WorldWideScience

Sample records for charged heavy ions

  1. Heavy-ion radiography applied to charged particle radiotherapy

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Fabrikant, J.I.; Holley, W.R.; Tobias, C.A.; Castro, J.R.

    1980-01-01

    The objectives of the heavy-ion radiography research program applied to the clinical cancer research program of charged particle radiotherapy have a twofold purpose: (1) to explore the manner in which heavy-ion radiography and CT reconstruction can provide improved tumor localization, treatment planning, and beam delivery for radiotherapy with accelerated heavy charged particles; and (2) to explore the usefulness of heavy-ion radiography in detecting, localizing, and sizing soft tissue cancers in the human body. The techniques and procedures developed for heavy-ion radiography should prove successful in support of charged particle radiotherapy

  2. A high charge state heavy ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1996-01-01

    A high current, low emittance, high charge state heavy ion beam source is being developed. This is designed to deliver a heavy ion fusion (HIF) driver accelerator scale beam. Using a high charge state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system, which consists of a gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 3D beam simulations and experimental feasibility study results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector. (orig.)

  3. Improvement of highly charged ion production in the ECR source of heavy ions

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    Some physical limitations of the highly charged ion production in the ECR source are analyzed in this report. A few possible ways to improve the output of highly charged ions from the ECR source for heavy ions are proposed. A new library of computer codes for the numerical simulation of heavy ion production in the ECR ion source is used to examine these ways to improve the ECR source operation according to the CERN program of heavy ion acceleration. copyright 1996 American Institute of Physics

  4. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    Science.gov (United States)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  5. Measurement of charge of heavy ions in emulsion using a CCD camera

    CERN Document Server

    Kudzia, D; Dabrowska, A; Deines-Jones, P; Holynski, R; Olszewski, A; Nilsen, B S; Sen-Gupta, K; Szarska, M; Trzupek, A; Waddington, C J; Wefel, J P; Wilczynska, B; Wilczynski, H; Wolter, W; Wosiek, B; Wozniak, K

    1999-01-01

    A system has been developed for semi-automated determination of the charges of heavy ions recorded in nuclear emulsions. The profiles of various heavy ion tracks in emulsion, both accelerator beam ions and fragments of heavy projectiles, were obtained with a CCD camera mounted on a microscope. The dependence of track profiles on illumination, emulsion grain size and density, background in emulsion, and track geometry was analyzed. Charges of the fragments of heavy projectiles were estimated independently by the delta ray counting method. A calibration of both width and height of track profiles against ion charges was made with ions of known charges ranging from helium to gold nuclei. (author)

  6. Quantum electrodynamical effects in heavy highly-charged ions

    International Nuclear Information System (INIS)

    Yerokhin, V.A.; Artemyev, A.N.; Indelicato, P.; Shabaev, V.M.

    2003-01-01

    The present status of theoretical calculations of QED effects in highly charged ions is reviewed for several important cases: the Lamb shift in heavy H-like ions, the 2p 1/2 -2s transition energy in heavy Li-like ions, and the bound-electron g factor in H-like ions. Theoretical predictions are compared with experimental results. Special attention is paid to the discussion of uncertainties of theoretical predictions

  7. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    International Nuclear Information System (INIS)

    Nakagawa, T.

    2014-01-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams

  8. HIAF: New opportunities for atomic physics with highly charged heavy ions

    Science.gov (United States)

    Ma, X.; Wen, W. Q.; Zhang, S. F.; Yu, D. Y.; Cheng, R.; Yang, J.; Huang, Z. K.; Wang, H. B.; Zhu, X. L.; Cai, X.; Zhao, Y. T.; Mao, L. J.; Yang, J. C.; Zhou, X. H.; Xu, H. S.; Yuan, Y. J.; Xia, J. W.; Zhao, H. W.; Xiao, G. Q.; Zhan, W. L.

    2017-10-01

    A new project, High Intensity heavy ion Accelerator Facility (HIAF), is currently being under design and construction in China. HIAF will provide beams of stable and unstable heavy ions with high energies, high intensities and high quality. An overview of new opportunities for atomic physics using highly charged ions and radioactive heavy ions at HIAF is given.

  9. Mass and charge distribution in heavy-ion collisions

    International Nuclear Information System (INIS)

    Beck, F.; Dworzecka, M.; Feldmeier, H.

    1978-01-01

    A statistical model based on the independent particle picture is used to calculate mass and charge distributions in deep inelastic heavy-ion collisions. Different assumptions on volume and charge equilibrations are compared with measured variances of charge distributions. One combination of assumptions is clearly favoured by experiment, and gives a reasonable description of the variance versus energy loss curves up to energy losses of about 200 MeV in the heavy systems Kr+Ho and Xe+Bi, and up to about 60 MeV for the light system Ar+Ca [af

  10. A high charge state heavy ion beam source for HIF

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1995-04-01

    A high current low emittance high charge state heavy ion beam source is being developed. This is designed to deliver HIF (heavy ion fusion) driver accelerator scale beam. Using high-charge-state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system which consists of the gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 2D beam envelope simulations and experimental feasibility studies' results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector

  11. Equilibrium charge state distributions of high energy heavy ions

    International Nuclear Information System (INIS)

    Clark, R.B.; Grant, I.S.; King, R.; Eastham, D.A.; Joy, T.

    1976-01-01

    Equilibrium charge state fractions have been measured for N, O, Ne, S, Ar and Kr ions at 1.04 MeV/nucleon after passing through various stripping materials. Further data were obtained at higher energy for S ions (4.12 MeV/nucleon) and Ar ions (4.12 and 9.6 MeV/nucleon). The mean charge fractions can be fitted to universal curves for both solid and gaseous strippers. Measurements of the equilibrium fraction of krypton ions at 1.04 MeV/nucleon passing through heavy vapours have shown that a higher average charge state is obtained than for lighter gaseous strippers. (Auth.)

  12. Prospects for parity-nonconservation experiments with highly charged heavy ions

    OpenAIRE

    Maul, Martin; Schäfer, Andreas; Greiner, Walter; Indelicato, Paul

    2006-01-01

    We discuss the prospects for parity-nonconservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with 2–5 electrons are calculated. We investigate two-photon transitions and the possibility of observing interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  13. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  14. Kinetic energy and charge distributions of multiply charged ions produced by heavy ions and by synchrotron radiation

    International Nuclear Information System (INIS)

    Levin, J.C.; Biedermann, C.; Cederquist, H.; Liljeby, L.; Short, R.T.; Sellin, I.A.

    1989-01-01

    This paper contrasts two methods of production of multiply charged ions which may have application in future hot-atom chemistry experiments. Interest in extending the study of ion-atom collisions from MeV to keV to eV energies has grown rapidly in the last decade as previously inaccessible astrophysical, fusion, and spectroscopic problems have been addressed. One of these methods involves highly charged secondary beams formed from ions created in dilute gas samples irradiated by fast (MeV), high-charge-state, heavy ions. The measurements show, however, that such ions often have mean recoil energies two orders of magnitude higher than kinetic energies of ions in similar charge states resulting from vacancy cascades of atomic inner shells photoionized by synchrotron x rays. These results may be applicable to development of a cold source of highly charged ions featuring low energy spread and good angular definition. Results from other laboratories (Grandin et al at Ganil, Ullrich et al in Frankfurt, and Watson et al at Texas A ampersand M) will also be discussed

  15. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  16. Prospects for Parity Non-conservation Experiments with Highly Charged Heavy Ions

    OpenAIRE

    Maul, M.; Schäfer, A.; Greiner, W.; Indelicato, P.

    1996-01-01

    We discuss the prospects for parity non-conservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with two to five electrons are calculated. We investigate two-photon-transitions and the possibility to observe interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  17. Structure and dynamics of highly charged heavy ions studied with the electron beam ion trap in Tokyo

    International Nuclear Information System (INIS)

    Nakamura, Nobuyuki; Hu, Zhimin; Watanabe, Hirofumi; Li, Yueming; Kato, Daiji; Currell, Fred J.; Tong Xiaomin; Watanabe, Tsutomu; Ohtani, Shunsuke

    2011-01-01

    In this paper, we present the structure and the dynamics of highly charged heavy ions studied through dielectronic recombination (DR) observations performed with the Tokyo electron beam ion trap. By measuring the energy dependence of the ion abundance ratio in the trap at equilibrium, we have observed DR processes for open shell systems very clearly. Remarkable relativistic effects due to the generalized Breit interaction have been clearly shown in DR for highly charged heavy ions. We also present the first result for the coincidence measurement of two photons emitted from a single DR event.

  18. Experiments with highly-charged heavy-ions performed at the storage ring ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1992-01-01

    The new heavy ion accelerator facility SIS/ESR was inaugurated in April 1990. During 1991 the experimental storage ring, ESR, has been commissioned. Highly-charged heavy ions from O 8+ up to Bi 82+ were successfully accumulated, cooled, and stored in the ring. Now all highly-charged, heavy ions can be provided for experiments at comfortable storage times and at energies roughly between 100 and 500 MeV/u. A report on the achievements and on the first experimental results will be given. For the experiments, special emphasis is put on capture processes in the electron cooler, i.e. on radiative and dielectronic recombination processes as well as on capture events of bound target electrons from a gas jet. In this case, the capture leads either directly (REC) or by cascading to X-ray emission, which is also exploited for a precision spectroscopy of the structure of the heaviest ions. Another exciting topic is the radioactive decay of highly charged ions: For instance the β-decay into bound atomic states, which is not possible for neutral atoms, was studied for stored naked Dy ions. (orig.)

  19. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  20. Constituent quarks and charge particle production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Mishra, Aditya Nath; Mazumder, Rakesh; Sahoo, Raghunath; Nandi, Basanta Kumar

    2012-01-01

    Relativistic heavy-ion collisions aims at producing a state of matter which is governed by partonic degree of freedom. The pseudorapidity density of particle multiplicity and transverse energy are the key observables which provide the properties of matter produced in heavy-ion collisions. Study of their dependence on centrality and collision energy is of paramount importance to understand the particle production mechanism. This may provide insight into the partonic phase that might be created in nuclear collisions. Here, in a constituent quarks framework, charged particle and transverse energy production in heavy-ion collisions are studied both as a function of centrality and collision energy, and hence the study gives a prediction for Pb + Pb collisions

  1. Secondary ions produced from condensed rare gas targets under highly charged MeV/amu heavy ion bombardment

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Kumagai, H.; Matsuo, T.

    1994-01-01

    Secondary ions produced from condensed rare gas targets are observed under MeV/amu, highly charged, heavy ion impact. The intensities of the observed cluster ions decrease smoothly as the cluster sizes become large but show some discontinuities at particular sizes of cluster ions. This seems to be closely related to the stabilities of cluster ion structures. It is also noted that very few doubly charged or practically no triply/higher charged ions have been observed, in sharp contrast to that of some condensed molecular targets. (orig.)

  2. Numerical simulation of heavy ion charge generation and collection dynamics

    International Nuclear Information System (INIS)

    Dussault, H.; Howard, J.W. Jr.; Block, R.C.; Stapor, W.J.; Knudson, A.R.

    1993-01-01

    This paper describes a complete simulation approach to investigating the physics of heavy-ion charge generation and collection during a single event transient in a PN diode. The simulations explore the effects of different ion track models, applied biases, background dopings, and LET on the transient responses of a PN diode. The simulation results show that ion track structure and charge collection via diffusion-dominated processes play important roles in determining device transient responses. The simulations show no evidence of rapid charge collection in excess of that deposited in the device depletion region in typical funneling time frames (i.e., by time to peak current or in less than 500 ps). Further, the simulations clearly show that the device transient responses are not simple functions of the ion's incident LET. The simulation results imply that future studies and experiments should consider the effects of ion track structure in addition to LET and extend transient charge collection times to insure that reported charge collection efficiencies include diffusion-dominated collection processes

  3. The physics of highly charged heavy ions revealed by storage/cooler rings

    International Nuclear Information System (INIS)

    Mokler, P.H.; Stoehlker, T.

    1996-01-01

    With the successful commissioning of storage and cooler rings for bright beams of very heavy ions near the threshold of the last decade of this century, not only did a prosperous development in heavy ion accelerator technology come to its present summit, but also fundamental fields in heavy ion physics were opened widely for exciting explorations. Now, essential aspects in this area are accessible, aspects one only dared to dream of another decade ago. In the meantime, great progress already has been made in the fundamental physics in this field. This is particularly true for achievements in the atomic physics of highly charged heavy ions. In this chapter, we present a review of the current advances in this rapidly developing field. There are two general domains to be considered in the atomic physics of highly charged heavy ions: the fields of collisions and of atomic structure. Both aspects have to be explored equally, as they are strongly interconnected. One has to investigate the interaction processes to know, for instance, the population of excited states to help answer questions on the atomic structure; and conversely, one has to know the structure to understand the interactions. In both the fields, fundamental principles can be studied uniquely. This is in particular true for the heaviest ion species with only a few- or even zero-electrons left. 140 refs., 39 figs

  4. Charged Particle, Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Raghunath Sahoo

    2015-01-01

    Full Text Available We review the charged particle and photon multiplicities and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons, and the transverse energy measurement.

  5. Current signal of silicon detectors facing charged particles and heavy ions

    International Nuclear Information System (INIS)

    Hamrita, H.

    2005-07-01

    This work consisted in collecting and studying for the first time the shapes of current signals obtained from charged particles or heavy ions produced by silicon detectors. The document is divided into two main parts. The first consisted in reducing the experimental data obtained with charged particles as well as with heavy ions. These experiments were performed at the Orsay Tandem and at GANIL using LISE. These two experiments enabled us to create a data base formed of current signals with various shapes and various times of collection. The second part consisted in carrying out a simulation of the current signals obtained from the various ions. To obtain this simulation we propose a new model describing the formation of the signal. We used the data base of the signals obtained in experiments in order to constrain the three parameters of our model. In this model, the charge carriers created are regarded as dipoles and their density is related to the dielectric polarization in the silicon detector. This phenomenon induces an increase in permittivity throughout the range of the incident ion and consequently the electric field between the electrodes of the detector is decreased inside the trace. We coupled with this phenomenon a dissociation and extraction mode of the charge carriers so that they can be moved in the electric field. (author)

  6. Universal behavior of charged particle production in heavy ion collisions

    Science.gov (United States)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  7. Heavy ion therapy: Bevalac epoch

    International Nuclear Information System (INIS)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered

  8. Nonlinear energy loss of highly charged heavy ions

    International Nuclear Information System (INIS)

    Zwicknagel, G.Guenter.

    2000-01-01

    For slow, highly charged heavy ions strong coupling effects in the energy transfer from the projectile-ion to an electron target plasma become important. A theoretical description of this nonlinear ion stopping has to go beyond the standard approaches like the dielectric linear response or the binary collision model which are strictly valid only at weak ion-target coupling. Here we outline an improved treatment which is based on a suitable combination of binary collision and linear response contributions. As has been verified for isotropic, nonmagnetized electron plasmas by comparison with simulations, this approach well reproduces the essential features of nonlinear stopping up to moderate coupling strength. Its extension to anisotropic, magnetized electron plasmas basically involves the fully numerical determination of the momentum and energy transfer in binary ion-electron collisions in the presence of a magnetic field. First results of such calculations are presented and discussed

  9. Charge states of fast heavy ions in solids; target atomic number dependence

    International Nuclear Information System (INIS)

    Shima, Kunihiro

    1985-01-01

    Discussions were carried out on the origin of Z 2 (atomic number) dependent charge states with respect to projectile electron loss and capture process, and on relationship between the Z 2 dependence and that of mean charge states for heavy ions of 1 MeV/u energy region. Present and previously reported results were examined on the equilibrium charge distributions, 9-bar, of 120 MeV 63 Cu, 25 and 40 MeV 35 Cl, 109 MeV Si and 59 MeV F ions. It was clarified that 9-bar became generally higher for lower Z 2 depending on increasing energy, and osillatory behavior with energy-depending amplitude was seen in 9-bar vs Z 2 . Discussions were carrid out on these phenomena and related matters. Z 2 oscillations of 9-bar of fast heavy ions might be due to those of electron capture cross section into projectile K and L vacancies for high and intermediate charge states, respectively. A quantitative interpretation of the Z 2 -dependent 9-bar values is in progress based on collision process and observation of projectile x-ray. The 9-bar value dependency on Z 2 in ion passing foils and decrease of Z 2 oscillation amplitude with increasing collision energy were quite similar to the Z 2 dependence in stopping powers or in effective charge states estimated from stopping powers. But there was some discrepancies in the Z 2 oscillation of 9-bar and that of stopping powers. (Takagi, S.)

  10. Heavy cosmic ions with charge Z = 3q-40 and their biological implications

    International Nuclear Information System (INIS)

    Hasegan, D.; Dudkin, E.V.; Marenny, M.A.

    1979-01-01

    Heavy cosmic ions were studied by plastic detectors flown in cosmic space aboard the artificial Earth satellites COSMOS 690, 782 and 936. Charge spectra in the range of Z = 3q-40 of cosmic nuclei having energy E >= 1 GeV/nucleon are presented. LET spectra of heavy cosmic ions were measured in these experiments, as well as the LET variation inside the stacks of plastic detectors. The variation of the irreversible inactivation cross sections and the Fractional Cell Loss with depth are derived. Three-dimensional energy deposition around the trajectories of the particles, in the studied ranges of charges and energies, is computed using Katz's model. (author)

  11. Charge transfer to the continuum by heavy ions in atomic hydrogen

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1981-01-01

    Design and installation of an atomic hydrogen target for measurements of charge transfer to the continuum by heavy ions are discussed. The design consists of a tungsten gas cell operated at temperatures of 2500 to 2600 0 K. Initial testing is underway

  12. Study of charge exchanges of heavy ions passing through solids

    International Nuclear Information System (INIS)

    Baron, Eric.

    1975-01-01

    The charge state distributions of 1 to 6MeV/nucleon heavy ions (from oxygen to krypton) passing through thin targets of various materials (C, Cu, Ag, Au) are studied. The variation of the average charge state and of the charge state fractions as a function of the thickness of carbon targets ranging from zero to the equilibrium thickness is measured; this allows the calculation of effective cross-sections of the charge changing process. It is also shown that the lower the target atomic number, the higher the average charge state, which is explained by a decrease of the capture cross sections. Finally, a semi-empirical formula predicting the average charge state is proposed, as an extension of Betz's and Nikolaev and Dmitriev's formula [fr

  13. Heavy-ion radiography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Holley, W.R.; Benton, E.V.; Woodruff, K.H.; MacFarland, E.W.

    1983-01-01

    High energy, heavy-ion beams offer superior discrimination of tissue electron densities at very low radiation doses. This characteristic has potential for diagnostic medical imaging of neoplasms arising in the soft tissues and organs because it can detect smaller inhomogeneities than x rays. Heavy-ion imaging may also increase the accuracy of cancer radiotherapy planning involving use of accelerated charged particles. In the current physics research program of passive heavy-ion imaging, critical modulation transfer function tests are being carried out in heavy-ion projection radiography and heavy-ion computerized tomography. The research goal is to improve the heavy-ion imaging method until it reaches the limits of its theoretical resolution defined by range straggling, multiple scattering, and other factors involved in the beam quality characteristics. Clinical uses of the imaging method include the application of heavy-ion computerized tomography to heavy-ion radiotherapy planning, to the study of brain tumors and other structures of the head, and to low-dose heavy-ion projection mammography, particularly for women with dense breasts where other methods of diagnosis fail. The ions used are primarily 300 to 570 MeV/amu carbon and neon ions accelerated at the Lawrence Berkeley Laboratory Bevalac

  14. Light charged particle emission in heavy-ion reactions – What have ...

    Indian Academy of Sciences (India)

    coincidence with gamma rays, fission products, evaporation residues have yielded interesting results which bring out the influence of nuclear structure, nuclear mean field and dynamics on the emission of these particles. Keywords. Light charged particles; heavy-ion induced reactions; particle spectra and angular distri-.

  15. Charge-changing processes of heavy ions in matter. Non-equilibrium charge state distribution of sulfur ions after carbon foil penetration

    International Nuclear Information System (INIS)

    Imai, Makoto; Shibata, Hiromi; Sataka, Masao; Sugai, Hiroyuki; Nishio, Katsuhisa; Sugiyama, Koji; Komaki, Ken-ichiro

    2005-01-01

    Charge state distributions of 2.0 MeV/u (64 MeV) sulfur ions of various initial charge states (6+, 10+, 11+, 13+) after passing through 0.9, 1.1, 1.5, 2.0, 3.0, 4.7, 6.9 and 10 μg/cm 2 carbon foils have been studied experimentally using the heavy ion spectrometer 'ENMA'. Measured charge state distributions do not flat off to establish equilibrium within the measured thickness, proving to be the first systematic measurement of non-equilibrium charge state distribution using solid target at this energy range. The mean charge states and their distribution widths almost saturate to 12.4 and 1.03, respectively, for all initial charge states examined. Calculation with ETACHA code, developed by Rozet et al. [Nucl. Instr. and Meth. B 107 (1996) 67], is employed, although the present impact energy is lower than the assumed energy region for this code. It was also confirmed that a certain portion of 16 O q+ (q=3, 4, 7) beam is included in 32 S q+ (q=6, 8, 14) beam provided from the Tandem Accelerator, which originates in the Negative Ion Source forming O 2 - . (author)

  16. Energy loss and charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Poizat, J.C.; Andriamonje, S.; Anne, R.; Faria, N.V.d.C.; Chevallier, M.; Cohen, C.; Dural, J.; Farizon-Mazuy, B.; Gaillard, M.J.; Genre, R.; Hage-Ali, M.; Kirsch, R.; L'hoir, A.; Mory, J.; Moulin, J.; Quere, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. Our experiments show that high energy heavy ion channeling deeply modifies their slowing down and charge exchange processes. This is due to the fact that channeled ions interact only with outershell target electrons, which means that the electron density they experience is very low and that the binding energy, and then the momentum distribution of these electrons, are quite different from the corresponding average values associated to random incidence. The two experimental studies presented here show the reduction of the energy loss rate for fast channeled heavy ions and illustrate the two aspects of channeling effects on charge exchange, the reduction of electron loss on one hand, and of electron capture on the other hand

  17. Effect of minimum strength of mirror magnetic field (Bmin) on production of highly charged heavy ions from RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source (RAMSES)

    International Nuclear Information System (INIS)

    Arai, Hideyuki; Imanaka, Masashi; Lee, S.-M.Sang-Moo; Higurashi, Yoshihide; Nakagawa, Takahide; Kidera, Masanori; Kageyama, Tadashi; Kase, Masayuki; Yano, Yasushige; Aihara, Toshimitsu

    2002-01-01

    We measured the beam intensity of highly charged heavy ions (O, Ar and Kr ions) as a function of the minimum strength of mirror magnetic field (B min ) of the RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source. In this experiment, we found that the optimum value of B min exists to maximize the beam intensity of highly charged heavy ions and the value was almost the same (∼0.49 T) for various charge state heavy ions

  18. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    CERN Document Server

    Efthimion, Philip; Gilson, Erik P; Grisham, Larry; Logan, B G; Waldron, William; Yu, Simon

    2005-01-01

    Plasmas are employed as a medium for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ~ 0.1-1 m would be suitable. To produce 1 meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic. High voltage (~ 1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long produced plasma densities ~ 5x1011 cm-3. The source was integrated into the experiment and successfully charge neutralized the K ion beam. Presently, the 1 meter source ...

  19. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1997-09-01

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ and U 34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams

  20. Modeling space charge in beams for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.

    1995-01-01

    A new analytic model is presented which accurately estimates the radially averaged axial component of the space-charge field of an axisymmetric heavy-ion beam in a cylindrical beam pipe. The model recovers details of the field near the beam ends that are overlooked by simpler models, and the results compare well to exact solutions of Poisson's equation. Field values are shown for several simple beam profiles and are compared with values obtained from simpler models

  1. Momentum transfer in relativistic heavy ion charge-exchange reactions

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  2. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  3. Charge collection mechanisms in MOS/SOI transistors irradiated by energetic heavy ions

    International Nuclear Information System (INIS)

    Musseau, O.; Leray, J.L.; Ferlet, V.; Umbert, A.; Coic, Y.M.; Hesto, P.

    1991-01-01

    We have investigated with both experimental and numerical methods (Monte Carlo and drift-diffusion models) various charge collection mechanisms in NMOS/SOI transistors irradiated by single energetic heavy ions. Our physical interpretations of data emphasize the influence of various parasitic structures of the device. Two charge collection mechanisms are detailed: substrate funneling in buried MOS capacitor and latching of the parasitic bipolar transistor. Based on carrier transport and charge collection, the sensitivity of future scaled down CMOS/SOI technologies is finally discussed

  4. Effect of position and momentum constraints on charge distribution in heavy-ion collisions

    International Nuclear Information System (INIS)

    Rajni; Kumar, Suneel

    2012-01-01

    The rich phenomenology of multifragmentation has been widely explored after two decades of its discovery. It has been experimentally shown that in one single heavy ion collision many intermediate mass fragments (IMFs) are produced, where IMFs are defined as fragments with 5 ≤ A ≤ A tot /6. In the earlier literature, the multifragmentation was studied by Jakobsson et al. who measured the charge particle distribution along with their kinetic energy spectra in 16 O/ 36 Ar induced reaction between 25 and 200 MeV/nucleon representing the various phenomena in heavy ion collisions

  5. Results of heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Castro, J.R.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists

  6. Investigation of the energy loss and the charge state of high energy heavy ions in a hydrogen plasma

    International Nuclear Information System (INIS)

    Dietrich, K.G.

    1991-07-01

    For heavy ions with energy of 1.4 to 5.9 MeV/u the energy loss and charge state after transmission through a totally ionized hydrogen plasma are investigated. Plasma target was a Z-pinch device incorporated in the beam optics of the accelerator by a pumping system. In the 20 cm long pinch hydrogen plasmas with densities up to 1.5x10 19 cm -3 and temperatures above 5 eV are produced, with ionization efficiency higher than 99%. The ions pass the plasma on the symmetry axis of the plasma column through small apertures in the electrodes. The energy loss was measured by time-of-flight method, the plasma density by interferometry along the pinch axis. For the first time the ion charge after transmission through the plasma has been determined by a charge spectrometer being a combination of a dipole magnet and a position sensitive detector with high time resolution. A growth of the average charge of heavy ions in plasma higher than the equilibrium charge in cold gas was discovered, caused by a reduction of electron capture by fast heavy ions in ionized matter. The electron loss rates in plasma and cold gas are equal. (orig./AH) [de

  7. Conserved charge fluctuations using the D measure in heavy-ion collisions

    Science.gov (United States)

    Mishra, D. K.; Netrakanti, P. K.; Garg, P.

    2017-05-01

    We study the net-charge fluctuation D -measure variable, in high-energy heavy-ion collisions in heavy-ion jet interaction generator (HIJING), ultrarelativistic quantum molecular dynamics (UrQMD), and hadron resonance gas (HRG) models for various center-of-mass energies (√{sNN}). The effects of kinematic acceptance and resonance decay, in the pseudorapidity acceptance interval (Δ η ) and lower transverse momentum (pTmin) threshold, on fluctuation measures are discussed. A strong dependence of D with the Δ η in HIJING and UrQMD models is observed as opposed to results obtained from the HRG model. The dissipation of fluctuation signal is estimated by fitting the D measure as a function of the Δ η . An extrapolated function for higher Δ η values at lower √{sNN} is different from the results obtained from models. Particle species dependence of D and the effect of the pTmin selection threshold are discussed in HIJING and HRG models. The comparison of D , at midrapidity, of net-charge fluctuations at various √{sNN} obtained from the models with the data from the A Large Ion Collider Experiment (ALICE) experiment is discussed. The results from the present paper as a function of Δ η and √{sNN} will provide a baseline for comparison to experimental measurements.

  8. Production of intense beams of highly charged heavy ions from RIKEN 18 GHz ECRIS and liquid He free SC-ECRIS

    International Nuclear Information System (INIS)

    Nakagawa, T.; Kidera, M.; Kageyama, T.; Kase, M.; Yano, Y.; Higurashi, Y.; Kurita, T.; Imanaka, M.

    2001-01-01

    We have constructed the high performance ECRISs for RIKEN RI Beam factory project and successfully produced intense beams of highly charged heavy ions. RIKEN 18 GHz ECRIS can especially produce intense beams of medium charge states of heavy ions (1.3 mA of Ar 8+ , 200 eμA of Xe 20+ ) by applying the various techniques, e.g., Al cylinder method, biased electrode method, optimization of the plasma electrode position. Very recently, we successfully produced intense beams of highly charged heavy ions (10 eμA of Xe 30+ , 1 eμA of Xe 36+ ) from the Liquid He free SC-ECRIS with operational frequency of 14 GHz

  9. Study of Doubly Charged Delta Baryons in Collisions of Copper Nuclei at the Relativistic Heavy Ion Collider

    Science.gov (United States)

    2017-05-22

    connecting the three quarks. Composite particles composed of partons are known as “hadrons” and must have a neutral color charge. There are six... neutral charge of neutrons. The up quark has positive charge equivalent to two-thirds the charge of an electron, and the down quark has negative...known as “heavy ions.” An ion is an atom or molecule with net electric charge, bare nuclei have a large positive charge due to the absence of

  10. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  11. Recoil ion spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Beyer, H.F.; Mann, R.

    1984-01-01

    This chapter examines the production of very high charge state ions in single ion-atom collisions. Topics considered include some aspects of highly ionized atoms, experimental approaches, the production of highly charged target ions (monoatomic targets, recoil energy distribution, molecular fragmentation, outer-shell rearrangement, lifetime measurements, a comparison of projectile-, target-, and plasma-ion stripping), and secondary collision experiments (selective electron capture, potential applications). The heavy-ion beams for the described experiments were provided by accelerators such as tandem Van de Graaff facility and the UNILAC

  12. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    Science.gov (United States)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Phobos Collaboration

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √ SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/ overlinepp and e +e - data. / in nuclear collisions at high energy scales with √ s in a similar way as Nch in e +e - collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  13. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-05-01

    An experiment is described to study highly charged recoil ions on-line to the heavy ion accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q=15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q=4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q=6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix. (orig.)

  14. Spectroscopic investigation of the charge dynamics of heavy ions penetrating solid and gaseous targets

    International Nuclear Information System (INIS)

    Korostiy, S.

    2007-01-01

    This thesis presents the study of the slowing down process of fast heavy ions inside matter. In the framework of this research, the influence of the target density on the stopping process is investigated. Experiments on the interaction of 48 Ca 6+ - 48 Ca 10+ and 26 Mg 5+ ion beams with initial energies of 11.4 MeV/u and 5.9 MeV/u with solid and gaseous targets have been carried out. A novel diagnostic method, X-ray spectroscopy of K-shell projectile radiation, is used to determine the ion charge state in relation to its velocity during the penetration of fast heavy ions inside the stopping material. A spatially resolved analysis of the projectile and target radiation in solids is achieved for the first time. The application of low-density silica aerogels as stopping media provided a stretching of the ion stopping length by 20 - 100 times in comparison with solid quartz. The Doppler Effect observed on the projectile K-shell spectra is used to calculate the ion velocity in dependence on the ion penetration depth in the target material. A comparative analysis of K α spectra of fast heavy ions is performed in solid (silica aerogels) and gaseous targets (Ar and Ne gases) at the same ion energy. It is shown that the dominant role of collisions in dense matter leads to an increase of the effective ionization cross section at high ion velocity and suppression of the electron capture to the projectile ion excited states at low ion velocity. As a result, an increase of the ion charge state in dense matter is observed. The experimentally detected effects are interpreted with numerical calculations of the projectile population kinetics, which are in good agreement with measurements. (orig.)

  15. Spectroscopic investigation of the charge dynamics of heavy ions penetrating solid and gaseous targets

    Energy Technology Data Exchange (ETDEWEB)

    Korostiy, S

    2007-01-15

    This thesis presents the study of the slowing down process of fast heavy ions inside matter. In the framework of this research, the influence of the target density on the stopping process is investigated. Experiments on the interaction of {sup 48}Ca{sup 6+}-{sup 48}Ca{sup 10+} and {sup 26}Mg{sup 5+} ion beams with initial energies of 11.4 MeV/u and 5.9 MeV/u with solid and gaseous targets have been carried out. A novel diagnostic method, X-ray spectroscopy of K-shell projectile radiation, is used to determine the ion charge state in relation to its velocity during the penetration of fast heavy ions inside the stopping material. A spatially resolved analysis of the projectile and target radiation in solids is achieved for the first time. The application of low-density silica aerogels as stopping media provided a stretching of the ion stopping length by 20 - 100 times in comparison with solid quartz. The Doppler Effect observed on the projectile K-shell spectra is used to calculate the ion velocity in dependence on the ion penetration depth in the target material. A comparative analysis of K{sub {alpha}} spectra of fast heavy ions is performed in solid (silica aerogels) and gaseous targets (Ar and Ne gases) at the same ion energy. It is shown that the dominant role of collisions in dense matter leads to an increase of the effective ionization cross section at high ion velocity and suppression of the electron capture to the projectile ion excited states at low ion velocity. As a result, an increase of the ion charge state in dense matter is observed. The experimentally detected effects are interpreted with numerical calculations of the projectile population kinetics, which are in good agreement with measurements. (orig.)

  16. Basic atomic interactions of accelerated heavy ions in matter atomic interactions of heavy ions

    CERN Document Server

    Tolstikhina, Inga; Winckler, Nicolas; Shevelko, Viacheslav

    2018-01-01

    This book provides an overview of the recent experimental and theoretical results on interactions of heavy ions with gaseous, solid and plasma targets from the perspective of atomic physics. The topics discussed comprise stopping power, multiple-electron loss and capture processes, equilibrium and non-equilibrium charge-state fractions in penetration of fast ion beams through matter including relativistic domain. It also addresses mean charge-states and equilibrium target thickness in ion-beam penetrations, isotope effects in low-energy electron capture, lifetimes of heavy ion beams, semi-empirical formulae for effective cross sections. The book is intended for researchers and graduate students working in atomic, plasma and accelerator physics.

  17. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-01-01

    An experiment is described to study highly charged recoil ions on-line to the heavy accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy-ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q = 15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q = 4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q = 6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix

  18. ECRIS sources for highly charged ions

    International Nuclear Information System (INIS)

    Geller, R.

    1991-01-01

    The so-called Philips ionization gauge ion sources (PIGIS) were used until quite recently in heavy ion accelerators so multiply charged ions could only be obtained by incorporating a stripper to remove electrons. Electron cyclotron resonance ion sources (ECRIS) now dominate as they produce more highly charged ions. (orig.)

  19. Van-de-Graaf accelerator operation with laser source of highly-charged heavy ions

    International Nuclear Information System (INIS)

    Barabash, L.S.; Golubev, A.A.; Koshkarev, S.G.; Krechet, K.I.; Sharkov, B.Y.; Shumshurov, A.V.

    1988-01-01

    Multicharged ions (Z = +1 divided-by +10) of practically any elements of the periodical table have been generated by the laser source based on a simple in operation and fabrication laser. One of the features of the laser source is that the energy needed for plasma heating is transported to the target from a great distance. In this case the target can be placed under high voltage or in a magnetic field. These advantages of the laser source are particularly important for its application in the Van-de-Graaf accelerator, where absence of resonance units allows to accelerate ions with any charge-to-mass ratio. The goal of this paper consists in designing a laser source of highly- charged heavy ions in the Van-de-Graaf accelerator and in measuring charge spectra of the accelerated ion beam. The peculiarities of this accelerator are taken into account in the discussion of the source scheme. Such peculiarities include potential up to 5 MV on the high-voltage conductor, where the ion source is placed, and high up to 15 atm gas environment pressure

  20. Transfer of momentum, mass and charge in heavy ion collisions

    International Nuclear Information System (INIS)

    Beck, F.; Feldmeier, H.; Dworzecka, M.

    1979-01-01

    A model for the first two phases of heavy ion collisions based on the transport of single nucleons through the window between the two scattering nuclei is described in some detail. It is pointed out that the model can account simultaneously for a large portion of the energy transfer from relative to intrinsic motion and for the observed variances in mass and charge numbers for reaction times up to the order of 10 -21 s. (P.L.)

  1. ECR plasma source for heavy ion beam charge neutralization

    Science.gov (United States)

    Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Kolchin, Pavel; Davidson, Ronald C.; Yu, Simon; Logan, B. Grant

    2003-01-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 100 times the ion beam density and at a length [similar]0.1 2 m would be suitable for achieving a high level of charge neutralization. An Electron Cyclotron Resonance (ECR) source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1 10 gauss. The goal is to operate the source at pressures [similar]10[minus sign]6 Torr at full ionization. The initial operation of the source has been at pressures of 10[minus sign]4 10[minus sign]1 Torr. Electron densities in the range of 108 to 1011 cm[minus sign]3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source. This article also describes the wave damping mechanisms. At moderate pressures (> 1 mTorr), the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance.

  2. Dependence of anti W on the charge of heavy ions

    International Nuclear Information System (INIS)

    Varma, M.N.; Baum, J.J.

    1977-10-01

    Anti W values (average energy required to form an ion pair) were determined for 35 Cl ions in nitrogen and tissue-equivalent gas. These values were compared to previously reported anti W values for oxygen ions and alpha particles in the same media. This comparison was made at two specific values of energy per atomic mass unit of the incident ions. At an energy of 2.57 MeV/amu, the comparison shows anti W is 12% and 10% higher for oxygen ions in tissue-equivalent and nitrogen gas, respectively, relative to alpha particle anti W. At an energy of 0.77 MeV/amu, a similar comparison shows anti W is 20% higher for 35 Cl ions and 12% higher for 16 O ions in tissue-equivalent gas; and 13% and 10% higher, respectively, in nitrogen gas, relative to alpha particle anti W. These results indicate that anti W values depend not only on the energy per atomic mass unit of heavy ions but also on their charge

  3. Precision laser spectroscopy of highly charged ions

    International Nuclear Information System (INIS)

    Kuehl, T.; Borneis, S.; Becker, S.; Dax, A.; Engel, T.; Grieser, R.; Huber, G.; Klaft, I.; Klepper, O.; Kohl, A.; Marx, D.; Meier, K.; Neumann, R.; Schmitt, F.; Seelig, P.; Voelker, L.

    1996-01-01

    Recently, intense beams of highly charged ions have become available at heavy ion cooler rings. The obstacle for producing these highly interesting candidates is the large binding energy of K-shell electrons in heavy systems in excess of 100 keV. One way to remove these electrons is to strip them off by passing the ion through material. In the cooler ring, the ions are cooled to a well defined velocity. At the SIS/ESR complex it is possible to produce, store, and cool highly charged ions up to bare uranium with intensities exceeding 10 8 atoms in the ring. This opens the door for precision laser spectroscopy of hydrogenlike-heavy ions, e.g. 209 Bi 82+ , and allows to examine the interaction of the single electron with the large fields of the heavy nucleus, exceeding any artificially produced electric and magnetic fields by orders of magnitude. In the electron cooler the interaction of electrons and highly charged ions otherwise only present in the hottest plasmas can be studied. (orig.)

  4. Charge-sign-clustering observed in high-multiplicity, high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Takahashi, Y.; Gregory, J.C.; Hayashi, T.

    1989-01-01

    Charge-sign distribution in 200 GeV/amu heavy-ion collisions is studied with the Magnetic-Interferometric-Emulsion-Chamber (MAGIC) for central collision events in 16 O + Pb and 32 S + Pb interactions. Charge-sign clustering is observed in most of the fully-analyzed events. A statistical 'run-test' is performed for each measured event, which shows significant deviation from a Gaussian distribution (0,1) expected for random-charge distribution. Candidates of charge clusters have 5 - 10 multiplicity of like-sign particles, and are often accompanied by opposite-sign clusters. Observed clustering of identical charges is more significant in the fragmentation region than in the central region. Two-particle Bose-Einstein interference and other effects are discussed for the run-test examination. (author)

  5. Improvement of highly charged ion output from an ECR source

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1995-01-01

    The physical limitations of the highly charged ion production in the ECR source is analyzed in this report. General methods to increase the output ion current and the attainable charged states of heavy ions are discussed. Some new ways to improve the output of highly charged ions from the ECR source for heavy ions are proposed. A new library of computer codes for the mathematical simulation of heavy ion production in the ECR ion source is used for numerical experiments to test these ways for improving the operation of the ECR source. (orig.)

  6. RF plasma source for heavy ion beam charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Davidson, Ronald C.; Yu, Simon S.; Logan, B. Grant

    2003-01-01

    Highly ionized plasmas are being used as a medium for charge neutralizing heavy ion beams in order to focus the ion beam to a small spot size. A radio frequency (RF) plasma source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The goal is to operate the source at pressures ∼ 10 -5 Torr at full ionization. The initial operation of the source has been at pressures of 10 -4 -10 -1 Torr and electron densities in the range of 10 8 -10 11 cm -3 . Recently, pulsed operation of the source has enabled operation at pressures in the 10 -6 Torr range with densities of 10 11 cm -3 . Near 100% ionization has been achieved. The source has been integrated with the NTX facility and experiments have begun

  7. The average equilibrium charge-states of heavy ions with Z > 60 stripped in He and H2

    International Nuclear Information System (INIS)

    Oganessian, Yu.T.; Lobanov, Yu.V.; Popeko, A.G.; Abdullin, F.Sh.; Kharitonov, Yu.P.; Ledovskoy, A.A.; Tsyganov, Yu.S.

    1991-01-01

    The equilibrium charges of heavy ions (61 < Z < 101) with energies from 5 to 100 MeV stripped in He and H2 have been measured. New empirical formulae for the average charge state are presented. (orig.)

  8. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  9. Excitation of the Δ resonance in heavy ion charge exchange reactions

    International Nuclear Information System (INIS)

    Roy-Stephan, M.

    1987-06-01

    Results on the Δ excitation by heavy ion charge exchange are presented. 900 MeV per nucleon 12 C, 16 0, 20 Ne and 1100 MeV per nucleon 12 C have been used. The Δ excitation strength depends on the projectile - ejectile nature and on the incident energy. The role of the target mass is also discussed. The peak for the Δ in nuclei is energy shifted from the free Δ peak

  10. Stopping power for heavy ions in low energy region

    International Nuclear Information System (INIS)

    Kitagawa, Mitsuo

    1983-01-01

    Review is made for the study on the power for stopping heavy ions. The studies on the power for stopping heavy ions passing through materials have been developed in the last twenty years due to the accuracy improvement in the data analysis of the power for stopping light ions, the requirement of data establishment on the power for stopping heavy ions from fusion research and the development of the experimental studies by heavy-ion accelerators. The relation between the analysis of the power for stopping heavy ions and the power for stopping light ions is described from the standpoint that the results on the power for stopping light ions serve as the guide for the study on the power for stopping heavy ions. Both at present and in future. The analysis of stopping power data with the accuracy from +-10 to 20 % is possible from the theoretical analysis of effective electric charge and its systematic table of the numerical data. The outline of the scaling rule on effective electric charge is discussed. The deviation of the experimental data from the scaling rule is discussed by comparing with the measured values of effective electric charge ratio. Various analyses of the power for stopping heavy ions are summarized. (Asami, T.)

  11. Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions

    Science.gov (United States)

    Kapusta, Joseph I.; Plumberg, Christopher

    2018-01-01

    We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.

  12. Heavy ion medical accelerator, HIMAC

    International Nuclear Information System (INIS)

    Yamada, Satoru

    1993-01-01

    The heavy ion beam is undoutedly suitable for the cancer treatment. The supriority of the heavy ions over the conventional radiations including protons and neutrons comes mainly from physical characteristics of a heavy particle with multiple charges. A straggling angle due to a multiple Coulomb scattering process in a human body is small for heavy ions, and the small scattering angle results in a good dose localization in a transverse direction. An ionization ratio of the heavy ion beam makes a very sharp peak at the ends of their range. The height of the peak is higher for the heavier ions and shows excellent biomedical effects around Ne ions. In order to apply heavy ion beams to cancer treatment, Heavy Ion Medical Accelerator in Chiba (HIMAC) has been constructed at National Institute of Radiological Sciences. The accelerator complex consists of two ion sources, two successive linac tanks, a pair of synchrotron rings, a beam transport system and an irradiation system. An operation frequency is 100 MHz for two linacs, and the ion energy is 6.0 MeV/u at the output end of the linac. The other four experimental rooms are prepared for basic experiments. The synchrotron accelerates ions up to 800 MeV/u for a charge to mass ratio of 1/2. The long beam transport line provides two vertical beams in addition with two horizontal beams for the treatment. The three treatment rooms are prepared one of which is equipped with both horizontal and vertical beam lines. The whole facility will be open for all scientists who have interests in the heavy ion science as well as the biophysics. The conceptual design study of HIMAC started in 1984, and the construction of the accelerator complex was begun in March 1988. The beam acceleration tests of the injector system was successfully completed in March of this year, and tests of the whole system will be finished throughout this fyscal year. (author)

  13. Production of highly charged ion beams from electron cyclotron resonance ion sources (invited)

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1998-01-01

    Electron cyclotron resonance ion source (ECRIS) development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields, and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECRISs. So far at continuous wave (CW) mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ , and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ , and U 34+ were produced from ECRISs. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ , and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I≥60enA) were also achieved. This article will review the ECR ion source progress and discuss key requirement for ECRISs to produce the highly charged ion beams. copyright 1998 American Institute of Physics

  14. RF Plasma Source for Heavy Ion Beam Charge Neutralization

    Science.gov (United States)

    Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.

    2003-10-01

    Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 0-10 gauss. The goal is to operate the source at pressures 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Recently, pulsed operation of the source has enabled operation at pressures in the 10-6 Torr range with densities of 10^11 cm-3. Near 100% ionization has been achieved. The source has been integrated with NTX and is being used in the experiments. The plasma is approximately 10 cm in length in the direction of the beam propagation. Modifications to the source will be presented that increase its length in the direction of beam propagation.

  15. Properties of exotic matter for heavy-ion searches

    International Nuclear Information System (INIS)

    Schaffner-Bielich, J.; Greiner, C.; Stoecker, H.; Vischer, A.P.

    1997-01-01

    We examine the properties of both forms of strange matter, small lumps of strange quark matter (strangelets) and of strange hadronic matter (metastable exotic multihypernuclear objects (MEMOs)) and their relevance for present and future heavy-ion searches. The strong and weak decays are discussed separately to distinguish between long- and short-lived candidates where the former ones are detectable in present heavy-ion experiments while the latter ones are present in future heavy-ion experiments, respectively. We find some long-lived strangelet candidates which are highly negatively charged with a mass-to-charge ratio like a anti deuteron (M/Z approx.= -2) but masses of A 10-16. We also predict many short-lived candidates, both in quark and hadronic form, which can be highly charged. Purely hyperonic nuclei such as the Ξα (2Ξ 0 2Ξ - ) are bound and have a negative charge while carrying a positive baryon number. We also demonstrate that multiply charmed exotics (charmlets) might be bound and can be produced at future heavy-ion colliders. (author)

  16. HEAVY ION LINEAR ACCELERATOR

    Science.gov (United States)

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  17. Effective stopping of relativistic structural heavy ions at collisions with atoms

    International Nuclear Information System (INIS)

    Matveev, V.I.

    2002-01-01

    One develops the unperturbed theory of energy losses at collision of atoms with structural high-charged heavy ions moving with relativistic velocity. One derived a simple formula for efficient braking. The structural ions in terms of this paper are considered to mean partially ionized ions of heavy elements compressing ion nucleus and some bound electrons compensating partially for ion nucleus charge. Account of ion charge magnitude is determined to result in essential increase of efficient braking of ion in contrast to braking of point nucleus of Z* charge [ru

  18. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    International Nuclear Information System (INIS)

    Kovalenko, Oleksandr

    2015-01-01

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U 90+ beam at the existing storage ring ESR, GSI.

  19. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleksandr

    2015-06-24

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.

  20. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  1. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    International Nuclear Information System (INIS)

    Quint, W.; Dilling, J.; Djekic, S.; Haeffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schoenfelder, J.; Sikler, G.; Valenzuela, T.; Verdu, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy

  2. Event-shape-engineering study of charge separation in heavy-ion collisions

    Science.gov (United States)

    Wen, Fufang; Bryon, Jacob; Wen, Liwen; Wang, Gang

    2018-01-01

    Recent measurements of charge-dependent azimuthal correlations in high-energy heavy-ion collisions have indicated charge-separation signals perpendicular to the reaction plane, and have been related to the chiral magnetic effect (CME). However, the correlation signal is contaminated with the background caused by the collective motion (flow) of the collision system, and an effective approach is needed to remove the flow background from the correlation. We present a method study with simplified Monte Carlo simulations and a multi-phase transport model, and develop a scheme to reveal the true CME signal via event-shape engineering with the flow vector of the particles of interest. Supported by a grant (DE-FG02-88ER40424) from U.S. Department of Energy, Office of Nuclear Physics

  3. Charge collection characteristics of a super-thin diamond membrane detector measured with high-energy heavy ions

    International Nuclear Information System (INIS)

    Iwamoto, N.; Makino, T.; Onoda, S.; Ohshima, T.; Kamiya, T.; Kada, W.; Skukan, N.; Grilj, V.; Jaksic, M.; Pomorski, M.

    2014-01-01

    A transmission particle detector based on a super-thin diamond membrane film which can also be used simultaneously as a vacuum window for ion beam extraction has been developed. Charge collection characteristics of a μ-thick diamond membrane detector for high-energy heavy ions including 75 MeV Ne, 150 MeV Ar, 322 MeV Kr, and 454 MeV Xe have been investigated for the first time. Charge collection signals under single particle flux from the thin part are stable and are well distinguishable from background signals. This behavior suggests that the diamond membrane detector could be used for counting single ions. On the other hand, charge collection efficiency is found to decrease with increasing of charge generated in the diamond membrane detector. This suggests that the pulse height defect, which has been previously reported for Si and SiC detectors, also occurs in the diamond membrane detector. (authors)

  4. A singly charged ion source for radioactive 11C ion acceleration

    Science.gov (United States)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  5. New experimental initiatives using very highly charged ions from an 'electron beam ion trap'

    International Nuclear Information System (INIS)

    Schneider, D.

    1996-01-01

    A short review of the experimental program in highly-charged heavy ion physics conducted at the Lawrence Livermore National Laboratory Electron Beam Ion Trap (EBIT) facility is presented. The heavy-ion research, involving ions up to fully stripped U 92+ , includes precision x-ray spectroscopy and lifetime studies, electron impact ionization and excitation cross section measurements. The investigations of ion-surface interactions following the impact of high-Z highly charged ions on surfaces are aimed to study the neutralization dynamics effecting the ion and the response of the surface as well. (author)

  6. Low charge state heavy ion production with sub-nanosecond laser.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  7. Low charge state heavy ion production with sub-nanosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue, T., E-mail: tkanesue@bnl.gov; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Kumaki, M. [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan)

    2016-02-15

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  8. Coherent instability of the heavy ion beam in the storage ring

    International Nuclear Information System (INIS)

    Noda, A.

    1981-01-01

    The storage ring as the final part of a driver for heavy ion fusion is required to provide heavy ions (A asymptotically equals 200) with energy of 5 -- 10 GeV and such a high intensity as 1 -- 6 x 10 15 ions/pulse. So as to raise the number of ions which can be accumulated in a ring, singlly charged heavy ion is used for its relatively smaller incoherent space charge force compared with higher charge states. The intensity limit due to incoherent space charge force is 0.7 -- 1.4 x 10 15 ions for U 1 + . Much more severe limits exist due to coherent motion of heavy ion beams (0.8 -- 2 x 10 13 for longitudinal motion and 0.9 -- 1.1 x 10 12 for transverse motion), because of the relatively lower velocity of the accumulated ions. It seems unrealistic to use a lot of rings in order to operate below such intensity limits of the above instability. Therefore the number of the storage rings is constrained within a reasonable value (3 -- 7) and the possibility of compressing the bunches of heavy ion beams before the instability grows fatally large is studied. (author)

  9. Radiobiology of heavy charged particles

    International Nuclear Information System (INIS)

    Kraft, G.

    1996-11-01

    The increase in the biological efficiency is the major motivation to use ions heavier than protons for therapy. Therefore, the detailed understanding of the radiobiological potential of heavy ions like carbon or oxygen is the basic condition of a proper application of these ions in therapy. But also for the lightest ion, the proton, evidence accumulates that changes in the radiobiological properties at the end of the particle range influence the therapeutic effect. Compared to sparsely ionizing radiation heavy charged particles exhibit a different physical interaction with the target material: The highly charged ions interact mostly via Coulomb forces with the electrons of the target material producing a track of ionizations and highly kinetic electrons along the path of the primary ion. In these tracks damage to the biological structures like the DNA occurs in a non stochastic, but spatially correlated way yielding a dramatic variation in the biological severity of the created damage. In cell-experiments the variation in the relative biological efficiency has been measured for many biological reactions like cell inactivation, chromosome aberrations and DNA damage. An overview on the inactivation data will be given and theoretical approaches will be discussed and compared to experimental data. (orig.)

  10. Thermal spike analysis of highly charged ion tracks

    International Nuclear Information System (INIS)

    Karlušić, M.; Jakšić, M.

    2012-01-01

    The irradiation of material using swift heavy ion or highly charged ion causes excitation of the electron subsystem at nanometer scale along the ion trajectory. According to the thermal spike model, energy deposited into the electron subsystem leads to temperature increase due to electron–phonon coupling. If ion-induced excitation is sufficiently intensive, then melting of the material can occur, and permanent damage (i.e., ion track) can be formed upon rapid cooling. We present an extension of the analytical thermal spike model of Szenes for the analysis of surface ion track produced after the impact of highly charged ion. By applying the model to existing experimental data, more than 60% of the potential energy of the highly charged ion was shown to be retained in the material during the impact and transformed into the energy of the thermal spike. This value is much higher than 20–40% of the transferred energy into the thermal spike by swift heavy ion. Thresholds for formation of highly charged ion track in different materials show uniform behavior depending only on few material parameters.

  11. Charge-state related effects in sputtering of LiF by swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W. [Ludwig-Maximilians-Universität München, 85748 Garching (Germany); Ban-d' Etat, B. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Bender, M. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Boduch, P. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Grande, P.L. [Univ. Fed. Rio Grande do Sul, BR-91501970 Porto Alegre, RS (Brazil); Lebius, H.; Lelièvre, D. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Marmitt, G.G. [Univ. Fed. Rio Grande do Sul, BR-91501970 Porto Alegre, RS (Brazil); Rothard, H. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Seidl, T.; Severin, D.; Voss, K.-O. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Toulemonde, M., E-mail: toulemonde@ganil.fr [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Trautmann, C. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2017-02-01

    Sputtering experiments with swift heavy ions in the electronic energy loss regime were performed by using the catcher technique in combination with elastic recoil detection analysis. The angular distribution of particles sputtered from the surface of LiF single crystals is composed of a jet-like peak superimposed on a broad isotropic distribution. By using incident ions of fixed energy but different charges states, the influence of the electronic energy loss on both components is probed. We find indications that isotropic sputtering originates from near-surface layers, whereas the jet component may be affected by contributions from depth up to about 150 nm.

  12. Electron capture rates in stars studied with heavy ion charge exchange reactions

    Science.gov (United States)

    Bertulani, C. A.

    2018-01-01

    Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean ~ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.

  13. Physics and radiobiology of heavy charged particles in relation to the use of ion beams for therapy

    International Nuclear Information System (INIS)

    Kraft, G.; Haberer, T.; Schardt, D.; Scholz, M.

    1993-07-01

    Heavy charged particles are the most advanced tool of an external subcutane radiotherapy of deep seated tumors. Small angular- and lateral-scattering and the increase of the energy deposition with penetration depth are the physical basis for a more efficient tumor targeting. High biological efficiency in the tumor is the prerequisite for a successful treatment of tumors radioresistant against sparsely ionizing radiation. The possibility to perform target conform irradiation and to control the achieved/actual distribution using PET techniques guarantees that biological highly efficient stepping particles can be restricted to the tumor volume only. Although the physical and radiobiological properties of ion beams are very favourable for therapy, the necessity to produce these particles in an accelerator restricts a general application of heavy ions up to now. Presently the heavy ion accelerator SIS at GSI is the only source of heavy ion beams, sufficient in energy and intensity for therapy. A therapy unit is in preparation at GSI, the status of this project is given at the end of the paper. (orig.)

  14. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, T., E-mail: nagatomo@riken.jp; Kase, M.; Kamigaito, O.; Nakagawa, T. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Tzoganis, V. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Cockcroft Institute, Daresbury, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool, Merseyside L69 3BX (United Kingdom)

    2016-02-15

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO{sub 2} (quartz), KBr, Eu-doped CaF{sub 2}, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy {sup 12}C{sup 4+}, {sup 16}O{sup 4+}, and {sup 40}Ar{sup 11+} ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.

  15. Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yi, E-mail: yyin@bnl.gov [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Liao, Jinfeng, E-mail: liaoji@indiana.edu [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-05-10

    Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction — a phenomenon known as the Chiral Magnetic Effect (CME). The quark–gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHC for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from both CME and background effects in one and same framework. The implications for the search of CME are discussed.

  16. Multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B.; Romero, J.L.; Brady, F.P.; Tull, C.E.; Castaneda, C.M.; Barasch, E.F.; Webb, M.L.; Drummond, J.R.; Crawford, H.J.; Flores, I.

    1987-04-01

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon /sup 40/Ar and 0.30e fwhm for 1.08 GeV/nucleon /sup 139/La and /sup 139/La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with sigmaapprox. =100 ..mu..m.

  17. Performance on the low charge state laser ion source in BNL

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M.; Alessi, J.; Beebe, E.; Costanzo, M.; DeSanto, L.; Jamilkowski, J.; Kanesue, T.; Lambiase, R.; Lehn, D.; Liaw, C. J.; McCafferty, D.; Morris, J.; Olsen, R.; Pikin, A.; Raparia, D.; Steszyn, A.; Ikeda, S.

    2015-09-07

    On March 2014, a Laser Ion Source (LIS) was commissioned which delivers high-brightness, low-charge-state heavy ions for the hadron accelerator complex in Brookhaven National Laboratory (BNL). Since then, the LIS has provided many heavy ion species successfully. The low-charge-state (mostly singly charged) beams are injected to the Electron Beam Ion Source (EBIS), where ions are then highly ionized to fit to the following accelerator’s Q/M acceptance, like Au32+. Recently we upgraded the LIS to be able to provide two different beams into EBIS on a pulse-to-pulse basis. Now the LIS is simultaneously providing beams for both the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL).

  18. Calibration of the photometric method of heavy ion charge measurements in emulsion using a CCD camera

    International Nuclear Information System (INIS)

    Kudzia, D.; Wilczynska, B.; Wilczynski, H.

    2002-01-01

    A previously developed method of heavy ion charge measurements in emulsion has been significantly improved. The charge measurements are based on analysis of photometric profiles of the particle tracks in emulsion. These profiles are obtained using a CCD camera mounted on an optical microscope. So far, the manual charge determination by delta ray counting had to be used for calibration of the photometric method. In this paper a complete procedure for calibration of the photometric method is shown, without resorting to the manual method

  19. Electron capture by highly charged low-velocity ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Dubois, R.; Justiniano, E.; Gray, T.J.; Can, C.

    1982-01-01

    This paper describes the use of a fast heavy ion beam to produce, by bombardment of gaseous targets, highly-charged low-velocity recoil ions, and the use of these secondary ions in turn as projectiles in studies of electron capture and ionization in low-energy collision systems. The interest in collisions involving low-energy highly-charged projectiles comes both from the somewhat simplifying aspects of the physics which attend the long-range capture and from applications to fusion plasmas, astrophysics and more speculative technology such as the production of X-ray lasers. The ions of interest in such applications should have both electronic excitation and center-of-mass energies in the keV range and cannot be produced by simply stripping fast heavy ion beams. Several novel types of ion source have been developed to produce low-energy highly-charged ions, of which the secondary ion recoil source discussed in this paper is one. (Auth.)

  20. Beamline for low-energy transport of highly charged ions at HITRAP

    International Nuclear Information System (INIS)

    Andelkovic, Z.; Herfurth, F.; Kotovskiy, N.; König, K.; Maaß, B.; Murböck, T.; Neidherr, D.; Schmidt, S.; Steinmann, J.; Vogel, M.; Vorobjev, G.

    2015-01-01

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency

  1. Current signal of silicon detectors facing charged particles and heavy ions; Reponse en courant des detecteurs silicium aux particules chargees et aux ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Hamrita, H

    2005-07-01

    This work consisted in collecting and studying for the first time the shapes of current signals obtained from charged particles or heavy ions produced by silicon detectors. The document is divided into two main parts. The first consisted in reducing the experimental data obtained with charged particles as well as with heavy ions. These experiments were performed at the Orsay Tandem and at GANIL using LISE. These two experiments enabled us to create a data base formed of current signals with various shapes and various times of collection. The second part consisted in carrying out a simulation of the current signals obtained from the various ions. To obtain this simulation we propose a new model describing the formation of the signal. We used the data base of the signals obtained in experiments in order to constrain the three parameters of our model. In this model, the charge carriers created are regarded as dipoles and their density is related to the dielectric polarization in the silicon detector. This phenomenon induces an increase in permittivity throughout the range of the incident ion and consequently the electric field between the electrodes of the detector is decreased inside the trace. We coupled with this phenomenon a dissociation and extraction mode of the charge carriers so that they can be moved in the electric field. (author)

  2. Observations of Heavy Ions in the Magnetosphere

    Science.gov (United States)

    Kistler, L. M.

    2017-12-01

    There are two sources for the hot ions in the magnetosphere: the solar wind and the ionosphere. The solar wind is predominantly protons, with about 4% He++ and less than 1% other high charge state heavy ions. The ionospheric outflow is also predominantly H+, but can contain a significant fraction of heavy ions including O+, N+, He+, O++, and molecular ions (NO+, N2+, O2+). The ionospheric outflow composition varies significantly both with geomagnetic activity and with solar EUV. The variability in the contribution of the two sources, the variability in the ionospheric source itself, and the transport paths of the different species are all important in determining the ion composition at a given location in the magnetosphere. In addition to the source variations, loss processes within the magnetosphere can be mass dependent, changing the composition. In particular, charge exchange is strongly species dependent, and can lead to heavy ion dominance at some energies in the inner magnetosphere. In this talk we will review the current state of our understanding of the composition of the magnetosphere and the processes that determine it.

  3. K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms

    OpenAIRE

    KHABIBULLAEV, P. K.

    2014-01-01

    A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.

  4. BNL heavy ion fusion program

    International Nuclear Information System (INIS)

    Maschke, A.W.

    1978-01-01

    A principal attraction of heavy ion fusion is that existing accelerator technology and theory are sufficiently advanced to allow one to commence the design of a machine capable of igniting thermonuclear explosions. There are, however, a number of features which are not found in existing accelerators built for other purposes. The main thrust of the BNL Heavy Ion Fusion program has been to explore these features. Longitudinal beam bunching, very low velocity acceleration, and space charge neutralization are briefly discussed

  5. Mass and Charge Measurements on Heavy Ions

    Science.gov (United States)

    Sugai, Toshiki

    2017-01-01

    The relationship between mass and charge has been a crucial topic in mass spectrometry (MS) because the mass itself is typically evaluated based on the m/z ratio. Despite the fact that this measurement is indirect, a precise mass can be obtained from the m/z value with a high m/z resolution up to 105 for samples in the low mass and low charge region under 10,000 Da and 20 e, respectively. However, the target of MS has recently been expanded to the very heavy region of Mega or Giga Da, which includes large particles and biocomplexes, with very large and widely distributed charge from kilo to Mega range. In this region, it is necessary to evaluate charge and mass simultaneously. Recent studies for simultaneous mass and charge observation and related phenomena are discussed in this review. PMID:29302406

  6. Study on possibility of development of a laser multicharged ion source for a heavy ion fusion driver

    International Nuclear Information System (INIS)

    Barabash, L.Z.; Krechet, K.I.; Lapitskij, Yu.Ya.; Latyshev, S.V.; Shumshurov, A.V.

    1983-01-01

    The results of studying laser produced plasma ion sources for a heavy ion accelerating-storage complex used as a heavy ion fusion driver are presented. The following parameters were measured on an installation aimed for studying physical characteristics of heavy ion laser plasma for a lead target at laser radiation flux density of approximately 3x10 10 W/cm 2 : scattered ion charge composition, energy spectra and scattering angle distributions, ion currents, absolute number of ions in every charge state, plasma electron temperature. The ion current pulse duration varied from 3x10 -4 s at Z +1 to 2x10 -5 s at Z +10 . The maximum current amplitude of 2 mA corresponded to Z +7 charge. The scattering velocity increased with charge. The total number of ions that could be used for acceleration was approximately 5x10 13 for Z +2 and 5x10 12 for Z +6 per pulse. The ion laser source brightness was 2x10 11 A/cm 2 , the particle phase density was 10 18 (cmxrad) -1

  7. Heavy-ion dominance near Cluster perigees

    Science.gov (United States)

    Ferradas, C. P.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.

    2015-12-01

    Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 h, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L shell and MLT of these heavy-ion-dominant time periods.

  8. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-01-01

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster

  9. Long plasma source for heavy ion beam charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.; Grant Logan, Larry B.; Seidl, Peter A.; Waldron, William

    2009-01-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus them to a small spot size and compress their axial length. The plasma source should operate at low neutral pressures and without strong externally applied fields. To produce long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients have been developed. The source utilizes the ferroelectric ceramic BaTiO 3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic material. High voltage (∼8 kV) is applied between the drift tube and the front surface of the ceramics. A BaTiO 3 source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma in the 5x10 10 cm -3 density range. The source was integrated into the NDCX device for charge neutralization and beam compression experiments, and yielded current compression ratios ∼120. Present research is developing multi-meter-long and higher density sources to support beam compression experiments for high-energy-density physics applications.

  10. Techniques for enhancing the performance of high charge state ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1999-01-01

    Electron Cyclotron Resonance ion source (ECRIS), which produces singly to highly charged ions, is widely used in heavy ion accelerators and is finding applications in industry. It has progressed significantly in recent years thanks to a few techniques, such as multiple-frequency plasma heating, higher mirror magnetic fields and a better cold electron donor. These techniques greatly enhance the production of highly charged ions. More than 1 emA of He 2+ and O 6+ , hundreds of eμA of O 7+ , Ne 8+ , Ar 12+ , more than 100 eμA of intermediate heavy ions with charge states up to Ne 9+ , Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ and Kr 18+ , tens of eμA of heavy ions with charge states up to Xe 28+ , Au 35+ , Bi 34+ and U 34+ were produced at cw mode operation. At an intensity of about 1 eμA, the charge states for the heavy ions increased up to Xe 36+ , Au 46+ , Bi 47+ and U 48+ . More than an order of magnitude enhancement of fully stripped argon ions was achieved (I≥0.1 and h;eμA). Higher charge state ions up to Kr 35+ , Xe 46+ and U 64+ at low intensities were produced for the first time from an ECRIS. copyright 1999 American Institute of Physics

  11. Measurement of stopping power of heavy ions

    International Nuclear Information System (INIS)

    Kitahara, Tetsuo

    1981-01-01

    The stopping power of heavy ions is discussed. In the low energy region, heavy ions keep some of their orbital electrons, and have equilibrium electron charge. The stopping power of penetrating particles depends on this effective charge. At present, it is hard to estimate this effective charge theoretically, accordingly, the estimation is made experimentally. Another difficulty in this estimation is that the Born approximation is not effective for heavy ions. In the low energy region, electronic stopping and nuclear stopping contribute to the stopping power. For the electronic stopping, a formula for the stopping power was given by Lindhard et al. The experimental values were obtained at GSI, and are inconsistent with the estimation by the Lindhard's formula. In the high energy region, where the Born approximation can be used, the Bethe's formula is applied, but the experimental data are scarce. Oscillations are seen in the Z dependence graph of the experimental stopping cross sections. Experimental works on the stopping power have been done. The differential and the integral methods were carried out. (Kato, T.)

  12. Production of highly ionized recoil ions in heavy ion impact

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Be, S.H.; Shibata, H.; Kase, M.; Kambara, T.; Kumagai, H.; Kohno, I.

    1985-01-01

    The production mechanisms of highly ionized recoil ions in energetic, highly charged heavy ion impact are compared with those in photon and electron impact. In addition to the innershell ionization processes which are important in photon and electron impact, the electron transfer processes are found to play a key role in heavy ion impact. In molecular targets are also observed highly ionized monoatomic ions which are believed to be produced through production of highly ionized molecular ions followed by prompt dissociation. The observed N 6+ ions produced in 1.05MeV/amu Ar 12+ ions on N 2 molecules are produced through, for example, N 2 12+ *→N 6+ +N 6+ process. (author)

  13. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A.S., E-mail: elsaid@kfupm.edu.sa [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Wilhelm, R.A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Sorokin, M. [National Research Centre ’Kurchatov Institute’, Kurchatov Square 1, 123182 Moscow (Russian Federation); Facsko, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV {sup 129}Xe{sup (33–40)+} and with various swift heavy ions (SHI) of 30 MeV I{sup 9+} and 374 MeV–2.2 GeV {sup 197}Au{sup 25+}. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  14. Systematics of Charged Particle Production in Heavy-Ion Collisions with the PHOBOS Detector at Rhic

    Science.gov (United States)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-03-01

    The multiplicity of charged particles produced in Au+Au collisions as a function of energy, centrality, rapidity and azimuthal angle has been measured with the PHOBOS detector at RHIC. These results contribute to our understanding of the initial state of heavy ion collisions and provide a means to compare basic features of particle production in nuclear collisions with more elementary systems.

  15. High current vacuum arc ion source for heavy ion fusion

    International Nuclear Information System (INIS)

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-01-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in ∼0.5 A current beams with ∼20 micros pulse widths and ∼10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce ∼0.5 A, ∼60 keV Gd (A∼158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported

  16. Prospects for high energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Leemann, C.

    1979-03-01

    The acceleration of heavy ions to relativistic energies (T greater than or equal to 1 GeV/amu) at the beam intensities required for fundamental research falls clearly in the domain of synchrotons. Up to date, such beams have been obtained from machines originally designed as proton acccelerators by means of modified RF-programs, improved vacuum and, most importantly, altered or entirely new injector systems. Similarly, for the future, substantial changes in synchrotron design itself are not foreseen, but rather the judicious application and development of presently known principles and technologies and a choice of parameters optimized with respect to the peculiarities of heavy ions. The low charge to mass ratio, q/A, of very heavy ions demands that superconducting magnets be considered in the interest of the highest energies for a given machine size. Injector brightness will continue to be of highest importance, and although space charge effects such as tune shifts will be increased by a factor q 2 /A compared with protons, advances in linac current and brightness, rather than substantially higher energies are required to best utilize a given synchrotron acceptance. However, high yeilds of fully stripped, very heavy ions demand energies of a few hundred MeV/amu, thus indicating the need for a booster synchrotron, although for entirely different reasons than in proton facilities. Finally, should we consider colliding beams, the high charge of heavy ions will impose severe current limitations and put high demands on system design with regard to such quantities as e.g., wall impedances or the ion induced gas desorption rate, and advanced concepts such as low β insertions with suppressed dispersion and very small crossing angles will be essential to the achievement of useful luminosities

  17. A multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    International Nuclear Information System (INIS)

    Christie, W.B.; Romero, J.L.; Brady, F.P.; Tull, C.E.; Castaneda, C.M.; Barasch, E.F.; Webb, M.L.; Drummond, J.R.; Sann, H.; Young, J.C.

    1987-01-01

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon 40 Ar and 0.30e fwhm for 1.08 GeV/nucleon 139 La and 139 La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with σ≅100 μm. (orig.)

  18. First phase plan for experimental study of heavy-ion inertial fusion accelerator

    International Nuclear Information System (INIS)

    Hattori, Toshiyuki; Okamura, Masahiro; Oguri, Yoshiyuki; Aida, Toshihiro; Takeuchi, Kouichi; Sasa, Kimikazu; Itoh, Takashi; Okada, Masashi; Takahashi, Yousuke; Ishii, Yasuyuki.

    1993-01-01

    We propose the basic experiment plan of driver for heavy-ion inertial fusion by heavy-ion linac [1-3] system and the heavy-ion cooler synchrotron. As the first phase of planning, we will improve old heavy-ion accelerator system that accelerate small intensity around Cl ion with charge to mass ratio of 1/4 up to 2.4 MeV/amu. The injector of the system will exchange from the 1.6 MV Peletron Tandem accelerator to an RFQ type linac with an ECR heavy-ion source. According to building up the power sources of RF and focusing magnet, then it is able to accelerate intense around Xe ion with charge to mass ratio of 1/6 up to 2.4 MeV/amu. At the next stage of it, we will construct a heavy-ion cooler synchrotron having magneticrigidity of 3 or 6 Tm and begin to study about HIF driver. (author)

  19. Ferroelectric plasma source for heavy ion beam space charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik P.; Davidson, Ronald C.; Grisham, Larry; Grant Logan, B.; Seidl, Peter A.; Waldron, William; Yu, Simon S.

    2007-01-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to allow them to focus to a small spot size and compress their axial pulse length. The plasma source should be able to operate at low neutral pressures and without strong externally applied electric or magnetic fields. To produce 1 m-long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients are being developed. The sources utilize the ferroelectric ceramic BaTiO 3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic material, and high voltage (∼7 kV) will be applied between the drift tube and the front surface of the ceramics. A prototype ferroelectric source, 20 cm in length, has produced plasma densities of 5x10 11 cm -3 . It was integrated into the Neutralized Transport Experiment (NTX), and successfully charge neutralized the K + ion beam. A 1 m-long source comprised of five 20-cm-long sources has been tested. Simply connecting the five sources in parallel to a single pulse forming network power supply yielded non-uniform performance due to the time-dependent nature of the load that each of the five plasma sources experiences. Other circuit combinations have been considered, including powering each source by its own supply. The 1-m-long source has now been successfully characterized, producing relatively uniform plasma over the 1 m length of the source in the mid-10 10 cm -3 density range. This source will be integrated into the NDCX device for charge neutralization and beam compression experiments

  20. HISTRAP proposal: heavy-ion storage ring for atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D K; Alton, G D; Datz, S; Dittner, P F; Dowling, D T; Haynes, D L; Hudson, E D; Johnson, J W; Lee, I Y; Lord, R S

    1987-04-01

    HISTRAP, Heavy-Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charge very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 T m and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  1. Cooled heavy ion beams at the ESR

    International Nuclear Information System (INIS)

    Steck, M.; Beckert, K.; Bosch, F.; Eickhoff, H.; Franzke, B.; Klepper, O.; Nolden, F.; Reich, H.; Schlitt, B.; Spaedtke, P.; Winkler, T.

    1996-01-01

    The storage ring ESR has been used in various operational modes for experiments with electron cooled heavy ion beams. Besides the standard storage mode including injection and beam accumulation the deceleration of highly charged ions has been demonstrated. Beams of highly charged ions have been injected and accumulated and finally decelerated to a minimum energy of 50 MeV/u. An ultraslow extraction method using charge changing processes is now also available for cooled beams of highly charged ions. For in ring experiments the internal gas jet and the cold electron beam of the cooling system are applied as targets. High precision mass spectrometry by Schottky noise detection has been demonstrated. Operation at transition energy has been achieved with cooled beams opening the field for experiments which require an isochronous revolution of the ions. (orig.)

  2. ERC sources for the production of highly charged ions (invited)

    International Nuclear Information System (INIS)

    Lyneis, C.M.; Antaya, T.A.

    1990-01-01

    Electron cyclotron resonance ion sources (ECRIS) using rf between 5 and 16 GHz have been developed into stable, reliable sources of highly charged ions produced from a wide range of elements. These devices are currently used as ion sources for cyclotrons, synchrotrons, and heavy-ion linacs for nuclear and relativistic heavy-ion physics. They also serve the atomic physics community as a source of low energy multiply charged ions. In order to improve their performance both with respect to maximum charge state and beam intensity, ECRIS builders are now designing and constructing sources which will operate at frequencies up to 30 GHz. In this article we review the present status of operating ECRIS, review recent experimental measurements on plasma parameters, and look at the technology and potential of sources operating at frequencies up to 30 GHz

  3. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  4. Fundamental processes determining the highly charged ion production in ECR ion sources

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1992-01-01

    The ion confinement and loss conditions in the open magnetic traps have been analyzed in this article. In EGRIS the the ions are confined in the negative potential well. The simultaneous application of ion cooling and pulse regime is proposed for pulse injection of highly charged ions in heavy ion accelerators and storage rings. 14 refs.; 3 figs

  5. Structure of very heavy few-electron ions - new results from the heavy ion storage ring, ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.; Stoehlker, T.; Kozhuharov, C.; Moshammer, R.; Rymuza, P.; Bosch, F.; Kandler, T.

    1993-08-01

    The heavy ion synchrotron/storage ring facility at GSI, SIS/ESR, provides intense beams of cooled, highly-charged ions up to naked uranium (U 92+ ). By electron capture during ion-atom collisions in the gas target of the ESR or by recombination at ion-electron encounters in the ''electron cooler'' excited states are populated. The detailed structure of very heavy one-, two- and three-electron ions is studied. The different mechanisms leading to the excited states are described, as well as the new experimental tools now available for a detailed spectroscopy of these interesting systems. Special emphasis is given to X-ray transitions to the groundstates in H- and He-like systems. For the heaviest species the groundstate Lambshift can now be probed on an accuracy level of better than 10% using solid-state X-ray detectors. Applying dispersive X-ray analyzing techniques, this accuracy will certainly be improved in future. However, utilizing the dielectronic resonances for a spectroscopy, the structure in Li-like heavy ions can already be probed now on the sub eV level. (orig.)

  6. Heavy Ion Current Transients in SiGe HBTs

    Science.gov (United States)

    Pellish, Jonathan A.; Reed, Robert A.; Vizkelethy, Gyorgy; McMorrow, Dale; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philipe; Duhanel, Olivier; Phillips, Stanley D.; Sutton, Akil K.; hide

    2009-01-01

    Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT: a) Position correlation[ b) Unique response for different bias schemes; c) Similarities to TPA pulsed-laser data. Heavy ion broad-beam transients provide more realistic device response: a) Feedback using microbeam data; b) Overcome issues of LET and ion range with microbeam. Both micro- and broad-beam data sets yield valuable input for TCAD simulations. Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates.

  7. Comparison of the ion induced charge collection in Si epilayer and SOI devices

    International Nuclear Information System (INIS)

    Hirao, Toshio; Mori, Hidenobu; Laird, Jamie Stuart; Onoda, Shinobu; Itoh, Hisayoshi

    2003-01-01

    It is known that the single-event phenomena (SEP) are the malfunction of micro electronics devices caused by the impact of an energetic heavy ion. Improving the tolerance of devices to the SEP requires a better understanding of basic charge collection mechanisms on the timescales of the order of picoseconds. In order to better elucidate these mechanisms, we measure the fast transient current resulting from heavy ion strikes with a fast sampling data collection system and a heavy ion microbeam line at JAERI. In this paper we report on differences in both the transient current and charge collection from 15 MeV carbon ions on silicon-on-insulator, Si epilayer and bulk p + n junction diodes and charge transportation under MeV ion injection is discussed

  8. Heavy-ion driver design and scaling

    International Nuclear Information System (INIS)

    Bieri, R.; Monsler, M.; Meier, W.; Stewart, L.

    1992-01-01

    Parametric models for scaling heavy-ion driver designs are described. Scaling of target performance and driver cost is done for driver parameters including driver energy, number of beams, type of superconductor used in focusing magnets, maximum magnetic field allowed at the superconducting windings, linear quadrupole array packing fraction mass, and ion charge state. The cumulative accelerator voltage and beam currents are determined from the Maschke limits on beam current for each choice of driver energy and post-acceleration pulse duration. The heavy-ion driver is optimized over the large available driver parameter space. Parametric studies and the choice of a base driver model are described in a companion paper

  9. Heavy ion source and preaccelerator for the NUMATRON

    International Nuclear Information System (INIS)

    Sakurada, Yuzo; Mizobuchi, Akira

    1982-01-01

    This paper discusses the present status of the heavy ion source and the preaccelerator for the NUMATRON. It has become clear that a combination of different types of ion sources gives much advantage for optimum operations: a use of the PIG source is best suited for metallic ions, while the duoplasmatron and the single stage ECR source provide better gaseous ions with low charge states. It is suggested that an increase of the preacceleration up to 750kV by the cockcroft-Walton enables acceptance of lower charge states from the ion source. (author)

  10. Experiments with stored heavy ions

    International Nuclear Information System (INIS)

    Fick, D.; Habs, D.; Jaeschke, E.

    1985-02-01

    The success of newly-developed methods of phase space cooling in proton and antiproton storage rings was sufficient for an examination of whether these methods could also be applied in storage rings for heavy ions. An expansion of these methods to heavy ion beams seems attractive for all sorts of reasons. Recently, this area was extensively discussed in a series of working meetings with the result that heavy ion storage rings are to be built for use in atomic and nuclear physics, with integrated radiation cooling and stochastic cooling, but primarily electron cooling. The current state of research and planning for the storage experiment is described. It is not intended to be a structural specification worked out in detail. The general design of the ring, however, has been established, and experimental details have deliberately been kept flexible, to thereby allow very different sorts of experiments to be conducted. The ring described with a maximum magnetic rigidity of Bp = 1.5 Tm, is designed in quadripartite symmetry. The total circumference is approximately 35 m, and there are four straight sections each 3.5 m long for the electron cooling sections, the experimental equipment, as well as HF system and injection. One of the most desirable properties of the reservoir is the multi-charge mode, which will significantly improve the operation which heavy ion beams, which reverse charge in electron cooling sections, target and residual vacuum. Initial considerations are presented with regard to stochastic and electron cooling. A review of possible classes of experiments is given and the schedule and financing of the project is outlined. 46 refs

  11. Physical aspects of heavy charged particle beams for radiotherapy

    International Nuclear Information System (INIS)

    Kawashima, Katsuhiro

    1989-01-01

    Physical properties of heavy ion beams are discussed to improve the physical dose distributions in view of radiotherapy. Preservation of the structural and functional integrity of adjacent normal tissue is required to achieve great probability of tumor control. This will be accomplished with the reduction of irradiated volume of normal tissues and with greater relative biological effectiveness (RBE) on tumor cells than that on surrounding normal cells. This suggests the use of heavy ion beams as new source of radiation that increases the therapeutic ratio. The basis of the improvement in the physical dose distribution by use of heavy charged particles is due to the finite range of the beams and to the less multiple coulomb scattering of the particles having a heavier atomic mass than proton. The depth dose distributions and dose profiles of heavy particle beams are discussed in this article. The lateral sharpness of heavy charged particles is comparable to the penumbra of high energy photon and electron beams and is not of clinical concern due to less coulomb scattering of heavy ions to lateral direction in traversing a medium. The dose gradient at the end of range of primary beam is dependent upon the energy spread and range straggling of the particles. The magnitude of range straggling is nearly proportional to the range and inversely proportional to the inverse square root of the particle mass. Heavy ion beams also undergo nuclear interactions, in which the primary beam may produce lower atomic number particles. Therefore, the dose beyond the Bragg peak is due to those fragments. Fragmentation increases as a function of the atomic mass to the 2/3 power and with the energy of the particles. Thus, the production of fragments diminishes the depth dose advantages of heavy ions. The choice of ion for radiotherapy may depend on evaluation of important parameter for tumor control. (J.P.N.)

  12. Science with multiply-charged ions at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Jones, K.W.; Johnson, B.M.; Meron, M.; Thieberger, P.

    1987-01-01

    The production of multiply-charged heavy ions at Brookhaven National Laboratory and their use in different types of experiments are discussed. The main facilities that are used are the Double MP Tandem Van de Graaff and the National Synchrotron Light Source. The capabilities of a versatile Atomic Physics Facility based on a combination of the two facilities and a possible new heavy-ion storage ring are summarized. It is emphasized that the production of heavy ions and the relevant science necessitates very flexible and diverse apparatus

  13. Multiturn Injection into Accumulators for Heavy Ion Inertial Fusion

    CERN Document Server

    Prior, C R

    1996-01-01

    The injection of heavy ions into high current rings is complicated because it is impossible to use charge exchange in material foils to produce the singly charged heavy ions needed to keep space charge manageable on the one hand, and because losses need to be rigorously restricted to < 1 % on the other. With these constraints, the number of turns that may be injected by conventional multiturn injection is limited. This paper describes how the number may be increased by a two-dimensional technique of painting Lissajous-like patterns in x-y space, using an inclined or a corner septum. Simulation examples are presented showing the nature of the beam created in the accumulator and the likely effects of space charge forces.

  14. First heavy ion beam tests with a superconducting multigap CH cavity

    Science.gov (United States)

    Barth, W.; Aulenbacher, K.; Basten, M.; Busch, M.; Dziuba, F.; Gettmann, V.; Heilmann, M.; Kürzeder, T.; Miski-Oglu, M.; Podlech, H.; Rubin, A.; Schnase, A.; Schwarz, M.; Yaramyshev, S.

    2018-02-01

    Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium energies for continuous wave (cw) heavy ion beams. To keep the GSI-super heavy element (SHE) program competitive on a high level and even beyond, a standalone sc cw linac (Helmholtz linear accelerator) in combination with the GSI high charge state injector (HLI), upgraded for cw operation, is envisaged. Recently the first linac section (financed by Helmholtz Institute Mainz (HIM) and GSI) as a demonstration of the capability of 217 MHz multigap crossbar H-mode structures (CH) has been commissioned and extensively tested with heavy ion beam from the HLI. The demonstrator setup reached acceleration of heavy ions up to the design beam energy. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This paper presents systematic beam measurements with varying rf amplitudes and phases of the CH cavity, as well as phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multigap CH cavity is a milestone of the R&D work of HIM and GSI in collaboration with IAP in preparation of the HELIAC project and other cw-ion beam applications.

  15. Experiments on ion space-charge neutralization with pulsed electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [CERN LHC-Division, Geneva (Switzerland)

    1997-12-31

    The method of space-charge neutralization of heavy ion beams with electron beam pulses generated with electron guns incorporating ferroelectric cathodes was investigated experimentally. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source can be increased by an order of magnitude. For elevated charge states the intensity amplification is more significant and may reach a factor of 4 for highly charged ions from an Al target. (author). 7 figs., 3 -refs.

  16. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen, R.H.; Friedman, A.; Grote, D.P; Covo, Kireeff M.; Meier, W.R.; Molvik, A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.; Prost, L.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy

  17. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J.; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2005-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy. (author)

  18. Influence of the zero point oscillation on the charge transfer in the heavy-ion deep inelastic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lin-xiao, Ge; Wen-qing, Shen; Chao-fan, Yu

    1982-01-01

    We discuss the variance of the charge distribution in the heavy ion deep inelastic collision on the basis of the Langevin equation. In order to explain the difference of the inital slope (early stage) of the charge distribution for the different reaction systems and different bombarding energy, an initial condition of the charge drift in the early stage of Dic is introduced. It is given by the harmonic or inhamonic motion around the zero point and closely depends on the nuclear structure and incident energy. The difference of the inertial mass and stiffness parameter may be the one of the reasons for the difference of charge transfer. In addition we also analyse the characterstic of the inertial mass parameter.

  19. Energy straggling of heavy ions in solids

    International Nuclear Information System (INIS)

    Cowern, N.E.B.

    1979-08-01

    The energy-loss straggling of heavy ions has been studied, principally in the Born Approximation region v > zv 0 . Measurements were made with 5.486 MeV α particles, 5 - 48 MeV 16 0 ions, and 3 - 36 MeV 12 C ions, incident on thin uniform Al foils. The thickness uniformity of the foils was studied with a proton microbeam and a surface profiler, and their homogeneity, purity and isotropy were investigated by electron microscope, proton backscattering, and X-ray diffraction studies. Using the Bethe theory of energy loss the charge-exchange model of energy straggling for heavy ions is confirmed. (author)

  20. Studies for the development of a micro-focus monochromatic x-ray source with making use of a highly charged heavy ion beam

    International Nuclear Information System (INIS)

    Nakamura, Nobuyuki; Yoshiyasu, Nobuo; Nakayama, Ryo; Watanabe, Hirofumi

    2008-01-01

    We propose a new scheme for a micro-focus monochromatic X-ray source using a focused highly charged ion beam colliding with a solid surface. When highly charged ion approaches a surface, many electrons are captured into the ion and the so-called hollow atom is produced. The hollow atom will decay by emitting X-rays before and after hitting the surface. Such X-rays do not contain any contribution from bremsstrahlung, so that monochromatic X-rays can be obtained by using proper filters. For the first step of realizing the proposed scheme, an ion focusing system with a glass capillary has been developed. In order to study the monochromaticity of the emission, X-ray spectra from hollow atoms produced in the collisions between highly charged heavy ions and several surfaces have been observed. (author)

  1. Working group report: Heavy ion physics

    Indian Academy of Sciences (India)

    The 8th workshop on high energy physics phenomenology (WHEPP-8) was ... by two plenary talks on experimental overview of heavy ion collisions and ... charge. At low temperature and density the quarks and gluons are confined within.

  2. A method for the energy calibration of a heavy ion accelerator

    International Nuclear Information System (INIS)

    Martin, B.; Michaelsen, R.; Sethi, R.C.; Ziegler, K.

    1985-01-01

    A method for the absolute energy calibration of a heavy ion accelerator was developed at VICKSI. The method is based on the use of a suitably selected heavy ion beam to calibrate an analysing magnet. In front of the entrance slit of the analysing system the beam is stripped with a thin carbon foil. The charge states of the resulting ions cover the whole range from the charge state of the injected ions to the charge state of the fully stripped ions. Ion and energy of the beam have been selected in such a way that the rigidities corresponding to the different charge states cover the full rigidity range of the analysing magnet. The field of the analysing magnet is varied and the NMR-frequency corresponding to each transmitted charge state is obtained. For the absolute calibration a standard α-source is used. The functional dependence of the rigidity versus NMR-frequency can be used to compute the energy of any beam. At present this method gives an absolute accuracy of +-0.15%. The various sources of erros are described. (orig.)

  3. Ion-atom charge-transfer system for a heavy-ion-beam pumped laser

    International Nuclear Information System (INIS)

    Ulrich, A.; Gernhaeuser, R.; Kroetz, W.; Wieser, J.; Murnick, D.E.

    1994-01-01

    An Ar target to which Cs vapor could be added, excited by a pulsed beam of 100-MeV 32 S ions, was studied as a prototype ion-atom charge-transfer system for pumping short-wavelength lasers. Low-velocity Ar 2+ ions were efficiently produced; a huge increase in the intensity of the Ar II 4d-4p spectral lines was observed when Cs vapor was added to the argon. This observation is explained by a selective charge transfer of the Cs 6s electron into the upper levels of the observed transitions. A rate constant of (1.4±0.2)x10 -9 cm 3 /s for the transfer process was determined

  4. Heavy-ion radiography and heavy-ion computed tomography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Holley, W.R.; McFarland, E.W.; Tobias, C.a.

    1982-02-01

    Heavy-ion projection and CT radiography is being developed into a safe, low-dose, noninvasive radiological procedure that can quantitate and image small density differences in human tissues. The applications to heavy-ion mammography and heavy-ion CT imaging of the brain in clinical patients suggest their potential value in cancer diagnosis

  5. Heavy ion beam test results of the silicon charge detector for the CREAM cosmic ray balloon mission

    International Nuclear Information System (INIS)

    Park, I.H.; Ahn, H.S.; Bok, J.B.; Ganel, O.; Hahn, J.H.; Han, W.; Hyun, H.J.; Kim, H.J.; Kim, M.Y.; Kim, Y.J.; Lee, J.K.; Lee, M.H.; Lutz, L.; Min, K.W.; Malinine, A.; Nam, S.W.; Nam, W.; Park, H.; Park, N.H.; Seo, E.S.; Seon, K.I.; Sone, J.H.; Yang, J.; Zinn, S.Y.

    2004-01-01

    The Cosmic Ray Energetics And Mass (CREAM) experiment is designed to measure cosmic ray elemental spectra to help understand the source and acceleration mechanisms of ultra-high-energy cosmic rays. The payload is planned to launch in December 2004 from McMurdo Station, Antarctica as a balloon mission. A Silicon Charge Detector (SCD) was designed and constructed for the CREAM experiment to provide precision charge measurements of incident cosmic rays with a resolution of 0.2 charge unit or better. The SCD was exposed to heavy ion beams at CERN's H2 beam line in November 2003. The results reported here show the SCD performs as designed

  6. Heavy ion beam test results of the silicon charge detector for the CREAM cosmic ray balloon mission

    CERN Document Server

    Park, I H; Bok, J B; Ganel, O; Hahn, J H; Han, W; Hyun, H J; Kim, H J; Kim, M Y; Kim, Y J; Lee, J K; Lutz, L; Malinine, A; Min, K W; Nam, S W; Nam, W; Park, H; Park, N H; Seo, E S; Seon, K I; Sone, J H; Yang, J; Zinn, S Y

    2004-01-01

    The Cosmic Ray Energetics And Mass (CREAM) experiment is designed to measure cosmic ray elemental spectra to help understand the source and acceleration mechanisms of ultra-high-energy cosmic rays. The payload is planned to launch in December 2004 from McMurdo Station, Antarctica as a balloon mission. A Silicon Charge Detector (SCD) was designed and constructed for the CREAM experiment to provide precision charge measurements of incident cosmic rays with a resolution of 0.2 charge unit or better. The SCD was exposed to heavy ion beams at CERN's H2 beam line in November 2003. The results reported here show the SCD performs as designed.

  7. Study on broad beam heavy ion CT

    International Nuclear Information System (INIS)

    Ohno, Yumiko; Kohno, Toshiyuki; Sasaki, Hitomi; Nanbu, S.; Kanai, Tatsuaki

    2003-01-01

    To achieve the heavy ion radiotherapy more precisely, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. From a heavy ion CT image, we can directly obtain the 2-D distribution of the electron density in a sample. For this purpose, we have developed a broad beam heavy ion CT system. The electron density was obtained using some kinds of solutions targets. Also the dependence of the spatial resolution on the target size and the kinds of beams was estimated in this work using cylinders targets of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. (author)

  8. An enhanced production of highly charged ions in the ECR ion sources

    International Nuclear Information System (INIS)

    Schaechter, L.; Dobrescu, S.; Badescu- Singureanu, Al.I.; Stiebing, K.E.; Runkel, S.; Hohn, O.; Schmidt, L.; Schempp, A.; Schmidt - Boecking, H.

    2000-01-01

    The electron cyclotron resonance (ECR) ion source (ECRIS) are the ideal sources of highly charged heavy ions. Highly charged heavy ions are widely used in atomic physics research where they constitute a very efficient tool due to their very high electric potential of collision. The highly charged ions are also used in fusion plasma physics studies, in solid state surface physics investigations and are very efficient when injected in particle accelerators. More than 50 ECR ion sources are presently working in the whole world. Stable and intense highly charged heavy ions beams are extracted from ECR ion sources, in a wide range of ion species. RECRIS, the Romanian 14 GHz ECR Ion Source, developed in IFIN-HH, designed as a facility for atomic physics and materials studies, has been recently completed. The research field concerning the development of advanced ECRIS and the study of the physical processes of the ECR plasma are presently very dynamical , a fact well proved by the great number of scientific published works and the numerous dedicated international conferences and workshops. It is well established that the performance of ECRIS can substantially be enhanced if special techniques like a 'biased disk' or a special wall coating of the plasma chamber are employed. In the frame of a cooperation project between IFIN-HH ,Bucharest, Romania and the Institut fuer Kernphysik of the J. W. Goethe University, Frankfurt/Main, Germany we developed, on the basis of previous research carried out in IFIN-HH, a new method to strongly increase the intensity of the ion beams extracted from the 14.4 GHz ECRIS in Frankfurt. In our method a special metal-dielectric structure (MD cylinder) was introduced in the ECRIS plasma chamber. In the experiment analyzed beams of Ar 16+ ions were increased in intensity by a factor of 50 as compared to the standard set up with stainless steel chamber. These results have been communicated at the International Conference on Ion Sources held at

  9. Proceedings of the 'INS workshop on ECR ion sources for multiply-charged heavy ions'

    International Nuclear Information System (INIS)

    1995-02-01

    This workshop was held on December 1 and 2, 1994 at the Institute for Nuclear Study, University of Tokyo. The performance of ion sources is crucial for all researches and applications that use ion beam. The performance of ECR ion sources is strongly dependent on heuristic knowledge and innovation. From these viewpoints, it is useful to exchange information on the status of the existing sources, the performance of the new sources, and the design of the future sources between the source builders and the users. There were unexpected more than 70 participants and 20 contributions. The lectures were given on the present status of NIRS-ECR, SF-ECR, INS ISOL-ECR, RCNP ECR and EBIS ion sources, the production of multiply charged metallic ions with Hyper ECR or by plasma cathode method, the processing of ceramic rods and the ion production with OCTOPUS, the modeling of multi-charged ion production, the design of an advanced minimum B for ECR multi-charged ion source, the design, construction and operation of 18 GHz HiECR ion source, the construction and test operation of JAERI 18 GHz ion source, the design of an ECR ion source for the HIMAC, a 14.5 GHz ECR ion source at RIKEN, TMU 14 GHz ECR ion source, ''NANOGAN'' ECR ion source and its irradiation system, the optimization of the ECR ion source for optically pumped polarized ion source and so on. (K.I.)

  10. Proceedings of the `INS workshop on ECR ion sources for multiply-charged heavy ions`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This workshop was held on December 1 and 2, 1994 at the Institute for Nuclear Study, University of Tokyo. The performance of ion sources is crucial for all researches and applications that use ion beam. The performance of ECR ion sources is strongly dependent on heuristic knowledge and innovation. From these viewpoints, it is useful to exchange information on the status of the existing sources, the performance of the new sources, and the design of the future sources between the source builders and the users. There were unexpected more than 70 participants and 20 contributions. The lectures were given on the present status of NIRS-ECR, SF-ECR, INS ISOL-ECR, RCNP ECR and EBIS ion sources, the production of multiply charged metallic ions with Hyper ECR or by plasma cathode method, the processing of ceramic rods and the ion production with OCTOPUS, the modeling of multi-charged ion production, the design of an advanced minimum B for ECR multi-charged ion source, the design, construction and operation of 18 GHz HiECR ion source, the construction and test operation of JAERI 18 GHz ion source, the design of an ECR ion source for the HIMAC, a 14.5 GHz ECR ion source at RIKEN, TMU 14 GHz ECR ion source, ``NANOGAN`` ECR ion source and its irradiation system, the optimization of the ECR ion source for optically pumped polarized ion source and so on. (K.I.).

  11. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    Science.gov (United States)

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  12. Charge state of ions scattered by metal surface

    International Nuclear Information System (INIS)

    Kishinevsky, L.M.; Parilis, E.S.; Verleger, V.K.

    1976-01-01

    A model for description of charge distributions for scattering of heavy ions in the keV region, on metal surfaces developing and improving the method of Van der Weg and Bierman, and taking into account the connection between the ion charge state and scattering kinematics, is proposed. It is shown that multiple charged particles come from ions with a vacancy in the inner shell while the outer shell vacancies give only single charged ions and neutrals. The approximately linear increase of degree of ionization with normal velocity, and the non-monotonic charge dependence of the energy spectrum established by Chicherov and Buck et al is explained by considering irreversible neutralization in the depth of the metal, taking into account the connection of the charge state with the shape of trajectory and its location relative to the metal surface. The dependence of charge state on surface structure is discussed. Some new experiments are proposed. (author)

  13. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  14. Multiple Electron Stripping of Heavy Ion Beams

    International Nuclear Information System (INIS)

    Mueller, D.; Grisham, L.; Kaganovich, I.; Watson, R. L.; Horvat, V.; Zaharakis, K. E.; Peng, Y.

    2002-01-01

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters

  15. Charge-state correlated cross sections for the production of low-velocity highly charged Ne ions by heavy-ion bombardment

    International Nuclear Information System (INIS)

    Gray, T.J.; Cocke, C.L.; Justiniano, E.

    1980-01-01

    We report measured cross sections for the collisional production of highly charged low-velocity Ne recoil ions resulting from the bombardment of a thin Ne gas target by highly charged 1-MeV/amu C, N, O, and F projectiles. The measurements were made using time-of-flight techniques which allowed the simultaneous identification of the final charge state of both the low-velocity recoil ion and the high-velocity projectile for each collision event. For a given incident-projectile charge state, the recoil charge-state distribution is very dependent upon the final charge state of the projectile. Single- and double-electron capture events by incident bare nuclei and projectile K-shell ionization during the collision cause large shifts in the recoil charge-state distributions toward higher charge states. A previously proposed energy-deposition model is modified to include the effects of projectile charge-changing collisions during the collision for bare and hydrogenlike projectiles and is used to discuss the present experimental results

  16. Quantum–classical simulations of the electronic stopping force and charge on slow heavy channelling ions in metals

    International Nuclear Information System (INIS)

    Race, C P; Mason, D R; Foo, M H F; Foulkes, W M C; Sutton, A P; Horsfield, A P

    2013-01-01

    By simulating the passage of heavy ions along open channels in a model crystalline metal using semi-classical Ehrenfest dynamics we directly investigate the nature of non-adiabatic electronic effects. Our time-dependent tight-binding approach incorporates both an explicit quantum mechanical electronic system and an explicit representation of a set of classical ions. The coupled evolution of the ions and electrons allows us to explore phenomena that lie beyond the approximations made in classical molecular dynamics simulations and in theories of electronic stopping. We report a velocity-dependent charge-localization phenomenon not predicted by previous theoretical treatments of channelling. This charge localization can be attributed to the excitation of electrons into defect states highly localized on the channelling ion. These modes of excitation only become active when the frequency at which the channelling ion moves from interstitial point to equivalent interstitial point matches the frequency corresponding to excitations from the Fermi level into the localized states. Examining the stopping force exerted on the channelling ion by the electronic system, we find broad agreement with theories of slow ion stopping (a stopping force proportional to velocity) for a low velocity channelling ion (up to about 0.5 nm fs −1 from our calculations), and a reduction in stopping power attributable to the charge localization effect at higher velocities. By exploiting the simplicity of our electronic structure model we are able to illuminate the physics behind the excitation processes that we observe and present an intuitive picture of electronic stopping from a real-space, chemical perspective. (paper)

  17. Heavy ion fusion experiments at LLNL

    International Nuclear Information System (INIS)

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-01-01

    We review the status of the experimental campaign being carried out at Lawrence Livermore National Laboratory, involving scaled investigations of the acceleration and transport of space-charge dominated heavy ion beams. The ultimate goal of these experiments is to help lay the groundwork for a larger scale ion driven inertial fusion reactor, the purpose of which is to produce inexpensive and clean electric power

  18. Irradiation effects induced by multiply charged heavy ions on astrophysical materials such as crystals and ices

    International Nuclear Information System (INIS)

    Langlinay, Thomas

    2014-01-01

    The solar system and the interstellar medium are permanently exposed to radiations such as solar wind and cosmic rays. The interaction between energetic particles and astrophysical materials (ices, silicates and carbon-based materials) plays an important role in several astrophysical phenomena. Laboratory experiments correlated to observational data may allow a better understanding of these phenomena. The aim of this thesis was to study the effect of slow and fast heavy ions on lithium fluoride and on astrophysical materials such as ices and silicates. We focused on the sputtering phenomenon. The present study was performed with a time of flight imaging technique (XY-TOF-SIMS) at the CIMAP-GANIL laboratory. The major fraction of secondary ions is found to be emitted in the form of clusters. Several parameters affect sputtering: the stopping power regime, the thickness of the target, the incident angle and, for low highly charged ions, the projectile charge. Our laboratory simulations exhibit the possibility that sputtered particles contribute to the formation of Mercury's and Jupiter's moons exosphere. (author)

  19. Production of highly charged ion beams with SECRAL

    International Nuclear Information System (INIS)

    Sun, L. T.; Zhao, H. W.; Zhang, X. Z.; Feng, Y. C.; Li, J. Y.; Guo, X. H.; Ma, H. Y.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Jin, T.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-01-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e μA of Xe 37+ , 1 e μA of Xe 43+ , and 0.16 e μA of Ne-like Xe 44+ . To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi 31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e μA of Bi 31+ , 22 e μA of Bi 41+ , and 1.5 e μA of Bi 50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  20. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  1. EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas

    Science.gov (United States)

    Nakamura, Nobuyuki

    2013-05-01

    An electron beam ion trap (EBIT) is a versatile device for studying highly charged ions. We have been using two types of EBITs for the spectroscopic studies of highly charged ions. One is a high-energy device called the Tokyo-EBIT, and another is a compact low-energy device called CoBIT. Complementary use of them enables us to obtain spectroscopic data for ions over a wide charge-state range interacting with electrons over a wide energy range. In this talk, we present EBIT spectra of highly charged ions for tungsten, iron, bismuth, etc., which are relevant to hot plasmas. Tungsten is considered to be the main impurity in the ITER (the next generation nuclear fusion reactor) plasma, and thus its emission lines are important for diagnosing and controlling the ITER plasma. We have observed many previously unreported lines to supply the lack of spectroscopic data of tungsten ions. Iron is one of the main components of the solar corona, and its spectra are used to diagnose temperature, density, etc. The diagnostics is usually done by comparing observed spectra with model calculations. An EBIT can provide spectra under a well-defined condition; they are thus useful to test the model calculations. Laser-produced bismuth plasma is one of the candidates for a soft x-ray source in the water window region. An EBIT has a narrow charge state distribution; it is thus useful to disentangle the spectra of laser-produced plasma containing ions with a wide charge-state range. Performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS09KOAJ003) and JSPS KAKENHI Number 23246165, and partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics.

  2. Heavy-ion-induced, gate-rupture in power MOSFETs

    International Nuclear Information System (INIS)

    Fischer, T.A.

    1987-01-01

    A new, heavy-ion-induced, burnout mechanism has been experimentally observed in power metal-oxide-semiconductor field-effect transistors (MOSFETs). This mechanism occurs when a heavy, charged particle passes through the gate oxide region of n- or p-channel devices having sufficient gate-to-source or gate-to-drain bias. The gate-rupture leads to significant permanent degradation of the device. A proposed failure mechanism is discussed and experimentally verified. In addition, the absolute immunity of p-channel devices to heavy-ion-induced, semiconductor burnout is demonstrated and discussed along with new, non-destructive, burnout testing methods

  3. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  4. The GOES-16 Energetic Heavy Ion Sensor (EHIS) Ion Composition and Flux Measurements

    Science.gov (United States)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite (formerly GOES-R) in Geostationary orbit. EHIS measures energetic ions over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range (e.g., 19-207 MeV/u for carbon and 38-488 MeV/u for iron). EHIS uses the Angle Detecting Inclined Sensors (ADIS) technique to provide single-element charge resolution. Though on an operational mission for Space Weather monitoring, EHIS can thus provide a new source of high quality Solar Particle Event (SPE) data for science studies. With a high rate of on-board processing ( 2000 events/s), EHIS will provide exceptional statistics for ion composition measurements in large SPEs. For the GOES Level 1-B and Level 2 data products, heavy ions are distinguished in EHIS using pulse-height analysis with on-board processing producing charge histograms for five energy bands. Fits to these data are normalized to priority rate data on the ground. The instrumental cadence for histograms is 1 minute and the primary Level 1-B heavy ion data products are 1-minute and 5-minute averages. We discuss the preliminary EHIS heavy ion data results which show elemental peaks from H to Fe, with peaks for the isotopes D and 3He. (GOES-16 was launched in 19 November, 2016 and data has, though July 2017, been dominated by Galactic Cosmic Rays.) The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  5. Dependence of asymmetries for charge distribution with respect to the reaction plane on initial energy in heavy-ion collisions

    International Nuclear Information System (INIS)

    Okorokov, V.A.

    2013-01-01

    In this paper, two combinations of correlators are defined in order to investigate the evolution of possible C/CP invariance violation in strong interactions with initial energy for heavy-ion collisions. These combinations correspond to absolute and relative asymmetry of distribution of electrically charge particles with respect to the reaction plane in heavy-ion collisions. Energy dependence of parameters under study was derived from data of STAR and ALICE experiments. Significant decreasing both absolute and relative asymmetry is observed at energies √s NN < 20 GeV. This feature agrees qualitatively with other results of stage-I beam energy scan program in STAR experiment. General behavior of dependence of absolute asymmetry on initial energy agrees reasonably with behavior of similar dependence of Chern–Simons diffusion rate calculated at different values of external Abelian magnetic field. The observed behavior of parameters under study versus energy can be considered as indication on possible transition to predominance of hadronic states over quark–gluon degrees of freedom in the mixed phase created in heavy-ion collisions at intermediate energies. (author)

  6. The effective charge of heavy ions in hot, dense plasma, special attention being given to dielectronic recombination

    International Nuclear Information System (INIS)

    Peter, T.

    1985-11-01

    This work investigates the effective charge Zsub(eff) of heavy ion beams when passing through hot, dense matter. Major new results concern the temperature and high density effects on Zsub(eff), the importance of dielectronic recombination in the process where free electrons are captured by the projectile, and the corresponding shell oscillations in Zsub(eff), as well as the derivation of approximate scaling relations for Zsub(eff). (orig./GG) [de

  7. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    Science.gov (United States)

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  8. Chamber transport for heavy ion fusion

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted

  9. Spectroscopy of multi-charged ions: a short review

    International Nuclear Information System (INIS)

    Berry, H.G.

    1983-01-01

    Recent and future applications of multiply charged ions to spectroscopy and atomic structure are discussed. The experimental techniques use either very fast ions produced in heavy ion accelerators, or slow ions produced directly both in electron beam ion sources and from collisions of fast accelerated ions. For the accelerated fast ions, spectroscopic measurements on using gas target excitation, solid foil excitation and laser excitation. In gas target excitation, both X-ray and electron spectroscopy have been applied to analyse atomic structures and secondary collision effects. Highlycharged secondary ions have also been trapped electro-magnetically for further similar studies in controlled conditions. Spectroscopic detection following solid foil interaction has led to atomic lifetime measurements, principally of metastable level, analysis of complex highly-ionized heavy ion spectra, and investigations of relativistic and QED effects in few electron ions

  10. Topical problems of accelerator and applied heavy ion physics

    International Nuclear Information System (INIS)

    Becker, R.; Deitinghoff, H.; Junior, P.H.; Schempp, A.

    1990-12-01

    These proceedings contain the articles presented at the named seminar. They deal with high-intensity linacs for heavy ions, the free-electron laser, applications of heavy-ion beams, MEQALAC, the ESR Schottky-diagnosis system, the analysis of GaAs by ion-beam methods, a light-ion synchrotron for cancer therapy, a device for the measurement of the momentum spread of ion beams, the European Hadron facility, the breakdown fields at electrons in high vacuum, a computer program for the calculation of electric quadrupoles, a focusing electrostatic mirror, storage and cooling of Ar beams, the visualization of heavy ion tracks in photographic films, the motion of ions in magnetic fields, the CERN heavy ion program, linear colliders, the beam injection from a linac into a storage ring, negative-ion sources, wake field acceleration, RFQ's, a dense electron target, the matching of a DC beam into the RFQ, electron emission and breakdown in vacuum, and 1-1.5 GeV 300 mA linear accelerator, the production of high-current positive-ion beams, high-current beam experiments at GSI, improvement of the Frankfurt EBIS, the physics of the violin, double layers, beam formation with coupled RFQ's, atomic nitrogen beam for material modification, compact superconducting synchrotron-radiation sources, industrial property rights, a RF ion source for thin film processes, beam-cavity interactions in the RFQ linac, atomic physics with crossed uranium beams, proton linacs, the interdigital H-type structure, injection of H - beams into a RFQ accelerator, the production of MOS devices by ion implantation, the application of RFQ's, the Frankfurt highly-charged ion facility, RF acceleration techniques for beam current drive in tokamaks, space-charge neutralized transport, and storage rings for synchrotron radiation and free electron lasers. (HSI)

  11. Heavy ion beam-ionosphere interactions: Charging and neutralizing the payload

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Arnoldy, R.L.; Walker, D.N.; Holmes, J.C.; Pollock, C.J.; Cahill, L.J. Jr.; Kintner, P.M.

    1989-01-01

    The argon release controlled studies (ARCS 1-3) rocket flights carried ion generators to altitudes of 400-500 km in the nighttime auroral ionosphere. Three distinct electrical charging and neutralization processes were seen on the payloads during gun operation: steady or dc vehicle charging, brief charging at gun turn-on, and extended oscillatory sequences. Many of the unexpected consequences of gun firings are attributed to these payload charging and neutralization processes. Electrical charging is regulated by the rate at which low-energy electrons escape from the generator, which in turn is dependent on magnetic field geometry. Each ion generator produced a dipolar magnetic field which merged with the Earth's field near the rocket. The resulting local magnetic field guided electrons back to the rocket for certain gun orientations, thereby inhibiting neutralization. Transient charging was attributed to the formation of an electron cloud around at least some vehicles, while dc charging altered the rocket's surroundings until the electron escape rate balanced the ion beam flux. The authors concluded that during oscillatory events the entire environment of a payload could alternate between hot electron and cold electron configurations at very high rates, possibly exceeding 10 kHz. These changes in the plasma environment did not produce substantial electric field perturbations at the dc or ac high impedance electric field sensors, so were not seen in data from typical wave detectors. However, changes in plasma density and temperature produced dramatic effects on low impedance electric current sensors such as Langmuir probes

  12. X-ray emission in slow highly charged ion-surface collisions

    International Nuclear Information System (INIS)

    Watanabe, H; Abe, T; Fujita, Y; Sun, J; Takahashi, S; Tona, M; Yoshiyasu, N; Nakamura, N; Sakurai, M; Yamada, C; Ohtani, S

    2007-01-01

    X-rays emitted in the collisions of highly charged ions with a surface have been measured to investigate dissipation schemes of their potential energies. While 8.1% of the potential energy was dissipated in the collisions of He-like I ions with a W surface, 29.1% has been dissipated in the case of He-like Bi ions. The x-ray emissions play significant roles in the dissipation of the potential energies in the interaction of highly charged heavy ions with the surface

  13. Heavy ion program at BNL: AGS, RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Barton, D.S.

    1987-01-01

    With the recent commissioning of fixed target, heavy ion physics at the AGS, Brookhaven National Laboratory (BNL) has embarked on a long range program in support of relativistic heavy ion research. Acceleration of low mass heavy ions (up to sulfur) to an energy of about 14.5 GeV/nucleon is possible with the direct connection of the BNL Tandem Van de Graaff and AGS accelerators. When completed, the new booster accelerator will provide heavy ions over the full mass range for injection and subsequent acceleration in the AGS. BNL is now engaged in an active R and D program directed toward the proposed Relativistic Heavy Ion Collider (RHIC). The results of the first operation of the low mass heavy ion program will be reviewed, and future expectations discussed. The expected performance for the heavy ion operation of the booster will be described and finally, the current status and outlook for the RHIC facility will be presented

  14. Progress in understanding heavy-ion stopping

    Energy Technology Data Exchange (ETDEWEB)

    Sigmund, P., E-mail: sigmund@sdu.dk [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Schinner, A. [Institut für Experimentalphysik, Johannes Kepler Universität, A-4040 Linz (Austria)

    2016-09-01

    We report some highlights of our work with heavy-ion stopping in the energy range where Bethe stopping theory breaks down. Main tools are our binary stopping theory (PASS code), the reciprocity principle, and Paul’s data base. Comparisons are made between PASS and three alternative theoretical schemes (CasP, HISTOP and SLPA). In addition to equilibrium stopping we discuss frozen-charge stopping, deviations from linear velocity dependence below the Bragg peak, application of the reciprocity principle in low-velocity stopping, modeling of equilibrium charges, and the significance of the so-called effective charge.

  15. Progress in understanding heavy-ion stopping

    International Nuclear Information System (INIS)

    Sigmund, P.; Schinner, A.

    2016-01-01

    We report some highlights of our work with heavy-ion stopping in the energy range where Bethe stopping theory breaks down. Main tools are our binary stopping theory (PASS code), the reciprocity principle, and Paul’s data base. Comparisons are made between PASS and three alternative theoretical schemes (CasP, HISTOP and SLPA). In addition to equilibrium stopping we discuss frozen-charge stopping, deviations from linear velocity dependence below the Bragg peak, application of the reciprocity principle in low-velocity stopping, modeling of equilibrium charges, and the significance of the so-called effective charge.

  16. Experimental aspects of S.H.I.C. (Swift Heavy Ion Channeling)

    International Nuclear Information System (INIS)

    Andriamonje, S.; Castro Faria, N.V. de; Chevallier, M.; Gaillard, M.J.; Genre, R.; Farizon-Mazuy, B.; Poizat, J.C.; Remillieux, J.; Hage-Ali, M.; Cohen, C.; L'Hoir, A.; Moulin, J.; Schmaus, D.

    1989-01-01

    The mean stopping power experienced by the ions of exit charge Z and the charge distribution are measured. The experimental set up description is summarized. The experiments were performed at GANIL, using hydrogenoid Xenon ions, with 25 MeV/u on a silicon crystal target. The ion channeling and energy losses are measured. The results concerning the Lyman alpha lines intensity and Xe36 + transmission as a function of the crystal orientation are presented. The suitability of LISE device, for investigating crystalline effects in heavy ion charge exchange phenomena, is confirmed

  17. Transverse energy and charged particle production in heavy-ion collisions: from RHIC to LHC

    International Nuclear Information System (INIS)

    Sahoo, Raghunath; Mishra, Aditya Nath

    2014-01-01

    We study the charged particle and transverse energy production mechanism from AGS, SPS, Relativistic Heavy-Ion Collider (RHIC) to Large Hadron Collider (LHC) energies in the framework of nucleon and quark participants. At RHIC and LHC energies, the number of nucleons-normalized charged particle and transverse energy density in pseudorapidity, which shows a monotonic rise with centrality, turns out to be an almost centrality independent scaling behavior when normalized to the number of participant quarks. A universal function which is a combination of logarithmic and power-law, describes well the charged particle and transverse energy production both at nucleon and quark participant level for the whole range of collision energies. Energy dependent production mechanisms are discussed both for nucleonic and partonic level. Predictions are made for the pseudorapidity densities of transverse energy, charged particle multiplicity and their ratio (the barometric observable, [dE T /dη]/[dN ch /dη] ≡ E T /N ch ) at mid-rapidity for Pb + Pb collisions at √s NN = 5.5 TeV. A comparison with models based on gluon saturation and statistical hadron gas is made for the energy dependence of E T /N ch . (author)

  18. Studying Heavy Ion Collisions Using Methods From Cosmic Microwave Background (CMB Analysis

    Directory of Open Access Journals (Sweden)

    Gaardhøje J. J.

    2014-04-01

    Full Text Available We present and discuss a framework for studying the morphology of high-multiplicity events from relativistic heavy ion collisions using methods commonly employed in the analysis of the photons from the Cosmic Microwave Background (CMB. The analysis is based on the decomposition of the distribution of the number density of (charged particles expressed in polar and azimuthal coordinates into a sum of spherical harmonic functions. We present an application of the method exploting relevant symmetries to the study of azimuthal correlations arizing from collective flow among charged particles produced in relativistic heavy ion collisions. We discuss perspectives for event-by- event analyses, which with increasing collision energy will eventually open entirely new dimensions in the study of ultrarelaticistic heavy ion reactions.

  19. LINAC for charge-symmetrical four-isotopic heavy-ion driver

    Energy Technology Data Exchange (ETDEWEB)

    Yudin, L.A. [MRTI RAS, Moscow (Russian Federation); Kapchinsky, M.I. [MRTI RAS, Moscow (Russian Federation); Korenev, I.L. [MRTI RAS, Moscow (Russian Federation); Koshkarev, D.G. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)

    1996-11-01

    A linear accelerator (linac) for single charged (positive and negative) ions of the four various Pt isotopes has been proposed. Eight beams of different charges and masses of ions are accelerated in parallel RFQ channels to an energy of 100 MeV. The beams are then brought together by a system of alternating gradient magnets for a 180 bending and matching of the beams. The main channel that accelerates all the beams together consists of three stages. The first stage (until 600 MeV) is a Wideroe structure, followed by two consecutive Alvarex channels (2.5 GeV and 10 GeV) that have different radio frequencies. The characteristics of the output beam for each kind of ions are as follows: average pulse current, 130 mA; horizontal emittance, 0.6{pi} cm mrad; vertical emittance, 0.4{pi} cm mrad; momentum spread, {+-}0.07%; bunch length, 3.6 cm; spacing between bunches of each kind, 15.3 m. (orig.)

  20. LINAC for charge-symmetrical four-isotopic heavy-ion driver

    Energy Technology Data Exchange (ETDEWEB)

    Yudin, L.A.; Kapchinsky, M.I.; Korenev, I.L. [MRTI RAS, Moscow (Russian Federation); Koshkarev, D.G. [ITEP, Moscow (Russian Federation)

    1996-12-31

    A linear accelerator (linac) for single charged (positive and negative) ions of the four various Pt isotopes has been proposed. Eight beams of different charges and masses of ions are accelerated in parallel RFQ channels to an energy of 100 MeV. The beams are then brought together by a system of alternating gradient magnets for a 180{degrees} bending and matching of the beams. The main channel that accelerates all the beams together consists of three stages. The first stage (until 600 MeV) is a Wideroe structure, followed by two consecutive Alvarex channels (2.5 GeV and 10 GeV) that have different radio frequencies. The characteristics of the output beam for each kind of ions are as follows: average pulse current, 130 mA; horizontal emittance, 0.6{pi} cm mrad; vertical emittance, 0.4{pi} cm mrad; momentum spread, {+-}0.07%; bunch length, 3.6 cm; spacing between bunches of each kind, 15.3 m.

  1. Exotic phenomena in collisions of heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Schramm, S.; Reus, T. de; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.; Mueller, U.

    1985-08-01

    To exemplify current theoretical investigations we discuss three different topics. After a presentation of the underlying theoretical framework for ionization processes we will sketch the possibility to employ delta-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 -10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that we investigate the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework. Finally we very briefly consider some phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms. (orig./HSI)

  2. 0,01-5 MeV heavy ion accelerators

    International Nuclear Information System (INIS)

    Golubev, V.P.; Ivanov, A.S.; Nikiforov, S.A.; Svin'in, M.P.; Tarvid, G.V.; Troshikhin, A.G.; Fedotov, M.T.

    1983-01-01

    The results of development of an accelerating complex on the base of the UP-2-1 heavy ion charge exchange accelerator and IMPLANT-500 high-voltage heavy ion accelerator are given. The accelerating complex provides overlapping of the 0.01 MeV to 5 MeV energy range at accelerated beam currents of 10 -3 -10 -6 A order. The structural features of accelerators and their basic units and systems are considered. The UP-2-1 accelerator is designed for researches in the field of experimental physics and applied problem solutions. The IMPLANT-500 accelerator is designed for commercial ion-beam facilities with closed loop of silicon plate treatment

  3. Charged particle yields and spectra in p+p and Heavy Ion Collisions with ATLAS at the LHC

    CERN Document Server

    Dolejší, J; The ATLAS collaboration

    2010-01-01

    The ATLAS experiment has extensive charged particle tracking over full azimuth and within |eta|<2.5. The spectrometer consists of three pixel layers and four double-layer strip layers, giving 11 space points in all. The existing tracking software used for proton-proton collisions has been optimized for the high-multiplicity heavy ion environment. Extensions of the existing tracking to lower pT (100 MeV) using tracks and pixel tracklets, work underway for p+p, will be discussed in the context of heavy ion collisions. Finally, by correlating high momentum tracks with the ATLAS calorimetry, fake tracks can also be rejected at very high pT. The physics performance of the ATLAS inner detector for dN/deta, inclusive particle spectra, and two-particle correlations (in delta-eta and delta-phi) will be discussed. The tracking performance within jets, which is essential for the measurement of jet fragmentation functions, will also be presented.

  4. The charge spectrum of positive ions in a hydrogen aurora

    Science.gov (United States)

    Lynch, J.; Pulliam, D.; Leach, R.; Scherb, F.

    1976-01-01

    An auroral ion charge spectrometer was flown into a hydrogen aurora on a Javelin sounding rocket launched from Churchill, Manitoba. The instrument contained an electrostatic analyzer which selected particles with incident energy per unit charge up to 20 keV/charge and an 80-kV power supply which accelerated these ions onto an array of solid state detectors. Ions tentatively identified as H(+), He(+2), and O(+) were detected from 225 to 820 km in altitude. The experiment did not discriminate between H(+) and He(+), or between O(+), N(+), and C(+). Upper limits of highly charged heavy ion abundances have been set at 20% of the He(+2) and 0.15% of the H(+). It is concluded that both terrestrial and solar wind sources play significant roles in auroral ion precipitation.

  5. Treatment of cancer with heavy charged particles

    International Nuclear Information System (INIS)

    Castro, J.R.

    1981-01-01

    The clinical radiotherapy trial has accured 243 patients irradiated with particles and 13 patients irradiated as controls in randomized studies. Of the 243 particle patients, 194 have been treated with helium ions, either solely or in combination with photon irradiation, and 49 have received all or part of their irradiation with one of the heavier particles, either carbon, neon, or argon ions. The project thus can be divided into two general phases: (1) evaluation of improved dose distribution without significant biologic advantage by use of helium ion irradiation; and (2) evaluation of improved dose distribution and enhanced biologic effect by irradiation with heavy charged particles such as carbon, neon, and argon ions

  6. Overview of US heavy-ion fusion progress and plans

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J.; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2005-01-01

    Significant experimental and theoretical progress has been made in the US heavy-ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high-energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy-ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high-energy density conditions as well as for inertial fusion energy

  7. Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Xu, Zhe; Greiner, Carsten

    2015-01-01

    Elastic and radiative heavy quark interactions with light partons are studied with the partonic transport model named the Boltzmann approach to multiparton scatterings (BAMPSs). After calculating the cross section of radiative processes for finite masses in the improved Gunion–Bertsch approximation and verifying this calculation by comparing to the exact result, we study elastic and radiative heavy quark energy loss in a static medium of quarks and gluons. Furthermore, the full 3 + 1D space–time evolution of gluons, light quarks, and heavy quarks in ultra-relativistic heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) are calculated with BAMPS including elastic and radiative heavy flavor interactions. Treating light and heavy particles on the same footing in the same framework, we find that the experimentally measured nuclear modification factor of charged hadrons and D mesons at the LHC can be simultaneously described. In addition, we calculate the heavy flavor evolution with an improved screening procedure from hard-thermal-loop calculations and confront the results with experimental data of the nuclear modification factor and the elliptic flow of heavy flavor particles at the RHIC and the LHC. (paper)

  8. Working group report: Heavy-ion physics and quark-gluon plasma

    Indian Academy of Sciences (India)

    High energy photons from relativistic heavy ion collider: Dinesh K Srivastava. 7. On the ..... use them it is mandatory to measure very low-energy particles and to ..... moving test charge resulting in a wake in the induced charge due to dynamical.

  9. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  10. Heavy Flavor Production in Heavy Ion Collisions at CMS

    CERN Document Server

    Sun, Jian

    2016-01-01

    Studies of Heavy flavor production are of great interest in heavy ion collisions. In the produced medium, the binding potential between a quark and antiquark in quarkonium is screened by surrounding light quarks and antiquarks. Thus, the various quarkonium states are expected to be melt at different temperatures depending on their binding energies, which allows us to characterize the QCD phase transition. In addition, open heavy flavor production are relevant for flavor-dependence of the in-medium parton energy loss. In QCD, gluons are expected to lose more energy compared to quarks when passing through the QGP due to the larger color charge. Compared to light quarks, heavy quarks are expected to lose less radiative energy because gluon radiation is suppressed at angles smaller than the ratio of the quark mass to its energy. This dead cone effect (and its disappearance at high transverse momentum) can be studied using open heavy flavor mesons and heavy flavor tagged jets. With CMS detector, quarkonia, open he...

  11. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    Science.gov (United States)

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  12. Electron spectroscopy with fast heavy ions

    International Nuclear Information System (INIS)

    Schneider, D.

    1983-01-01

    Since about 1970 the spectroscopy of Auger-electrons and characteristic x-rays following energetic ion-atom collisions has received a great deal of attention. An increasing number of accelerators, capable of providing a large number of projectile ion species over a wide range of projectile energies, became available for studying ion-atom collision phenomena. Many charged particles from protons up to heavy ions like uranium can be accelerated to energies ranging over six orders of magnitude. This allows us to study systematically a great variety of effects accompanied by dynamic excitation processes of the atomic shells in either the projectile- or target-atoms. The studies yield fundamental information regarding the excitation mechanism (e.g., Coulomb and quasi-molecular excitation) and allow sensitive tests of atomic structure theories. This information in turn is valuable to other fields in physics like plasma-, astro-, or solid-state (surface) physics. It is a characteristic feature of fast heavy-ion accelerators that they can produce highly stripped ion species which have in turn the capability to highly ionize neutral target atoms or molecules in a single collision. The ionization process, mainly due to the strong electrical fields that are involved, allows us to study few-electron atoms with high atomic numbers Z. High resolution spectroscopy performed with these atoms allows a particularly good test of relativistic and QED effects. The probability of producing these few electron systems is determined by the charge state and the velocity of the projectile ions. In this contribution the possibilities of using electron spectroscopy as a tool to investigate fast ion-atom collisions is discussed and demonstrated with a few examples. 30 references

  13. Spectroscopy with trapped highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, Peter

    2009-01-01

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  14. Heavy flavour production at CMS in heavy ion collisions

    CERN Document Server

    Nguyen, Matthew

    2015-01-01

    We review recent results relating to beauty production in heavy-ion collisions, in both the closed and open heavy flavor sectors, from the CMS experiment at the LHC. The sequential suppression of the ° states in PbPb collisions is thought to be evidence of the dissociation of quarkonia bound states in deconfined matter. Data from pPb collisions demonstrate that while cold nuclear effects appear to be subdominant in minimum bias collisions, there exists a non-trivial dependence on collision multiplicity that remains to be understood. The suppression of high p T particles in heavy-ion collisions, relative to the expectation from pp collisions, is typically interpreted in terms of energy loss of hard scattered parton in the dense nuclear medium. The flavor dependence of the energy loss may be accessed via measurements of b hadrons and b-tagged jets. Measurement of B mesons, via non-prompt J = y , at relatively low p T indicate a smaller suppression factor than D meson or inclusive charged hadrons. Data on b jet...

  15. Visualization of heavy ion-induced charge production in a CMOS image sensor

    CERN Document Server

    Végh, J; Klamra, W; Molnár, J; Norlin, LO; Novák, D; Sánchez-Crespo, A; Van der Marel, J; Fenyvesi, A; Valastyan, I; Sipos, A

    2004-01-01

    A commercial CMOS image sensor was irradiated with heavy ion beams in the several MeV energy range. The image sensor is equipped with a standard video output. The data were collected on-line through frame grabbing and analysed off-line after digitisation. It was shown that the response of the image sensor to the heavy ion bombardment varied with the type and energy of the projectiles. The sensor will be used for the CMS Barrel Muon Alignment system.

  16. Beta decay of highly charged ions

    International Nuclear Information System (INIS)

    Litvinov, Yuri A; Bosch, Fritz

    2011-01-01

    Beta decay of highly charged ions has attracted much attention in recent years. An obvious motivation for this research is that stellar nucleosynthesis proceeds at high temperatures where the involved atoms are highly ionized. Another important reason is addressing decays of well-defined quantum-mechanical systems, such as one-electron ions where all interactions with other electrons are excluded. The largest modifications of nuclear half-lives with respect to neutral atoms have been observed in beta decay of highly charged ions. These studies can be performed solely at ion storage rings and ion traps, because there high atomic charge states can be preserved for extended periods of time (up to several hours). Currently, all experimental results available in this field originate from experiments at the heavy-ion complex GSI in Darmstadt. There, the fragment separator facility FRS allows the production and separation of exotic, highly charged nuclides, which can then be stored and investigated in the storage ring facility ESR. In this review, we present and discuss in particular two-body beta decays, namely bound-state beta decay and orbital electron capture. Although we focus on experiments conducted at GSI, we will also attempt to provide general requirements common to any other experiment in this context. Finally, we address challenging but not yet performed experiments and we give prospects for the new radioactive beam facilities, such as FAIR in Darmstadt, IMP in Lanzhou and RIKEN in Wako.

  17. Atomic structure of highly-charged ions. Final report

    International Nuclear Information System (INIS)

    Livingston, A. Eugene

    2002-01-01

    Atomic properties of multiply charged ions have been investigated using excitation of energetic heavy ion beams. Spectroscopy of excited atomic transitions has been applied from the visible to the extreme ultraviolet wavelength regions to provide accurate atomic structure and transition rate data in selected highly ionized atoms. High-resolution position-sensitive photon detection has been introduced for measurements in the ultraviolet region. The detailed structures of Rydberg states in highly charged beryllium-like ions have been measured as a test of long-range electron-ion interactions. The measurements are supported by multiconfiguration Dirac-Fock calculations and by many-body perturbation theory. The high-angular-momentum Rydberg transitions may be used to establish reference wavelengths and improve the accuracy of ionization energies in highly charged systems. Precision wavelength measurements in highly charged few-electron ions have been performed to test the most accurate relativistic atomic structure calculations for prominent low-lying excited states. Lifetime measurements for allowed and forbidden transitions in highly charged few-electron ions have been made to test theoretical transition matrix elements for simple atomic systems. Precision lifetime measurements in laser-excited alkali atoms have been initiated to establish the accuracy of relativistic atomic many-body theory in many-electron systems

  18. Slow, target associated particles produced in ultrarelativistic heavy-ion interactions

    Energy Technology Data Exchange (ETDEWEB)

    Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Anson, Z V; Arora, R; Avetyan, F A; Badyal, S K; Basova, E; Bhalla, K B; Bhasin, A; Bhatia, V S; Bogdanov, V G; Bubnov, V I; Burnett, T H; Cai, X; Chasnikov, I Y; Chernova, L P; Chernyavsky, M M; Dressel, B; Eligbaeva, G Z; Eremenko, L E; Friedlander, E M; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V; Heckman, H H; Huang, H; Jakobsson, B; Judek, B; Kachroo, S; Kadyrov, F G; Kalyachkina, G S; Kanygina, E K; Karabova, M; Kaul, G L; Kaur, M; Kharlamov, S P; Koss, Y; Krasnov,; Kumar,; Lal, P; Larionova,; Lepetan,; Lindstrom,; Liu,; Lokanathan, S; Lord, J; Lukicheva, N S; Luo, S B; Mangotra, L K; Marutyan,; Maslennikova, N V; Mittra, I S; Mookerjee, S; Mueller, C; Nasrulaeva, H; Nasyrov, S H; Navotny, V S; Orlova, G I; Otterlund, I; Palsania, H S; Peresadko, N G; Petrov, N V; Plyushchev, V A; Qian, W Y; Raniwala,; EMU01 Collaboration

    1991-06-20

    The slow, target associated particles produced in ultrarelativistic heavy-ion interactions are a quantitative probe of the cascading processes in the spectator parts of the target nucleus. These processes are directly influenced by the proper timescale for the formation of hadronic matter. In this letter we show experimental data on singly and multiply charged particles, with velocities smaller than 0.7c, produced in ultrarelativistic heavy-ion interactions in nuclear emulsion. (orig.).

  19. QED in highly-charged high Z ions - experiments at the storage ring ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1996-01-01

    A survey on the fundamental structure aspects of very heavy few -electron ions, in particular H-like systems, is presented. Special emphasis is given to contribution from quantum-electro-dynamics at strong central potentials. The technical possibilities to produce highly-charged heavy ions are reviewed and the ground-state Lamb-shift experiments performed at the heavy ion storage ring ESR are summarized. A short outlook on further developments in this field is added. (author). 23 refs, 9 figs

  20. Lattice design of HISTRAP: Heavy ion storage ring for atomic physics

    International Nuclear Information System (INIS)

    Lee, I.Y.; Martin, J.A.; McGrory, J.B.; Milner, W.T.; Olsen, D.K.; Young, G.R.

    1987-01-01

    HISTRAP, a Heavy-Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, cool, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. This four-fold symmetrical ring has a maximum bending power of 2 Tm. It has achromatic bends and uses quadrupole triplets for focusing

  1. HIFSA: Heavy-Ion Fusion Systems Assessment Project: Volume 1, Executive summary

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Herrmannsfeldt, W.B.; Saylor, W.W.

    1987-12-01

    The Heavy-Ion Fusion Systems Assessment (HIFSA) was conducted with the specific objective of evaluating the prospects of using induction-linac heavy-ion accelerators to generate economical electrical power from Inertial Confinement Fusion (ICF). Cost/performance models of the major fusion power plant systems were used to identify promising areas in parameter space. Resulting cost-of-electricity projections for a plant size of 1 GWe are comparable to those from other fusion system studies, some of which were for much larger power plants. These favorable projections maintain over an unusually large domain of parameter space but depend especially on making large cost savings for the accelerator by using higher charge-to-mass ratio ions than assumed previously. The feasibility of realizing such savings has been shown by (1) experiments demonstrating transport stability better than anticipated for space-charge-dominated beams, and (2) theoretical predictions that the final transport and pulse compression in reactor-chamber environments will be sufficiently resistant to streaming instabilities to allow successful propagation of neutralized beams to the target. Results of the HIFSA study already have had a significant impact on the heavy-ion induction accelerator R and D program, especially in selection of the charge-state objectives. Also, the study should enhance the credibility of induction linacs as ICF drivers

  2. Experimental aspects of S.H.I.C. (Swift Heavy Ion Channeling)

    International Nuclear Information System (INIS)

    Quere, Y.; Mory, J.; Castro Faria, N.V. de; Chevallier, M.; Gaillard, M.J.; Genre, R.; Farizon-Mazuy, B.; Poizat, J.C.; Remillieux, J.; Dural, J.; Toulemonde, M.; Hage-Ali, M.

    1989-01-01

    We have studied the behaviour of swift heavy ions, of initial charge Z 0 , transmitted in a crystal. More precisely we have measured, for various values of Z 0 , the mean stopping power experienced by the ions of exit charge Z, together with the charge distribution n(Z). In this short note, we describe briefly the instrumental set-up, and give two specific results which make it possible to appreciate the accuracy and sensitivity of the experiment

  3. Event by event fluctuations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2001-01-01

    The authors discuss the physics underlying event-by-event fluctuations in relativistic heavy ion collisions. We will argue that the fluctuations of the ratio of positively over negatively charged particles may serve as a unique signature for the Quark Gluon Plasma.

  4. Calorimetric low temperature detectors for heavy ion physics

    Energy Technology Data Exchange (ETDEWEB)

    Egelhof, P.; Kraft-Bermuth, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Mainz Univ. (Germany). Inst. fuer Physik

    2005-05-01

    provides considerable advantage for X-ray spectroscopy in atomic physics with highly charged heavy ions. Such detectors are to be used in near future for sensitive tests of quantum electrodynamics in very strong electromagnetic fields by a precise determination of the 1s Lamb shift in hydrogen-like heavy ions. The status of development of a high-resolution and highly efficient detector for hard X-rays is reported, the performance of which is with {delta}E/E = 1.1 x 10{sup -3} for E{sub {gamma}} = 60 keV close to fulfill the demands of the Lamb shift experiment. (orig.)

  5. Calorimetric low temperature detectors for heavy ion physics

    International Nuclear Information System (INIS)

    Egelhof, P.; Kraft-Bermuth, S.; Mainz Univ.

    2005-07-01

    -ray spectroscopy in atomic physics with highly charged heavy ions. Such detectors are to be used in near future for sensitive tests of quantum electrodynamics in very strong electromagnetic fields by a precise determination of the 1s Lamb shift in hydrogen-like heavy ions. The status of development of a high-resolution and highly efficient detector for hard X-rays is reported, the performance of which is with ΔE/E = 1.1 x 10 -3 for E γ = 60 keV close to fulfill the demands of the Lamb shift experiment. (orig.)

  6. Symplectic Tracking of Multi-Isotopic Heavy-Ion Beams in SixTrack

    CERN Document Server

    Hermes, Pascal; De Maria, Riccardo

    2016-01-01

    The software SixTrack provides symplectic proton tracking over a large number of turns. The code is used for the tracking of beam halo particles and the simulation of their interaction with the collimators to study the efficiency of the LHC collimation system. Tracking simulations for heavy-ion beams require taking into account the mass to charge ratio of each particle because heavy ions can be subject to fragmentation at their passage through the collimators. In this paper we present the derivation of a Hamiltonian for multi-isotopic heavy-ion beams and symplectic tracking maps derived from it. The resulting tracking maps were implemented in the tracking software SixTrack. With this modification, SixTrack can be used to natively track heavy-ion beams of multiple isotopes through a magnetic accelerator lattice.

  7. The SuperHILAC heavy ion intensity upgrade

    International Nuclear Information System (INIS)

    Feinberg, B.; Brown, I.G.

    1987-03-01

    A high current MEtal Vapor Vacuum Arc (MEVVA) ion source is to be installed in the third injector (Abel) at the SuperHILAC, representing the first accelerator use of this novel ion source. The MEVVA source has produced over 1 A of uranium in all charge states, with more than 100 electrical mA (emA) of U 5+ . Transport of the space-charge dominated beam through the charge-state analysis dipole will be enhanced by a 100 kV extractor voltage and neutralization by secondary electrons. In addition to the MEVVA source, other improvements already in place include a lower pressure in the Low Energy Beam Transport line (15.8 keV/AMU) to reduce charge exchange for the heavy elements, and the addition of a second 23 MHz buncher upstream of the Wideroe linac and two 70 MHz bunchers between the 23 MHz Wideroe and the 70 MHz Alvarez linacs. The project is expected to result in a fivefold increase in beam delivered to Bevatron experiments, increasing the extracted uranium beam to 5 x 10 7 ions/pulse

  8. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  9. Interaction of heavy ions with hot ionized matter

    International Nuclear Information System (INIS)

    Hoffmann, D.H.H.; Dietrich, K.G.; Laux, W.; Boggasch, E.; Mahrt-Olt, K.; Wahl, H.; Golubev, A.A.; Dubenkov, V.P.

    1991-01-01

    The energy loss of heavy ions in a hydrogen plasma has been measured in an energy range from 1.4 to 6 MeV/u. A z-pinch has been used as a plasma target with a maximum free electron density of 1.5x10 19 cm -3 . Our data show a strong enhancement of the stopping power of the plasma compared to that of a cold gas with equal density. Charge state analysis of the ions also show a higher charge state of the ions in the plasma target, relative to the cold hydrogen gas targets. A plasma lens effect of the high power z-pinch discharge was observed in our experiments. (orig.)

  10. Nano-sized surface modifications induced by the impact of slow highly charged ions - A first review

    International Nuclear Information System (INIS)

    Aumayr, F.; El-Said, A.S.; Meissl, W.

    2008-01-01

    Irradiation of crystalline solid targets with swift heavy ions can lead to the formation of latent tracks in the solid and the creation of (mostly-hillock type) nanostructures on the surface. Recently similar surface modifications with nanometer dimensions have been demonstrated for the impact of individual, very slow but highly charged ions on various surfaces. We will review the current state of this new field of research. In particular we will discuss the circumstances and conditions under which nano-sized features (hillocks or craters) on different surfaces due to impact of slow highly charged ions can be produced. The use of slow highly charged ions instead of swift heavy ions might be of considerable interest for some practical applications

  11. Overview of U.S. heavy ion fusion progress and plans

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy

  12. Heavy-ion targets

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.

    1985-01-01

    This chapter examines the characteristics of targets required in heavy-ion accelerator physics experiments. The effects of target parameters on heavy-ion experimental results are reviewed. The target fabrication and characterization techniques used to minimize experimental problems during heavy-ion bombardment are described. Topics considered include target thickness and uniformity, target lifetime, target purity, substrate materials, Doppler shift effects, metal preparations, and target preparation methods

  13. Experimental and theoretical study of heavy ion slowing down in solid targets

    International Nuclear Information System (INIS)

    Mehana, A.

    1993-06-01

    Heavy ion energy losses in C, Al, Cu, Ag, Ta and Au solid targets have been measured at high energy (0.2 to 5 MeV/u), using the backward secondary ion technique, and at low energy (0.1 to 0.25 MeV/u) for the C, N and O ions, using the particle backscatter method. A brief review of the various matter-induced charged particle slowing down theories, and especially the Lindhard dielectric theory, is first presented. Then, the various models for the evaluation of the effective charge and of the high order correction, are discussed and compared. Experimental techniques and data processing methods are described, and the experimental results are compared to calculations derived from the dielectric theory. In particular, the effective charges and the high order corrections (Barkas-Bloch) are examined and compared to the models for the determination of the z 3 and z 4 terms for heavy ions

  14. Reaction mechanism in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Tanihata, Isao.

    1982-04-01

    The reaction mechanism in high energy heavy-ion collision is discussed. The discussion is mainly based on the experimental data. Empirical equations have been given for the total cross-sections of nucleus-nucleus reactions and the reaction cross-sections. These cross-sections are well described by the geometrical size of the colliding nuclei. The cross-sections are also understood by microscopic calculation. The charged particle multiplicity gives additional information about the geometrical aspect of heavy ion collision. The data suggested that the total energy, independent of projectile size, is most important for determining the multiplicity. The inclusive proton spectrum in a heavy ion collision showed two distinct regions. The one is the fragment region, and the other the participant region. The spectral shapes of inclusive pion spectra are reasonably well explained by the Coulomb interaction of pions with nuclear fragments. The high energy heavy ion reaction occurs in the overlap region of the projectile and target. This has been tested by measuring the number of participants for various reactions. The space and the time structure of the collision are also discussed in this paper as well as the dynamical aspects of the collision. (Kato, T.)

  15. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  16. Heavy-ion induced current through an oxide layer

    International Nuclear Information System (INIS)

    Takahashi, Yoshihiro; Ohki, Takahiro; Nagasawa, Takaharu; Nakajima, Yasuhito; Kawanabe, Ryu; Ohnishi, Kazunori; Hirao, Toshio; Onoda, Shinobu; Mishima, Kenta; Kawano, Katsuyasu; Itoh, Hisayoshi

    2007-01-01

    In this paper, the heavy-ion induced current in MOS structure is investigated. We have measured the transient gate current in a MOS capacitor and a MOSFET induced by single heavy-ions, and found that a transient current can be observed when the semiconductor surface is under depletion condition. In the case of MOSFET, a transient gate current with both positive and negative peaks is observed if the ion hits the gate area, and that the total integrated charge is almost zero within 100-200 ns after irradiation. From these results, we conclude that the radiation-induced gate current is dominated by a displacement current. We also discuss the generation mechanism of the radiation-induced current through the oxide layer by device simulation

  17. Heavy ion physics

    International Nuclear Information System (INIS)

    Kalpakchieva, R.; Cherepanov, E.A.

    1993-01-01

    The international school-seminar on heavy ion physics had been organized in Dubna in may of 1993. The scientific program of reports covers the following main topics: synthesis and properties of heavy nuclei; synthesis and investigation of properties of exotic nuclei; experiments with radioactive nuclear beams; interaction between complex nuclei at low and intermediate energies. It also includes reports on laser spectroscopy and exotic nuclear beams, on some application of heavy ion beams for the problems of solid state physics, on construction of multidetector facilities and on developing of heavy ion accelerator complexes. Short communication

  18. Preliminary Study on 50MHz Heavy Ion RFQ without Pre-Bunchers

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Jang, Ji Ho; Kim, Han Sung; Kwon, Hyeok Jung

    2009-01-01

    We are studying a Radio Frequency Quadrupole (RFQ) as a lower energy part for a 200-MeV/u heavy ion linear accelerator of the International Business and Science Belt Project. The RFQ accelerates the 10- keV/u heavy ion beams from ion source (hydrogen molecules to uranium) and injects the 300-keV/u beam to the superconducting linac. Table I shows the basic parameters for the RFQ accelerator. In this study, we assumed that pre-bunchers to accelerate two charge state is not required

  19. Mechanisms for production of highly charged ions

    International Nuclear Information System (INIS)

    McGuire, J.H.

    1987-01-01

    Various experimental data at high collision velocity are interpreted in terms of direct (D) and rearrangement (R) mechanisms for production of multiply charged ions. We consider double ionization in helium by protons, electrons, heavy ions, antiprotons, positrons and photons. Qualitative differences are discussed in the context of the R and D mechanisms. Multiple ionization in many electron atoms is considered as is simultaneous capture and ionization and fragmentation of methane molecules. Some other theoretical methods are briefly discussed. (orig.)

  20. Electronic sputtering by swift highly charged ions of nitrogen on amorphous carbon

    International Nuclear Information System (INIS)

    Caron, M.; Haranger, F.; Rothard, H.; Ban d'Etat, B.; Boduch, P.; Clouvas, A.; Potiriadis, C.; Neugebauer, R.; Jalowy, T.

    2001-01-01

    Electronic sputtering with heavy ions as a function of both electronic energy loss dE/dx and projectile charge state q was studied at the French heavy ion accelerator GANIL. Amorphous carbon (untreated, and sputter-cleaned and subsequently exposed to nitrogen) was irradiated with swift highly charged ions (Z=6-73, q=6-54, energy 6-13 MeV/u) in an ultrahigh vacuum scattering chamber. The fluence dependence of ion-induced electron yields allows to deduce a desorption cross-section σ which varies approximately as σ∼(dE/dx) 1.65 or σ∼q 3.3 for sputter-cleaned amorphous carbon exposed to nitrogen. This q dependence is close to the cubic charge dependence observed for the emission of H + secondary ions which are believed to be emitted from the very surface. However, the power law σ∼(dE/dx) 1.65 , related to the electronic energy loss gives the best empirical description. The dependence on dE/dx is close to a quadratic one thus rather pointing towards a thermal evaporation-like effect

  1. Development of a 1-m plasma source for heavy ion beam charge neutralization

    Science.gov (United States)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.; Yu, Simon; Waldron, William; Grant Logan, B.

    2005-05-01

    Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ˜0.1-1 m would be suitable for achieving a high level of charge neutralization. A radio frequency (RF) source was constructed at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization. Pulsing the source enabled operation at pressures ˜10 -6 Torr with plasma densities of 10 11 cm -3. Near 100% ionization was achieved. The plasma was 10 cm in length, but future experiments require a source 1 m long. The RF source does not easily scale to the length. Consequently, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO 3 to form metal plasma. A 1 m long section of the drift tube inner surface of NTX will be covered with ceramic. A high voltage (˜1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. Plasma densities of 10 12 cm -3 and neutral pressures ˜10 -6 Torr are expected. A test stand to produce 20 cm long plasma is being constructed and will be tested before a 1 m long source is developed.

  2. Development of a 1-m plasma source for heavy ion beam charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.; Yu, Simon; Waldron, William; Grant Logan, B.

    2005-01-01

    Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ∼0.1-1 m would be suitable for achieving a high level of charge neutralization. A radio frequency (RF) source was constructed at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization. Pulsing the source enabled operation at pressures ∼10 -6 Torr with plasma densities of 10 11 cm -3 . Near 100% ionization was achieved. The plasma was 10 cm in length, but future experiments require a source 1 m long. The RF source does not easily scale to the length. Consequently, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO 3 to form metal plasma. A 1 m long section of the drift tube inner surface of NTX will be covered with ceramic. A high voltage (∼1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. Plasma densities of 10 12 cm -3 and neutral pressures ∼10 -6 Torr are expected. A test stand to produce 20 cm long plasma is being constructed and will be tested before a 1 m long source is developed

  3. Transverse energy per charged particle in heavy-ion collisions: Role of collective flow

    Science.gov (United States)

    Kumar Tiwari, Swatantra; Sahoo, Raghunath

    2018-03-01

    The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions. This ratio reveals information about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is almost similar to the chemical freeze-out temperature until top Relativistic Heavy-Ion Collider (RHIC) energy. The Large Hadron Collider (LHC) measurement at √{s_{NN}} = 2.76 TeV brings up new challenges towards understanding the phenomena like gluon saturation and role of collective flow, etc. being prevalent at high energies, which could contribute to the above observable. Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence until top RHIC energies. However, the SHGM predictions for higher energies lie well below the LHC data. In order to understand this, we have incorporated collective flow in an excluded-volume SHGM (EV-SHGM). Our studies suggest that the collective flow plays an important role in describing E T/ N ch and it could be one of the possible parameters to explain the rise observed in E T/ N ch from RHIC to LHC energies. Predictions are made for E T/ N ch , participant pair normalized-transverse energy per unit rapidity and the Bjorken energy density for Pb+Pb collisions at √{s_{NN}} = 5.02 TeV at the Large Hadron Collider.

  4. The heavy ion injection scheme for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.

    1989-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven has a multi-component injection system. The Collider requires very heavy ions such as 79 197 Au to be injected fully stripped of atomic electrons, at a kinetic energy of approximately 10 GeV/nucleon. However, the heavy ions are produced initially at a negative ion source and accelerated first in a 15 MV Tandem. These partially stripped ions have a kinetic energy of approximately 1 MeV/nucleon on leaving the Tandem. In order to achieve the injection requirements for RHIC, the partially stripped ions are accelerated in the Booster (currently under construction) and pass through a stripping foil on their way to the Alternating Gradient Synchrotron (AGS), where they are further accelerated before injection into RHIC. Recent theoretical calculations have shown quite convincingly that very heavy ions with 2 electrons in the filled K-shell may be accelerated with negligible loss in the AGS. 13 refs., 3 figs., 3 tabs

  5. Calorimetric Low-Temperature Detectors for X-Ray Spectroscopy on Trapped Highly-Charged Heavy Ions

    Science.gov (United States)

    Kilbourne, Caroline; Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Ilieva, S.; Kilbourne, C.; McCammon, D.

    2012-01-01

    The application of Calorimetric Low-Temperature Detectors (CLTDs) has been proposed at the Heavy-Ion TRAP facility HITRAP which is currently being installed at the Helmholtz Research Center for Heavy Ion Research GSI. This cold ion trap setup will allow the investigation of X-rays from ions practically at rest, for which the excellent energy resolution of CLTDs can be used to its full advantage. However, the relatively low intensities at HITRAP demand larger solid angles and an optimized cryogenic setup. The influence of external magnetic fields has to be taken into account. CLTDs will also be a substantial part of the instrumental equipment at the future Facility for Antiproton and Heavy Ion Research (FAIR), for which a wide variety of high-precision X-ray spectroscopy experiments has been proposed. This contribution will give an overview on the chances and challenges for the application of CLTDs at HITRAP as well as perspectives for future experiments at the FAIR facility.

  6. Heavy Ion Physics at CMS

    CERN Document Server

    Veres, Gabor

    2017-01-01

    In the present proceedings recent heavy ion results from the Compact Muon Solenoid collaboration at the LHC are presented. These contain comparisons between small and large collision systems, as well as studies of energy evolution, thus include data collected in proton-proton collisions at 13 TeV (2015 and 2016), proton-proton and lead-lead collisions at 5 TeV (2015), and proton-lead collisions at 5 TeV and 8 TeV (2016) center-of-mass energy per nucleon pair. They provide new insights into the properties of the extremely high density and high temperature matter created in heavy ion collisions, while pointing out similarities and differences in comparison to smaller collision systems. These include gluon distribution functions in the lead nucleus; the azimuthal anisotropy of final state particle distributions in all the three different collision systems; charge separation signals from proton-lead collisions and consequences for the Chiral Magnetic Effect; new studies of parton energy loss and its dependence on...

  7. The heavy ion therapy project at GSI

    International Nuclear Information System (INIS)

    Kraft, G.; Becher, W.; Blasche, K.; Boehne, D.; Fischer, B.; Geissel, H.; Haberer, T.; Klabunde, J.; Kraft-Weyrather, W.; Langenbeck, G.; Muenzenberg, G.; Ritter, S.; Roesch, W.; Schardt, D.; Stelzer, H.; Schwab, T.; Gademann, G.

    1991-03-01

    The use of heavy charged particles in radiotherapy has two major advantages: Firstly, particle beams exhibit a superior dose distribution because of reduced lateral scattering, the finite range of the particles and the increased dose deposition towards the end of the particle track. Secondly, heavy ions exhibit an increased biological efficiency in the region of the increased energy deposition. This diminishes the differences in the radio response between well oxygenated and hypoxic cells as well as differences between fast and slowly proliferating cells. In addition, with high values for relative biological efficiencies, the repair capacity of cells in the tumor are selectively reduced. Both effects, the high energy deposition and the increased RBE values at the end of the particle tracks, are due to the different interaction mechanism of heavy ions with the target material and open a new field of precision and efficiency in radiotherapy. (orig.)

  8. X-ray emission in heavy ion collisions. Final report

    International Nuclear Information System (INIS)

    Watson, R.L.

    1984-01-01

    A detailed accounting of the yearly activities of the research program entitled X-ray Emission in Heavy Ion Collisions may be found in the annual progress reports submitted in accordance with the terms of the contract. The principal goals of the program to be summarized herein were (a) to delineate the mechanisms whereby highly ionized atoms in the condensed phase deexcite and return to charge neutrality, (b) to investigate the charge quenching processes acting to reduce the charge states of highly ionized projectiles, and (c) to attain a better understanding of the interactions occurring between highly charged ions and solid surfaces. These projects all relate to problems associated with the ultimate application of controlled thermonuclear reactions as a practical energy source

  9. Study on laser plasma as an ion source for the controlled fasion with heavy ions

    International Nuclear Information System (INIS)

    Barabash, L.Z.; Bykovskij, Yu.A.; Golubev, A.A.; Kozyrev, Yu.P.; Krechet, K.I.; Lapitskij, Yu.Ya.; Sharkov, B.Yu.

    1981-01-01

    The results of experimental investigations of Pb 208 multiply- charged lead ions, obtained in the course of CO 2 laser radiation effect on a solid target are presented. The experimental installation, the basic units of which are CO 2 - laser with transverse discharge, ion source chamber, time- of-flight space, 9-channel electrostatic mirror type mass-analyser with a detection unit, is described. Physical characteristics of a freely spreading laser plasma, ion distribution over energies, velocities and Z charges from Z=+1 to Z=+10 are investigated. Absolute values of ion number of each charge property as well as absolute values of currents are obtained, the laser plasma temperature is estimated. The analysis of time distribution of ion quantity permits to point out the following regularities: with Z increase the ion current duration decreases according to the Δt approximately Z -1 law, with Z increase, the moment of the ion pulse beginning approaches to the moment of target irradiation which testifies that multiply-charged ions have high velocities and energies. The velocity distribution analysis permits to obtain ion velocity dependence in the field of maximum distribution on charge properties. The results presented are obtained at the temperature of hot unspreaded plasma about 60 eV. The data obtained are a basis for development of a real laser forinjector for the problems of the controlled fusion with heavy ions [ru

  10. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  11. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Weberg, Micah J. [PhD Candidate in Space Science, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2134A Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Lepri, Susan T. [Associate Professor, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2429 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Zurbuchen, Thomas H., E-mail: mjweberg@umich.edu, E-mail: slepri@umich.edu, E-mail: thomasz@umich.edu [Professor, Space Science and Aerospace Engineering, Associate Dean for Entrepreneurship Senior Counselor of Entrepreneurship Education, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2431 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States)

    2015-03-10

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space.

  12. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Weberg, Micah J.; Lepri, Susan T.; Zurbuchen, Thomas H.

    2015-01-01

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space

  13. ELECTRON-CAPTURE IN HIGHLY-CHARGED ION-ATOM COLLISIONS

    NARCIS (Netherlands)

    MORGENSTERN, R

    1993-01-01

    An attempt is made to identify the most important mechanisms responsible for the rearrangement of electrons during collisions between multiply charged ions and atoms at keV energies. It is discussed to which extent the influence of binding energy, angular momentum of heavy particles and electrons,

  14. Beam analysis spectrometer for relativistic heavy ions

    International Nuclear Information System (INIS)

    Schimmerling, W.; Subramanian, T.S.; McDonald, W.J.; Kaplan, S.N.; Sadoff, A.; Gabor, G.

    1983-01-01

    A versatile spectrometer useful for measuring the mass, charge, energy, fluence and angular distribution of primaries and fragments associated with relativistic heavy ion beams is described. The apparatus is designed to provide accurate physical data for biology experiments and medical therapy planning as a function of depth in tissue. The spectrometer can also be used to measure W, the average energy to produce an ion pair, range-energy, dE/dx, and removal cross section data of interest in nuclear physics. (orig.)

  15. Realistic modeling of chamber transport for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Grote, D.P.; Callahan, D.A.; Tabak, M.; Henestroza, E.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.

    2003-01-01

    Transport of intense heavy-ion beams to an inertial-fusion target after final focus is simulated here using a realistic computer model. It is found that passing the beam through a rarefied plasma layer before it enters the fusion chamber can largely neutralize the beam space charge and lead to a usable focal spot for a range of ion species and input conditions

  16. Development of heavy-ion beams at the INS 176-cm SF cyclotron

    International Nuclear Information System (INIS)

    Sato, Kenji; Ohshiro, Yukimitsu; Tanabe, Tetsumi; Sakurada, Yuzo; Yamazaki, Tsutomu.

    1982-10-01

    Heavy-ion beams at the INS SF cyclotron have been developed since the first beam was obtained in 1974. Multiply-charged heavy ions of gaseous material lighter than Ne have been successfully accelerated. An internal ion source for solid material has been made and high-intensity beams of sup(6,7)Li 3 + have been obtained. A pulsed arc power supply of the current-regulator type was constructed by using a tetrode. Two models of the PIG source of the self-heated cold-cathode type have been made and one of them is now in use. Some of the cyclotron components were also improved for efficient use of heavy-ion beams. (author)

  17. Experiments on the interaction of heavy ions with dense plasma at GSI-Darmstadt

    International Nuclear Information System (INIS)

    Stoeckl, C.; Boine-Frankenheim, O.; Geissel, M.; Roth, M.; Wetzler, H.; Seelig, W.; Iwase, O.; Spiller, P.; Bock, R.; Suess, W.; Hoffmann, D.H.H.

    1998-01-01

    One of the main objectives of the experimental plasma physics activities at the Gesellschaft fuer Schwerionenforschung (GSI) are the interaction processes of heavy ions with dense ionized matter. Gas-discharge plasma targets were used for energy loss and charge state measurements in a regime of electron density and temperature up to 10 19 cm -3 and 20 eV, respectively. An improved model of the charge exchange processes in fully ionized hydrogen plasma, taking into account multiple excited electronic configurations which subsequently ionize, has removed the discrepancies of previous theoretical descriptions. The energy loss of the ion beam in partially ionized plasmas such as argon was found to agree very well with our simple theoretical model based on the modified Bethe-Bloch theory. A new setup with a 100 J/5 GW Nd-glass laser now provides access to density ranges up to 10 21 cm -3 and temperatures of up to 100 eV. First results of interaction experiments with laser-produced plasma are presented. To fully exploit the experimental possibilities of the new laser-plasma setup both improved charge state detection systems and better plasma diagnostics are indispensable. Present developments and future possibilities in these fields are presented. This paper summarizes the following contributions: Interaction of heavy-ion beams with laser plasma by C. Stoeckl et al. Energy loss of heavy ions in a laser-produced plasma by M. Roth et al. Charge state measurements of heavy ions passing a laser produced plasma with high time resolution by W. Suess et al. Plasma diagnostics for laser-produced plasma by O. Iwase et al. Future possibilities of plasma diagnostics at GSI by M. Geissel et al. (orig.)

  18. Heavy-ion performance of the LHC and future colliders

    CERN Document Server

    AUTHOR|(SzGeCERN)696614; Stahl, Achim; Jowett, John M

    2015-10-09

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton–proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term “heavy-ion collisions” refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter l...

  19. Funny hills in pion spectra from heavy-ion collisions

    International Nuclear Information System (INIS)

    Rasmussen, J.O.

    1982-03-01

    A discussion of some of the systematic features of the pion spectra in heavy-ions reactions is given. A discussion of the hills and valleys in heavy ion pion spectra that show up at the lower pion energies is given. The following topics are discussed: (1) three kinds of funny hills; (2) π - / + ratios near center of mass; (3) new Monte Carlo studies of charged pion spectra; and (4) pion orbiting about fireballs and Bose-Einstein behavior as explanation for the mid-rapidity P/sub perpendicular to/ approx. = 0.4 to 0.5 m/sub π/c hill

  20. Electronic excitation effects on secondary ion emission in highly charged ion-solid interaction

    International Nuclear Information System (INIS)

    Sekioka, T.; Terasawa, M.; Mitamura, T.; Stoeckli, M.P.; Lehnert, U.; Fehrenbach, C.

    2001-01-01

    In order to investigate the secondary ion emission from the surface of conductive materials bombarded by highly charged heavy ions, we have done two types of experiments. First, we have measured the yield of the sputtered ions from the surface of solid targets of conductive materials (Al, Si, Ni, Cu) bombarded by Xe q+ (q=15-44) at 300 keV (v p =0.30 a.u) and at 1.0 MeV (v p =0.54 a.u). In view of the secondary ion yields as a function of the potential energy of the projectile, the increase rates below q=35, where the potential energy amounts to 25.5 keV, were rather moderate and showed a prominent increase above q=35. These phenomena were rather strong in the case of the metal targets. Second, we have measured the energy dependence of the yield of the sputtered ions from the surface of solid targets of conductive materials (C, Al) bombarded by Xe q+ (q=30,36,44) between 76 keV (v p =0.15 a.u) and 6.0 MeV (v p =1.3 a.u). A broad enhancement of the secondary ion yield has been found for Al target bombarded by Xe 44+ . From these experimental results, the electronic excitation effects in conductive materials for impact of slow highly charged heavy ions bearing high potential energy is discussed

  1. Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Schuster, Tim; Stock, Reinhard; Mitrovski, Michael; Bleicher, Marcus

    2012-01-01

    We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand-canonical ensemble we explicitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central (b≤2.75 fm) Pb+Pb/Au+Au collisions from E lab =2A GeV to √(s NN )=200 GeV from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low √(s NN ). (orig.)

  2. Effect of electrode for producing the highly charged heavy ions from RIKEN 18 GHz electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Kurita, Tetsuro; Nakagawa, Takahide; Kidera, Masanori

    1999-01-01

    We successfully produced the intense beam of highly charged Kr ions using an electrode. Under the pulsed mode operation, we found that the depth of the plasma potential dip strongly depends on the duration of the microwave and takes about 40 ms to reach the equilibrium state. Taking these results into account, we compared the beam intensities of highly charged Kr ions with and without the use of an electrode under the pulsed mode operation. We observed that the density of highly charged Kr ions and ion confinement time increase with increasing mirror magnetic field strength. The plasma potential dip becomes shallower with insertion of the electrode. Consequently, when we increase the mirror magnetic field strength and insert the electrode into the plasma, the beam intensities of highly charged ions increase. (author)

  3. Highly charged ions generated with intense laser beams

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Jungwirth, Karel; Králiková, Božena; Láska, Leoš; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Hnatowicz, Vladimír; Peřina, Vratislav; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Szydlowski, A.

    2003-01-01

    Roč. 205, - (2003), s. 355-359 ISSN 0168-583X. [International Symposium on Swift Heavy Ions in Matter /5./. Taormina-Giardini Naxos, 22.05.2002-25.05.2002] R&D Projects: GA MŠk LN00A100 Grant - others:HPRI(XE) CT-1999-00053; IAEA(XE) 11535/RO Institutional research plan: CEZ:AV0Z2043910; CEZ:AV0Z1010921 Keywords : laser-produced plasma * highly charged ions * ion implantation * windowless electron multiplier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.041, year: 2003

  4. Dosimetry and radiobiology of negative pions and heavy ions

    International Nuclear Information System (INIS)

    Raju, M.R.

    1978-01-01

    The depth dose distribution of pion beams has not been found superior to protons. Pion radiation quality at the plateau region is comparable to conventional low-LET radiations, and radiobiology results also indicate RBE values close to unity. In the pion stopping region, the radiation quality increases considerably. Radiobiology data for negative pions at the Bragg peak position clearly indicate the increase in RBE and the reduction in OER. Even at the Bragg peak position, compared to fast neutrons, the average LET of negative pions is lower. Pion radiobiology data have indicated lower RBE values and higher OER values compared to fast neutrons. The radiation quality of fast neutrons is in between that of carbon and neon ions at the peak region and that of neon ions at the plateau is lower than for fast neutrons. The mean LET value for helium ions, even at the distal end of the peak, is lower than for fast neutrons. Dose localization of heavy ions has been found to decrease slowly with increasing charge of the heavy ion. The intercellular contact that protects cells after exposure to low-LET radiations is not detected after exposure to heavy ions. Single and fractionated doses of heavy ions produce dose-response curves for heavy ions having reduced shoulders but similar slopes when compared to gamma rays. Fractionated treatments of heavy ions produce an enhanced effect in the peak region compared to the plateau region and could lead to a substantial gain in therapeutic ratio. The OER for protons was similar to that for x rays. The OER values for negative pions, helium ions, and carbon ions were larger, for neon ions similar, and for argon ions smaller when compared to fast neutrons.Negative pions, helium ions, and carbon ions may be very effective clinically because the radiation quality of these beams is similar to that of the mixed scheme of neutrons and x rays

  5. Multiply charged carbon-ion production for medical application

    International Nuclear Information System (INIS)

    Kitagawa, A.; Muramatsu, M.; Sasaki, N.; Takasugi, W.; Wakaisami, S.; Biri, S.; Drentje, A. G.

    2008-01-01

    Over 3000 cancer patients have already been treated by the heavy-ion medical accelerator in Chiba at the National Institute of Radiological Sciences since 1994. The clinical results have clearly verified the effectiveness and safety of heavy-ion radiotherapy. The most important result has been to establish that the carbon ion is one of the most effective radiations for radiotherapy. The ion source is required to realize a stable beam with the same conditions for daily operation. However, the deposition of carbon ions on the wall of the plasma chamber is normally unavoidable. This causes an ''anti-wall-coating effect,'' i.e., a decreasing of the beam, especially for the higher charge-state ions due to the surface material of the wall. The ion source must be required to produce a sufficiently intense beam under the bad condition. Other problems were solved by improvements and maintenance, and thus we obtained enough reproducibility and stability along with decreased failures. We summarize our over 13 years of experience, and show the scope for further developments

  6. Nuclear research with heavy ions

    International Nuclear Information System (INIS)

    Kaplan, M.

    1991-08-01

    This report discusses the following topics: Asymmetric fission of 149 Tb* from the finite-range, rotating-liquid-drop model: mean total kinetic energies for binary fragmentation; charged-particle evaporation from hot composite nuclei: evidence over a broad Z range for distortions from cold nuclear profiles; the role of reversed kinematics and double kinematic solutions in nuclear reactions studies; production of intermediate-mass-fragments in the reaction 98 Mo + 51 V at an excitation energy E* = 224-MeV; emission of light charged particles in the reaction 344-MeV 28 Si + 121 Sb; continued developments of the statistical evaporation code LILITA N90; and planning for heavy-ion-collision studies at very high energies: the STAR collaboration at RHIC

  7. Poloidal asymmetries of the heavy ions in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Odstrcil, Tomas [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, Garching (Germany); Puetterich, Thomas; Angioni, Clemente; Bilato, Roberto; Gude, Anja; Vezinet, Didier [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Mazon, Didier [CEA, IRFM, Saint Paul-lez-Durance (France); Collaboration: ASDEX Upgrade Team

    2015-05-01

    Poloidal asymmetries of heavy ions in the tokamak plasma are caused by the presence of forces parallel with field-lines which have comparable magnitude to the thermal pressure. The most important examples are the centrifugal force (CF) and the electric force (EF). The CF is caused by fast toroidal rotation of the plasma column which is pushing impurity ions, that have a substantially higher mass than the main ions, on the outer-side of the plasma. And the EF can be produced by ion cyclotron heated fast particles with high pitch angle that are trapped by the mirror force on the low field side of the plasma. The excessive charge produced by these particles is affecting highly charged impurities and pushing them to the high field side of the plasma. From predictions based on neoclassical and turbulent theory, it follows that the radial flux of heavy ions will be significantly changed by the presence of these asymmetries. The purpose of this study is to investigate the presence of these asymmetries in ASDEX Upgrade and verify the predicted consequences on the particles flux. High intrinsic content of the tungsten in AUG plasma makes this device well suitable for such studies. Precise measurement of the SXR (soft-X-ray) radiation profiles has identified a presence of CF generated asymmetries in every NBI heated Asdex discharge. Poloidal asymmetry should than lead to the significant change in the neoclassical and turbulent radial transport of these heavy ions. High intrinsic content of the tungsten in Asdex plasma makes this device well suitable for studying these asymmetries. Precise measurement of the SXR (soft-X-ray) radiation profiles has identified a presence of CF generated asymmetries in every NBI heated Asdex discharge. For heavy and highly charged impurities multiple mechanisms exist that produce non-constant impurities densities on the flux surfaces. As for neoclassical and turbulent transport models such an asymmetry is of highly importance an effort is

  8. Interaction of heavy ions beams with hot and dense plasmas. Application to inertial fusion

    International Nuclear Information System (INIS)

    Maynard, Gilles

    1987-01-01

    The subject of this work is the variation with time, on one of the energy and charge state of an heavy ion beam which through a plasma, and on another side, of a target used in ion inertial confinement fusion. We take in account projectile excitation, and higher order corrections to the Born stopping power formula are calculated. Comparison with experimental results in gas and solid are good. In hot plasma case, non-equilibrium charge states are described. We present an hydrodynamic simulation code of one dimension and three temperatures. We show that the shortening of the heavy ions beams with temperature reinforces the radiative transfer importance. (author) [fr

  9. Systematic model calculations of the hyperfine structure in light and heavy ions

    CERN Document Server

    Tomaselli, M; Nörtershäuser, W; Ewald, G; Sánchez, R; Fritzsche, S; Karshenboim, S G

    2003-01-01

    Systematic model calculations are performed for the magnetization distributions and the hyperfine structure (HFS) of light and heavy ions with a mass close to A ~ 6 208 235 to test the interplay of nuclear and atomic structure. A high-precision measurement of lithium-isotope shifts (IS) for suitable transition, combined with an accurate theoretical evaluation of the mass-shift contribution in the respective transition, can be used to determine the root-mean-square (rms) nuclear-charge radius of Li isotopes, particularly of the halo nucleus /sup 11/Li. An experiment of this type is currently underway at GSI in Darmstadt and ISOLDE at CERN. However, the field-shift contributions between the different isotopes can be evaluated using the results obtained for the charge radii, thus casting, with knowledge of the ratio of the HFS constants to the magnetic moments, new light on the IS theory. For heavy charged ions the calculated n- body magnetization distributions reproduce the HFS of hydrogen-like ions well if QED...

  10. Pion correlations in heavy ion collision

    International Nuclear Information System (INIS)

    Venema, L.

    1991-01-01

    Charged π-correlations are a well established experimental technique to obtain information about π-source sizes. This is, however, not the case for π 0 's, as they decay into photons, resulting in measurements of 4 photon correlations. Here is described what these correlations are, what the problems are to detect and interpret them. These correlations are an additional way to get more information out of the heavy ion collisions. (orig.)

  11. The present state and perspectives of low-energy heavy ion biology

    International Nuclear Information System (INIS)

    Yuan Chengling; Yu Zengliang

    2004-01-01

    The interaction between low-energy ions and matter has been concerned rarely comparing to that of high-energy ions. It is even more unusual to find studies of the interaction of low-energy ions and complicated organisms. However, the discovery of bioeffects induced by ion beam implantation has opened a new branch in the field of ion beam applications in the life science--Low-energy Heavy Ion Biology. The mutagenic effect of low energy heavy ions was firstly reported in 1986 in rice. Since then, a damage mechanism involved in energy absorption, mass deposition, and charge exchange has been proposed. Accumulating evidence has indicated that these three factors are key determinants in the bioeffects induced by low energy heavy ions, which has opened new opportunities for mutational breeding, gene transferring, cell modification, and cell fusion. In recent years, the ion beam implantation technique has been widely applied in many fields, and increasing research interest in the field has been seen. The authors summarize recent advances in research on the role of low-energy ions in terms of the mechanisms and applications

  12. Induction-accelerator heavy-ion fusion: Status and beam physics issues

    International Nuclear Information System (INIS)

    Friedman, A.

    1996-01-01

    Inertial confinement fusion driven by beams of heavy ions is an attractive route to controlled fusion. In the U.S., induction accelerators are being developed as open-quotes driversclose quotes for this process. This paper is divided into two main sections. In the first section, the concept of induction-accelerator driven heavy-ion fusion is briefly reviewed, and the U.S. program of experiments and theoretical investigations is described. In the second, a open-quotes taxonomyclose quotes of space-charge-dominated beam physics issues is presented, accompanied by a brief discussion of each area

  13. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Photons; dileptons; Relativistic Heavy Ion Collider; Large Hadron Collider; quark ... the collisions produces relatively high pT photons, often referred to ..... energy have been found for identified charged hadrons at RHIC [25].

  14. Two-photon processes in highly charged ions

    International Nuclear Information System (INIS)

    Jahrsetz, Thorsten

    2015-01-01

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  15. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  16. Heavy-ion dosimetry

    International Nuclear Information System (INIS)

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained

  17. Dynamics of heavy ion beams during longitudinal compression

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Bangerter, R.O.; Lee, E.P.; Brandon, S.; Mark, J.W.K.

    1987-01-01

    Heavy ion beams with initially uniform line charge density can be compressed longitudinally by an order of magnitude in such a way that the compressed beam has uniform line charge density and velocity-tilt profiles. There are no envelope mismatch oscillations during compression. Although the transverse temperature varies along the beam and also varies with time, no substantial longitudinal and transverse emittance growth has been observed. Scaling laws for beam radius and transport system parameters are given

  18. Charged state distributions of swift heavy ions behind various solid targets (36 ≤ Zp ≤ 92, 18 MeV/u ≤ E ≤ 44 MeV/u)

    International Nuclear Information System (INIS)

    Leon, A.; Melki, S.; Lisfi, D.; Grandin, J.P.; Jardin, P.; Suraud, M.G.; Cassimi, A.

    1998-01-01

    Noting the lack of and the increasing need for information concerning heavy ion stripping in the intermediate velocity regime, the authors have studied a large number of ion-target systems experimentally. They present experimental charge state distributions obtained at the GANIL accelerator for several projectiles (36 ≤ Z p ≤ 92) with energies ranging from 18 MeV/u to 44 MeV/u, emerging from various target foils (4 ≤ Z t ≤ 79) of natural isotopic composition. The target thicknesses (from 1 microg/cm 2 up to several mg/cm 2 ) are chosen to cover the pre- and post-charge-state equilibrium regimes. Charge state fractions, mean charge state, charge distribution width, and emerging ion energy are tabulated for each of the 107 projectile-target element-target thickness combinations. They also present an improvement of the semi-empirical formulae proposed by Baron et al. to predict the mean charge states and the distribution widths at equilibrium. These formulae are compared with the available experimental data

  19. Time resolved ion beam induced charge collection

    International Nuclear Information System (INIS)

    Sexton W, Frederick; Walsh S, David; Doyle L, Barney; Dodd E, Paul

    2000-01-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a -.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients

  20. Time resolved ion beam induced charge collection

    Energy Technology Data Exchange (ETDEWEB)

    SEXTON,FREDERICK W.; WALSH,DAVID S.; DOYLE,BARNEY L.; DODD,PAUL E.

    2000-04-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

  1. Accelerator-Based Studies of Heavy Ion Interactions Relevant to Space Biomedicine

    Science.gov (United States)

    Miller, J.; Heilbronn, L.; Zeitlin, C.

    1999-01-01

    Evaluation of the effects of space radiation on the crews of long duration space missions must take into account the interactions of high energy atomic nuclei in spacecraft and planetary habitat shielding and in the bodies of the astronauts. These heavy ions (i.e. heavier than hydrogen), while relatively small in number compared to the total galactic cosmic ray (GCR) charged particle flux, can produce disproportionately large effects by virtue of their high local energy deposition: a single traversal by a heavy charged particle can kill or, what may be worse, severely damage a cell. Research into the pertinent physics and biology of heavy ion interactions has consequently been assigned a high priority in a recent report by a task group of the National Research Council. Fragmentation of the incident heavy ions in shielding or in the human body will modify an initially well known radiation field and thereby complicate both spacecraft shielding design and the evaluation of potential radiation hazards. Since it is impractical to empirically test the radiation transport properties of each possible shielding material and configuration, a great deal of effort is going into the development of models of charged particle fragmentation and transport. Accurate nuclear fragmentation cross sections (probabilities), either in the form of measurements with thin targets or theoretical calculations, are needed for input to the transport models, and fluence measurements (numbers of fragments produced by interactions in thick targets) are needed both to validate the models and to test specific shielding materials and designs. Fluence data are also needed to characterize the incident radiation field in accelerator radiobiology experiments. For a number of years, nuclear fragmentation measurements at GCR-like energies have been carried out at heavy ion accelerators including the LBL Bevalac, Saturne (France), the Synchrophasotron and Nuklotron (Dubna, Russia), SIS-18 (GSI, Germany), the

  2. The ECR heavy-ion source for ATLAS

    International Nuclear Information System (INIS)

    Pardo, R.C.; Billquist, P.J.

    1989-01-01

    The ATLAS PII-ECR ion source is the first ECR ion source to be designed for operation in a high voltage platform. The source system is required to provide beams of heavy ions with a velocity of 0.01c for subsequent acceleration by the superconducting ATLAS Positive Ion Injector Linac. At present, the ability of the system to provide high charge state ions with velocities up to .01c is probably unique and as such has generated significant interest in the atomic physics community. A beamline for atomic physics has been installed and is now in use. The source began operation in October, 1987. The source capabilities and operating experiences to date will be discussed. 6 refs., 3 figs., 3 tabs

  3. Space-charge compensation of highly charged ion beam from laser ion source

    International Nuclear Information System (INIS)

    Kondrashev, S.A.; Collier, J.; Sherwood, T.R.

    1996-01-01

    The problem of matching an ion beam delivered by a high-intensity ion source with an accelerator is considered. The experimental results of highly charged ion beam transport with space-charge compensation by electrons are presented. A tungsten thermionic cathode is used as a source of electrons for beam compensation. An increase of ion beam current density by a factor of 25 is obtained as a result of space-charge compensation at a distance of 3 m from the extraction system. The process of ion beam space-charge compensation, requirements for a source of electrons, and the influence of recombination losses in a space-charge-compensated ion beam are discussed. (author)

  4. Nuclear research with heavy ions. Annual progress report, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Kaplan, M.

    1979-10-01

    The experimental research emphasizes the detection and measurement of light charged particles emitted in reactions between heavy ions and complex nuclei. The program involves a collaboration between Carnegie-Mellon University and SUNY at Stony Brook, and utilizes the SuperHILAC and 88'' cyclotron accelerator facilities of the Lawrence Berkeley Laboratory. Correlations between light charged particles and heavy fragments provide detailed insights into the dynamics of the reaction mechanism. The light charged particles evaporated from fully accelerated fragments yield information on the excitation energies and spins of the equilibrated reaction products, whereas those particles that are emitted prior to thermal equilibration give a view of the early stages of the reaction. Experimental results of fusion and charged particle emission cross sections are discussed for a variety of heavy ion reactions, particularly those induced by 40 Ar ions. The theoretical development of the statistical model as applied to particle evaporation is reviewed, and semiempirical methods for facilitating comparisons with experimental data are presented. Current results from singles and coincidence experiments are given in detail for reactions of 340-MeV 40 Ar with Au, and analyses of average spins and energy sharing among particles are discussed

  5. Mutation induction in spores of Bacillus subtilis by accelerated very heavy ions

    International Nuclear Information System (INIS)

    Baltschukat, K.; Horneck, G.; Buecker, H.; Facius, R.; Schaefer, M.

    1986-01-01

    Mutation induction (resistance to sodium azide) in spores of Bacillus subtilis was investigated after irradiation with heavy ions from Neon to Uranium with specific particle energies between 0.17 and 18.6 MeV/u. A strong dependence of the mutation induction cross section on particle charge and energy was observed. From the results it was concluded that mutation induction in bacterial spores by very heavy ions is mainly caused by secondary electrons. (orig.)

  6. Intriguing aspects in baryon production at relativistic heavy-ion collider

    Indian Academy of Sciences (India)

    The commencement of the relativistic heavy ion collider (RHIC) operation at Brookhaven ... that an unprecedented high-energy density has been achieved in ... for charged particles and measurement of ionization energy loss (dE/dx) for limited ...

  7. Probing of complete and incomplete fusion dynamics in heavy-ion ...

    Indian Academy of Sciences (India)

    2014-04-04

    Apr 4, 2014 ... Heavy-ion induced reactions; complete and incomplete fusion; ... CF reaction the projectile completely fuses with the target nucleus and the highly excited .... input parameters have been used as default except the charge and ...

  8. Characteristic effects of heavy ion irradiation on the rat brain

    International Nuclear Information System (INIS)

    Sun, X.Z.; Takahashi, S.; Kubota, Y.; Yoshida, S.; Takeda, H.; Zhang, R.; Fukui, Y.

    2005-01-01

    Heavy ion irradiation has the feature to administer a large radiation dose in the vicinity of the endpoint in the beam range, and its irradiation system and biophysical characteristics are different from ordinary irradiation instruments like X- or gamma-rays. Using this special feature, heavy ion irradiation has been applied for cancer treatment. The safety and efficacy of heavy ion irradiator have been demonstrated to a great extent. For instance, brain tumors treated by heavy-ion beams became smaller or disappearance. However, fundamental research related to such clinical phenotypes and their underlying mechanisms are little known. In order to clarify characteristic effects of heavy ion irradiation on the brain, we developed an experimental system for irradiating a restricted region of the rat brain using heavy ion beams. The characteristics of the heavy ion beams, histological, behavioral and elemental changes were studied in the rat following heavy ion irradiation. Adult male Sprague-Dawley rats, aged 12 weeks and weighing 260-340 g (Shizuoka Laboratory Animal Center, Hamamatsu, Japan) were used. Rats were deeply anesthetized 10-15 minutes before irradiation with ketamine (40 mg/kg) and xylazine (10 mg/kg), immobilized in a specifically designed jig, and irradiated with 290 MeV/nucleon charged carbon beams in a dorsal-to ventral direction, The left cerebral hemispheres of the brain were irradiated at doses of 100 Gy charged carbon particles. The depth-dose distribution of the heavy ion beams was modified to make a spread-out bragg peak of 5 mm wide with a range modulator. The characteristics of the heavy-ion beams (field and depth of the heavy-ion beams) were examined by a measuring paraffin section of rat brain at different thickness. That extensive necrosis was observed between 2.5 mm and 7.5 mm depth from the surface of the rat head, suggesting a relatively high dose and uniform dose was delivered among designed depths and the spread-out bragg peak used here

  9. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  10. Beam modulation for heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Kanai, T.; Minohara, S.; Sudou, M.

    1993-01-01

    The first clinical trial of heavy ion radiation therapy is scheduled in 1994 by using the heavy ion medical accelerator in Chiba (HIMAC). In order to start the clinical trial, first, it is necessary to know the physical characteristics of high energy heavy ions in human bodies, for example, dose and linear energy transfer (LET) distribution. Also the knowledge on the biological effectiveness of heavy ions is required. Based on these biophysical properties of heavy ions, monoenergetic heavy ion beam should be modulated so as to make the spread Bragg peak suitable to heavy ion radiation therapy. In order to establish a methodology to obtain the most effective spread Bragg peak for heavy ion radiation therapy, a heavy ion irradiation port at the RIKEN ring cyclotron facility was constructed. By using a 135 MeV/u carbon beam, the biophysical properties of the heavy ions were investigated, and a range modulator was designed to have uniform biological response in the spread Bragg peak. The physical and biological rationality of the spread Bragg peak were investigated. The dose, LET and biological effect of a monoenergetic heavy ion beam, the design of the range modulator, and the distributions of LET and biological dose for the spread Bragg peak are reported. (K.I.)

  11. Heavy ion beams from an Alphatross source for use in calibration and testing of diagnostics

    Science.gov (United States)

    Ward, R. J.; Brown, G. M.; Ho, D.; Stockler, B. F. O. F.; Freeman, C. G.; Padalino, S. J.; Regan, S. P.

    2016-10-01

    Ion beams from the 1.7 MV Pelletron Accelerator at SUNY Geneseo have been used to test and calibrate many inertial confinement fusion (ICF) diagnostics and high energy density physics (HEDP) diagnostics used at the Laboratory for Laser Energetics (LLE). The ion source on this accelerator, a radio-frequency (RF) alkali-metal charge exchange source called an Alphatross, is designed to produce beams of hydrogen and helium isotopes. There is interest in accelerating beams of carbon, oxygen, argon, and other heavy ions for use in testing several diagnostics, including the Time Resolved Tandem Faraday Cup (TRTF). The feasibility of generating these heavy ion beams using the Alphatross source will be reported. Small amounts of various gases are mixed into the helium plasma in the ion source bottle. A velocity selector is used to allow the desired ions to pass into the accelerator. As the heavy ions pass through the stripper canal of the accelerator, they emerge in a variety of charge states. The energy of the ion beam at the high-energy end of the accelerator will vary as a function of the charge state, however the maximum energy deliverable to target is limited by the maximum achievable magnetic field produced by the accelerator's steering magnet. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  12. Multifragmentation induced by light relativistic projectiles and heavy ions: similarities and differences

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1998-01-01

    The experimental data on fragment multiplicities, their energy and charge distributions, the emission times are considered for the nuclear multifragmentation process induced by relativistic light projectiles (protons, helium) and heavy ions. With light projectiles, the multifragmentation is a pure 'thermal' process, well described by the statistical models. Heavy-ion-induced multifragmentation is influenced by dynamic effects related first of all to the compression of the system in the collision. But statistical models can also be applied to rendering the partition of the system if the excitation energy is less than 10 MeV/nucleon and compression is modest. For the central collision of heavy ions the statistical approach fails to describe the data

  13. Charge breeding investigation in EBIS/T and collision study of ions with cold atoms for HITRAP

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Alexey

    2010-01-29

    Highly charged ions (HCI) at low velocities or at rest are interesting systems for various atomic physics experiments. For investigations on HCI of heavy stable or radioactive nuclides the HITRAP (Highly charged Ion TRAP) decelerator facility has been set up at GSI to deliver cooled beams of HCI at an energy of 5 keV/q. The HCI are produced in a stripper foil at relativistic energies and are decelerated in several steps at ESR storage ring and HITRAP before they are delivered to experimental setups. One of the experiments is the investigation of multi-electron charge exchange in collisions of heavy HCI with cold atoms using novel MOTRIMS technique. Collision experiments on light ions from an ECR ion source colliding with cold atoms in a MOT have been performed and the results are described. An electron beam ion trap (EBIT) has been tested and optimized for commissioning of the HITRAP physics experiments. The process of charge breeding in the EBIT has been successfully studied with gaseous elements and with an alkaline element injected from an external ion source. (orig.)

  14. Charge breeding investigation in EBIS/T and collision study of ions with cold atoms for HITRAP

    International Nuclear Information System (INIS)

    Sokolov, Alexey

    2010-01-01

    Highly charged ions (HCI) at low velocities or at rest are interesting systems for various atomic physics experiments. For investigations on HCI of heavy stable or radioactive nuclides the HITRAP (Highly charged Ion TRAP) decelerator facility has been set up at GSI to deliver cooled beams of HCI at an energy of 5 keV/q. The HCI are produced in a stripper foil at relativistic energies and are decelerated in several steps at ESR storage ring and HITRAP before they are delivered to experimental setups. One of the experiments is the investigation of multi-electron charge exchange in collisions of heavy HCI with cold atoms using novel MOTRIMS technique. Collision experiments on light ions from an ECR ion source colliding with cold atoms in a MOT have been performed and the results are described. An electron beam ion trap (EBIT) has been tested and optimized for commissioning of the HITRAP physics experiments. The process of charge breeding in the EBIT has been successfully studied with gaseous elements and with an alkaline element injected from an external ion source. (orig.)

  15. Two-photon decay in heavy atoms and ions

    International Nuclear Information System (INIS)

    Mokler, P.H.; Dunford, R.W

    2003-08-01

    We review the status of and comment on current developments in the field of two-photon decay in atomic physics research. Recent work has focused on two-photon decays in highly-charged ions and two-photon decay of inner-shell vacancies in heavy neutral atoms. We emphasize the importance of measuring the shape of the continuum emission in two-photon decay as a probe of relativistic effects in the strong central fields found in heavy atomic systems. New experimental approaches and their consequences will be discussed. (orig.)

  16. COLLIMATORS AND MATERIALS FOR HIGH INTENSITY HEAVY ION SYNCHROTRONS

    CERN Document Server

    Stadlmann, J; Kollmus, H; Spiller, P; Strasik, I; Tahir, N A; Tomut, M; Trautmann, C

    2012-01-01

    The operation of high power high brightness accelerators requires huge efforts for beam cleaning and machine protection. Within the WP 8 (ColMat) of the EU research framework EuCARD[1] we investigate new materials and methods for beam collimation and machine protection. We present an overview of these activities at the GSI Helmholtzzentrum f¨ur Schwerionenforschung, Darmstadt. Simulations of accidental beam losses in LHC and SIS100 have been performed. Scenarios for halo collimation of heavy ions and protons in SIS100 routine operation have been investigated. A prototype of a cryogenic collimator for charge exchange losses during intermediate charge state heavy ion operation in SIS100 has been build and tested with beam. Several candidates of advanced composite materials for collimation system upgrades of present and future high power accelerators have been irradiated and their properties are being characterized. Most deliverables and milestones of the R&D programme were already reached before the end of...

  17. Ballistic-neutralized chamber transport of intense heavy ion beams

    International Nuclear Information System (INIS)

    Rose, D.V.; Welch, D.R.; Oliver, B.V.; Clark, R.E.; Sharp, W.M.; Friedman, A.

    2001-01-01

    Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb +1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance

  18. Convoy electron production by heavy ions in solids

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1984-01-01

    The term convoy electron refers to those electrons ejected in fast ion-atom and ion-solid collisions closely matched in vector velocity to that of the incident heavy particles responsible for their ejection. Similarities and differences among electrons ejected into such states through binary electron capture to continuum and electron loss to continuum processes in single ion-atom encounters are compared and contrasted to more complex ejection processes occurring in solid targets. Puzzles posed by the apparent strong projectile Z dependence but weak emergent ion charge dependence of the yield in the case of solid targets are reviewed. Very recent progress in resolving these puzzles has been made by recent observations that the apparent mean free path for electron scattering out of the forward direction within the target is observed to be an order of magnitude greater than that for free electrons of equal velocity provided the projectile charge is high. 13 references, 2 figures, 1 table

  19. Heavy charged particle therapy

    International Nuclear Information System (INIS)

    Mizoe, Jun-etsu

    1995-01-01

    A pilot study of heavy charged particles with heavy ion medical accelerator in Chiba (HIMAC) for advanced H and N cancer has been carried out from June 1994 at National Institute of Radiological Sciences (NIRS). As of the beginning of August 1994, three patients were treated by 290 MeV carbon ions. The patients had adenocarcinoma of the cheek mucosa, squamous cell carcinoma of the ethmoid sinus and adenoid cystic carcinoma of the sublingual gland. Patients were immobilized by individual head coach and thermosplint facial shell. Individual collimators and bolus were also prepared for each ports. Dose fractionation for the initial pilot study group was 16.2 GyE/18 fractions/6 weeks, which would be equivalent to standard fractionation of 60.0 Gy/30 fractions/6 weeks with photons. This dose fractionation was considered to be 20% lesser than 75 GyE/37.5 fractions/7.5 weeks, which is estimated to be maximum tolerance dose for advanced H and N cancers. HIMAC worked well and there was no major trouble causing any treatment delay. Acute skin reactions of 3 patients were 2 cases of bright erythema with patchy moist desquamation and one of dull erythema, which were evaluated as equivalent reaction with irradiated dose. Acute mucosa reactions appeared to have lesser reaction than predicted mucositis. Tumor reactions of three patients were partial reaction (PR) at the end of treatment and nearly complete remission (CR) after 6 months of treatment. From October 1994, we started to treat patients with advanced H and N cancer with 10% high dose than previous dose. And new candidates of pilot study with non small cell lung cancer, brain tumor and carcinoma of the tongue were entered into pilot study. At the end of February 1995, a total of 21 patients were treated by carbon ions. (J.P.N.)

  20. Progress in heavy-ion drivers for inertial fusion

    International Nuclear Information System (INIS)

    Friedman, A.; Bangerter, R.O.; Herrmannsfeldt, W.B.

    1994-01-01

    Heavy-ion induction accelerators are being developed as fusion drivers for ICF power production in the US Inertial Fusion Energy (IFE) program, in the Office of Fusion Energy of the US Department of Energy. In addition, they represent an attractive driver option for a high-yield microfusion facility for defense research. This paper describes recent progress in induction drivers for Heavy-Ion Fusion (HIF), and plans for future work. It presents research aimed at developing drivers having reduced cost and size, specifically advanced induction linacs and recirculating induction accelerators (recirculators). The goals and design of the Elise accelerator being built at Lawrence Berkeley Laboratory (LBL), as the first stage of the ILSE (Induction Linac Systems Experiments) program, are described. Elise will accelerate, for the first time, space-charge-dominated ion beams which are of full driver scale in line-charge density and diameter. Elise will be a platform on which the critical beam manipulations of the induction approach can be explored. An experimental program at Lawrence Livermore National Laboratory (LLNL) exploring the recirculator principle on a small scale is described in some detail; it is expected that these studies will result ultimately in an operational prototype recirculating induction accelerator. In addition, other elements of the US HIF program are described

  1. Highly charged ions at rest: The HITRAP project at GSI

    International Nuclear Information System (INIS)

    Herfurth, F.; Beier, T.; Dahl, L.; Eliseev, S.; Heinz, S.; Kester, O.; Kluge, H.-J.; Kozhuharov, C.; Maero, G.; Quint, W.

    2005-01-01

    A decelerator will be installed at GSI in order to provide and study bare heavy nuclei or heavy nuclei with only few electrons at very low energies or even at rest. Highly-charged ions will be produced by stripping at relativistic energies. After electron cooling and deceleration in the Experimental Storage Ring the ions are ejected out of the storage ring at 4 MeV/u and further decelerated in a combination of an IH and RFQ structure. Finally, they are injected into a Penning trap where the ions are cooled to 4 K. From here, the ions can be transferred in a quasi dc or in a pulsed mode to different experimental setups. This article describes the technical concepts of this project as well as planned key experiments

  2. Cataractogenic effects of heavy charged particles in mice

    International Nuclear Information System (INIS)

    Ainsworth, E.J.; Jose, J.G.; Yang, V.V.; Barker, M.E.

    1980-01-01

    The effects of heavy charged particles on the crystalline lens of the eye of mice are important because this tissue has proven susceptible to other forms of high-LET radiation. This report summarizes the results currently available from a prospectively designed study to explore the LET dependence of the cataractogenic process. The present results are consistent with a high cataractogenic effect at 100 keV/μm, because plateau argon 40 ions, with an LET in this range, produce higher average cataracts scores at 9, 11 and 13 months than do carbon 12 or neon 20 ions. In the electron micrographs, significant changes were observed from the controls

  3. Characteristics for heavy ions and micro-dosimetry in radiation detectors

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    1978-01-01

    The characteristics of radiation detectors for heavy ions generally present more complex aspects as compared with those for electron beam and γ-ray. There is the ''Katz theory'' applying the target theory in radiobiology phenomenologically to radiation detectors. Here, first, the Katz theory for radiation detectors is explained, then its applications to nuclear plates, solid state track detectors, scintillation detectors and thermoluminescence dosimeters are described, respectively. The theory is used for the calibration of the nuclear charge of heavy ions in nuclear plates and recently is used to simulate the flight tracks of heavy ions or magnetic monopoles. In solid state track detectors, the threshold value of the energy given along the tracks of heavy ions is inherent to a detector, and the Katz theory is applicable as the measure of the threshold. The theory seems to be superior to the other methods. However, it has disadvantages that the calculation is not simple and is difficult for wide objects. In scintillation detectors, the scintillation efficiency is not a single function of dE/dx, but depends on the kinds of heavy ions, which Katz succeeded to describe quantitatively with his theory. Such result has also been produced that the dependence of thermoluminescence dosimeters such as LiF on LET by Katz theory agreed fairly well with experiments. (Wakatsuki, Y.)

  4. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Sørensen, Allan Hvidkjær

    2013-01-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... in a pronounced directional dependence of the energy loss of bare heavy ions at extreme relativistic energies....

  5. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  6. Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC ...

    Indian Academy of Sciences (India)

    model, to describe the microscopic evolution and decoupling of the hadronic ... progress on hydrodynamic modelling, investigation on the flow data and the ... and to describe and predict the soft particle physics in relativistic heavy-ion collisions [4]. It is based on the conservation laws of energy, momentum and net charge ...

  7. Experimental study of the transport limits of intense heavy ion beams in the HCX

    International Nuclear Information System (INIS)

    Prost, L.R.; Bieniosek, F.M.; Celata, C.M.; Dugan, C.C.; Faltens, A.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik, A.W.; Haber, I.

    2004-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high space-charge intensity (line charge density up to ∼ 0.2 (micro)C/m) over long pulse durations (4 (micro)s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. The experiment also contributes to the practical baseline knowledge of intense beam manipulations necessary for the design, construction and operation of a heavy ion driver for inertial fusion. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, electron cloud effects, and longitudinal bunch control. We first present the results for a coasting 1 MeV K + ion beam transported through the first ten electrostatic transport quadrupoles, measured with optical beam-imaging and double-slit phase-space diagnostics. This includes studies at two different radial fill factors (60% and 80%), for which the beam transverse distribution was characterized in detail. Additionally, beam energy measurements will be shown. We then discuss the first results of beam transport through four pulsed room-temperature magnetic quadrupoles (located downstream of the electrostatic quadrupoles), where the beam dynamics become more sensitive to the presence of secondary electrons

  8. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  9. Proposal for a heavy ion ECR-source at the PSI-Philips cyclotron

    International Nuclear Information System (INIS)

    Kern, J.

    1989-10-01

    It is proposed by a large community of PSI- and external scientists to install an electron cyclotron resonance (ECR) source for highly charged heavy ions at the PHILIPS (injector I) cyclotron. Such a facility would then allow to produce high intensity ion beams with energies up to 30 MeV/u. A workshop hold in June 1989 clearly showed that with such a machine a large variety of interesting heavy ion experiments could be performed. While at foreign heavy ion centres the main focus is given to basic research in the field of nuclear physics we propose to concentrate the scientific effort at a PSI heavy ion facility mainly onto applications in the fields of atomic physics, chemistry, accelerator mass spectrometry, radiation biology and solid state physics. This is adequate, in view of the broad infrastructure available at PSI together with the existing know-how in many different fields. The proposed machine will thus be of great potential use for a large community. (author) 19 figs., 3 tabs., 82 refs

  10. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270 MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRIS) has been designed, fabricated and installed successfully. It has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  11. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRlS) has been designed, fabricated and installed successfully. lt has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  12. Applications of heavy ion microprobe for single event effects analysis

    International Nuclear Information System (INIS)

    Reed, Robert A.; Vizkelethy, Gyorgy; Pellish, Jonathan A.; Sierawski, Brian; Warren, Kevin M.; Porter, Mark; Wilkinson, Jeff; Marshall, Paul W.; Niu, Guofu; Cressler, John D.; Schrimpf, Ronald D.; Tipton, Alan; Weller, Robert A.

    2007-01-01

    The motion of ionizing-radiation-induced rogue charge carriers in a semiconductor can create unwanted voltage and current conditions within a microelectronic circuit. If sufficient unwanted charge or current occurs on a sensitive node, a variety of single event effects (SEEs) can occur with consequences ranging from trivial to catastrophic. This paper describes the application of heavy ion microprobes to assist with calibration and validation of SEE modeling approaches

  13. Bystander effect studies using heavy-ion microbeam

    International Nuclear Information System (INIS)

    Kobayashi, Yasuhiko; Funayama, Tomoo; Sakashita, Tetsuya; Wada, Seiichi; Yokota, Yuichiro; Kakizaki, Takehiko; Hamada, Nobuyuki; Hara, Takamitsu; Fukamoto, Kana; Suzuki, Michiyo; Ni, M.; Furusawa, Yoshiya

    2007-01-01

    We have established a single cell irradiation system, which allows selected cells to be individually hit with defined number of heavy charged particles, using a collimated heavy-ion microbeam apparatus at JAEA-Takasaki. This system has been developed to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations, in ways that cannot be achieved using conventional broad-field exposures. Individual cultured cells grown in special dishes were irradiated in the atmosphere with a single or defined numbers of 18.3 MeV/amu 12 C, 13.0 or 17.5 MeV/amu 20 Ne, and 11.5 MeV/amu 40 Ar ions. Targeting and irradiation of the cells were performed automatically according to the positional data of the target cells microscopically obtained before irradiation. The actual number of particle tracks that pass through target cells was detected with prompt etching of the bottom of the cell dish made of ion track detector TNF-1 (modified CR-39). (author)

  14. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    Science.gov (United States)

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed.

  15. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  16. Heavy-ion performance of the LHC and future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Michaela

    2015-04-29

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton-proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term ''heavy-ion collisions'' refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter luminosity lifetimes. As the production cross-sections for various physics processes under study of the experiments are still small at energies reachable with the LHC and because the heavy-ion run time is limited to a few days per year, it is essential to obtain the highest possible collision rate, i.e. maximise the instantaneous luminosity, in order to obtain enough events and therefore low statistical errors. Within this thesis, the past performance of the LHC in lead-lead (Pb-Pb) collisions, at a centre-of-mass energy of 2.76 TeV per colliding nucleon pair, is analysed and potential luminosity limitations are identified. Tools are developed to predict future performance and techniques are presented to further increase the luminosity. Finally, a perspective on the future of high energy heavy-ion colliders is given.

  17. DNA damage and repair in oncogenic transformation by heavy ion radiation

    Science.gov (United States)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  18. Nuclear dynamics in heavy ion induced fusion-fission reactions

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    1992-01-01

    Heavy ion induced fission and fission-like reactions evolve through a complex nuclear dynamics encountered in the medium energy nucleus-nucleus collisions. In the recent years, measurements of the fragment-neutron and fragment-charged particle angular correlations in heavy ion induced fusion-fission reactions, have provided new information on the dynamical times of nuclear deformations of the initial dinuclear complex to the fission saddle point and the scission point. From the studies of fragment angular distributions in heavy ion induced fission it has been possible to infer the relaxation times of the dinuclear complex in the K-degree of freedom and our recent measurements on the entrance channel dependence of fragment anisotropies have provided an experimental signature of the presence of fissions before K-equilibration. This paper reviews recent experimental and theoretical status of the above studies with particular regard to the questions relating to dynamical times, nuclear dissipation and the effect of nuclear dissipation on the K-distributions at the fission saddle in completely equilibrated compound nucleus. (author). 19 refs., 9 figs

  19. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  20. Colour rope model for extreme relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Biro, T.S.; Nielsen, H.B.; Knoll, J.

    1984-04-01

    Our goal is to investigate the possible cumulative effects of the colour fields of the observable meson multiplicity distribution in the central rapidity region in extreme relativistic heavy ion collisions. In the first Chapter we overview the space-time picture of the string formation in a central heavy ion collision. We take into account trivial geometrical factors in a straight line geometry. In the second Chapter we consider the colour chargation process of heavy ions as a random walk. We calculate the expectation value and the relative standard deviation of the total effective charge square. In the third Chapter we consider the stochastic decay of a K-fold string-rope to mesons by the Schwinger-mechanism. We calculate the expected lifetime of a K-fold string and the time for the first quark antiquark pair creation. In the fourth Chapter we deal with the meson production of a K-fold rope relative to that of a single string and hence we look for a scaling between A + A and p + p collisions. (orig./HSI)

  1. Heavy ion fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1986-01-01

    This report on the International Symposium on Heavy Ion Fusion held May 27-29, 1986 summarizes the problems and achievements in the areas of targets, accelerators, focussing, reactor studies, and system studies. The symposium participants recognize that there are large uncertainties in Heavy Ion Fusion but many of them are also optimistic that HIF may ultimately be the best approach to fusion

  2. Future Perspectives for the Application of Low Temperature Detectors in Heavy Ion Physics

    International Nuclear Information System (INIS)

    Egelhof, P.; Kraft-Bermuth, S.

    2009-01-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics is given, and the next generation heavy ion facility FAIR is described with a special emphasis on the potential advantage of Low Temperature Detectors (LTDs) for applications in heavy ion physics. For prototype LTDs for the energy sensitive detection of heavy ions excellent results with respect to energy resolution down to δE/E = 1-2x10 -3 for a wide range of incident energies, and with respect to other detector properties, such as energy linearity with no indication of pulse height defects even for the heaviest ions, have been obtained. In addition, prototype detectors for hard X-rays have shown energy resolutions down to δE = 30-40eV at 60 keV. Consequently, both detector schemes have already been successfully used for first experiments. At present, the design and setup of large solid angle detector arrays is in progress. With the already achieved performance, LTDs promise a large potential for applications in atomic and nuclear heavy ion physics. A brief overview of prominent examples, including high-resolution nuclear spectroscopy, nuclear structure studies with radioactive beams, superheavy element research, as well as high-resolution atomic spectroscopy on highly charged ions and tests of QED in strong electromagnetic fields is presented.

  3. Nuclear research with heavy ions. Annual progress report, January 1, 1977--December 31, 1977

    International Nuclear Information System (INIS)

    Kaplan, M.

    1977-10-01

    The experimental research program consists of several interrelated parts: (1) Reactions of Very Heavy Ions with Complex Nuclei; (2) Studies of Compound Nucleus Reactions Induced by Heavy Ions; and (3) Recoil Studies of Heavy Ion Reactions. Using solid-state detector telescopes and gas-ionization detector telescopes we have studied the emission of 1 H, 2 H, 3 H, 4 He and heavy fragments from the reactions of 720 MeV 86 Kr with 197 Au. Coincidence measurements between light charged particles and a heavy fragment indicate that most of the observed 4 He particles are evaporated by equilibrated Kr*-like and Au*-like excited products from deep inelastic reactions, but a significant number of preequilibrium 4 He particles seem to be emitted in directions normal to the separating fragments. Studies of angular correlations between two heavy fragments provide strong evidence for sequential fission of the Au*-like reaction fragments, and the probability of this process has been estimated as a function of Q, the energy damping in the primary collision. Parallel studies of charged particle emission, fission, and evaporation residues in compound nucleus reactions map out the de-excitation characteristics of highly excited heavy nuclei as functions of E* and J. Results are presented for the compound nucleus 194 Hg formed at matched excitation energies via different entrance channels

  4. Exotic phenomena in collisions of very heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Mueller, U.; Schramm, S.; de Reus, T.; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.

    1987-01-01

    Over the last decade their knowledge on atomic structure of superheavy quasimolecules in the range 110 ≤ Z/sub tot/ ≤ 188 has increased considerably. Heavy ion collisions, in which superheavy quasimolecules are formed for a short period of time, offer them a unique tool to investigate the electronic structure of ultra-high Z-systems, which are not otherwise accessible to experiment. Comparison of K-vacancy formation, δ-electron and positron emission with available experimental data suggests the validity of the quasimolecular picture, which will be taken as the theoretical framework of these calculations. To exemplify current theoretical investigations three different topics will be discussed. After a presentation of the underlying theoretical framework for ionization processes the possibility to employ δ-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions will be sketched. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 - 10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework is investigated. Finally phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms is briefly considered. 42 references, 5 figures

  5. Smart responsive microcapsules capable of recognizing heavy metal ions.

    Science.gov (United States)

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Nuclear physics with heavy ions. 1

    International Nuclear Information System (INIS)

    Reif, R.; Schmidt, R.

    1981-01-01

    Some results obtained in nuclear physics with heavy ions in the energy range up to 10 MeV/nucleon are summarized. A short review of the tendencies in the development of heavy ion accelerators is followed by a classification of the mechanisms observed in heavy ion interactions. The characteristics of the various types of reactions are presented. Applications of heavy ion beams in other branches of sciences are discussed. (author)

  7. Resolving key heavy-ion fusion target issues with relativistic heavy-ion research accelerators

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1988-01-01

    Heavy-ion accelerators designed for relativistic nuclear research experiments can also be adapted for target research in heavy-ion driver inertial fusion. Needle-shaped plasmas can be created that are adequate for studying basic properties of matter at high energy density. Although the ion range is very long, the specific deposited power nevertheless increases with kinetic energy, as the focus spot can be made smaller and more ions can be accumulated in larger rings

  8. Dynamics of electrons and heavy ions in Mercury's magnetosphere

    International Nuclear Information System (INIS)

    Ip, W.H.

    1987-01-01

    The present investigation of Mercury magnetosphere processes employs simple models for the adiabatic acceleration and convection of equatorially mirroring charged particles, as well as the current sheet acceleration effect and the acceleration of such exospheric ions as that of Na(+) by both electric and magnetic magnetospheric fields near Mercury's surface. The large gyroradii of such heavy ions as those of Na allow surface reimpact as well as magnetopause-interception losses to occur; gyromotion-derived kinetic energy could in the case of the latter process account for the loss of as many as half of the planet's exospheric ions. 27 references

  9. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    Science.gov (United States)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  10. X-ray spectroscopy of highly-charged ions in a storage ring. Invited lecture

    International Nuclear Information System (INIS)

    Beyer, H.F.

    1994-11-01

    The purpose of the present lectures is to carry through the methods and procedures necessary for a meaningful spectroscopy of the heaviest few-electron ions in relation to present theories. Results achieved so far in accelerator-based X-ray experiments are highlighted with emphasis on recent developments on heavy-ion storage rings. Starting with a brief account of the basics of one-electron ions, the motivation for doing X-ray spectroscopy of the simplest atomic systems with a high nuclear charge is given. In section 2 X-ray instrumentation and techniques are discussed including the precautions necessary when dealing with fast-beam sources. Peculiarities of heavy-ion storage rings are investigated in section 3 with regard to their use for spectroscopy. In section 4 are discussed results obtained so far on the measurement of the Lamb shift in very heavy ions. Section 5 gives some perspectives for the near future. (orig.)

  11. A model of heavy ion detection in physical and biological systems

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    1988-01-01

    Track structure theory (the Katz model) and its application to the detection of heavy ions in physical and biological systems are reviewed. Following the use of a new corrected formula describing the radial distribution of average dose around the path of a heavy ion, based on results of Monte Carlo calculations and on results of experimental measurements, better agreement is achieved between model calculations and experimentally measured relative effectiveness, for enzymatic and viral systems, for the Fricke dosemeter and for alanine and thermoluminescent (TDL-700) dosemeters irradiated with beams of heavy charged particles. From experimentally measured RBE dependences for survival and frequency of neoplastic transformations in a mammalian cell culture irradiated with beams of energetic heavy ions, values of model parameters for these biological endpoints have been extracted, and a model extrapolation to the low-dose region performed. Results of model calculations are then compared with evaluations of the lung cancer hazard in populations exposed to radon and its progeny. The model can be applied to practical phenomenological analysis of radiation damage in solid-state systems and to dosimetry of charged particle and fast neutron beams using a variety of detectors. The model can also serve as a guide in building more basic models of the action of ionizing radiation with physical and biological systems and guide of development of models of radiation risk more relevant than that used presently. 185 refs., 31 figs., 3 tabs. (author)

  12. Beam instability during high-current heavy-ion beam transport

    International Nuclear Information System (INIS)

    Kikuchi, T.; Someya, T.; Kawata, S.; Nakajima, M.; Horioka, K.

    2005-01-01

    In driver system for heavy ion inertial fusion, beam dynamics is investigated by particle-in-cell simulations during final beam bunching. The particle simulations predict that the beam is transported with the localized transverse charge distribution induced by the strong space charge effect. The calculation results also show that the emittance growth during the longitudinal bunch compression for various particle distributions at the initial conditions and with two types of transverse focusing model, which are a continuous focusing and an alternating gradient focusing lattice configurations. (author)

  13. Susceptibilities of conserved quantities in relativistic heavy-ion collisions at RHIC

    International Nuclear Information System (INIS)

    Chatterjee, A.; Nayak, T.K.; Chatterjee, S.; Sahoo, N.R.

    2016-01-01

    The major motivations of heavy-ion collisions at ultra-relativistic energies is to study the formation of new form of matter, called quark-gluon plasma (QGP) and study its basic properties. Susceptibilities of conserved quantities, such as electric charge, baryon number and strangeness are sensitive to the onset of quantum chromodynamics (QCD) phase transition, and provide information on the mater produce in heavy ion collisions. In this work, we have used the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and the hadron resonance gas (HRG) models to analyzes the 2"n"d order susceptibilities of conserved charges. In experiments, one needs to understand and correct for detector acceptance, efficiency and limited particle identification in order to interpret the results and compare with theoretical calculations. The transverse momentum cutoff dependence of suitably normalized susceptibilities are proposed as useful observables to probe the properties of the medium at freezout

  14. Cherenkov particle identifier for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J P; Olson, D L; Baumgartner, M; Girard, J G; Lindstrom, P J; Greiner, D E; Symons, T J.M.; Crawford, H J

    1985-12-01

    A total internal reflection Cherenkov detector is described. A figure of merit of 84Z/sup 2/sin/sup 2/theta photoelectrons/cm has been measured and the application of the device to charge and velocity measurements of relativistic heavy ions has been tested. We have achieved a charge resolution of ..delta..Zsub(rms)=0.15e for Z=20 with a 3 mm thick glass detector and a velocity resolution of ..delta beta..sub(rms)=2x10/sup -4/ at ..beta..=0.93 and Z=26 with a 6 mm thick fused silica detector. Combining charge and velocity measurements with a magnetic rigidity selection, we have achieved an isotopic mass resolution of ..delta..Msub(rms)=0.1 u with a 2 mm thick fused silica detector for 20

  15. Cherenkov particle identifier for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J P; Olson, D L; Baumgartner, M; Girard, J G; Lindstrom, P J; Greiner, D E; Symons, T J.M.; Crawford, H J

    1985-12-01

    A total internal reflection Cherenkov detector is described. A figure of merit of 84Z/sup 2/sin/sup 2/theta photoelectrons/cm has been measured and the application of the device to charge and velocity measurements of relativistic heavy ions has been tested. We have achieved a charge resolution of ..delta..Zsub(rms)=0.15e for Z=20 with a 3 mm thick glass detector and a velocity resolution of ..delta beta..sub(rms)=2 x 10/sup -4/ at ..beta..=0.93 and Z=26 with a 6 mm thick fused silica detector. Combining charge and velocity measurements with a magnetic rigidity selection, we have achieved an isotopic mass resolution of ..delta..Msub(rms)=0.1 u with a 2 mm thick fused silica detector for 20 < A < 40.

  16. Application of laplace transform method in heavy ion reaction research

    International Nuclear Information System (INIS)

    Wang Jinchuan; Xi Hongfei; Guo Zhongyan; Zhan Wenlong; Zhu Yongtai; Zhou Jianqun; Liu Guanhua

    1993-01-01

    Laplace transform method (LTM) is applied to investigate the effects of different spectroscopy amplifiers parameters on identification of the light charged particles (LCP) emitted from 12 C(46,7 MeV/u) + 58 Ni reaction. The significance of application of LTM in heavy ion experimental nuclear physics is also discussed

  17. Heavy-ion radiography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Holley, W.R.; Benton, E.V.

    1981-01-01

    Heavy-particle radiography has clinical potential as a newly developed noninvasive low-dose imaging procedure that provides increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high-energy ions, primarily carbon and neon, at the Bevalac accelerator at the Lawrence Berkeley Laboratory. The research program for medicine utilizes heavy-ion radiography for low-dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures, brain and spinal neoplasms, and the heart. The potential of heavy-ion imaging, and particularly reconstruction tomography, is now proving to be an adjunct to existing diagnostic imaging procedures in medicine, both for applications to the diagnosis, management and treatment of clinical cancer in man, and for the early detection of small soft-tissue tumors at low radiation dose

  18. Generation of fast multiply charged ions in conical targets

    International Nuclear Information System (INIS)

    Demchenko, V.V.; Chukbar, K.V.

    1990-01-01

    So-called conical targets, when the thermonuclear fuel is compressed and heated in a conical cavity in a heavy material (lead, gold, etc.) with the help of a spherical segment that is accelerated by a laser pulse or a beam of charged particles, are often employed in experimental studies of inertial-confinement fusion. In spite of the obvious advantages of such a scheme, one of which is a significant reduction of the required energy input compared with the complete spherical target, it also introduces additional effects into the process of cumulation of energy. In this paper the authors call attention to an effect observed in numerical calculations: the hydrodynamic heating of a small group of multiply charged heavy ions of the walls of the conical cavity up to high energies (T i approx-gt 100 keV). This effect ultimately occurs as a result of the high radiation losses of a multiply charged plasma

  19. Lepton-pair production by bremsstrahlung in central relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Lippert, T.; Becker, U.; Gruen, N.; Scheid, W.; Soff, G.

    1988-03-01

    We study the production of lepton-pairs by classical bremsstrahlung in central relativistic heavy-ion collisions. For the stopping of the nuclei we assume a simple model of point charges and a deceleration time. Pair creation probabilities are calculated in first order perturbation theory. (orig.)

  20. Heavy ion accelerators

    International Nuclear Information System (INIS)

    Schmelzer, C.

    1974-01-01

    This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)

  1. High energy density in matter produced by heavy ion beams. Annual report 1993

    International Nuclear Information System (INIS)

    1994-06-01

    The experimental activities at GSI were concentrated on the progress in beam-plasma interaction experiments of heavy ion with ionized matter, plasma -lens forming devices, intense beam at high temperature experimental area, and charge exchange collisions of ions. The development to higher intensities and phase space densities during 1993 for the SIS and the ESR is recorded. The possibility of studying of funneling of two beams in a two-beam RFQ is studied. Specific results are presented with respect to inertial confinement fusion (ICF). The problem of ion stopping in plasma and pumping X-ray lasers with heavy ion beams are discussed. Various contributions deal with dense plasma effects, shocks and opacity. (HP)

  2. Limitations of heavy ion synchrotron acceleration for inertial fusion

    International Nuclear Information System (INIS)

    Berley, D.; Danby, G.T.

    1977-01-01

    The potential benefits from heavy ion inertial fusion motivate the rapid development of a program to test the principle. To define the program, accelerator parameters which have not hitherto been commonly considered must be studied interactively with basic questions of space charge limitations and charge exchange. Beam lifetime and power output efficiency may ultimately lead to a linear accelerator as the choice for an ignition device. For proof of principle, however, at power levels way beyond present inertial fusion experience, synchrotrons may have applicability at lower cost. The power and energy which can be delivered by the accelerating system to the reaction chamber are limited by space charge defocussing and intra beam charge exchange scattering, both of which are beam density dependent. These put constraints on linac injector energy, synchrotron aperture, synchrotron magnetic rigidity, acceleration time, ion species and charge to mass ratio. The accelerator system considered is classical. A linear accelerator injects into a synchrotron which accelerates the ion beam to the full energy delivered to the target. The maximum energy deliverable by a synchrotron is treated in section I. The targetting parameters and the energy gained through synchrotron acceleration completely determine the synchrotron aperture. These are discussed in sections II and III. The ion range in material is treated in section IV. The problem of intrabeam scattering is considered in section V. Finally, in section VI is a discussion of examples to meet specified goals

  3. Heavy-ion transport codes for radiotherapy and radioprotection in space

    International Nuclear Information System (INIS)

    Mancusi, Davide

    2006-06-01

    Simulation of the transport of heavy ions in matter is a field of nuclear science that has recently received attention in view of its importance for some relevant applications. Accelerated heavy ions can, for example, be used to treat cancers (heavy-ion radiotherapy) and show some superior qualities with respect to more conventional treatment systems, like photons (x-rays) or protons. Furthermore, long-term manned space missions (like a possible future mission to Mars) pose the challenge to protect astronauts and equipment on board against the harmful space radiation environment, where heavy ions can be responsible for a significant share of the exposure risk. The high accuracy expected from a transport algorithm (especially in the case of radiotherapy) and the large amount of semi-empirical knowledge necessary to even state the transport problem properly rule out any analytical approach; the alternative is to resort to numerical simulations in order to build treatment-planning systems for cancer or to aid space engineers in shielding design. This thesis is focused on the description of HIBRAC, a one-dimensional deterministic code optimised for radiotherapy, and PHITS (Particle and Heavy- Ion Transport System), a general-purpose three-dimensional Monte-Carlo code. The structure of both codes is outlined and some relevant results are presented. In the case of PHITS, we also report the first results of an ongoing comprehensive benchmarking program for the main components of the code; we present the comparison of partial charge-changing cross sections for a 400 MeV/n 40 Ar beam impinging on carbon, polyethylene, aluminium, copper, tin and lead targets

  4. A heavy ion pre-injector for the ICT-ion implanter

    International Nuclear Information System (INIS)

    Bhattacharya, P.K.; Gaonkar, S.; Wagh, A.G.; Hattangadi, V.A.; Sarma, N.

    1976-01-01

    A cheap and versatile hollow cathode electron bombardment ion source system including its ion extraction-cum-focussing assembly for obtaining intense heavy ion beams of solids and gases is described. The extractor region is designed to include more than 15deg total beam angle of extracted beam for producing focused ion current densities upto 60mA/cm 2 to serve as a pre-injector for the ICT(insulated core transformer) type ion implanter. The extraction-cum-focussing lens is a low aberration strong Einzel lens system of all araldite and metal construction with optical elements of proper quality and location to suit low voltage injection and subsequent ion analysis. The injection can be selected anywhere between 2 to 10 keV for singly charged ions with typical extraction currents of 500/μ, using a ring anode and a source aperture of 20 mil. Einzel lens focussing assembly allows continuous adjustment of the beam convergence to about 5deg and the beam size to approximately 5mm in diameter with about 10 KV central electrode potential. Test results of source characteristics for both the accelerating and decelerating model of beam formation have been made. (author)

  5. Transverse emittance studies of an induction accelerator of heavy ions

    International Nuclear Information System (INIS)

    Garvey, T.; Eylon, S.; Fessenden, T.J.; Hahn, K.; Henestroza, E.

    1991-01-01

    Current amplification of heavy ion beams is an integral feature of the induction linac approach to heavy ion fusion. As part of the Heavy Ion Fusion Accelerator Research program at LBL the authors have been studying the evolution of the transverse emittance of ion beams while they are undergoing current amplification, achieved by longitudinal bunch compression and acceleration. Experiments are conducted on MBE-4, a four beam Cs + induction linac. The space-charge dominated beams of MBE-4 are focused by electrostatic quadrupoles while they are accelerated from nominally 200 keV up to ∼ 1 MEV by 24 accelerating gaps. Initially the beams have currents of typically 4 mA to 10 mA per beam. Early experimental results showed a growth of the normalized emittance by a factor of 2 while the beam current was amplified by up to 9 times its initial value. The authors will discuss the results of recent experiments in which a mild bunch length compression rate, more typical of that required by a fusion driver, has shown that the normalized emittance can be maintained at its injection value (0.03 mm-mr) during acceleration

  6. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    Directory of Open Access Journals (Sweden)

    Enrique Henestroza

    2004-08-01

    Full Text Available In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final-focus magnet system through the fusion chamber to hit spots on the target with radii of about 2 mm. For the heavy-ion-fusion power-plant scenarios presently favored in the U.S., a substantial fraction of the ion-beam space charge must be neutralized during this final transport. The most effective neutralization technique found in numerical simulations is to pass each beam through a low-density plasma after the final focusing. To provide quantitative comparisons of these theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the neutralized-transport experiment. The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam, while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed quadrupoles, permits the study of magnet tuning, as well as the effects of phase-space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  7. Investigation of radial dose effect on single event upset cross-section due to heavy ions using GEANT4

    International Nuclear Information System (INIS)

    Boorboor, S.; Feghhi, S.A.H.; Jafari, H.

    2015-01-01

    The heavy ions are the main cause to produce single event upset (SEU) damage on electronic devices since they are high LET radiations. The dimension of electronic components in new technology, arise a challenge in radiation effect estimations. Accurate investigations require fully considering the ion track in energy deposition as a radial dose distribution. In this work, the distribution of delta rays as well as LET have been calculated to determine ionization structure around ion track by a Monte Carlo code, GEANT4. The radial dose of several heavy ions with different energy in silicon was investigated and compared with the works by other authors in this field. The results showed that heavy ions with identical LET can have different SEU cross-section in silicon transistors. As a demonstrative example, according to our results, the error probability for 4.8 GeV iron was 8 times greater than that for 15 MeV carbon ions, in transistors with new process technology which have small dimension and low critical charges. Our results show that considering radial dose distribution considerably improves the accuracy of the SEU cross-section estimation in electronic devices especially for new technologies. - Highlights: • The single event upset is produced by heavy ions interaction on electronic devices. • The radial dose of several heavy ions in silicon was calculated by GEANT4. • Heavy ions with identical LET had different SEU cross-section in silicon transistors. • Low dimension and critical charge devices were more sensitive to radial dose effect

  8. Transverse flow of kaons in heavy-ion collisions

    CERN Document Server

    Zheng Yu Ming; Fuchs, C; Faessler, A; Xiao Wu; Hua Da Ping; Yan Yu Peng

    2002-01-01

    The transverse flow of positively charged kaons from heavy-ion collisions at intermediate energy is investigated within the framework of the quantum molecular dynamics model. The calculated results show that the experimental data are only consistent with those including the kaon mean-field potential from the chiral Lagrangian. This indicates that the transverse flow pattern of kaons is a useful probe of the kaon potential in a nuclear medium

  9. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    Science.gov (United States)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  10. Composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.

    1983-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of approximatelt 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production

  11. Vacuum improvements for ultra high charge state ion acceleration

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.; Clark, D.J.; Guy, A.; Lundgren, S.A

    1998-06-01

    The installation of a second cryo panel has significantly improved the vacuum in the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The neutral pressure in the extraction region decreased from 1.2 x 10 -6 down to about 7 x 10 -7 Torr. The vacuum improvement reduces beam loss from charge changing collisions and enhances the cyclotron beam transmission, especially for the high charge state heavy ions. Tests with improved vacuum show the cyclotron transmission increased more than 50% (from 5.7% to 9.0%) for a Xe 27+ at 603 MeV, more than doubled for a Bi 41+ beam (from 1.9% to 4.6%) at 904 MeV and tripled for a U 47+ beam (from 1.2% to 3.6%) at 1,115 MeV. At about 5 NeV/nucleon 92 enA (2.2 pnA) for Bi 41+ and 14 enA (0.3 pnA) for U 47+ were extracted ut of the 88-Inch Cyclotron Ion beams with charge states as high as U 64+ have been produced by the LBNL AECR-U ion source and accelerated through the cyclotron for the first time. The beam losses for a variety of ultra high charge state ions were measured as a function of cyclotron pressure and compared with the calculations from the existing models

  12. Vacuum improvements for ultra high charge state ion acceleration

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.; Clark, D.J.; Guy, A.; Lundgren, S.A.

    1999-01-01

    The installation of a second cryo panel has significantly improved the vacuum in the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The neutral pressure in the extraction region decreased from 1.2 x 10 -6 down to about 7 x 10 -7 Torr. The vacuum improvement reduces beam loss from charge changing collisions and enhances the cyclotron beam transmission, especially for the high charge state heavy ions. Tests with improved vacuum show the cyclotron transmission increased more than 50% (from 5.7% to 9.0%) for a Xe 27+ at 603 MeV, more than doubled for a Bi 41+ beam (from 1.9% % to 4.6%) at 904 MeV and tripled for a U 47+ beam (from 1.2% to 3.6%) at 1115 MeV. At about 5 MeV/nucleon 92 enA (2.2 pnA) for Bi 41+ and 14 enA (0.3 pnA) for U 47+ were extracted out of the 88-Inch Cyclotron Ion beams with charge states as high as U 64+ have been produced by the LBNL AECR-U ion source and accelerated through the cyclotron for the first time. The beam losses for a variety of ultra high charge state ions were measured as a function of cyclotron pressure and compared with the calculations from the existing models. (authors)

  13. A heavy load for heavy ions

    CERN Multimedia

    2003-01-01

    On 25 September, the two large coils for the dipole magnet of ALICE, the LHC experiment dedicated to heavy ions, arrived at Point 2 on two heavy load trucks after a 1200 km journey from their assembly in Vannes, France.

  14. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    Sun, L.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Qian, C.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.; Guo, J. W.; Yang, Y.; Fang, X.

    2016-01-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω 2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE 01 and HE 11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar 12+ , 0.92 emA Xe 27+ , and so on, will be presented

  15. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  16. Longitudinal dynamics and stability in beams for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Callahan, D.A.; Grote, D.P.

    1996-01-01

    Successful transport of induction-driven beams for heavy-ion fusion requires careful control of the longitudinal space charge. The usual control technique is the periodic application of time-varying longitudinal electric fields, called 'ears', that on the average, balance the space-charge field. this technique is illustrated using a fluid/envelope code CIRCE, and the sensitivity of the method to errors in these ear fields is illustrated. The possibility that periodic ear fields also excite the longitudinal instability is examined

  17. Heavy ion fusion- Using heavy ions to make electricity

    International Nuclear Information System (INIS)

    Celata, C.M.

    2004-01-01

    The idea of using nuclear fusion as a source of commercial electrical power has been pursued worldwide since the 1950s. Two approaches, using magnetic and inertial confinement of the reactants, are under study. This paper describes the difference between the two approaches, and discusses in more detail the heavy-ion-driven inertial fusion concept. A multibeam induction linear accelerator would be used to bring ∼100 heavy ion beams to a few GeV. The beams would then heat and compress a target of solid D-T. This approach is unique among fusion concepts in its ability to protect the reaction chamber wall from neutrons and debris

  18. Heavy-ion superconducting linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs

  19. Heavy-ion superconducting linacs

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs.

  20. Heavy flavours in ultra-relativistic heavy ions collisions

    International Nuclear Information System (INIS)

    Rosnet, Ph.

    2008-01-01

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons

  1. Jet-Underlying Event Separation Method for Heavy Ion Collisions at the Relativistic Heavy Ion Collider

    OpenAIRE

    Hanks, J. A.; Sickles, A. M.; Cole, B. A.; Franz, A.; McCumber, M. P.; Morrison, D. P.; Nagle, J. L.; Pinkenburg, C. H.; Sahlmueller, B.; Steinberg, P.; von Steinkirch, M.; Stone, M.

    2012-01-01

    Reconstructed jets in heavy ion collisions are a crucial tool for understanding the quark-gluon plasma. The separation of jets from the underlying event is necessary particularly in central heavy ion reactions in order to quantify medium modifications of the parton shower and the response of the surrounding medium itself. There have been many methods proposed and implemented for studying the underlying event substructure in proton-proton and heavy ion collisions. In this paper, we detail a me...

  2. Performance of the ECR ion source of CERN's heavy ion injector

    CERN Document Server

    Bougarel, M P; Haseroth, H; Langbein, K; Tanke, E

    1995-01-01

    In fall 1994 the new heavy ion injector at CERN was brought into operation successfully and a lead beam of 2.9´107 ions per pulse was accelerated in the SPS up to an energy of 157 GeV/u. The ion source, which was supplied by GANIL (France) was in operation almost continuously over a period of about one year and proved to be very reliable. It pro-duces a current of more than 100 µA of Pb27+ (after the first spectrometer) during the afterglow of the pulsed discharge. The current stays within 5% of the maximum value for a time of about 1 ms, which is more than required by the accel-erators. Measurements of the charge state distribution, emittance and energy spread, which were made during this window, are presented together with other operating data.

  3. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions

    OpenAIRE

    Nefiodov, A. V.; Plunien, G.; Soff, G.

    2002-01-01

    The influence of nuclear polarization on the bound-electron $g$ factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron $g$ factor in highly charged ions.

  4. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    Science.gov (United States)

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  5. Mechanism of nuclear dissipation in fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1986-01-01

    Recent advances in the theoretical understanding of nuclear dissipation at intermediate excitation energies are reviewed, with particular emphasis on a new surface-plus-window mechanism that involves interactions of either one or two nucleons with the moving nuclear surface and also, for dumbbell-like shapes encountered in fission and heavy-ion reactions, the transfer of nucleons through the window separating the two portions of the system. This novel dissipation mechanism provides a unified macroscopic description of such diverse phenomena as widths of isoscalar giant quadrupole and giant octupole resonances, mean fission-fragment kinetic energies and excitation energies, dynamical thresholds for compound-nucleus formation, enhancement in neutron emission prior to fission, and widths of mass and charge distributions in deep-inelastic heavy-ion reactions. 41 refs., 8 figs

  6. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  7. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    Science.gov (United States)

    Alton, G. D.; Bilheux, H.

    2004-05-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j+ext, and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j+ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects.

  8. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    International Nuclear Information System (INIS)

    Alton, G.D.; Bilheux, H.

    2004-01-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j +ext , and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j +ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects

  9. Intense heavy ion beam-induced effects in carbon-based stripper foils

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Katharina

    2016-08-15

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  10. Intense heavy ion beam-induced effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, Katharina

    2016-08-01

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  11. BROOKHAVEN: Looking towards heavy ion physics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    July 11-22 were busy days at Brookhaven with a two-week Summer Institute on Relativistic Heavy Ion Physics. After an intensive first week designed to introduce young physicists to high energy heavy ion research, the second week was a workshop on detector technology for Brookhaven's proposed Relativistic Heavy Ion Collider (RHIC), attended by some 150 physicists

  12. Heavy-ion stopping powers and the low-velocity-projectile z3 effect

    International Nuclear Information System (INIS)

    Porter, L.E.

    1977-01-01

    Recent heavy-ion stopping-power measurements with elemental solid targets have been analyzed in order to ascertain the influence on effective ion charge of incorporating the low-velocity-projectile z 3 effect in Bethe-Bloch calculations. Shell corrections and the mean excitation energy of a given target were held fixed while searching for the best-fit value of a single charge-state parameter. In general, excellent fits to the stopping powers at projectile energies above 0.3 MeV/amu were achieved. Results of the present study compare very favorably with those from other extant methods of analysis

  13. Heavy ion acceleration strategies in the AGS accelerator complex -- 1994 Status report

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Benjamin, J.; Blaskiewicz, M.

    1995-01-01

    The strategies invoked to satisfy the injected beam specifications for the Brookhaven Relativistic Heavy Ion Collider (RHIC) continue to evolve, in the context of the yearly AGS fixed target heavy ion physics runs. The primary challenge is simply producing the required intensity. The acceleration flexibility available particularly in the Booster main magnet power supply and rf accelerating systems, together with variations in the charge state delivered from the Tandem van de Graaff, and accommodation by the AGS main magnet and rf systems allow the possibility for a wide range of options. The yearly physics run provides the opportunity for exploration of these options with the resulting significant evolution in the acceleration plan. This was particularly true in 1994 with strategies involving three different charge states and low and high acceleration rates employed in the Booster. The present status of this work will be presented

  14. Heavy ion fusion

    International Nuclear Information System (INIS)

    Hofmann, Ingo

    1993-01-01

    With controlled thermonuclear fusion holding out the possibility of a prolific and clean new source of energy, the goal remains elusive after many years of continual effort. While the conventional Tokamak route with magnetic confinement continues to hit the headlines, other alternatives are now becoming competitive. One possible solution is to confine the thermonuclear fuel pellet by high power beams. Current research and perspectives for future work in such inertial confinement was the subject of the 'Prospects for Heavy Ion Fusion' European Research Conference held in Aghia Pelaghia, Crete, last year. Its main focus was on the potential of heavy ion accelerators as well as recent advances in target physics with high power lasers and light ion beams. Carlo Rubbia declared that high energy accelerators, with their high efficiency, are the most promising approach to economical fusion energy production. However the need for cost saving in the driver accelerator requires new ideas in target design tailored to the particularities of heavy ion beams, which need to be pushed to the limits of high current and phase space density at the same time

  15. Analyzing heavy-ion-induced charge collection in Si devices by three-dimensional simulation

    International Nuclear Information System (INIS)

    Dodd, P.E.

    1994-01-01

    Properties of charge collection in Si devices in response to single-ion bombardment have been studied using transient three-dimensional drift-diffusion simulation. In unloaded Si diodes, the funnel effect is particularly strong in lightly-doped materials for high-density strikes such as 100 MeV Fe, and essentially all charge collection is by funnel-assisted drift. This drift collection may occur at time scales as late as several nanoseconds, much later than is traditionally associated with drift. For more heavily-doped materials or lower-density strikes, such as 5-MeV α-particles, drift and diffusion play more equal roles. In epitaxial structures the funnel is truncated by the heavily-doped substrate, collapses quickly, and a great deal of charge is collected at late times by diffusion. Charge collection in Si circuitry is influenced by the circuit external to the struck device. Loading effects on charge collection were studied using passive external circuit elements as well as by mixed-mode simulation, which allows modeling of active external circuitry. Simulations indicate that the funnel can be significantly affected by the inclusion of passive loads, while active loads may prevent any direct charge collection by funneling. Finally, the use of three-dimensional device simulators is presented as a method of analyzing results obtained from focused ion microbeam experiments

  16. Heavy-ion transport codes for radiotherapy and radioprotection in space

    Energy Technology Data Exchange (ETDEWEB)

    Mancusi, Davide

    2006-06-15

    Simulation of the transport of heavy ions in matter is a field of nuclear science that has recently received attention in view of its importance for some relevant applications. Accelerated heavy ions can, for example, be used to treat cancers (heavy-ion radiotherapy) and show some superior qualities with respect to more conventional treatment systems, like photons (x-rays) or protons. Furthermore, long-term manned space missions (like a possible future mission to Mars) pose the challenge to protect astronauts and equipment on board against the harmful space radiation environment, where heavy ions can be responsible for a significant share of the exposure risk. The high accuracy expected from a transport algorithm (especially in the case of radiotherapy) and the large amount of semi-empirical knowledge necessary to even state the transport problem properly rule out any analytical approach; the alternative is to resort to numerical simulations in order to build treatment-planning systems for cancer or to aid space engineers in shielding design. This thesis is focused on the description of HIBRAC, a one-dimensional deterministic code optimised for radiotherapy, and PHITS (Particle and Heavy- Ion Transport System), a general-purpose three-dimensional Monte-Carlo code. The structure of both codes is outlined and some relevant results are presented. In the case of PHITS, we also report the first results of an ongoing comprehensive benchmarking program for the main components of the code; we present the comparison of partial charge-changing cross sections for a 400 MeV/n {sup 40}Ar beam impinging on carbon, polyethylene, aluminium, copper, tin and lead targets.

  17. Cell survival in spheroids irradiated with heavy-ion beams

    International Nuclear Information System (INIS)

    Rodriguez, A.; Alpen, E.L.

    1981-01-01

    Biological investigations with accelerated heavy ions have been carried out regularly at the Lawrence Berkeley Laboratory Bevalac for the past four years. Most of the cellular investigations have been conducted on cell monolayer and suspension culture systems. The studies to date suggest that heavy charged particle beams may offer some radiotherapeutic advantages over conventional radiotherapy sources. The advantages are thought to lie primarily in an increased relative biological effectiveness (RBE), a decrease in the oxygen enhancement ratio (OER), and better tissue distribution dose. Experiments reported here were conducted with 400 MeV/amu carbon ions and 425 MeV/amu neon ions, using a rat brain gliosarcoma cell line grown as multicellular spheroids. Studies have been carried out with x-rays and high-energy carbon and neon ion beams. These studies evaluate high-LET (linear energy transfer) cell survival in terms of RBE and the possible contributions of intercellular communication. Comparisons were made of the post-irradiation survival characteristics for cells irradiated as multicellular spheroids (approximately 100 μm and 300 μm diameters) and for cells irradiated in suspension. These comparisons were made between 225-kVp x-rays, 400 MeV/amu carbon ions, and 425 MeV/amu neon ions

  18. Spectroscopy of heavy few-electron ions

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1986-07-01

    In this paper we ask first, why is it interesting to investigate heavy-few electron ions. Then the various accelerator-based methods to produce heavy few-electron ions are discussed. In the main part an overview on available heavy few-electron ion data and current experiments is given. The summary will end up with future aspects in this field. (orig.)

  19. Polarization phenomena in heavy-ion reactions

    International Nuclear Information System (INIS)

    Sugimoto, K.; Ishihara, M.; Takahashi, N.

    1984-01-01

    This chapter presents a few key experiments which provide direct evidence of the polarization phenomena in heavy-ion reactions. The theory of polarization observables and measurements is given with the necessary formulae. The polarization phenomena is described and studies of product nuclear polarization in heavy-ion reactions are discussed. Studies of heavy-ion reactions induced by polarized beams are examined

  20. Effect of the Ion Mass and Energy on the Response of 70-nm SOI Transistors to the Ion Deposited Charge by Direct Ionization

    International Nuclear Information System (INIS)

    Raine, M.; Gaillardin, M.; Sauvestre, J.E.; Flament, O.; Bournel, A.; Aubry-Fortuna, V.

    2010-01-01

    The response of SOI transistors under heavy ion irradiation is analyzed using Geant4 and Synopsys Sentaurus device simulations. The ion mass and energy have a significant impact on the radial ionization profile of the ion deposited charge. For example, for an identical LET, the higher the ion energy per nucleon, the wider the radial ionization track. For a 70-nm SOI technology, the track radius of high energy ions (≥ 10 MeV/a) is larger than the transistor sensitive volume; part of the ion charge recombines in the highly doped source or drain regions and does not participate to the transistor electric response. At lower energy (≤ 10 MeV/a), as often used for ground testing, the track radius is smaller than the transistor sensitive volume, and the entire charge is used for the transistor response. The collected charge is then higher, corresponding to a worst-case response of the transistor. Implications for the hardness assurance of highly-scaled generations are discussed. (authors)

  1. Use of spectra from foil-excited heavy-ion beams to interpret radiation from plasmas

    International Nuclear Information System (INIS)

    Johnson, B.M.

    1978-01-01

    Spectra from foil-excited heavy ion beams can be used to investigate the relative abundance and charge state composition of heavy metal contaminants which cause severe radiative energy losses in tokamak-produced plasmas. The degree of ionization of these metals in the tokamak plasma is not well known because of uncertainties in ionization and recombination rates and particle confinement times. Only a few stages of ionization are typically prominent in foil-excited spectra, however, and both the most probable charge state and distribution width are well known. Highly ionized heavy ions (e.g., Ti, Mo, W and Au) which span the range of charge states found in present tokamaks were produced by passing beams from the Brookhaven MP tandem Van de Graaff accelerator facility through 20 μg/cm 2 carbon stripping foils. EUV radiation was recorded with a grazing incidence spectrometer. Comparisons of the beam-foil spectra with radiation from plasmas, and recent direct determinations of atomic oscillator strengths for principal resonance lines of such highly ionized species as Li-like iron (Fe 23+ ), Na-like bromine (Br 24+ ), and Cu-like iodine (I 24+ ) are discussed

  2. To the problem on a charge state of energetic ions of radiation belts

    International Nuclear Information System (INIS)

    Panasyuk, M.I.

    1980-01-01

    Estimation of the effect of recharging processes upon formation of intensity maxima of radiation belt ions of different types is obtained as well as the ion charge states in the area of intensity maxima. Comparison of spatial position of intensity maxima of the H, He, C, O ions with the energies more than 1 MeV with the calculation results is presented. It provides the particle radial drift under the effect of sudden impulses and death at the expence of ionization losses. Application of adiabaticity criterion of the particle movement to the analysis of position of outer edge of radiation belt of heavy ions permitted to carry out estimation of the He, C, O ion charge state. He ions with the energy more than 1 MeV possess mainly the charge state of +2, C and O ions with the energy of several MeV over L=5-6 are in the ionized state almost completely, and during the drift into the depth of the belts the ion charge decreases to 3-4 over L approximately 3.5 with the energy increase. At the energies higher than several MeV the recharge processes are significant for the C and.O ions. For He ions with the energy higher 1 MeV and for H ions with more than 0.1 MeV the recharge role is not considerable

  3. Irradiation effects of swift heavy ions in matter

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, Orkhan

    2011-12-22

    In the this thesis irradiation effects of swift heavy ions in matter are studied. The focus lies on the projectiles charge exchange and energy loss processes. A commonly used computer code which employs rate equations is the so called ETACHA code. This computer code is capable to also calculate the required input cross-sections. Within this thesis a new model to compute the charge state of swift heavy ions is explored. This model, the so called matrix method, takes the form of a simple algebraic expression, which also requires cross-sections as input. In the present implementation of the matrix method, cross-sections are taken from the ETACHA code, while excitation and deexcitation processes are neglected. Charge fractions for selected ion/target combinations, computed by the ETACHA code and the matrix method are compared. It is shown, that for sufficient large ion energies, both methods agree very well with each other. However, for lower energies pronounced differences are observed. These differences are believed to stem from the fact, that no excited states as well as the decay of theses excited states are included in the present implementation of the matrix method. Both methods are then compared with experimental measurements, where significant deviations are observed for both methods. While the predicted equilibrium charge state by both methods is in good agreement with the experiments, the matrix method predicts a much too large equilibrium thickness compared to both the ETACHA calculation as well as the experiment. Again, these deviations are believed to stem from the fact, that excitation and the decay of excited states are not included in the matrix method. A possible way to include decay processes into the matrix method is presented, while the accuracy of the applied capture cross-sections is tested by comparison with scaling rules. Swift heavy ions penetrating a dielectric are known to induced structural modifications both on the surface and in the bulk

  4. Irradiation effects of swift heavy ions in matter

    International Nuclear Information System (INIS)

    Osmani, Orkhan

    2011-01-01

    In the this thesis irradiation effects of swift heavy ions in matter are studied. The focus lies on the projectiles charge exchange and energy loss processes. A commonly used computer code which employs rate equations is the so called ETACHA code. This computer code is capable to also calculate the required input cross-sections. Within this thesis a new model to compute the charge state of swift heavy ions is explored. This model, the so called matrix method, takes the form of a simple algebraic expression, which also requires cross-sections as input. In the present implementation of the matrix method, cross-sections are taken from the ETACHA code, while excitation and deexcitation processes are neglected. Charge fractions for selected ion/target combinations, computed by the ETACHA code and the matrix method are compared. It is shown, that for sufficient large ion energies, both methods agree very well with each other. However, for lower energies pronounced differences are observed. These differences are believed to stem from the fact, that no excited states as well as the decay of theses excited states are included in the present implementation of the matrix method. Both methods are then compared with experimental measurements, where significant deviations are observed for both methods. While the predicted equilibrium charge state by both methods is in good agreement with the experiments, the matrix method predicts a much too large equilibrium thickness compared to both the ETACHA calculation as well as the experiment. Again, these deviations are believed to stem from the fact, that excitation and the decay of excited states are not included in the matrix method. A possible way to include decay processes into the matrix method is presented, while the accuracy of the applied capture cross-sections is tested by comparison with scaling rules. Swift heavy ions penetrating a dielectric are known to induced structural modifications both on the surface and in the bulk

  5. Description of current pulses induced by heavy ions in silicon detectors (II)

    Energy Technology Data Exchange (ETDEWEB)

    Hamrita, H. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette Cedex (France); Parlog, M. [LPC, CNRS/IN2P3, ENSICAEN, Universite de Caen, F-14050 Caen Cedex (France); National Institute for Physics and Nuclear Engineering, RO-76900 Bucharest-Magurele (Romania); Borderie, B., E-mail: borderie@ipno.in2p3.fr [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); Lavergne, L. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); Le Neindre, N. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); LPC, CNRS/IN2P3, ENSICAEN, Universite de Caen, F-14050 Caen Cedex (France); Rivet, M.F.; Barbey, S. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); Bougault, R. [LPC, CNRS/IN2P3, ENSICAEN, Universite de Caen, F-14050 Caen Cedex (France); Chabot, M. [Inst. de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); Chbihi, A. [GANIL (DSM-CEA/CNRS/IN2P3), F-14076 Caen Cedex (France); Cussol, D. [LPC, CNRS/IN2P3, ENSICAEN, Univ. de Caen, F-14050 Caen Cedex (France); Oliveira Santos, F. de [GANIL (DSM-CEA/CNRS/IN2P3), F-14076 Caen Cedex (France); Edelbruck, P. [Inst. de Physique Nucleaire, CNRS/IN2P3, Univ. Paris-Sud 11, F-91406 Orsay Cedex (France); Frankland, J.D. [GANIL (DSM-CEA/CNRS/IN2P3), F-14076 Caen Cedex (France); Galichet, E. [Inst. de Physique Nucleaire, CNRS/IN2P3, Univ. Paris-Sud 11, F-91406 Orsay Cedex (France); Conservatoire National des Arts et Metier, F-75141 Paris Cedex 03 (France); Guinet, D.; Lautesse, Ph. [Inst. de Physique Nucleaire, CNRS/IN2P3, Univ.e Claude Bernard Lyon I, F-69622 Villeurbanne Cedex (France); Lopez, O. [LPC, CNRS/IN2P3, ENSICAEN, Univ. de Caen, F-14050 Caen Cedex (France)

    2011-06-21

    Current pulses induced in a silicon detector by 10 different heavy ion species at known energies around 10 A MeV have been sampled in time at high frequency. Their individual average shapes are quite well reproduced by a fit procedure based on our recent charge carrier collection treatment which considers the progressive extraction of the electrons and holes from the high carrier density zone along the ionizing particle track. This region is assumed to present a supplementary dielectric polarization and consequently a disturbed electric field. The influence of the nature of the heavy ion on the values of the three fit parameters is analyzed.

  6. Glenn T. Seaborg and heavy ion nuclear science

    International Nuclear Information System (INIS)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed

  7. Studies of heavy ion beam transport in a magnetic quadrupole channel

    International Nuclear Information System (INIS)

    Klabunde, J.; Reiser, M.; Schonlein, A.; Spadtke, P.; Struckmeier, J.

    1983-01-01

    In connection with the West German Heavy Ion Fusion Program the first stage (six periods) of a magnetic quadrupole channel (FODO type) to study the transport of intense ion beams was built at GSI. Different ion beams can be used and the variation of the brightness of these beams (hence of the tune depression sigma/sigma /SUB o/ ) is sufficiently large that regions of theoretically predicted instabilities can be covered. The initial studies are being carried out with a high-brightness beam of 190 keV Ar+ ions and currents of a few mA. Since the pulse length is > 0.5 ms and the pressure is between 10 -6 and 10 -7 torr partial space charge neutralization occurs. Clearing electrodes can be used to remove the electrons from the beam. Results of theoretical studies, measurements of charge neutralization effects and first results of transport experiments are reported

  8. Progress in heavy ion fusion research

    International Nuclear Information System (INIS)

    Celata, C.M.; Bieniosek, F.M.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Logan, G.; Prost, L.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Lund, S.M.; Molvik, A.; Sharp, W.M.; Westenskow, G.

    2003-01-01

    The U.S. Heavy Ion Fusion program has recently commissioned several new experiments. In the High Current Experiment [P. A. Seidl et al., Laser Part. Beams 20, 435 (2003)], a single low-energy beam with driver-scale charge-per-unit-length and space-charge potential is being used to study the limits to transportable current posed by nonlinear fields and secondary atoms, ions, and electrons. The Neutralized Transport Experiment similarly employs a low-energy beam with driver-scale perveance to study final focus of high perveance beams and neutralization for transport in the target chamber. Other scaled experiments--the University of Maryland Electron Ring [P. G. O'Shea et al., accepted for publication in Laser Part. Beams] and the Paul Trap Simulator Experiment [R. C. Davidson, H. Qin, and G. Shvets, Phys. Plasmas 7, 1020 (2000)]--will provide fundamental physics results on processes with longer scale lengths. An experiment to test a new injector concept is also in the design stage. This paper will describe the goals and status of these experiments, as well as progress in theory and simulation. A proposed future proof-of-principle experiment, the Integrated Beam Experiment, will also be described

  9. Dynamical limitations to heavy ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    Dynamical limitations to heavy ion fusion reaction are considered. The experimental signatures and the importance of a quasi-fission process are examined. The anaular distributions of fission fragments for the 32 S+ 208 Pb and 16 O+ 238 U systems are presented. It is shown that the observations of quasi-fission for even rather ''light'' heavy ions poeess severe limitations on the fusion process. This result may consequently be responsible for the lack of success of the search for super heavy elements in heavy ion fusion reactions

  10. A new technique for the study of charge transfer in multiply charged ion-ion collisions

    International Nuclear Information System (INIS)

    Shinpaugh, J.L.; Meyer, F.W.; Datz, S.

    1994-01-01

    While large cross sections (>10 -16 cm 2 ) have been predicted for resonant charge transfer in ion-ion collisions, no experimental data exist for multiply charged systems. A novel technique is being developed at the ORNL ECR facility to allow study of symmetric charge exchange in multiply charged ion-ion collisions using a single ion source. Specific intra-beam charge transfer collisions occurring in a well-defined interaction region labeled by negative high voltage are identified and analyzed by electrostatic analysis in combination with ion time-of-flight coincidence detection of the collision products. Center-of-mass collision energies from 400 to 1000 eV are obtained by varying source and labeling-cell voltages. In addition, by the introduction of a target gas into the high-voltage cell, this labeling-voltage method allows measurement of electron-capture and -loss cross sections for ion-atom collisions. Consequently, higher collision energies can be investigated without the requirement of placing the ECR source on a high-voltage platform

  11. Performance of MBE-4: An experimental multiple beam induction linear accelerator for heavy ions

    International Nuclear Information System (INIS)

    Warwick, A.I.; Fessenden, T.J.; Keefe, D.; Kim, C.H.; Meuth, H.

    1988-06-01

    An experimental induction linac, called MBE-4, has been constructed to demonstrate acceleration and current amplification of multiple heavy ion beams. This work is part of a program to study the use of such an accelerator as a driver for heavy ion inertial fusion. MBE-4 is 16m long and accelerates four space-charge-dominated beams of singly-charged cesium ions, in this case from 200 keV to 700 keV, amplifying the current in each beam from 10mA by a factor of nine. Construction of the experiment was completed late in 1987 and we present the results of detailed measurements of the longitudinal beam dynamics. Of particular interest is the contribution of acceleration errors to the growth of current fluctuations and to the longitudinal emittance. The effectiveness of the longitudinal focusing, accomplished by means of the controlled time dependence of the accelerating fields, is also discussed. 4 refs., 5 figs., 1 tab

  12. Preparation of cold Mg+ion clouds for sympathetic cooling of highly charged ions at SPECTRAP

    International Nuclear Information System (INIS)

    Cazan, Radu Mircea

    2012-02-01

    The bound electrons in hydrogen-like or lithium-like heavy ions experience extremely strong electric and magnetic fields in the surrounding of the nucleus. Laser spectroscopy of the ground-state hyperfine splitting in the lead region provides a sensitive tool to test strong-field quantum electro dynamics (QED), especially in the magnetic sector. Previous measurements on hydrogen-like systems performed in an electron-beam ion trap (EBIT) or at the experimental storage ring (ESR) were experimentally limited in accuracy due to statistics, the large Doppler broadening and the ion energy. The full potential of the QED test can only be exploited if measurements for hydrogen- and lithium-like ions are performed with accuracy improved by 2-3 orders of magnitude. Therefore, the new Penning trap setup SPECTRAP - dedicated for laser spectroscopy on trapped and cooled highly charged ions - is currently commissioned at GSI Darmstadt. Heavy highly charged ions will be delivered to this trap by the HITRAP facility in the future. SPECTRAP is a cylindrical Penning trap with axial access for external ion injection and radial optical access mounted inside a cold-bore superconducting Helmholtz-type split-coil magnet. To reach the targeted accuracy in laser spectroscopy, an efficient and fast cooling process for the highly charged ions must be employed. This can be realized by sympathetic cooling with a cloud of laser-cooled light ions. Within this thesis work, a laser system and an ion source for the production of such a 24 Mg + ion cloud was developed and commissioned at SPECTRAP. An all-solid-state laser system for the generation of 279.6 nm light was designed and built. It consists of a fiber laser at 1118.5 nm followed by frequency quadrupling using two successive second-harmonic generation stages with actively stabilized ring resonators and nonlinear crystals. The laser system can deliver more than 15 mW of UV laser power under optimal conditions and requires little maintenance

  13. Development of exploding wire ion source for intense pulsed heavy ion beam accelerator

    International Nuclear Information System (INIS)

    Ochiai, Y.; Murata, T.; Ito, H.; Masugata, K.

    2012-01-01

    A Novel exploding wire type ion source device is proposed as a metallic ion source of intense pulsed heavy ion beam (PHIB) accelerator. In the device multiple shot operations is realized without breaking the vacuum. The basic characteristics of the device are evaluated experimentally with an aluminum wire of diameter 0.2 mm, length 25 mm. Capacitor bank of capacitance 3 μF, charging voltage 30 kV was used and the wire was successfully exploded by a discharge current of 15 kA, rise time 5.3 μs. Plasma flux of ion current density around 70 A/cm 2 was obtained at 150 mm downstream from the device. The drift velocity of ions evaluated by a time-of-flight method was 2.7x10 4 m/sec, which corresponds to the kinetic energy of 100 eV for aluminum ions. From the measurement of ion current density distribution ion flow is found to be concentrated to the direction where ion acceleration gap is placed. From the experiment the device is found to be acceptable for applying PHIB accelerator. (author)

  14. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yun, E-mail: caoyun@impcas.ac.cn; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gas was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  15. ECR heavy-ion source for the LBL 88-inch cyclotron

    International Nuclear Information System (INIS)

    Clark, D.J.; Kalnins, J.G.; Lyneis, C.M.

    1983-03-01

    An Electron Cyclotron Resonance (ECR) heavy-ion source is under construction at the LBL 88-Inch Cyclotron. This source will produce very-high-charge-state heavy ions, such as 0 8 + and Ar 12 + , which will increase cyclotron energies by a factor of 2-4, up to A = 80. It is a two-stage source using room-temperature coils, a permanent-magnet sextupole, and a 6-9 GHz microwave system. Design features include adjustable first-to-second-stage plasma coupling, a variable second-stage mirror ratio, high-conductance radial pumping of the second stage, and a beam-diagnostic system. A remotely movable extraction electrode will optimize extraction efficiency. The project includes construction of a transport line and improvements to the cyclotron axial-injection system. The construction period is expected to be two years

  16. The Frankfurt ECRIS-RFQ facility for materials research with highly charged ions

    International Nuclear Information System (INIS)

    Stiebing, K.; Streitz, H.; Schmidt, L.; Schremmer, A.; Bethge, K.; Schmidt-Boecking, H.; Schempp, A.; Bessler, U.; Beller, P.; Madlung, J.

    1996-01-01

    The new accelerator for the production of highly charged heavy ions, presently installed at the Institut fuer Kernphysik consists of a 14 GHz ECR source in combination with an variable-energy RFQ post-accelerator. It is designed to deliver highly charged ions in the energy range between 1 keV/u (the ECRIS beam) and 100-200 keV/u with the (variable-energy radio frequency quadrupole) VE-RFQ. Investigations of transient processes with ns time constants will be possible by a single bunch system. Another attractive feature for materials research is the combination with ion beams from the 7 MV Van de Graaff. The status of the project and first results of beam measurements will be pre sented. (orig.)

  17. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Friedman, A.

    1991-01-01

    This report describes the research status in the following areas of research in the field of heavy ion inertial fusion: (1) RF accelerators, storage rings, and synchrotrons; (2) induction linacs; (3) recirculation induction accelerator approach; (4) a new accelerator concept, the ''Mirrortron''; (5) general issues of transport, including beam merging, production of short, fat quadrupoles with nearly linear focusing, calculations of beam behaviour in image fields; 3-D electrostatic codes on drift compression with misalignments and transport around bends; (6) injectors, ion sources and RFQs, a.o., on the development of a 27 MHz RFQ to be used for the low energy portion of a new injector for all ions up to Uranium, and the development of a 2 MV carbon ion injector to provide 16 C + beams of 0.5 A each for ILSE; (7) beam transport from accelerator to target, reporting, a.o., the feasibility to suppress third-order aberrations; while Particle-in-Cell simulations on the propagation of a non-neutral ion beam in a low density gas identified photo-ionization by thermal X-rays from the target as an important source of defocusing; (9) heavy ion target studies; (10) reviewing experience with laser drivers; (11) ion cluster stopping and muon catalyzed fusion; (12) heavy ion systems, including the option of a fusion-fission burner. 1 tab

  18. Transport and error sensitivity in a heavy-ion recirculator

    International Nuclear Information System (INIS)

    Sharp, W.M.; Barnard, J.J.; Yu, S.S.

    1991-05-01

    An envelope code has been developed to facilitate the design of a recirculating accelerator for a heavy-ion fusion reactor. A novel feature of the model is the treatment of the beam charge density as a Lagrangian fluid in the axial direction. Transport results for a preliminary recirculator design are presented, and sensitivity of the transport to errors in the magnet strength is discussed. 4 refs., 4 figs

  19. Emittance growth from rotated quadrupoles in heavy ion accelerators

    International Nuclear Information System (INIS)

    Barnard, J.J.

    1995-01-01

    We derive a set of moment equations which incorporates linear quadrupolar focusing and space-charge defocusing, in the presence of rotational misalignments of the quadrupoles about the direction of beam propagation. Although the usual beam emittance measured relative to fixed transverse x and y coordinate axes is not constant, a conserved emittance-like quantity has been found. Implications for alignment tolerances in accelerators for heavy-ion inertial fusion are discussed

  20. Active Radiation Detectors for Use in Space Beyond Low Earth Orbit: Spatial and Energy Resolution Requirements and Methods for Heavy Ion Charge Classification

    Science.gov (United States)

    McBeth, Rafe A.

    Space radiation exposure to astronauts will need to be carefully monitored on future missions beyond low earth orbit. NASA has proposed an updated radiation risk framework that takes into account a significant amount of radiobiological and heavy ion track structure information. These models require active radiation detection systems to measure the energy and ion charge Z. However, current radiation detection systems cannot meet these demands. The aim of this study was to investigate several topics that will help next generation detection systems meet the NASA objectives. Specifically, this work investigates the required spatial resolution to avoid coincident events in a detector, the effects of energy straggling and conversion of dose from silicon to water, and methods for ion identification (Z) using machine learning. The main results of this dissertation are as follows: 1. Spatial resolution on the order of 0.1 cm is required for active space radiation detectors to have high confidence in identifying individual particles, i.e., to eliminate coincident events. 2. Energy resolution of a detector system will be limited by energy straggling effects and the conversion of dose in silicon to dose in biological tissue (water). 3. Machine learning methods show strong promise for identification of ion charge (Z) with simple detector designs.

  1. Heavy ions

    CERN Multimedia

    CERN. Geneva; Antinori, Federico

    2001-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  2. Heavy ions

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  3. A heavy ion linac complex for RI beams

    International Nuclear Information System (INIS)

    Arai, Shigeaki

    1995-01-01

    A heavy ion linac complex for RI-beams has been under construction since fiscal year 1992 at INS. The linac complex comprises following accelerating structures: a 25.5-MHz split coaxial RFQ (SCRFQ), a 51-MHz interdigital-H (IH) linac, and a 25.5-MHz rebuncher cavity. The SCRFQ with modulated vanes accelerates ions with a charge-to-mass ratio (q/A) greater than 1/30 from 2 to 170 keV/u. The IH linac comprises four cavities and three magnetic quadrupole triplets placed between cavities, accelerates ions with q/A≥1/10, and varies the output energy continuously in the range 0.17 ∼1.05 MeV/u. The rebuncher cavity with six accelerating gaps is a double coaxial λ/4 resonator, and the total accelerating voltage is 200 kV. (author)

  4. Charge fraction of 6.0 MeV/n heavy ions with a carbon foil: Dependence on the foil thickness and projectile atomic number

    CERN Document Server

    Sato, Y; Muramatsu, M; Murakami, T; Yamada, S; Kobayashi, C; Kageyama, Y; Miyoshi, T; Ogawa, H; Nakabushi, H; Fujimoto, T; Miyata, T; Sano, Y

    2003-01-01

    We measured the charge fraction of 6.0 MeV/n heavy ions (C, Ne, Si, Ar, Fe and Cu) with a carbon foil at the NIRS-HIMAC injector. At this energy they are stripped with a carbon foil before being injected into two synchrotron rings with a maximum energy of 800 MeV/n. In order to find the foil thickness (D sub E) at which an equilibrium charge state distribution occurs, and to study the dependence of the D sub E -values on the projectile atomic number, we measured the exit charge fractions for foil thicknesses of between 10 and 350 mu g/cm sup 2. The results showed that the D sub E -values are 21.5, 62.0, 162, 346, 121, 143 mu g/cm sup 2 for C, Ne, Si, Ar, Fe, Cu, respectively. The fraction of Ar sup 1 sup 8 sup + ions was actually improved to 33% at 320 mu g/cm sup 2 from approx 15% at 100 mu g/cm sup 2. For Fe and Cu ions, the D sub E -values were found to be only 121 and 143 mu g/cm sup 2; there is a large gap between Ar and Fe, which is related to the differences in the ratio of the binding energy of the K-...

  5. Highly-resolving Rutherford-scattering spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Klein, C.

    2003-10-01

    in the present thesis for the first time the Browne-Buechner spectrometer for the highly resolving ion-beam analysis in the ion beam center Rossendorf is completely presented. A main topic of this theis lied in the apparative construction and the taking-into-operation of the spectrometer and the scattering chamber including the facilities for the sample treatment and characterization. In the framework of this thesis for the chosen measurement arrangement the experimental conditions were elaborated, which allow the routine-like application of the spectrometer for analyses of thin-film systems. for C and Li ions as incident particles especially the straggling was more precisely determined in a large range of materials. By means of the spectrometer also the interaction of the ion with the solid respectively single atoms on its surface could be studied. For the first time the mean charge-state after the single collision on a gold atom was determined for differently heavy ions in a wide energy range

  6. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, Daniel Bristol [Univ. of California, Davis, CA (United States)

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of

  7. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    International Nuclear Information System (INIS)

    Thorn, D. B.

    2008-01-01

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  8. Review on heavy ion radiotherapy facilities and related ion sources (invited)

    International Nuclear Information System (INIS)

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A. G.

    2010-01-01

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  9. Heavy ion effects on mammalian cells: Inactivation measurements with different cell lines

    International Nuclear Information System (INIS)

    Wulf, H.; Kraft-Weyrather, W.; Miltenburger, H.G.; Kraft, G.

    1985-07-01

    In track segment experiments, the inactivation of different mammalian cells by heavy charged particles between helium and uranium in the energy range between 1 and 1000 MeV/u has been measured at the heavy ion accelerator Unilac, Darmstadt, the Tandem Van de Graaf, Heidelberg and the Bevalac, Berkeley. The inactivation cross sections calculated from the final slope of the dose effect curves are given as a function of the particle energy and the LET. (orig.)

  10. International cooperation in heavy-ion research

    International Nuclear Information System (INIS)

    Tobias, C.A.

    1980-01-01

    The rapidly growing research applications of heavy ions in basic biology and medicine have stimulated interest in this field in many countries. LBL, with its unique facilities and its scientific programs, is the focal point of interest. Plans are underway in several countries, including France, Japan, West Germany, and Canada, to build heavy-ion facilities, and to collaborate with our staff at LBL in heavy-ion research in physics, biology, and medicine

  11. Heavy ion collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.

    1994-01-01

    Heavy ion collisions at very high energies provide an opportunity to recreate in the laboratory the conditions which existed very early in the universe, just after the big bang. We prepare matter at very high energy density and search for evidence that the quarks and gluons are deconfined. I describe the kinds of observables that are experimentally accessible to characterize the system and to search for evidence of new physics. A wealth of information is now available from CERN and BNL heavy ion experiments. I discuss recent results on two particle correlations, strangeness production, and dilepton and direct photon distributions

  12. Measurements of the Properties of Highly-charged high-Z ions

    International Nuclear Information System (INIS)

    Augustine J. Smith, Ph.D.

    2007-01-01

    We had proposed carrying out a systematic experimental investigation of the atomic physics of highly charged, high-Z ions, produced in the Lawrence Livermore National Laboratory LLNL electron beam ion trap (EBIT-I) in its high energy mode, superEBIT. In particular we were going to accurately measure line positions for Δn=0 transitions in few electron high-Z ions; this was meant to enable us to investigate relativistic and quantum electrodynamics QED contributions to the energy levels as well as the nuclear properties of heavy ions. We were also going to measure cross sections for various electron-ion interactions, the degree of polarization of emitted x-rays, and radiation cooling rates of various ionization stages of highly charged, high-Z ions. This would enable us to study fundamental atomic physics of high-Z ions at relativistic electron impact energies and in the intense nuclear fields of highly ionized, high-Z ions. This would extend previous measurements we have carried out to a regime where there is a paucity of good data. These measurements were expected to generate increased theoretical interest and activity in this area. The project will extend a very successful collaboration between Morehouse College (MC) and a national laboratory LLNL, Minority student training and development are major components of the proposal

  13. Science and art in heavy-ion collisions

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1982-01-01

    One of the more intriguing phenomena discovered in heavy-ion physics is the seeming appearance of high energy structure in the excitation spectra of inelastically scattered heavy ions. For reasons illustrated, these may well be a phenomena unique to heavy ions and their explanation perhaps unique to TDHF

  14. FOBOS - a 4π-fragment spectrometer for heavy-ion reaction products

    International Nuclear Information System (INIS)

    Ortlepp, H.G.; Schilling, K.D.

    1992-06-01

    The FOBOS detector presently under construction at Dubna is intended for heavy ion reaction studies in the bombarding energy range of 10...100 AMeV. It will consist of a 'gas-ball' of 30 position-sensitive avalanche counters and 30 axial ionization chambers behind them, a shell of 190 scintillation counters surrounding the gas ball and a forward phoswich array. All charged reaction products may be measured in a wide dynamic range and in a geometry covering a substantial part of 4π. Special developments were necessary concerning the mechanical construction, the detector design, the evacuation and gas supply and the electronics. Presently individual detector modules are being tested at the beam of the U-400 heavy ion cyclotron of the Laboratory of nuclear reactions. (orig.)

  15. Cell inactivation by heavy charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E A [Lawrence Berkeley Lab., CA (United States). Cell and Molecular Biology Div.

    1992-06-01

    The inactivation of cells resulting in lethal or aberrant effects by charged particles is of growing interest. Charged particles at extremely high LET are capable of completely eliminating cell-type and cell-line differences in repair capacity. It is still not clear however whether the repair systems are inactivated, or merely that heavy-ion lesions are less repairable. Studies correlating the particle inactivation dose of radioresistant cells with intact DNA analyzed with pulse field gel electrophoresis and other techniques may be useful, but more experiments are also needed to assess the fidelity of repair. For particle irradiations between 40-100 keV/{mu}m there is however evidence for particle-induced activation of specific genes in mammalian cells, and certain repair processes in bacteria. New data are available on the inactivation of developmental processes in several systems including seeds, and cells of the nematode C. elegans. Future experimental and theoretical modeling research emphasis should focus on exploring particle-induced inactivation of endpoints assessing functionality and not just lethality, and on analyzing molecular damage and genetic effects arising in damage but non-inactivated survivors. The discrete nature of selective types of particle damage as a function of radiation quality indicates the value of accelerated ions as probes of normal and aberrant biological processes. Information obtained from molecular analyses of damage and repair must however be integrated into the context of cellular and tissue functions of the organism. (orig.).

  16. High energy density in matter produced by heavy ion beams. Annual report 1987

    International Nuclear Information System (INIS)

    1988-08-01

    Research activities presented in this annual report were carried out in 1987 in the framework of the government-funded program 'High Energy Density in Matter Produced by Heavy Ion Beams'. It addresses fundamental problems of the generation and investigation of hot dense matter. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense heavy ion beams. The new accelerator facility SIS/ESR now under construction at GSI will provide an excellent potential for research in this field. The construction work at the new validity is on schedule. The building construction is near completion and the SIS accelerator will have its first beam at the beginning of next year. First experiments at lower intensity will start in summer 1989 and the full program will run after the cooler and storage ring ESR has got operational. Accordingly, the planning and the preparation of the high energy density experiments at this unique facility was an essential part of the activities last year. In this funding period emphasis was given to the experimental activities at the existing accelerator. In addition to a number of accelerator-oriented and instrumental developments, an experiment on beam-plasma interaction had first exciting results, a significant increase of the stopping power for heavy ions in plasma was measured. Other important activities were the investigation of dielectronic recombination of highly charged ions, spectroscopic investigations aiming at the pumping of short wavelength lasers by heavy ion beams and a crossed beam experiment for the determination of Bi + + Bi + ionization cross sections. As in previous years theoretical work an space-charge dominated beam dynamics as well as on hydrodynamics of dense plasmas, radiation transport and beam plasma interaction was continued, thus providing a basis for the future experiments. (orig.)

  17. High brightness K+ ion source for heavy ion fusion linear induction accelerators

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Chupp, W.; Rutkowski, H.

    1992-01-01

    Low emittance, high current, singly charged potassium thermionic ion sources are being developed for the Induction Linac System Experiment injector, ILSE. The ILSE, now in study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K + ion beam considered is emitted thermionically into a diode gap from alumino-silicate layers (zeolite) coated on a porous tungsten cup. The Single Beam Transport Experiment (SBTE) 120keV cesium source was redesigned and modified with the aid of an ion optics and gun design program (EGUN) to enable the evaluation of the K + source performance at high extraction currents of about 80mA from a one inch diameter source. The authors report on the source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, phase space distributions using the double slit scanning technique, and source emitting surface temperature dependence on heating power using a wire pyrometer

  18. Evaluation of Negative-Ion-Beam Driver Concepts for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Grisham, Larry R.

    2002-01-01

    We evaluate the feasibility of producing and using atomically neutral heavy ion beams produced from negative ions as drivers for an inertial confinement fusion reactor. Bromine and iodine appear to be the most attractive elements for the driver beams. Fluorine and chlorine appear to be the most appropriate feedstocks for initial tests of extractable negative ion current densities. With regards to ion sources, photodetachment neutralizers, and vacuum requirements for accelerators and beam transport, this approach appears feasible within existing technology, and the vacuum requirements are essentially identical to those for positive ion drivers except in the target chamber. The principal constraint is that this approach requires harder vacuums in the target chamber than do space-charge-neutralized positive ion drivers. With realistic (but perhaps pessimistic) estimates of the total ionization cross section, limiting the ionization of a neutral beam to less than 5% while traversing a four -meter path would require a chamber pressure of no more than 5 x 10 -5 torr. Alternatively, even at chamber pressures that are too high to allow propagation of atomically neutral beams, the negative ion approach may still have appeal, since it precludes the possibly serious problem of electron contamination of a positive ion beam during acceleration, drift compression, and focusing

  19. Electron cloud effects in intense, ion beam linacs theory and experimental planning for heavy-ion fusion

    International Nuclear Information System (INIS)

    Molvik, A.W.; Cohen, R.H.; Lund, S.M.; Bieniosek, F.M.; Lee, E.P.; Prost, L.R.; Seidl, P.A.; Vay, Jean-Luc

    2002-01-01

    Heavy-ion accelerators for HIF will operate at high aperture-fill factors with high beam current and long pulses. This will lead to beam ions impacting walls: liberating gas molecules and secondary electrons. Without special preparation a large fractional electron population ((ge)1%) is predicted in the High-Current Experiment (HCX), but wall conditioning and other mitigation techniques should result in substantial reduction. Theory and particle-in-cell simulations suggest that electrons, from ionization of residual and desorbed gas and secondary electrons from vacuum walls, will be radially trapped in the ∼4 kV ion beam potential. Trapped electrons can modify the beam space charge, vacuum pressure, ion transport dynamics, and halo generation, and can potentially cause ion-electron instabilities. Within quadrupole (and dipole) magnets, the longitudinal electron flow is limited to drift velocities (E x B and (del)B) and the electron density can vary azimuthally, radially, and longitudinally. These variations can cause centroid misalignment, emittance growth and halo growth. Diagnostics are being developed to measure the energy and flux of electrons and gas evolved from walls, and the net charge and gas density within magnetic quadrupoles, as well as the their effect on the ion beam

  20. Detector development for heavy-ions from 10 to 200 MeV/A

    International Nuclear Information System (INIS)

    Gruhn, C.R.

    1979-01-01

    Heavy Ion (HI) physics has evolved with a class of detector problems and needs peculiar to this young and growing field of physics. Large solid angles and good accomodation for events with high multiplicities are a prerequisite in a large number of HI experiments. Usually it is desired to measure with high precision the momentum, charge, and mass of the particles. The high charge (Z) of the particles emphasizes such problems as space charge, recombination, plasma clearing times, and radiation effects. A HI detector program in gaseous ion chambers at LBL is the subject of talk today. The talk is in three sections. The first is concerned with HI energy loss fluctuations. The remaining two secions discuss two detector alternatives considered: Bragg Curve Spectroscopy and Precision Relativistic DE/DX Measurements

  1. Prototype drift chamber for high energy heavy ions with a large dynamic range

    International Nuclear Information System (INIS)

    Kobayashi, T.; Bieser, F.; Crawford, H.; Lindstrom, P.; Baumgartner, M.; Greiner, D.

    1985-01-01

    The authors have constructed and tested a small prototype drift chamber designed for high energy heavy ions. When a drift chamber is used as a tracking detector for heavy projectile fragments from high energy nucleus-nucleus reactions, the major problem comes from the many spurious hits due to delta-rays. Three methods have been developed to solve this problem. The first one is to use a constant fraction discriminator to pick up the timing signal from the core ionization under the large background of delta-rays. The second one is to use pulse height information from the drift chamber to find the cell hit by the heavy ion. The last one is the idea of distributed planes. Modular planes (12 in this case) are distributed 10 cm apart on a rigid base plate to provide accurate relative positioning of the wires. The performance of the prototype chamber has been measured as a function of the high voltage bias and of the charge of the heavy ion from protons up to uranium at around 1 GeV/nucleon

  2. Drying of heavy water system and works of charging heavy water in Fugen

    International Nuclear Information System (INIS)

    Matsushita, Tadashi; Iijima, Setsuo

    1980-01-01

    The advanced thermal reactor ''Fugen'' is the first heavy water-moderated, boiling light water-cooled nuclear reactor for power generation in Japan. It is a large heavy water reactor having about 130 m 3 of heavy water inventory and about 300 m 3 of helium space as the cover gas of the heavy water system. The heavy water required was purchased from FRG, which had been used for the power output test in the KKN, and the quality was 99.82 mol % mean heavy water concentration. The concentration of heavy water for Fugen used for the nuclear design is 99.70 mol%, and it was investigated how heavy water can be charged without lowering the concentration. The matters of investigation include the method of bringing the heavy water and helium system to perfect dryness after washing and light water test, the method of confirming the sufficient dryness to prevent the deterioration, and the method of charging heavy water safely from its containers. On the basis of the results of investigation, the actual works were started. The works of drying the heavy water and helium system by vacuum drying, the works of sampling heavy water and the result of the degree of deterioration, and the works of charging heavy water and the measures to the heavy water remaing in the containers are described. All the works were completed safely and smoothly. (J.P.N.)

  3. Studies of the QCD Phase Diagram with Heavy-Ion Collisions at J-PARC

    Science.gov (United States)

    Sako, Hiroyuki

    To clarify phase structures in the QCD phase diagram is an ultimate goal of heavy-ion collision experiments. Studies of internal structures of neutron stars are also one of the most important topics of nuclear physics since the discovery of neutron stars with two-solar mass. For these physics goals, J-PARC heavy-ion project (J-PARC-HI) has been proposed, where extremely dense matter with 5-10 times the normal nuclear density will be created. Heavy-ion beams up to Uranium will be accelerated to 1-19 AGeV/c, with the designed world's highest beam rate of 1011 Hz. The acceleration of such high-rate beams can be realized by a new heavy-ion linac and a new booster ring, in addition to the existing 3-GeV and 50-GeV proton synchrotrons. To study the above physics goals, following physics observables will be measured in extremely high statistics expected in J-PARC-HI. To search for the critical point, high-order event-by-event fluctuations of conserved charges such as a net-baryon number, an electric charge number, and a strangeness number will be measured. To study the chiral symmetry restoration, dilepton spectra from light vector meson decays will be measured. Also, collective flows, particle correlations will be measured to study the equation of state and hyperon-hyperon and hyperon-nucleon interactions related to neutron stars. Strange quark matter (strangelet) and multi-strangeness hypernuclei will be searched for which may be related directly to the matter constituting the neutron star core. In this work, the physics goals, the experimental design, and expected physics results of J-PARC-HI will be discussed.

  4. Heavy ion transfer reactions

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1977-06-01

    To complement discussions on the role of γ rays in heavy ion induced reactions, the author discusses the role played by particle detection. Transfer reactions are part of this subject and are among those in which one infers the properties of the residual nucleus in a reaction by observing the emerging light nucleus. Inelastic scattering ought not be excluded from this subject, although no particles are transferred, because of the role it plays in multistep reactions and in fixing O.M. parameters describing the entrance channel of the reaction. Heavy ion transfer reaction studies have been under study for some years and yet this research is still in its infancy. The experimental techniques are difficult and the demands on theory rigorous. One of the main products of heavy ion research has been the thrust to re-examine the assumptions of reaction theory and now include many effects neglected for light ion analysis. This research has spurred the addition of multistep processes to simple direct processes and coupled channel calculations. (J.R.)

  5. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  6. Project ''OAE'' at Ganil, a project for increasing the heavy ion energies

    International Nuclear Information System (INIS)

    Ferme, J.

    1986-10-01

    GANIL is composed of three cyclotrons connected in series, with a stripper located between the last two stages. The general parameters have been chosen to fit the characteristics of the PIG ion source. With the advent of ECR sources, which can produce efficiently ions of higher charge state, an optimization of the system has been considered which will result in an increase of the energy range of medium and heavy ions. A few modifications of the machine are necessary and should be carefully prepared so as to minimize the duration of the shut-down planned at the beginning of 1989. Moreover, a systematic study of the axial injection of the first cyclotron has been undertaken in order to improve the intensity of the injected beam with respect to space charge

  7. Radiation therapy using high-energy heavy-ion

    International Nuclear Information System (INIS)

    Kanai, Tatsuaki

    1995-01-01

    The clinical trial of the heavy-ion radiotherapy was started at June 1994 after pre-clinical experiments using 290 MeV/u carbon beam. In this paper, an irradiation system for the heavy-ion radiotherapy installed at HIMAC (Heavy Ion Medical Accelerator in Chiba) and the physical characteristics of the therapeutic beam were discussed. (author)

  8. Jet studies in heavy ion collisions with the ATLAS detector

    CERN Document Server

    Slovak, Radim; The ATLAS collaboration

    2016-01-01

    In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. ATLAS has provided a quantification of this jet suppression by the jet Raa measurement in run 1 of LHC. A factor of two suppression was seen in central heavy ion collisions with respect to pp collisions. The Raa exhibited only a week, if any, rapidity dependence, and a slow rise with increasing jet momentum. This talk summarizes the run 1 results on the inclusive jet production and the new results on dijet measurements.

  9. Preparation of cold Mg{sup +}ion clouds for sympathetic cooling of highly charged ions at SPECTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Cazan, Radu Mircea

    2012-02-15

    The bound electrons in hydrogen-like or lithium-like heavy ions experience extremely strong electric and magnetic fields in the surrounding of the nucleus. Laser spectroscopy of the ground-state hyperfine splitting in the lead region provides a sensitive tool to test strong-field quantum electro dynamics (QED), especially in the magnetic sector. Previous measurements on hydrogen-like systems performed in an electron-beam ion trap (EBIT) or at the experimental storage ring (ESR) were experimentally limited in accuracy due to statistics, the large Doppler broadening and the ion energy. The full potential of the QED test can only be exploited if measurements for hydrogen- and lithium-like ions are performed with accuracy improved by 2-3 orders of magnitude. Therefore, the new Penning trap setup SPECTRAP - dedicated for laser spectroscopy on trapped and cooled highly charged ions - is currently commissioned at GSI Darmstadt. Heavy highly charged ions will be delivered to this trap by the HITRAP facility in the future. SPECTRAP is a cylindrical Penning trap with axial access for external ion injection and radial optical access mounted inside a cold-bore superconducting Helmholtz-type split-coil magnet. To reach the targeted accuracy in laser spectroscopy, an efficient and fast cooling process for the highly charged ions must be employed. This can be realized by sympathetic cooling with a cloud of laser-cooled light ions. Within this thesis work, a laser system and an ion source for the production of such a {sup 24}Mg{sup +} ion cloud was developed and commissioned at SPECTRAP. An all-solid-state laser system for the generation of 279.6 nm light was designed and built. It consists of a fiber laser at 1118.5 nm followed by frequency quadrupling using two successive second-harmonic generation stages with actively stabilized ring resonators and nonlinear crystals. The laser system can deliver more than 15 mW of UV laser power under optimal conditions and requires little

  10. Therapy tumor with the heavy ions beam

    International Nuclear Information System (INIS)

    Dang Bingrong; Wei Zengquan; Li Wenjian

    2002-01-01

    As physical characteristic of heavy ions Bragg peak, therapy tumor with heavy ions is becoming advanced technology. So, many countries have developed the technology and used to treat tumor, the societal and economic effects are beneficial to people. The authors show the development, present situation and information of research in world of advanced radiotherapy with heavy ions

  11. Towards the heavy-ion program at J-PARC

    International Nuclear Information System (INIS)

    Sako, H.; Chujo, T.; Gunji, T.; Harada, H.; Imai, K.; Kaneta, M.; Kinsho, M.; Liu, Y.; Nagamiya, S.; Nishio, K.; Ozawa, K.; Saha, P.K.; Sakaguchi, T.; Sato, S.; Tamura, J.

    2014-01-01

    A future heavy-ion program at J-PARC has been discussed. The QCD phase structure in high baryon density regime will be explored with heavy ions at the beam momenta of around 10 A GeV/c at the beam rate of 10 10 –10 11  Hz. For this quest, a large acceptance spectrometer is designed to measure electrons and muons, and rare probes such as multi-strangeness and charmed hadrons/nuclei. A heavy-ion acceleration scheme is under study with a new heavy-ion linac and a new booster ring, which accelerate and inject beams into the existing Rapid-Cycling Synchrotron and Main Ring synchrotron. An overview of the heavy-ion program and an accelerator design, as well as physics goals and a conceptual design of the heavy-ion experiment are discussed

  12. Towards the heavy-ion program at J-PARC

    Science.gov (United States)

    Sako, H.; Chujo, T.; Gunji, T.; Harada, H.; Imai, K.; Kaneta, M.; Kinsho, M.; Liu, Y.; Nagamiya, S.; Nishio, K.; Ozawa, K.; Saha, P. K.; Sakaguchi, T.; Sato, S.; Tamura, J.

    2014-11-01

    A future heavy-ion program at J-PARC has been discussed. The QCD phase structure in high baryon density regime will be explored with heavy ions at the beam momenta of around 10 A GeV/c at the beam rate of 1010-1011 Hz. For this quest, a large acceptance spectrometer is designed to measure electrons and muons, and rare probes such as multi-strangeness and charmed hadrons/nuclei. A heavy-ion acceleration scheme is under study with a new heavy-ion linac and a new booster ring, which accelerate and inject beams into the existing Rapid-Cycling Synchrotron and Main Ring synchrotron. An overview of the heavy-ion program and an accelerator design, as well as physics goals and a conceptual design of the heavy-ion experiment are discussed.

  13. Heavy ion fusion year-end report, April 1, 1981-September 30, 1981

    International Nuclear Information System (INIS)

    1981-10-01

    A beam propagation experiment is being prepared to test theoretical predictions about transverse instabilities in a heavy ion beam with large space-charge effects in a long quadrupole transport system. The 200 keV injector which has the features of variable current density and variable emittance has been constructed. The Cs + pulsed drift tube injector model continues to operate for studies of beam optics, component testing in an intense ion-beam environment, and diagnostics development. The electron-beam probe has now yielded successful results on the time-resolved charge density of the Cs + ion-beam. It has revealed the existence of a significant number of electrons surrounding the ion-beam. The theory of longitudinal instabilities has been advanced. Improvements to the EGUN and other beam-dynamics codes continue and have yielded valuable results. Transport of high-intensity beams in an A.G. octupole system is under active study

  14. RHIC heavy ion operations performance

    CERN Document Server

    Satogata, T; Ferrone, R; Pilat, F

    2006-01-01

    The Relativistic Heavy Ion Collider (RHIC) completed its fifth year of operation in 2005, colliding copper ion beams with ps=200 GeV/u and 62.4 GeV/u[1]. Previous heavy ion runs have collided gold ions at ps=130 GeV/u, 200 GeV/u, and 62.4 GeV/u[2], and deuterons and gold ions at ps=200 GeV/u[3]. This paper discusses operational performance statistics of this facility, including Cu- Cu delivered luminosity, availability, calendar time spent in physics stores, and time between physics stores. We summarize the major factors affecting operations efficiency, and characterize machine activities between physics stores.

  15. Study of jet quenching in heavy ion collisions at LHC using ATLAS detector

    CERN Document Server

    Štefko, Pavol

    2015-01-01

    Quark-Gluon Plasma (QGP) is one of the most extreme states of matter which exists only in extraordinary conditions of heavy-ion collisions that can be achieved at particle accelerators. Interactions between the partons and the hot, dense QGP are expected to cause the loss of the jet energy, which is phenomenon called jet quenching. In this talk we provide an introduction to the problematics of ultra-relativistic heavy ion collisions and we show how the jet quenching can be used to analyze the properties of QGP. We also present some “work in progress” results of the jet analysis done on the data taken by the ATLAS detector during the 2011 heavy-ion run at the LHC. Jets are studied as a function of collision centrality and dijet energy imbalance. Dijets are observed to be increasingly asymmetric with increasing centrality. The study of charged particles indicates an increase of yields of low- p T tracks in events with strongly quenched jets

  16. The Z-pinch as plasma lens for the focusing of heavy ion beams

    International Nuclear Information System (INIS)

    Elfers, M.

    1992-04-01

    In the present thesis the influence of a Z-pinch plasma on the shape of heavy-ion beams and the for the understanding of this interaction most important plasma parameters were studied. For this the Z-pinch at the heavy-ion accelerator UNILAC was operated. The magnet field gradients of up to (25 ± 3) T/m occuring in the Z-pinch lead to the plasma-lens effect - the focusing of a charged-particle beam traversing axially the Z-pinch. In this thesis for the first time the focusing of a heavy-ion beam by the azimutal magnetic field of a Z-pinch is described. Different beams with an original diameter of 10 mm were focused. The smallest measured beam diameter amounts to 1 mm half-width. The beam energy amounts to 11.4 MeV/u, which leads at gold as projectile matter to a beam energy of 2.25 GeV. (orig./HSI) [de

  17. Heavy ion collisions and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Floerchinger, Stefan

    2016-12-15

    There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.

  18. Double-differential heavy-ion production cross sections

    International Nuclear Information System (INIS)

    Miller, T. M.; Townsend, L. W.

    2004-01-01

    Current computational tools used for space or accelerator shielding studies transport energetic heavy ions either using a one-dimensional straight-ahead approximation or by dissociating the nuclei into protons and neutrons and then performing neutron and proton transport using Monte Carlo techniques. Although the heavy secondary particles generally travel close to the beam direction, a proper treatment of the light ions produced in these reactions requires that double-differential cross sections should be utilised. Unfortunately, no fundamental nuclear model capable of serving as an event generator to provide these cross sections for all ions and energies of interest exists currently. Herein, we present a model for producing double-differential heavy-ion production cross sections that uses heavy-ion fragmentation yields produced by the NUCFRG2 fragmentation code coupled with a model of energy degradation in nucleus-nucleus collisions and systematics of momentum distributions to provide energy and angular dependences of the heavy-ion production. (authors)

  19. Decay of the vacuum in heavy ion collisions

    International Nuclear Information System (INIS)

    Mueller, B.

    1984-10-01

    The neutral electron-positron vacuum state becomes unstable in very strong electric fields of nuclei with Z>173 and decays into a charged vacuum by spontaneous positron emission. Such giant nuclear systems can be formed in collisions of very heavy ions (U+U, U+Cm, etc.) for a period of 10 -20 s or more. Recent experimental results revealing line structures in the positron spectra observed in these collisions are discussed and their implications for quantum electrodynamics and nuclear physics are pointed out. (orig.)

  20. Heavy quark photoproduction in ultraperipheral heavy ion collisions

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Nystrand, Joakim; Vogt, Ramona

    2002-01-01

    Heavy quarks are copiously produced in ultraperipheral heavy ion collisions. In the strong electromagnetic fields, cc-bar and bb-bar are produced by photonuclear and two-photon interactions. Hadroproduction can also occur in grazing interactions. We calculate the total cross sections and the quark transverse momentum and rapidity distributions, as well as the QQ-bar invariant mass spectra from the three production channels. We consider AA and pA collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider. We discuss techniques for separating the three processes and describe how the AA to pA production ratios might be measured accurately enough to study nuclear shadowing

  1. X-ray emission in collisions of highly charged I, Pr, Ho, and Bi ions with a W surface

    International Nuclear Information System (INIS)

    Watanabe, H.; Tona, M.; Ohtani, S.; Sun, J.; Nakamura, N.; Yamada, C.; Yoshiyasu, N.; Sakurai, M.

    2007-01-01

    X-ray emission yields, which are defined as the total number of emitted x-ray photons per incident ion, and dissipated fractions of potential energies through x-ray emission have been measured for slow highly charged ions of I, Pr, Ho, and Bi colliding with a W surface. A larger amount of potential energy was consumed for the x-ray emission with increasing the atomic number and the charge state. The present measurements show that x-ray emission is one of the main decay channels of hollow atoms produced in collisions of very highly charged ions of heavy elements

  2. Heavy ion radiation biology research facility and ongoing activities at the Inter-University Accelerator Centre, New Delhi

    International Nuclear Information System (INIS)

    Sarma, Asitikantha

    2014-01-01

    Heavy Ion Radiation Biology is an interdisciplinary science involving use of charged particle accelerator in the study of molecular biology. It is the study of the interaction of a beam of swift heavy ions with a biological system. In contrast to the sparsely ionizing photon or electron radiation, the high velocity charged heavy ions leave a track of densely populated ionization sites resulting in clustered DNA damage. The growing interest in this field encompasses the studies in gene expression, mechanisms of cell death, DNA damage and repair, signal transduction etc. induced because of this unique assault on the genetic material. IUAC radiation biology programme is focused on the in-vitro studies of different effects of heavy ion irradiation on eukaryotic cells. The facility provides a laboratory for pre and post irradiation treatment of samples. The irradiation system called ASPIRE (Automatic Sample Positioning for Irradiation in Radiation Biology Experiments) is installed at the dedicated Radiation Biology Beam line. It produces a nearly uniform flux distribution over a irradiation field of 40 mm diameter. The particle doses can be preselected and repeated within inherent statistical accuracy. The particle energy can also be measured. The facility is at present utilized by the University researchers of India. A few results obtained by the investigators would be presented. The outcome of the research in heavy ion radiation biology would be of immense use in augmenting the efficacy of Hadron therapy of cancer. The results would also contribute to the field of space radiation protection. It would also help in understanding the phenomena subsequent to complex DNA damage. (author)

  3. Heavy-ion mammography and breast cancer

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Capp, M.P.; Holley, W.R.; Woodruff, K.H.; Sickles, E.A.

    1980-01-01

    Heavy-ion radiography is a new diagnostic imaging technique developed in our laboratory that produces superior density resolution at low radiation doses. Heavy-ion mammography has now emerged as a low-dose, safe, reliable, noninvasive diagnostic radiological procedure that can quantitate and image very small differences in soft tissue densities in the breast tissues of patients with clinical breast disease. The improved density resolution of heavy-ion mammography over conventional X-ray mammography and breast xerography provides the potential of detecting small breast cancers of less than 1 cm diameter. The radiation dose to the breast from carbon-ion mammorgraphy is about 50 mrad or less, and can potentially be only a fraction of this level. The results of the present clinical trial in progress of heavy-ion mammography in 37 patients, thus far studied, are extremely encouraging, and warrant continued study for application to the early diagnosis of breast cancer in women

  4. Heavy ion acceleration at the AGS

    International Nuclear Information System (INIS)

    Lee, Y.Y.

    1989-01-01

    The Brookhaven AGS is alternating gradient synchrotron, 807 meters in circumference, which was originally designed for only protons. Using the 15 MV Brookhaven Tandem Van de Graaff as an injector, the AGS started to accelerate heavy ions of mass lighter than sulfur. Because of the relatively poor vacuum (∼10 -8 Torr), the AGS is not able to accelerate heavier ions which could not be fully stripped of electrons at the Tandem energy. When the AGS Booster, which is under construction, is completed the operation will be extended to all species of heavy ions including gold and uranium. Because ultra-high vacuum (∼10 -11 Torr) is planned, the Booster can accelerate partially stripped elements. The operational experience, the parameters, and scheme of heavy ion acceleration will be presented in detail from injection to extraction, as well as future injection into the new Relativistic Heavy Ion Collider (RHIC). A future plan to improve intensity of the accelerator will also be presented. 5 figs., 4 tabs

  5. Differential cross section study of fragment production, at small angle, in relativistic heavy ion collisions. Application at a calculation of heavy ion beam transport in the matter

    International Nuclear Information System (INIS)

    Morel, P.

    1992-02-01

    Relativistic heavy ion collisions present the opportunity of creating in laboratory small volumes of hot, dense nuclear matter. On the experimental point of view, the collision events are characterized by a great number of fragments, especially in the direction of the projectile. The first part is devoted to a survey of relativistic heavy ion physics. Then, we present two experimental set-ups which permit, in particular, the analyse of light fragment production at small angles. We present experimental results concerning light projectiles on Ca, Nb, Pb targets, with energies from 200 A.MeV up to 600 A.MeV. Different aspects of the collision are put in evidence. Momentum and charge differential cross section are extrapolated to other projectile/target systems; that is used in a transport calculation of Ne ions in a target of biological interest (water), with a collimator. We show that nuclear fragmentation produces a dispersion in the spatial and energy distributions, and that one light fragments have a range greater than the projectile range. That last point causes a distortion of the Bragg curve, and that distortion must be taken into account for the application of heavy ions to radiotherapy problems. 95 figs., 8 tabs

  6. Heavy Ion Fusion Accelerator Research (HIFAR)

    International Nuclear Information System (INIS)

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C s + sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac

  7. Towards the heavy-ion program at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Sako, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Chujo, T. [University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Gunji, T. [Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198 (Japan); Harada, H. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Kaneta, M. [Tohoku University, Sendai, Miyagi 980-8578 (Japan); Kinsho, M. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Liu, Y. [J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Nagamiya, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Nishio, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Ozawa, K. [J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Saha, P.K. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Sakaguchi, T. [Broohaven National Laboratory, Upton, NY 11973-5000 (United States); Sato, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Tamura, J. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan)

    2014-11-15

    A future heavy-ion program at J-PARC has been discussed. The QCD phase structure in high baryon density regime will be explored with heavy ions at the beam momenta of around 10 A GeV/c at the beam rate of 10{sup 10}–10{sup 11} Hz. For this quest, a large acceptance spectrometer is designed to measure electrons and muons, and rare probes such as multi-strangeness and charmed hadrons/nuclei. A heavy-ion acceleration scheme is under study with a new heavy-ion linac and a new booster ring, which accelerate and inject beams into the existing Rapid-Cycling Synchrotron and Main Ring synchrotron. An overview of the heavy-ion program and an accelerator design, as well as physics goals and a conceptual design of the heavy-ion experiment are discussed.

  8. Failla Memorial lecture. The future of heavy-ion science in biology and medicine.

    Science.gov (United States)

    Tobias, C A

    1985-07-01

    Interplanetary space contains fluxes of fast moving atomic nuclei. The distribution of these reflects the atomic composition of the universe, and such particles may pose limitations for space flight and for life in space. Over the past 50 years, since the invention of Ernest Lawrence's cyclotron, advances in accelerator technology have permitted the acceleration of charged nuclei to very high velocities. Currently, beams of any stable isotope species up to uranium are available at kinetic energies of several hundred MeV/nucleon at the Berkeley Bevalac. Recently, new areas of particle physics research relating to the mechanisms of spallation and fission have opened up for investigation, and it is now realistic to search for nuclear super-dense states that might be produced in heavy nuclear collisions. The heavy ions hold interest for a broad spectrum of research because of their effectiveness in producing a series of major lesions in DNA along single particle tracks and because of the Bragg depth ionization properties that allow the precise deposition of highly localized doses deep in the human body. Individual heavy ions can also interrupt the continuity of membraneous regions in cells. Heavy ions, when compared to low-LET radiation, have increased effectiveness for mammalian cell lethality, chromosome mutations, and cell transformation. The molecular mechanisms are not completely understood but appear to involve fragmentation and reintegration of DNA. Cells attempt to repair these lesions, and many of the deleterious effects are due to misrepair or misrejoining of DNA. Heavy ions do not require the presence of oxygen for producing their effects, and hypoxic cells in necrotic regions have nearly the same sensitivity as cells in well-oxygenated tissues. Heavy ions are effective in delaying or blocking the cell division process. Heavy ions are also strong enhancers of viral-induced cell transformation, a process that requires integration of foreign DNA. Some cell

  9. Modeling and Analysis of Ultrarelativistic Heavy Ion Collisions

    Science.gov (United States)

    McCormack, William; Pratt, Scott

    2014-09-01

    High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition from the QGP stage to hadronization. Balance functions were constructed as the sum of these two charge production components, and four parameters were manipulated to match the model's output with experimental data taken from the STAR Collaboration at RHIC. Results show that the chemical composition of the super-hadronic matter are consistent with that of a thermally equilibrated QGP. High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition

  10. Theoretical progress in studying the characteristic x-ray emission from heavy few-electron ions

    International Nuclear Information System (INIS)

    Surzhykov, Andrey; Stohlker, Thomas; Fritzsche, Stephan; Kabachnik, Nikolai M

    2009-01-01

    Recent theoretical progress in the study of the x-ray characteristic emission from highly-charged, few-electron ions is reviewed. These investigations show that the bound-state radiative transitions in high-Z ions provide a unique tool for better understanding the interplay between the structural and dynamical properties of heavy ions. In order to illustrate such an interplay, detailed calculations are presented for the K α1 decay of the helium-like uranium ions U 90+ following radiative electron capture, Coulomb excitation and dielectronic recombination processes.

  11. Proton and heavy ion beam (charged particle therapy)

    International Nuclear Information System (INIS)

    Kanai, Tatsuaki

    2003-01-01

    There are distinguished therapeutic irradiation facilities of proton and heavy ion beam in Japan. The beam, due to its physical properties, is advantageous for focusing on the lesion in the body and for reducing the exposure dose to normal tissues, relative to X-ray. This makes it possible to irradiate the target lesion with the higher dose. The present review describes physical properties of the beam, equipments for the therapeutic irradiation, the respiratory-gated irradiation system, the layer-stacking irradiation system, therapy planning, and future prospect of the therapy. More than 1,400 patients have received the therapy in National Institute of Radiological Sciences (NIRS) and given a good clinical outcome. The targets are cancers of the head and neck, lung, liver, uterine and prostate, and osteosarcoma. The therapy of osteosarcoma is particularly important, which bringing about the high cure rate. Severe adverse effects are not seen with exception for the digestive tract ulcer. Many attempts like the respiratory-gated and layer-stacking systems and to shorten the therapy period to within 1 week are in progress. (N.I.)

  12. Implications of heavy-ion induced satellite x-ray emission. I. Introduction

    International Nuclear Information System (INIS)

    Raman, S.; Vane, C.R.

    1983-01-01

    Regardless of how they are induced, x-ray spectra are sensitive to the chemical environment of the emitting atom and can yield information on the atomic and electronic structure of host materials. Those spectra resulting from light ion and heavy ion excitations are the main topics covered in this series of papers. Highly energetic heavy ions are capable of producing multiple innershell ionization. The resulting spectrum of x-rays from a particular target atom is composed of a complex series of satellite lines. Environmental effects give rise to the redistribution of intensity from one satellite group to another. These changes can be correlated with one satellite group to another. These changes can be correlated with bulk chemical properties (valence electron densities, effective charges, covalencies, etc.). The possibility of obtaining new chemical information (for example, in implanted materials and in metal alloys) exists but requires greater experimental and theoretical understanding of both parametric variations and the fine structure of satellite lines

  13. Heavy Ion Fusion Program. Year-end report, October 1978-September 1979

    International Nuclear Information System (INIS)

    1979-01-01

    The more significant activities and results reported for this year are: (1) Commissioning, in January 1979, of a large-area Cs +1 ion source of 1.2 amperes at 500 kV. (2) Commissioning, in July 1979, of the first drift-tube of the three drift-tube accelerator. (3) Acceleration, in January 1979, of a high-brightness, 40 milliampere Xe +1 beam through a Cockcroft-Walton column to 500 kV and confirmation of satisfactory emittance and charge distribution. (4) Development of a conceptual design for a 500 J induction linac test-bed facility to test many of the features needed for the success of an igniter (LBL PUB 5031). (5) Improvements to the systems studies of a Heavy Ion Induction Linac Driver over a wide parameter range with emphasis on cost and efficiency trade-off. (6) Start-up of a (Cs +1 , Cs +1 ) ion-ion cross section measurement program. Initial results of the scattering of Cs +1 ions on Xe gas (electronically similar to Cs +1 ) have shown some surprising results. (7) Expansion of theoretical studies on the behavior of space-charge dominated ion beams

  14. Simulating electron clouds in heavy-ion accelerators

    International Nuclear Information System (INIS)

    Cohen, R.H.; Friedman, A.; Covo, M. Kireeff; Lund, S.M.; Molvik, A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J.-L.; Stoltz, P.; Veitzer, S.

    2005-01-01

    Contaminating clouds of electrons are a concern for most accelerators of positively charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly magnetized, weakly magnetized, and unmagnetized. The approach to such self-consistency is described, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyroperiod in the magnets. Tests and applications are presented: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the high-current experiment [L. R. Prost, P. A. Seidl, F. M. Bieniosek, C. M. Celata, A. Faltens, D. Baca, E. Henestroza, J. W. Kwan, M. Leitner, W. L. Waldron, R. Cohen, A. Friedman, D. Grote, S. M. Lund, A. W. Molvik, and E. Morse, 'High current transport experiment for heavy ion inertial fusion', Physical Review Special Topics, Accelerators and Beams 8, 020101 (2005)], at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam on an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-time-step mover to accurately calculate the instability

  15. Swift Heavy Ions in Matter

    Science.gov (United States)

    Rothard, Hermann; Severin, Daniel; Trautmann, Christina

    2015-12-01

    The present volume contains the proceedings of the Ninth International Symposium on Swift Heavy Ions in Matter (SHIM). This conference was held in Darmstadt, from 18 to 21 May 2015. SHIM is a triennial series, which started about 25 years ago by a joint initiative of CIRIL - Caen and GSI - Darmstadt, with the aim of promoting fundamental and applied interdisciplinary research in the field of high-energy, heavy-ion interaction processes with matter. SHIM was successively organized in Caen (1989), Bensheim (1992), Caen (1995), Berlin (1998), Catania (2002), Aschaffenburg (2005), Lyon (2008), and Kyoto (2012). The conference attracts scientists from many different fields using high-energy heavy ions delivered by large accelerator facilities and characterized by strong and short electronic excitations.

  16. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Shvets, Gennady; Startsev, Edward; Davidson, Ronald C.

    2001-01-01

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma

  17. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Gennady Shvets; Edward Startsev; Ronald C. Davidson

    2001-01-30

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma.

  18. Cyclotron method for heavy ion acceleration

    International Nuclear Information System (INIS)

    Gikal, B.N.; Gul'bekyan, G.G.; Kutner, V.B.; Oganesyan, R.Ts.

    1984-01-01

    Studies on heavy ion beams in a wide range of masses (up to uranium) and energies disclose essential potential opportunities for solution of both fundamental scientific and significant economical problems. A cyclotron method for heavy ion acceleration is considered. Development of low and medium energy heavy ion accelerators is revealed. The design of a complex comprising two isochronous cyclotrons which is planned to be constrdcted 1n the JINR is described. The cyclotron complex includes the U-400 and the U-400 M cyclotrons and it is intended for acceleration of both 35-20 MeV/nucleon superheavy ions such as Xe-U and 120 MeV/nucleon light ions. Certain systems of the accelerators are described. Prospects of the U-400 and the U-400 M development are displayed

  19. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  20. Medium-energy heavy-ion single-event-burnout imaging of power MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Musseau, O.; Torres, A.; Campbell, A.B.; Knudson, A.R.; Buchner, S.; Fischer, B.; Schloegl, M.; Briand, P.

    1999-12-01

    The authors present the first experimental determination of the SEB sensitive area in a power MOSFET irradiated with a high-LET heavy-ion microbeam. They used a spectroscopy technique to perform coincident measurements of the charge collected in both source and drain junctions together, with a non-destructive technique (current limitation). The resulting charge collection images are related to the physical structure of the individual cells. These experimental data reveal the complex 3-dimensional behavior of a real structure, which can not easily be simulated using available tools. As the drain voltage is increased, the onset of burnout is reached, characterized by a sudden change in the charge collection image. Hot spots are observed where the collected charge reaches its maximum value. Those spots, due to burnout triggering events, correspond to areas where the silicon is degraded through thermal effects along a single ion track. This direct observation of SEB sensitive areas as applications for, either device hardening, by modifying doping profiles or layout of the cells, or for code calibration and device simulation.

  1. Giant resonances in heavy-ion reactions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1982-11-01

    The several roles of multipole giant resonances in heavy-ion reactions are discussed. In particular, the modifications in the effective ion-ion potencial due to the virtual excitation of giant resonances at low energies, are considered and estimated for several systems. Real excitation of giant resonances in heavy-ion reactions at intermediate energies are then discussed and their importance in the approach phase of deeply inelastic processes in emphasized. Several demonstrative examples are given. (Author) [pt

  2. Transient current induced in thin film diamonds by swift heavy ions

    International Nuclear Information System (INIS)

    Sato, Shin-ichiro; Makino, Takahiro; Ohshima, Takeshi; Kamiya, Tomihiro; Kada, Wataru

    2017-01-01

    Single crystal diamond is a suitable material for the next generation particle detectors because of the superior electrical properties and the high radiation tolerance. In order to investigate charge transport properties of diamond particle detectors, transient currents generated in diamonds by single swift heavy ions (26 MeV O 5+ and 45 MeV Si 7+ ) are investigated. We also measured two dimensional maps of transient currents by single ion hits. In the case of 50 μm-thick diamond, both the signal height and the collected charge are reduced by the subsequent ion hits and the charge collection time is extended. Our results are thought to be attributable to the polarization effect in diamond and it appears only when the transient current is dominated by hole current. In the case of 6 μm-thick diamond membrane, an “island” structure is found in the 2D map of transient currents. Signals in the islands shows different applied bias dependence from signals in other regions, indicating different crystal and/or metal contact quality. Simulation study of transient currents based on the Shockley-Ramo theorem clarifies that accumulation of space charges changes distribution of electric field in diamond and causes the polarization effect.

  3. Heavy-ion radiation chemistry

    International Nuclear Information System (INIS)

    Imamura, Masashi

    1975-01-01

    New aspect of heavy ion radiation chemistry is reviewed. Experiment has been carried out with carbon ions and nitrogen ions accelerated by a 160 cm cyclotron of the Institute of Physical and Chemical Research. The results of experiments are discussed, taking into consideration the effects of core radius depending on heavy ion energy and of the branch tracks of secondary electrons outside the core on chemical reaction and the yield of products. The effect of core size on chemical reaction was not able to be observed, because the incident energy of heavy ions was only several tens of MeV. Regarding high radical density, attention must be given to the production of oxygen in the core. It is possible to produce O 2 in the core in case of high linear energy transfer (LET), while no production of O 2 in case of low LET radiation. This may be one of study problems in future. LET effects on the yield of decomposed products were examined on acetone, methyl-ethyl-ketone and diethyl ketone, using heavy ions (C and N) as well as gamma radiation and helium ions. These three ketones showed that the LET change of two gaseous products, H 2 and CO, was THF type. There are peaks at 50-70 eV/A in the yield of both products. The peaks suggest the occurrence of ''saturation'' in decomposition. Attention was drawn to acetone containing a small amount (2 wt.%) of H 2 O. H 2 O and CO produced from this system differ from those in the pure system. The hydrogen connection formed by such a small amount of H 2 O may mediate the energy transfer. Sodium acetate tri-hydrate produces CH 3 radical selectively by gamma-ray irradiation at 77 K. In this case, the production of CH 2 COO - increases with the increase of LET of radiation. This phenomenon may be an important study problem. (Iwakiri, K.)

  4. Investigations on heavy ion induced Single-Event Transients (SETs) in highly-scaled FinFETs

    Energy Technology Data Exchange (ETDEWEB)

    Gaillardin, M., E-mail: marc.gaillardin@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Raine, M.; Paillet, P. [CEA, DAM, DIF, F-91297 Arpajon (France); Adell, P.C. [Jet Propulsion Laboratory, Pasadena, CA 91101 (United States); Girard, S. [Université de Saint-Etienne, Laboratoire H. Curien, UMR-5516, 42000 Saint-Etienne (France); Duhamel, O. [CEA, DAM, DIF, F-91297 Arpajon (France); Andrieu, F.; Barraud, S.; Faynot, O. [CEA, LETI-Minatec, 17 avenue des Martyrs, 38000 Grenoble (France)

    2015-12-15

    We investigate Single-Event Transients (SET) in different designs of multiple-gate devices made of FinFETs with various geometries. Heavy ion experimental results are explained by using a thorough charge collection analysis of fast transients measured on dedicated test structures. Multi-level simulations are performed to get new insights into the charge collection mechanisms in multiple-gate devices. Implications for multiple-gate device design hardening are finally discussed.

  5. Relativistic heavy ion research at Berkeley

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The project of a superconducting synchrotron for heavy ions with 1 TeV/amu is described. In this connection the physics is discussed which can be studied by this accelerator. Furthermore, the HISS-heavy ion spectrometer system and the Plastic Ball detector are described. (HSI).

  6. For high energy heavy ion experiments TPC 4π detector 'Diogene'. What possibilities and what physics

    International Nuclear Information System (INIS)

    Babinet, R.; Cassagnou, Y.; Drouet, M.

    1981-05-01

    'Diogene' is the name of a 4π solid angle detector, based on a Time Projection Chamber (TPC), designed to perform exclusive measurements of charged particles emitted in central collisions of relativistic heavy ions. Exclusive measurements of all charged particles emitted in central collisions of relativistic heavy ions are becoming more and more necessary in this field of nuclear physics in order to answer some crucial questions such as: what is the degree of compression achieved in these collisions. What is the behavior of nuclear matter at high degree of excitation as well as compression. The possibility of handling high multiplicities up to 40 or 60; a momentum measurement of all particles, with not too bad a resolution, up to about 1.5 GeV/c; a good particle identification between π +- , p, d, t ..

  7. Ion mixing and numerical simulation of different ions produced in the ECR ion source

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    This paper is to continue theoretical investigations and numerical simulations in the physics of ECR ion sources within the CERN program on heavy ion acceleration. The gas (ion) mixing effect in ECR sources is considered here. It is shown that the addition of light ions to the ECR plasma has three different mechanisms to improve highly charged ion production: the increase of confinement time and charge state of highly ions as the result of ion cooling; the concentration of highly charged ions in the central region of the source with high energy and density of electrons; the increase of electron production rate and density of plasma. The numerical simulations of lead ion production in the mixture with different light ions and different heavy and intermediate ions in the mixture with oxygen, are carried out to predict the principal ECR source possibilities for LHC applications. 18 refs., 23 refs

  8. Inner shell coulomb ionization by heavy charged particles studied by the SCA model

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1976-06-01

    An outline is given of the development of and some achievements hitherto gained from the semi-classical approximation (SCA) model of atomic Coulomb excitation by heavy charged particles. A few very recent results (1975-1976) are incorporated in the discussion. The SCA model has by now reached a mature state. Hence it seems reasonable to regard the atomic Coulomb excitation phenomenon as part of the extremely complicated excitation mechanism operative in the general ion-atom collision. A clear understanding of the complicated X-ray producing mechanisms in heavy-ion-atom collisions is lacking at present. Despite these facts, the conceptually simple SCA model has furthered our understanding far beyond initial expectations. Moreover, this model has at the same time provided a well-founded starting point for continued researches in this rapidly expanding field of physics. (JIW)

  9. Cell killing and chromosomal aberration induced by heavy-ion beams in cultured human tumor cells

    International Nuclear Information System (INIS)

    Takakura, K.; Funada, A.; Mohri, M.; Lee, R.; Aoki, M.; Furusawa, Y.; Gotoh, E.

    2003-01-01

    Full text: To clarify the relation between cell death and chromosomal aberration in cultured human tumor cells irradaited with heavy-ion beams. The analyses were carried out on the basis of the linear energy transfer (LET) values of heavy ion beams as radiation source. Exponentially growing human tumor cells, Human Salivary Gland Tumor cells (HSG cells), were irradiated with various high energy heavy ions, such as 13 keV/micrometer carbon (C) ions as low LET charged particle radiation source, 120 keV/ micrometer carbon (C) ions and 440 keV/micrometer iron (Fe) ions as high LET charged particle radiation sources.The cell death was analysed by the colony formation method, and the chromosomal aberration and its repairing kinetics was analysed by prematurely chromosome condensation method (PCC method) using calyculin A. Chromatid-type breaks, isochromatid breaks and exchanges were scored for the samples from the cells keeping with various incubation time after irradiation. The LET dependence of the cell death was similar to that of the chromosome exchange formation after 12 hours incubation. A maximum peak was around 120 keV/micrometer. However it was not similar to the LET dependence of isochromatid breaks or chromatid breaks after 12 hours incubation. These results suggest that the exchanges formed in chromosome after irradiation should be one of essential causes to lead the cell death. The different quality of induced chromosome damage between high-LET and low-LET radiation was also shown. About 89 % and 88 % chromatid breaks induced by X rays and 13 keV/micrometer C ions were rejoined within 12 hours of post-irradiation, though only 71% and 58 % of chromatid breaks induced by 120 keV/micrometer C ions and 440 keV/micrometer Fe ions were rejoined within 12 hours of post-irradiation

  10. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  11. Subthreshold pion production study with heavy ions at low and medium energy

    International Nuclear Information System (INIS)

    Rebreyend, D.

    1988-02-01

    In the domain of subthreshold pion production with heavy ions at low and medium energy (40-100 MeV/u), only Π 0 have been up to now, extensively studied. The incompleteness of the charged pion data and especially the lack of results for pions of energy less than 30 MeV have led to conceive the magnetic spectrometer SPIC. In the present work, we demonstrate that this spectrometer is particularly well suited for the detection of low energy charged pions (Inferior threshold of detection: T Π = 7 MeV), emitted around 0 0 in heavy ion collisions. Principle and performances, successfully tested at 38 and 93 MeV/u, are described in detail. The main characteristics of a Π 0 spectrometer, that was used to realize a comparative experiment of Π 0 production, are then given. The last chapter is devoted to experimental results. First, we present the results obtained with the 16 0 beam of 38 MeV/u of the SARA accelerator, in charged pions (Al and Ni targets) and in Π 0 (Al and Au targets). A comparison of the data Π - /Π 0 seems to indicate that coulomb effects are surprisingly small. Finally, we report the data obtained with the 16 0 beam of 93 MeV/u of GANIL. In contrast with low energy data, coulomb effects are very strong (ratio Π - /Π + = 100 for pions of low energy with heavy targets) and allowed us to extract informations on the geometry of the collision [fr

  12. Composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.

    1983-01-01

    The elemental, charge state, and isotopic composition of approximately 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events was determined and current understanding of the nature of solar and interplanetary processes which may explain the observations are outlined. The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however are found to be roughly energy independent in the approximately 1 to approximately 20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seem to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He(+) along with heavy ions with typical coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP Ne-22 relative to this isotopes ratio in the solar wind

  13. Charge changing collision cross sections of atomic ions

    International Nuclear Information System (INIS)

    Bliman, S.; Dousson, S.; Geller, R.; Jacquot, B.; Van Houtte, D.

    1980-05-01

    A device has been built to measure charge changing cross sections of atomic ions. It consists of an E.C.R. ion source (Micromafios) that delivers oxygen ions up to charge + 8, argon ions up to charge + 13. The ion source potential may be varied from 1 up to 10 kVolts. A first magnet is used to charge analyze the extracted beam. For a given charge state, the ion beam is passed in a collision cell whose pressure may be varied. The ions undergoing collisions on the target are analyzed by a second magnet and collected. The single collision condition is checked. Different collisions are considered: 1- Charge exchange collisions of argon ions with charge 2<=Z<=12 on argon. Cross sections for capture of 1, 2 and 3 electrons are given. 2- Stripping of argon ions (1<=Z<=4) on argon atoms. 3- Charge exchange of oxygen ions (2<=Z<=8) colliding on deuterium. One and two electron capture cross sections are presented

  14. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82 + 208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  15. High-current heavy-ion accelerator system and its application to material modification

    International Nuclear Information System (INIS)

    Kishimoto, Naoki; Takeda, Yoshihiko; Lee, C.G.; Umeda, Naoki; Okubo, Nariaki; Iwamoto, Eiji

    2001-01-01

    A high-current heavy-ion accelerator system has been developed to realize intense particle fluxes for material modification. The facility of a tandem accelerator attained 1 mA-class ion current both for negative low-energy ions and positive high-energy ions. The negative ion source of the key device is of the plasma-sputter type, equipped with mutli-cusp magnets and Cs supply. The intense negative ions are either directly used for material irradiation at 60 keV or further accelerated up to 6 MeV after charge transformation. Application of negative ions, which alleviates surface charging, enables us to conduct low-energy high-current irradiation on insulating substrates. Since positive ions above the MeV range are irrelevant for Coulomb repulsion, the facility as a whole meets the needs of high-current irradiation onto insulators over a wide energy range. Application of high flux ions provides technological merits not only for efficient implantation but also for essentially different material kinetics, which may become an important tool of material modification. Other advantages of the system are co-irradiation by intense laser and in-situ detection of kinetic processes. For examples of material modifications, we present nanoparticle fabrication in insulators, and synergistic phenomena by co-irradiation due to ions and photons. (author)

  16. CERN Heavy-Ion Facility design report

    International Nuclear Information System (INIS)

    Warner, D.; Angert, N.; Bourgarel, M.P.; Brouzet, E.; Cappi, R.; Dekkers, D.; Evans, J.; Gelato, G.; Haseroth, H.; Hill, C.E.; Hutter, G.; Knott, J.; Kugler, H.; Lombardi, A.; Lustig, H.; Malwitz, E.; Nitsch, F.; Parisi, G.; Pisent, A.; Raich, U.; Ratzinger, U.; Riccati, L.; Schempp, A.; Schindl, K.; Schoenauer, H.; Tetu, P.; Umstaetter, H.H.; Rooij, M. van; Weiss, M.

    1993-01-01

    The design of the CERN Heavy-Ion Facility is described. This facility will be based on a new ion linear accelerator (Linac 3), together with improvements to the other accelerators of the CERN complex to allow them to cope with heavy ions, i.e. to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS). For this reference design, the pure isotope of lead, 208 Pb, is considered. The bulk of the report describes Linac 3, a purpose-built heavy-ion linac mainly designed and constructed in collaboration with several CERN member state laboratories, but also with contributions from non-member states. Modifications and improvements to existing CERN accelerators essentially concern the RF acceleration, beam control and beam monitoring (all machines), beam kickers and septa at the input and output of the PSB, and major vacuum improvements, aiming to reduce the pressure by factors of at least seven and three in the PSB and PS respectively. After injection from the Electron Cyclotron Resonance source at 2.5 keV/u the partially stripped heavy-ion beam is accelerated successively by a Radio Frequency Quadrupole and an Interdigital-H linac to 4.2 MeV/u. After stripping to 208 Pb 53+ , the beam is again accelerated, firstly in the PSB (to 98.5 MeV/u), then in the PS (to 4.25 GeV/u). The final stage of acceleration in the SPS takes the fully stripped 208 Pb 82+ ions to 177 GeV/u, delivering a beam of 4.10 8 ions per SPS supercycle (15.2 s) to the experiments. The first physics run with lead ions is scheduled for the end of 1994. Finally, some requirements for carrying out heavy-ion physics at the Large Hadron Collider are mentioned. (orig.)

  17. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    Science.gov (United States)

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  18. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  19. Heavy ions: Report from Relativistic Heavy Ion Collider

    Indian Academy of Sciences (India)

    2012-10-12

    Oct 12, 2012 ... Experiments using ultrarelativistic heavy-ion collisions study nuclear matter under ... sN N = 10 GeV for Pb+Pb collisions, corresponding to an initial .... quenching through systematic comparisons of data to models, and .... the RdAu and RCP = (0−20%)/(60−80%) factors for the J/ψ production in d+Au col-.

  20. Nuclear fission induced by heavy ions

    International Nuclear Information System (INIS)

    Newton, J.O.

    1988-09-01

    Because the accelerators of the 50's and 60's mostly provided beams of light ions, well suited for studying individual quantum states of low angular momentum or reactions involving the transfer of one or two nucleons, the study of fission, being an example of large-scale collective motion, has until recently been outside of the mainstream of nuclear research. This situation has changed in recent years, due to the new generation of accelerators capable of producing beams of heavy ions with energies high enough to overcome the Coulomb barriers of all stable nuclei. These have made possible the study of new examples of large-scale collective motions, involving major rearrangements of nuclear matter, such as deep-inelastic collisions and heavy-ion fusion. Perhaps the most exciting development in the past few years is the discovery that dissipative effects (nuclear viscosity) play an important role in fission induced by heavy ions, contrary to earlier assumptions that the viscosity involved in fission was very weak and played only a minor role. This review will be mainly concerned with developments in heavy-ion induced fission during the last few years and have an emphasis on the very recent results on dissipative effects. Since heavy-ion bombardment usually results in compound systems with high excitation energies and angular momenta, shell effects might be expected to be small, and the subject of low energy fission, where they are important, will not be addressed. 285 refs., 58 figs

  1. Induction accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE). The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator

  2. Induction accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE).The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development. The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator

  3. Summary of the relativistic heavy ion sessions

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-01-01

    The topics covered in the Relativistic Heavy Ion Sessions span four orders of magnitude in energy in the laboratory and a few more in theory. In the two years since the last Intersections conference, experiments in the field of very high energy heavy ion research have begun at CERN and Brookhaven. The prime motivation for these experiments is the possibility of forming quark matter. This paper is a review of the topics covered in the Relativistic Heavy Ion Sessions

  4. Atomic collision studies at moderate projectile velocities using highly charged, decelerated heavy ions from the GSI-UNILAC

    International Nuclear Information System (INIS)

    Mokler, P.H.; Hoffmann, D.H.H.; Schoenfeldt, W.A.; Maor, D.

    1984-01-01

    Beams of highly ionized, very heavy atoms at moderate velocities have been produced at the UNILAC using the acceleration-stripping-deceleration method. The available ion species range from Kr 33+ to U 66+ in the energy region between 2 and 5 MeV/u. A survey on first experiments at GSI using these moderate velocity, few electron, heavy ion beams is given. The effectiveness of the method is demonstrated for Xesup(q+)-Xe collision experiments with 41 <= q <= 45. Results on vacancy transfer between inner quasimolecular levels for close collisions, and on distant collision electron capture are reported. (orig.)

  5. Heavy ion beams from the new Hungarian ECR ion source

    International Nuclear Information System (INIS)

    Biri, S.; Valek, A.; Ditroi, F.; Koivisto, H.; Arje, J.; Stiebing, K.; Schmidt, L.

    1998-01-01

    The first beams of highly charged ions in Hungary were obtained in fall of 1996. The new 14.5 GHz ECR ion source of ATOMKI produced beams of multiply charged ions with remarkable intensities at first experiments. Since then, numerous further developments were carried out. An external electrondonor electrode drastically increased the plasma density and, consequently, the intensity of highly charged ions. These upgrades concentrated mainly on beams from gaseous elements and were carried out by the ECRIS team of ATOMKI. Another series of experiments - ionising from solids - however, was done in the framework of an international collaboration. The first metal ion beam has been extracted from the ECRIS in November 1997 using the known method of Metal Ions from Volatile Compounds (MIVOC). The possibility to put the MIVOC chamber inside the ion source was also tested and the dosing regulation problem of metal vapours inside the ion source was solved. As a result, beams of more than 10 μA of highly charged Fe and Ni ions were produced. (author)

  6. Density effects in heavy ion charge-exchange processes in gaseous and solid targets

    International Nuclear Information System (INIS)

    Teplova, Ya.A.; Dmitriev, I.S.; Belkova, Yu.A.

    2000-01-01

    Experimental results on the pre-equilibrium and equilibrium charge distributions in celluloid films for incident Be, B, C, N, O ions are analyzed in order to obtain charge-exchange cross-sections. The determined 'effective' cross-sections of electron capture and loss in celluloid together with earlier measured analogous cross-sections in nitrogen allow us to calculate charge fractions F i (t) depending on the target thickness in solid (celluloid) and gaseous (nitrogen) matter. The absolute values and the ratios A cap =σ g i,i-1 /σ s i,i-1 and A loss =σ g i-1,i /σ s i-1,i of electron capture and loss cross-sections in {s} solids (celluloid, carbon) and {g} gases (nitrogen) are under consideration

  7. The effect of electromagnetic structure of heavy ions below the Coulomb barrier

    International Nuclear Information System (INIS)

    Menon, V.J.; Maheshwari, C.

    1978-02-01

    The scattering of two charged bodies (such as heavy ions)at energies below the Coulomb barrier is considered. By solving the radial Schroedinger equation in a simple model it is found that the phase shifts are indeed close to those due to point charges, and the cross-section is very well reproduced by the Rutherford formula. The first-order Born approximation, however, differs violently from the corresponding Born amplitude due to point charges, and achievement of the Rutherford limit in the momentum space is a difficult task. A method of summing up the Born series is indicated and its evaluation in the semiclassical limit is suggested

  8. Structure of heavy-ion tracks in zircon

    International Nuclear Information System (INIS)

    Braunshausen, G.; Bursill, L.A.; Vetter, J.; Spohr, R.

    1990-01-01

    Gem quality zirconas (ZrSiO 4 ) were irradiated with 14MeV/u Pb ions. Observations of heavy-ion tracks confirmed that fission or heavy-ion irradiation damage is confined to a 50-100 Aangstroem core region, which has undergone a crystalline-glass phase transition. 3 refs., 3 figs

  9. Detector issues for relativistic heavy ion experimentation

    International Nuclear Information System (INIS)

    Gordon, H.

    1986-04-01

    Several aspects of experiments using relativistic heavy ion beams are discussed. The problems that the current generation of light ion experiments would face in using gold beams are noted. A brief review of colliding beam experiments for heavy ion beams is contrasted with requirements for SSC detectors. 11 refs., 13 figs

  10. Multi-megajoule heating of large tokamaks with high energy heavy ion beams

    International Nuclear Information System (INIS)

    Dei-Cas, R.

    1981-07-01

    The fast neutral injection heating and RF heating for tokamak like plasmas are now well established. We consider in this paper the use of high energy (approximately 1 GeV) heavy ions (Xe 132 ) to reach ignition in JET or INTOR like tokamaks. The main advantages of such a method will be outlined. The capture and the confinement of heavy ions have been analysed in a particular case and with the described RF linac it seems possible to inject in the order of 50 MJ in 1 sec with a modest increase of the effective charge Zsub(eff)<1.05 in a JET-like plasma for a particle life time of 1 sec and then the additional radiated power should be maintained at a relatively low level in comparison to the injected power

  11. PHELIX - Petawatt high-energy laser for heavy ion experiments

    International Nuclear Information System (INIS)

    Backe, H.; Bock, R.; Caird, J.

    1998-12-01

    A high-power laser facility will be installed at the GSI heavy-ion accelerator. It will deliver laser pulses up to one kilojoule (with an option of a later upgrade to several kJ) at a pulse length of 1 - 10 nanoseconds (high-energy mode). In a high-intensity mode, laser pulses with a power of one petawatt (10 15 Watt) will be generated by chirped pulse amplification at a pulse length of typically 500 femtoseconds. Details of the laser system as well as time schedule and costs are given in Section B. In combination with the heavy-ion beams available at GSI - which will be further improved in intensity by the presently on-going upgrade program - a large number of unique experiments will become possible by the high-power laser facility described in this report. As outlined in Section A, novel research opportunities are expected in a wide range of basic-research topics spanning from the study of ion-matter interaction, through challenging new experiments in atomic, nuclear, and astrophysics, into the virgin field of relativistic plasma physics. Foreseeable topics in applied science are the development of new sources for highly charged ions and of X-ray lasers, new concepts for laser-based particle acceleration and the research in the field of inertial confinement fusion. (orig.)

  12. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1990-01-01

    At Brookhaven National Laboratory, participation in the E802 Experiment, which is the first major heavy-ion experiment at the BNL-AGS, was the main focus of the group during the past four years. The emphases of the E802 experiment were on (a) accurate particle identification and measurements of spectra over a wide kinematical domain (5 degree LAB < 55 degree, p < 20 GeV/c); and (b) measurements of small-angle two-particle correlations, with event characterization tools: multiplicity array, forward and large-angle calorimeters. This experiment and other heavy ion collision experiments are discussed in this report

  13. Event-By-Event Initial Conditions for Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Rose, S; Fries, R J

    2017-01-01

    The early time dynamics of heavy ion collisions can be described by classical fields in an approximation of Quantum ChromoDynamics (QCD) called Color Glass Condensate (CGC). Monte-Carlo sampling of the color charge for the incoming nuclei are used to calculate their classical gluon fields. Following the recent work by Chen et al. we calculate the energy momentum tensor of those fields at early times in the collision event-by-event. This can then be used for subsequent hydrodynamic evolution of the single events. (paper)

  14. Event-By-Event Initial Conditions for Heavy Ion Collisions

    Science.gov (United States)

    Rose, S.; Fries, R. J.

    2017-04-01

    The early time dynamics of heavy ion collisions can be described by classical fields in an approximation of Quantum ChromoDynamics (QCD) called Color Glass Condensate (CGC). Monte-Carlo sampling of the color charge for the incoming nuclei are used to calculate their classical gluon fields. Following the recent work by Chen et al. we calculate the energy momentum tensor of those fields at early times in the collision event-by-event. This can then be used for subsequent hydrodynamic evolution of the single events.

  15. Heavy Ion Physics at LHC

    CERN Document Server

    Valenti, G.

    2002-01-01

    The study of heavy ion interactions constitutes an important part of the experimental program outlined for the Large Hadron Collider under construction at CERN and expected to be operational by 2006. ALICE 1 is the single detector having the capabilities to explore at the same time most of the characteristics of high energy heavy ion interactions. Specific studies of jet quenching and quarkonia production, essentially related to µ detection are also planned by CMS 2 .

  16. A BGO detector array and its application in intermediate energy heavy ion experiments

    International Nuclear Information System (INIS)

    Li Zuyu; Jin Genming; He Zhiyong; Duan Limin; Wu Heyu; Qi Yujin; Luo Qingzheng; Zhang Baoguo; Wen Wanxin; Dai Guangxi

    1996-01-01

    A BGO crystal (Bi 4 Ge 3 O 12 ) as the E detector of ΔE-E for identification of reaction products has been used for detecting the charged particles emitting from the 25 MeV 40 Ar induced reaction. The responses of the BGO crystal to various light charged particles were measured. A close-packed hexagonal array consisting of thirteen ΔE-E telescopes (Si-BGO) has been developed to detect the light charged particles interfering with each other in intermediate-energy heavy-ion induced reactions. Some applications of this telescope array are also described. (orig.)

  17. X-ray spectroscopy of highly ionized heavy ions as an advanced research for controlled nuclear fusion power

    International Nuclear Information System (INIS)

    Zschornack, G.; Musiol, G.

    1988-01-01

    Diagnostics and modelling of nuclear fusion plasmas require a detailed knowledge of atomic and molecular data for highly ionized heavy ions. Experimental verification of atomic data is made on the basis of IAEA recommendations using the method of high-resolution wavelength-dispersive X-ray spectroscopy in order to obtain contributions extensioning the available atomic data lists. Basic facilities for producing highly charged heavy ions are the electron-ion rings of the heavy ion collective accelerator and the electron beam ion source KRYON-2 at the Joint Institute for Nuclear Research at Dubna. For high-resolution X-ray spectroscopy with these sources a computer-aided crystal diffraction spectrometer has been developed the precision of which is achieved by using advanced principles of measurement and control. Relativistic atomic structure calculations have been carried out for a great number of elements and configurations to obtain data in ionization regions heavily accessible to the experiment. (author)

  18. Design of the compact ECR ion source for heavy-ion therapy

    International Nuclear Information System (INIS)

    Muramatsu, M.; Kitagawa, A.; Sato, S.; Sato, Y.; Yamada, S.; Hattori, T.; Shibuya, S.

    1999-01-01

    Heavy ion cancer treatment is successfully being done at the Heavy Ion Medical Accelerator in Chiba (HIMAC). Design philosophy for the ion sources for medical facilities are as follows: sufficient beam intensity, a few hundred eμA; long lifetime with good stability; easy operation and easy maintenance; and compactness. In order to develop such source for future heavy-ion facilities, we have tested compact electron cyclotron resonance (ECR) ion sources using permanent magnets both for axial and radial confinement of hot electrons. Since the yield of C 2+ ion in the firstly-developed source (2.45 GHz ECR) was 15 eμA and far below the medical requirement (-150 eμA for the HIMAC), a new source has been proposed, having the frequency of 10 GHz. The extracted intensity of C 4+ (and C 2+ ) ions is expected to be higher than 200 eμA. (author)

  19. Precise measurements of energy loss straggling for swift heavy ions in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Bindu [Department of Physics, Kurukshetra University, Kurukshetra 136 119 (India); Neetu [Department of Physics, S.D College, Panipat 132103 (India); Sharma, Kalpana [Department of Physics, CMR Institute of Technology, Bangalore 560037 (India); Diwan, P.K. [Department of Applied Sciences, UIET, Kurukshetra University, Kurukshetra 136 119 (India); Kumar, Shyam, E-mail: profshyam@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra 136 119 (India)

    2016-11-15

    The energy loss straggling measurements for heavy ions with Z = 3–22 (∼0.2–2.5 MeV/u) in PEN (C{sub 7}H{sub 5}O{sub 2}) and PET (C{sub 10}H{sub 8}O{sub 4}) polymers have been carried out utilizing the swift heavy ion beam facility from 15UD Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi, India. The recorded spectra are analyzed in such a way that the Straggling associated with energy loss process could be measured in a systematic manner at any selected value of energy, in terms of per unit thickness of the absorber, at any desired energy intervals. The measured values have been compared with the calculated values obtained from the most commonly used Bethe-Livingston formulations applicable for collisional straggling. The results are tried to be understood in terms of the effective charge on the impinging ion within the absorber. Some interesting trends are observed.

  20. Precise measurements of energy loss straggling for swift heavy ions in polymers

    Science.gov (United States)

    Rani, Bindu; Neetu; Sharma, Kalpana; Diwan, P. K.; Kumar, Shyam

    2016-11-01

    The energy loss straggling measurements for heavy ions with Z = 3-22 (∼0.2-2.5 MeV/u) in PEN (C7H5O2) and PET (C10H8O4) polymers have been carried out utilizing the swift heavy ion beam facility from 15UD Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi, India. The recorded spectra are analyzed in such a way that the Straggling associated with energy loss process could be measured in a systematic manner at any selected value of energy, in terms of per unit thickness of the absorber, at any desired energy intervals. The measured values have been compared with the calculated values obtained from the most commonly used Bethe-Livingston formulations applicable for collisional straggling. The results are tried to be understood in terms of the effective charge on the impinging ion within the absorber. Some interesting trends are observed.

  1. Response of radiochromic dye films to low energy heavy charged particles

    CERN Document Server

    Buenfil, A E; Gamboa-Debuen, I; Aviles, P; Avila, O; Olvera, C; Robledo, R; Rodriguez-Ponce, M; Mercado-Uribe, H; Rodriguez-Villafuerte, M; Brandan, M E

    2002-01-01

    We have studied the possible use of radiochromic dye films (RCF) as heavy charged particle dosemeters. We present the results of irradiating two commercial RCF (GafChromic HD-810 and MD-55-1) with 1.5, 2.9 and 4.4 MeV protons, 1.4, 2.8, 4.7, 5.9, 6.8 MeV sup 4 He ions and 8.5 and 12.4 MeV sup 1 sup 2 C ions, at proton doses from about 1 Gy up to 3 kGy, helium ions doses from 3 Gy to 5 kGy and carbon ion doses from 30 Gy to 20 kGy. The films were scanned and digitized using commercial equipment. For a given particle, the response per unit dose at different energies indicates an energy dependence of the sensitivity, which is discussed. Comparison was made for the use of a standard spectrophotometer to obtain optical density readings versus a white light scanner.

  2. Principles of non-Liouvillean pulse compression by photoionization for heavy ion fusion drivers

    International Nuclear Information System (INIS)

    Hofmann, I.

    1990-05-01

    Photoionization of single charged heavy ions has been proposed recently by Rubbia as a non-Liouvillean injection scheme from the linac into the storage rings of a driver accelerator for inertial confinement fusion (ICF). The main idea of this scheme is the accumulation of high currents of heavy ions without the usually inevitable increase of phase space. Here we suggest to use the photoionization idea in an alternative scheme: if it is applied at the final stage of pulse compression (replacing the conventional bunch compression by an rf voltage, which always increases the momentum spread) there is a significant advantage in the performance of the accelerator. We show, in particular, that this new compression scheme has the potential to relax the tough stability limitations, which were identified in the heavy ion fusion reactor study HIBALL. Moreover, it is promising for achieving the higher beam power, which is suitable for indirectly driven fusion targets (10 16 Watts/gram in contrast with the 10 14 for the directly driven targets in HIBALL). The idea of non-Liouvillean bunch compression is to stack a large number of bunches (typically 50-100) in the same phase space volume during a change of charge state of the ion. A particular feature of this scheme with regard to beam dynamics is its transient nature, since the time required is one revolution per bunch. After the stacking the intense bunch is ejected and directly guided to the target. The present study is a first step to explore the possibly limiting effect of space charge under the conditions of parameters of a full-size driver accelerator. Preliminary results indicate that there is a limit to the effective stacking number (non-Liouvillean 'compression-factor'), which is, however, not prohibitive. Requirements to the power of the photon beam from a free electron laser are also discussed. It is seen that resonant cross sections of the order of 10 -15 cm 2 lead to photon beam powers of a few Megawatt. (orig.)

  3. Excitation of atoms and molecules in collisions with highly charged ions

    International Nuclear Information System (INIS)

    Watson, R.L.

    1991-01-01

    Much of the work this year has been directed toward studies of charge exchange and ionization in single collisions of heavy ions with gaseous atoms and molecules. A study of the double ionization of He by high energy N 7+ ions, which began last year, was extended up in energy to 40 MeV/amu. These measurements verified the deviations from the predictions of theory observed in our previous work and indicated that the energy required to reach the limiting value of the ratio of double-to-single ionization cross sections may be as high as 70 MeV/amu

  4. Multiply charged ions from solid substances with the mVINIS Ion Source

    International Nuclear Information System (INIS)

    Dragani, I; Nedeljkovi, T; Jovovi, J; Siljegovic, M; Dobrosavljevic, A

    2007-01-01

    We have used the well known metal-ions-from-volatile-compounds (MIVOC) method at the mVINIS Ion Source to produce the multiply charged ion beams form solid substances. Based on this method the very intense and stable multiply charged ion beams of several solid substances having the high melting points were extracted. The ion yields and the spectra of multiply charged ion beams obtained from solid materials like Fe and Hf will be presented. We have utilized the multiply charged ion beams from solid substances to irradiate the polymers, fullerenes and glassy carbon at the low energy channel for modification of materials

  5. Loss pattern of Pb ions with charge changing processes in the LEIR ring

    CERN Document Server

    Pasternak, J

    2004-01-01

    Avalanche like pressure rise and an associated decrease of the beam lifetime, caused by (i) beam loss due to charge exchange interactions with rest gas molecules and (ii) ion impact induced outgassing, is a potential limitation for heavy ion accelerators. The vacuum system of the LEIR ring has to be upgraded carefully to avoid that these phenomena prevent the machine from reaching design performance. The loss pattern of Pb ions having captured an electron presented in this report allows to estimate whether the low dynamic pressure needed for LEIR is reachable. Efficient interception of lost ions with low beam loss induced outgassing absorber blocks, installed at appropriate locations is promising.

  6. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  7. Plasma focus as an heavy ion source in the problem of heavy ion fusion

    International Nuclear Information System (INIS)

    Gribkov, V.A.; Dubrovskij, A.V.; Kalachev, N.V.; Krokhin, O.N.; Silin, P.V.; Nikulin, V.Ya.; Cheblukov, Yu.N.

    1984-01-01

    Results of experiments on the ion flux formation in a plasma focus (PF) to develop a multicharged ion source for thermonuclear facility driver are presented. In plasma focus accelerating section copper ions were injected. Advantages of the suggested method of ion beam formation are demonstrated. Beam emittance equalling < 0.1 cmxmrad is obtained. Plasma focus ion energy exceeds 1 MeV. Plasma focus in combination with a neodymium laser is thought to be a perspective ion source for heavy ion fusion

  8. Heavy Ion Collisions at the LHC - Last Call for Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d' Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise

  9. Heavy ion reactions at high energies

    International Nuclear Information System (INIS)

    Jakobsson, Bo.

    1977-01-01

    A review on heavy ion experiments at energies >0.1GeV/nucleon is presented. Reaction cross-sections, isotope production cross-sections and pion production in nucleus-nucleus collisions are discussed. Some recent models for heavy ion reactions like the abrasion-ablation model, the fireball model and the different shock-wave models are also presented

  10. Measurement of energy deposition near heavy ion tracks

    International Nuclear Information System (INIS)

    Metting, N.F.; Brady, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Wong, M.; Schimmerling, W.; Rapkin, M.

    1985-01-01

    In November of 1982 work was begun in collaboration with Columbia University and Lawrence Berkeley Laboratory to use microdosimetric methods to measure energy deposition of heavy ions produced at LBL's Bevalac Biomedical Facility. Last year the authors reported preliminary results indicating that secondary charged particle equilibrium was probably obtained using this experimental setup, but that there seemed to be poor spatial resolution in the solid state position-sensitive detector. Further analysis of the measurements taken in August 1983 shows that because of this electronic noise in the position-sensitive detector, only the 56 Fe data yielded useful microdosimetric spectra

  11. Cellular radiobiology of heavy-ion beams

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Ngo, F.Q.H.; Roots, R.J.; Yang, T.C.

    1981-01-01

    Progress is reported in the following areas of this research program: relative biological effectiveness and oxygen enhancement ratio of silicon ion beams; heavy ion effects on the cell cycle; the potentiation effect (2 doses of high LET heavy-ion radiations separated by 2 to 3 hours); potentially lethal damage in actively growing cells and plateau growth cells; radiation induced macromolecular lesions and cellular radiation chemistry; lethal effects of dual radiation; and the development of a biophysical repair/misrepair model

  12. Charge-exchange collisions of multiply charged ions with atoms

    International Nuclear Information System (INIS)

    Grozdanov, T.P.; Janev, R.K.

    1978-01-01

    The problem of electron transfer between neutral atoms and multiply charged ions is considered at low and medium energies. It is assumed that a large number of final states are available for the electron transition so that the electron-capture process is treated as a tunnel effect caused by the strong attractive Coulomb field of the multicharged ions. The electron transition probability is obtained in a closed form using the modified-comparison-equation method to solve the Schroedinger equation. An approximately linear dependence of the one-electron transfer cross section on the charge of multicharged ion is found. Cross-section calculations of a number of charge-exchange reactions are performed

  13. Heavy-ion-linac post-accelerators

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1979-01-01

    The main features of the tandem-linac system for heavy-ion acceleration are reviewed and illustrated in terms of the technology and performance of the superconducting heavy-ion energy booster at Argonne. This technology is compared briefly with the corresponding technologies of the superconducting linac at Stony Brook and the room-temperature linac at Heidelberg. The performance possibilities for the near-term future are illustrated in terms of the proposed extension of the Argonne booster to form ATLAS

  14. Lithium-Ion Cell Charge-Control Unit Developed

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Buton, Robert M.; Gemeiner, Russel

    2005-01-01

    A lithium-ion (Li-ion) cell charge-control unit was developed as part of a Li-ion cell verification program. This unit manages the complex charging scheme that is required when Li-ion cells are charged in series. It enables researchers to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and reduces test costs substantially in comparison to individual cell testing.

  15. Effective charge of energetic ions in metals

    International Nuclear Information System (INIS)

    Kitagawa, M.; Brandt, W.

    1983-01-01

    The effective charge of energetic ion, as derived from stopping power of metals, is calculated by use of a dielectronic-response function method. The electronic distribution in the ion is described through the variational principle in a statistical approximation. The dependences of effective charge on the ion velocity, atomic number and r/sub s/-value of metal are derived at the low-velocity region. The effective charge becomes larger than the real charge of ion due to the close collisions. We obtain the quasi-universal equation of the fractional effective electron number of ion as a function of the ratio between the ionic size and the minimum distance approach. The comparsion between theoretical and experimental results of the effective charge is performed for the cases of N ion into Au, C and Al. We also discuss the equipartition rule of partially ionized ion at the high-velocity region

  16. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Stoehlker, T.

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  17. The EBIS-RFQ couple: a fully matched heavy ion 3rd pre-injector for Saturne

    International Nuclear Information System (INIS)

    Olivier, M.; Faure, J.; Laclare, J.L.; Lefebvre, J.M.; Leleux, G.; Ropert, A.; Tkatchenko, A.; Tkatchenko, M.

    1983-01-01

    Since 1978, the 3 GeV Synchrotron Saturne is routinely operated with proton, deuteron, helium beams and, since 1981 with polarized protons and deuterons. Heavy ions are expected in the Summer of 1983 by using a new pre-injector presently under construction. As already proposed by R.W.Hamm, the marriage of an EBIS and an RFQ can be looked upon generally as a very good means of production of heavy ion beams at low energy because it combines high charges states, therefore low voltage on the terminal, and low velocity acceleration. After the RFQ, the beam is injected into Saturne through 20 MeV Alvarez linac

  18. Large solid angle tracking of Monte Carlo events of heavy ion collisions in TPC magnetic spectrometers

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Asoka-Kumar, P.P.V.; Chan, C.S.; Kramer, M.A.

    1987-01-01

    The BNL/CCNY collaboration has for some time had as its goal the development and use of ≅ 4π solid angle magnetic spectrometer tracking of charged particles produced in heavy ion collision experiments at AGS, and eventually RHIC. (orig./HSI)

  19. Fine focusing of intense heavy ions for the production of hot dense matter

    International Nuclear Information System (INIS)

    Heimrich, B.

    1989-02-01

    In order to perform the first experimental studies on the interaction of intense ion beams with matter an electrostatic quadrupole doublet was developed which focuses the space-charge carrying ion beam of the RFQ accelerator at the GSI Darmstadt on an area of 1 mm 2 . By an especially manufactured target holder this intense ion beam was stopped in tungsten targets and the first plasma induced by heavy ions was produced. Electrons and ions which are emitted from the plasmas have been spectroscoped by an especially for this fabricated spectrometer in their energy and time distribution in the eV region by which first comparisons between theory and praxis on the heating of dense matter by intense ion beams could be made. (orig./HSI) [de

  20. Measurements on Pb27+ Sources for the CERN Heavy Ion Injection Chain

    CERN Document Server

    Chamings, J A

    2004-01-01

    CERN, the world's largest particle physics laboratory near Geneva, is currently in the process of building the Large Hadron Collider (LHC). Lead-208 will be used in this accelerator and to meet the injection requirements much work is required to find a suitable and reliable heavy ion source. The work in this report covers two ion sources, the Laser Ion Source (LIS), and the Electron Cyclotron Resonance Ion Source (ECRIS). An emittance measurement, using a pepper pot and CCD camera, was completed on the recently re-installed LIS, measured and analysed to be 140mm.mrad un-normalised and 0.8mm.mrad normalised 4rms for the maximum intensity charge state, Pb27+. A Visual Basic Program was modified to allow Charge State Distribution (CSD) and other scans of the ECRIS at CERN to be taken. Chapter 5 presents the results of the CSD scans taken. This program provided a new method to take 1 dimensional transverse beam profiles. From this a direct emittance measurement was formed for the first time since the source was o...