-01
The Euclidian Einstein equations with a cosmological constant and a conformally coupled scalar field are solved, taking the metric to be of the Robertson-Walker type. In the case Lambda = 0, solutions are found which represent a wormhole connecting two asymptotically flat Euclidian regions. In the case Lambda greater than 0, the solutions represent tunneling from a small Tolman-like universe to a large Robertson-Walker universe.
Tachyonic field interacting with Scalar (Phantom) Field
Chattopadhyay, Surajit; Debnath, Ujjal
2009-01-01
In this letter, we have considered the universe is filled with the mixture of tachyonic field and scalar or phantom field. If the tachyonic field interacts with scalar or phantom field, the interaction term decays with time and the energy for scalar field is transferred to tachyonic field or the energy for phantom field is transferred to tachyonic field. The tachyonic field and scalar field potentials always decrease, but phantom field potential always increases.
Structure Scalars for Charged Cylindrically Symmetric Relativistic Fluids
Sharif, M
2012-01-01
We investigate some structure scalars developed through Riemann tensor for self-gravitating cylindrically symmetric charged dissipative anisotropic fluid. We show that these scalars are directly related to the fundamental properties of the fluid. We formulate dynamical-transport equation as well as the mass function by including charge which are then expressed in terms of structure scalars. The effects of electric charge are investigated in the structure and evolution of compact objects. Finally, we show that all possible solutions of the field equations can be written in terms of these scalars.
Stability of gravitating charged-scalar solitons in a cavity
Ponglertsakul, Supakchai; Dolan, Sam R
2016-01-01
We present new regular solutions of Einstein-charged scalar field theory in a cavity. The system is enclosed inside a reflecting mirror-like boundary, on which the scalar field vanishes. The mirror is placed at the zero of the scalar field closest to the origin, and inside this boundary our solutions are regular. We study the stability of these solitons under linear, spherically symmetric perturbations of the metric, scalar and electromagnetic fields. If the radius of the mirror is sufficiently large, we present numerical evidence for the stability of the solitons. For small mirror radius, some of the solitons are unstable. We discuss the physical interpretation of this instability.
Hod, Shahar
2015-01-01
The quasinormal resonance spectrum $\\{\\omega_n(\\mu,q,M,Q)\\}_{n=0}^{n=\\infty}$ of charged massive scalar fields in the charged Reissner-Nordstr\\"om black-hole spacetime is studied {\\it analytically} in the large-coupling regime $qQ\\gg M\\mu$ (here $\\{\\mu, q\\}$ are respectively the mass and charge coupling constant of the field, and $\\{M,Q\\}$ are respectively the mass and electric charge of the black hole). This physical system provides a striking illustration for the validity of the universal relaxation bound $\\tau \\times T \\geq \\hbar/\\pi$ in black-hole physics (here $\\tau\\equiv 1/\\Im\\omega_0$ is the characteristic relaxation time of the composed black-hole-scalar-field system, and $T$ is the Bekenstein-Hawking temperature of the black hole). In particular, it is shown that the relaxation dynamics of charged massive scalar fields in the charged Reissner-Nordstr\\"om black-hole spacetime may {\\it saturate} this quantum time-times-temperature inequality. Interestingly, we prove that potential violations of the bou...
Stability of a collapsed scalar field and cosmic censorship
The static and asymptotically flat solution to the Einstein-massless-scalar model with spherical symmetry describes the spacetime with a naked singularity when it has a nonvanishing scalar charge. We show that such a solution is unstable against the spherical scalar monopole perturbation. This suggests the validity of the cosmic censorship hypothesis in the spherical collapse of the scalar field
Scalar clouds in charged stringy black hole-mirror system
It was reported that massive scalar fields can form bound states around Kerr black holes (Herdeiro and Radu, Phys. Rev. Lett. 112:221101, 2014). These bound states are called scalar clouds; they have a real frequency ω = mΩH, where m is the azimuthal index and ΩH is the horizon angular velocity of Kerr black hole. In this paper, we study scalar clouds in a spherically symmetric background, i.e. charged stringy black holes, with the mirror-like boundary condition. These bound states satisfy the superradiant critical frequency condition ω = qΦH for a charged scalar field, where q is the charge of the scalar field, and ΦH is the horizon's electrostatic potential. We show that, for the specific set of black hole and scalar field parameters, the clouds are only possible for specific mirror locations rm. It is shown that analytical results of the mirror location rm for the clouds perfectly coincide with numerical results in the qQ << 1 regime. We also show that the scalar clouds are also possible when the mirror locations are close to the horizon. Finally, we provide an analytical calculation of the specific mirror locations rm for the scalar clouds in the qQ >> 1 regime. (orig.)
Ultrarelativistic boost with scalar field
Svítek, O.; Tahamtan, T.
2016-02-01
We present the ultrarelativistic boost of the general global monopole solution which is parametrized by mass and deficit solid angle. The problem is addressed from two different perspectives. In the first one the primary object for performing the boost is the metric tensor while in the second one the energy momentum tensor is used. Since the solution is sourced by a triplet of scalar fields that effectively vanish in the boosting limit we investigate the behavior of a scalar field in a simpler setup. Namely, we perform the boosting study of the spherically symmetric solution with a free scalar field given by Janis, Newman and Winicour. The scalar field is again vanishing in the limit pointing to a broader pattern of scalar field behaviour during an ultrarelativistic boost in highly symmetric situations.
Symmetry inheritance of scalar fields
Smolić, Ivica
2015-07-01
Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair.
Symmetry inheritance of scalar fields
Smolić, Ivica
2015-01-01
Matter fields don't necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to Komar mass and angular momentum of the black hole scalar hair.
Spherically symmetric scalar field collapse
Koyel Ganguly; Narayan Banerjee
2013-03-01
It is shown that a scalar field, minimally coupled to gravity, may have collapsing modes even when the energy condition is violated, that is, for ( + 3) < 0. This result may be useful in the investigation of the possible clustering of dark energy. All the examples dealt with have apparent horizons formed before the formation of singularity. The singularities formed are shell focussing in nature. The density of the scalar field distribution is seen to diverge at singularity. The Ricci scalar also diverges at the singularity. The interior spherically symmetric metric is matched with exterior Vaidya metric at the hypersurface and the appropriate junction conditions are obtained.
Electrically charged Kerr black holes with scalar hair
Delgado, Jorge F M; Radu, Eugen; Runarsson, Helgi
2016-01-01
We construct electrically charged Kerr black holes (BHs) with scalar hair. Firstly, we take an uncharged scalar field, interacting with the electromagnetic field only indirectly, via the background metric. The corresponding family of solutions, dubbed Kerr-Newman BHs with ungauged scalar hair, reduces to (a sub-family of) Kerr-Newman BHs in the limit of vanishing scalar hair and to uncharged rotating boson stars in the limit of vanishing horizon. It adds one extra parameter to the uncharged solutions: the total electric charge. This leading electromagnetic multipole moment is unaffected by the scalar hair and can be computed by using Gauss's law on any closed 2-surface surrounding (a spatial section of) the event horizon. By contrast, the first sub-leading electromagnetic multipole -- the magnetic dipole moment --, gets suppressed by the scalar hair, such that the gyromagnetic ratio is always smaller than the Kerr-Newman value ($g=2$). Secondly, we consider a gauged scalar field and obtain a family of Kerr-Ne...
Particles and scalar waves in noncommutative charged black hole spacetime
Bhar, Piyali; Rahaman, Farook; Biswas, Ritabrata(Indian Institute of Engineering Sceince and Technology Shibpur (Formerly, Bengal Engineering and Science University Shibpur), 711 013, Howrah, West Bengal, India); Mondal, U. F.
2015-01-01
In this paper we have discussed geodesics and the motion of test particle in the gravitational field of noncommutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordstrom black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.
Particles and Scalar Waves in Noncommutative Charged Black Hole Spacetime
Piyali, Bhar; Farook, Rahaman; Ritabrata, Biswas; U. F., Mondal
2015-07-01
In this paper we have discussed geodesics and the motion of test particle in the gravitational field of non-commutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordström black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.
Stationary scalar configurations around extremal charged black holes
Degollado, Juan Carlos
2013-01-01
We consider the minimally coupled Klein-Gordon equation for a charged, massive scalar field in the non-extremal Reissner-Nordstr\\"om background. Performing a frequency domain analysis, using a continued fraction method, we compute the frequencies \\omega for quasi-bound states. We observe that, as the extremal limit for both the background and the field is approached, the real part of the quasi-bound states frequencies $\\mathcal{R}(\\omega)$ tends to the mass of the field and the imaginary part $\\mathcal{I}(\\omega)$ tends to zero, for any angular momentum quantum number $\\ell$. The limiting frequencies in this double extremal limit are shown to correspond to a distribution of extremal scalar particles, at stationary positions, in no-force equilibrium configurations with the background. Thus, generically, these stationary scalar configurations are regular at the event horizon. If, on the other hand, the distribution contains scalar particles at the horizon, the configuration becomes irregular therein, in agreeme...
Charged scalar waves from the RN/CFT correspondence
Wu, Xing-Hua
2016-01-01
We examine new tests for (non-)extremal Reissner-Nordstr\\"om/Conformal field theory correspondences (RN/CFT) in this paper. The decay rate of the charged scalar wave sourced by an orbiting star around the black hole is computed and is compared with the decay rate computed in the corresponding CFT. We find that precise matches are achieved.
Discrete scalar fields and general relativity
De Souza, M M
2000-01-01
The physical meaning, the properties and the consequences of a discrete scalar field are discussed; limits for a continuous mathematical description of fundamental physics is a natural outcome of discrete fields with discrete interactions. The discrete scalar field is ultimately the gravitational field of general relativity, necessarily, and there is no place for any other fundamental scalar field, in this context.
The generalized form of Killingbeck potential is an attractive Coulomb term plus a linear term and a harmonic oscillator term, i.e. −a/r + br + λr2, which has a useful application in quarkonium spectroscopy. The ground state energy with the corresponding wave function are obtained for any arbitrary m-state in two-dimensional Klein–Gordon equation with equal mixture of scalar–vector Killingbeck potentials in the presence of constant magnetic and singular Ahoronov–Bohm flux fields perpendicular to the plane where the interacting charged particle is confined. The analytical exact iteration method is used in our solution. We obtain the energy eigensolutions for particle and antiparticle corresponding to S(r) = V(r) and S(r) = −V(r) cases, respectively. Some special cases like the Coulomb, harmonic oscillator potentials and the nonrelativistic limits are found in presence and absence of external fields. (author)
The traversable wormhole with classical scalar fields
Kim, S. -W; Kim, S. P.
1999-01-01
We study the Lorentzian static traversable wormholes coupled to quadratic scalar fields. We also obtain the solutions of the scalar fields and matters in the wormhole background and find that the minimal size of the wormhole should be quantized under the appropriate boundary conditions for the positive non-minimal massive scalar field.
Scalar Fields in Particle Physics
Pedro, Leonardo
2016-01-01
Extending the scalar sector helps in studying the Higgs mechanism and some Standard Model problems. We implement the correspondence between the gauge-dependent elementary states and the non-perturbative non-abelian gauge-invariant asymptotic states, necessary to study the non-perturbative phenomenology of two-Higgs-doublet models. The Flavour and CP violation in experimental data follows a hierarchical pattern, accounted by the Standard Model. We define the Minimal Flavour Violation condition with six spurions in effective field theories, implying Flavour and CP violation entirely dependent on the fermion mixing matrices but independent of the fermion masses hierarchy; it is renormalization-group invariant. We study the phenomenology of renormalizable two-Higgs-doublet models which verify the defined condition as consequence of a symmetry; new light physical scalars, mediating Flavour Changing Neutral Currents, are allowed by flavour data without flavour coefficients beyond the Standard Model; we tested the m...
Entropic quantization of scalar fields
Ipek, Selman; Caticha, Ariel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States)
2015-01-13
Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.
Entropic quantization of scalar fields
Ipek, Selman; Caticha, Ariel
2015-01-01
Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.
Gravitational Frames and Scalar Field Dynamics
Ozaydin, M T
2016-01-01
Scalar fields describe interesting phenomena such as Higgs bosons, dark matter and dark energy, and are found to be quite common in physical theories. These fields are susceptible to gravitational forces so that being massless is not enough to remain conformal invariant. They should also be connected directly to the scalar curvature. Because of this characteristics, we investigated the structure and interactions of scalar fields under the conformal transformations. We show how to reduce the quadratic quantum contributions in the single scalar field theory. In the multi-scalar field theories, we analyzed interactions in certain limits. We suggest a new method for stabilizing Higgs bosons.
Scalar Field (Wave) Dark Matter
Matos, T
2016-01-01
Recent high-quality observations of dwarf and low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. On the other hand the standard cold dark matter model simulations predict a more cuspy behavior. Feedback from star formation has been widely used to reconcile simulations with observations, this might be successful in field dwarf galaxies but its success in low mass galaxies remains uncertain. One model that have received much attention is the scalar field dark matter model. Here the dark matter is a self-interacting ultra light scalar field that forms a cosmological Bose-Einstein condensate, a mass of $10^{-22}$eV/c$^2$ is consistent with flat density profiles in the centers of dwarf spheroidal galaxies, reduces the abundance of small halos, might account for the rotation curves even to large radii in spiral galaxies and has an early galaxy formation. The next generation of telescopes will provide better constraints to the model that will help...
Charged Scalar-Tensor Boson Stars Equilibrium, Stability and Evolution
Whinnett, A W
1999-01-01
We study charged boson stars in scalar-tensor (ST) gravitational theories. We analyse the weak field limit of the solutions and analytically show that there is a maximum charge to mass ratio for the bosons above which the weak field solutions are not stable. This charge limit can be greater than the GR limit for a wide class of ST theories. We numerically investigate strong field solutions in both the Brans Dicke and power law ST theories. We find that the charge limit decreases with increasing central boson density. We discuss the gravitational evolution of charged and uncharged boson stars in a cosmological setting and show how, at any point in its evolution, the physical properties of the star may be calculated by a rescaling of a solution whose asymptotic value of the scalar field is equal to its initial asymptotic value. We focus on evolution in which the particle number of the star is conserved and we find that the energy and central density of the star decreases as the cosmological time increases. We a...
Induced vacuum polarization of scalar field by impenetrable magnetic tube
Gorkavenko, V M; Stepanov, O B
2009-01-01
We investigated the influence of external magnetic field in the tube on the vacuum of massive charged scalar field for the case of arbitrary space-time dimension. The tube is considered impenetrable for scalar field and obeys Dirichlet boundary condition on bounding surface. It was shown that for particular case of 2+1 dimensional space-time the induced vacuum energy of scalar field outside the tube can be numerically calculated without regularization procedure. The dependencies of the induced vacuum energy upon distance from the tube under the different values of transversal radius of it were obtained.
Bulk scalar field in DGP braneworld cosmology
Ansari, Rizwan ul Haq
2007-01-01
We investigated the effects of bulk scalar field in the braneworld cosmological scenario. The Friedmann equations and acceleration condition in presence of the bulk scalar field for a zero tension brane and cosmological constant are studied. In DGP model the effective Einstein equation on the brane is obtained with bulk scalar field. The rescaled bulk scalar field on the brane in the DGP model behaves as an effective four dimensional field, thus standard type cosmology is recovered. In present study of the DGP model, the late-time accelerating phase of the universe can be explained .
Gravitational Frames and Scalar Field Dynamics
Ozaydin, M. T.; Pirinccioglu, N.
2016-01-01
Scalar fields describe interesting phenomena such as Higgs bosons, dark matter and dark energy, and are found to be quite common in physical theories. These fields are susceptible to gravitational forces so that being massless is not enough to remain conformal invariant. They should also be connected directly to the scalar curvature. Because of this characteristics, we investigated the structure and interactions of scalar fields under the conformal transformations. We show how to reduce the q...
Maeda, Hideki
2016-01-01
We present a simple and complete classification of static solutions in the Einstein-Maxwell system with a massless scalar field in arbitrary $n(\\ge 3)$ dimensions. We consider spacetimes which correspond to a warped product $M^2 \\times K^{n-2}$, where $K^{n-2}$ is a $(n-2)$-dimensional Einstein space. The scalar field is assumed to depend only on the radial coordinate and the electromagnetic field is purely electric. The general solution with a non-constant real scalar field consists of seven solutions for $n\\ge 4$ and three solutions for $n=3$. None of them is endowed of a Killing horizon in accordance with the no-hair theorem.
Late-Time Evolution of Charged Gravitational Collapse and Decay of Charged Scalar Hair, 2
Hod, S; Hod, Shahar; Piran, Tsvi
1998-01-01
We study analytically the initial value problem for a charged massless scalar-field on a Reissner-Nordström spacetime. Using the technique of spectral decomposition we extend recent results on this problem. Following the no-hair theorem we reveal the dynamical physical mechanism by which the charged hair is radiated away. We show that the charged perturbations decay according to an inverse power-law behaviour at future timelike infinity and along future null infinity. Along the future outer horizon we find an oscillatory inverse power-law relaxation of the charged fields. We find that a charged black hole becomes ``bald'' slower than a neutral one, due to the existence of charged perturbations. Our results are also important to the study of mass-inflation and the stability of Cauchy horizons during a dynamical gravitational collapse of charged matter in which a charged black-hole is formed.
Scalar field mass in generalized gravity
Faraoni, Valerio
2009-01-01
The notions of mass and range of a Brans-Dicke-like scalar field in scalar-tensor and f(R) gravity are subject to an ambiguity that hides a potential trap. We spell out this ambiguity and identify a physically meaningful and practical definition for these quantities. This is relevant when giving a mass to this scalar in order to circumvent experimental limits on the PPN parameters coming from Solar System experiments.
Primordial fluctuations without scalar fields
Magueijo, J
2009-01-01
We revisit the question of whether fluctuations in hydrodynamical, adiabatical matter could explain the observed structures in our Universe. We consider matter with variable equation of state $w=p_0/\\ep_0$ and a concomitant (under the adiabatic assumption) density dependent speed of sound, $c_s$. We find a limited range of possibilities for a set up when modes start inside the Hubble radius, then leaving it and freezing out. For expanding Universes, power-law $w(\\ep_0)$ models are ruled out (except when $c_s^2\\propto w \\ll 1$, requiring post-stretching the seeded fluctuations); but sharper profiles in $c_s$ do solve the horizon problem. Among these, a phase transition in $c_s$ is notable for leading to scale-invariant fluctuations if the initial conditions are thermal. For contracting Universes all power-law $w(\\ep_0)$ solve the horizon problem, but only one leads to scale-invariance: $w\\propto \\ep_0^2$ and $c_s\\propto \\ep_0$. This model bypasses a number of problems with single scalar field cyclic models (fo...
Scalar field radiation from dilatonic black holes
Gohar, H.; Saifullah, K.
2012-12-01
We study radiation of scalar particles from charged dilaton black holes. The Hamilton-Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein-Gordon equation. The procedure gives Hawking temperature for these black holes as well.
Multiple critical gravitational collapse of charged scalar with reflecting wall
Cai, Rong-Gen
2016-01-01
In this paper, we present the results on the gravitational collapse of charged massless scalar field in asymptotically flat spacetime with a perfectly reflecting wall. Differing from previous works, we study the system in the double null coordinates, by which we could simulate the system until the black hole forms with higher precision but less performance time. We investigate the influence of charge on the black hole formation and the scaling behavior near the critical collapses. The gapless and gapped critical behaviors for black hole mass and charge are studied numerically. We find that they satisfy the scaling laws for critical gravitational collapse but the gapped critical behavior is different from its AdS counterpart.
Static scalar field solutions in symmetric gravity
Hossenfelder, S.
2016-09-01
We study an extension of general relativity with a second metric and an exchange symmetry between the two metrics. Such an extension might help to address some of the outstanding problems with general relativity, for example the smallness of the cosmological constant. We here derive a family of exact solutions for this theory. In this two-parameter family of solutions the gravitational field is sourced by a time-independent massless scalar field. We find that the only limit in which the scalar field entirely vanishes is flat space. The regular Schwarzschild-solution is left with a scalar field hidden in the second metric’s sector.
Charged scalar perturbations around Garfinkle–Horowitz–Strominger black holes
Cheng-Yong Zhang
2015-10-01
Full Text Available We examine the stability of the Garfinkle–Horowitz–Strominger (GHS black hole under charged scalar perturbations. Employing the appropriate numerical methods, we show that the GHS black hole is always stable against charged scalar perturbations. This is different from the results obtained in the de Sitter and anti-de Sitter black holes. Furthermore, we argue that in the GHS black hole background there is no amplification of the incident charged scalar wave to cause the superradiance, so that the superradiant instability cannot exist in this spacetime.
Gravitational Field Shielding by Scalar Field and Type II Superconductors
Zhang B. J.; Zhang T. X.; Guggilia P.; Dohkanian M.
2013-01-01
The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the...
Discrete scalar field and general relativity
De Souza, M M
2001-01-01
What is the nature - continuous or discrete - of matter and of its fundamental interactions? The physical meaning, the properties and the consequences of a discrete scalar field are discussed; limits for the validity of a mathematical description of fundamental physics in terms of continuum fields are a natural outcome of discrete fields with discrete interactions. Two demarcating points (a near and a far) define a domain where no difference between the discrete and the standard continuum field formalisms can be experimentally detected. Discrepancies, however, can be observed as a continuous-interaction is always stronger below the near point and weaker above the far point than a discrete one. The connections between the discrete scalar field and gravity from general relativity are discussed. Whereas vacuum solutions of general relativity can be retrieved from discrete scalar field solutions, this cannot be extended to solutions in presence of massive sources as they require a true tensor metric field. Contac...
Gravitational Gauge Interactions of Scalar Field
WUNing
2003-01-01
Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian has strict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory. Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar field minimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian for scalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressed by gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.
Gravitational Field Shielding by Scalar Field and Type II Superconductors
Zhang B. J.
2013-01-01
Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.
Chaotic instantons in scalar field theory
Addazi, Andrea
2016-01-01
We consider a new class of instantons in context of quantum field theory of a scalar field coupled with a chaotic background source field. We show how the instanton associated to the quantum tunneling from a metastable false to the true vacuum will be corrected by an exponential enhancement factor. Possible implications are discussed.
A scalar field dark energy model: Noether symmetry approach
Dutta, Sourav; Panja, Madan Mohan; Chakraborty, Subenoy
2016-04-01
Scalar field dark energy cosmology has been investigated in the present paper in the frame work of Einstein gravity. In the context of Friedmann-Lemaitre-Robertson-Walker space time minimally coupled scalar field with self interacting potential and non-interacting perfect fluid with barotropic equation of state (dark matter) is chosen as the matter context. By imposing Noether symmetry on the Lagrangian of the system the symmetry vector is obtained and the self interacting potential for the scalar field is determined. Then we choose a point transformation (a, φ )→ (u, v) such that one of the transformation variable (say u) is cyclic for the Lagrangian. Subsequently, using conserved charge (corresponding to the cyclic co-ordinate) and the constant of motion, solutions are obtained. Finally, the cosmological implication of the solutions in the perspective of recent observation has been examined.
Topological charge conservation in stochastic optical fields
Roux, Filippus S.
2016-05-01
The fact that phase singularities in scalar stochastic optical fields are topologically conserved implies the existence of an associated conserved current, which can be expressed in terms of local correlation functions of the optical field and its transverse derivatives. Here, we derive the topological charge current for scalar stochastic optical fields and show that it obeys a conservation equation. We use the expression for the topological charge current to investigate the topological charge flow in inhomogeneous stochastic optical fields with a one-dimensional topological charge density.
Intermediate inflation driven by DBI scalar field
Nazavari, N.; Mohammadi, A.; Ossoulian, Z.; Saaidi, Kh.
2016-06-01
Picking out a DBI scalar field as inflation, the slow-rolling inflationary scenario is studied by attributing an exponential time function to scale factor, known as intermediate inflation. The perturbation parameters of the model are estimated numerically for two different cases, and the final result is compared with Planck data. The diagram of tensor-to-scalar ratio r versus scalar spectra index ns is illustrated, and it is found that they are within an acceptable range as suggested by Planck. In addition, the acquired values for amplitude of scalar perturbation reveal the ability of the model to depict a good picture of the Universe in one of its earliest stages. As a further argument, the non-Gaussianity is investigated, displaying that the model prediction stands in a 68% C.L. regime according to the latest Planck data.
Cosmological Constraints on Scalar Field Dark Matter
Jesus, J F; Pereira, S H
2015-01-01
In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used observational $H(z)$ data to constrain the dark matter mass to $m=\\left(3.46^{+0.38+0.75+1.1}_{-0.43-0.92-1.5}\\right)\\times10^{-33}$ eV. This value is much below some previous estimates of $m\\sim 10^{-22}$ eV found in some models, which we explain as being due to a slightly different formulation, but in complete agreement with a recent model based on a cosmological scalar field harmonic oscillator, for which $m\\sim 10^{-32}$ eV. Although scalar field dark matter (SFDM) is much disfavored, as it gives rise to ultra hot dark matter and could halt structure formation, different scalar field potentials could alleviate this issue.
Gravitational waves from scalar field accretion
Núnez, Darío; Degollado, Juan Carlos; Moreno, Claudia
2011-01-01
Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, {\\it i. e.} the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the blac...
Cosmological twinlike models with multi scalar fields
Zhong, Yuan; Liu, Yu-Xiao
2016-01-01
We consider cosmological models driven by several canonical or noncanonical scalar fields. We show how the superpotential method enables one to construct twinlike models for a particular canonical model from some noncanonical ones. We conclude that it is possible to construct twinlike models for multi-field cosmological models, even when the spatial curvature is nonzero. This work extends the discussions of [D. Bazeia and J. D. Dantas, Phys. Rev. D, 85 (2012) 067303] to cases with multi scalar fields and with non-vanished spatial curvature, by using a different superpotential method.
Exact solutions for the biadjoint scalar field
White, Chris D
2016-01-01
Biadjoint scalar theories are novel field theories that arise in the study of non-abelian gauge and gravity amplitudes. In this short paper, we present exact nonperturbative solutions of the field equations, and compare their properties with monopole-like solutions in non-abelian gauge theory. Our results may pave the way for nonperturbative studies of the double copy.
Gravitational peculiarities of a scalar field
The zero-adjoint of a time-static Ricci-flat solution to Einstein's field equations is investigated. It represents a spacetime curved solely by a massless scalar field. The cylindrical symmetry is assumed to permit both planar and non-planar geodetic motions. Unusual, velocity-dependent gravitational features are encountered from these geodesics. (Author)
D-BIonic Screening of Scalar Fields
Burrage, Clare
2014-01-01
We study a new screening mechanism which is present in Dirac-Born-Infeld (DBI)-like theories. A scalar field with a DBI-like Lagrangian is minimally coupled to matter. In the vicinity of sufficiently dense sources, non-linearities in the scalar dominate and result in an approximately constant acceleration on a test particle, thereby suppressing the scalar force relative to gravity. Unlike generic P(X) theories, screening happens within the regime of validity of the effective field theory, thanks to the DBI symmetry. This symmetry also allows the removal of a constant field gradient, like in galileons. Not surprisingly, perturbations around the spherically-symmetry background propagate superluminally, but we argue for a chronology protection analogous to galileons. We derive constraints on the theory parameters from tests of gravity and discuss various extensions.
Fluid/Gravity Correspondence with Scalar Field and Electromagnetic Field
Chou, Chia-Jui; Yang, Yi; Yuan, Pei-Hung
2016-01-01
We consider fluid/gravity correspondence in a general rotating black hole background with scalar and electromagnetic fields. Using the method of Petrov-like boundary condition, we show that the scalar and the electromagnetic fields contribute external forces to the dual Navier-Stokes equation and the rotation of black hole induces the Coriolis force.
Generalized gravitational entropy of interacting scalar field and Maxwell field
Wung-Hong Huang
2014-12-01
Full Text Available The generalized gravitational entropy proposed recently by Lewkowycz and Maldacena is extended to the interacting real scalar field and Maxwell field system. Using the BTZ geometry we first investigate the case of free real scalar field and then show a possible way to calculate the entropy of the interacting scalar field. Next, we investigate the Maxwell field system. We exactly solve the wave equation and calculate the analytic value of the generalized gravitational entropy. We also use the Einstein equation to find the effect of backreaction of the Maxwell field on the area of horizon. The associated modified area law is consistent with the generalized gravitational entropy.
Generalized gravitational entropy of interacting scalar field and Maxwell field
Huang, Wung-Hong
2014-12-01
The generalized gravitational entropy proposed recently by Lewkowycz and Maldacena is extended to the interacting real scalar field and Maxwell field system. Using the BTZ geometry we first investigate the case of free real scalar field and then show a possible way to calculate the entropy of the interacting scalar field. Next, we investigate the Maxwell field system. We exactly solve the wave equation and calculate the analytic value of the generalized gravitational entropy. We also use the Einstein equation to find the effect of backreaction of the Maxwell field on the area of horizon. The associated modified area law is consistent with the generalized gravitational entropy.
Generalized gravitational entropy of interacting scalar field and Maxwell field
Huang, Wung-Hong, E-mail: whhwung@mail.ncku.edu.tw
2014-12-12
The generalized gravitational entropy proposed recently by Lewkowycz and Maldacena is extended to the interacting real scalar field and Maxwell field system. Using the BTZ geometry we first investigate the case of free real scalar field and then show a possible way to calculate the entropy of the interacting scalar field. Next, we investigate the Maxwell field system. We exactly solve the wave equation and calculate the analytic value of the generalized gravitational entropy. We also use the Einstein equation to find the effect of backreaction of the Maxwell field on the area of horizon. The associated modified area law is consistent with the generalized gravitational entropy.
Age Crises, Scalar Fields, and the Apocalypse
Jackson, J. C.
Recent observations suggest that Hubble's constant is large, to the extent that the oldest stars appear to have ages which are greater than the Hubble time, and that the Hubble expansion is slowing down, so that according to conventional cosmology the age of the Universe is less than the Hubble time. The concepts of weak and strong age crises (respectively t01/H0 and q0>0) are introduced. These observations are reconciled in models which are dynamically dominated by a homogeneous scalar field, corresponding to an ultra-light boson whose Compton wavelength is of the same order as the Hubble radius. Two such models are considered, an open one with vacuum energy comprising a conventional cosmological term and a scalar field component, and a flat one with a scalar component only, aimed respectively at weak and strong age crises. Both models suggest that anti-gravity plays a significant role in the evolution of the Universe.
Gravitational waves from scalar field accretion
Núnez, Darío; Moreno, Claudia
2011-01-01
Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, {\\it i. e.} the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the black hole is perturbed by the surrounding scalar field matter. The symmetries of the spacetime and the simplicity of the matter source allow, by means of a spherical harmonic decomposition, to study the problem by means of a one dimensional description. Some properties of such gravitational waves are discussed as a function of the parameters of the infalling scalar field, and allow us to make the conjecture that the gravitational waves carry information on the type of matter that generated them.
Cosmological evolution of a ghost scalar field
Sushkov, S. V.; Kim, S. -W
2004-01-01
We consider a scalar field with a negative kinetic term minimally coupled to gravity. We obtain an exact non-static spherically symmetric solution which describes a wormhole in cosmological setting. The wormhole is shown to connect two homogeneous spatially flat universes expanding with acceleration. Depending on the wormhole's mass parameter $m$ the acceleration can be constant (the de Sitter case) or infinitely growing.
Gravitational Gauge Interactions of Scalar Field
WU Ning
2003-01-01
Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian hasstrict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory.Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar fieldminimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian forscalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressedby gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.
Black hole with a scalar field as a particle accelerator
Zaslavskii, O B
2016-01-01
We consider black holes with the background scalar field and test particles that can interact with this field directly. Then, particle collision near a black hole can lead to unbound energy $E_{c.m.}$ in the centre of mass frame (contrary to some recent claims in literature). This happens if one of particles is neutral whereas another one has nonzero scalar charge. Kinematically, two cases occur here. (i) A neutral particle approaches the horizon with the speed of light while the velocity of the charged one remains separated from it (this is direct analogue of the situation with collision of geodesic particles.). (ii) Both particles approach the horizon with the speed almost equal to that of light but with different rates. As a result, in both cases the relative velocity also approaches the speed of light, so that $E_{c.m.}$ $\\ $becomes unbound.
Two scalar field cosmology from coupled one-field models
Moraes, P H R S
2014-01-01
One possible description for the current accelerated expansion of the universe is quintessence dynamics. The basic idea of quintessence consists of analyzing cosmological scenarios driven by scalar fields. In this work we present some interesting features on the cosmological scenario obtained from the solutions of an effective two scalar field model in a flat space-time. This effective model was constructed by coupling two single scalar field systems in a nontrivial way via an extension method. The solutions related to the fields allowed us to compute analytical cosmological parameters. The behavior of these parameters are highlighted, as well as the different epochs obtained from them.
Slowly rotating neutron stars in scalar-tensor theories with a massive scalar field
Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Popchev, Dimitar
2016-04-01
In the scalar-tensor theories with a massive scalar field, the coupling constants, and the coupling functions in general, which are observationally allowed, can differ significantly from those in the massless case. This fact naturally implies that the scalar-tensor neutron stars with a massive scalar field can have rather different structure and properties in comparison with their counterparts in the massless case and in general relativity. In the present paper, we study slowly rotating neutron stars in scalar-tensor theories with a massive gravitational scalar. Two examples of scalar-tensor theories are examined—the first example is the massive Brans-Dicke theory and the second one is a massive scalar-tensor theory indistinguishable from general relativity in the weak-field limit. In the latter case, we study the effect of the scalar field mass on the spontaneous scalarization of neutron stars. Our numerical results show that the inclusion of a mass term for the scalar field indeed changes the picture drastically compared to the massless case. It turns out that mass, radius, and moment of inertia for neutron stars in massive scalar-tensor theories can differ drastically from the pure general relativistic solutions if sufficiently large masses of the scalar field are considered.
Dynamical analysis in scalar field cosmology
Paliathanasis, Andronikos; Basilakos, Spyros; Barrow, John D
2015-01-01
A general method to extract exact cosmological solutions for scalar field dark energy in the presence of perfect fluids is presented. We use as a selection rule the existence of invariant transformations for the Wheeler De Witt (WdW) equation. We show that the existence of point transformation in which the WdW equation is invariant is equivalent to the existence of conservation laws for the field equations. Mathematically, the existence of extra integrals of motion indicates the existence of analytical solutions. We extend previous work by providing exact solutions for the Hubble parameter and the effective dark energy equation of state parameter for cosmologies containing a combination of perfect fluid and a scalar field whose self-interaction potential is a power of hyperbolic functions. Finally, we perform a dynamical analysis by studying the fixed points of the field equations using dimensionless variables. Amongst the variety of dynamical cases, we find that if the current cosmological model is Liouville...
Dissipation element analysis of turbulent scalar fields
Wang Lipo; Peters, Norbert [Institut fuer Technische Verbrennung, RWTH-Aachen, 52056 Aachen (Germany)], E-mail: wang@itv.rwth-aachen.de, E-mail: n.peters@itv.rwth-aachen.de
2008-12-15
Dissipation element analysis is a new approach for studying turbulent scalar fields. Gradient trajectories starting from each material point in a scalar field {phi}'(x-vector,t) in ascending directions will inevitably reach a maximal and a minimal point. The ensemble of material points sharing the same pair ending points is named a dissipation element. Dissipation elements can be parameterized by the length scale l and the scalar difference {delta}{phi} ', which are defined as the straight line connecting the two extremal points and the scalar difference at these points, respectively. The decomposition of a turbulent field into dissipation elements is space-filling. This allows us to reconstruct certain statistical quantities of fine scale turbulence which cannot be obtained otherwise. The marginal probability density function (PDF) of the length scale distribution based on a Poisson random cutting-reconnection process shows satisfactory agreement with the direct numerical simulation (DNS) results. In order to obtain the further information that is needed for the modeling of scalar mixing in turbulence, such as the marginal PDF of the length of elements and all conditional moments as well as their scaling exponents, there is a need to model the joint PDF of l and {delta}{phi} ' as well. A compensation-defect model is put forward in this work to show the dependence of {delta}{phi} ' on l. The agreement between the model prediction and DNS results is satisfactory, which may provide another explanation of the Kolmogorov scaling and help to improve turbulent mixing models. Furthermore, intermittency and cliff structure can also be related to and explained from the joint PDF.
Entanglement entropy for free scalar fields in AdS
Sugishita, Sotaro
2016-01-01
We compute entanglement entropy for free massive scalar fields in anti-de Sitter (AdS) space. The entangling surface is a minimal surface whose boundary is a sphere at the boundary of AdS. The entropy can be evaluated from the thermal free energy of the fields on a topological black hole by using the replica method. In odd-dimensional AdS, exact expressions of the Renyi entropy S_n are obtained for arbitrary n. We also evaluate 1-loop corrections coming from the scalar fields to holographic entanglement entropy. Applying the results, we compute the leading difference of entanglement entropy between two holographic CFTs related by a renormalization group flow triggered by a double trace deformation. The difference is proportional to the shift of a central charge under the flow.
Euclidean wormholes with minimally coupled scalar fields
A detailed study of quantum and semiclassical Euclidean wormholes for Einstein's theory with a minimally coupled scalar field has been performed for a class of potentials. Massless, constant, massive (quadratic in the scalar field) and inverse (linear) potentials admit the Hawking and Page wormhole boundary condition both in the classically forbidden and allowed regions. An inverse quartic potential has been found to exhibit a semiclassical wormhole configuration. Classical wormholes under a suitable back-reaction leading to a finite radius of the throat, where the strong energy condition is satisfied, have been found for the zero, constant, quadratic and exponential potentials. Treating such classical Euclidean wormholes as an initial condition, a late stage of cosmological evolution has been found to remain unaltered from standard Friedmann cosmology, except for the constant potential which under the back-reaction produces a term like a negative cosmological constant. (paper)
Scalar Field Quantum Inequalities in Static Spacetimes
Pfenning, Michael J.; Ford, L. H.
1997-01-01
We discuss quantum inequalities for minimally coupled scalar fields in static spacetimes. These are inequalities which place limits on the magnitude and duration of negative energy densities. We derive a general expression for the quantum inequality for a static observer in terms of a Euclidean two-point function. In a short sampling time limit, the quantum inequality can be written as the flat space form plus subdominant correction terms dependent upon the geometric properties of the spaceti...
Reconstructing bidimensional scalar field theory models
Flores, Gabriel H.; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: gflores@cbpf.br; nfuxsvai@cbpf.br
2001-07-01
In this paper we review how to reconstruct scalar field theories in two dimensional spacetime starting from solvable Scrodinger equations. Theree different Schrodinger potentials are analyzed. We obtained two new models starting from the Morse and Scarf II hyperbolic potencials, the U ({theta}) {theta}{sup 2} In{sup 2} ({theta}{sup 2}) model and U ({theta}) = {theta}{sup 2} cos{sup 2} (In({theta}{sup 2})) model respectively. (author)
a Nonassociative Quaternion Scalar Field Theory
Giardino, Sergio; Teotônio-Sobrinho, Paulo
2013-10-01
A nonassociative Groenewold-Moyal (GM) plane is constructed using quaternion-valued function algebras. The symmetrized multiparticle states, the scalar product, the annihilation/creation algebra and the formulation in terms of a Hopf algebra are also developed. Nonassociative quantum algebras in terms of position and momentum operators are given as the simplest examples of a framework whose applications may involve string theory and nonlinear quantum field theory.
Stability of the extremal Reissner-Nordström black hole to charged scalar perturbations
The stability of Reissner-Nordström black holes to neutral (gravitational and electromagnetic) perturbations was established almost four decades ago. However, the stability of these charged black holes under charged perturbations has remained an open question due to the well-known phenomena of superradiant scattering: A charged scalar field impinging on a charged Reissner-Nordström black hole can be amplified as it scatters off the hole. If the incident field has a non-zero rest mass, then the mass term effectively works as a mirror, preventing the energy extracted from the hole from escaping to infinity. One may suspect that such superradiant amplification of charged fields in Reissner-Nordström spacetimes may lead to an instability of these charged black holes (in as much the same way that rotating Kerr black holes are unstable under rotating scalar perturbations). However, we show here that, for extremal Reissner-Nordström black holes, the two conditions which are required in order to trigger a possible superradiant instability [namely: (1) the existence of a trapping potential well outside the black hole, and (2) superradiant amplification of the trapped modes] cannot be satisfied simultaneously. Our results thus support the stability of extremal Reissner-Nordström black holes to charged scalar perturbations.
Casimir Effect of Scalar Massive Field
Mobassem, Sonia
2014-01-01
The energy momentum tensor is used to introduce the Casimir force of the massive scalar field acting on a nonpenetrating surface. This expression can be used to evaluate the vacuum force by employing the appropriate field operators. To simplify our formalism we also relates the vacuum force expression to the imaginary part of the Green function via the fluctuation dissipation theorem and Kubo formula. This allows one to evaluate the vacuum force without resorting to the process of field quantization. These two approaches are used to calculate the attractive force between two nonpenetrating plates. Special attention is paid to the generalization of the formalism to D + 1 space-time dimensions.
Li, Ran; Zhang, Hongbao; Zhao, Junkun(Department of Physics, Henan Normal University, 453007, Xinxiang, China)
2016-01-01
Reissner-Nordstr\\"om Anti-de Sitter (RNAdS) black holes are unstable against the charged scalar field perturbations due to the well-known superradiance phenomenon. We present the time domain analysis of charged scalar field perturbations in the RNAdS black hole background in general dimensions. We show that the instabilities of charged scalar field can be explicitly illustrated from the time profiles of evolving scalar field. By using the Prony method to fit the time evolution data, we confir...
Chakrabortty, Joydeep; Mondal, Subhadeep; Srivastava, Tripurari
2015-01-01
In this work, we investigate the phenomenological consequences of a doubly charged scalar which may belong to different uncoloured scalar multiplets. This doubly charged scalar couples to the charged leptons as well as gauge bosons, which we parametrize in a model independent way. Restricting ourselves in the regime of conserved charged-parity (CP), we assume only a few non-zero Yukawa couplings ($y_{\\mu \\ell}$, where $\\ell=e,\\mu,\\tau$) between the doubly charged scalar and the charged leptons. Our choices allow the doubly charged scalar to impinge low-energy processes like anomalous magnetic moment of muon and a few possible charged lepton flavour violating (CLFV) processes. These same Yukawa couplings are also instrumental in producing same-sign di-lepton signatures at the LHC. In this article we examine the impact of individual contributions from the diagonal and off-diagonal Yukawa couplings in the light of muon $(g-2)$ excess. Subsequently, we use the derived information to inquire the possible CLFV proc...
Slowly rotating neutron stars in scalar-tensor theories with a massive scalar field
Yazadjiev, Stoytcho S; Popchev, Dimitar
2016-01-01
In the scalar-tensor theories with a massive scalar field the coupling constants, and the coupling functions in general, which are observationally allowed, can differ significantly from those in the massless case. This fact naturally implies that the scalar-tensor neutron stars with a massive scalar field can have rather different structure and properties in comparison with their counterparts in the massless case and in general relativity. In the present paper we study slowly rotating neutron stars in scalar-tensor theories with a massive gravitational scalar. Two examples of scalar-tensor theories are examined - the first example is the massive Brans-Dicke theory and the second one is a massive scalar-tensor theory indistinguishable from general relativity in the weak field limit. In the later case we study the effect of the scalar field mass on the spontaneous scalarization of neutron stars. Our numerical results show that the inclusion of a mass term for the scalar field indeed changes the picture drastica...
Quantum tunneling from scalar fields in rotating black strings
Gohar, H
2011-01-01
Using the Hamilton-Jacobi method of quantum tunneling and complex path integration, we study Hawking radiation of scalar particles from rotating black strings. We discuss tunneling of both charged and uncharged scalar particles from the event horizons. For this purpose, we use the Klein-Gordon equation and find the tunneling probability of outging scalar particles. The procedure gives Hawking temperature for rotating charged black strings as well.
Quantum tunneling from scalar fields in rotating black strings
Gohar, H.; Saifullah, K.
2013-08-01
Using the Hamilton-Jacobi method of quantum tunneling and complex path integration, we study Hawking radiation of scalar particles from rotating black strings. We discuss tunneling of both charged and uncharged scalar particles from the event horizons. For this purpose, we use the Klein-Gordon equation and find the tunneling probability of outgoing scalar particles. The procedure gives Hawking temperature for rotating charged black strings as well.
Scalar fields properties for flat galactic rotation curves
Fay, S
2004-01-01
The whole class of minimally coupled and massive scalar fields which may be responsible for flattening of galactic rotation curves is found. An interesting relation with a class of scalar-tensor theories able to isotropise anisotropic models of Universe is shown. The resulting metric is found and its stability and scalar field properties are tested with respect to the presence of a second scalar field or a small perturbation of the rotation velocity at galactic outer radii.
Twinlike models in scalar field theories
This work deals with the presence of defect structures in models described by a real scalar field in a diversity of scenarios. The defect structures that we consider are static solutions of the equations of motion that depend on a single spatial dimension. We search for different models, which support the same defect solution, with the very same energy density. We work in flat spacetime, where we introduce and investigate a new class of models. We also work in curved spacetime, within the braneworld context, with a single extra dimension of infinite extent, and there we show how the brane is formed from the static field configuration.
Generalized Gravitational Entropy of Interacting Scalar Field and Maxwell Field
Huang, Wung-Hong
2014-01-01
The generalized gravitational entropy proposed by Lewkowycz and Maldacena in recent is extended to the interacting real scalar field and Maxwell field system. Using the BTZ geometry we first investigate the case of free real scalar field and then show a possible way to calculate the entropy of the interacting scalar field. Next, we investigate the Maxwell field system. We exactly solve the wave equation and calculate the analytic value of the generalized gravitational entropy. We also use the Einstein equation to find the effect of backreaction of the Maxwell field on the spacetime. The associated modified area law is consistent with the generalized gravitational entropy. Our investigations have not found the unexpected anomalous surface term.
Vacuum polarization of a scalar field in wormhole spacetimes
Popov, A A; Popov, Arkadii A.; Sushkov, Sergey V.
2001-01-01
An analitical approximation of $$ for a scalar field in a static spherically symmetric wormhole spacetime is obtained. The scalar field is assumed to be both massive and massless, with an arbitrary coupling $\\xi$ to the scalar curvature, and in a zero temperature vacuum state.
Thermodynamic phase structure of charged anti-de Sitter scalar-tensor black holes
When electromagnetic field with nonlinear lagrangian acts as a source of gravity the no-scalar-hair theorems can be eluded and black holes with non-trivial scalar field can be found in scalar tensor theories. Black holes with secondary scalar hair exist also when a cosmological constant is added in the theory. The thermodynamics of black holes in anti-de Sitter (AdS) space-time has attracted considerable interest due to the AdS/CFT conjecture. A natural question that arises is whether the non-trivial scalar field would alter the black-hole thermodynamical phase structure. In the current work we present the phase structure of charged hairy black holes coupled to nonlinear Born-Infeld electrodynamics in canonical ensemble which is naturally related to AdS space-time. In certain regions of the parameter space we find the existence of a first-order phase transition between small and very large black holes. An unexpected result is that for a small subinterval of charge values two phase transitions are observed – one of zeroth and one of first order
General Relativity, Scalar Fields and Cosmic Strings.
Burd, Adrian Benedict
1987-09-01
Available from UMI in association with The British Library. This thesis is divided into three, essentially self-contained, parts. In the first part we examine the structure of classical three-dimensional space-times. Here, we review and extend what is known about the gravitational theories in these models. We investigate the non-existence of a Newtonian limit to the relativistic theories showing that in the presence of certain matter terms, Newtonian gravity can be obtained as a suitable weak-field limit. We present a number of new, exact static and non-static solutions to the equations of three-dimensional general relativity with scalar field and perfect fluid sources. We comment on the relationship between the stiff perfect fluid and the scalar field. Motivated by the Kaluza-Klein procedure of dimensional reduction we find some exact scalar field solutions which have analogues in four-dimensions. We also present classification schemes based on the group of motions of homogeneous space-times and on the Cotton -York tensor. The description of the general cosmological solution in the vicinity of the singularity is given in terms of the number of arbitrary spatial functions independently specified on a space-like hypersurface. We also study a series approximation to the space-time in the vicinity of the cosmological singularity. Some conjectures are made concerning the space-time singularities. We present two exact cosmological solutions containing self-interacting scalar fields. The models exhibit an inflationary behaviour. We also present an anisotropic cosmological model. The second part of the thesis contains a study of certain cosmological models which have self-interacting scalar fields obeying an exponential potential. We use the techniques of phase portrait analysis to study the N-dimensional cosmological models as well as certain anisotropic models. The latter involves the analysis of a three-dimensional system of equations and we review the relevant theory
Scalar field collapse with negative cosmological constant
Baier, R.; Nishimura, H.; Stricker, S. A.
2015-07-01
The formation of black holes or naked singularities is studied in a model in which a homogeneous time-dependent scalar field with an exponential potential couples to four-dimensional gravity with negative cosmological constant. An analytic solution is derived and its consequences are discussed. The model depends only on one free parameter, which determines the equation of state and decides the fate of the spacetime. Without fine tuning the value of this parameter the collapse ends in a generic formation of a black hole or a naked singularity. The latter case violates the cosmic censorship conjecture.
Scalar field collapse with negative cosmological constant
Baier, R; Stricker, S A
2014-01-01
The formation of black holes or naked singularities is studied in a model in which a homogeneous time-dependent scalar field with an exponential potential couples to four dimensional gravity with negative cosmological constant. An analytic solution is derived and its consequences are discussed. The model depends only on one free parameter which determines the equation of state and decides the fate of the spacetime. Depending on the value of this parameter the collapse ends in a black hole or a naked singularity. The latter case violates the cosmic censorship conjecture.
Induced gravity I: real scalar field
Einhorn, Martin B.; Jones, D. R. Timothy
2016-01-01
We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. In a companion paper, we will explore whether this more desirable outcome does obtain in more complicated theories with non-Abelian gauge interactions.
Scalar-field theory of dark matter
Huang, Kerson; Zhao, Xiaofei
2013-01-01
We develop a theory of dark matter based on a previously proposed picture, in which a complex vacuum scalar field makes the universe a superfluid, with the energy density of the superfluid giving rise to dark energy, and variations from vacuum density giving rise to dark matter. We formulate a nonlinear Klein-Gordon equation to describe the superfluid, treating galaxies as external sources. We study the response of the superfluid to the galaxies, in particular, the emergence of the dark-matter galactic halo, contortions during galaxy collisions, and the creation of vortices due to galactic rotation.
Induced Gravity I: Real Scalar Field
Einhorn, Martin B
2016-01-01
We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. We believe that the desirable outcome may obtain in more complicated theories with non-Abelian gauge interactions.
Frolov, Valeri P.; Zelnikov, Andrei
2012-03-01
We study massless scalar and electromagnetic fields from static sources in a static higher-dimensional spacetime. Exact expressions for static Green’s functions for such problems are obtained in the background of the Majumdar-Papapetrou solutions of the Einstein-Maxwell equations. Using this result, we calculate the force between two scalar or electric charges in the presence of one or several extremally charged black holes in equilibrium in the higher-dimensional spacetime.
Scalar field dark matter and the Higgs field
Bertolami, O.; Catarina Cosme; Rosa, João G.
2016-01-01
We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10−6–10−4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such ...
Dynamical analysis in scalar field cosmology
Paliathanasis, Andronikos; Tsamparlis, Michael; Basilakos, Spyros; Barrow, John D.
2015-06-01
We give a general method to find exact cosmological solutions for scalar-field dark energy in the presence of perfect fluids. We use the existence of invariant transformations for the Wheeler De Witt (WdW) equation. We show that the existence of a point transformation under which the WdW equation is invariant is equivalent to the existence of conservation laws for the field equations, which indicates the existence of analytical solutions. We extend previous work by providing exact solutions for the Hubble parameter and the effective dark-energy equation of state parameter for cosmologies containing a combination of perfect fluid and a scalar field whose self-interaction potential is a power of hyperbolic functions. We find solutions explicitly when the perfect fluid is radiation or cold dark matter and determine the effects of nonzero spatial curvature. Using the Planck 2015 data, we determine the evolution of the effective equation of state of the dark energy. Finally, we study the global dynamics using dimensionless variables. We find that if the current cosmological model is Liouville integrable (admits conservation laws) then there is a unique stable point which describes the de-Sitter phase of the universe.
Higgs and gravitational scalar fields together induce Weyl gauge
Scholz, Erhard
2014-01-01
A common biquadratic potential for the Higgs field $h$ and an additional scalar field $\\phi$, non minimally coupled to gravity, is considered in locally scale symmetric approaches to standard model fields in curved spacetime. A common ground state of the two scalar fields exists and couples both fields to gravity, more precisely to scalar curvature $R$. In Einstein gauge ($\\phi = const$, often called "Einstein frame"), also $R$ is scaled to a constant. This condition makes perfect sense, even...
Scalar field dark matter and the Higgs field
Bertolami, O.; Cosme, Catarina; Rosa, João G.
2016-08-01
We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10-6-10-4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall-Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.
Scalar field dark matter and the Higgs field
O. Bertolami
2016-08-01
Full Text Available We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10−6–10−4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall–Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.
Scalar field dark matter and the Higgs field
Bertolami, Orfeu; Rosa, João G
2016-01-01
We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range $10^{-6} - 10^{-4}$ eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall-Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.
Scalar Field Theories with Polynomial Shift Symmetries
Griffin, Tom; Horava, Petr; Yan, Ziqi
2014-01-01
We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu-Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree $P$ in spatial coordinates. These "polynomial shift symmetries" in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree $P$, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree $P$? To answer this (essen...
Searching for Chameleon-Like Scalar Fields
Levshakov, S. A.; Molaro, P.; Kozlov, M. G.; Lapinov, A. V.; Henkel, Ch.; Reimersi, D.; Sakai, T.; Agafonova, I. I.
Using the 32-m Medicina, 45-m Nobeyama, and 100-m Effelsberg telescopes we found a statistically significant velocity offset ΔV ≈ 27 ± 3 m s - 1 (1σ) between the inversion transition in NH3(1,1) and low-J rotational transitions in N2H + (1-0) and HC3N(2-1) arising in cold and dense molecular cores in the Milky Way. Systematic shifts of the line centers caused by turbulent motions and velocity gradients, possible non-thermal hyperfine structure populations, pressure and optical depth effects are shown to be lower than or about 1 m s - 1 and thus can be neglected in the total error budget. The reproducibility of ΔV at the same facility (Effelsberg telescope) on a year-to-year basis is found to be very good. Since the frequencies of the inversion and rotational transitions have different sensitivities to variations in μ ≡ m e / m p, the revealed non-zero ΔV may imply that μ changes when measured at high (terrestrial) and low (interstellar) matter densities as predicted by chameleon-like scalar field models - candidates to the dark energy carrier. Thus we are testing whether scalar field models have chameleon-type interactions with ordinary matter. The measured velocity offset corresponds to the ratio Δμ / μ ≡ (μspace - μlab) / μlab of (26 ± 3) ×10 - 9 (1σ).
Creation of the universe with a stealth scalar field
Maeda, Hideki
2012-01-01
The stealth scalar field is a non-trivial configuration without any back-reaction to geometry, which is characteristic for non-minimally coupled scalar fields. Studying the creation probability of the de Sitter universe with a stealth scalar field by the Hartle and Hawking's semi-classical method, we show that the effect of the stealth field can be significant. For the class of scalar fields we consider, creation of the universe with a stealth field is possible for a discrete value of the coupling constant and its creation rate is almost the same as that of the universe in vacuum.
AdS (instability: Lessons from the scalar field
Pallab Basu
2015-06-01
Full Text Available We argued in arXiv:1408.0624 that the quartic scalar field in AdS has features that could be instructive for answering the gravitational stability question of AdS. Indeed, the conserved charges identified there have recently been observed in the full gravity theory as well. In this paper, we continue our investigation of the scalar field in AdS and provide evidence that in the Two-Time Formalism (TTF, even for initial conditions that are far from quasi-periodicity, the energy in the higher modes at late times is exponentially suppressed in the mode number. Based on this and some related observations, we argue that there is no thermalization in the scalar TTF model within time-scales that go as ∼1/ϵ2, where ϵ measures the initial amplitude (with only low-lying modes excited. It is tempting to speculate that the result holds also for AdS collapse.
Massive scalar field evolution in de Sitter
Markkanen, Tommi
2016-01-01
The behaviour of a massive, non-interacting and non-minimally coupled quantised scalar field in an expanding de Sitter background is investigated by solving the field evolution for an arbitrary initial state. In this approach there is no need to choose a vacuum in order to provide a definition for particle states. We conclude that the expanding de Sitter space is a stable equilibrium configuration under small perturbations of the initial conditions. Depending on the initial state, the energy density can approach its asymptotic value from above or below, the latter of which implies a violation of the weak energy condition. The backreaction of the quantum corrections can therefore lead to a phase of super-acceleration also in the non-interacting massive case.
Grassmann scalar fields and asymptotic freedom
The authors extend previous results about scalar fields whose Fourier components are even elements of a Grassmann algebra with given index of nilpotency. Their main interest in particle physics is related to the possibility that they describe fermionic composites analogous to the Copper pairs of superconductivity. The authors evaluate the free propagators for arbitrary index of nilpotency and they investigate a φ4 model to one loop. Due to the nature of the integral over even Grassmann fields such as a model exists for repulsive as well as attractive self interaction. In the first case the β-function is equal to that of the ordinary theory, while in the second one the model is asymptotically free. The bare mass has a peculiar dependence on the cutoff, being quadratically decreasing/increasing for attractive/repulsive self interaction
Landau levels of scalar QED in time-dependent magnetic fields
The Landau levels of scalar QED undergo continuous transitions under a homogeneous, time-dependent magnetic field. We analytically formulate the Klein–Gordon equation for a charged spinless scalar as a Cauchy initial value problem in the two-component first order formalism and then put forth a measure that classifies the quantum motions into the adiabatic change, the nonadiabatic change, and the sudden change. We find the exact quantum motion and calculate the pair-production rate when the magnetic field suddenly changes as a step function. -- Highlights: •We study the Landau levels of scalar QED in time-dependent magnetic fields. •Instantaneous Landau levels make continuous transitions but keep parity. •The Klein–Gordon equation is expressed in the two-component first order formalism. •A measure is advanced that characterizes the quantum motions into three categories. •A suddenly changing magnetic field produces pairs of charged scalars from vacuum
Imprint of thawing scalar fields on large scale galaxy overdensity
Dinda, Bikash R
2016-01-01
We calculate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. As we need to consider the fluctuations in scalar field on these large scales, the general relativistic corrections in thawing scalar field models are distinctly different from $\\Lambda$CDM and the difference can be upto $15-20\\%$ at some scales. Also there is an interpolation between suppression and enhancement of power in scalar field models compared to the $\\Lambda$CDM model on smaller scales and this happens in a specific redshift range that is quite robust to the form of the scalar field potentials or the choice of different cosmological parameters. This can be useful to distinguish scalar field models from $\\Lambda$CDM with future optical/radio surveys.
Massive basketball diagram for a thermal scalar field theory
Andersen, Jens O.; Braaten, Eric; Strickland, Michael
2000-08-01
The ``basketball diagram'' is a three-loop vacuum diagram for a scalar field theory that cannot be expressed in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature, reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We use this result to calculate the free energy for a massive scalar field with a φ4 interaction to three-loop order.
Lagrange Multipliers and Third Order Scalar-Tensor Field Theories
Horndeski, Gregory W
2016-01-01
In a space of 4-dimensions, I will examine constrained variational problems in which the Lagrangian, and constraint scalar density, are concomitants of a (pseudo-Riemannian) metric tensor and its first two derivatives. The Lagrange multiplier for these constrained extremal problems will be a scalar field. For suitable choices of the Lagrangian, and constraint, we can obtain Euler-Lagrange equations which are second order in the scalar field and third order in the metric tensor. The effect of disformal transformations on the constraint Lagrangians, and their generalizations, is examined. This will yield other second order scalar-tensor Lagrangians which yield field equations which are at most of third order. No attempt is made to construct all possible third order scalar-tensor Euler-Lagrange equations in a 4-space, although nine classes of such field equations are presented. Two of these classes admit subclasses which yield conformally invariant field equations. A few remarks on scalar-tensor-connection theor...
Self-interacting complex scalar field as dark matter
We study the viability of a a complex scalar field χ with self-interacting potential V = m0χ/2|χ|2+h|χ|4 as dark matter. Due to the self interaction, the scalar field forms a Bose-Einstein condensate at early times that represents dark matter. The self interaction is also responsible of quantum corrections to the scalar field mass that naturally give the dark matter domination at late times without any fine tuning on the energy density of the scalar field at early times. Finally the properties of the spherically symmetric dark matter halos are also discussed.
One-loop quantum corrections to cosmological scalar field potentials
Arbey, A; Arbey, Alexandre; Mahmoudi, Farvah
2007-01-01
We study the loop corrections to potentials of complex or coupled real scalar fields used in cosmology to account for dark energy, dark matter or dark fluid. We show that the SUGRA quintessence and dark matter scalar field potentials are stable against the quantum fluctuations, and we propose solutions to the instability of the potentials of coupled quintessence and dark fluid scalar fields. We also find that a coupling to fermions is very restricted, unless this coupling has a structure which already exists in the scalar field potential or which can be compensated by higher order corrections. Finally, we study the influence of the curvature and kinetic term corrections.
Scalar field confinement as a model for accreting systems
Megevand, M [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States); Olabarrieta, I [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States); Lehner, L [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States)
2007-07-07
We investigate the possibility of localizing scalar field configurations as a model for black hole accretion. We analyse and resolve difficulties encountered when localizing scalar fields in general relativity. We illustrate this ability with a simple spherically symmetric model which can be used to study features of accreting shells around a black hole. This is accomplished by prescribing a scalar field with a coordinate-dependent potential. Numerical solutions to the Einstein-Klein-Gordon equations are shown, where a scalar field is indeed confined within a region surrounding a black hole. The resulting spacetime can be described in terms of simple harmonic time dependence.
Accelerating cosmology in modified gravity with scalar field
Shaido, Yulia A.; Sugamoto, Akio
2004-01-01
The modified gravity with 1/R term (R being scalar curvature) and the Einstein-Hilbert term is studied by incorporating the phantom scalar field. A number of cosmological solutions are derived in the presence of the phantom field in the perfect fluid background. It is shown the current inflation obtained in the modified gravity is affected by the existence the phantom field.
Geometrization conditions for perfect fluids, scalar fields, and electromagnetic fields
Krongos, D. S.; Torre, C. G.
2015-07-01
Rainich-type conditions giving a spacetime "geometrization" of matter fields in general relativity are reviewed and extended. Three types of matter are considered: perfect fluids, scalar fields, and electromagnetic fields. Necessary and sufficient conditions on a spacetime metric for it to be part of a perfect fluid solution of the Einstein equations are given. Formulas for constructing the fluid from the metric are obtained. All fluid results hold for any spacetime dimension. Geometric conditions on a metric which are necessary and sufficient for it to define a solution of the Einstein-scalar field equations and formulas for constructing the scalar field from the metric are unified and extended to arbitrary dimensions, to include a cosmological constant, and to include any self-interaction potential. Necessary and sufficient conditions on a four-dimensional spacetime metric for it to be an electrovacuum and formulas for constructing the electromagnetic field from the metric are generalized to include a cosmological constant. Both null and non-null electromagnetic fields are treated. A number of examples and applications of these results are presented.
Harmonic bilocal fields generated by globally conformal invariant scalar fields
The twist two contribution in the operator product expansion of φ1(x1) φ2(x2) for a pair of globally conformal invariant, scalar fields of equal scaling dimension d in four space-time dimensions is a field V1(x1, x2) which is harmonic in both variables. It is demonstrated that the Huygens bilocality of V1 can be equivalently characterized by a 'single-pole property' concerning the pole structure of the (rational) correlation functions involving the product φ1(x1) φ2(x2). This property is established for the dimension d = 2 of φ1, φ2. As an application we prove that any GCI scalar field of conformal dimension 2 (in four space-time dimensions) can be written as a (possibly infinite) superposition of products of free massless fields. (author)
Inflationary solutions in the nonminimally coupled scalar field theory
Koh, Seoktae; Kim, Sang Pyo; Song, Doo Jong
2005-08-01
We study analytically and numerically the inflationary solutions for various type scalar potentials in the nonminimally coupled scalar field theory. The Hamilton-Jacobi equation is used to deal with nonlinear evolutions of inhomogeneous spacetimes and the long-wavelength approximation is employed to find the homogeneous solutions during an inflation period. The constraints that lead to a sufficient number of e-folds, a necessary condition for inflation, are found for the nonminimal coupling constant and initial conditions of the scalar field for inflation potentials. In particular, we numerically find an inflationary solution in the new inflation model of a nonminimal scalar field.
Scalar field dark matter: behavior around black holes
We present the numerical evolution of a massive test scalar fields around a Schwarzschild space-time. We proceed by using hyperboloidal slices that approach future null infinity, which is the boundary of scalar fields, and also demand the slices to penetrate the event horizon of the black hole. This approach allows the scalar field to be accreted by the black hole and to escape toward future null infinity. We track the evolution of the energy density of the scalar field, which determines the rate at which the scalar field is being diluted. We find polynomial decay of the energy density of the scalar field, and use it to estimate the rate of dilution of the field in time. Our findings imply that the energy density of the scalar field decreases even five orders of magnitude in time scales smaller than a year. This implies that if a supermassive black hole is the Schwarzschild solution, then scalar field dark matter would be diluted extremely fast
Boundary Conditions as Mass Generation Mechanism for Complex Scalar Fields
Nogueira, J A
2003-01-01
We consider the effects of homogeneous Dirichlet's boundary conditions in the scalar electrodynamics with self-interaction. We have found for a critical scale of the compactification length that symmetry is restored and scalar field develops mass and vector field does not.
Boundary Conditions as Mass Generation Mechanism for Real Scalar Fields
Nogueira, J A; Nogueira, Jose Alexandre; Barbieri, Pedro Leite
2001-01-01
We consider the effects of homogeneous Dirichlet's boundary conditions on two infinite parallel plane surfaces separated by a small distance {\\it a}. We find that although spontaneous symmetry breaking does not occur for the theory of a massless, quartically self-interacting real scalar field, the theory becomes a theory of a massive scalar field.
Entropy of Scalar Field near a Schwarzschild Black Hole Horizon
Setare, M.R.(Department of Science, University of Kurdistan, Campus of Bijar, Bijar, Iran)
2005-01-01
In this paper we compute the correction to the entropy of Schwarzschild black hole due to the vacuum polarization effect of massive scalar field. The Schwarzschild black hole is supposed to be confined in spherical shell. The scalar field obeying mixed boundary condition on the spherical shell.
Effective Hamiltonian for non-minimally coupled scalar fields
Mese, Emine; Pirinccioglu, Nurettin; Acikgoz, Irfan; Binbay, Figen
2006-01-01
Performing a relativistic approximation as the generalization to a curved spacetime of the flat space Klein-Gordon equation, an effective Hamiltonian which includes non-minimial coupling between gravity and scalar field and also quartic self-interaction of scalar field term is obtained.
Regular and Chaotic Regimes in Scalar Field Cosmology
Alexey V. Toporensky
2006-03-01
Full Text Available A transient chaos in a closed FRW cosmological model with a scalar field is studied. We describe two different chaotic regimes and show that the type of chaos in this model depends on the scalar field potential. We have found also that for sufficiently steep potentials or for potentials with large cosmological constant the chaotic behavior disappears.
Decoding the hologram: Scalar fields interacting with gravity
Kabat, Daniel
2013-01-01
We construct smeared CFT operators which represent a scalar field in AdS interacting with gravity. The guiding principle is micro-causality: scalar fields should commute with themselves at spacelike separation. To O(1/N) we show that a correct and convenient criterion for constructing the appropriate CFT operators is to demand micro-causality in a three-point function with a boundary Weyl tensor and another boundary scalar. The resulting bulk observables transform in the correct way under AdS isometries and commute with boundary scalar operators at spacelike separation, even in the presence of metric perturbations.
Landau Levels of Scalar QED in Time-Dependent Magnetic Fields
Kim, Sang Pyo
2013-01-01
The Landau levels of scalar QED undergo continuous transitions under a homogeneous, time-dependent magnetic field. We analytically formulate the Klein-Gordon equation for a charged spinless scalar as a Cauchy initial value problem in the two-component first order formalism and then put forth a measure that classifies the quantum motions into the adiabatic change, the nonadiabatic change, and the sudden change. We find the exact quantum motion and calculate the pair-production rate when the ma...
Effective field theory of quantum gravity coupled to scalar electrodynamics
Ibiapina Bevilaqua, L.; Lehum, A. C.; da Silva, A. J.
2016-05-01
In this work, we use the framework of effective field theory to couple Einstein’s gravity to scalar electrodynamics and determine the renormalization of the model through the study of physical processes below Planck scale, a realm where quantum mechanics and general relativity are perfectly compatible. We consider the effective field theory up to dimension six operators, corresponding to processes involving one-graviton exchange. Studying the renormalization group functions, we see that the beta function of the electric charge is positive and possesses no contribution coming from gravitational interaction. Our result indicates that gravitational corrections do not alter the running behavior of the gauge coupling constants, even if massive particles are present.
Covariant and gauge-invariant linear scalar perturbations in multiple scalar field cosmologies
Alho, Artur
2013-01-01
We derive a set of equations monitoring the evolution of covariant and gauge-invariant linear scalar perturbations of Friedman-Lema\\^itre-Robertson-Walker models with multiple interacting non-linear scalar fields. We use a dynamical systems' approach in order to perform a stability analysis for some classes of scalar field potentials. In particular, using a recent approximation for the inflationary dynamics of the background solution, we derive conditions under which homogenization occurs for chaotic (quadratic and quartic potentials) and new inflation. We also prove a cosmic no-hair result for power-law inflation and its generalisation for two scalar fields with independent exponential potentials (assisted power-law inflation).
Fundamental scalar fields and the dark side of the universe
Mychelkin, Eduard G
2015-01-01
Starting with geometrical premises, we infer the existence of fundamental cosmological scalar fields. We then consider physically relevant situations in which spacetime metric is induced by one or, in general, by two scalar fields, in accord with the Papapetrou algorithm. The first of these fields, identified with dark energy, has exceedingly small but finite (subquantum) Hubble mass scale (~ 10^-33 eV), and might be represented as a neutral superposition of quasi-static electric fields. The second field is identified with dark matter as an effectively scalar conglomerate composed of primordial neutrinos and antineutrinos in a special tachyonic state.
Searching for Chameleon-like Scalar Fields
Levshakov, S A; Kozlov, M G; Lapinov, A V; Henkel, C; Reimers, D; Sakai, T; Agafonova, I I
2010-01-01
Using the 32-m Medicina, 45-m Nobeyama, and 100-m Effelsberg telescopes we found a statistically significant velocity offset Delta V = 27 +/- 3 m/s (1sigma) between the inversion transition in NH3(1,1) and low-J rotational transitions in N2H+(1-0) and HC3N(2-1) arising in cold and dense molecular cores in the Milky Way. Systematic shifts of the line centers caused by turbulent motions and velocity gradients, possible non-thermal hyperfine structure populations, pressure and optical depth effects are shown to be lower than or about 1 m/s and thus can be neglected in the total error budget. The reproducibility of Delta V at the same facility (Effelsberg telescope) on a year-to-year basis is found to be very good. Since the frequencies of the inversion and rotational transitions have different sensitivities to variations in mu = m_e/m_p, the revealed non-zero Delta V may imply that mu changes when measured at high (terrestrial) and low (interstellar) matter densities as predicted by chameleon-like scalar field m...
Fundamental scalar fields and the dark side of the universe
Mychelkin, Eduard G.; Makukov, Maxim A.
2015-01-01
Starting with geometrical premises, we infer the existence of fundamental cosmological scalar fields. We then consider physically relevant situations in which spacetime metric is induced by one or, in general, by two scalar fields, in accord with the Papapetrou algorithm. The first of these fields, identified with dark energy, has exceedingly small but finite (subquantum) Hubble mass scale (~ 10^-33 eV), and might be represented as a neutral superposition of quasi-static electric fields. The ...
On the entanglement between interacting scalar field theories
Mozaffar, M. Reza Mohammadi; Mollabashi, Ali
2016-03-01
We study "field space entanglement" in certain quantum field theories consisting of N number of free scalar fields interacting with each other via kinetic mixing terms. We present exact analytic expressions for entanglement and Renyi entropies between arbitrary numbers of scalar fields by which we could explore certain entanglement inequalities. Other entanglement measures such as mutual information and entanglement negativity have also been studied. We also give some comments about possible holographic realizations of such models.
GFFD： Generalized free-form deformation with scalar fields
秦绪佳; 华炜; 方向; 鲍虎军; 彭群生
2003-01-01
The novel free-form deformation (FFD) technique presented in the paper uses scalar fields definedby skeletons with arbitrary topology. The technique embeds objects into the scalar field by assigning a field value to each point of the objects. When the space of the skeleton is changed, the distribution of the scalar field changes accordingly, which implicitly defines a deformation of the space. The generality of skeletons assures that the technique can freely define deformable regions to produce a broader range of shape deformations.
Hawking radiation of scalars from charged accelerating and rotating black holes with NUT parameter
Jan, Khush
2013-01-01
We study the quantum tunneling of scalars from charged accelerating and rotating black hole with NUT parameter. For this purpose we use the charged Klein-Gordon equation. We apply WKB approximation and the Hamilton-Jacobi method to solve charged the Klein-Gordon equation. We find the tunneling probability of outgoing charged scalars from the event horizon of this black hole, and hence the Hawking temperature for this black hole.
Charged Scalar Phenomenology in the Bilinear R-Parity Breaking Model
Ferrandis, J
1998-01-01
We consider the charged scalar boson phenomenology in the bilinear R-parity breaking model which induces a mixing between staus and the charged Higgs boson. The charged Higgs boson mass can be lower than expected in the MSSM, even before including radiative corrections. The R-parity violating decay rates can be comparable or even bigger than the R-parity conserving ones. These features could have implications for charged supersymmetric scalar boson searches at future accelerators.
Fast-roll solutions from two scalar field inflation
Santos, J R L
2015-01-01
The cosmological equations of motion of scalar fields are commonly not easy to be analytically solved, which makes necessary to use approximation methods, as the {\\it slow-roll} regime. In such an approximation one considers the scalar field potentials to be nearly flat. On the other hand, the so called {\\it fast-roll} regime considers exactly flat potentials. Our purpose in this work is to obtain solutions for a two scalar field quintessence model in the fast-roll regime. Cosmological interpretations for such solutions are also presented.
Critical gravity with a scalar field in four dimensions
Hirochi, Kyosuke
2012-01-01
We consider the critical gravity theory with a scalar field in four dimensions. We find that this theory has the solution corresponding to the de Sitter (dS), anti-de Sitter (AdS), and Minkowski background depending on whether the action includes the cosmological term or not. The Minkowski background is the solution which cannot be obtained in the model without a scalar field. At the critical point, we show that the Abbott-Deser (AD) mass of the Schwarzschild-de Sitter (SdS) black hole and the energy for the massless graviton vanish, whose situation is not changed from the model without a scalar field.
Cosmic string interactions induced by gauge and scalar fields
Kabat, Daniel; Sarkar, Debajyoti
2012-01-01
We study the interaction between two parallel cosmic strings induced by gauge fields and by scalar fields with non-minimal couplings to curvature. For small deficit angles the gauge field behaves like a collection of non-minimal scalars with a specific value for the non-minimal coupling. We check this equivalence by computing the interaction energy between strings at first order in the deficit angles. This result provides another physical context for the "contact terms" which play an importan...
General Analytical Solutions of Scalar Field Cosmology with Arbitrary Potential
Dimakis, N; Zampeli, Adamantia; Paliathanasis, Andronikos; Christodoulakis, T; Terzis, Petros A
2016-01-01
We present the solution space for the case of a minimally coupled scalar field with arbitrary potential in a FLRW metric. This is made possible due to the existence of a nonlocal integral of motion corresponding to the conformal Killing field of the two-dimensional minisuperspace metric. The case for both spatially flat and non flat are studied first in the presence of only the scalar field and subsequently with the addition of non interacting perfect fluids. It is verified that this addition does not change the general form of the solution, but only the particular expressions of the scalar field and the potential. The results are applied in the case of parametric dark energy models where we derive the scalar field equivalence solution for some proposed models in the literature.
Classical behavior of a scalar field in the inflationary universe
Extending the coarse-graining approach of Starobinsky, we formulate a theory to deal with the dynamics of a scalar field in inflationary universe models. We find a set of classical Langevin equations which describes the large scale behavior of the scalar field, provided that the coarse-grained size is greater than the effective compton wavelength of the scalar field. The corresponding Fokker-Planck equation is also derived which is defined on the phase space of the scalar field. We show that our theory is essentially equivalent to the one-loop field theory in de Sitter space and reduces to that of Starobinsky in a strong limit of the slow roll-over condition. Analysis of a simple Higgs potential model is done and the implications are discussed. (author)
Scalar potential without cubic term in 3-3-1 models without exotic electric charges
Giraldo, Yithsbey [Universidad de Narino, Departamento de Fisica, A.A. 1175, Pasto (Colombia); Universidad de Antioquia, Instituto de Fisica, A.A. 1226, Medellin (Colombia); Ponce, William A. [Universidad de Antioquia, Instituto de Fisica, A.A. 1226, Medellin (Colombia)
2011-07-15
A detailed study of the criteria for stability of the scalar potential, and the proper electroweak symmetry breaking pattern in some 3-3-1 models without exotic electric charges is presented. In this paper we concentrate in a scalar sector with three Higgs scalar triplets, with a potential that does not include the cubic term, due to the presence of a discrete symmetry. For the analysis we use, and improve, a method previously developed to study the scalar potential in the two-Higgs-doublet extension of the standard model. Our main result is to show the consistency of those 3-3-1 models without exotic electric charges. (orig.)
Exact Inflationary Solution to Nonminimally Coupled Scalar Field
WANG Wen-Fu; YANG Shu-Zheng
2005-01-01
@@ We present a new exact inflationary solution to nonminimally coupled scalar field. The inflation is driven by the evolution of scalar field with inflation potential V() = λ/4()4 - 1/2m2()2 + Vo. This includes the solution that behaves exponential inflation for ()o ＞ () ＞ ()end and then develops smoothly towards radiation-like evolution for () ＜ (()end. The spectral index of the scalar density fluctuations, ns, is computed, and the result is consistent with the analysis of the Wilkinson-microwave anisotropy probe data. This model can lead to successful inflation with λ≈ 10-7, rather than 10-13 reported previously.
Noncommutative scalar field minimally coupled to nonsymmetric gravity
Kouadik, S.; Sefai, D. [Laboratory of Mechanic, Physics and Mathematical Modeling Medea University (Algeria)
2012-06-27
We construct a non-commutative non symmetric gravity minimally coupled model (the star product only couples matter). We introduce the action for the system considered namely a non-commutative scalar field propagating in a nontrivial gravitational background. We expand the action in powers of the anti-symmetric field and the graviton to second order adopting the assumption that the scalar is weekly coupled to the graviton. We compute the one loop radiative corrections to the self-energy of a scalar particle.
Cosmological spacetimes balanced by a scale covariant scalar field
Scholz, Erhard
2008-01-01
A scale invariant, Weyl geometric, Lagrangian approach to cosmology is explored, with a a scalar field \\phi of (scale) weight -1 as a crucial ingredient besides classical matter (Tann 1998, Drechsler 1999}. For a particularly simple class of Weyl geometric models (called Einstein-Weyl universes) the Klein-Gordon equation for \\phi is explicitly solvable. In this case the energy-stress tensor of the scalar field consists of a vacuum-like term \\Lambda g_{\\mu \
Supermassive black holes in scalar field galaxy halos
Ureña-López, L. Arturo; Liddle, Andrew R.
2002-01-01
Ultra-light scalar fields provide an interesting alternative to WIMPS as halo dark matter. In this paper we consider the effect of embedding a supermassive black hole within such a halo, and estimate the absorption probability and the accretion rate of dark matter onto the black hole. We show that the accretion rate would be small over the lifetime of a typical halo, and hence that supermassive central black holes can coexist with scalar field halos.
Associated single photons and doubly-charged scalars at linear - - colliders
Biswarup Mukhopadhyaya; Santosh Kumar Rai
2007-11-01
Doubly-charged scalars, predicted in many models having exotic Higgs representations, can in general have lepton-number violating (LFV) couplings. We show that by using an associated monoenergetic final state photon seen at a future linear - - collider, we can have a clear and distinct signature for a doubly-charged resonance. The strength of the = 2 coupling can also be probed quite effectively as a function of the recoil mass of the doubly-charged scalar.
N-Body Simulations for Coupled Scalar Field Cosmology
Li, Baojiu
2010-01-01
We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled scalar field cosmological models, including the background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled scalar field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not operate. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulations of similar models. We study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to investigate where the nonlinear model deviates from the lin...
The singularity in supercritical collapse of a spherical scalar field
Burko, L M
1998-01-01
We study the singularity created in the supercritical collapse of a spherical massless scalar field. We first model the geometry and the scalar field to be homogeneous, and find a generic solution describing a spacelike singularity which is monotonic, scalar polynomial and strong. Next we confront the predictions of this analytical model with the pointwise behavior of fully-nonlinear and inhomogeneous numerical simulations, and find full compliance. We also study the phenomenology of the spatial structure of the singularity numerically. At asymptotically late advanced time the singularity approaches the Schwarzschild singularity, in addition to discrete points at finite advanced times, where the singularity is Schwarzschild-like. At other points the singularity is different from Schwarzschild due to the nonlinear scalar field.
Instability of a four-dimensional de Sitter black hole with a conformally coupled scalar field
Harper, Tom J. T.; Thomas, Paul A.; Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom); Young, Phil M.
2003-01-01
We study the stability of new neutral and electrically charged four-dimensional black hole solutions of Einstein's equations with a positive cosmological constant and conformally coupled scalar field. The neutral black holes are always unstable. The charged black holes are also shown analytically to be unstable for the vast majority of the parameter space of solutions, and we argue using numerical techniques that the configurations corresponding to the remainder of the parameter space are als...
Quark scalar, axial, and pseudoscalar charges in the Schwinger-Dyson formalism
Yamanaka, Nodoka; Imai, Shotaro; Doi, Takahiro M.; Suganuma, Hideo
2014-01-01
We calculate the scalar, axial, and pseudoscalar charges of the quark in the Schwinger-Dyson formalism of Landau gauge QCD. It is found that the dressed quark scalar density of the valence quark is significantly enhanced against the bare quark contribution, and the result explains qualitatively the phenomenologically known value of the pion-nucleon sigma term and also that given by lattice QCD. Moreover, we show that the Richardson's interquark potential suppresses the quark scalar density in...
Gauge Fields and Scalars in Rolling Tachyon Backgrounds
Mehen, Thomas; Wecht, Brian
2002-01-01
We investigate the dynamics of gauge and scalar fields on unstable D-branes with rolling tachyons. Assuming an FRW metric on the brane, we find a solution of the tachyon equation of motion which is valid for arbitrary tachyon potentials and scale factors. The equations of motion for a U(1) gauge field and a scalar field in this background are derived. These fields see an effective metric which differs from the original FRW metric. The field equations receive large corrections due to the curva...
Building a Holographic Superconductor with a Scalar Field Coupled Kinematically to Einstein Tensor
Kuang, Xiao-Mei
2016-01-01
We study the holographic dual description of a superconductor in which the gravity sector consists of a Maxwell field and a charged scalar field which except its minimal coupling to gravity it is also coupled kinematically to Einstein tensor. As the strength of the new coupling is increased, the critical temperature below which the scalar field condenses is lowering, the condensation gap decreases faster than the temperature, the width of the condensation gap is not proportional to the size of the condensate and at low temperatures the condensation gap tends to zero for the strong coupling. These effects which are the result of the presence of the coupling of the scalar field to the Einstein tensor in the gravity bulk, provide a dual description of impurities concentration in a superconducting state on the boundary.
Nonperturbative description of the thermal scalar effective potential at fixed charge
Full text: Nowadays much attention is been devoted to the study of the phase transitions under extreme conditions, motivated mostly by the surge of experimental results from the heavy-ion experiments at the RHIC and at the LHC (Large Hadron Collider). Another important factor is the wide range of applications existing in systems where characteristic low energy phenomena may arise, such as in condensed matter, yet still possible to characterize through techniques used in quantum field theory, and going to the description of high energy systems, such as particles physics and cosmology. It is well known in the literature that conventional perturbative methods are not applicable in the description of phase transitions in general, since the perturbative expansion breaks at high temperature regimes or around the critical points, and non-perturbative methods are necessary to fully understand the phase transition phenomena in these different systems. In this work we perform a detailed study about the effects of including a fixed charge in the phase transition in a scalar field system, described by a charged scalar quantum field theory at finite temperature. The phase structure of the model is studied using a non-perturbative method know in the literature as Optimized Perturbation Theory (OPT) and we compare our results with earlier ones based on perturbation theory. (author)
Scalar field haloes as gravitational lenses
Schunck, F E; Mielke, E W
2006-01-01
A non-topological soliton model with a repulsive scalar self-interaction of the Emden type provides a constant density core,similarly as the empirical Burkert profile of dark matter haloes. As a further test, we derive the gravitational lens properties of our model, in particular, the demarcation curves between `weak' and `strong' lensing. Accordingly, strong lensing with typically three images is almost three times more probable for our solitonic model than for the Burkert fit. Moreover, some prospective consequences of a possible flattening of dark matter haloes are indicated.
The self-force on a non-minimally coupled static scalar charge outside a Schwarzschild black hole
Cho, Demian H J; Tsokaros, Antonios A; Wiseman, Alan G [Department of Physics, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201 (United States)
2007-03-07
The finite part of the self-force on a static, non-minimally coupled scalar test charge outside a Schwarzschild black hole is zero. This result is determined from the work required to slowly raise or lower the charge through an infinitesimal distance. Unlike similar force calculations for minimally-coupled scalar charges or electric charges, we find that we must account for a flux of field energy that passes through the horizon and changes the mass and area of the black hole when the charge is displaced. This occurs even for an arbitrarily slow displacement of the non-minimally coupled scalar charge. For a positive coupling constant, the area of the hole increases when the charge is lowered and decreases when the charge is raised. The fact that the self-force vanishes for a static, non-minimally coupled scalar charge in Schwarzschild spacetime agrees with a simple prediction of the Quinn-Wald axioms. However, Zel'nikov and Frolov computed a non-vanishing self-force for a non-minimally coupled charge. Our method of calculation closely parallels the derivation of Zel'nikov and Frolov, and we show that their omission of this unusual flux is responsible for their (incorrect) result. When the flux is accounted for, the self-force vanishes. This correction eliminates a potential counter example to the Quinn-Wald axioms. The fact that the area of the black hole changes when the charge is displaced brings up two interesting questions that did not arise in similar calculations for static electric charges and minimally coupled scalar charges. (1) How can we reconcile a decrease in the area of the black hole horizon with the area theorem which concludes that {delta}Area{sub horizon} {>=} 0? The key hypothesis of the area theorem is that the stress-energy tensor must satisfy a null-energy condition T{sup {alpha}}{sup {beta}}l{sub {alpha}}l{sub {beta}} {>=} 0 for any null vector l{sub {alpha}}. We explicitly show that the stress-energy associated with a non
Higgs and gravitational scalar fields together induce Weyl gauge
Scholz, Erhard
2014-01-01
A common biquadratic potential for the Higgs field $h$ and an additional scalar field $\\phi$, non minimally coupled to gravity, is considered in locally scale symmetric approaches to standard model fields in curved spacetime. A common ground state of the two scalar fields exists and couples both fields to gravity, more precisely to scalar curvature $R$. In Einstein gauge ($\\phi = const$, often called "Einstein frame"), also $R$ is scaled to a constant. This condition makes perfect sense, even in the general case, in the Weyl geometric approach. There it has been called {\\em Weyl gauge}, because it was first considered by Weyl in the different context of his original scale geometric theory of gravity of 1918. Now it seems to get new meaning as a combined effect of electroweak theory and gravity, and their common influence on atomic frequencies.
Scalar field perturbations in Horava-Lifshitz cosmology
Wang, Anzhong; Maartens, Roy
2009-01-01
In this paper we study perturbations of a scalar field cosmology in Horava-Lifshitz gravity, adopting the Sotiriou-Visser-Weifurtner generalization, which is the most general setup without detailed balance but with the projectability condition. After obtaining the general field equations, including a sixth-order Klein-Gordon equation, we investigate scalar field perturbations coupled to gravity in a flat Friedmann-Robertson-Walker universe. In the sub-horizon regime, the metric and scalar field modes have independent oscillations with different frequencies and phases except in particular cases.On super-horizon scales the perturbations become adiabatic during slow-roll inflation driven by a single field and the comoving curvature perturbation is constant.
Thermodynamics of perfect fluids from scalar field theory
Ballesteros, Guillermo; Comelli, Denis; Pilo, Luigi
2016-07-01
The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stückelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stückelberg fields. We show that thermodynamic stability plus the null-energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.
Thermodynamics of perfect fluids from scalar field theory
Ballesteros, Guillermo; Pilo, Luigi
2016-01-01
The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.
Li, Ran; Zhao, Junkun
2016-01-01
Reissner-Nordstr\\"om Anti-de Sitter (RNAdS) black holes are unstable against the charged scalar field perturbations due to the well-known superradiance phenomenon. We present the time domain analysis of charged scalar field perturbations in the RNAdS black hole background in general dimensions. We show that the instabilities of charged scalar field can be explicitly illustrated from the time profiles of evolving scalar field. By using the Prony method to fit the time evolution data, we confirm the mode that dominates the long time behavior of scalar field is in accordance with the quasinormal mode from the frequency domain analysis. The superradiance origin of the instability can also be demonstrated by comparing the real part of the dominant mode with the superradiant condition of charged scalar field. It is shown that all the unstable modes are superradiant, which is consistent with the analytical result in the frequency domain analysis. Furthermore, we also confirm there exists the rapid exponential growin...
Note on scalars, perfect fluids, constrained field theories, and all that
Diez-Tejedor, Alberto
2013-01-01
The relation of a scalar field with a perfect fluid has generated some debate along the last few years. In this paper we argue that shift-invariant scalar fields can describe accurately the potential flow of an isentropic perfect fluid, but, in general, the identification is possible only for a finite period of time. After that period in the evolution the dynamics of the scalar field and the perfect fluid branch off. The Lagrangian density for the velocity-potential can be read directly from the expression relating the pressure with the Taub charge and the entropy per particle in the fluid, whereas the other quantities of interest can be obtained from the thermodynamic relations.
Note on scalars, perfect fluids, constrained field theories, and all that
The relation of a scalar field with a perfect fluid has generated some debate along the last few years. In this Letter we argue that shift-invariant scalar fields can describe accurately the potential flow of an isentropic perfect fluid, but, in general, the identification is possible only for a finite period of time. After that period in the evolution the dynamics of the scalar field and the perfect fluid branch off. The Lagrangian density for the velocity-potential can be read directly from the expression relating the pressure with the Taub charge and the entropy per particle in the fluid, whereas the other quantities of interest can be obtained from the thermodynamic relations
Quantum and classical aspects of scalar and vector fields around black holes
Wang, Mengjie
2016-01-01
This thesis presents recent studies on test scalar and vector fields around black holes. It is separated in two parts according to the asymptotic properties of the spacetime under study. In the first part, we investigate scalar and Proca fields on an asymptotically flat background. For the Proca field, we obtain a complete set of equations of motion in higher dimensional spherically symmetric backgrounds. These equations are solved numerically, both to compute Hawking radiation spectra and quasi-bound states. In the former case, we carry out a precise study of the longitudinal degrees of freedom induced by the field mass. This can be used to improve the model in the black hole event generators currently used at the Large Hadron Collider. Regarding quasi-bound states, we find arbitrarily long lived modes for a charged Proca field, as well as for a charged scalar field, in a Reissner-Nordstr\\"om black hole. The second part of this thesis presents research on superradiant instabilities of scalar and Maxwell fiel...
Inflation with an extra light scalar field after Planck
Vennin, Vincent; Koyama, Kazuya; Wands, David
2016-03-01
Bayesian inference techniques are used to investigate situations where an additional light scalar field is present during inflation and reheating. This includes (but is not limited to) curvaton-type models. We design a numerical pipeline where simeq 200 inflaton setups × 10 reheating scenarios = 2000 models are implemented and we present the results for a few prototypical potentials. We find that single-field models are remarkably robust under the introduction of light scalar degrees of freedom. Models that are ruled out at the single-field level are not improved in general, because good values of the spectral index and the tensor-to-scalar ratio can only be obtained for very fine-tuned values of the extra field parameters and/or when large non-Gaussianities are produced. The only exception is quartic large-field inflation, so that the best models after Planck are of two kinds: plateau potentials, regardless of whether an extra field is added or not, and quartic large-field inflation with an extra light scalar field, in some specific reheating scenarios. Using Bayesian complexity, we also find that more parameters are constrained for the models we study than for their single-field versions. This is because the added parameters not only contribute to the reheating kinematics but also to the cosmological perturbations themselves, to which the added field contributes. The interplay between these two effects lead to a suppression of degeneracies that is responsible for having more constrained parameters.
Quasistationary solutions of scalar fields around accreting black holes
Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.
2016-08-01
Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.
Effective Action for Cosmological Scalar Fields at Finite Temperature
Cheung, Yeuk-Kwan E; Kang, Jin U; Kim, Jong Chol
2015-01-01
Scalar fields appear in many theories beyond the Standard Model of particle physics. In the early universe, they are exposed to extreme conditions, including high temperature and rapid cosmic expansion. Understanding their behavior in this environment is crucial to understand the implications for cosmology. We calculate the finite temperature effective action for the field expectation value in two particularly important cases, for damped oscillations near the ground state and for scalar fields with a flat potential. We find that the behavior in both cases can in good approximation be described by a complex valued effective potential that yields Markovian equations of motion. Near the potential minimum, we recover the solution to the well-known Langevin equation. For large field values we find a very different behavior, and our result for the damping coefficient significantly differs from the expressions given in the literature. We illustrate our results in a simple scalar model, for which we give analytic app...
Small scale structures in coupled scalar field dark matter
J. Beyer
2014-11-01
Full Text Available We investigate structure formation for ultra-light scalar field dark matter coupled to quintessence, in particular the cosmon–bolon system. The linear power spectrum is computed by a numerical solution of the coupled field equations. We infer the substructure abundance within a Milky Way-like halo. Estimates of dark halo abundances from recent galaxy surveys imply a lower bound on the bolon mass of about 9×10−22 eV. This seems to exclude a possible detection of scalar field dark matter through time variation in pulsar timing signals in the near future.
Higgs portal dark matter and neutrino mass and mixing with a doubly charged scalar
Hierro, I M; Rigolin, S
2016-01-01
We consider an extension of the Standard Model involving two new scalar particles around the TeV scale: a singlet neutral scalar $\\phi$, to be eventually identified as the Dark Matter candidate, plus a doubly charged $SU(2)_L$ singlet scalar, $S^{++}$, that can be the source for the non-vanishing neutrino masses and mixings. Assuming an unbroken $Z_2$ symmetry in the scalar sector, under which only the additional neutral scalar $\\phi$ is odd, we write the most general (renormalizable) scalar potential. The model may be regarded as a possible extension of the conventional Higgs portal Dark Matter scenario which also accounts for neutrino mass and mixing. This framework cannot completely explain the observed positron excess. However a softening of the discrepancy observed in conventional Higgs portal framework can be obtained, especially when the scale of new physics responsible for generating neutrino masses and lepton number violating processes is around 2 TeV.
Bose–Einstein condensates and scalar fields; exploring the similitudes
Castellanos, E. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F. (Mexico); Macías, A. [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, México D.F. 09340 (Mexico); Núñez, D. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., A.P. 70-543, México D.F. 04510 (Mexico)
2014-01-14
We analyze the the remarkable analogy between the classical Klein–Gordon equation for a test scalar field in a flat and also in a curved background, and the Gross–Pitaevskii equation for a Bose–Einstein condensate trapped by an external potential. We stress here that the solution associated with the Klein–Gordon equation (KG) in a flat space time has the same mathematical structure, under certain circumstances, to those obtained for the Gross–Pitaevskii equation, that is, a static soliton solution. Additionally, Thomas–Fermi approximation is applied to the 3–dimensional version of this equation, in order to calculate some thermodynamical properties of the system in curved a space–time back ground. Finally, we stress the fact that a gravitational background provides, in some cases, a kind of confining potential for the scalar field, allowing us to remarks even more the possible connection between scalar fields and the phenomenon of Bose–Einstein condensation.
DBI scalar field theory for QGP hydrodynamics
Nastase, Horatiu
2015-01-01
A way to describe the hydrodynamics of the quark-gluon plasma using a DBI action is proposed, based on the model found by Heisenberg for high energy scattering of nucleons. The expanding plasma is described as a shockwave in a DBI model for a real scalar standing in for the pion, and I show that one obtains a fluid description in terms of a relativistic fluid that near the shock is approximately ideal ($\\eta\\simeq 0$) and conformal. One can introduce an extra term inside the square root of the DBI action that generates a shear viscosity term in the energy-momentum tensor near the shock, as well as a bulk viscosity, and regulates the behaviour of the energy density at the shock, making it finite. The resulting fluid satisfies the relativistic Navier-Stokes equation with $u^\\mu, \\rho,P,\\eta$ defined in terms of $\\phi$ and its derivatives. One finds a relation between the parameters of the theory and the QGP thermodynamics, $\\a/\\b^2=\\eta/(sT)$, and by fixing $\\a$ and $\\b$ from usual (low multiplicity) particle s...
Irreducible Cartesian tensor expansions of scalar fields
It is shown how a scalar function V(parallel R + Σ/sub i equals 1/sup n/ a/sub i/parallel) of a sum of n + 1 vectors can be expanded as a multiple Cartesian tensor series in the vectors a/ sub i/. This expansion is a rearrangement of the multiple Taylor series expansion of such a function. In order to prove the fundamental theorem, generalized Cartesian Legendre polynomials are defined. The theorem is applied to the eigenfunctions of the Laplace operator and to inverse powers. The expansion of the latter type of function leads to forms involving generalized hypergeometric functions in several variables. As a special case, the Cartesian form of the multipole expansion of the electrostatic potential between two linear molecules is derived. A number of sum rules for hypergeometric functions and addition formulas for (standard and modified) spherical Bessel functions are proved by using a reduction property of the generalized Legendre polynomials. The case of the expansion of a tensorial function is also briefly discussed
Boson Stars in a Theory of Complex Scalar Field coupled to Gravity
Kumar, Sanjeev; Kulshreshtha, Daya Shankar
2016-01-01
We study boson stars in a theory of complex scalar field coupled to Einstein gravity with the potential: $V(|\\Phi|) := m^{2} |\\Phi|^2 +2 \\lambda |\\Phi|$ (where $m^2$ and $\\lambda$ are positive constant parameters). This could be considered either as a theory of massive complex scalar field coupled to gravity in a conical potential or as a theory in the presence of a potential which is an overlap of a parabolic and a conical potential. We study our theory with positive as well as negative values of the cosmological constant $\\Lambda$. Boson stars are found to come in two types, having either ball-like or shell-like charge density. We have studied the properties of these solutions and have also determined their domains of existence for some specific values of the parameters of the theory. Similar solutions have also been obtained by Hartmann, Kleihaus, Kunz, and Schaffer, in a V-shaped scalar potential.
Dark energy parametrization motivated by scalar field dynamics
de la Macorra, Axel
2016-05-01
We propose a new dark energy (DE) parametrization motivated by the dynamics of a scalar field ϕ. We use an equation of state w parametrized in terms of two functions L and y, closely related to the dynamics of scalar fields, which is exact and has no approximation. By choosing an appropriate ansatz for L we obtain a wide class of behavior for the evolution of DE without the need to specify the scalar potential V. We parametrize L and y in terms of only four parameters, giving w a rich structure and allowing for a wide class of DE dynamics. Our w can either grow and later decrease, or it can happen the other way around; the steepness of the transition is not fixed and it contains the ansatz w={w}o+{w}a(1-a). Our parametrization follows closely the dynamics of a scalar field, and the function L allows us to connect it with the scalar potential V(φ ). While the Universe is accelerating and the slow roll approximation is valid, we get L≃ {({V}\\prime /V)}2. To determine the dynamics of DE we also calculate the background evolution and its perturbations, since they are important to discriminate between different DE models.
The dynamical behavior of scalar fields near the initial singularity
One of the most important topics in present research on theoretical cosmology is the behavior of scalar fields in the very early universe, since by means of their existence it is possible to explain some of the basic phenomena that have characterized the evolution of the universe to its present state. Analyzing the Klein-Gordon equation in a homogeneous, isotropic and spatially flat universe model, the authors find the conditions for the existence of a universe dominated by a scalar field in its early stages
Braneworld inflation with a complex scalar field from Planck 2015
Mounzi, Z.; Ferricha-Alami, M.; Chakir, H.; Bennai, M.
2016-06-01
We study an inflationary model with a single complex scalar field in the framework of braneworld Randall-Sundrum model type 2. From the scalar curvature perturbation constrained by the recent observation values, and for specific choice of parameters, we can reduce the values of the coupling constant to take the natural values, and we found that the phase theta θ of the inflation field can take the narrow interval. We have also derived all known inflationary parameters (ns, r and dns/d ln (k)), which are widely consistent with the recent Planck data for a suitable choice of brane tension value λ.
Cosmological spacetimes balanced by a scale covariant scalar field
Scholz, Erhard
2008-01-01
A scale invariant, Weyl geometric, Lagrangian approach to cosmology is explored, with a a scalar field phi of (scale) weight -1 as a crucial ingredient besides classical matter \\cite{Tann:Diss,Drechsler:Higgs}. For a particularly simple class of Weyl geometric models (called {\\em Einstein-Weyl universes}) the Klein-Gordon equation for phi is explicitly solvable. In this case the energy-stress tensor of the scalar field consists of a vacuum-like term Lambda g_{mu nu} with variable coefficient ...
Dynamical Analysis of Scalar Field Cosmologies with Spatial Curvature
Gosenca, Mateja
2015-01-01
We explore the dynamical behaviour of cosmological models involving a scalar field (with an exponential potential and a canonical kinetic term) and a matter fluid with spatial curvature included in the equations of motion. Using appropriately defined parameters to describe the evolution of the scalar field energy in this situation, we find that there are two extra fixed points that are not present in the case without curvature. We also analyse the evolution of the effective equation-of-state parameter for different initial values of the curvature.
Langevin description of gauged scalar fields in a thermal bath
Miyamoto, Yuhei; Suyama, Teruaki; Yokoyama, Jun'ichi
2013-01-01
We study the dynamics of the oscillating gauged scalar field in a thermal bath. A Langevin type equation of motion of the scalar field, which contains both dissipation and fluctuation terms, is derived by using the real-time finite temperature effective action approach. The existence of the quantum fluctuation-dissipation relation between the non-local dissipation term and the Gaussian stochastic noise terms is verified. We find the noise variables are anti-correlated at equal-time. The dissipation rate for the each mode is also studied, which turns out to depend on the wavenumber.
Can a spectator scalar field enhance inflationary tensor mode?
Fujita, Tomohiro; Yokoyama, Shuichiro
2014-01-01
We consider the possibility of enhancing the inflationary tensor mode by introducing a spectator scalar field with a small sound speed which induces gravitational waves as a second order effect. We analytically obtain the power spectra of gravitational waves and curvature perturbation induced by the spectator scalar field. We found that the small sound speed amplifies the curvature perturbation much more than the tensor mode and the current observational constraint forces the induced gravitational waves to be negligible compared with those from the vacuum fluctuation during inflation.
Observational Constraints on New Exact Inflationary Scalar-field Solutions
Barrow, John D
2016-01-01
An algorithm is used to generate new solutions of the scalar field equations in homogeneous and isotropic universes. Solutions can be found for pure scalar fields with various potentials in the absence and presence of spatial curvature and other perfect fluids. A series of generalisations of the Chaplygin gas and bulk viscous cosmological solutions for inflationary universes are found. We also show how the Hubble slow-roll parameters can be calculated using the solution algorithm and we compare these inflationary solutions with the observational data provided by the Planck 2015 collaboration in order to constraint and rule out some of these models.
Effective field theory of modified gravity with two scalar fields: dark energy and dark matter
Gergely, László Á.; Tsujikawa, Shinji
2014-01-01
We present a framework for discussing the cosmology of dark energy and dark matter based on two scalar degrees of freedom. An effective field theory of cosmological perturbations is employed. A unitary gauge choice renders the dark energy field into the gravitational sector, for which we adopt a generic Lagrangian depending on three-dimensional geometrical scalar quantities arising in the ADM decomposition. We add to this dark-energy associated gravitational sector a scalar field $\\phi$ and i...
Effective action for scalar fields in two-dimensional gravity
We consider a general two-dimensional gravity model minimally or nonminimally coupled to a scalar field. The canonical form of the model is elucidated, and a general solution of the equations of motion in the massless case is reviewed. In the presence of a scalar field all geometric fields (zweibein and Lorentz connection) are excluded from the model by solving exactly their Hamiltonian equations of motion. In this way the effective equations of motion and the corresponding effective action for a scalar field are obtained. It is written in a Minkowskian space-time and does not include any geometric variables. The effective action arises as a boundary term and is nontrivial both for open and closed universes. The reason is that unphysical degrees of freedom cannot be compactly supported because they must satisfy the constraint equation. As an example we consider spherically reduced gravity minimally coupled to a massless scalar field. The effective action is used to reproduce the Fisher and Roberts solutions
Quasiclassical approximation for ultralocal scalar fields
It is shown how to obtain the quasiclassical evolution of a class of field theories called ultralocal fields. Coherent states that follow the 'classical' orbit as defined by Klauder's weak corespondence principle and restricted action principle is explicitly shown to approximate the quantum evolutions as (h/2π) → o. (Author)
The asymptotic safety scenario and scalar field inflation
Rahmede, Christoph
2013-01-01
We study quantum gravity corrections to early universe cosmology as resulting within the asymptotic safety scenario. We analyse if it is possible to obtain accelerated expansion in the regime of the renormalisation group fixed point in a theory with Einstein-Hilbert gravity and a scalar field. We show how this phase impacts cosmological perturbations observed in the cosmic microwave background.
Scalar fields and cosmic censorship hypothesis in general relativity
We discuss an influence of the presence of some nonstandard scalar fields in the vicinity of naked time-like singularity on the type and properties of this singularity. The main goal is to study the validity of the Penrose's Cosmic Censorship hypothesis in the General Relativity
Gravitational collapse of massless scalar field and cosmic censorship
We present a numerical study of the gravitational collapse of a massless scalar field. We calculate the future evolution of new initial data, suggested by Christodoulou, and we show that in spite of the original expectations these data lead only to singularities engulfed by an event horizon
Brane Structure from Scalar Field in Warped Spacetime
Bazeia, D; Gomes, A R
2004-01-01
We deal with scalar field coupled to gravity in five dimensions in warped geometry. We investigate models described by potentials that drive the system to support thick brane solutions that engender internal structure. We also show that the brane solutions simulate the occurrence of the complete wetting phenomenon at high temperatures.
Scalar fields in the late Universe: The mechanical approach
Burgazli, Alvina; Morais, João; Kumar, K Sravan
2015-01-01
In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a minimal scalar field, the cosmological constant and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as fluctuations of other perfect fluids are non-relativistic. Under such conditions, we investigate the theory of scalar perturbations. We show that, at the background level, the considered scalar field has a constant equation of state (EoS) parameter $w=-1/3$. The fluctuations of the energy density and pressure of this field are defined by the interaction between scalar field background and the gravitational potential of the system. These fluctuations are concentrated around the galaxies screening their gravitational potentials. The expre...
Scalar field entanglement entropy for small Schwarzschild black hole
Teslyk, Maksym; Teslyk, Olena
2013-01-01
We consider scalar field entanglement entropy generated with black hole of (sub)planck mass scale thus implying the unitary evolution of gravity. The dependence on the dimension of the Hilbert space for degrees of freedom located behind the horizon is taken into account. The obtained results contain polylogarithmic terms.
Effective action for a quantum scalar field in warped spaces
Hoff da Silva, J.M.; Mendonca, E.L.; Scatena, E. [Universidade Estadual Paulista ' ' Julio de Mesquita Filho' ' -UNESP, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)
2015-11-15
We investigate the one-loop corrections, at zero as well as finite temperature, of a scalar field taking place in a braneworld motivated warped background. After to reach a well-defined problem, we calculate the effective action with the corresponding quantum corrections to each case. (orig.)
Vacuum polarization by a massive scalar field in Schwarzschild spacetime
The vacuum polarization by massive scalar particles in the gravitational field of the Schwarzschild black hole is discussed. The explicit expression for the vacuum energy-momentum tensor is obtained in the case when the Compton length lambdasub(m)=h/mc of the massive particle is much less than the gravitational radius of a black hole. (orig.)
Effects of a scalar scaling field on quantum mechanics
Benioff, Paul
2016-07-01
This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. The lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.
Effects of a scalar scaling field on quantum mechanics
Benioff, Paul
2016-04-01
This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. The lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.
Exact Inflationary Solution in String-Motivated Scalar Field Cosmology
王文福
2001-01-01
We present a new exact solution to Einstein's equations that describes the evolution of inflationary universe models. The inflation is driven by the evolution of a scalar field with an approximate two-loop four-dimensional string potential. In this scenario, the inflation began immediately after the epoch governed by quantum gravity and therefore there is no initial singularity. The successful inflation scenario is expected to appear only at two loop order. For a1/｜a2｜ ≥ 90, the spectral index ns of the scalar density fluctuations lies well inside the limits set by the cosmic background explorer satellite and the gravitational wave spectral index is ng≈1.
Scalar field quasinormal frequencies of Reissner-Nordstr\\"om black hole surrounded by quintessence
Wu, Chen
2016-01-01
We evaluate the quasinormal modes of massless scalar field around Reissner-Nordstr$\\ddot{\\text{o}}$m black hole surrounded by a static and spherically symmetric quintessence by using the continued fraction method. The appropriate Frobenius series for three special cases of the quintessence parameter $ \\epsilon = -1/3, -2/3$ and $-1$ are derived successfully. We show that the variation of quasinormal frequencies with charge of the black hole and the quintessential parameters. The numerical res...
Tunnelling of scalar and Dirac particles from squashed charged rotating Kaluza-Klein black holes
Stetsko, M M
2014-01-01
Thermal radiation of scalar particles and Dirac fermions from squashed charged rotating five-dimensional black holes is considered. To obtain temperature of the black holes we use the tunnelling method. In case of scalar particles we make use of the Hamilton-Jacobi equation. To consider tunnelling of fermions the Dirac equation was investigated. The examination shows that radial parts of the action for scalar particles and fermions in quasi-classical limit in the vicinity of horizon are almost the same and as a consequence it gives rise to the identical expressions for the temperature in both cases.
Tunnelling of scalar and Dirac particles from squashed charged rotating Kaluza-Klein black holes
Stetsko, M. M.
2016-02-01
The thermal radiation of scalar particles and Dirac fermions from squashed charged rotating five-dimensional black holes is considered. To obtain the temperature of the black holes we use the tunnelling method. In the case of scalar particles we make use of the Hamilton-Jacobi equation. To consider tunnelling of fermions the Dirac equation was investigated. The examination shows that the radial parts of the action for scalar particles and fermions in the quasi-classical limit in the vicinity of horizon are almost the same and as a consequence it gives rise to identical expressions for the temperature in the two cases.
Tunnelling of scalar and Dirac particles from squashed charged rotating Kaluza-Klein black holes
Stetsko, M.M. [Ivan Franko National University of Lviv, Department of Theoretical Physics, Lviv (Ukraine)
2016-02-15
The thermal radiation of scalar particles and Dirac fermions from squashed charged rotating five-dimensional black holes is considered. To obtain the temperature of the black holes we use the tunnelling method. In the case of scalar particles we make use of the Hamilton-Jacobi equation. To consider tunnelling of fermions the Dirac equation was investigated. The examination shows that the radial parts of the action for scalar particles and fermions in the quasi-classical limit in the vicinity of horizon are almost the same and as a consequence it gives rise to identical expressions for the temperature in the two cases. (orig.)
Exploring the thermodynamics of noncommutative scalar fields
Brito, Francisco A.; Lima, Elisama E. M.
2016-04-01
We study the thermodynamic properties of the Bose-Einstein condensate (BEC) in the context of the quantum field theory with noncommutative target space. Our main goal is to investigate in which temperature and/or energy regimes the noncommutativity can characterize some influence on the BEC properties described by a relativistic massive noncommutative boson gas. The noncommutativity parameters play a key role in the modified dispersion relations of the noncommutative fields, leading to a new phenomenology. We have obtained the condensate fraction, internal energy, pressure and specific heat of the system and taken ultrarelativistic (UR) and nonrelativistic (NR) limits. The noncommutative effects on the thermodynamic properties of the system are discussed. We found that there appear interesting signatures around the critical temperature.
Electromagnetic fields with vanishing scalar invariants
Ortaggio, Marcello; Pravda, Vojtěch
2016-01-01
Roč. 33, č. 11 (2016), s. 115010. ISSN 0264-9381 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : electromagnetic fields * n-dimensional spacetime * Einstein-Maxwell equations Subject RIV: BA - General Mathematics Impact factor: 3.168, year: 2014 http://dx.doi.org/10.1088/0264-9381/33/11/115010
Scalar field localization on deformed extra space
Rubin, Sergey G. [National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Moscow (Russian Federation)
2015-07-15
Field localization on 2-dim extra space is considered in the framework of f(R) gravity. It is shown that interference of the local matter energy distribution and the metric of the extra space forms a point-like defect - a 4-dim brane. The energy-momentum of the brane depends on the initial conditions, which could lead to an arbitrarily small cosmological Λ term. (orig.)
Inflation with an extra light scalar field after Planck
Vennin, Vincent; Wands, David
2015-01-01
Bayesian inference techniques are used to investigate situations where an additional light scalar field is present during inflation and reheating. This includes (but is not limited to) curvaton-type models. We design a numerical pipeline where $\\simeq 200$ inflaton setups $\\times\\, 10$ reheating scenarios $= 2000$ models are implemented and we present the results for a few prototypical potentials. We find that single-field models are remarkably robust under the introduction of light scalar degrees of freedom. Models that are ruled out at the single-field level are not improved in general, because good values of the spectral index and the tensor-to-scalar ratio can only be obtained for very fine-tuned values of the extra field parameters and/or when large non-Gaussianities are produced. The only exception is quartic large-field inflation, so that the best models after Planck are of two kinds: plateau potentials, regardless of whether an extra field is added or not, and quartic large-field inflation with an ext...
The fluctuation-dissipation dynamics of cosmological scalar fields
Bartrum, Sam; Rosa, Joao G
2014-01-01
We show that dissipative effects have a significant impact on the evolution of cosmological scalar fields, leading to friction, entropy production and field fluctuations. We explicitly compute the dissipation coefficient for different scalar fields within the Standard Model and some of its most widely considered extensions, in different parametric regimes. We describe the generic consequences of fluctuation-dissipation dynamics in the post-inflationary universe and analyze in detail two important effects. Firstly, we show that dissipative friction delays the process of spontaneous symmetry breaking and may even damp the the motion of a Higgs field sufficiently to induce a late period of warm inflation. Along with dissipative entropy production, this may parametrically dilute the abundance of dangerous thermal relics. Secondly, we show that dissipation can generate the observed baryon asymmetry without symmetry restoration, and we develop in detail a model of dissipative leptogenesis. We further show that this...
Sensitivity of atom interferometry to ultralight scalar field dark matter
Geraci, Andrew A.; Derevianko, Andrei
2016-01-01
We discuss the use of atom interferometry as a tool to search for Dark Matter (DM) composed of ultra-light scalar fields. Previous work on ultra-light DM detection using accelerometers has considered the possibility of equivalence principle violating effects whereby gradients in the dark matter field can directly produce relative accelerations between media of differing composition. In atom interferometers, we find that time-varying phase signals from oscillatory, or dilaton-like, DM can also...
General features of single-scalar field dark energy models
Perenon, Louis
2016-01-01
We present a systematic study of modified gravity (MG) models containing a single scalar field non-minimally coupled to the metric. Despite a large parameter space, exploiting the effective field theory of dark energy (EFT of DE) formulation and imposing simple physical constraints such as stability conditions and (sub-)luminal propagation of perturbations, we arrive at a number of generic predictions about the large scale structures.
On the stability of the asymptotically free scalar field theories
Asymptotic freedom plays a vital role in our understanding of the theory of particle interactions. To have this property, one has to resort to a Non-abelian gauge theory with the number of colors equal to or greater than three (QCD). However, recent studies have shown that simple scalar field theories can possess this interesting property. These theories have non-Hermitian effective field forms but their classical potentials are bounded from above. In this work, we shall address the stability of the vacua of the bounded from above (−Φ4+n) scalar field theories. Moreover, we shall cover the effect of the distribution of the Stokes wedges in the complex Φ-plane on the features of the vacuum condensate within these theories
A Note on Scalar Field Theory in AdS_3/CFT_2
Minces, Pablo
2009-01-01
We consider a scalar field theory in AdS_{d+1}, and introduce a formalism on surfaces at equal values of the radial coordinate. In particular, we define the corresponding conjugate momentum. We compute the Noether currents for isometries in the bulk, and carefully perform the asymptotic limit on the corresponding `conserved' charges. We then introduce Poisson brackets at the border, and show that the asymptotic values of the bulk scalar field and the conjugate momentum transform as conformal fields of scaling dimensions \\Delta_{-} and \\Delta_{+}, respectively, where \\Delta_{\\pm} are the standard parameters giving the asymptotic behavior of the scalar field in AdS. Then we consider the case d=2, where the boundary is described in terms of complex holomorphic and antiholomorphic coordinates. We obtain two copies of the Virasoro algebra, with vanishing central charge. An AdS_3/CFT_2 prescription, giving the commutators of the boundary CFT in terms of the Poisson brackets at the border, arises in a natural way. W...
A study of phantom scalar field cosmology using Lie and Noether symmetries
Dutta, Sourav
2016-01-01
The paper deals with phantom scalar field cosmology in Einstein gravity. At first using Lie symmetry, the coupling function to the kinetic term and the potential function of the scalar field and the equation of state parameter of the matter field are determined and a simple solution is obtained. Subsequently, Noether symmetry is imposed on the Lagrangian of the system. The symmetry vector is obtained and the potential takes a very general form from which potential using Lie Symmetry can be obtained as a particular case. Then we choose a point transformation $(a,\\phi)\\rightarrow(u,v)$ such that one of the transformed variables (say u) is a cyclic for the Lagrangian. Using conserved charge (corresponding to the cyclic coordinate) and the constant of motion, solutions are obtained.
陈光
2001-01-01
The static spherically symmetric solution of Einstein gravity coupled to electromagnetic and scalar fields is obtained under the consideration of the self-gravitational interaction of the electromagnetic and scalar fields, which is singularityfree and stable.
New techniques in 3D scalar and vector field visualization
At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ''splatting'' scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ''flow volume'' of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity
Constraining scalar field dark energy with cosmological observations
Samushia, Lado
2009-01-01
High precision cosmological observations in last decade suggest that about 70% of our universe's energy density is in so called "Dark Energy" (DE). Observations show that DE has negative effective pressure and therefore unlike conventional energy sources accelerates the cosmic expansion instead of decelerating it. DE is highly uniform and has become a dominant component only recently. The simplest candidate for DE is the time-independent cosmological constant $\\Lambda$. Although successful in fitting available data, the cosmological constant model has a number of theoretical shortcomings and because of that alternative models of DE are considered. In one such scenario a cosmological scalar field that slowly rolls down its potential acts like a time-dependent cosmological constant. I have used different independent cosmological data sets to constrain the time dependence of DE's energy density in the framework of the slowly-rolling cosmological scalar field model. Present data favors a time-independent cosmolog...
The scalar field in quantum gravity: a spin foam model
Spin foams are nonperturbative models that describe spacetime at the Planck scale. They have been introduced starting from loop quantum gravity, but have consequently been recognized in other approaches. The most prominent of all is the Barrett-Crane model. However, this is a description of pure gravity and various attempts have been made in order to introduce matter in this general setting. The present paper describes the coupling of a massless scalar field to the Riemannian Barrett-Crane model and is, to our best knowledge, the first attempt of this kind. The main result is the computation of the partition function for the coupled model. This exhibits the general structure of a spin foam partition function. It is given by a product of face, edge and vertex amplitudes together with a sum over the irreducible representations of both the gauge group of the scalar field and the gauge group of gravity. (author)
Scalar Field Cosmologies Hidden Within the Nonlinear Schrodinger Equation
Lidsey, James E
2013-01-01
The nonlinear, cubic Schrodinger (NLS) equation has numerous physical applications, but in general is very difficult to solve. Nonetheless, under certain circumstances parameters quantifying the width, momentum and energy of the wavefunction evolve under a closed set of ordinary differential equations. It is shown that for the case of the radial, two dimensional NLS equation, such evolution equations may be mapped directly onto the cosmological Friedmann equations for a spatially flat and isotropic universe sourced by a self-interacting scalar field and a barotropic perfect fluid. Consequently, analytical techniques that have been developed to study the dynamics of such cosmological models may be applied to gain insight into aspects of nonlinear quantum mechanics. In this paper, the Hamilton-Jacobi formalism of the Friedmann equations, where the scalar field is viewed as the dynamical variable, is developed within this context. Algorithms for finding exact solutions are presented and the scaling solutions det...
Scalar field as a Bose-Einstein condensate?
We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surrounding a black hole
Scalar field as a Bose-Einstein condensate?
Castellanos, Elías; Escamilla-Rivera, Celia [Mesoamerican Centre for Theoretical Physics (ICTP regional headquarters in Central America, the Caribbean and Mexico), Universidad Autónoma de Chiapas, Carretera Zapata Km. 4, Real del Bosque (Terán), 29040, Tuxtla Gutiérrez, Chiapas (Mexico); Macías, Alfredo [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, Mexico D.F. 09340 (Mexico); Núñez, Darío, E-mail: ecastellanos@mctp.mx, E-mail: cescamilla@mctp.mx, E-mail: amac@xanum.uam.mx, E-mail: nunez@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., A.P. 70-543, México D.F. 04510 (Mexico)
2014-11-01
We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surrounding a black hole.
LHC bounds on lepton number violation mediated by doubly and singly-charged scalars
The only possible doubly-charged scalar decays into two Standard Model particles are into pairs of same-sign charged leptons, H±±→l±l±,l=e,μ,τ, or gauge bosons, H±±→W±W±; being necessary the observation of both to assert the violation of lepton number. However, present ATLAS and CMS limits on doubly-charged scalar production are obtained under specific assumptions on its branching fractions into dileptons only. Although they can be extended to include decays into dibosons and lepton number violating processes. Moreover, the production rates also depend on the type of electroweak multiplet H±± belongs to. We classify the possible alternatives and provide the Feynman rules and codes for generating the corresponding signals for pair and associated doubly-charged scalar production, including the leading contribution from the s-channel exchange of electroweak gauge bosons as well as the vector-boson fusion corrections. Then, using the same analysis criteria as the LHC collaborations we estimate the limits on the H±± mass as a function of the electroweak multiplet it belongs to, and obtain the bounds on the lepton number violating processes pp→H±±H∓∓→ℓ±ℓ±W∓W∓ and pp→H±±H∓→ℓ±ℓ±W∓Z, ℓ=e,μ, implied by the ATLAS and CMS doubly-charged scalar searches
Light-front Quantized Scalar Field Theory and Phase Transition
Srivastava, Prem P.
1994-01-01
The light-front Hamiltonian formulation for the scalar field theory contains a new ingredient in the form of a constraint equation. Renormalization of the two dimensional $\\phi^{4}$ theory, described in the continuum, is discussed. The mass renormalization condition and the renormalized constraint equation contain all the information to describe the phase transition in the theory, which is found to be of the second order. We argue that the same result would also be obtained in the conventiona...
Coupled dark energy: a dynamical analysis with complex scalar field
Landim, Ricardo C G
2016-01-01
The dynamical analysis for coupled dark energy with dark matter is presented, where a complex scalar field is taken into account and it is considered in the presence of a barothropic fluid. We consider three dark energy candidates: quintessence, phantom and tachyon. The critical points are found and their stabilities analyzed, leading to the three cosmological eras (radiation, matter and dark energy), for a generic potential. The results presented here enlarge the previous analyses found in the literature.
Coupled dark energy: a dynamical analysis with complex scalar field
Landim, Ricardo C. G.
2016-01-01
The dynamical analysis for coupled dark energy with dark matter is presented, where a complex scalar field is taken into account and it is considered in the presence of a barothropic fluid. We consider three dark-energy candidates: quintessence, phantom, and tachyon. The critical points are found and their stabilities analyzed, leading to the three cosmological eras (radiation, matter, and dark energy), for a generic potential. The results presented here extend the previous analyses found in ...
Higgs particles interacting via a scalar Dark Matter field
Bhattacharya, Yajnavalkya; Darewych, Jurij W.
2016-01-01
We study a system of two Higgs bound state, interacting via a real scalar Dark Matter mediating field, without imposing $Z_2$ symmetry on the DM sector of the postulated Lagrangian. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the 2-body relativistic coupled integral equations are presented, and conditions for the existence of Higgs bound sta...
Scalar fields in BTZ black hole spacetime and entanglement entropy
Veer Singh, Dharm; Siwach, Sanjay
2013-12-01
We study the quantum scalar fields in the background of BTZ black hole spacetime. We calculate the entanglement entropy using the discretized model, which resembles a system of coupled harmonic oscillators. The leading term of the entropy formula is standard Bakenstein-Hawking entropy and sub-leading corresponds to quantum corrections to black hole entropy. We calculate the coefficient of sub-leading logarithmic corrections numerically.
Non-trivial fixed points of the scalar field theory
The phase structure of the scalar field theory with arbitrary powers of the gradient operator and a local non-analytic potential is investigated by the help of the RG in Euclidean space. Infinitely many nontrivial fixed points of the RG transformations are found. The corresponding effective actions are unbounded from below and probably do not exhibit any particle content. Therefore they do not provide physically sensible theories. (author)
Higgs particles interacting via a scalar Dark Matter field
Bhattacharya Yajnavalkya
2016-01-01
Full Text Available We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.
Hydrodynamic Transport Coefficients in Relativistic Scalar Field Theory
Jeon, Sangyong
1994-01-01
Hydrodynamic transport coefficients may be evaluated from first principles in a weakly coupled scalar field theory at arbitrary temperature. In a theory with cubic and quartic interactions, the infinite class of diagrams which contribute to the leading weak coupling behavior are identified and summed. The resulting expression may be reduced to a single linear integral equation, which is shown to be identical to the corresponding result obtained from a linearized Boltzmann equation describing ...