Charged rotating black holes at large D
Tanabe, Kentaro
2016-01-01
We study odd dimensional charged equally rotating black holes in the Einstein-Maxwell theory with/without a cosmological constant by using the large D expansion method, where D is a spacetime dimension. Solving the Einstein-Maxwell equations in the 1/D expansion we obtain the large D effective equations for charged equally rotating black holes. The effective equations describe the nonlinear dynamics of charged equally rotating black holes. Especially the perturbation analysis of the effective equations gives analytic formula for quasinormal mode frequencies, and we can show charged equally rotating black holes have instabilities. As one interesting feature of instabilities, we observe that the ultraspinning instability of neutral equally rotating black holes in de Sitter is connected with the instability of de Sitter Reissner-Nordstrom black hole in a rotation-charge plane of the solution parameter space. So these instabilities have same origin as dynamical properties of charged rotating black holes. We also ...
Charged rotating black holes at large D
Tanabe, Kentaro
2016-01-01
We study odd dimensional charged equally rotating black holes in the Einstein-Maxwell theory with/without a cosmological constant by using the large D expansion method, where D is a spacetime dimension. Solving the Einstein-Maxwell equations in the 1/D expansion we obtain the large D effective equations for charged equally rotating black holes. The effective equations describe the nonlinear dynamics of charged equally rotating black holes. Especially the perturbation analysis of the effective...
Charged rotating noncommutative black holes
In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.
Charged rotating noncommutative black holes
Modesto, Leonardo; Nicolini, Piero
2010-11-01
In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.
Charged rotating noncommutative black holes
Modesto, Leonardo
2010-01-01
In this paper we complete the program of the Noncomutative Geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newmann-Janis algorithm in case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.
Higher-dimensional Rotating Charged Black Holes
Caldarelli, Marco M; Van Pol, Bert
2010-01-01
Using the blackfold approach, we study new classes of higher-dimensional rotating black holes with electric charges and string dipoles, in theories of gravity coupled to a 2-form or 3-form field strength and to a dilaton with arbitrary coupling. The method allows to describe not only black holes with large spin, but also other regimes that include charged black holes near extremality with slow rotation. We construct explicit examples of electric rotating black holes of dilatonic and non-dilatonic Einstein-Maxwell theory, with horizons of spherical and non-spherical topology. We also find new families of solutions with string dipoles, including a new class of prolate black rings. Whenever there are exact solutions that we can compare to, their properties in the appropriate regime are reproduced precisely by our solutions. The analysis of blackfolds with string charges requires the formulation of the dynamics of anisotropic fluids with conserved string-number currents, which is new, and is carried out in detail...
Charged Rotating Black Branes in Various Dimensions
Khodam-Mohammadi, A
2007-01-01
In this thesis, two different aspects of asymptotically charged rotating black branes in various dimensions are studied. In the first part, the thermodynamics of these spacetimes is investigated, while in the second part the no hair theorem for these spacetimes in four dimensions is considered. In part I, first, the Euclidean actions of a d-dimensional charged rotating black brane are computed through the use of the counterterms renormalization method both in the canonical and the grand-canonical ensemble, and it is shown that the logarithmic divergencies associated to the Weyl anomalies and matter field vanish. Second, a Smarr-type formula for the mass as a function of the entropy, the angular momenta and the electric charge is obtained, which shows that these quantities satisfy the first law of thermodynamics. Third, by using the conserved quantities and the Euclidean actions, the thermodynamics potentials of the system in terms of the temperature, the angular velocities and the electric potential are obtai...
A rotating charged black hole solution in () gravity
Alexis Larrañaga
2012-05-01
In the context of () theories of gravity, we address the problem of ﬁnding a rotating charged black hole solution in the case of constant curvature. A new metric is obtained by solving the ﬁeld equations and we show that its behaviour is typical of a rotating charged source. In addition, we analyse the thermodynamics of the new black hole. The results ensure that the thermodynamical properties in () gravities are qualitatively similar to those of standard General Relativity.
Entropy bound of horizons for charged and rotating black holes
We revisit the entropy product, entropy sum and other thermodynamic relations of charged and rotating black holes. Based on these relations, we derive the entropy (area) bound for both event horizon and Cauchy horizon. We establish these results for variant class of 4-dimensional charged and rotating black holes in Einstein(–Maxwell) gravity and higher derivative gravity. We also generalize the discussion to black holes with NUT charge. The validity of this formula, which seems to be universal for black holes with two horizons, gives further clue on the crucial role that the thermodynamic relations of multi-horizons play in black hole thermodynamics and understanding the entropy at the microscopic level
Charged Rotating Kaluza-Klein Black Holes in Five Dimensions
Nakagawa, Toshiharu; Matsuno, Ken; Tomizawa, Shinya
2008-01-01
We construct a new charged rotating Kaluza-Klein black hole solution in the five-dimensional Einstein-Maxwell theory with a Chern-Simon term. The features of the solutions are also investigated. The spacetime is asymptotically locally flat, i.e., it asymptotes to a twisted $\\rm S^1$ bundle over the four-dimensional Minkowski spacetime. The solution describe a non-BPS black hole rotating in the direction of the extra dimension. The solutions have the limits to the supersymmetric black hole solutions, a new extreme non-BPS black hole solutions and a new rotating non-BPS black hole solution with a constant twisted $\\rm S^1$ fiber.
Hawking temperature of rotating charged black strings from tunneling
Ahmed, Jamil; Saifullah, K., E-mail: jamil_051@yahoo.com, E-mail: saifullah@qau.edu.pk [Department of Mathematics, Quaid-i-Azam University, Islamabad (Pakistan)
2011-11-01
Thermal radiations from spherically symmetric black holes have been studied from the point of view of quantum tunneling. In this paper we extend this approach to study radiation of fermions from charged and rotating black strings. Using WKB approximation and Hamilton-Jacobi method we work out the tunneling probabilities of incoming and outgoing fermions and find the correct Hawking temperature for these objects. We show that in appropriate limits the results reduce to those for the uncharged and non-rotating black strings.
Hawking temperature of rotating charged black strings from tunneling
Ahmed, Jamil
2011-01-01
Thermal radiations from spherically symmetric black holes have been studied from the point of view of quantum tunneling. In this paper we extend this approach to study radiation of fermions from charged and rotating black strings. Using WKB approximation and Hamilton-Jacobi method we work out the tunneling probabilities of incoming and outgoing fermions and find the correct Hawking temperature for these objects. We show that in appropriate limits the results reduce to those for the uncharged and non-rotating black strings.
Tunneling of Massive Vector Particles From Rotating Charged Black Strings
Jusufi, Kimet; Övgün, Ali
2016-01-01
We study the quantum tunneling of charged massive vector bosons from a charged static and a rotating black string. We apply the standard methods, first we use the WKB approximation and the Hamilton-Jacobi equation, and then we end up with a set of four linear equations. Finally, solving for the radial part by using the determinant of the metric equals zero, the corresponding tunneling rate and the Hawking temperature is recovered in both cases. The tunneling rate deviates from pure thermality...
Corrected Entropy Law for Charged and Rotating Black Strings
Rizwan, Muhammad
2016-08-01
The primary objective in this work is to study the corrected entropy law for charged and rotating black strings in asymptotically anti-de Sitter spacetime. By employing, the Hamilton-Jacobi approach, fermions tunneling beyond semiclassical approximation is investigated. The correction has been done by taking the proportionality parameters of quantum correction of action I i to the semiclassical action I 0 as 2 π times the inverse of the black string horizon area. Moreover, with the aid of corrected Hawking temperature we finally compute the corrected area law, which includes the logarithmic term and inverse area terms.
Tunneling of Massive Vector Particles From Rotating Charged Black Strings
Jusufi, Kimet
2015-01-01
We study the quantum tunneling of charged massive vector bosons from a charged static and a rotating black string. We apply the standard methods, first we use the WKB approximation and the Hamilton-Jacobi equation, and then we end up with a set of four linear equations. Finally, solving for the radial part by using the determinant of the metric equals zero, the corresponding tunneling rate and the Hawking temperature is recovered in both cases. The tunneling rate deviates from pure thermality and is consistent with an underlying unitary theory.
Tunneling of massive vector particles from rotating charged black strings
Jusufi, Kimet; Övgün, Ali
2016-07-01
We study the quantum tunneling of charged massive vector bosons from a charged static and a rotating black string. We apply the standard methods, first we use the WKB approximation and the Hamilton-Jacobi equation, and then we end up with a set of four linear equations. Finally, solving for the radial part by using the determinant of the metric equals zero, the corresponding tunneling rate and the Hawking temperature is recovered in both cases. The tunneling rate deviates from pure thermality and is consistent with an underlying unitary theory.
Slowly rotating regular black holes with a charged thin shell
Uchikata, Nami
2015-01-01
We obtain rotating solutions of regular black holes which are constructed of de Sitter spacetime with the axisymmetric stationary perturbation within the timelike charged thin shell and the Kerr-Newman geometry with sufficiently small rotation outside the shell. To treat the slowly rotating thin shell, we employ the method developed by de la Cruz and Israel. The thin shell is assumed to be composed of a dust in the zero-rotation limit and located inside the inner horizon of the black hole solution. We expand the perturbation in powers of the rotation parameter of the Kerr-Newman metric up to the second order. It is found that with the present treatment, the stress tensor of the thin shell in general has anisotropic pressure, i.e., the thin shell cannot be composed of a dust if the rotational effects are taken into account. However, the thin shell can be composed of a perfect fluid with isotropic pressure if the degrees of freedom appearing in the physically acceptable matching of the two distinct spacetimes a...
Charged Massive Particle's Tunneling From Charged Non-Rotating Micro Black Hole
Soleimani, M J; Radiman, Shahidan; Abdullah, W A T Wan
2015-01-01
In the tunneling framework of Hawking radiation, charged massive particle's tunneling in charged non-rotating TeV-Scale black hole is investigated. To this end, we consider natural cutoffs as a minimal length, a minimal momentum, and a maximal momentum through a generalized uncertainty principle. We focus on the role played by these natural cutoffs on the luminosity of charged non-rotating micro black hole by taking into account the full implications of energy and charge conservation as well as the back- scattered radiation.
Charged rotating Kaluza-Klein black holes generated by G2(2) transformation
Applying the G2(2) generating technique for minimal D = 5 supergravity to the Rasheed black hole solution, we present a new rotating charged Kaluza-Klein black hole solution to the five-dimensional Einstein-Maxwell-Chern-Simons equations. At infinity, our solution behaves as a four-dimensional flat spacetime with a compact extra dimension and hence describes a Kaluza-Klein black hole. In particular, the extreme solution is non-supersymmetric, which is in contrast to a static case. Our solution has the limits to the asymptotically flat charged rotating black hole solution and a new charged rotating black string solution.
Charged Rotating Kaluza-Klein Black Holes Generated by G2(2) Transformation
Tomizawa, Shinya; Morisawa, Yoshiyuki
2008-01-01
Applying the G_{2(2)} generating technique for minimal D=5 supergravity to the Rasheed black hole solution, we present a new rotating charged Kaluza-Klein black hole solution to the five-dimensional Einstein-Maxwell-Chern-Simons equations. At infinity, our solution behaves as a four-dimensional flat spacetime with a compact extra dimension and hence describes a Kaluza-Klein black hole. In particlar, the extreme solution is non-supersymmetric, which is contrast to a static case. Our solution has the limits to the asymptotically flat charged rotating black hole solution and a new charged rotating black string solution.
A new metric for rotating charged Gauss—Bonnet black holes in AdS space
In this paper, we study a new metric for slowly rotating charged Gauss-Bonnet black holes in higher-dimensional anti-de Sitter space. Taking the angular momentum parameter a up to second order, the slowly rotating charged black hole solutions are obtained by working directly in the action. (general)
Charged Black Holes in a Rotating Gross-Perry-Sorkin Monopole Background
Tomizawa, Shinya
2008-01-01
We present a new class of stationary charged black hole solutions to five-dimensional Einstein-Maxwell-Chern-Simons theories. We construct the solutions by utilizing so called the squashing transformation. At infinity, our solutions behave as a four-dimensional flat spacetime plus a `circle' and hence describe a Kaluza-Klein black hole. More precisely, our solutions can be viewed as a charged rotating black hole in a rotating Gross-Perry-Sorkin monopole background with the black hole rotation induced from the background rotation.
Hawking radiation of scalars from charged accelerating and rotating black holes with NUT parameter
Jan, Khush
2013-01-01
We study the quantum tunneling of scalars from charged accelerating and rotating black hole with NUT parameter. For this purpose we use the charged Klein-Gordon equation. We apply WKB approximation and the Hamilton-Jacobi method to solve charged the Klein-Gordon equation. We find the tunneling probability of outgoing charged scalars from the event horizon of this black hole, and hence the Hawking temperature for this black hole.
Sheykhi, A.; Dehghani, M. H.; Zangeneh, M. Kord
2016-01-01
We construct a new class of charged rotating black brane solutions in the presence of logarithmic nonlinear electrodynamics with complete set of the rotation parameters in arbitrary dimensions. The topology of the horizon of these rotating black branes are flat, while, due to the presence of the dilaton field the asymptotic behaviour of them are neither flat nor (anti)-de Sitter [(A)dS]. We investigate the physical properties of the solutions. The mass and angular momentum of the spacetime ar...
Wu, Shuang-Qing
2008-03-28
I present the general exact solutions for nonextremal rotating charged black holes in the Gödel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four nontrivial parameters: namely, the mass m, the charge q, the Kerr equal rotation parameter a, and the Gödel parameter j. I calculate the conserved energy, angular momenta, and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. I also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Gödel black hole backgrounds. PMID:18517852
Wu, Shuang-Qing
2008-03-01
I present the general exact solutions for nonextremal rotating charged black holes in the Gödel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four nontrivial parameters: namely, the mass m, the charge q, the Kerr equal rotation parameter a, and the Gödel parameter j. I calculate the conserved energy, angular momenta, and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. I also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Gödel black hole backgrounds.
Fermions tunneling from charged accelerating and rotating black holes with NUT parameter
Sharif, M.; Javed, Wajiha [University of the Punjab, Quaid-e-Azam Campus, Department of Mathematics, Lahore (Pakistan)
2012-05-15
This paper is devoted to the study of Hawking radiation as a tunneling of charged fermions through event horizons of a pair of charged accelerating and rotating black holes with NUT parameter. We evaluate tunneling probabilities of outgoing charged particles by using the semiclassical WKB approximation to the general covariant Dirac equation. The Hawking temperature corresponding to this pair of black holes is also investigated. For the zero NUT parameter, we find results consistent with those already available in the literature. (orig.)
Wu, Shuang-Qing
2007-01-01
We present the general exact solutions for non-extremal rotating charged black holes in the Godel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four non-trivial parameters, namely the mass $m$, the charge $q$, the Kerr rotation parameter $a$, and the Godel parameter $j$. The metrics in general describe regular rotating charged black holes embedded in the Godel universe, providing the parameters lie in appropriate ranges so that naked singularities and closed timelike curves are avoided. We calculate the conserved energy, angular momenta and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. We also study the separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Godel black hole backgrounds.
Sakalli, I.
2016-01-01
Hawking radiation of charged massive spin-0 particles are studied in the gravitational, electromagnetic, dilaton, and axion fields of rotating linear dilaton black holes. In this geometry, we separate the covariant Klein--Gordon equation into radial and angular parts and obtain the exact solutions of both the equations in terms of the confluent Heun functions. Using the radial solution, we analyze the behavior of the wave solutions near the event horizon of the rotating linear dilaton black h...
A uniqueness theorem for charged rotating black holes in five-dimensional minimal supergravity
Tomizawa, Shinya; Ishibashi, Akihiro
2009-01-01
We show a uniqueness theorem for charged rotating black holes in the bosonic sector of five-dimensional minimal supergravity. More precisely, under the assumptions of the existence of two commuting axial isometries and spherical topology of horizon cross-sections, we prove that an asymptotically flat, stationary charged rotating black hole with finite temperature in five-dimensional Einstein-Maxwell-Chern-Simons theory is uniquely characterized by the mass, charge, and two independent angular momenta and therefore is described by the Chong-Cvetic-Lu-Pope solution.
By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss—Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensional anti-de Sitter spaces. Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation. (general)
By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss-Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensional anti-de Sitter spaces. Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation. (authors)
Thermal Stability Of Charged Rotating Quantum Black Holes In Diverse Dimensions
Sinha, Aloke Kumar
2015-01-01
Criteria for thermal stability of charged rotating black holes of any dimension are derived, for horizon areas that are large relative to the Planck area (in these dimensions). The derivation uses results of loop quantum gravity and equilibrium statistical mechanics of the Grand Canonical ensemble. There is no explicit use of classical spacetime geometry at all in this analysis. The only assumption is that the mass of the black hole is a function of its horizon area, charge and angular momentum. Our stability criteria are then tested in detail against specific classical black holes in spacetime dimensions 4 and 5, whose metrics provide us with explicit relations for the dependence of the mass on the charge and angular momentum of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.
Quantum Tunneling from the Charged Non-Rotating BTZ Black Hole with GUP
Sadeghi, Jafar; Shajiee, Vahid Reza
2016-01-01
In the present paper, the quantum corrections to the temperature, entropy and specific heat capacity of the charged non-rotating BTZ black hole are studied by generalized uncertainty principle in tunneling formalism. It is shown that quantum corrected entropy would be of the form of predicted entropy in quantum gravity theories like string theory and loop quantum gravity. It is shown that the black hole, in presence of GUP, would be more thermodynamically stable than classical case. Finally, ...
On Thermodynamical Relation Between Rotating Charged BTZ Black Holes and Effective String Theory
Alexis Larra(~n)aga
2008-01-01
In this paper we study the first law of thermodynamics for the (2+1)-dimensional rotating charged BTZ black hole considering a pair of thermodynamical systems constructed with the two horizons of this solution. We show that these two systems are similar to the right and left movers of string theory and that the temperature associated with the black hole is the harmonic mean of the temperatures associated with these two systems.
Sakalli, I
2016-01-01
Hawking radiation of charged massive spin-0 particles are studied in the gravitational, electromagnetic, dilaton, and axion fields of rotating linear dilaton black holes. In this geometry, we separate the covariant Klein--Gordon equation into radial and angular parts and obtain the exact solutions of both the equations in terms of the confluent Heun functions. Using the radial solution, we analyze the behavior of the wave solutions near the event horizon of the rotating linear dilaton black hole and derive its Hawking radiation spectrum via the Damour--Ruffini--Sannan method.
Quantum Tunneling from the Charged Non-Rotating BTZ Black Hole with GUP
Sadeghi, Jafar
2016-01-01
In the present paper, the quantum corrections to the temperature, entropy and specific heat capacity of the charged non-rotating BTZ black hole are studied by generalized uncertainty principle in tunneling formalism. It is shown that quantum corrected entropy would be of the form of predicted entropy in quantum gravity theories like string theory and loop quantum gravity. It is shown that the black hole, in presence of GUP, would be more thermodynamically stable than classical case. Finally, some discussion are presented about the black hole heat capacity.
Electrically charged matter in rigid rotation around magnetized black hole
Kovář, J.; Slaný, P.; Cremaschini, C.; Stuchlík, Z.; Karas, Vladimír; Trova, Audrey
2014-01-01
Roč. 90, č. 4 (2014), 044029/1-044029/14. ISSN 1550-7998 R&D Projects: GA ČR GB14-37086G Grant ostatní: GA ČR(CZ) GP14-07753P Institutional support: RVO:67985815 Keywords : black hole s * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.643, year: 2014
Entropy of a rotating and charged black string to all orders in the Planck length
By using the entanglement entropy method, this paper calculates the statistical entropy of the Bose and Fermi fields in thin films, and derives the Bekenstein–Hawking entropy and its correction term on the background of a rotating and charged black string. Here, the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string. Taking into account the effect of the generalized uncertainty principle on quantum state density, it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model. These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect. The ultraviolet cut-off in the brick-wall model is not reasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the viewpoint of quantum statistical mechanics, the correction value of Bekenstein–Hawking entropy is obtained. This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates
Entropy of a rotating and charged black string to all orders in the Planck length
Zhao Ren; Wu Yue-Qin; Zhang Li-Chun
2009-01-01
By using the entanglement entropy method, this paper calculates the statistical entropy of the Bose and Fermi fields in thin films, and derives the Bekenstein-Hawking entropy and its correction term on the background of a rotating and charged black string. Here, the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string. Taking into account the effect of the generalized uncertainty principle on quantum state density, it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model. These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect. The ultraviolet cut-off in the brick-wall model is not reasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the viewpoint of quantum statistical mechanics, the correction value of Bekenstein-Hawking entropy is obtained. This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates.
Stability of rapidly-rotating charged black holes in $AdS_5 \\times S^5$
Berkooz, Micha; Zait, Amir
2013-01-01
We study the stability of charged rotating black holes in a consistent truncation of Type $IIB$ Supergravity on $AdS_5 \\times S^5$ that degenerate to extremal black holes with zero entropy. These black holes have scaling properties between charge and angular momentum similar to those of Fermi surface-like operators in a subsector of ${\\cal N}=4$ SYM. By solving the equation of motion for a massless scalar field in this background, using matched asymptotic expansion followed by a numerical solution scheme, we are able to compute its Quasi-Normal modes, and analyze it's regime of (in)stability. We find that the black hole is unstable when its angular velocity with respect to the horizon exceeds 1 (in units of $1/l_{AdS}$). A study of the relevant thermodynamic Hessian reveals a local thermodynamic instability which occurs at the same region of parameter space. We comment on the endpoints of this instability.
ZOU De-Cheng; YANG Zhan-Ying; YUE Rui-Hong
2011-01-01
@@ By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss-Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensional anti-de Sitter spaces.Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation.%By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss-Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensionalanti-de Sitter spaces. Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation.
Shadow of a Charged Rotating Black Hole in $f(R)$ Gravity
Dastan, Sara; Soroushfar, Saheb
2016-01-01
We study the shadow of a charged rotating black hole in $f(R)$ gravity. This black hole is characterized by mass, $M$, spin, $a$, electric charge, $Q$ and $R_{0}$ which is proportional to cosmological constant. We analyze the image of the black hole's shadow in four types 1) at $r\\rightarrow\\infty$, 2) at $r\\rightarrow r_{o}$, in vacuum, 3) at $r\\rightarrow\\infty$, 4) at $r\\rightarrow r_{o}$, for an observer at the presence of plasma. Moreover, we investigate the effect of spin, charge and modfication of gravity on the shape of shadow. In addition, we use two observables, the radius $R_{s}$ and the distortion parameter $\\delta_{s}$, characterizing the apparent shape. We show that for all cases, the shadow becomes smaller with increasing electric charge. Also, by increasing the rotation parameters, circular symmetry of the image of black hole's shadow will change. Furthermore, in the presence of plasma, plasma parameter also effects on size of the shadow.
Statistical mechanical origin of the entropy of a rotating, charged black hole
It is shown that the entropy of a rotating, charged black hole is, in senses made precise in the paper, (i) the logarithm of the number of quantum mechanically distinct ways that the hole could have been made, and (ii) the logarithm of the number of configurations that the hole's ''atmosphere,'' as measured by stationary observers, could assume in the presence of its background noise of acceleration radiation. In addition, a proof is given of the generalized second law of thermodynamics
Superradiance and instability of small rotating charged AdS black holes in all dimensions
Aliev, Alikram N. [Yeni Yuezyil University, Faculty of Engineering and Architecture, Istanbul (Turkey)
2016-02-15
Rotating small AdS black holes exhibit the superradiant instability to low-frequency scalar perturbations, which is amenable to a complete analytic description in four dimensions. In this paper, we extend this description to all higher dimensions, focusing on slowly rotating charged AdS black holes with a single angular momentum. We divide the spacetime of these black holes into the near-horizon and far regions and find solutions to the scalar wave equation in each of these regions. Next, we perform the matching of these solutions in the overlap between the regions, by employing the idea that the orbital quantum number l can be thought of as an approximate integer. Thus, we obtain the complete low-frequency solution that allows us to calculate the complex frequency spectrum of quasinormal modes, whose imaginary part is determined by a small damping parameter. Finally, we find a remarkably instructive expression for the damping parameter, which appears to be a complex quantity in general. We show that the real part of the damping parameter can be used to give a universal analytic description of the superradiant instability for slowly rotating charged AdS black holes in all spacetime dimensions. (orig.)
Superradiance and instability of small rotating charged AdS black holes in all dimensions
Rotating small AdS black holes exhibit the superradiant instability to low-frequency scalar perturbations, which is amenable to a complete analytic description in four dimensions. In this paper, we extend this description to all higher dimensions, focusing on slowly rotating charged AdS black holes with a single angular momentum. We divide the spacetime of these black holes into the near-horizon and far regions and find solutions to the scalar wave equation in each of these regions. Next, we perform the matching of these solutions in the overlap between the regions, by employing the idea that the orbital quantum number l can be thought of as an approximate integer. Thus, we obtain the complete low-frequency solution that allows us to calculate the complex frequency spectrum of quasinormal modes, whose imaginary part is determined by a small damping parameter. Finally, we find a remarkably instructive expression for the damping parameter, which appears to be a complex quantity in general. We show that the real part of the damping parameter can be used to give a universal analytic description of the superradiant instability for slowly rotating charged AdS black holes in all spacetime dimensions. (orig.)
Tunnelling of scalar and Dirac particles from squashed charged rotating Kaluza-Klein black holes
Stetsko, M M
2014-01-01
Thermal radiation of scalar particles and Dirac fermions from squashed charged rotating five-dimensional black holes is considered. To obtain temperature of the black holes we use the tunnelling method. In case of scalar particles we make use of the Hamilton-Jacobi equation. To consider tunnelling of fermions the Dirac equation was investigated. The examination shows that radial parts of the action for scalar particles and fermions in quasi-classical limit in the vicinity of horizon are almost the same and as a consequence it gives rise to the identical expressions for the temperature in both cases.
Tunnelling of scalar and Dirac particles from squashed charged rotating Kaluza-Klein black holes
Stetsko, M. M.
2016-02-01
The thermal radiation of scalar particles and Dirac fermions from squashed charged rotating five-dimensional black holes is considered. To obtain the temperature of the black holes we use the tunnelling method. In the case of scalar particles we make use of the Hamilton-Jacobi equation. To consider tunnelling of fermions the Dirac equation was investigated. The examination shows that the radial parts of the action for scalar particles and fermions in the quasi-classical limit in the vicinity of horizon are almost the same and as a consequence it gives rise to identical expressions for the temperature in the two cases.
Tunnelling of scalar and Dirac particles from squashed charged rotating Kaluza-Klein black holes
Stetsko, M.M. [Ivan Franko National University of Lviv, Department of Theoretical Physics, Lviv (Ukraine)
2016-02-15
The thermal radiation of scalar particles and Dirac fermions from squashed charged rotating five-dimensional black holes is considered. To obtain the temperature of the black holes we use the tunnelling method. In the case of scalar particles we make use of the Hamilton-Jacobi equation. To consider tunnelling of fermions the Dirac equation was investigated. The examination shows that the radial parts of the action for scalar particles and fermions in the quasi-classical limit in the vicinity of horizon are almost the same and as a consequence it gives rise to identical expressions for the temperature in the two cases. (orig.)
Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field
Zangeneh, M.K. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Sheykhi, A.; Dehghani, M.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O.Box 55134-441, Maragha (Iran, Islamic Republic of)
2015-10-15
In this paper, we construct a new class of charged rotating dilaton black brane solutions, with a complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the causal structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime, such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and the grand-canonical ensembles and disclose the effects of dilaton field and nonlinearity of the Maxwell field on the thermal stability of the solutions. We find that, for α ≤ 1, charged rotating black brane solutions are thermally stable independent of the values of the other parameters. For α > 1, the solutions can encounter an unstable phase depending on the metric parameters. (orig.)
Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field
In this paper, we construct a new class of charged rotating dilaton black brane solutions, with a complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the causal structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime, such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and the grand-canonical ensembles and disclose the effects of dilaton field and nonlinearity of the Maxwell field on the thermal stability of the solutions. We find that, for α ≤ 1, charged rotating black brane solutions are thermally stable independent of the values of the other parameters. For α > 1, the solutions can encounter an unstable phase depending on the metric parameters. (orig.)
Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field
Zangeneh, M Kord; Dehghani, M H
2015-01-01
In this paper, we construct a new class of charged rotating dilaton black brane solutions, with complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the casual structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and grand canonical ensembles and disclose the effects of the dilaton field on the thermal stability of the solutions. We find that for $\\alpha \\leq 1$, charged rotating black brane solutions are thermally stable independent of the value of the other parameters. For $\\alpha>1$, the solutions can encounter an unstable phase...
Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field
Zangeneh, M. Kord; Sheykhi, A.; Dehghani, M. H.
2015-10-01
In this paper, we construct a new class of charged rotating dilaton black brane solutions, with a complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the causal structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime, such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and the grand-canonical ensembles and disclose the effects of dilaton field and nonlinearity of the Maxwell field on the thermal stability of the solutions. We find that, for α ≤ 1, charged rotating black brane solutions are thermally stable independent of the values of the other parameters. For α >1, the solutions can encounter an unstable phase depending on the metric parameters.
Magnetic field seed generation in plasmas around charged and rotating black holes
Previous work by the authors introduced the possibility of generating seed magnetic fields by spacetime curvature and applied it in the vicinity of a Schwarzschild black hole. It was pointed out that it would be worthwhile to consider the effect in other background geometries and particularly in the vicinity of a rotating black hole, which is generically to be expected, astrophysically. In this paper that suggestion is followed up and we calculate generated magnetic field seed due to Reissner–Nördstrom and Kerr spacetimes. The conditions for the drive for the seed of a magnetic field is obtained for charged black holes, finding that in the horizon the drive vanishes. Also, the ψN-force produced by the Kerr black hole is obtained and its relation with the magnetic field seed is discussed, producing a more effective drive. (paper)
Dias, O J C; Dias, Oscar J. C.; Lemos, Jose' P. S.
2001-01-01
We obtain static and rotating electrically charged black holes of a Einstein-Maxwell-Dilaton theory of the Brans-Dicke type in (2+1)-dimensions. The theory is specified by three fields, the dilaton, the graviton and the electromagnetic field, and two parameters, the cosmological constant and the Brans-Dicke parameter. It contains eight different cases, of which one distinguishes as special cases, string theory, general relativity and a theory equivalent to four dimensional general relativity with one Killing vector. We find the ADM mass, angular momentum, electric charge and dilaton charge and compute the Hawking temperature of the solutions. Causal structure and geodesic motion of null and timelike particles in the black hole geometries are studied in detail.
Sheykhi, A; Zangeneh, M Kord
2016-01-01
We construct a new class of charged rotating black brane solutions in the presence of logarithmic nonlinear electrodynamics with complete set of the rotation parameters in arbitrary dimensions. The topology of the horizon of these rotating black branes are flat, while, due to the presence of the dilaton field the asymptotic behaviour of them are neither flat nor (anti)-de Sitter [(A)dS]. We investigate the physical properties of the solutions. The mass and angular momentum of the spacetime are obtained by using the counterterm method inspired by AdS/CFT correspondence. We derive temperature, electric potential and entropy associated with the horizon and check the validity of the first law of thermodynamics on the black brane horizon. We study thermal stability of the solutions in both canonical and grand canonical ensemble and disclose the effects of the rotation parameter, nonlinearity of electrodynamics and dilaton field on the thermal stability conditions. We find the solutions are thermally stable for $\\a...
Tursunov, Arman; Stuchlík, Zdeněk; Kološ, Martin
2016-04-01
We study the motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasicircular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyze the circular orbits using the so-called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum, and specific energy of the circular orbits in dependence on the black-hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with an outward-oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged particles in the radial and vertical directions related to the equatorial circular orbits and study the radial profiles of the radial, ωr; vertical, ωθ; and orbital, ωϕ, frequencies, finding significant differences in comparison to the epicyclic geodesic circular motion. The most important new phenomenon is the existence of toroidal charged particle epicyclic motion with ωr˜ωθ≫ωϕ that could occur around retrograde circular orbits with an outward-oriented Lorentz force. We demonstrate that for the rapidly rotating black holes the role of the "Wald induced charge" can be relevant.
Integrability of some charged rotating supergravity black hole solutions in four and five dimensions
Vasudevan, Muraari
2005-09-01
We study the integrability of geodesic flow in the background of some recently discovered charged rotating solutions of supergravity in four and five dimensions. Specifically, we work with the gauged multicharge Taub-NUT-Kerr-(anti-)de Sitter metric in four dimensions, and the U(1) 3 gauged charged-Kerr-(anti-)de Sitter black hole solution of N = 2 supergravity in five dimensions. We explicitly construct the nontrivial irreducible Killing tensors that permit separation of the Hamilton-Jacobi equation in these spacetimes. These results prove integrability for a large class of previously known supergravity solutions, including several BPS solitonic states. We also derive first-order equations of motion for particles in these backgrounds and examine some of their properties. Finally, we also examine the Klein-Gordon equation for a scalar field in these spacetimes and demonstrate separability.
Near-BPS-saturated rotating electrically charged black holes as string states
We construct generating solutions for general D-dimensional (4≤D≤9) rotating, electrically charged, black holes in the effective action of toroidally compactified heterotic (or Type IIA) string. The generating solution is parameterized by the ADM mass, two electric charges and [(D-1)/2] angular momenta (as well as the asymptotic values of one toroidal modulus and the dilaton field). For D≥6, those are generating solutions for general black holes in toroidally compactified heterotic (or type IIA) string. Since in the BPS-limit (extreme limit) these solutions have singular horizons or naked singularities, we address the near extreme solutions with all the angular momenta small enough. In this limit, the thermodynamic entropy can be cast in a suggestive form, which has a qualitative interpretation as microscopic entropy of (near)-BPS-saturated charged string states of toroidally compactified heterotic string, whose target-space angular momenta are identified as [(D-1)/2] U(1) left-moving world-sheet currents. (orig.)
Butterflies with rotation and charge
Reynolds, Alan P
2016-01-01
We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2+1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momentum or charge does not appear explicitly. We comment on issues affecting the extension to higher-dimensional charged black holes.
Fermions tunneling from rotating stationary Kerr black hole with electric charge and magnetic charge
Yang, Juan; Yang, Shu-Zheng
2010-06-01
In this paper, the method of semi-classical fermion tunneling is extended to explore the fermion tunneling behavior of a Kerr-Newman-Kasuya black hole. Thus, the Hamilton-Jacobi equation in Kerr-Newman-Kasuya space-time is derived by the method presented in Refs. Lin and Yang (2009) [24-26], the Hawking temperature at the horizon and the tunneling probability of spin- 1/2 fermions are finally obtained following the semi-classical quantum equation. The results indicate the common features of this black hole.
Charged, Rotating Black Objects in Einstein–Maxwell-Dilaton Theory in D ≥ 5
Burkhard Kleihaus; Jutta Kunz; Eugen Radu
2016-01-01
We show that the general framework proposed by Kleihaus et al. (2015) for the study of asymptotically flat vacuum black objects with k + 1 equal magnitude angular momenta in D ≥ 5 spacetime dimensions (with 0 ≤ k ≤ D - 5 2 ) can be extended to the case of Einstein–Maxwell-dilaton (EMd) theory. This framework can describe black holes with spherical horizon topology, the simplest solutions corresponding to a class of electrically charged (dilatonic) Myers–Perry blac...
Charged, rotating black objects in Einstein-Maxwell-dilaton theory in $D\\ge 5$
Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen
2016-01-01
We show that the general framework proposed in arXiv:1410.0581 for the study of asymptotically flat vacuum black objects with $k+1$ equal magnitude angular momenta in $D\\geq 5$ spacetime dimensions (with $0\\leq k\\leq \\big[\\frac{D-5}{2} \\big]$) can be extended to the case of Einstein-Maxwell-dilaton (EMd) theory. This framework can describe black holes with spherical horizon topology, the simplest solutions corresponding to a class of electrically charged (dilatonic) Myers-Perry black holes. B...
Charge and mass effects on the evaporation of higher-dimensional rotating black holes
To study the dynamics of discharge of a brane black hole in TeV gravity scenarios, we obtain the approximate electromagnetic field due to the charged black hole, by solving Maxwell's equations perturbatively on the brane. In addition, arguments are given for brane metric corrections due to backreaction. We couple brane scalar and brane fermion fields with non-zero mass and charge to the background, and study the Hawking radiation process using well known low energy approximations as well as a WKB approximation in the high energy limit. We argue that contrary to common claims, the initial evaporation is not dominated by fast Schwinger discharge.
Soroushfar, Saheb; Kazempour, Sobhan; Grunau, Saskia; Kunz, Jutta
2016-01-01
We study the geodesic equations in the space time of a rotating charged black hole in $f(R)$ gravity. We derive the equations of motion for test particles and light rays and present their solutions in terms of the Weierstrass $\\wp$, $\\zeta$ and $\\sigma$ functions as well as the Kleinian $\\sigma$ function. With the help of parametric diagrams and effective potentials we analyze the geodesic motion and classify the possible orbit types.
Mo, Jie-Xiong
2014-01-01
To provide an analytic verification of the nature of phase transition at the critical point of $P-V$ criticality, the original expressions of Ehrenfest equations have been introduced directly. By treating the cosmological constant and its conjugate quantity as thermodynamic pressure and volume respectively, we carry out analytical check of classical Ehrenfest equations. To show that our approach is universal, we investigate not only higher-dimensional charged AdS black holes, but also rotating AdS black holes. Not only are the examples of Einstein gravity shown, but also the example of modified gravity is presented for Gauss-Bonnet AdS black holes. The specific heat at constant pressure $C_P$, the volume expansion coefficient $\\alpha$ and the isothermal compressibility coefficient $\\kappa_T$ are found to diverge exactly at the critical point. It has been verified that both Ehrenfest equations hold at the critical point of $P-V$ criticality in the extended phase spaces of AdS black holes. So the nature of the ...
Charged and rotating AdS black holes and their CFT duals
Hawking, S. W.; Reall, H. S.
2000-01-01
Black hole solutions that are asymptotic to AdS5×S5 or AdS4×S7 can rotate in two different ways. If the internal sphere rotates, then one can obtain a Reissner-Nordström-AdS black hole. If the asymptotically AdS space rotates, then one can obtain a Kerr-AdS hole. One might expect superradiant scattering to be possible in either of these cases. Superradiant modes reflected off the potential barrier outside the hole would be reamplified at the horizon, and a classical instability would result. We point out that the existence of a Killing vector field timelike everywhere outside the horizon prevents this from occurring for black holes with negative action. Such black holes are also thermodynamically stable in the grand canonical ensemble. The CFT duals of these black holes correspond to a theory in an Einstein universe with a chemical potential and a theory in a rotating Einstein universe. We study these CFTs in the zero coupling limit. In the first case, Bose-Einstein condensation occurs on the boundary at a critical value of the chemical potential. However, the supergravity calculation demonstrates that this is not to be expected at strong coupling. In the second case, we investigate the limit in which the angular velocity of the Einstein universe approaches the speed of light at finite temperature. This is a new limit in which to compare the CFT at strong and weak coupling. We find that the free CFT partition function and supergravity action have the same type of divergence but the usual factor of 4/3 is modified at finite temperature.
Charged, rotating black objects in Einstein-Maxwell-dilaton theory in $D\\ge 5$
Kleihaus, Burkhard; Radu, Eugen
2016-01-01
We show that the general framework proposed in arXiv:1410.0581 for the study of asymptotically flat vacuum black objects with $k+1$ equal magnitude angular momenta in $D\\geq 5$ spacetime dimensions (with $0\\leq k\\leq \\big[\\frac{D-5}{2} \\big]$) can be extended to the case of Einstein-Maxwell-dilaton (EMd) theory. This framework can describe black holes with spherical horizon topology, the simplest solutions corresponding to a class of electrically charged (dilatonic) Myers-Perry black holes. Balanced charged black objects with $ S^{n+1} \\times S^{2k+1}$ horizon topology can also be studied (with $D=2k+n+4$). Black rings correspond to the case $k=0$, while the solutions with $k>0$ are black ringoids. The basic properties of EMd solutions are discussed for the special case of a Kaluza-Klein value of the dilaton coupling constant. We argue that all features of these solutions can be derived from those of the vacuum seed configurations.
Charged and rotating AdS black holes and their CFT duals
Hawking, Stephen William
2000-01-01
Black hole solutions that are asymptotic to $ AdS_5 \\times S^5$ or $ AdS_4 then one can obtain a Reissner-Nordstrom-AdS black hole. If the asymptotically AdS space rotates then one can obtain a Kerr-AdS hole. One might expect superradiant scattering to be possible in either of these cases. Superradiant modes reflected off the potential barrier outside the hole would be re-amplified at the horizon, and a classical instability would result. We point out that the existence of a Killing vector field timelike everywhere outside the horizon prevents this from occurring for black holes with negative action. Such black holes are also thermodynamically stable in the grand canonical ensemble. The CFT duals of these black holes correspond to a theory in an Einstein universe with a chemical potential and a theory in a rotating Einstein universe. We study these CFTs in the zero coupling limit. In the first case, Bose-Einstein condensation occurs on the boundary at a critical value of the chemical potential. However the su...
Tursunov, Arman; Kološ, Martin
2016-01-01
We study motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasi-circular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyse the circular orbits using the so called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum and specific energy of the circular orbits in dependence on the black hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with outward oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged parti...
Butterflies with rotation and charge
Reynolds, Alan P.; Ross, Simon F.
2016-01-01
We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2+1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momen...
On the near horizon rotating black hole geometries with NUT charges
Galajinsky, Anton
2016-01-01
The near horizon geometries are usually constructed by implementing a specific limit to a given extreme black hole configuration. Their salient feature is that the isometry group includes the conformal subgroup SO(2,1). In this work, we turn the logic around and use the conformal invariants for constructing Ricci-flat metrics in d=4 and d=5 where the vacuum Einstein equations reduce to a coupled set of ordinary differential equations. In four dimensions the analysis can be carried out in full generality and the resulting metric describes the d=4 near horizon Kerr-NUT black hole. In five dimensions we choose a specific ansatz whose structure is similar to the d=5 near horizon Myers-Perry black hole. A Ricci-flat metric involving five arbitrary parameters is constructed. A particular member of this family, which is characterized by three parameters, seems to be a natural candidate to describe the d=5 near horizon Myers-Perry black hole with a NUT charge.
Shadow of rotating regular black holes
Abdujabbarov, Ahmadjon; Amir, Muhammed; Ahmedov, Bobomurat; Ghosh, Sushant G.
2016-01-01
We study the shadows cast by the different types of rotating regular black holes viz. Ay\\'on-Beato-Garc\\'ia {(ABG)}, Hayward, and Bardeen. These black holes have in addition to the total mass ($M$) and rotation parameter ($a$), different parameters as electric charge ($Q$), deviation parameter ($g$), and magnetic charge ($g_{*}$), respectively. Interestingly, the size of the shadow is affected by these parameters in addition to the rotation parameter. We found that the radius of the shadow in...
Rotating Brane World Black Holes
Modgil, Moninder Singh; Panda, Sukanta; Sengupta, Gautam
2001-01-01
A five dimensional rotating black string in a Randall-Sundrum brane world is considered. The black string intercepts the three brane in a four dimensional rotating black hole. The geodesic equations and the asymptotics in this background are discussed.
Fischetti, Sebastian
2013-01-01
We construct the gravitational dual, in the Unruh state, of the "jammed" phase of a CFT at strong coupling and infinite N on a fixed five-dimensional rotating Myers-Perry black hole with equal angular momenta. When the angular momenta are all zero, the solution corresponds to the five-dimensional generalization of the solution first studied by Figueras, Lucietti, and Wiseman. In the extremal limit, when the angular momenta of the Myers-Perry black hole are maximum, the Unruh, Boulware and Hartle-Hawking states degenerate. We give a detailed analysis of the corresponding holographic stress energy tensor for all values of the angular momenta, finding it to be regular at the horizon in all cases. We compare our results with existent literature on thermal states of free field theories on black hole backgrounds.
Slowly Rotating Black Holes with Nonlinear Electrodynamics
We study charged slowly rotating black hole with a nonlinear electrodynamics (NED) in the presence of cosmological constant. Starting from the static solutions of Einstein-NED gravity as seed solutions, we use the angular momentum as the perturbative parameter to obtain slowly rotating black holes. We perform the perturbations up to the linear order for black holes in 4 dimensions. These solutions are asymptotically AdS and their horizon has spherical topology. We calculate the physical properties of these black holes and study their dependence on the rotation parameter a as well as the nonlinearity parameter β. In the limit β→∞, the solution describes slowly rotating AdS type black holes
Shadow of rotating regular black holes
Abdujabbarov, Ahmadjon; Ahmedov, Bobomurat; Ghosh, Sushant G
2016-01-01
We study the shadows cast by the different types of rotating regular black holes viz. Ay\\'on-Beato-Garc\\'ia {(ABG)}, Hayward, and Bardeen. These black holes have in addition to the total mass ($M$) and rotation parameter ($a$), different parameters as electric charge ($Q$), deviation parameter ($g$), and magnetic charge ($g_{*}$), respectively. Interestingly, the size of the shadow is affected by these parameters in addition to the rotation parameter. We found that the radius of the shadow in each case decreases monotonically and the distortion parameter increases when the value of these parameters increase. A comparison with the standard Kerr case is also investigated. We have also studied the influence of the plasma environment around regular black holes to discuss its shadow. The presence of the plasma affects the apparent size of the regular black hole's shadow to be increased due to two effects (i) gravitational redshift of the photons and (ii) radial dependence of plasma density.
Shadow of rotating regular black holes
Abdujabbarov, Ahmadjon; Amir, Muhammed; Ahmedov, Bobomurat; Ghosh, Sushant G.
2016-05-01
We study the shadows cast by the different types of rotating regular black holes viz. Ayón-Beato-García (ABG), Hayward, and Bardeen. These black holes have in addition to the total mass (M ) and rotation parameter (a ), different parameters as electric charge (Q ), deviation parameter (g ), and magnetic charge (g*). Interestingly, the size of the shadow is affected by these parameters in addition to the rotation parameter. We found that the radius of the shadow in each case decreases monotonically, and the distortion parameter increases when the values of these parameters increase. A comparison with the standard Kerr case is also investigated. We have also studied the influence of the plasma environment around regular black holes to discuss its shadow. The presence of the plasma affects the apparent size of the regular black hole's shadow to be increased due to two effects: (i) gravitational redshift of the photons and (ii) radial dependence of plasma density.
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar
2015-05-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.
Babichev, Eugeny; Hassaine, Mokhtar
2015-01-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...
Trova, A; Slany, P; Kovar, J
2016-01-01
We present an analytical approach for the equilibrium of a self-gravitating charged fluid embedded in a spherical gravitational and dipolar magnetic fields produced by a central mass. Our scheme is proposed, as a toy-model, in the context of gaseous/dusty tori surrounding supermassive black holes in galactic nuclei. While the central black hole dominates the gravitational field and it remains electrically neutral, the surrounding material has a non-negligible self-gravitational effect on the torus structure. By charging mechanisms it also acquires non-zero electric charge density, so the two influences need to be taken into account to achieve a self-consistent picture. With our approach we discuss the impact of self-gravity, represented by the term dt (ratio of the torus total mass to the mass of the central body), on the conditions for existence of the equilibrium and the morphology and typology of the tori. By comparison with a previous work without self-gravity, we show that the conditions can be different...
Area spectrum of slowly rotating black holes
Myung, Yun Soo
2010-01-01
We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.
Rotating black hole and quintessence
Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)
2016-04-15
We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e{sup 2} ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a{sub E}), which corresponds to an extremal black hole with degenerate horizons, while for a < a{sub E}, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a{sub E}. We find that the extremal value a{sub E} is also influenced by the parameter ω and so is the ergoregion. (orig.)
A nonsingular rotating black hole
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)
A nonsingular rotating black hole
Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)
2015-11-15
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)
Quantum tunneling from scalar fields in rotating black strings
Gohar, H
2011-01-01
Using the Hamilton-Jacobi method of quantum tunneling and complex path integration, we study Hawking radiation of scalar particles from rotating black strings. We discuss tunneling of both charged and uncharged scalar particles from the event horizons. For this purpose, we use the Klein-Gordon equation and find the tunneling probability of outging scalar particles. The procedure gives Hawking temperature for rotating charged black strings as well.
Quantum tunneling from scalar fields in rotating black strings
Gohar, H.; Saifullah, K.
2013-08-01
Using the Hamilton-Jacobi method of quantum tunneling and complex path integration, we study Hawking radiation of scalar particles from rotating black strings. We discuss tunneling of both charged and uncharged scalar particles from the event horizons. For this purpose, we use the Klein-Gordon equation and find the tunneling probability of outgoing scalar particles. The procedure gives Hawking temperature for rotating charged black strings as well.
Coalescence of Rotating Black Holes on Eguchi-Hanson Space
Matsuno, Ken; Kimura, Masashi; Tomizawa, Shinya
2007-01-01
We obtain new charged rotating multi-black hole solutions on the Eguchi-Hanson space in the five-dimensional Einstein-Maxwell system with a Chern-Simons term and a positive cosmological constant. In the two-black holes case, these solutions describe the coalescence of two rotating black holes with the spatial topologies of S^3 into a single rotating black hole with the spatial topology of the lens space S^3/Z_2. We discuss the differences in the horizon areas between our solutions and the two-centered Klemm-Sabra solutions which describe the coalescence of two rotating black holes with the spatial topologies of S^3 into a single rotating black hole with the spatial topology of S^3.
On Hawking Radiation of 3D Rotating Hairy Black Holes
Belhaj, A.; Chabab, M.; Moumni, H. EL; Masmar, K.; Sedra, M. B.
2015-01-01
We study the Hawking radiation of 3D rotating hairy black holes. More concretely, we compute the transition probability of a bosonic and fermionic particle in such backgrounds. Thew, we show that the transition probability is independent of the nature of the particle. It is observed that the charge of the scalar hair B and the rotation parameter a control such a probability.
We show that one may pass from bulk to boundary thermodynamic quantities for rotating anti-de Sitter (AdS) black holes in arbitrary dimensions so that if the bulk quantities satisfy the first law of thermodynamics then so do the boundary conformal field theory (CFT) quantities. This corrects recent claims that boundary CFT quantities satisfying the first law may only be obtained using bulk quantities measured with respect to a certain frame rotating at infinity, and which therefore do not satisfy the first law. We show that the bulk black-hole thermodynamic variables, or equivalently therefore the boundary CFT variables, do not always satisfy a Cardy-Verlinde type formula, but they do always satisfy an AdS-Bekenstein bound. The universal validity of the Bekenstein bound is a consequence of the more fundamental cosmic-censorship bound, which we find to hold in all cases examined. We also find that at fixed entropy, the temperature of a rotating black hole is bounded above by that of a nonrotating black hole, in four and five dimensions, but not in six or more dimensions. We find evidence for universal upper bounds for the area of cosmological event horizons and black-hole horizons in rotating black-hole spacetimes with a positive cosmological constant
Stationary Scalar Clouds Around Rotating Black Holes
Hod, Shahar
2012-01-01
Motivated by novel results in the theory of wave dynamics in black-hole spacetimes, we analyze the dynamics of a massive scalar field surrounding a rapidly rotating Kerr black hole. In particular, we report on the existence of stationary (infinitely long-lived) regular field configurations in the background of maximally rotating black holes. The effective height of these scalar "clouds" above the central black hole is determined analytically. Our results support the possible existence of stat...
Stationary Scalar Clouds Around Rotating Black Holes
Hod, Shahar
2012-01-01
Motivated by novel results in the theory of wave dynamics in black-hole spacetimes, we analyze the dynamics of a massive scalar field surrounding a rapidly rotating Kerr black hole. In particular, we report on the existence of stationary (infinitely long-lived) regular field configurations in the background of maximally rotating black holes. The effective height of these scalar "clouds" above the central black hole is determined analytically. Our results support the possible existence of stationary scalar field dark matter distributions surrounding rapidly rotating black holes.
Rotating Black Holes and Coriolis Effect
Wu, Xiaoning; Yuan, Pei-Hung; Cho, Chia-Jui
2015-01-01
In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the Petrov-like boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.
Horizon structure of rotating Bardeen black hole and particle acceleration
We investigate the horizon structure and ergosphere in a rotating Bardeen regular black hole, which has an additional parameter (g) due to the magnetic charge, apart from the mass (M) and the rotation parameter (a). Interestingly, for each value of the parameter g, there exists a critical rotation parameter (a = aE), which corresponds to an extremal black hole with degenerate horizons, while for a < aE it describes a non-extremal black hole with two horizons, and no black hole for a > aE. We find that the extremal value aE is also influenced by the parameter g, and so is the ergosphere. While the value of aE remarkably decreases when compared with the Kerr black hole, the ergosphere becomes thicker with the increase in g.We also study the collision of two equal mass particles near the horizon of this black hole, and explicitly show the effect of the parameter g. The center-of-mass energy (ECM) not only depend on the rotation parameter a, but also on the parameter g. It is demonstrated that the ECM could be arbitrarily high in the extremal cases when one of the colliding particles has a critical angular momentum, thereby suggesting that the rotating Bardeen regular black hole can act as a particle accelerator. (orig.)
Horizon structure of rotating Bardeen black hole and particle acceleration
Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa); Amir, Muhammed [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India)
2015-11-15
We investigate the horizon structure and ergosphere in a rotating Bardeen regular black hole, which has an additional parameter (g) due to the magnetic charge, apart from the mass (M) and the rotation parameter (a). Interestingly, for each value of the parameter g, there exists a critical rotation parameter (a = a{sub E}), which corresponds to an extremal black hole with degenerate horizons, while for a < a{sub E} it describes a non-extremal black hole with two horizons, and no black hole for a > a{sub E}. We find that the extremal value a{sub E} is also influenced by the parameter g, and so is the ergosphere. While the value of a{sub E} remarkably decreases when compared with the Kerr black hole, the ergosphere becomes thicker with the increase in g.We also study the collision of two equal mass particles near the horizon of this black hole, and explicitly show the effect of the parameter g. The center-of-mass energy (E{sub CM}) not only depend on the rotation parameter a, but also on the parameter g. It is demonstrated that the E{sub CM} could be arbitrarily high in the extremal cases when one of the colliding particles has a critical angular momentum, thereby suggesting that the rotating Bardeen regular black hole can act as a particle accelerator. (orig.)
Energetic Gamma Radiation from Rapidly Rotating Black Holes
Hirotani, Kouichi
2015-01-01
Supermassive black holes are believed to be the central power house of active galactic nuclei. Applying the pulsar outer-magnetospheric particle accelerator theory to black-hole magnetospheres, we demonstrate that an electric field is exerted along the magnetic field lines near the event horizon of a rotating black hole. In this particle accelerator (or a gap), electrons and positrons are created by photon-photon collisions and accelerated in the opposite directions by this electric field, efficiently emitting gamma-rays via curvature and inverse-Compton processes. It is shown that a gap arises around the null charge surface formed by the frame-dragging effect, provided that there is no current injection across the gap boundaries. The gap is dissipating a part of the hole's rotational energy, and the resultant gamma-ray luminosity increases with decreasing plasma accretion from the surroundings. Considering an extremely rotating supermassive black hole, we show that such a gap reproduces the significant very-...
Angular Momentum-Free of the Entropy Relations for Rotating Kaluza-Klein Black Holes
Liu, Hang; Meng, Xin-He
2016-01-01
Based on a mathematical lemma related to the Vandermonde determinant and two theorems derived from the first law of black hole thermodynamics, we investigate the angular momentum independence of the entropy sum as well as the entropy product of general rotating Kaluza-Klein black holes in higher dimensions. We show that for both non-charged rotating Kaluza-Klein black holes and non-charged rotating Kaluza-Klein-AdS black holes, the angular momentum of the black holes will not be present in en...
Hawking radiation of scalars from accelerating and rotating black holes with NUT parameter
Jan, Khush; Gohar, H.
2014-03-01
We study the quantum tunneling of scalars from charged accelerating and rotating black hole with NUT parameter. For this purpose we use the charged Klein-Gordon equation. We apply WKB approximation and the Hamilton-Jacobi method to solve charged Klein-Gordon equation. We find the tunneling probability of outgoing charged scalars from the event horizon of this black hole, and hence the Hawking temperature for this black hole
Renormalized vacuum polarization of rotating black holes
Ferreira, Hugo R C
2015-01-01
Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2+1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization (and, more importantly, the renormalized stress-energy tensor), for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.
Renormalized vacuum polarization of rotating black holes
Ferreira, Hugo R. C.
2015-04-01
Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.
Spatial geometry of charged rotating and non-rotating rings in rotating and non-rotating frames
Romannikov, Alexander
2016-01-01
Spatial geometry of charged thin rotating and non-rotating rings in a rotating frame is investigated. It is shown, on an example of interaction between a charged probe and two positive charged non-rotating and negative charged rotating rings that the spatial geometry of the rotating ring in the rotating frame has to be different to the spatial geometry of the rotating frame. In the absent of direct relation between the spatial geometry rotating frame and the spatial geometry of the rotating ring in that frame the possibility of a non-flat spatial geometry of rotating electron rings in tokamak plasma is discussed.
Spatial geometry of charged rotating and non-rotating rings in rotating and non-rotating frames
Romannikov, Alexander
2016-01-01
Spatial geometry of charged thin rotating and non-rotating rings in a rotating frame is investigated. It is shown, on an example of interaction between a charged probe and two positive charged non-rotating and negative charged rotating rings that the spatial geometry of the rotating ring in the rotating frame has to be different to the spatial geometry of the rotating frame. In the absent of direct relation between the spatial geometry rotating frame and the spatial geometry of the rotating r...
Charge Fluctuations of an Uncharged Black Hole
Schiffer, Marcelo
2016-01-01
In this paper we calculate charge fluctuations of a Schwarzschild black-hole of mass $M$ confined within a perfectly reflecting cavity of radius R in thermal equilibrium with various species of radiation and fermions . Charge conservation is constrained by a Lagrange multiplier (the chemical potential). Black hole charge fluctuations are expected owing to continuous absorption and emission of particles by the black hole. For black holes much more massive than $10^{16} g$ , these fluctuations are exponentially suppressed. For black holes lighter than this, the Schwarzschild black hole is unstable under charge fluctuations for almost every possible size of the confining vessel. The stability regime and the fluctuations are calculated through the second derivative of the entropy with respect to the charge. The expression obtained contains many puzzling terms besides the expected thermodynamical fluctuations: terms corresponding to instabilities that do not depend on the specific value of charge of the charge car...
Twisting of light around rotating black holes
Tamburini, Fabrizio; Molina-Terriza, Gabriel; Anzolin, Gabriele; 10.1038/nphys1907
2011-01-01
Kerr black holes are among the most intriguing predictions of Einstein's general relativity theory. These rotating massive astrophysical objects drag and intermix their surrounding space and time, deflecting and phase-modifying light emitted nearby them. We have found that this leads to a new relativistic effect that imposes orbital angular momentum onto such light. Numerical experiments, based on the integration of the null geodesic equations of light from orbiting point-like sources in the Kerr black hole equatorial plane to an asymptotic observer, indeed identify the phase change and wavefront warping and predict the associated light-beam orbital angular momentum spectra. Setting up the best existing telescopes properly, it should be possible to detect and measure this twisted light, thus allowing a direct observational demonstration of the existence of rotating black holes. Since non-rotating objects are more an exception than a rule in the Universe, our findings are of fundamental importance.
Twisting of light around rotating black holes
Tamburini, Fabrizio; Thidé, Bo; Molina-Terriza, Gabriel; Anzolin, Gabriele
2011-03-01
Kerr black holes are among the most intriguing predictions of Einstein's general relativity theory. These rotating massive astrophysical objects drag and intermix their surrounding space and time, deflecting and phase-modifying light emitted near them. We have found that this leads to a new relativistic effect that imprints orbital angular momentum on such light. Numerical experiments, based on the integration of the null geodesic equations of light from orbiting point-like sources in the Kerr black hole equatorial plane to an asymptotic observer, indeed identify the phase change and wavefront warping and predict the associated light-beam orbital angular momentum spectra. Setting up the best existing telescopes properly, it should be possible to detect and measure this twisted light, thus allowing a direct observational demonstration of the existence of rotating black holes. As non-rotating objects are more an exception than a rule in the Universe, our findings are of fundamental importance.
Magnetospheres around rotating black holes
Dovčiak, Michal; Karas, V.
Singapor: World Scientific Publishing Co., 2003 - (Ruffini, R.; Sigismondi, C.), s. 288-295 [Nonlinear gravitodynamics. Rome (IT), 29.06.1998-04.07.1998] Institutional research plan: CEZ:AV0Z1003909 Keywords : black holes * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
Rotating black holes can have short bristles
The elegant ‘no short hair’ theorem states that, if a spherically-symmetric static black hole has hair, then this hair must extend beyond 3/2 the horizon radius. In the present paper we provide evidence for the failure of this theorem beyond the regime of spherically-symmetric static black holes. In particular, we show that rotating black holes can support extremely short-range stationary scalar configurations (linearized scalar ‘clouds’) in their exterior regions. To that end, we solve analytically the Klein–Gordon–Kerr–Newman wave equation for a linearized massive scalar field in the regime of large scalar masses
Collision of two general particles around a rotating regular Hayward's black holes
Amir, Muhammed; Ghosh, Sushant G
2016-01-01
The rotating regular Hayward's spacetime, apart from mass ($M$) and angular momentum ($a$), has an additional deviation parameter ($g$) due to the magnetic charge, which generalizes the Kerr black hole when $g\
How fast can a black hole rotate?
Herdeiro, Carlos A R
2015-01-01
Kerr black holes have their angular momentum, $J$, bounded by their mass, $M$: $Jc\\leqslant GM^2$. There are, however, known black hole solutions violating this Kerr bound. We propose a very simple universal bound on the rotation, rather than on the angular momentum, of four-dimensional, stationary and axisymmetric, asymptotically flat black holes, given in terms of an appropriately defined horizon linear velocity, $v_H$. The $v_H$ bound is simply that $v_H$ cannot exceed the velocity of light. We verify the $v_H$ bound for known black hole solutions, including some that violate the Kerr bound, and conjecture that only extremal Kerr black holes saturate the $v_H$ bound.
Magnetic charge, black holes, and cosmic censorship
The possibility of converting a Reissner-Nordstroem black hole into a naked singularity by means of test particle accretion is considered. The dually charged Reissner-Nordstroem metric describes a black hole only when M2>Q2+P2. The test particle equations of motion are shown to allow test particles with arbitrarily large magnetic charge/mass ratios to fall radially into electrically charged black holes. To determine the nature of the final state (black hole or naked singularity) an exact solution of Einstein's equations representing a spherical shell of magnetically charged dust falling into an electrically charged black hole is studied. Naked singularities are never formed so long as the weak energy condition is obeyed by the infalling matter. The differences between the spherical shell model and an infalling point test particle are examined and discussed
Angular Momentum-Free of the Entropy Relations for Rotating Kaluza-Klein Black Holes
Liu, Hang
2016-01-01
Based on a mathematical lemma related to the Vandermonde determinant and two theorems derived from the first law of black hole thermodynamics, we investigate the angular momentum independence of the entropy sum as well as the entropy product of general rotating Kaluza-Klein black holes in higher dimensions. We show that for both non-charged rotating Kaluza-Klein black holes and non-charged rotating Kaluza-Klein-AdS black holes, the angular momentum of the black holes will not be present in entropy sum relation in dimensions $d\\geq4$, while the independence of angular momentum of the entropy product holds provided that the black holes possess at least one zero rotation parameter $a_j$ = 0 in higher dimensions $d\\geq5$, which means that the cosmological constant does not affect the angular momentum-free property of entropy sum and entropy product under the circumstances that charge $\\delta=0$. For the reason that the entropy relations of charged rotating Kaluza-Klein black holes as well as the non-charged rotat...
Frame-Dragging from Charged Rotating Body
Dubey, Anuj Kumar
2016-01-01
In the present paper, we have considered the three parameters: mass, charge and rotation to discuss their combined effect on frame dragging for a charged rotating body. If we consider the ray of light which is emitted radially outward from a rotating body then the frame dragging shows a periodic nature with respect to coordinate $\\phi$ (azimuthal angle). It has been found that the value of frame dragging obtains a maximum at, $ \\phi =\\frac{\\pi}{2}$ and a minimum at $ \\phi =\\frac{3 \\pi}{2}$.
Black hole conserved charges in Generalized Minimal Massive Gravity
M.R. Setare
2015-05-01
Full Text Available In this paper we construct mass, angular momentum and entropy of black hole solution of Generalized Minimal Massive Gravity (GMMG in asymptotically Anti-de Sitter (AdS spacetimes. The Generalized Minimal Massive Gravity theory is realized by adding the CS deformation term, the higher derivative deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. We apply our result for conserved charge Qμ(ξ¯ to the rotating BTZ black hole solution of GMMG, and find energy, angular momentum and entropy. Then we show that our results for these quantities are consistent with the first law of black hole thermodynamics.
Charged Black Holes with Scalar Hair
Fan, Zhong-Ying
2015-01-01
We consider a class of Einstein-Maxwell-Dilaton theories, in which the dilaton coupling to the Maxwell field is not the usual single exponential function, but one with a stationary point. The theories admit two charged black holes: one is the Reissner-Nordstr\\o m (RN) black hole and the other has a varying dilaton. For a given charge, the new black hole in the extremal limit has the same AdS$_2\\times$Sphere near-horizon geometry as the RN black hole, but it carries larger mass. We then introduce some scalar potentials and obtain exact charged AdS black holes. We also generalize the results to black $p$-branes with scalar hair.
Charged black holes in phantom cosmology
Jamil, Mubasher; Qadir, Asghar; Rashid, Muneer Ahmad [National University of Sciences and Technology, Center for Advanced Mathematics and Physics, Rawalpindi (Pakistan)
2008-11-15
In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole. (orig.)
Hawking radiation from rotating brane black holes
Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)
2007-01-01
We review recent work on the Hawking radiation of rotating brane black holes, as may be produced at the LHC. We outline the methodology for calculating the fluxes of particles, energy and angular momentum by spin-0, spin-1/2 and spin-1 quantum fields on the brane. We briefly review some of the key features of the emission, in particular the changes in the spectra as the number of extra dimensions or the angular velocity of the black hole increases. These quantities will be useful for accurate...
Rotating Dilaton Black Strings Coupled to Exponential Nonlinear Electrodynamics
Ahmad Sheykhi
2014-01-01
Full Text Available We construct a new class of charged rotating black string solutions coupled to dilaton and exponential nonlinear electrodynamic fields with cylindrical or toroidal horizons in the presence of a Liouville-type potential for the dilaton field. Due to the presence of the dilaton field, the asymptotic behaviors of these solutions are neither flat nor (AdS. We analyze the physical properties of the solutions in detail. We compute the conserved and thermodynamic quantities of the solutions and verify the first law of thermodynamics on the black string horizon. When the nonlinear parameter β2 goes to infinity, our results reduce to those of black string solutions in Einstein-Maxwell-dilaton gravity.
Rotating black hole solutions with quintessential energy
Toshmatov, Bobir; Ahmedov, Bobomurat
2015-01-01
Quintessential dark energy with density $\\rho$ and pressure $p$ is governed by an equation of state of the form $p=-\\omega_{q}\\rho$ with the quintessential parameter $\\omega_q\\in(-1;-1/3)$. We derive the geometry of quintessential rotating black holes, generalizing thus the Kerr spacetimes. Then we study the quintessential rotating black hole spacetimes with the special value of $\\omega_q = -2/3$ when the resulting formulae are simple and easily tractable. We show that such special spacetimes can exist for dimensionless quintessential parameter $c<1/6$ and determine the critical rotational parameter $a_0$ separating the black hole and naked singularity spacetime in dependence on the quintessential parameter $c$. For the spacetimes with $\\omega_q = 2/3$ we present the integrated geodesic equations in separated form and study in details the circular geodetical orbits. We give radii and parameters of the photon circular orbits, marginally bound and marginally stable orbits. We stress that the outer boundary o...
Energy extremum principle for charged black holes
Fraser, Scott; Funkhouser, Shaker Von Price
2015-11-01
For a set of N asymptotically flat black holes with arbitrary charges and masses, all initially at rest and well separated, we prove the following extremum principle: the extremal charge configuration (|qi|=mi for each black hole) can be derived by extremizing the total energy, for variations of the black hole apparent horizon areas, at fixed charges and fixed Euclidean separations. We prove this result through second order in an expansion in the inverse separations. If all charges have the same sign, this result is a variational principle that reinterprets the static equilibrium of the Majumdar-Papapetrou-Hartle-Hawking solution as an extremum of total energy, rather than as a balance of forces; this result augments a list of related variational principles for other static black holes, and is consistent with the independently known Bogomol'nyi-Prasad-Sommerfield (BPS) energy minimum.
Charged perfect fluid in rigid rotation
This paper is a continuation of the work of Bonnor and Raychaudhuri on a charged dust distribution in rigid rotation in general relativity. Here the authors are concerned with the similar problem of a charged perfect fluid with nonvanishing pressure. As in Raychaudhuri's work, symmetry-independent reduction of Einstein--Maxwell equations is undertaken. Certain assumptions in Raychaudhuri's paper regarding the inheritance by the electromagnetic field of the symmetry resulting from the rigidity of the motion are justified
Charged black hole remnants at the LHC
We investigate possible signatures of long-lived (or stable) charged black holes at the Large Hadron Collider. In particular, we find that black hole remnants are characterised by quite low speed. Due to this fact, the charged remnants could, in some cases, be very clearly distinguished from the background events, exploiting dE/dX measurements. We also compare the estimate energy released by such remnants with that of typical Standard Model particles, using the Bethe-Bloch formula. (orig.)
Charged Dilatonic Black Holes in Gravity's Rainbow
Hendi, S H; Panah, B Eslam; Panahiyan, S
2015-01-01
In this paper, we analyze charged dilatonic black holes in gravity's rainbow. We obtain metric functions and different thermodynamic quantities for these charged black holes in dilatonic gravity's rainbow. We demonstrate that first law of thermodynamics is valid for these solutions. We also investigate thermal stability of these solutions using canonical ensemble. Finally, we analyze the effect that the variation of different parameters has on the stability of these solutions.
Charged black hole remnants at the LHC
Alberghi, G. L.; Bellagamba, L.; Calmet, X.; Casadio, R.; Micu, O.
2013-06-01
We investigate possible signatures of long-lived (or stable) charged black holes at the Large Hadron Collider. In particular, we find that black hole remnants are characterised by quite low speed. Due to this fact, the charged remnants could, in some cases, be very clearly distinguished from the background events, exploiting dE/ dX measurements. We also compare the estimate energy released by such remnants with that of typical Standard Model particles, using the Bethe-Bloch formula.
Charged Black Hole Remnants at the LHC
Alberghi, G. L.; Bellagamba, L.; Calmet, X.; Casadio, R.; Micu, O.
2013-01-01
We investigate possible signatures of long-lived (or stable) charged black holes at the Large Hadron Collider. In particular, we find that black hole remnants are characterised by quite low speed. Due to this fact, the charged remnants could, in some cases, be very clearly distinguished from the background events, exploiting dE/dX measurements. We also compare the estimate energy released by such remnants with that of typical Standard Model particles, using the Bethe-Bloch formula.
Formation and Evaporation of Charged Black Holes
Sorkin, Evgeny; Piran, Tsvi
2001-01-01
We investigate the dynamical formation and evaporation of a spherically symmetric charged black hole. We study the self-consistent one loop order semiclassical back-reaction problem. To this end the mass-evaporation is modeled by an expectation value of the stress-energy tensor of a neutral massless scalar field, while the charge is not radiated away. We observe the formation of an initially non extremal black hole which tends toward the extremal black hole $M=Q$, emitting Hawking radiation. ...
Magnetically Charged Black Holes and their Stability
Aichelburg, P C; Aichelburg, Peter C.; Bizon, Piotr
1993-01-01
We study magnetically charged black holes in the Einstein-Yang-Mills-Higgs theory in the limit of infinitely strong coupling of the Higgs field. Using mixed analytical and numerical methods we give a complete description of static spherically symmetric black hole solutions, both abelian and nonabelian. In particular, we find a new class of extremal nonabelian solutions. We show that all nonabelian solutions are stable against linear radial perturbations. The implications of our results for the semiclassical evolution of magnetically charged black holes are discussed.
Noncommutative Geometry Inspired Rotating Black Hole in Three Dimensions
Tejeiro, Juan Manuel; Larranaga, Alexis
2010-01-01
We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution.
Noncommutative geometry-inspired rotating black hole in three dimensions
Tejeiro, Juan Manuel; Larrañaga, Alexis
2012-01-01
We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution.
Black diholes with unbalanced magnetic charges
Liang, Y C; Teo, Edward
2001-01-01
We present a technique that can be used to generate a static, axisymmetric solution of the Einstein-Maxwell-Dilaton equations from a stationary, axisymmetric solution of the vacuum Einstein equations. Starting from the Kerr solution, Davidson and Gedalin have previously made use of this technique to obtain a pair of oppositely charged, extremal dilatonic black holes, known as a black dihole. In this paper, we shall instead start from the Kerr-NUT solution. It will be shown that the new solution can also be interpreted as a dihole, but with the black holes carrying unbalanced magnetic charges. The effect of the NUT-parameter is to introduce a net magnetic charge into the system. Finally, we uplift our solution to ten dimensions to describe a system consisting of D6 and anti-D6-branes with unbalanced charges. The limit in which they coincide agrees with a solution recently derived by Brax et al..
Hydrodynamics and Elasticity of Charged Black Branes
Gath, Jakob
-order corrected dynamics of uid branes carrying higher-form charge by obtaining the general form of their equations of motion to pole-dipole order in the absence of external forces. To monopole order, we characterize the corresponding effective theory of viscous uid branes by writing down the general form...... of the first-order dissipative corrections in terms of the shear and bulk viscosities as well as the transport coefficient associated with charge di usion. To dipole order, we furthermore, applying linear response theory, characterize the corresponding effective theory of stationary bent charged (an...... the first-order dispersion relations of the effective uid and analyze the dynamical stability of the black branes. We then focus on constructing stationary strained charged black brane solutions to rst order in a derivative expansion. Using solution generating techniques and the bent neutral black brane...
Five-dimensional rotating black hole in a uniform magnetic field: The gyromagnetic ratio
In four-dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector potential for a test Maxwell field provides one with an elegant way of describing the behavior of electromagnetic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach to examine the case of a five-dimensional rotating black hole placed in a uniform magnetic field of configuration with biazimuthal symmetry that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming that the black hole may also possess a small electric charge we construct the five-vector potential of the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show that, like its four-dimensional counterparts, the five-dimensional Myers-Perry black hole rotating in a uniform magnetic field produces an inductive potential difference between the event horizon and an infinitely distant surface. This potential difference is determined by a superposition of two independent Coulomb fields consistent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field. We also show that a weakly charged rotating black hole in five dimensions possesses two independent magnetic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We prove that a five-dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic ratio g=3
Charged Particles' Tunneling from Noncommutative Charged Black Hole
Mehdipour, S Hamid
2010-01-01
We apply the tunneling process of charged massive particles through the quantum horizon of a Reissner-Nordstr\\"om black hole in a new noncommutative gravity scenario. In this model, the tunneling amplitude on account of noncommutativity influences in the context of coordinate coherent states is modified. Our calculation points out that the emission rate satisfies the first law of black hole thermodynamics and is consistent with an underlying unitary theory.
Charged particles' tunneling from a noncommutative charged black hole
Mehdipour, S. Hamid
2010-01-01
We apply the tunneling process of charged massive particles through the quantum horizon of a Reissner-Nordstrom black hole in a new noncommutative gravity scenario. In this model, the tunneling amplitude on account of noncommutativity influences in the context of coordinate coherent states is modified. Our calculation points out that the emission rate satisfies the first law of black hole thermodynamics and is consistent with an underlying unitary theory.
Collisions of oppositely charged black holes
Zilhão, Miguel; Herdeiro, Carlos; Lehner, Luis; Sperhake, Ulrich
2013-01-01
The first fully non-linear numerical simulations of colliding charged black holes in D=4 Einstein-Maxwell theory were recently reported arXiv:1205.1063. These collisions were performed for black holes with equal charge-to-mass ratio, for which initial data can be found in closed analytic form. Here we generalize the study of collisions of charged black holes to the case of unequal charge-to-mass ratios. We focus on oppositely charged black holes, as to maximize acceleration-dependent effects. As |Q|/M increases from 0 to 0.99, we observe that the gravitational radiation emitted increases by a factor of ~ 2.7; the electromagnetic radiation emission becomes dominant for |Q|/M >~ 0.37 and at |Q|/M=0.99 is larger, by a factor of ~ 5.8, than its gravitational counterpart. We observe that these numerical results exhibit a precise and simple scaling with the charge. Furthermore, we show that the results from the numerical simulations are qualitatively captured by a simple analytic model that computes the electromagn...
Slowly rotating black holes in Einstein-æther theory
Barausse, Enrico; Sotiriou, Thomas P.; Vega, Ian
2016-02-01
We study slowly rotating, asymptotically flat black holes in Einstein-æther theory and show that solutions that are free from naked finite area singularities form a two-parameter family. These parameters can be thought of as the mass and angular momentum of the black hole, while there are no independent æ ther charges. We also show that the æ ther has nonvanishing vorticity throughout the spacetime, as a result of which there is no hypersurface that resembles the universal horizon found in static, spherically symmetric solutions. Moreover, for experimentally viable choices of the coupling constants, the frame-dragging potential of our solutions only shows percent-level deviations from the corresponding quantities in General Relativity and Hořava gravity. Finally, we uncover and discuss several subtleties in the correspondence between Einstein-æther theory and Hořava gravity solutions in the cω→∞ limit.
Charged dilatonic black holes in gravity's rainbow
Hendi, S. H.; Faizal, Mir; Panah, B. Eslam; Panahiyan, S.
2016-05-01
In this paper, we present charged dilatonic black holes in gravity's rainbow. We study the geometric and thermodynamic properties of black hole solutions. We also investigate the effects of rainbow functions on different thermodynamic quantities for these charged black holes in dilatonic gravity's rainbow. Then we demonstrate that the first law of thermodynamics is valid for these solutions. After that, we investigate thermal stability of the solutions using the canonical ensemble and analyze the effects of different rainbow functions on the thermal stability. In addition, we present some arguments regarding the bound and phase transition points in context of geometrical thermodynamics. We also study the phase transition in extended phase space in which the cosmological constant is treated as the thermodynamic pressure. Finally, we use another approach to calculate and demonstrate that the obtained critical points in extended phase space represent a second order phase transition for these black holes.
Superradiance Instability of Small Rotating AdS Black Holes in Arbitrary Dimensions
Delice, Özgür
2015-01-01
We investigate the stability of $D$ dimensional singly rotating Myers-Perry-AdS black holes under superradiance against scalar field perturbations. It is well known that small four dimensional rotating or charged AdS black holes are unstable against superradiance instability of a scalar field. Recent works extended the existence of this instability to five dimensional rotating charged AdS black holes or static charged AdS Black holes in arbitrary dimensions. In this work we analytically prove that, rotating small AdS black holes in arbitrary dimensions also show superradiance instability irrespective of the value of the (positive) angular momentum quantum number. To do this we solve the Klein-Gordon equation in the slow rotation, low frequency limit. By using the asymptotic matching technique, we are able to calculate the real and imaginary parts of the correction terms to the frequency of the scalar field due to the presence of the black hole, confirming the presence of superradiance instability. We see that...
Charged black holes in colored Lifshitz spacetimes
Zhong-Ying Fan
2015-04-01
Full Text Available We consider Einstein gravities coupled to a cosmological constant and SU(2 Yang–Mills fields in four and five dimensions. We find that the theories admit colored Lifshitz solutions with dynamic exponents z>1. We study the wave equations of the SU(2 scalar triplet in the bulk, and find that the vacuum color modifies the scaling dimensions of the dual operators. We also introduce a Maxwell field and construct exact solutions of electrically-charged black holes that approach the D=4, z=3 and D=5, z=4 colored Lifshitz spacetimes. We derive the thermodynamical first law for general colored and charged Lifshitz black holes.
Another new form of the rotating squashed black hole solution and its thermodynamics
Zhu, Xiao-Dan; Wu, Shuang-Qing; Yang, Shu-Zheng
2016-01-01
In a previous work, we had obtained a new simple form for the five-dimensional rotating squashed black hole solution by solving directly the vacuum Einstein field equations. In this paper, using a different metric ansatz, we have obtained another new but relatively simple form for the rotating uncharged black hole with squashed horizons. We then found its relation to our previous solution and investigated its thermodynamics by means of the counterterm method. Compared with the previous results given by the other author, both of our new metric forms and their associated thermodynamic expressions of the neutral rotating squashed black hole solution are very concise and elegant. Our work serves as a warmup excises for studying the rotating charged squashed black holes in the next step.
Stability of the extremal Reissner-Nordström black hole to charged scalar perturbations
The stability of Reissner-Nordström black holes to neutral (gravitational and electromagnetic) perturbations was established almost four decades ago. However, the stability of these charged black holes under charged perturbations has remained an open question due to the well-known phenomena of superradiant scattering: A charged scalar field impinging on a charged Reissner-Nordström black hole can be amplified as it scatters off the hole. If the incident field has a non-zero rest mass, then the mass term effectively works as a mirror, preventing the energy extracted from the hole from escaping to infinity. One may suspect that such superradiant amplification of charged fields in Reissner-Nordström spacetimes may lead to an instability of these charged black holes (in as much the same way that rotating Kerr black holes are unstable under rotating scalar perturbations). However, we show here that, for extremal Reissner-Nordström black holes, the two conditions which are required in order to trigger a possible superradiant instability [namely: (1) the existence of a trapping potential well outside the black hole, and (2) superradiant amplification of the trapped modes] cannot be satisfied simultaneously. Our results thus support the stability of extremal Reissner-Nordström black holes to charged scalar perturbations.
CFTs in rotating black hole backgrounds
Figueras, Pau; Tunyasuvunakool, Saran
2013-06-01
We use AdS/CFT to construct the gravitational dual of a 5D CFT in the background of a non-extremal rotating black hole. Our boundary conditions are such that the vacuum state of the dual CFT corresponds to the Unruh state. We extract the expectation value of the stress tensor of the dual CFT using holographic renormalization and show that it is stationary and regular on both the future and the past event horizons. The energy density of the CFT is found to be negative everywhere in our domain and we argue that this can be understood as a vacuum polarization effect. We construct the solutions by numerically solving the elliptic Einstein-DeTurck equation for stationary Lorentzian spacetimes with Killing horizons. Communicated by H Reall
CFTs in rotating black hole backgrounds
We use AdS/CFT to construct the gravitational dual of a 5D CFT in the background of a non-extremal rotating black hole. Our boundary conditions are such that the vacuum state of the dual CFT corresponds to the Unruh state. We extract the expectation value of the stress tensor of the dual CFT using holographic renormalization and show that it is stationary and regular on both the future and the past event horizons. The energy density of the CFT is found to be negative everywhere in our domain and we argue that this can be understood as a vacuum polarization effect. We construct the solutions by numerically solving the elliptic Einstein–DeTurck equation for stationary Lorentzian spacetimes with Killing horizons. Communicated by H Reall (paper)
Statistical entropy of a charged black hole
By using the method of quantum statistics, it is derived directly the partition functions of the bosonic and the fermionic field in the charged-black-hole space-time. The statistical entropy of a black-hole is obtained by an improved brick wall method. When it is chosen a proper parameter in these results, it can be obtained that the entropy of a black-hole is proportional to the area of the horizon. In the results, the neglected term and the divergent logarithmic term given in the original brick wall method do no exist. It is avoided the difficulty in solving the wave equation of the scalar and Dirac fields, and offer a simple and direct way of studying the entropy of the black hole
Statistical description of rotating Kaluza-Klein black holes
We extend the recent microscopic analysis of extremal dyonic Kaluza-Klein (D0-D6) black holes to cover the regime of fast rotation in addition to slow rotation. Fastly rotating black holes, in contrast to slow ones, have nonzero angular velocity and possess ergospheres, so they are more similar to the Kerr black hole. The D-brane model reproduces their entropy exactly, but the mass gets renormalized from weak to strong coupling, in agreement with recent macroscopic analyses of rotating attractors. We discuss how the existence of the ergosphere and superradiance manifest themselves within the microscopic model. In addition, we show in full generality how Myers-Perry black holes are obtained as a limit of Kaluza-Klein black holes, and discuss the slow and fast rotation regimes and superradiance in this context
Noncommutative geometry-inspired rotating black hole in three dimensions
Juan Manuel Tejeiro; Alexis Larrañaga
2012-01-01
We ﬁnd a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect ﬂuid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution and give corrections to the area law to get the exact nature of the Bekenstein–Hawking entropy.
Massive Vector Particles Tunneling From Noncommutative Charged Black Holes
Övgün, Ali
2015-01-01
In this paper, we investigate the tunneling process of charged massive bosons $W^{\\pm}$ (spin-1 particles) from noncommutative charged black holes such as charged RN black holes and charged BTZ black holes. By applying the WKB approximation and by using the Hamilton-Jacobi equation we derive the tunneling rate and the corresponding Hawking temperature for those black holes configuration. The tunneling rate shows that the radiation deviates from pure thermality and is consistent with an underlying unitary theory.
Charged quantum black holes: thermal stability criterion
A criterion of thermal stability is derived for electrically charged quantum black holes having a large horizon area (compared to the Planck area), as an inequality between the mass of the black hole and its microcanonical entropy. The derivation is based on the key results of loop quantum gravity and equilibrium statistical mechanics of a grand canonical ensemble, with Gaussian fluctuations around an equilibrium thermal configuration assumed here to be a quantum isolated horizon. No aspect of classical black hole geometry is used to deduce the stability criterion. Since no particular form of the mass function is used a priori, our stability criterion provides a platform to test the thermal stability of a black hole with a given mass function. The mass functions of the two most familiar charged black hole solutions are tested as a fiducial check. We also discuss the validity of the saddle-point approximation used to incorporate thermal fluctuations. Moreover, the equilibrium Hawking temperature is shown to have an additional quantum correction over the semiclassical value. (paper)
A twist in the geometry of rotating black holes: seeking the cause of acausality
Andreka, Hajnal; Wuthrich, Christian
2007-01-01
We investigate Kerr-Newman black holes in which a rotating charged ring-shaped singularity induces a region which contains closed timelike curves (CTCs). Contrary to popular belief, it turns out that the time orientation of the CTC is opposite to the direction in which the singularity or the ergosphere rotates. In this sense, CTCs "counter-rotate" against the rotating black hole. We have similar results for all spacetimes sufficiently familiar to us in which rotation induces CTCs. This motivates our conjecture that perhaps this counter-rotation is not an accidental oddity particular to Kerr-Newman spacetimes, but instead there may be a general and intuitively comprehensible reason for this.
Three Dimensional Charged Black Hole Inspired by Noncommutative Geometry
Larranaga, Alexis
2010-01-01
We find a new charged black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole as the source of matter and a gaussian distribution of electric charge. We deduce the thermodynamical quantities of this black hole and compare them with those of a charged BTZ solution.
Canonical Entropy and Phase Transition of Rotating Black Hole
ZHAO Ren; WU Yue-Qin; ZHANG Li-Chun
2008-01-01
Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein-Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole.
Rational Orbits around Charged Black Holes
Misra, Vedant
2010-01-01
We show that all eccentric timelike orbits in Reissner-Nordstr\\"{o}m spacetime can be classified using a taxonomy that draws upon an isomorphism between periodic orbits and the set of rational numbers. By virtue of the fact that the rationals are dense, the taxonomy can be used to approximate aperiodic orbits with periodic orbits. This may help reduce computational overhead for calculations in gravitational wave astronomy. Our dynamical systems approach enables us to study orbits for both charged and uncharged particles in spite of the fact that charged particle orbits around a charged black hole do not admit a simple one-dimensional effective potential description. Finally, we show that comparing periodic orbits in the RN and Schwarzschild geometries enables us to distinguish charged and uncharged spacetimes by looking only at the orbital dynamics.
Hovering Black Holes from Charged Defects
Horowitz, Gary T; Santos, Jorge E; Way, Benson
2014-01-01
We construct the holographic dual of an electrically charged, localised defect in a conformal field theory at strong coupling, by applying a spatially dependent chemical potential. We find that the IR behaviour of the spacetime depends on the spatial falloff of the potential. Moreover, for sufficiently localized defects with large amplitude, we find that a new gravitational phenomenon occurs: a spherical extremal charged black hole nucleates in the bulk: a hovering black hole. This is a second order quantum phase transition. We construct this new phase with several profiles for the chemical potential and study its properties. We find an apparently universal behaviour for the entropy of the defect as a function of its amplitude. We comment on the possible field theory implications of our results.
Particles and scalar waves in noncommutative charged black hole spacetime
Bhar, Piyali; Rahaman, Farook; Biswas, Ritabrata(Indian Institute of Engineering Sceince and Technology Shibpur (Formerly, Bengal Engineering and Science University Shibpur), 711 013, Howrah, West Bengal, India); Mondal, U. F.
2015-01-01
In this paper we have discussed geodesics and the motion of test particle in the gravitational field of noncommutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordstrom black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.
Particles and Scalar Waves in Noncommutative Charged Black Hole Spacetime
Piyali, Bhar; Farook, Rahaman; Ritabrata, Biswas; U. F., Mondal
2015-07-01
In this paper we have discussed geodesics and the motion of test particle in the gravitational field of non-commutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordström black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.
Penrose process in a charged axion-dilaton coupled black hole
Ganguly, Chandrima [University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Cambridge (United Kingdom); SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)
2016-04-15
Using the Newman-Janis method to construct the axion-dilaton coupled charged rotating black holes, we show that the energy extraction from such black holes via the Penrose process takes place from the axion/Kalb-Ramond field energy responsible for rendering the angular momentum to the black hole. Determining the explicit form for the Kalb-Ramond field strength, which is argued to be equivalent to spacetime torsion, we demonstrate that at the end of the energy extraction process, the spacetime becomes torsion free with a spherically symmetric non-rotating black hole remnant. In this context, applications to physical phenomena, such as the emission of neutral particles in astrophysical jets, are also discussed. It is seen that the infalling matter gains energy from the rotation of the black hole, or equivalently from the axion field, and that it is ejected as a highly collimated astrophysical jet. (orig.)
Cosmic censorship of rotating Anti-de Sitter black hole
Gwak, Bogeun; Lee, Bum-Hoon
2016-02-01
We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.
Black hole solutions in Einstein-charged scalar field theory
Ponglertsakul, S.; Dolan, S.; Winstanley, E.
2015-01-01
We investigate possible end-points of the superradiant instability for a charged black hole with a reflecting mirror. By considering a fully coupled system of gravity and a charged scalar field, hairy black hole solutions are obtained. The linear stability of these black hole solutions is studied.
New rotating non-extremal black holes in D=5 maximal gauged supergravity
Mei Jianwei [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Pope, C.N. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)], E-mail: pope@physics.tamu.edu
2007-12-13
We obtain new non-extremal rotating black hole solutions in maximal five-dimensional gauged supergravity. They are characterised by five parameters, associated with the mass, the two angular momenta, and two independently-specifiable charge parameters. Two of the three charges associated with the U(1){sup 3} Cartan subgroup of the SO(6) gauge group are equal, whilst the third can be independently specified. These new solutions generalise all the previously-known non-extremal rotating solutions in five-dimensional gauged supergravity with independent angular momenta. They describe regular black holes, provided the parameters lie in appropriate ranges so that naked singularities and closed-timelike curves (CTCs) are avoided. We also construct the BPS limit, and show that regular supersymmetric black holes or topological solitons arise if the parameters are further restricted in an appropriate manner.
New Rotating Non-Extremal Black Holes in D=5 Maximal Gauged Supergravity
Mei, Jianwei
2007-01-01
We obtain new non-extremal rotating black hole solutions in maximal five-dimensional gauged supergravity. They are characterised by five parameters, associated with the mass, the two angular momenta, and two independently-specifiable charge parameters. Two of the three charges associated with the U(1)^3 Cartan subgroup of the SO(6) gauge group are equal, whilst the third can be independently specified. These new solutions generalise all the previously-known rotating solutions in five-dimensional gauged supergravity with independent angular momenta. They describe regular black holes, provided the parameters lie in appropriate ranges so that naked singularities and closed-timelike curves (CTCs) are avoided. We also construct the BPS limit, and show that regular supersymmetric black holes or topological solitons arise if the parameters are further restricted in an appropriate manner.
Electromagnetic Excitation of Rotating Black Holes and Relativistic Jets
Burinskii, A.; E. Elizalde; Hildebrandt, S. R.; Magli, G.
2006-01-01
We show that electromagnetic excitations of rotating black holes can lead to the appearance of narrow singular beams which break up the black hole horizon forming a tube-like region which connects the interior and exterior. It is argued that this effect may be at the origin of jet formation.
Rotating black strings in $f(R)$-Maxwell theory
Sheykhi, A; 10.1088/0031-8949/87/04/045004
2013-01-01
In general, the field equations of $f(R)$ theory coupled to a matter field are very complicated and hence it is not easy to find exact analytical solutions. However, if one considers traceless energy-momentum tensor for the matter source as well as constant scalar curvature, one can derive some exact analytical solutions from $f(R)$ theory coupled to a matter field. In this paper, by assuming constant curvature scalar, we construct a class of charged rotating black string solutions in $f(R)$-Maxwell theory. We study the physical properties and obtain the conserved quantities of the solutions. The conserved and thermodynamic quantities computed here depend on function $f'(R_{0})$ and differ completely from those of Einstein theory in AdS spaces. Besides, unlike Einstein gravity, the entropy does not obey the area law. We also investigate the validity of the first law of thermodynamics as well as the stability analysis in the canonical ensemble, and show that the black string solutions are always thermodynamica...
Scale-Invariant Rotating Black Holes in Quadratic Gravity
Guido Cognola
2015-07-01
Full Text Available Black hole solutions in pure quadratic theories of gravity are interesting since they allow the formulation of a set of scale-invariant thermodynamics laws. Recently, we have proven that static scale-invariant black holes have a well-defined entropy, which characterizes equivalent classes of solutions. In this paper, we generalize these results and explore the thermodynamics of rotating black holes in pure quadratic gravity.
Shapes of rotating nonsingular black hole shadows
Amir, Muhammed; Ghosh, Sushant G.
2016-07-01
It is believed that curvature singularities are a creation of general relativity and, hence, in the absence of a quantum gravity, models of nonsingular black holes have received significant attention. We study the shadow (apparent shape), an optical appearance because of its strong gravitational field, cast by a nonsingular black hole which is characterized by three parameters, i.e., mass (M ), spin (a ), and a deviation parameter (k ). The nonsingular black hole under consideration is a generalization of the Kerr black hole that can be recognized asymptotically (r ≫k ,k >0 ) explicitly as the Kerr-Newman black hole, and in the limit k →0 as the Kerr black hole. It turns out that the shadow of a nonsingular black hole is a dark zone covered by a deformed circle. Interestingly, it is seen that the shadow of a black hole is affected due to the parameter k . Indeed, for a given a , the size of a shadow reduces as the parameter k increases, and the shadow becomes more distorted as we increase the value of the parameter k when compared with the analogous Kerr black hole shadow. We also investigate, in detail, how the ergoregion of a black hole is changed due to the deviation parameter k .
Scattering of particles by deformed non-rotating black holes
We study the excitation of axial quasi-normal modes of deformed non-rotating black holes by test particles and we compare the associated gravitational wave signal with that expected in general relativity from a Schwarzschild black hole. Deviations from standard predictions are quantified by an effective deformation parameter, which takes into account deviations from both the Schwarzschild metric and the Einstein equations. We show that, at least in the case of non-rotating black holes, it is possible to test the metric around the compact object, in the sense that the measurement of the gravitational wave spectrum can constrain possible deviations from the Schwarzschild solution
Scattering of particles by deformed non-rotating black holes
Pei, Guancheng [Department of Physics, Center for Field Theory and Particle Physics, Fudan University, 200433, Shanghai (China); Bambi, Cosimo, E-mail: bambi@fudan.edu.cn [Department of Physics, Center for Field Theory and Particle Physics, Fudan University, 200433, Shanghai (China); Theoretical Astrophysics, Eberhard-Karls Universität Tübingen, 72076, Tübingen (Germany)
2015-11-27
We study the excitation of axial quasi-normal modes of deformed non-rotating black holes by test particles and we compare the associated gravitational wave signal with that expected in general relativity from a Schwarzschild black hole. Deviations from standard predictions are quantified by an effective deformation parameter, which takes into account deviations from both the Schwarzschild metric and the Einstein equations. We show that, at least in the case of non-rotating black holes, it is possible to test the metric around the compact object, in the sense that the measurement of the gravitational wave spectrum can constrain possible deviations from the Schwarzschild solution.
Scattering of particles by deformed non-rotating black holes
Pei, Guancheng [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Eberhard-Karls Universitaet Tuebingen, Theoretical Astrophysics, Tuebingen (Germany)
2015-11-15
We study the excitation of axial quasi-normal modes of deformed non-rotating black holes by test particles and we compare the associated gravitational wave signal with that expected in general relativity from a Schwarzschild black hole. Deviations from standard predictions are quantified by an effective deformation parameter, which takes into account deviations from both the Schwarzschild metric and the Einstein equations. We show that, at least in the case of non-rotating black holes, it is possible to test the metric around the compact object, in the sense that the measurement of the gravitational wave spectrum can constrain possible deviations from the Schwarzschild solution. (orig.)
Rotating Black Holes on Kaluza-Klein Bubbles
Tomizawa, S; Mishima, T; Iguchi, Hideo; Mishima, Takashi; Tomizawa, Shinya
2007-01-01
Using the solitonic solution generating techniques, we generate a new exact solution which describes a pair of rotating black holes on a Kaluza-Klein bubble as a vacuum solution in the five-dimensional Kaluza-Klein theory. We also investigate the properties of this solution. Two black holes with topology S^3 are rotating along the same direction and the bubble plays a role in holding two black holes. In static case, it coincides with the solution found by Elvang and Horowitz.
Rotating black strings in f(R)-Maxwell theory
Sheykhi, A.; Salarpour, S.; Bahrampour, Y.
2013-04-01
In general, the field equations of f(R) theory coupled to a matter field are very complicated and hence it is not easy to find exact analytical solutions. However, if one considers the traceless energy-momentum tensor for the matter source as well as constant scalar curvature, one can derive some exact analytical solutions from f(R) theory coupled to a matter field. In this paper, by assuming a constant curvature scalar, we construct a class of charged rotating black string solutions in f(R)-Maxwell theory. We study the physical properties and obtain the conserved quantities of the solutions. The conserved and thermodynamic quantities computed here depend on the function f‧(R0) and differ completely from those of Einstein theory in anti-de Sitter spaces. Besides, unlike Einstein gravity, the entropy does not obey the area law. We also investigate the validity of the first law of thermodynamics as well as the stability analysis in the canonical ensemble, and show that the black string solutions are always thermodynamically stable in f(R)-Maxwell theory with a constant curvature scalar. Finally, we extend the study to the case where the Ricci scalar is not a constant and in particular R = R(r). In this case, by using the Lagrangian multipliers method, we derive an analytical black string solution from f(R) gravity and reconstructed the function R(r). We find that this class of solutions has an additional logarithmic term in the metric function which incorporates the effect of the f(R) theory on the solutions.
Rotating black holes pierced by a cosmic string
Kubiznak, David
2015-01-01
A rotating black hole threaded by an infinitely long cosmic string is studied in the framework of the Abelian Higgs model. We show that contrary to a common belief in the presence of rotation the backreaction of the string does not induce a simple conical deficit. This leads to new distinct features of the Kerr--string system such as modified ISCO or shifted ergosphere, though these effects are most likely outside the range of observational precision. For an extremal rotating black hole, the system exhibits a first-order phase transition for the gravitational Meissner effect: small black holes exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon, whereas the horizon of large black holes is pierced by the vortex. A brief review prepared for the MG14 Proceedings.
Morozova, Viktoriya; Ahmedov, Bobomurat; Rezzolla, Luciano
2016-07-01
We extend the Wald solution for magnetic field to a black hole that is also moving at constant velocity. In particular, we derive analytic solutions for the Maxwell equations for a rotating black hole moving at constant speed in an asymptotically uniform magnetic test field. By adopting Kerr-Schild coordinates we avoid singular behaviors at the horizon and obtain a complete description of the charge and current distributions in terms of the black-hole spin and velocity. Using this solution, we compute the energy losses expected when charged particles are accelerated along the magnetic field lines, improving previous estimates that had to cope with singular electromagnetic fields on the horizon. When used to approximate the emission from binary black holes in a uniform magnetic field, our estimates match reasonably well those from numericalrelativity calculations in the force-free approximation.
Shapes of rotating nonsingular black hole shadows
Amir, Muhammed
2016-01-01
It is a belief that singularities are creation of general relativity and hence in the absence of a quantum gravity, models of nonsingular black hole have received significant attention. We study the shadow (apparent shape), an optical appearance because of its strong gravitational field, cast by a nonsingular black hole which is characterized by three parameters, i.e., mass ($M$), spin ($a$) and a deviation parameter ($k$). The nonsingular black hole, under consideration, is a generalization of the Kerr black hole can be recognized asymptotically ($r>>k, k>0$) explicitly as the Kerr\\(-\\)Newman black hole, and in the limit $k \\rightarrow 0$ as the Kerr black hole. It turns out that the shadow of a nonsingular black hole is a dark zone covered by deformed circle. Interestingly, it is seen that the shadow of a black hole is affected due to the parameter $k$. Indeed, for a given $a$, the size of a shadow reduces as the parameter $k$ increases and the shadow becomes more distorted as we increase the value of the p...
Geometric Product Formula for Charged Accelerating Black Hole
Pradhan, Parthapratim
2016-01-01
We evaluate the geometric product formula i.e. area (or entropy) product formula of outer horizon (${\\cal H}^{+}$) and inner horizon (${\\cal H}^{-}$) for charged accelerating black hole. We find that mass-independent area functional relation of ${\\cal H}^{\\pm}$ for this black hole in terms of black hole charge, acceleration, cosmological constant and \\emph{cosmic string tension} respectively. We also compute the \\emph{Penrose inequality} for this black hole. Finally we compute the specific heat for this BH to determine the local thermodynamic stability of this black hole. Under certain criterion the black hole displayed second order phase transition.
Stationary Charged Scalar Clouds around Black Holes in String Theory
Bernard, Canisius
2016-01-01
It was reported that Kerr-Newman black holes can support linear charged scalar field in their exterior regions. This stationary massive charged scalar field can form a bound-state and these bound-states are called stationary scalar clouds. In this paper, we study that Kerr-Sen black holes can also support stationary massive charged scalar clouds by matching the near and far region solutions of the radial part of Klein-Gordon wave equation. We also review stationary scalar clouds within the background of static electrically charged black hole solution in the low energy limit of heterotic string field theory namely the GMGHS black holes.
Physics of Rotating and Expanding Black Hole Universe
Seshavatharam U. V. S.
2010-04-01
Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole's temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking's black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is "no cosmic temperature" if there is "no cosmic rotation". Starting from the Planck scale it is assumed that universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation "rate of decrease" in temperature or "rate of increase" in cosmic red shift is a measure of "rate of cosmic expansion". Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to $2.726^circ$ K, smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is $2.726^circ$ K, present value of obtained angular velocity is $2.17 imes 10^{-18}$ rad/sec $cong$ 67 Km/sec$imes$Mpc. Present cosmic mass density and cosmic time are fitted with a $ln (volume ratio$ parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.
Tomizawa, Shinya; Matsuno, Ken; Nakagawa, Toshiharu
2008-01-01
Applying squashing transformation to Kerr-Godel black hole solutions, we present a new type of a rotating Kaluza-Klein black hole solution to the five-dimensional Einstein-Maxwell theory with a Chern-Simon term. The new solutions generated via the squashing transformation have no closed timelike curve everywhere outside the black hole horizons. At the infinity, the metric asymptotically approaches a twisted S^1 bundle over a four-dimensional Minkowski space-time. One of the remarkable features is that the solution has two independent rotation parameters along an extra dimension associated with the black hole's rotation and the Godel's rotation. The space-time also admits the existence of two disconnected ergoregions, an inner ergoregion and an outer ergoregion. These two ergoregions can rotate in the opposite direction as well as in the same direction.
Mass of Rotating Black Holes in Gauged Supergravities
Chen, W; Pope, C N
2006-01-01
The masses of several recently-constructed rotating black holes in gauged supergravities, including the general such solution in minimal gauged supergravity in five dimensions, have until now been calculated only by integrating the first law of thermodynamics. In some respects it is more satisfactory to have a calculation of the mass that is based directly upon the integration of a conserved quantity derived from a symmetry principal. In this paper, we evaluate the masses for the newly-discovered rotating black holes using the conformal definition of Ashtekar, Magnon and Das (AMD), and show that the results agree with the earlier thermodynamic calculations. We also consider the Abbott-Deser (AD) approach, and show that this yields an identical answer for the mass of the general rotating black hole in five-dimensional minimal gauged supergravity. In other cases we encounter discrepancies when applying the AD procedure. We attribute these to ambiguities or pathologies of the chosen decomposition into background...
Charged black holes in generalized teleparallel gravity
In this paper we investigate charged static black holes in 4D for generalized teleparallel models of gravity, based on torsion as the geometric object for describing gravity according to the equivalence principle. As a motivated idea, we introduce a set of non-diagonal tetrads and derive the full system of non linear differential equations. We prove that the common Schwarzschild gauge is applicable only when we study linear f(T) case. We reobtain the Reissner-Nordstrom-de Sitter (or RN-AdS) solution for the linear case of f(T) and perform a parametric cosmological reconstruction for two nonlinear models. We also study in detail a type of the no-go theorem in the framework of this modified teleparallel gravity
Charged black holes in generalized teleparallel gravity
Rodrigues, M.E. [Faculdade de Física, Universidade Federal do Pará, Belém, Pará, 66075–110 (Brazil); Houndjo, M.J.S.; Tossa, J. [Institut de Mathématiques et de Sciences Physiques (IMSP) - Porto-Novo, 01 BP 613 (Benin); Momeni, D.; Myrzakulov, R., E-mail: esialg@gmail.com, E-mail: sthoundjo@yahoo.fr, E-mail: joel.tossa@imsp-uac.org, E-mail: d.momeni@yahoo.com, E-mail: rmyrzakulov@gmail.com [Eurasian International Center for Theoretical Physics - Eurasian National University, Astana, 010008 (Kazakhstan)
2013-11-01
In this paper we investigate charged static black holes in 4D for generalized teleparallel models of gravity, based on torsion as the geometric object for describing gravity according to the equivalence principle. As a motivated idea, we introduce a set of non-diagonal tetrads and derive the full system of non linear differential equations. We prove that the common Schwarzschild gauge is applicable only when we study linear f(T) case. We reobtain the Reissner-Nordstrom-de Sitter (or RN-AdS) solution for the linear case of f(T) and perform a parametric cosmological reconstruction for two nonlinear models. We also study in detail a type of the no-go theorem in the framework of this modified teleparallel gravity.
Phantom Energy Accretion by a Stringy Charged Black Hole
M.Sharif; G.Abbas
2012-01-01
We investigate the dynamical behavior of phantom energy near a stringy magnetically charged black hole. For this purpose, we derive equations of motion for steady-state spherically symmetric Row of phantom energy onto the stringy magnetically charged black hole. It is found that phantom energy accreting onto a black hole decreases its mass. Further, the location of the critical points of accretion is explored, which yields a mass to charge ratio. This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity, hence cosmic censorship hypothesis remains valid here.%We investigate the dynamical behavior of phantom energy near a stringy magnetically charged black hole.For this purpose,we derive equations of motion for steady-state spherically symmetric flow of phantom energy onto the stringy magnetically charged black hole.It is found that phantom energy accreting onto a black hole decreases its mass.Further,the location of the critical points of accretion is explored,which yields a mass to charge ratio.This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity,hence cosmic censorship hypothesis remains valid here.
On the black hole limit of rotating discs and rings
Kleinwächter, Andreas; Meinel, Reinhard
2010-01-01
Solutions to Einstein's field equations describing rotating fluid bodies in equilibrium permit parametric (i.e. quasi-stationary) transitions to the extreme Kerr solution (outside the horizon). This has been shown analytically for discs of dust and numerically for ring solutions with various equations of state. From the exterior point of view, this transition can be interpreted as a (quasi) black hole limit. All gravitational multipole moments assume precisely the values of an extremal Kerr black hole in the limit. In the present paper, the way in which the black hole limit is approached is investigated in more detail by means of a parametric Taylor series expansion of the exact solution describing a rigidly rotating disc of dust. Combined with numerical calculations for ring solutions our results indicate an interesting universal behaviour of the multipole moments near the black hole limit.
GUP Assisted Hawking Radiation of Rotating Acoustic Black Holes
Sakalli, I; Jusufi, K
2016-01-01
Recent studies [J. Steinhauer, Nature Phys., $\\textbf{10}$, 864 (2014); Phys. Rev. D $\\textbf{92}$, 024043 (2015)] provide compelling evidences that Hawking radiation could be experimentally proven by using an analogue black hole. In this paper, taking this situation into account we study the quantum gravitational effects on the Hawking radiation of rotating acoustic black holes. For this purpose, we consider the generalized uncertainty principle (GUP) in the phenomenon of quantum tunneling. We firstly take the modified commutation relations into account to compute the GUP modified Hawking temperature when the massive scalar particles tunnel from this black hole. Then, we find a remarkably instructive expression for the GUP entropy to derive the quantum gravity corrected Hawking temperature of the rotating acoustic black hole.
Quantum effects near a charged black hole singularity
In this paper, the authors present an investigation of the problem of quantum fluctuations near a charged black hole singularity. The authors show that quantum fluctuations do not vanish near the singularity leading to the conclusion that charged black hole singularities are unlikely to occur in nature. This result may be obvious but we derive it here
Charged scalar perturbations around Garfinkle–Horowitz–Strominger black holes
Cheng-Yong Zhang
2015-10-01
Full Text Available We examine the stability of the Garfinkle–Horowitz–Strominger (GHS black hole under charged scalar perturbations. Employing the appropriate numerical methods, we show that the GHS black hole is always stable against charged scalar perturbations. This is different from the results obtained in the de Sitter and anti-de Sitter black holes. Furthermore, we argue that in the GHS black hole background there is no amplification of the incident charged scalar wave to cause the superradiance, so that the superradiant instability cannot exist in this spacetime.
Physics of Rotating and Expanding Black Hole Universe
Seshavatharam U. V. S.
2010-04-01
Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole’s temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking’s black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is “no cosmic temperature” if there is “no cosmic rotation”. Starting from the Planck scale it is assumed that- universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation “rate of decrease” in temperature or “rate of increase” in cosmic red shift is a measure of “rate of cosmic expansion”. Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to 2 : 726 K ; smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is 2 : 726 K, present value of obtained angular velocity is 2 : 17 10 Present cosmic mass density and cosmic time are fitted with a ln ( volume ratio parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.
Strong field gravitational lensing by a charged Galileon black hole
Zhao, Shan-Shan
2016-01-01
Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of the observables for the closest suppermassive black hole Sgr A*. It is found that when the scalar filed in the Galileon is weakly coupled to the gravitational field and it is "low-speed", the charged Galileon black hole can possibly be distinguished from a Reissner-Nordstr\\"om black hole.
Quantum backreaction on a rotating BTZ black hole
Casals, Marc; Martínez, Cristián; Zanelli, Jorge
2016-01-01
We investigate semiclassical backreaction on a rotating BTZ black hole geometry produced by a conformally coupled quantum scalar field. We obtain the backreacted metric in analytic form. This allows us to explore the quantum effects on various regions of relevance for a rotating black hole space-time. We find that for given values of mass and angular momentum, quantum effects lead to a growth of both the event horizon and the radius of the ergosphere, and to a reduction of the angular velocity, compared to the unperturbed values. Furthermore, quantum effects give rise to the formation of a curvature singularity at the Cauchy horizon but show no evidence of a superradiant instability.
Regular charged black hole construction in 2+1 dimensions
It is well known that unlike its chargeless version the charged Banados–Teitelboim–Zanelli (BTZ) black hole solution in (2+1)-dimensional spacetime is singular. We construct a charged, regular extension of the BTZ black hole solution by employing nonlinear Born–Infeld electrodynamics, supplemented with the Hoffmann term and gluing different spacetimes. The role of the latter term is to divide spacetime in a natural way into two regions by a circle and eliminate the inner singularity. Thermodynamics of such a black hole is investigated by Kaluza–Klein reduction to the (1+1)-dimensional dilaton gravity. -- Highlights: ► We obtain an electrically charged regular black hole solution as an extension of the uncharged BTZ black hole. ► Geometrically we obtained a variety of black hole states. ► Thermodynamically these regular black holes are stable.
Rotating Hayward’s regular black hole as particle accelerator
Amir, Muhammed; Ghosh, Sushant(Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi, 110025, India)
2015-01-01
Recently, Ban\\~{a}dos, Silk and West (BSW) demonstrated that the extremal Kerr black hole can act as a particle accelerator with arbitrarily high center-of-mass energy ($E_{CM}$) when the collision takes place near the horizon. The rotating Hayward's regular black hole, apart from Mass ($M$) and angular momentum ($a$), has a new parameter $g$ ($g>0$ is a constant) that provides a deviation from the Kerr black hole. We demonstrate that for each $g$, with $M=1$, there exist critical $a_{E}$ and...
Radiation spectrum of a high-dimensional rotating black hole
无
2010-01-01
This study extends the classical Damour-Ruffini method and discusses Hawking radiation in a (n + 4)-dimensional rotating black hole. Under the condition that the total energy and angular momentum of spacetime are conservative, but angular momentum a = J/M of unit mass of the black hole is variable, taking into consideration the reaction of the radiation of the particle to the spacetime, a new Tortoise coordinate transformation and discuss the black hole radiation spectrum is discussed. The radiation spectrum that satisfies the unitary principle in the general case is derived.
Late-time dynamics of rapidly rotating black holes
We study the late-time behaviour of a dynamically perturbed rapidly rotating black hole. Considering an extreme Kerr black hole, we show that the large number of virtually undamped quasinormal modes (that exist for nonzero values of the azimuthal eigenvalue m) combine in such a way that the field (as observed at infinity) oscillates with an amplitude that decays as 1/t at late times. For a near extreme black hole, these modes, collectively, give rise to an exponentially decaying field which, however, is considerably 'long-lived'. Our analytic results are verified using numerical time-evolutions of the Teukolsky equation. Moreover, we argue that the physical mechanism behind the observed behaviour is the presence of a 'superradiance resonance cavity' immediately outside the black hole. We present this new feature in detail, and discuss whether it may be relevant for astrophysical black holes. (author)
Hidden conformal symmetry of rotating black holes in minimal five-dimensional gauged supergravity
In the present paper we show that for a low frequency limit the wave equation of a massless scalar field in the background of nonextremal charged rotating black holes in five-dimensional minimal gauged and ungauged supergravity can be written as the Casimir of an SL(2,R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. Also the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional conformal field theory.
Transient Instability of Rapidly Rotating Black Holes
Gralla, Samuel E; Zimmerman, Peter
2016-01-01
We analytically study the linear response of a near-extremal Kerr black hole to external scalar, electromagnetic, and gravitational field perturbations. We show that the energy density, electromagnetic field strength, and tidal force experienced by infalling observers exhibit transient growth near the horizon. The growth lasts arbitrarily long in the extremal limit, reproducing the horizon instability of extremal Kerr. We explain these results in terms of near-horizon geometry and discuss potential astrophysical implications.
Decaying orbits near a rotating black hole
Pecháček, T.; Karas, Vladimír
Opava: Silesian University, 2004 - (Hledík, S.; Stuchlík, Z.), s. 147-150. (Publications of the Institute of Physics. 3). ISBN 80-7248-242-4. [RAGtime /4/5/. Opava (CZ), 14.10.2002-16.10.2002, 13.10.2003-15.10.2003] Institutional research plan: CEZ:AV0Z1003909 Keywords : black holes * accretion * relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
Horizon structure and shadow of rotating Einstein-Born-Infeld black holes
Atamurotov, Farruh
2016-07-01
We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to innity ( ! 1). We nd that for a given , mass M and charge Q, there exist critical spinning parameter aE and rEH, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rEH increases with increase in the Born-Infeld parameter . While a shadow as an optical appearance due to its strong gravitational eld. We also investigate the shadow cast by the rotating Einstein- Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated that allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadows of Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole which are concentric circles, for different values of the Born-Infeld parameter , whose radius decreases with increase in the value of parameter . The shadows for the rotating Einstein-Born-Infeld solution are also included.
Loop variables in the geometry of a rotating black string
De Carvalho, A M M; Furtado, C; Furtado, Claudio; Moraes, Fernando
2003-01-01
In this paper we analyze in the Wilson loop context the parallel transport of vectors and spinors around a closed loop in the background space-time of a rotating black string in order to classify its global properties. We also examine particular closed orbits in this space-time and verify the Mandelstam relations.
On the generalized second law for rotating black holes
The generalized second law of thermodynamics for rotating black holes is reexamined in the superradiant range in order to take account of the contribution to the production of entropy coming from the semiclassical non-thermal emission. After including this new contribution, the validity of the law is proved by using statistical thermodynamics arguments. (orig.)
Dynamics of test particles in the five-dimensional, charged, rotating EMCS spacetime
Reimers, Stephan
2016-01-01
We derive the complete set of geodesic equations for massive and massless test particles of a five-dimensional, charged, rotating black hole solution of the Einstein-Maxwell-Chern-Simons field equations in five-dimensional minimal gauged supergravity and present their analytical solutions in terms of Weierstra{\\ss}' elliptic functions. We study the polar and radial motion, depending on the black hole and test particle parameters, and characterize the test particle motion qualitatively by the means of effective potentials. We use the analytical solutions in order to visualize the test particle motion by two- and three-dimensional plots.
Quantum Gravity Effects On Charged Micro Black Holes Thermodynamics
Abbasvandi, N; Radiman, Shahidan; Abdullah, W A T Wan
2016-01-01
The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type I and the minimal length, minimal momentum, and maximal momentum as GUP type II on thermodynamics of the charged TeV-scale black holes. We also generalized our study to the universe with the extra dimensions based on the ADD model. In this framework, the effect of the electrical charge on thermodynamics of the black hole and existence of the charged black hole remnants as a potential candidate for the dark matter particles are discussed.
Hidden Symmetries of Higher-Dimensional Rotating Black Holes
Kubiznak, David
2008-01-01
In this thesis we study higher-dimensional rotating black holes. Such black holes are widely discussed in string theory and brane-world models at present. We demonstrate that even the most general known Kerr-NUT-(A)dS spacetime, describing the general rotating higher-dimensional asymptotically (anti) de Sitter black hole with NUT parameters, is in many aspects similar to its four-dimensional counterpart. Namely, we show that it admits a fundamental hidden symmetry associated with the principal conformal Killing-Yano tensor. Such a tensor generates towers of hidden and explicit symmetries. The tower of Killing tensors is responsible for the existence of irreducible, quadratic in momenta, conserved integrals of geodesic motion. These integrals, together with the integrals corresponding to the tower of explicit symmetries, make geodesic equations in the Kerr-NUT-(A)dS spacetime completely integrable. We further demonstrate that in this spacetime the Hamilton-Jacobi, Klein-Gordon, and stationary string equations ...
Analytic continuation of the rotating black hole state counting
Achour, Jibril Ben; Perez, Alejandro
2016-01-01
In loop quantum gravity, a spherical black hole can be described in terms of a Chern-Simons theory on a punctured 2-sphere. The sphere represents the horizon. The punctures are the edges of spin-networks in the bulk which cross the horizon and carry quanta of area. One can generalize this construction and model a rotating black hole by adding an extra puncture colored with the angular momentum J in the 2-sphere. We compute the entropy of rotating black holes in this model and study its semi-classical limit. After performing an analytic continuation which sends the Barbero-Immirzi parameter to +/- i, we show that the leading order term in the semi-classical expansion of the entropy reproduces the Bekenstein-Hawking law independently of the value of J.
Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume
Altamirano, Natacha; Mann, Robert B; Sherkatghanad, Zeinab
2014-01-01
In this review we summarize, expand, and set in context recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. We specifically consider the thermodynamics of higher-dimensional rotating asymptotically flat and AdS black holes and black rings in a canonical (fixed angular momentum) ensemble. We plot the associated thermodynamic potential-the Gibbs free energy-and study its behaviour to uncover possible thermodynamic phase transitions in these black hole spacetimes. We show that the multiply-rotating Kerr-AdS black holes exhibit a rich set of interesting thermodynamic phenomena analogous to the "every day thermodynamics" of simple substances, such as reentrant phase transitions of multicomponent liquids, multiple first-order solid/liquid/gas phase transitions, and liquid/gas phase transitions of the Van der Waals type. Furthermore, the reentrant phase tran...
Dynamics of fast charged particle beam rotation in bended crystals
Dynamics of fast charged particle beam rotation in a bended monocrystal is considered. Face and volume mechanisms of capture in channels are taken into account simultaneously in the model presented. Functions of distribution in transverse energies (φ) of channeled and dechanneled particles are obtained. Charge-energy ''scale invariance'' in ion channeling with charge Z in a bended crystal determined by scale parameter W=pv/Z (p and v are pulse and velocity local to transverse planes) follows from the model presented
Conserved charges and first law of thermodynamics for Kerr-de Sitter black holes
Hajian, Kamal
2016-08-01
Recently, a general method for calculating conserved charges for (black hole) solutions to generally covariant gravitational theories, in any dimensions and with arbitrary asymptotic behaviors has been introduced. Equipped with this method, which can be dubbed as "solution phase space method," we calculate mass and angular momentum for the Kerr-dS black holes. Furthermore, for any choice of horizons, associated entropy and the first law of thermodynamics are derived. Interestingly, according to insensitivity of the analysis to the chosen cosmological constant, the analysis unifies the thermodynamics of rotating stationary black holes in 4 (and other) dimensions with either AdS, flat or dS asymptotics. We extend the analysis to include electric charge, i.e. to the Kerr-Newman-dS black holes.
Conserved Charges and First Law of Thermodynamics for Kerr-de Sitter Black Holes
Hajian, Kamal
2016-01-01
Recently, a general formulation for calculating conserved charges for (black hole) solutions to generally covariant gravitational theories, in any dimensions and with arbitrary asymptotic behaviors has been introduced. Equipped with this method, which can be dubbed as "solution phase space method," we calculate mass and angular momentum for the Kerr-dS black hole. Then, for any choice of horizons, associated entropy and the first law of thermodynamics are derived. Interestingly, according to insensitivity of the analysis to the chosen cosmological constant, the analysis unifies the thermodynamics of rotating stationary black holes in 4 (and other) dimensions with either AdS, flat or dS asymptotics. We extend the analysis to include electric charge, i.e. to the Kerr-Newman-dS black hole.
Null geodesics in a magnetically charged stringy black hole spacetime
Kuniyal, Ravi Shankar; Uniyal, Rashmi; Nandan, Hemwati; Purohit, K. D.
2016-04-01
We study the null geodesics of a four-dimensional magnetic charged black hole spacetime arising in string theory. The behaviour of effective potential in view of the different values of black hole parameters are analysed in the equatorial plane. The possible orbits for null geodesics are also discussed in view of the different values of the impact parameter. We have also calculated the frequency shift of photons in this spacetime. The results are compared to those obtained for the electrically charged stringy black hole spacetime and the Schwarzschild black hole spacetime in general relativity.
Exploring the bulk of tidal charged micro-black holes
We study the bulk corresponding to tidal charged brane-world black holes. We employ a propagating algorithm which makes use of the three-dimensional multipole expansion and analytically yields the metric elements as functions of the five-dimensional coordinates and of the Adler-Deser-Misner mass, tidal charge, and brane tension. Since the projected brane equations cannot determine how the charge depends on the mass, our main purpose is to select the combinations of these parameters for which black holes of microscopic size possess a regular bulk. Our results could, in particular, be relevant for a better understanding of TeV-scale black holes.
Effect of Thermal Fluctuations on a Charged Dilatonic Black Saturn
Pourhassan, Behnam
2016-01-01
In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.
Three-charge black holes on a circle
Harmark, Troels [Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen Oe (Denmark); Obers, Niels A. [Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen Oe (Denmark); Roenne, Peter B. [Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen Oe (Denmark); Kristjansson, Kristjan R. [Nordita, Blegdamsvej 17, 2100 Copenhagen Oe (Denmark)
2007-01-15
We study phases of five-dimensional three-charge black holes with a circle in their transverse space. In particular, when the black hole is localized on the circle we compute the corrections to the metric and corresponding thermodynamics in the limit of small mass. When taking the near-extremal limit, this gives the corrections to the finite entropy of the extremal three-charge black hole as a function of the energy above extremality. For the partial extremal limit with two charges sent to infinity and one finite we show that the first correction to the entropy is in agreement with the microscopic entropy by taking into account that the number of branes shift as a consequence of the interactions across the transverse circle. Beyond these analytical results, we also numerically obtain the entire phase of non- and near-extremal three- and two-charge black holes localized on a circle. More generally, we find in this paper a rich phase structure, including a new phase of three-charge black holes that are non-uniformly distributed on the circle. All these three-charge black hole phases are found via a map that relates them to the phases of five-dimensional neutral Kaluza-Klein black holes.
Three-charge black holes on a circle
We study phases of five-dimensional three-charge black holes with a circle in their transverse space. In particular, when the black hole is localized on the circle we compute the corrections to the metric and corresponding thermodynamics in the limit of small mass. When taking the near-extremal limit, this gives the corrections to the finite entropy of the extremal three-charge black hole as a function of the energy above extremality. For the partial extremal limit with two charges sent to infinity and one finite we show that the first correction to the entropy is in agreement with the microscopic entropy by taking into account that the number of branes shift as a consequence of the interactions across the transverse circle. Beyond these analytical results, we also numerically obtain the entire phase of non- and near-extremal three- and two-charge black holes localized on a circle. More generally, we find in this paper a rich phase structure, including a new phase of three-charge black holes that are non-uniformly distributed on the circle. All these three-charge black hole phases are found via a map that relates them to the phases of five-dimensional neutral Kaluza-Klein black holes
The compressibility of rotating black holes in D-dimensions
Treating the cosmological constant as a pressure, in the context of black hole thermodynamics, a thermodynamic volume for the black hole can be defined as being the thermodynamic variable conjugate to the pressure, in the sense of a Legendre transform. The thermodynamic volume is explicitly calculated, as the Legendre transform of the pressure in the enthalpy, for a rotating asymptotically anti-de Sitter Myers–Perry black hole in D space-time dimensions. The volume obtained is shown to agree with previous calculations using the Smarr relation. The compressibility is calculated and shown to be non-negative and bounded. Taking the limit of zero cosmological constant, the compressibility of a rotating black hole in asymptotically flat space-times is determined and the corresponding speed of sound computed. The latter is bounded above and has an elegant expression purely in terms of the angular momenta, in the form of quartic and quadratic Casimirs of the rotation group, SO(D − 1). (paper)
Electrically charged Kerr black holes with scalar hair
Delgado, Jorge F M; Radu, Eugen; Runarsson, Helgi
2016-01-01
We construct electrically charged Kerr black holes (BHs) with scalar hair. Firstly, we take an uncharged scalar field, interacting with the electromagnetic field only indirectly, via the background metric. The corresponding family of solutions, dubbed Kerr-Newman BHs with ungauged scalar hair, reduces to (a sub-family of) Kerr-Newman BHs in the limit of vanishing scalar hair and to uncharged rotating boson stars in the limit of vanishing horizon. It adds one extra parameter to the uncharged solutions: the total electric charge. This leading electromagnetic multipole moment is unaffected by the scalar hair and can be computed by using Gauss's law on any closed 2-surface surrounding (a spatial section of) the event horizon. By contrast, the first sub-leading electromagnetic multipole -- the magnetic dipole moment --, gets suppressed by the scalar hair, such that the gyromagnetic ratio is always smaller than the Kerr-Newman value ($g=2$). Secondly, we consider a gauged scalar field and obtain a family of Kerr-Ne...
Beyond the singularity of the 2-D charged black hole
Two dimensional charged black holes in string theory can be obtained as exact SL(2,R) x U(1)/U(1) quotient CFTs. The geometry of the quotient is induced from that of the group, and in particular includes regions beyond the black hole singularities. Moreover, wavefunctions in such black holes are obtained from gauge invariant vertex operators in the SL(2,R) CFT, hence their behavior beyond the singularity is determined. When the black hole is charged we find that the wavefunctions are smooth at the singularities. Unlike the uncharged case, scattering waves prepared beyond the singularity are not fully reflected; part of the wave is transmitted through the singularity. Hence, the physics outside the horizon of a charged black hole is sensitive to conditions set behind the past singularity. (author)
Direct imaging rapidly-rotating non-Kerr black holes
Bambi, Cosimo, E-mail: Cosimo.Bambi@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitaet Muenchen, 80333 Munich (Germany); Caravelli, Francesco, E-mail: fcaravelli@perimeterinstitute.ca [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, 14476 Golm (Germany); Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Modesto, Leonardo, E-mail: lmodesto@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada)
2012-05-01
Recently, two of us have argued that non-Kerr black holes in gravity theories different from General Relativity may have a topologically non-trivial event horizon. More precisely, the spatial topology of the horizon of non-rotating and slow-rotating objects would be a 2-sphere, like in Kerr space-time, while it would change above a critical value of the spin parameter. When the topology of the horizon changes, the black hole central singularity shows up. The accretion process from a thin disk can potentially overspin these black holes and induce the topology transition, violating the Weak Cosmic Censorship Conjecture. If the astrophysical black hole candidates are not the black holes predicted by General Relativity, we might have the quite unique opportunity to see their central region, where classical physics breaks down and quantum gravity effects should appear. Even if the quantum gravity region turned out to be extremely small, at the level of the Planck scale, the size of its apparent image would be finite and potentially observable with future facilities.
Horizon structure of rotating Einstein-Born-Infeld black holes and shadow
Atamurotov, Farruh; Ghosh, Sushant G.; Ahmedov, Bobomurat
2016-05-01
We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β , mass M, and charge Q, there exist a critical spinning parameter aE and rHE, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rHE increases with increase of the Born-Infeld parameter β , while ahole with outer and inner horizons. Similarly, the effect of β on the infinite redshift surface and in turn on the ergo-region is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational field. We also investigate the shadow cast by the both static and rotating Einstein-Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated, which allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadow of an Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole, which consists of concentric circles, for different values of the Born-Infeld parameter β , whose radius decreases with increase of the value of the parameter β . Finally, we have studied observable distortion parameter for shadow of the rotating Einstein-Born-Infeld black hole.
Bounds on Photon Charge from Evaporation of Massive Black Holes
Sivaram, C; Arun, Kenath
2010-01-01
Photon charge has been of interest as a phenomenological testing ground for basic assumptions in fundamental physics. There have been several constraints on the photon charge based on very different considerations. In this paper we put further limits based on the well known properties of charged black holes and their subsequent evaporation by Hawking radiation and the assumption of charge conservation over this long physical process.
Charged scalar perturbations around a regular magnetic black hole
Huang, Yang; Liu, Dao-Jun
2016-05-01
We study charged scalar perturbations in the background of a regular magnetic black hole. In this case, the charged scalar perturbation does not result in superradiance. By using a careful time-domain analysis, we show that the charge of the scalar field can change the real part of the quasinormal frequency, but has little impact on the imaginary part of the quasinormal frequency and the behavior of the late-time tail. Therefore, the regular magnetic black hole may be stable under the perturbations of a charged scalar field at the linear level.
Black hole evaporation in a noncommutative charged Vaidya model
Sharif, M., E-mail: msharif.math@pu.edu.pk; Javed, W. [University of the Punjab, Department of Mathematics (Pakistan)
2012-06-15
We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstroem-like solution of this model, which leads to an exact (t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.
Black Hole Evaporation in a Noncommutative Charged Vaidya Model
Sharif, M
2012-01-01
The aim of this paper is to study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstr$\\ddot{o}$m-like solution of this model which leads to an exact $(t-r)$ dependent metric. The behavior of temporal component of this metric and the corresponding Hawking temperature is investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of the charged massive particles through the quantum horizon. It is found that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from maximum value to zero. It is mentioned here that the final stage of black hole evaporation turns out to be a naked singularity.
Black hole evaporation in a noncommutative charged Vaidya model
Sharif, M.; Javed, W.
2012-06-01
We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordström-like solution of this model, which leads to an exact ( t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.
Black hole evaporation in a noncommutative charged Vaidya model
We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordström-like solution of this model, which leads to an exact (t − r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.
Black Hole Evaporation in a Noncommutative Charged Vaidya Model
Sharif, M.; Javed, Wajiha
2012-01-01
The aim of this paper is to study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstr$\\ddot{o}$m-like solution of this model which leads to an exact $(t-r)$ dependent metric. The behavior of temporal component of this metric and the corresponding Hawking temperature is investigated. The results are shown in the form of grap...
Effect of Thermal Fluctuations on a Charged Dilatonic Black Saturn
Behnam Pourhassan; Mir Faizal
2016-01-01
In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. ...
Effect of thermal fluctuations on a charged dilatonic black Saturn
Behnam Pourhassan; Mir Faizal
2016-01-01
In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. ...
Strong field gravitational lensing by a charged Galileon black hole
Zhao, Shan-Shan; Xie, Yi
2016-07-01
Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.
Rotating and accelerating black holes with cosmological constant
Chen, Yu; Ng, Cheryl; Teo, Edward
2016-01-01
We propose a new form of the rotating C-metric with cosmological constant, which generalises the form found by Hong and Teo for the Ricci-flat case. This solution describes the entire class of spherical black holes undergoing rotation and acceleration in dS or AdS space-time. The new form allows us to identify the complete ranges of coordinates and parameters of this solution. We perform a systematic study of its geometrical and physical properties, and of the various limiting cases that aris...
Rotating and accelerating black holes with cosmological constant
Chen, Yu; Teo, Edward
2016-01-01
We propose a new form of the rotating C-metric with cosmological constant, which generalises the form found by Hong and Teo for the Ricci-flat case. This solution describes the entire class of spherical black holes undergoing rotation and acceleration in dS or AdS space-time. The new form allows us to identify the complete ranges of coordinates and parameters of this solution. We perform a systematic study of its geometrical and physical properties, and of the various limiting cases that arise from it.
The Mixed Phase of Charged AdS Black Holes
Piyabut Burikham
2016-01-01
Full Text Available We study the mixed phase of charged AdS black hole and radiation when the total energy is fixed below the threshold to produce a stable charged black hole branch. The coexistence conditions for the charged AdS black hole and radiation are derived for the generic case when radiation particles carry charge. The phase diagram of the mixed phase is demonstrated for both fixed potential and charge ensemble. In the dual gauge picture, they correspond to the mixed phase of quark-gluon plasma (QGP and hadron gas in the fixed chemical potential and density ensemble, respectively. In the nuclei and heavy-ion collisions at intermediate energies, the mixed phase of exotic QGP and hadron gas could be produced. The mixed phase will condense and evaporate into the hadron gas as the fireball expands.
Rotating Accretion Flows: From Infinity to the Black Hole
Li, Jason; Sunyaev, Rashid
2012-01-01
Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There has been some analytic and numerical treatment of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions with and without viscous angular momentum transport, and also electron thermal conduction. Infalling gas is followed from well beyond R_Bondi down to the vicinity of the black hole. Absent viscous transport, when the centrifugal balance radius significantly exceeds R_Schwarzschild, the accretion rate is zero and the flow approaches a stationary solution in which pressure impedes inflow from large radii. With viscosity, we find two general classes of solutions: low inflow rate, hot, vertically extended disks with very low accret...
On the Penrose process for rotating black holes
Heller, Leon
2009-01-01
Penrose described a process that, in principle, could extract energy and angular momentum from a rotating black hole. Here we examine two procedures that were claimed to be capable of implementing the Penrose idea; both make use of a particle moving at the horizon. In one, the particle is swallowed, and in the other the particle and black hole gradually exchange energy and angular momentum. We show that if the particle has negative energy and negative angular momentum but no radial momentum both procedures violate the requirement that the area of a black hole not decrease. For the gradual exchange method, however, it appears that the Penrose process could proceed if the particle has positive energy and angular momentum, but nevertheless removes energy from the black hole. It does not, however, lead to a Schwarzschild black hole. For an extreme Kerr black hole it's mass decreases by at most 9.7%, well short of the theoretical limit for a reversible process of 1-1/sqrt{2} =29%.
Conformal invariance and near-extreme rotating AdS black holes
We obtain retarded Green's functions for massless scalar fields in the background of near-extreme, near-horizon rotating charged black holes of five-dimensional minimal gauged supergravity. The radial part of the (separable) massless Klein-Gordon equation in such general black hole backgrounds is Heun's equation, due to the singularity structure associated with the three black hole horizons. On the other hand, we find the scaling limit for the near-extreme, near-horizon background where the radial equation reduces to a hypergeometric equation whose SL(2,R)2 symmetry signifies the underlying two-dimensional conformal invariance, with the two sectors governed by the respective Frolov-Thorne temperatures.
Evaporation of charged black holes near extremality
Fabbri, A; Navarro, D. J.; Navarro-Salas, J.
2000-01-01
The AdS_2\\timesS^2 geometry of near-extremal Reissner-Nordstrom black holes can be described by an effective solvable model which allows to follow analytically the evaporation process including the backreaction. We find that an infinite amount of time is required for the black hole to decay to extremality.
Radiative Shocks in Rotating Accretion Flows around Black Holes
Okuda, T; Toscano, E; Molteni, D
2004-01-01
It is well known that the rotating accretion flows around black holes form shock waves close to the black holes, after the flow passes through the outer sonic point and can be virtually stopped by the centrifugal force. We examine numerically such shock waves in 1D and 2D accretion flows, taking account of the cooling and heating of gas and the radiation transport. The numerical results show that the shock location shifts outward compared with that in the adiabatic solutions and that the more rarefied ambient density leads to the more outward shock position. In the 2D-flow, we find an intermediate frequency QPO behavior of the shock location as is observed in the black hole candidate GRS 1915+105.
Internal Structure of Charged AdS Black Holes
Bhattacharjee, Srijit; Virmani, Amitabh
2016-01-01
When an electrically charged black hole is perturbed its inner horizon becomes a singularity, often referred to as the Poisson-Israel mass inflation singularity. Ori constructed a model of this phenomenon for asymptotically flat black holes, in which the metric can be determined explicitly in the mass inflation region. In this paper we implement the Ori model for charged AdS black holes. We find that the mass function inflates faster than the flat space case as the inner horizon is approached. Nevertheless, the mass inflation singularity is still a weak singularity: although spacetime curvature becomes infinite, tidal distortions remain finite on physical objects attempting to cross it.
Quasilocal Energy for Static Charged Black Holes in String Theory
WANG Shi-Liang; JING Ji-Liang; WANG Yong-Jiu
2001-01-01
The Brown-York quasilocal energies of some static charged dilaton black holes are calculated, and then the validity of Martinez's conjecture is explored in string theory. It is shown that the energy is positive and monotonically decreases to the ADM mass at spatial infinity, and the conjecture that the Brown-York quasilocal energy at the outer horizon of black hole reduces to twice of its irreducible mass is still applicable for the static charged black holes in string theory. The result is different from Bose-Naing's one.``
Thermodynamics and Geometrothermodynamics of Charged black holes in Massive Gravity
Suresh, Jishnu; Prabhakar, Geethu; Kuriakose, V C
2016-01-01
The objective of this paper is to study the thermodynamics and thermodynamic geometry of charged de-Sitter and charged anti de-Sitter black hole solutions in massive gravity. In this study, the presence of a negative cosmological constant is identified as a thermodynamic variable, the pressure. By incorporating this idea, we study the effect of curvature parameter as well as the mass of graviton in the thermodynamics of the black hole system. We further extend our studies to different topology of the space time and its effects on phase transition and thermodynamics. In addition, the phase transition structure of the black hole and its interactions are reproduced using geometrothermodynamics.
Inferring black hole charge from backscattered electromagnetic radiation
Crispino, Luís C B; Higuchi, Atsushi; de Oliveira, Ednilton S
2014-01-01
We compute the scattering cross section of Reissner-Nordstr\\"om black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.
Internal Structure of Charged AdS Black Holes
Bhattacharjee, Srijit(Astroparticle Physics & Cosmology Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India); Sarkar, Sudipta; Virmani, Amitabh
2016-01-01
When an electrically charged black hole is perturbed its inner horizon becomes a singularity, often referred to as the Poisson-Israel mass inflation singularity. Ori constructed a model of this phenomenon for asymptotically flat black holes, in which the metric can be determined explicitly in the mass inflation region. In this paper we implement the Ori model for charged AdS black holes. We find that the mass function inflates faster than the flat space case as the inner horizon is approached...
Oscillating supertubes and neutral rotating black hole microstates
The construction of neutral black hole microstates is an important problem, with implications for the information paradox. In this paper we conjecture a construction of non-supersymmetric supergravity solutions describing D-brane configurations which carry mass and angular momentum, but no other conserved charges. We first study a classical string solution which locally carries dipole winding and momentum charges in two compact directions, but globally carries no net winding or momentum charge. We investigate its backreaction in the D1-D5 duality frame, where this object becomes a supertube which locally carries oscillating dipole D1-D5 and NS1-NS5 charges, and again carries no net charge. In the limit of an infinite straight supertube, we find an exact supergravity solution describing this object. We conjecture that a similar construction may be carried out based on a class of two-charge non-supersymmetric D1-D5 solutions. These results are a step towards demonstrating how neutral black hole microstates may be constructed in string theory
Oscillating supertubes and neutral rotating black hole microstates
Mathur, Samir D
2014-01-01
The construction of neutral black hole microstates is an important problem, with implications for the information paradox. In this paper we conjecture a construction of non-supersymmetric supergravity solutions describing D-brane configurations which carry mass and angular momentum, but no other conserved charges. We first study a classical string solution which locally carries dipole winding and momentum charges in two compact directions, but globally carries no net winding or momentum charge. We investigate its backreaction in the D1-D5 duality frame, where this object becomes a supertube which locally carries oscillating dipole D1-D5 and NS1-NS5 charges, and again carries no net charge. In the limit of an infinite straight supertube, we find an exact supergravity solution describing this object. We conjecture that a similar construction may be carried out based on a class of two-charge non-supersymmetric D1-D5 solutions. These results are a step towards demonstrating how neutral black hole microstates may ...
Oscillating supertubes and neutral rotating black hole microstates
Mathur, Samir D.; Turton, David
2014-04-01
The construction of neutral black hole microstates is an important problem, with implications for the information paradox. In this paper we conjecture a construction of non-supersymmetric supergravity solutions describing D-brane configurations which carry mass and angular momentum, but no other conserved charges. We first study a classical string solution which locally carries dipole winding and momentum charges in two compact directions, but globally carries no net winding or momentum charge. We investigate its backreaction in the D1-D5 duality frame, where this object becomes a supertube which locally carries oscillating dipole D1-D5 and NS1-NS5 charges, and again carries no net charge. In the limit of an infinite straight supertube, we find an exact supergravity solution describing this object. We conjecture that a similar construction may be carried out based on a class of two-charge non-supersymmetric D1-D5 solutions. These results are a step towards demonstrating how neutral black hole microstates may be constructed in string theory.
Mass loss from advective accretion disc around rotating black holes
Aktar, Ramiz; Nandi, Anuj
2015-01-01
We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter, PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (${\\mathcal E}$) and specific angular momentum ($\\lambda$) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole ($a_k$) plays an important role in deciding the outflow rate $R_{\\dot m}$ (ratio of mass flux of outflow and inflow), in particular, $R_{\\dot m}$ is directly correlated with $a_k$ for the same set of inflow parameters. It is found that ...
Stuchlík, Zdeněk
2015-01-01
To test the role of large-scale magnetic fields in accretion processes, we study dynamics of charged test particles in vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes od the charged particle dynamics provides mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is larg...
Geometro-thermodynamics of tidal charged black holes
Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner-Nordstroem black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner-Nordstroe m black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincare stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers. (orig.)
Thermal Fluctuations in a Charged AdS Black Hole
Pourhassan, B
2015-01-01
In this paper, we will analyze the effects of thermal fluctuations on a charged AdS black hole. This will be done by analyzing the corrections to black hole thermodynamics due to these thermal fluctuations. We will demonstrate that the entropy of this black hole get corrected by logarithmic term. We will also calculate other corrections to other important thermodynamic quantities for this black hole. Finally, we will use the corrected value of the specific heat to analyze the phase transition in this system.
Correction value to charged Bekenstein-Hawking black hole entropy
2008-01-01
Recently,based on the study of black hole Hawking radiation with the tunnel effect method,we found that the radiation spectrum of the black hole is not a strict pure thermal spectrum. It is a very interesting problem to determine how the departure of the black hole radiation spectrum from the pure thermal spectrum affects entropy. We calculate the partition function by the energy spectrum obtained using tunnel effect. Using the relation between the partition function and entropy,we derive the correction value to Bekenstein-Hawking entropy of the charged black hole. Fur-thermore,we obtain the conditions that various thermodynamic quantities must satisfy,when phase transition of the charged black hole occurs.
Black holes, wormholes, and the disappearance of global charge
Coleman, Sidney Richard; Coleman, Sidney; Hughes, Shane
1993-01-01
One of the paradoxes associated with the theory of the formation and subsequent Hawking evaporation of a black hole is the disappearance of conserved global charges. It has long been known that metric fluctuations at short distances (wormholes) violate global-charge conservation; if global charges are apparently conserved at ordinary energies, it is only because wormhole-induced global-charge-violating terms in the low-energy effective Lagrangian are suppressed by large mass denominators. However, such suppressed interactions can become important at the high energy densities inside a collapsing star. We analyze this effect for a simple model of the black-hole singularity. (Our analysis is totally independent of any detailed theory of wormhole dynamics; in particular it does not depend on the wormhole theory of the vanishing of the cosmological constant.) We find that in general all charge is extinguished before the infalling matter crosses the singularity. No global charge appears in the outgoing Hawking radi...
The adiabatic motion of charged dust grains in rotating magnetospheres
Northrop, T. G.; Hill, J. R.
1983-01-01
Adiabatic equations of motion are derived for the micrometer-sized dust grains detected in the Jovian and Saturn magnetospheres by the Pioneer 10 and 11 spacecraft. The adiabatic theory of charged particle motion is extended to the case of variable grain charge. Attention is focused on the innermost and outermost limits to the grain orbit evolution, with all orbits tending to become circular with time. The parameters such as the center equation of motion, the drift velocity, and the parallel equation of motion are obtained for grains in a rotating magnetosphere. Consideration is given to the effects of periodic grain charge-discharge, which are affected by the ambient plasma properties and the grain plasma velocity. The charge-discharge process at the gyrofrequency is determined to eliminate the invariance of the magnetic moment and cause the grain to exhibit radial movement. The magnetic moment increases or decreases as a function of the gyrophase of the charge variation.
Microscopic entropy of the three-dimensional rotating black hole of BHT massive gravity
Giribet, Gaston; Tempo, David; Troncoso, Ricardo
2009-01-01
Asymptotically AdS rotating black holes for the Bergshoeff-Hohm-Townsend (BHT) massive gravity theory in three dimensions are considered. In the special case when the theory admits a unique maximally symmetric solution, apart from the mass and the angular momentum, the black hole is described by an independent "gravitational hair" parameter, which provides a negative lower bound for the mass. This bound is saturated at the extremal case and, since the temperature and the semiclassical entropy vanish, it is naturally regarded as the ground state. The absence of a global charge associated with the gravitational hair parameter reflects through the first law of thermodynamics in the fact that the variation of this parameter can be consistently reabsorbed by a shift of the global charges, giving further support to consider the extremal case as the ground state. The rotating black hole fits within relaxed asymptotic conditions as compared with the ones of Brown and Henneaux, such that they are invariant under the s...
Thermodynamics of charged Lovelock: AdS black holes
Prasobh, C.B.; Suresh, Jishnu; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Cochin (India)
2016-04-15
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)
Thermodynamics of charged Lovelock: AdS black holes
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)