3He charge form factors by nuclear recoil detection
3He charge form factors were measured by observing the scattering reaction 3He(e,3He)e from square momentum transfers 0.885 to 3.20 fm-2. The results compare favorably with earlier electron scattering experiments. A model-independent determination of the radial charge density gives an rms radius of 1.877 +- 0.019 fm, in excellent agreement with previous radii determinations
Connection between elastic relativistic form factors and charge distribution
A scheme by means of which one can establish the connection between form factors and charge distribution (for particles of any spin) in proposed. Except for the nonrelativistic domain our results differ from previous ones. Consequences of our relations (some of them in agreement with experimental and previous theoretical results) are briefly discussed
Measurement of the Charged Pion Electromagnetic Form Factor
Separated longitudinal and transverse structure functions for the reaction 1H(e,eprime pi+)n were measured in the momentum transfer region Q2=0.6-1.6 (GeV/c)**2 at a value of the invariant mass W=1.95 GeV. New values for the pion charge form factor were extracted from the longitudinal cross section by using a recently developed Regge model. The results indicate that the pion form factor in this region is larger than previously assumed and is consistent with a monopole parameterization fitted to very low Q2 elastic data
New Results for the Charged Pion Electromagnetic Form Factor
Volmer, J; Anklin, H; Armstrong, C S; Arrington, J; Assamagan, Ketevi A; Avery, S; Baker, O K; Blok, H P; Bochna, C W; Brash, E J; Breuer, H; Chant, N S; Dunne, J; Eden, T; Ent, R; Gaskell, D; Gilman, R; Gustafsson, K K; Hinton, W; Huber, G M; Jackson, H; Jones, M K; Keppel, C E; Kim, P H; Kim, W; Klein, A; Koltenuk, D M; Liang, M; Lolos, G J; Lung, A; Mack, D J; McKee, D; Meekins, D G; Mitchell, J; Mkrtchyan, H G; Müller, B; Niculescu, G; Niculescu, I; Pitz, D; Potterveld, D H; Qin, L M; Reinhold, J; Shin, I K; Stepanyan, S; Tadevosyan, V; Tang, L G; Van der Meer, R L J; Vansyoc, K; Van Westrum, D; Vulcan, W; Wood, S; Yan, C; Zhao, W X; Zihlmann, B
2001-01-01
Separated longitudinal and transverse structure functions for the reaction 1H(e,eprime pi+)n were measured in the momentum transfer region Q2=0.6-1.6 (GeV/c)**2 at a value of the invariant mass W=1.95 GeV. New values for the pion charge form factor were extracted from the longitudinal cross section by using a recently developed Regge model. The results indicate that the pion form factor in this region is larger than previously assumed and is consistent with a monopole parameterization fitted to very low Q2 elastic data.
Pion transverse charge density from timelike form factor data
Gerald Miller, Mark Strikman, Christian Weiss
2011-01-01
The transverse charge density in the pion can be represented as a dispersion integral of the imaginary part of the pion form factor in the timelike region. This formulation incorporates information from e+e- annihilation experiments and allows one to reconstruct the transverse density much more accurately than from the spacelike pion form factor data alone. We calculate the transverse density using an empirical parametrization of the timelike pion form factor and estimate that it is determined to an accuracy of ~10% at a distance b ~ 0.1 fm, and significantly better at larger distances. The density is found to be close to that obtained from a zero-width rho meson pole over a wide range and shows a pronounced rise at small distances. The resulting two-dimensional image of the fast-moving pion can be interpreted in terms of its partonic structure in QCD. We argue that the singular behavior of the charge density at the center requires a substantial presence of pointlike configurations in the pion's partonic wave function, which can be probed in other high-momentum transfer processes.
Electromagnetic form factors and charge densities from hadrons to nuclei
A simple exact covariant model in which a scalar particle Ψ is modeled as a bound state of two different particles is used to elucidate relativistic aspects of electromagnetic form factors F(Q2). The model form factor is computed using an exact covariant calculation of the lowest order triangle diagram. The light-front technique of integrating over the minus component of the virtual momentum gives the same result and is the same as the one obtained originally by Gunion et al. [Phys. Rev. D 8, 287 (1973)] by using time-ordered perturbation theory in the infinite-momentum frame. The meaning of the transverse density ρ(b) is explained by providing a general derivation, using three spatial coordinates, of its relationship with the form factor. This allows us to identify a mean-square transverse size 2>=∫d2b b2ρ(b)=-4(dF/dQ2)(Q2=0). The quantity 2> is a true measure of hadronic size because of its direct relationship with the transverse density. We show that the rest-frame charge distribution is generally not observable by studying the explicit failure to uphold current conservation. Neutral systems of two charged constituents are shown to obey the conventional lore that the heavier one is generally closer to the transverse origin than the lighter one. It is argued that the negative central charge density of the neutron arises, in pion-cloud models, from pions of high longitudinal momentum that reside at the center. The nonrelativistic limit is defined precisely, and the ratio of the binding energy B to the mass M of the lightest constituent is shown to govern the influence of relativistic effects. It is shown that the exact relativistic formula for F(Q2) is the same as the familiar one of the three-dimensional Fourier transform of a square of a wave function for very small values of B/M, but this only occurs for values of B/M less than about 0.001. For masses that mimic the quark-diquark model of the nucleon we find that there are substantial relativistic
Analytic parametrization of 4He charge form factor
An N/D method of analytic representation for form factors, recently found successful for the deuteron, is used to analyze all the available data on the 4He charge form factor and obtain useful information. The nearest anomalous cut positions in the t plane relevant for this analysis are calculated using possible exchanges at the photon-helium vertex. In contrast to the deuteron case, all familiar and simple intermediate states yield anomalous cut positions above the three-pion cut. Although including the contributions of the three-pion cut in the D function and the five-pion cut in the N function yields a reasonable fit except around the second maximum, the best fit is obtained using the anomalous cut at t/sub a/ = 0.247 GeV2 instead of the five-pion cut. An exponential weight function, necessary for optimized polynomial expansion in Laguerre polynomials in the N function, seems to be essential in reducing the chi2 value as in the case of the deuteron. The dip in the form-factor data is parametrized in terms of a zero of the N function and the formula predicts a second zero and a third maximum which can be verified in future experiments. The existing data favor an asymptotic behavior of the type exp[-const(lnt)2](lnt)4/t 2 and the formula extrapolates smoothly into the timelike region. A plot of charge density against nuclear radius shows a central depression and the root-mean-square and half-density radii of the distribution are computed
Nucleon Charges, Form-factors and Neutron EDM
Gupta, Rajan; Cirigliano, Vincenzo; Lin, Huey-Wen; Yoon, Boram
2016-01-01
We present an update of our analysis of statistical and systematic errors in the calculation of iso-vector scalar, axial and tensor charges of the nucleon. The calculations are done using $N_f=2+1+1$ flavor HISQ ensembles generated by the MILC Collaboration at three values of the lattice spacing ($a=0.12,\\ 0.09,$ and $0.06$ fm) and three values of the quark mass ($M_\\pi \\approx 310,\\ 220$ and $130$ MeV); and clover fermions for calculating the correlation functions, i.e., we use a clover-on-HISQ lattice formulation. The all-mode-averaging method allows us to increase the statistics by a factor of eight for the same computational cost leading to a better understanding of and control over excited state contamination. Our current results, after extrapolation to the continuum limit and physical pion mass are $g_A^{u-d} = 1.21(3)$, $g_T^{u-d} = 1.005(59)$ and $g_S^{u-d} = 0.95(12) $. Further checks of control over all systematic errors, especially in $g_A^{u-d}$, are still being performed. Using results for the fl...
Jung, Ju-Hyun; Yakhshiev, Ulugbek; Kim, Hyun-Chul
2016-03-01
We investigate the medium modification of the generalized vector form factors of the nucleon, which include the electromagnetic and energy-momentum tensor form factors, based on an in-medium modified π -ρ -ω soliton model. We find that the vector form factors of the nucleon in nuclear matter fall off faster than those in free space, which implies that the charge radii of the nucleon become larger in nuclear medium than in free space. We also compute the corresponding transverse charge densities of the nucleon in nuclear matter, which clearly reveal the increasing of the nucleon size in nuclear medium.
Jung, Ju-Hyun; Kim, Hyun-Chul
2015-01-01
We investigate the medium modification of the generalized vector form factors of the nucleon, which include the electromagnetic and energy-momentum tensor form factors, based on an in-medium modified $\\pi$-$\\rho$-$\\omega$ soliton model. We find that the vector form factors of the nucleon in nuclear matter fall off faster than those in free space, which implies that the charge radii of the nucleon become larger in nuclear medium than in free space. We also compute the corresponding transverse charge densities of the nucleon in nuclear matter, which clearly reveal the increasing of the nucleon size in nuclear medium.
Charge form factors of two-neutron halo nuclei in halo EFT
We set up a formalism to calculate the charge form factors of two-neutron halo nuclei with S -wave neutron-core interactions in the framework of the halo effective field theory. The method is applied to some known and suspected halo nuclei. In particular, we calculate the form factors and charge radii relative to the core to leading order in the halo EFT and compare to experiments where they are available. Moreover, we investigate the general dependence of the charge radius on the core mass and the one- and two-neutron separation energies. (orig.)
Weak charge form factor and radius of 208Pb through parity violation in electron scattering
Horowitz, C J; Jen, C -M; Rakhman, A; Souder, P A; Dalton, M M; Liyanage, N; Paschke, K D; Saenboonruang, K; Silwal, R; Franklin, G B; Friend, M; Quinn, B; Kumar, K S; McNulty, D; Mercado, L; Riordan, S; Wexler, J; Michaels, R W; Urciuoli, G M
2012-01-01
We use distorted wave electron scattering calculations to extract the weak charge form factor F_W(q), the weak charge radius R_W, and the point neutron radius R_n, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer q=0.475 fm$^{-1}$. We find F_W(q) =0.204 \\pm 0.028 (exp) \\pm 0.001 (model). We use the Helm model to infer the weak radius from F_W(q). We find R_W= 5.826 \\pm 0.181 (exp) \\pm 0.027 (model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R_W from uncertainties in the surface thickness \\sigma of the weak charge density. The weak radius is larger than the charge radius, implying a "weak charge skin" where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius R_n=5.751 \\pm 0.175 (exp) \\pm 0.026 (model) \\pm 0.005 (strange) fm$, from R_W. Her...
The charge form factor of pseudoscalar mesons in a relativistic constituent quark model
Cardarelli, F.; Pace, E. [Univ. of Rome, Roma (Italy); Grach, I.L. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others
1994-04-01
The charge form factor of pseudoscalar mesons has been investigated in the light-cone formalism, up to Q{sup 2} relevant to CEBAF energies. The consequences of adopting the meson wave functions generated through the Godfrey-Isgur q{bar q} potential, which reproduces the mass spectra, are discussed.
Charge Symmetry Violation in the Electromagnetic Form Factors of the Proton
Shanahan, P E; Nakamura, Y; Pleiter, D; Rakow, P E L; Schierholz, G; Stüben, H; Thomas, A W; Young, R D; Zanotti, J M
2015-01-01
Experimental tests of QCD through its predictions for the strange-quark content of the proton have been drastically restricted by our lack of knowledge of the violation of charge symmetry (CSV). We find unexpectedly tiny CSV in the proton's electromagnetic form factors by performing the first extraction of these quantities based on an analysis of lattice QCD data. The resulting values are an order of magnitude smaller than current bounds on proton strangeness from parity violating electron-proton scattering experiments. This result paves the way for a new generation of experimental measurements of the proton's strange form factors to challenge the predictions of QCD.
Nucleon to $\\Delta$ transition form factors and empirical transverse charge densities
Chakrabarti, Dipankar
2016-01-01
We investigate the nucleon to $\\Delta$ transition form factors in a soft-wall AdS/QCD model and a light-front quark-diquark model inspired by AdS/QCD. From the transition form factors we evaluate the transition charge densities which influences the nucleon to $\\Delta$ excitation. Here we consider both the unpolarized and the transversely polarized cases. The AdS/QCD predictions are compared with available experimental data and with the results of the global parameterization, MAID2007.
Meson exchange current and three-body force contributions to the 4He charge form factor
Effects of meson exchange current (MEC) on the charge form factor (CFF) and charge density of 4He are investigated, including pair, mesonic and retardation current terms. The influence of three-body force (3BF) is considered by adopting the realistic wave function obtained from the nuclear Hamiltonian which explicitly includes the two-pion exchange 3BF. As a result the 3BF is found to greatly enhance the MEC contribution. When the 3BF is taken into account, the MEC contribution is shown to remove most of the discrepancy between the theoretical and experimental CFF's at the second maximum. Resulting effects on the charge density are found to yield a depression in the central region. (author)
Charge form factor and sum rules of electromagnetic response functions in $^{12}$C
Lovato, Alessandro [ANL; Gandolfi, Stefano [LANL; Carlson, Joseph A. [LANL; Butler, Ralph [Middle Tennessee State University; Lusk, Ewing [ANL; Pieper, Steven C. [ANL; Schiavilla, Rocco [Old Dominion University, JLAB
2013-08-01
An {\\it ab initio} calculation of the $^{12}$C elastic form factor, and sum rules of longitudinal and transverse response functions measured in inclusive (e,e') scattering, is reported, based on realistic nuclear potentials and electromagnetic currents. The longitudinal elastic form factor and sum rule are found to be in satisfactory agreement with available experimental data. A direct comparison between theory and experiment is difficult for the transverse sum rule. However, it is shown that the calculated one has large contributions from two-body currents, indicating that these mechanisms lead to a significant enhancement of the quasi-elastic transverse response. This fact may have implications for the anomaly observed in recent neutrino quasi-elastic charge-changing scattering data off $^{12}$C.
JLab Measurement of the 4He Charge Form Factor at Large Momentum Transfers
The charge form factor of 4He has been extracted in the range 29 fm-2 2 -2 from elastic electron scattering, detecting 4He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the Q2 range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting
JLab Measurement of the $^4$He Charge Form Factor at Large Momentum Transfers
Camsonne, A; Olson, M; Sparveris, N; Acha, A; Allada, K; Anderson, B D; Arrington, J; Baldwin, A; Chen, J -P; Choi, S; Chudakov, E; Cisbani, E; Craver, B; Decowski, P; Dutta, C; Folts, E; Frullani, S; Garibaldi, F; Gilman, R; Gomez, J; Hahn, B; Hansen, J -O; Higinbotham, D; Holmstrom, T; Huang, J; Iodice, M; Jiang, X; Kelleher, A; Khrosinkova, E; Kievsky, A; Kuchina, E; Kumbartzki, G; Lee, B; LeRose, J J; Lindgren, R A; Lott, G; Lu, H; Marcucci, L E; Margaziotis, D J; Markowitz, P; Marrone, S; Meekins, D; Meziani, Z -E; Michaels, R; Moffit, B; Norum, B; Petratos, G G; Puckett, A; Qian, X; Rondon, O; Saha, A; Sawatzky, B; Segal, J; Shabestari, M; Shahinyan, A; Solvignon, P; Subedi, R R; Suleiman, R; Sulkosky, V; Urciuoli, G M; Viviani, M; Wang, Y; Wojtsekhowski, B B; Yan, X; Yao, H; Zhang, W -M; Zheng, X; Zhu, L
2013-01-01
The charge form factor of $^$4He has been extracted in the range 29 fm$^{-2}$ $\\le Q^2 \\le 77$ fm$^{-2}$ from elastic electron scattering, detecting $^4$He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the $Q^2$ range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting.
Form Factors and charge radii of heavy flavored mesons in a potential model
Das, T; Bordoloi, N S
2016-01-01
We report the results for charge radii of heavy flavored mesons ($D^+, D^0, D^+_s, B^+, B^0, B^0_s$) in a QCD model with the potential $V(r)=-4\\frac{\\alpha_s}{3r}+br+c$ by incorporating two scales $r^{short}$ and $r^{long}$ as an integration limit so that the perturbative procedure can be improved in a potential model. We also obtain the analytical expressions for Form Factors in terms of momentum transfer ($Q^2$). The obtained results are compared with our earlier works and with the other theoretical models.
Relativistic effects on the neutron charge form factor in the constituent quark model
Cardarelli, F
1999-01-01
The neutron charge form factor GEn(Q**2) is investigated within a constituent quark model formulated on the light-front. It is shown that, if the quark initial motion is neglected in the Melosh rotations, the Dirac neutron form factor F1n(Q**2) receives a relativistic correction which cancels exactly against the Foldy term in GEn(Q**2), as it has been recently argued by Isgur. Moreover, at the same level of approximation the ratio of the proton to neutron magnetic form factors GMp(Q**2)/GMn(Q**2) is still given by the naive SU(6)-symmetry expectation, -3/2. However, it is also shown that the full Melosh rotations break SU(6) symmetry, giving rise to GEn(Q**2) neq 0 and GMp(Q**2)/GMn(Q**2) neq -3/2 even when a SU(6)-symmetric canonical wave function is assumed. It turns out that relativistic effects alone cannot explain simultaneously the experimental data on GEn(Q**2) and GMp(Q**2)/GMn(Q**2).
JLab Measurement of the ^{4}He Charge Form Factor at Large Momentum Transfers
Camsonne, Alexandre; Katramatou, A. T.; Olson, M.; Sparveris, Nikolaos; Acha, Armando; Allada, Kalyan; Anderson, Bryon; Arrington, John; Baldwin, Alan; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cisbani, Evaristo; Craver, Brandon; Decowski, Piotr; Dutta, Chiranjib; Folts, Edward; Frullani, Salvatore; Garibaldi, Franco; Gilman, Ronald; Gomez, Javier; Hahn, Brian; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, Jian; Iodice, Mauro; Kelleher, Aidan; Khrosinkova, Elena; Kievsky, A.; Kuchina, Elena; Kumbartzki, Gerfried; Lee, Byungwuek; LeRose, John; Lindgren, Richard; Lott, Gordon; Lu, H.; Marcucci, Laura; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Meekins, David; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Norum, Blaine; Petratos, Gerassimos; Puckett, Andrew; Qian, Xin; Rondon-Aramayo, Oscar; Saha, Arunava; Sawatzky, Bradley; Segal, John; Hashemi, Mitra; Shahinyan, Albert; Solvignon-Slifer, Patricia; Subedi, Ramesh; Suleiman, Riad; Sulkosky, Vincent; Urciuoli, Guido; Viviani, Michele; Wang, Y.; Wojtsekhowski, Bogdan; Yan, X.; Yao, H.; Zhang, W. -M.; Zheng, X.; Zhu, L.
2014-04-01
The charge form factor of ^{4}He has been extracted in the range 29 fm^{-2} <= Q^{2} <= 77 fm^{-2} from elastic electron scattering, detecting ^{4}He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the Q^{2} range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting.
Huber, Garth; Blok, Henk; Horn, Tanja; Beise, Elizabeth; Gaskell, David; Mack, David; Tadevosyan, Vardan; Volmer, Jochen; Abbott, David; Aniol, Konrad; Anklin, Heinz; Armstrong, Christopher; Arrington, John; Assamagan, Ketevi; Avery, Steven; Baker, O.; Barrett, Robert; Bochna, Christopher; Boeglin, Werner; Brash, Edward; Breuer, Herbert; Chang, C.; Chang, C.C.; Chant, Nicholas; Christy, Michael; Dunne, James; Eden, Thomas; Ent, Rolf; Fenker, Benjamin; Gibson, Edward; Gilman, Ronald; Gustafsson, Kenneth; Hinton, Wendy; Holt, Roy; Jackson, Harold; uk Jin, Seong; Jones, Mark; Keppel, Cynthia; Kim, pyunghun; Kim, Wooyoung; King, Paul; Klein, Andreas; Koltenuk, Douglas; Kovaltchouk, Vitali; Liang, Meihua; Liu, Jinghua; Lolos, George; Lung, Allison; Margaziotis, Demetrius; Markowitz, Pete; Matsumura, Akihiko; McKee, David; Meekins, David; Mitchell, Joseph; Miyoshi, Toshinobu; Mkrtchyan, Hamlet; Mueller, Robert; Niculescu, Gabriel; Niculescu, Maria-Ioana; Okayasu, Yuichi; Pentchev, Lubomir; Perdrisat, Charles; Pitz, David; Potterveld, David; Punjabi, Vina; Qin, Liming; Reimer, Paul; Reinhold, Joerg; Roche, Julie; Roos, Philip; Sarty, Adam; Shin, Ilkyoung; Smith, Gregory; Stepanyan, Stepan; Tang, Liguang; Tvaskis, Vladas; van der Meer, Rob; Vansyoc, Kelley; Van Westrum, Derek; Vidakovic, Sandra; Vulcan, William; Warren, Glen; Wood, Stephen; Xu, Chen; Yan, Chen; Zhao, Wenxia; Zheng, Xiaochao; Zihlmann, Benedikt
2008-10-01
DOI: http://dx.doi.org/10.1103/PhysRevC.78.045203
The charged pion form factor, Fpi(Q2), is an important quantity that can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q2=0.60-2.45 GeV2. Above Q2=1.5 GeV2, the Fpi values are systematically below the monopole parametrization that describes the low Q2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard c
Huber, G M; Horn, T; Beise, E J; Gaskell, D; Mack, D J; Tadevosyan, V; Volmer, J; Abbott, D; Aniol, K; Anklin, H; Armstrong, C; Arrington, J; Assamagan, K; Avery, S; Baker, O K; Barrett, B; Bochna, C; Boeglin, W; Brash, E J; Breuer, H; Chang, C C; Chant, N; Christy, M E; Dunne, J; Eden, T; Ent, R; Gibson, E; Gilman, R; Gustafsson, K; Hinton, W; Holt, R J; Jackson, H; Jin, S; Jones, M K; Keppel, C E; Kim, P H; Kim, W; King, P M; Klein, A; Koltenuk, D; Kovaltchouk, V; Kiang, M; Liu, J; Lolos, G J; Lung, A; Margaziotis, D J; Markowitz, P; Matsumura, A; McKee, D; Meekins, D; Mitchell, J; Miyoshi, T; Mkrtchyan, H; Müller, B; Niculescu, G; Niculescu, I; Okayasu, Y; Pentchev, L; Perdrisat, C; Pitz, D; Potterveld, D; Punjabi, V; Qin, L M; Reimer, P; Reinhold, J; Roche, J; Roos, P G; Sarty, A; Shin, I K; Smith, G R; Stepanyan, S; Tang, L G; Tvaskis, V; Van der Meer, R L J; Vansyoc, K; Van Westrum, D; Vidakovic, S; Vulcan, W; Warren, G; Wood, S A; Xu, C; Yan, C; Zhao, W -X; Zheng, X; Zihlmann, B
2008-01-01
The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.
Charge form factors and α cluster internal structure of 12C nuclei
12C nucleus form factors for 0+, 2+ and 3- states were calculated in terms of α-cluster model. The wave functions of nucleons in α-cluster were taken from 4He nucleus models based on density single-particle taking account of the effect of short-range NN-correlations and d-shell impurities. It was shown that it resulted as well as to variations of 12C nucleus form factors and offered a basis for findings as to the nature of internuclear interactions forming the structure of 4He and 12C wave function high-pulse components
Influence of the separation of the centre-of-mass motion on the charge form factor of /sup 6/Li
Bouten, M. (Limburgs Universitair Centrum (Belgium)); Bouten, M.C. (Centre d' Etude de l' Energie Nucleaire, Mol (Belgium))
1982-12-01
An exact calculation is carried out for the charge form factor of /sup 6/Li using a wavefunction for the ground state which depends on the internal coordinates only and which contains a short-range correlation factor of the Jastrow type. A very good fit to the experimental data can be obtained by adjusting the parameters in the wavefunction. It is found that the optimum value of these parameters depends sensitively on the way the centre-of-mass coordinate is eliminated.
Electromagetic proton form factors
Hussein, M Y
2006-01-01
The electromagnetic form factors are crucial to our understanding of the proton internal structure, and thus provide a strong constraint of the distributions of the charge and magnetization current within the proton. We adopted the quark-parton model for calculating and understanding the charge structure of the proton interms of the electromagnetic form factors. A remarkable agreement with the available experimental evidence is found.
We use variationally improved perturbation theory (VIPT) for calculating the elastic form factors and charge radii of D, Ds, B, Bs and Bc mesons in a quantum chromodynamics (QCD)-inspired potential model. For that, we use linear-cum-Coulombic potential and opt the Coulombic part first as parent and then the linear part as parent. The results show that charge radii and form factors are quite small for the Coulombic parent compared to the linear parent. Also, the analysis leads to a lower as well as upper bounds on the four-momentum transfer Q2, hinting at a workable range of Q2 within this approach, which may be useful in future experimental analyses. Comparison of both the options shows that the linear parent is the better option. (author)
Bhaskar Jyoti Hazarika; D K choudhury
2015-01-01
We use variationally improved perturbation theory (VIPT) for calculating the elastic form factors and charge radii of , $D_{s}$, $B$, $B_{s}$ and $B_{c}$ mesons in a quantum chromodynamics (QCD)-inspired potential model. For that, we use linear-cum-Coulombic potential and opt the Coulombic part first as parent and then the linear part as parent. The results show that charge radii and form factors are quite small for the Coulombic parent compared to the linear parent. Also, the analysis leads to a lower as well as upper bounds on the four-momentum transfer 2, hinting at a workable range of 2 within this approach, which may be useful in future experimental analyses. Comparison of both the options shows that the linear parent is the better option.
Nucleon electromagnetic form factors and axial charge from CLS $N_\\mathrm{f}=2+1$ ensembles
Djukanovic, Dalibor; von Hippel, Georg; Junnarkar, Parikshit; Meyer, Harvey B; Wittig, Hartmut
2015-01-01
We present preliminary results on the electromagnetic form factors and axial charge of the nucleon from ensembles generated by the CLS effort with $N_\\mathrm{f}=2+1$ flavours of non-perturbatively $\\mathrm{O}(a)$-improved Wilson fermions and open temporal boundary conditions. Systematic effects due to excited-state contamination are accounted for using both two-state fits and the method of summed operator insertions. This exploratory analysis demonstrates the viability of obtaining precision baryon observables with $N_\\mathrm{f}=2+1$ flavours of Wilson fermions on fine lattices, aiming towards controlled chiral and continuum limits in the future.
Determination of the pion charge form factor for Q^2 = 0.60-1.60 (GeV/c)^2
Tadevosyan, V; Huber, G M; Abbott, D; Anklin, H; Armstrong, C; Arrington, J; Assamagan, K A; Avery, S; Baker, O K; Bochna, C; Brash, E J; Breuer, H; Chant, N; Dunne, J; Eden, T; Ent, R; Gaskell, D; Gilman, R; Gustafsson, K; Hinton, W; Jackson, H; Jones, M K; Keppel, C; Kim, P H; Kim, W; Klein, A; Koltenuk, D; Liang, M; Lolos, G J; Lung, A; Mack, D J; McKee, D; Meekins, D; Mitchell, J; Mkrtchyan, H; Müller, B; Niculescu, G N I; Pitz, D; Potterveld, D; Qin, L M; Reinhold, J; Shin, I K; Stepanyan, S; Tang, L G; Van der Meer, R L J; Vansyoc, K; Van Westrum, D; Volmer, J; Vulcan, W; Wood, S; Yan, C; Zhao, W X; Zihlmann, B
2006-01-01
The data analysis for the reaction H(e,e' pi^+)n, which was used to determine values for the charged pion form factor Fpi for values of Q2 = 0.6-1.6 (gEv/C)^2, has been repeated with careful inspection of all steps and special attention to systematic uncertainties. Also the method used to extract Fpi from the measured longitudinal cross section was critically reconsidered. Final values for the separated longitudinal and transverse cross sections and the extracted values of Fpi are presented.
A high-statistics study of the nucleon EM form factors, axial charge and quark momentum fraction
Jäger, B; Capitani, S; Della Morte, M; Djukanovic, D; von Hippel, G; Knippschild, B; Meyer, H B; Wittig, H
2013-01-01
We present updated results for the nucleon axial charge and electromagnetic (EM) form factors, which include a significant increase in statistics for all ensembles (up to 4000 measurements), as well as the addition of ensembles with pion masses down to $m_\\pi\\sim195$ MeV. We also present results for the average quark momentum fraction. The new data allows us to perform a thorough study of the systematic effects encountered in the lattice extraction. We concentrate on systematic effects due to excited-state contaminations for each of the quantities, which we check using several different time separations between the operators at the source and sink through a comparison of plateau fits and the summed operator insertion method (which provides a mechanism to suppress the excited-state contamination). We confirm our earlier finding that a reliable extraction of the axial charge must be based on a method which eliminates excited-state contaminations. Similar conclusions apply to our EM form factor calculations . Th...
Nucleon Electromagnetic Form Factors
Although nucleons account for nearly all the visible mass in the universe, they have a complicated structure that is still incompletely understood. The first indication that nucleons have an internal structure, was the measurement of the proton magnetic moment by Frisch and Stern (1933) which revealed a large deviation from the value expected for a point-like Dirac particle. The investigation of the spatial structure of the nucleon, resulting in the first quantitative measurement of the proton charge radius, was initiated by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was obtained by scattering thermal neutrons off atomic electrons. The recent revival of its experimental study through the operational implementation of novel instrumentation has instigated a strong theoretical interest. Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum transferred to the nucleon by the virtual photon can be selected to probe different scales of the nucleon, from integral properties such as the charge radius to scaling properties of its internal constituents. Polarization instrumentation, polarized beams and targets, and the measurement of the polarization of the recoiling nucleon have been essential in the accurate separation of the charge and magnetic form factors and in studies of the elusive neutron charge form factor
The Charge Form Factor of the Neutron from $^{2}\\overrightarrow{H} (\\overrightarrow{e}, e^{'} n)p$
Passchier, I; Szczerba, D; Alarcon, R; Bauer, T; Boersma, D J; Van den Brand, J F J; Bulten, H J; Ferro-Luzzi, M; Higinbotham, D W; De Jager, C W; Klous, S; Kolster, H; Lang, J; Nikolenko, D M; Nooren, G J L; Norum, B E; Poolman, H R; Rachek, Igor A; Simani, M C; Six, E; De Vries, H; Wang, K; Zhou, Z L; Bauer, Th. S.
2000-01-01
We report on the first measurement of spin-correlation parameters in quasifree electron scattering from vector-polarized deuterium. Polarized electrons were injected into an electron storage ring at a beam energy of 720 MeV. A Siberian snake was employed to preserve longitudinal polarization at the interaction point. Vector-polarized deuterium was produced by an atomic beam source and injected into an open-ended cylindrical cell, internal to the electron storage ring. The spin correlation parameter $A^V_{ed}$ was measured for the reaction $^2 \\vec{\\rm H}(\\vec e,e^\\prime n)p$ at a four-momentum transfer squared of 0.21~(GeV/$c$)$^2$ from which a value for the charge form factor of the neutron was extracted.
The charge form factor of the neutron from sup 2 H-vector, (e-vector, e' n)p
Passchier, I; Szczerba, D; Alarcon, R; Bauer, T S; Boersma, D J; Van der Brand, J F J; Bulten, H J; Ferro-Luzzi, M; Higinbotham, D W; Jager, C W D; Klous, S; Kolster, H; Lang, J; Nikolenko, D M; Nooren, G J; Norum, B E; Poolman, H R; Rachek, Igor A; Simani, M C; Six, E; Vries, H D; Wang, K; Zhou, Z L
2000-01-01
We report on the first measurement of spin-correlation parameters in quasifree electron scattering from vector-polarized deuterium. Polarized electrons were injected into an electron storage ring at a beam energy of 720 MeV. A Siberian snake was employed to preserve longitudinal polarization at the interaction point. Vector-polarized deuterium was produced by an atomic beam source and injected into an open-ended cylindrical cell, internal to the electron storage ring. The spin correlation parameter A sup V sub e sub d was measured for the reaction sup 2 H-vector, (e-vector, e'n)p at a four-momentum transfer squared of 0.21 (GeV/c) sup 2 from which a value for the charge form factor of the neutron was extracted.
Piekarewicz, J; Giuliani, P; Chicken, E
2016-01-01
[Background] Besides its intrinsic value as a fundamental nuclear-structure observable, the weak-charge density of 208Pb - a quantity that is closely related to its neutron distribution - is of fundamental importance in constraining the equation of state of neutron-rich matter. [Purpose] To assess the impact that a second electroweak measurement of the weak-charge form factor of 208Pb may have on the determination of its overall weak-charge density. [Methods] Using the two putative experimental values of the form factor, together with a simple implementation of Bayes' theorem, we calibrate a theoretically sound - yet surprisingly little known - symmetrized Fermi function, that is characterized by a density and form factor that are both known exactly in closed form. [Results] Using the charge form factor of 208Pb as a proxy for its weak-charge form factor, we demonstrate that using only two experimental points to calibrate the symmetrized Fermi function is sufficient to accurately reproduce the experimental ch...
The present status of electroweak nucleon form factors and the N - Δ transition form factors is reviewed. Particularly the determination of dipole mass MA in the axial vector form factor is discussed
Bloch, J. C. R.; Krassnigg, A.; Roberts, C. D.
2003-01-01
The proton's elastic electromagnetic form factors are calculated using an Ansatz for the nucleon's Poincare' covariant Faddeev amplitude that only retains scalar diquark correlations. A spectator approximation is employed for the current. On the domain of q^2 accessible in modern precision experiments these form factors are a sensitive probe of nonperturbative strong interaction dynamics. The ratio of Pauli and Dirac form factors can provide realistic constraints on models of the nucleon and ...
Cornelis de Jager
2004-09-01
The experimental and theoretical status of elastic electron scattering from the nucleon is reviewed. As a consequence of new experimental facilities, data of unprecedented precision have recently become available for the electromagnetic and the strange form factors of the nucleon.
Kees de Jager
2002-10-01
A review of data on the nucleon electro-weak form factors in the space-like region is presented. Recent results from experiments using polarized beams and either polarized targets or nucleon recoil polarimeters have yielded a significant improvement on the precision of the electromagnetic data obtained with the traditional Rosenbluth separation. An outlook is presented of planned experiments.
The Charge Form Factor of the Neutron from the Reaction {sup 2}{rvec H}({rvec e},e{prime}n)p
I. Passchier; R. Alarcon; Th. S. Bauer; D. Boersma; J. F. J. van den Brand; L. D. van Buuren; H. J. Bulten; M. Ferro-Luzzi; P. Heimberg; D. W. Higinbotham; C. W. de Jager; S. Klous; H. Kolster; J. Lang; B. L. Militsyn; D. Nikolenko; G. J. L. Nooren; B. E. Norum; H. R. Poolman; I. Rachek; M. C. Simani; E. Six; D. Szczerba; H. de Vries; K. Wang
1999-06-21
We report on the first measurement of spin-correlation parameters in quasifree electron scattering from vector-polarized deuterium. Polarized electrons were injected into an electron storage ring at a beam energy of 720 MeV. A Siberian snake was employed to preserve longitudinal polarization at the interaction point. Vector-polarized deuterium was produced by an atomic beam source and injected into an open-ended cylindrical cell, internal to the electron storage ring. The spin correlation parameter A{sub ed}{sup V} was measured for the reaction {sup 2}{rvec H}({rvec e},e{prime}n)p at a four-momentum transfer squared of 0.21 (GeV/c){sup 2} from which a value for the charge form factor of the neutron was extracted.
Passchier, I; Bauer, T; Boersma, D J; Van den Brand, J F J; Van Buuren, L D; Bulten, H J; Ferro-Luzzi, M; Heimberg, P; Higinbotham, D W; De Jager, C W; Klous, S; Kolster, H; Lang, J; Militsyn, B L; Nikolenko, D M; Nooren, G J L; Norum, B E; Poolman, H R; Rachek, Igor A; Simani, M C; Six, E; Szczerba, D; De Vries, H; Wang, K; Bauer, Th. S.
1999-01-01
We report on the first measurement of spin-correlation parameters in quasifree electron scattering from vector-polarized deuterium. Polarized electrons were injected into an electron storage ring at a beam energy of 720~MeV. A Siberian snake was employed to preserve longitudinal polarization at the interaction point. Vector-polarized deuterium was produced by an atomic beam source and injected into an open-ended cylindrical cell, internal to the electron storage ring. The spin correlation parameter A^V_{ed} was measured for the reaction \\pol{2H}(\\pol{e},e'n)p at a four-momentum transfer squared of 0.21 (GeV/c)^2 from which a value for the charge form factor of the neutron was extracted.
Ryong Ji, C.; Pang, A.; Szczepaniak, A. [North Carolina State Univ., Raleigh, NC (United States)
1994-04-01
It is pointed out that the correct criterion to define the legal PQCD contribution to the exclusive processes in the lightcone perturbative expansion should be based on the large off-shellness of the lightcone energy in the intermediate states. In the lightcone perturbative QCD calculation of the pion form factor, the authors find that the legal PQCD contribution defined by the lightcone energy cut saturates in the smaller Q{sup 2} region compared to that defined by the gluon four-momentum square cut. This is due to the contribution by the highly off-energy-shell gluons in the end point regions of the phase space, indicating that the gluon four-momentum-square cut may have cut too much to define the legal PQCD.
Nucleon Electromagnetic Form Factors
Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi
2007-10-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.
Anomalous Sudakov Form Factors
Ciafaloni, Marcello; Comelli, Denis
2009-01-01
While radiative corrections of infrared origin normally depress high energy amplitudes (Sudakov form factors), we find that in some cases resummation of leading effects produces exponentials with positive exponents, giving rise to amplitudes that grow indefinitely with energy. The effect happens in broken gauge theories like the electroweak sector of the Standard Model, and is related to the existence of amplitudes that do not respect the gauge symmetry. Contrary to expectations, these amplitudes, although mass suppressed, do not vanish in the very high energy limit, but rather become dominant. As a working example we consider a model with two chiral abelian gauge groups U'(1)times U(1) with large mass splitting M(Z') >> M(Z), and we compute leading radiative corrections corrections to the decay of the heavy extra Z' boson into light fermions. The chirality breaking magnetic dipole moment becomes the dominant contribution to the Z' width at very high energies.
Nonfouling hydrogels formed from charged monomer subunits.
Dobbins, Sean C; McGrath, Daniel E; Bernards, Matthew T
2012-12-13
A critical challenge in the field of biomaterials is the often undesirable, but immediate, coating of implants with nonspecifically adsorbed proteins upon contact with bodily fluids. Prior research has shown that overall neutral materials containing a homologous arrangement of mixed charges exhibit nonfouling properties. This has been widely demonstrated for zwitterionic materials and more recently for coatings containing an equimolar mixture of positively and negatively charged monomer subunits. In this investigation it is demonstrated that nonfouling hydrogels can be formed through this approach, and the physical properties of the resulting materials are thoroughly characterized. In particular, hydrogels were formed from mixtures of [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TM) and 3-sulfopropyl methacrylate potassium salt (SA) monomers with varying concentrations of a triethylene glycol dimethacrylate (TEGDMA) cross-linker. The swelling, weight percentage water, surface zeta potential, and compressional properties of the gels were characterized, and the nonfouling properties were demonstrated using enzyme-linked immunosorbant assays for both negatively charged fibrinogen and positively charged lysozyme. The results confirm that the TM:SA hydrogel systems have nonfouling properties that are equivalent to established nonfouling controls. Additionally, even though the gels were resistant to nonspecific protein adsorption, a composition analysis suggests that there is room to further improve the nonfouling performance because there is a slight enrichment of the SA monomer relative to the TM monomer. PMID:23189949
Isospin separation of three-nucleon form factors
We have perfromed high-precision measurements of 3He charge and magnetic form factors up to Q2=1 (GeV/c)2. These measurements combined with previous data on 3He and 3H allow us to separate the three-nucleon isospin charge and magnetic form factors up to Q2=1 (GeV/c)2. A large discrepancy between experiment and theory occurs for the T=1 charge form factor
Nucleon Form Factors - A Jefferson Lab Perspective
Arrington, John; Perdrisat, Charles F
2011-01-01
The charge and magnetization distributions of the proton and neutron are encoded in their elastic electromagnetic form factors, which can be measured in elastic electron--nucleon scattering. By measuring the form factors, we probe the spatial distribution of the proton charge and magnetization, providing the most direct connection to the spatial distribution of quarks inside the proton. For decades, the form factors were probed through measurements of unpolarized elastic electron scattering, but by the 1980s, progress slowed dramatically due to the intrinsic limitations of the unpolarized measurements. Early measurements at several laboratories demonstrated the feasibility and power of measurements using polarization degrees of freedom to probe the spatial structure of the nucleon. A program of polarization measurements at Jefferson Lab led to a renaissance in the field of study, and significant new insight into the structure of matter.
Nucleon Form Factors - A Jefferson Lab Perspective
John Arrington, Kees de Jager, Charles F. Perdrisat
2011-06-01
The charge and magnetization distributions of the proton and neutron are encoded in their elastic electromagnetic form factors, which can be measured in elastic electron--nucleon scattering. By measuring the form factors, we probe the spatial distribution of the proton charge and magnetization, providing the most direct connection to the spatial distribution of quarks inside the proton. For decades, the form factors were probed through measurements of unpolarized elastic electron scattering, but by the 1980s, progress slowed dramatically due to the intrinsic limitations of the unpolarized measurements. Early measurements at several laboratories demonstrated the feasibility and power of measurements using polarization degrees of freedom to probe the spatial structure of the nucleon. A program of polarization measurements at Jefferson Lab led to a renaissance in the field of study, and significant new insight into the structure of matter.
Geis, E; Akdogan, T; Arenhövel, H; Alarcon, R; Bertozzi, W; Booth, E; Botto, T; Calarco, J; Clasie, B; Crawford, C B; DeGrush, A; Donnelly, T W; Dow, K; Farkhondeh, M; Fatemi, R; Filoti, O; Franklin, W; Gao, H; Gilad, S; Hasell, D; Karpius, P; Köhl, M; Kolster, H; Lee, T; Maschinot, A; Matthews, J; McIlhany, K; Meitanis, N; Milner, R G; Rapaport, J; Redwine, R P; Seely, J; Shinozaki, A; Sirca, S; Sindile, A; Six, E; Smith, T; Steadman, M; Tonguc, B; Tschalär, C; Tsentalovich, E; Turchinetz, W; Xiao, Y; Xu, W; Zhang, C; Zhou, Z; Zwart, T
2008-01-01
We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio $G^{n}_{E}/G^{n}_{M}$ was extracted from the beam-target vector asymmetry $A_{ed}^{V}$ at four-momentum transfers $Q^{2}=0.14$, 0.20, 0.29 and 0.42 (GeV/c)$^{2}$.
The Form Factors of the Nucleons
Perdrisat, Charles F. [William and Mary College, JLAB
2013-11-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double-polarization experiments, in comparison with with pre-vious unpolarized cross section data. Here we will review the experimental data base in view of the new results for the proton and the neutron, obtained at MIT-Bates, JLab and MAMI. The rapid evolution of phenomenological models triggered by these high- precision experiments will be discussed. In particular, the possibility that the proton is non-spherical in its ground state, and that the transverse charge density are model in- dependently defined in the infinite momentum frame. Likewise, flavor decomposition of the nucleon form factors into dressed u and d quark form factors, may give information about the quark-diquark structure of the nucleon. The current proton radius "crisis" will also be discussed.
Simerka - Quadratic Forms and Factorization
Lemmermeyer, Franz
2011-01-01
In this article we show that the Czech mathematician Vaclav Simerka discovered the factorization of (10^17-1)/9 using a method based on the class group of binary quadratic forms more than 120 years before Shanks and Schnorr developed similar algorithms. Simerka also gave the first examples of what later became known as Carmichael numbers.
Electromagnetic form factors with FLIC fermions
The fat-link irrelevant clover (FLIC) fermion action provides a new form of nonperturbative O(a) improvement and allows efficient access to the light quark-mass regime. FLIC fermions enable the construction of the nonperturbatively O(a)-improved conserved vector current without the difficulties associated with the fine tuning of the improvement coefficients. The simulations are performed with an O(a2) mean-field improved plaquette-plus-rectangle gluon action on a 203 x 40 lattice with a lattice spacing of 0.128 fm, enabling the first simulation of baryon form factors at light quark masses on a large volume lattice. Magnetic moments, electric charge radii and magnetic radii are extracted from these form factors, and show interesting chiral nonanalytic behavior in the light quark mass regime. (orig.)
Baryon Form Factors at Threshold
Baldini Ferroli, Rinaldo [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Rome (Italy); INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Pacetti, Simone [INFN and Dipartimento di Fisica, Universita di Perugia, Perugia (Italy)
2012-04-15
An extensive study of the e{sup +}e{sup -}{yields}pp{sup Macron }BABAR cross section data is presented. Two unexpected outcomes have been found: the modulus of the proton form factor is normalized to one at threshold, i.e.: |G{sup p}(4M{sub p}{sup 2})|=1, as a pointlike fermion, and the resummation factor in the Sommerfeld formula is not needed. Other e{sup +}e{sup -} {yields} baryon-antibaryon cross sections show a similar behavior near threshold.
Lomon, Earle L
2016-01-01
The pion electromagnetic form factor and two-pion production in electron-positron collisions are simultaneously fitted by a vector dominance model evolving to perturbative QCD at large momentum transfer. This model was previously successful in simultaneously fitting the nucleon electromagnetic form factors (space-like region) and the electromagnetic production of nucleon-antinucleon pairs (time-like region). For this pion case dispersion relations are used to produce the analytic connection of the space-like and time-like regions. The fit to all the data is good. The description of high-$q^2$ data, in the time-like region, requires one more meson with $\\rho$ quantum numbers than listed in the 2014 Particle Data Group review.
Dietrich, F S
2006-09-25
This document is intended to facilitate calculation of inelastic scattering and charge-exchange cross sections in a variety of reaction models, including the plane-wave and distorted-wave approximations and the full coupled-channels treatments. Expressions are given for the coupling potentials between the relevant channels in both coordinate and momentum space. In particular, it is expected that the plane-wave calculations should be useful as a check on the correctness of coupled-channels calculations. The Fourier transform methods used to calculate the plane-wave approximation cross sections are also intended to be used to generate the transition potentials for coupled-channels codes, using a folding model with local effective interactions. Specific expressions are given for calculating transition densities for the folding model in the random phase approximation (RPA).
Unitary bounds on the electromagnetic form factors of pseudoscalar mesons
We investigate the electromagnetic form factors of the π and K mesons using a dispersive technique which exploits perturbative QCD and hadronic unitarity. Constraints on the charge radii and higher Taylor coefficients of the form factors at the origin are derived. The results are of interest for testing the predictions of chiral perturbation theory and of other low energy models. (author)
Higher-spin charges in Hamiltonian form. I. Bose fields
Campoleoni, Andrea; Hörtner, Sergio; Leonard, Amaury
2016-01-01
We study asymptotic charges for symmetric massless higher-spin fields on Anti de Sitter backgrounds of arbitrary dimension within the canonical formalism. We first analyse in detail the spin-3 example: we cast Fronsdal's action in Hamiltonian form, we derive the charges and we propose boundary conditions on the canonical variables that secure their finiteness. We then extend the computation of charges and the characterisation of boundary conditions to arbitrary spin.
Factorization and pion form factor in QCD
The behaviour of the pion electromagnetic form factor (EMFF) in the framework of quantum chromodynamics (QCD) is discussed. Pion is considered to be a quark-antiquark bound state. It is proposed to use an OPE description of the bound state structure by matrix elements of certain local gauge-invariant operators. Short-distance quark interactions is proved using a direct analysis of perturbation theory in the α-parametric representation of the Feynman diagrams. It is shown that the short-distance parton picture privides a self-consistent description of the large Q2 momentum behaviour of the pion EMFF in QCD. Pion EMFF asymptotics is expressed in terms of fu fundamental constants of the theory
Hadron and Quark Form Factors in the Relativistic Harmonic Oscillator Model
Burov, V. V.; De Pace, A.; Dorkin, S. M.; P. Saracco(INFN, Sezione di Genova)
1993-01-01
Nucleon, pion and quark form factors are studied within the relativistic harmonic oscillator model including the quark spin. It is shown that the nucleon charge, magnetic and axial form factors and the pion charge form factor can be explained with one oscillator parameter if one accounts for the scaling rule and the size of the constituent quarks.
Electric Charge as a Form of Imaginary Energy
Tianxi Zhang
2008-04-01
Full Text Available Electric charge is considered as a form of imaginary energy. With this consideration, the energy of an electrically charged particle is a complex number. The real part is proportional to the mass, while the imaginary part is proportional to the electric charge. The energy of an antiparticle is given by conjugating the energy of its corresponding particle. Newton's law of gravity and Coulomb's law of electric force are classically unified into a single expression of the interaction between the complex energies of two electrically charged particles. Interaction between real energies (or masses is the gravitational force. Interaction between imaginary energies (or electric charges is the electromagnetic force. Since radiation is also a form of real energy, there are another two types of interactions between real energies: the mass-radiation interaction and the radiation-radiation interaction. Calculating the work done by the mass-radiation interaction on a photon, we can derive the Einsteinian gravitational redshift. Calculating the work done by the radiation-radiation interaction on a photon, we can obtain a radiation redshift. This study suggests the electric charge as a form of imaginary energy, so that classically unifies the gravitational and electric forces and derives the Einsteinian gravitational redshift.
Scaling of Hadronic Form Factors in Point Form Kinematics
Coester, F
2003-01-01
The general features of baryon form factors calculated with point form kinematics are derived. With point form kinematics and spectator currents hadronic form factors are functions of $\\eta:={1\\over 4}(v_{out}-v_{in})^2$ and, over a range of $\\eta$ values are insensitive to unitary scale transformations of the model wave functions when the extent of the wave function is small compared to the scale defined by the constituent mass, $ \\ll 1/m^2$. The form factors are sensitive to the shape of such compact wave functions. Simple 3-quark proton wave functions are employed to illustrate these features. Rational and algebraic model wave functions lead to a reasonable representation of the empirical form factors, while Gaussian wave functions fail. For large values of $\\eta$ point form kinematics with spectator currents leads to power law behavior of the wave functions.
Deuteron form factor measurements at low momentum transfers
Schlimme B. S.
2016-01-01
Full Text Available A precise measurement of the elastic electron-deuteron scattering cross section at four-momentum transfers of 0.24 fm−1 ≤ Q ≤ 2.7 fm−1 has been performed at the Mainz Microtron. In this paper we describe the utilized experimental setup and the necessary analysis procedure to precisely determine the deuteron charge form factor from these data. Finally, the deuteron charge radius rd can be extracted from an extrapolation of that form factor to Q2 = 0.
Nucleon tensor form factors in a relativistic confined quark model
Gutsche, Thomas; Korner, Jurgen G; Kovalenko, Sergey; Lyubovitskij, Valery E
2016-01-01
We present results for the isotriplet and isosinglet tensor form factors of the nucleon in the relativistic confined quark model. The model allows us to calculate not only their normalizations at $Q^2=0$ and the related tensor charges, but also the full $Q^2$-dependence. Our results are compared to existing data and predictions of other theoretical approaches. We stress the importance of these form factors for the phenomenology of physics beyond the Standard Model.
Blok, Henk; Horn, Tanja; Huber, Garth; Beise, Elizabeth; Gaskell, David; Mack, David; Tadevosyan, Vardan; Volmer, Jochen; Abbott, David; Aniol, Konrad; Anklin, Heinz; Armstrong, Christopher; Arrington, John; Assamagan, Ketevi; Avery, Steven; Baker, O; Barrett, Robert; Bochna, Christopher; Boeglin, Werner; Brash, Edward; Breuer, Herbert; Chang, C; Chang, C C; Chant, Nicholas; Christy, Michael; Dunne, James; Eden, Thomas; Ent, Rolf; Fenker, Howard; Gibson, Edward; Gilman, Ronald; Gustafsson, Kenneth; Hinton, Wendy; Holt, Roy; Jackson, Harold; uk Jin, Seong; Jones, Mark; Keppel, Cynthia; Kim, pyunghun; Kim, Wooyoung; King, Paul; Klein, Andreas; Koltenuk, Douglas; Kovaltchouk, Vitali; Liang, Meihua; Liu, Jinghua; Lolos, George; Lung, Allison; Margaziotis, Demetrius; Markowitz, Pete; Matsumura, Akihiko; McKee, David; Meekins, David; Mitchell, Joseph; Miyoshi, Toshinobu; Mkrtchyan, Hamlet; Mueller, Robert; Niculescu, Gabriel; Niculescu, Maria-Ioana; Okayasu, Yuichi; Pentchev, Lubomir; Perdrisat, Charles; Pitz, David; Potterveld, David; Punjabi, Vina; Qin, Liming; Reimer, Paul; Reinhold, Joerg; Roche, Julie; Roos, Philip; Sarty, Adam; Shin, Ilkyoung; Smith, Gregory; Stepanyan, Stepan; Tang, Liguang; Tvaskis, Vladas; van der Meer, Rob; Vansyoc, Kelley; Van Westrum, Derek; Vidakovic, Sandra; Vulcan, William; Warren, Glen; Wood, Stephen; Xu, C; Yan, Chen; Zhao, Wenxia; Zheng, Xiaochao; Zihlmann, Benedikt
2008-10-01
DOI: http://dx.doi.org/10.1103/PhysRevC.78.045202
Cross sections for the reaction 1H(e,e'pi+)n were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the high-intensity Continuous Electron Beam Accelerator Facility (CEBAF) to determine the charged pion form factor. Data were taken for central four-momentum transfers ranging from Q2=0.60 to 2.45 GeV2 at an invariant mass of the virtual photon-nucleon system of W=1.95 and 2.22 GeV. The measured cross sections were separated into the four structure functions sigmaL,sigmaT,sigmaLT, and sigmaTT. The various parts of the experimental setup and the analysis steps are described in detail, including the calibrations and systematic studies, which were needed to obtain high-precision results. The different types of systematic uncertainties are also discussed. The results for the separated cross sections as a function of the Mandelstam variable t at the different values of Q2 are presented. Some global featu
Longitudinal vector form factors in weak decays of nuclei
The longitudinal form factors of the weak vector current of particles with spin J = 1/2 and isospin I = 1/2 are determined by the mass difference and the charge radii of members of the isotopic doublets. The most promising reactions to measure these form factors are the reactions with large momentum transfers involving the spin-1/2 isotopic doublets with a maximum mass splitting. Numerical estimates of longitudinal form factors are given for nucleons and eight nuclear spin-1/2 isotopic doublets
Longitudinal vector form factors in weak decays of nuclei
Simkovic, F; Krivoruchenko, M I
2015-01-01
The longitudinal form factors of the weak vector current of particles with spin $ J = 1/2 $ and isospin $ I = 1/2 $ are determined by the mass difference and the charge radii of members of the isotopic doublets. The most promising reactions to measure these form factors are the reactions with large momentum transfers involving the spin-1/2 isotopic doublets with a maximum mass splitting. Numerical estimates of longitudinal form factors are given for nucleons and eight nuclear spin-1/2 isotopic doublets.
Longitudinal vector form factors in weak decays of nuclei
Šimkovic, F. [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation); Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina F1 SK–842 48 Bratislava (Slovakia); Kovalenko, S. [Universidad Técnica Federico Santa Mariya, Centro-Cientifico-Tecnológico de Valparaiso, Casilla 110-V, Valparaiso (Chile); Krivoruchenko, M. I. [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation); Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)
2015-10-28
The longitudinal form factors of the weak vector current of particles with spin J = 1/2 and isospin I = 1/2 are determined by the mass difference and the charge radii of members of the isotopic doublets. The most promising reactions to measure these form factors are the reactions with large momentum transfers involving the spin-1/2 isotopic doublets with a maximum mass splitting. Numerical estimates of longitudinal form factors are given for nucleons and eight nuclear spin-1/2 isotopic doublets.
Thermodynamics and form factors of supersymmetric integrable field theories
We study on-shell and off-shell properties of the supersymmetric Sinh-Gordon and perturbed SUSY Yang-Lee models using the thermodynamic Bethe ansatz and form factors. Identifying the supersymmetric models with the Eight Vertex Free Fermion Model, we derive the inversion relation for the inhomogeneous transfer matrix and TBA equations and get correct UV results. We obtain two-point form factors of the trace of energy-momentum tensor using the Watson equations and their SUSY transformations. As an application, we compute the UV central charge using these form factors and spectral representation of the C-theorem. (author). 49 refs, 1 fig., 1 tab
Flavor decomposition of the nucleon electromagnetic form factors
Qattan, I A
2012-01-01
Background: The spatial distribution of charge and magnetization in the proton and neutron are encoded in the nucleon electromagnetic form factors. The form factors are all approximated by a simple dipole function, normalized to the charge or magnetic moment of the nucleon. The differences between the proton and neutron form factors and the deviation of GEn from zero are sensitive to the difference between up- and down-quark contributions to the form factors. Methods: We combine recent measurements of the neutron form factors with updated extractions of the proton form factors, accounting for two-photon exchange corrections and including an estimate of the uncertainties for all of the form factors to obtain a complete set of measurements up to Q^2 approximately 4 (GeV/c)^2. We use this to extract the up- and down-quark contributions which we compare to recent fits and calculations. Results: We find a large differences between the up- and down-quark contributions to G_E and G_M, implying significant flavor dep...
Measurement of the pion form factor at higher energies
Mack, D.J. [CEBAF, Newport News, VA (United States)
1994-04-01
One of the strongest arguments for increasing the nominal CEBAF beam energy to equal or exceed 6 GeV is that one would be able to make quality high Q{sup 2} measurements of the charged pion form factor.
Sensitivity of the deuteron form factor to nucleon resonances
Herbst, K A; Herbst, Kelly Ann; Gross, Franz
1997-01-01
The sensitivity of the deuteron form factor to contributions from the excited states of the nucleon is explored using a simple model of the nucleon-nucleon interaction which employs a tower of charged nucleon resonances. The model is manifestly covariant, analytically solvable, and gauge invariant. The consequences of this model are studied in the simplest possible framework. We assume that all particles have spin zero and that the tower has only three charged members, which consist of the proton, the Roper, and a higher state in the vicinity of the $D_{13}$. Nucleon-nucleon S-wave phase shifts and the deuteron form factor are calculated using this three member tower, and the results are compared to similar calculations using the proton ground state only. We conclude that the deuteron form factor is insensitive to the presence of excited states of the proton unless those states are of sufficiently low mass to produce strong inelasticities in $NN$ scattering channels.
On form factors of boundary changing operators
Bajnok, Zoltan
2015-01-01
We develop a form factor bootstrap program to determine the matrix elements of local, boundary condition changing operators. We propose axioms for these form factors and determine their solutions in the free boson and Lee-Yang models. The sudden change in the boundary condition, caused by an operator insertion, can be interpreted as a local quench and the form factors provide the overlap of any state before the quench with any outgoing state after the quench.
On form factors of boundary changing operators
Z. Bajnok
2016-04-01
Full Text Available We develop a form factor bootstrap program to determine the matrix elements of local, boundary condition changing operators. We propose axioms for these form factors and determine their solutions in the free boson and Lee–Yang models. The sudden change in the boundary condition, caused by an operator insertion, can be interpreted as a local quench and the form factors provide the overlap of any state before the quench with any outgoing state after the quench.
Baryon form factors: Model-independent results
Baryon form factors can be analyzed in a largely model-independent fashion in terms of two complementary approaches. These are chiral perturbation theory and dispersion relations. I review the status of dispersive calculations of the nucleon electromagnetic form factors in the light of new data. Then, I present the leading one-loop chiral perturbation theory analysis of the hyperon and the strange nucleon form factors. Open problems and challenges are also discussed
Soliton form factors from lattice simulations
Rajantie, Arttu
2010-01-01
The form factor provides a convenient way to describe properties of topological solitons in the full quantum theory, when semiclassical concepts are not applicable. It is demonstrated that the form factor can be calculated numerically using lattice Monte Carlo simulations. The approach is very general and can be applied to essentially any type of soliton. The technique is illustrated by calculating the kink form factor near the critical point in 1+1-dimensional scalar field theory. As expected from universality arguments, the result agrees with the exactly calculable scaling form factor of the two-dimensional Ising model.
Computational studies on nitratoethylnitramine (NENA), its tautomers and charged forms
An energetic material, nitratoethylnitramine (NENA), its tautomers and also its charged forms are considered quantum chemically, using various basis sets at the levels of ab initio and density functional theories (DFT). NENA has been found to be sensitive to negative charge development, resulting in rupture of O-NO2 bond. Also conformational and molecular dynamics (MD) studies have been performed on NENA. Various geometrical parameters, energies and infrared spectra have been obtained and discussed. Also, calculations indicate that s-cis conformation of NENA is slightly more stable than the s-trans and the tautomers of it have very comparable total energy values to NENA. On the other hand, on the basis of homolytic bond dissociation energies (BDE) for O-NO2 bond in the structures, it is clear that the presence of the tautomers in the bulk of NENA somewhat should decrease its sensitivity
Electromagnetic form factors of the nucleon
Schmieden, H.
2003-01-01
Elastic form factors provide information about the low energy structure of composite particles.Recent double polarization coincidence experiments significantly improved our knowledge of proton and neutron form factors. Recoil polarization measurements in the p(\\vec e, e' \\vec p) reaction proved that at momentum transfers above Q^2 \\simeq 1.5 (GeV/c)^2 the electric form factor of the proton falls significantly faster than the dipole expectation. The close--to--dipole shape at low Q^2 of the ne...
Form Factor and Boundary Contribution of Amplitude
Huang, Rijun; Feng, Bo
2016-01-01
The boundary contribution of an amplitude in the BCFW recursion relation can be considered as a form factor involving boundary operator and unshifted particles. At the tree-level, we show that by suitable construction of Lagrangian, one can relate the leading order term of boundary operators to some composite operators of N=4 super-Yang-Mills theory, then the computation of form factors is translated to the computation of amplitudes. We compute the form factors of these composite operators through the computation of corresponding double trace amplitudes.
Pseudoscalar meson form factors and decays
Dorokhov, A E
2011-01-01
In this communication we discuss few topics related with modern experimental data on the physics of light pseudoscalar mesons. It includes the contribution of the pseudoscalar mesons to the muon anomalous magnetic moment (AMM), $g-2$, the rare decays of light pseudoscalar mesons to lepton pair, the transition form factors of pseudoscalar mesons at large momentum transfer, the pion transversity form factor. Measuring the muon anomalous magnetic moment $g-2$ and the rare decays of light pseudoscalar mesons into lepton pair $P\\rightarrow l^{+}l^{-} $ serve as important test of the standard model. To reduce the theoretical uncertainty in the standard model predictions the data on the transition form factors of light pseudoscalar mesons play significant role. Recently new data on behavior of these form factors at large momentum transfer was supplied by the BABAR collaboration. Within the nonlocal chiral quark model it shown how to describe these data and how the meson distribution amplitude evolves as a function o...
Aleksan, R.; Yaouanc, A. Le; Oliver, L.; Pène, O; Raynal, J. -C.
1994-01-01
The heavy to light form factors in $B$ decays are discussed. Critical discussion of theoretical approaches is made with special emphasis on their failure to describe the $B \\to K^{(\\ast )}\\psi$ data.
Make Projects Small Form Factor PCs
Wessels, Duane
2006-01-01
Shoebox sized and smaller, small-form-factor PCs can pack as much computing muscle as a full-sized desktop computer. They consumer less power, have few or no moving parts, and are very quiet. Whether you plan to use one as a standalone PC or want to embed it in your next hacking project, a small-form-factor PC can be a lot of fun to build. Make Projects: Small Form Factor PCs is the only book available that shows you how to build small-form-factor PCs -- from kits and from scratch -- that are more interesting and more personalized than what a full-sized PC can give you. Included in the book
Separation energy dependence of hole form factors
Form factors of fragmented hole states are studied within the quasiparticle-phonon model, using the inhomogeneous equation method. The validity of this method is successfully checked by comparison with coupled equation solutions in schematic vibrational model cases. A systematic investigation of form factors is performed for neutron and proton hole states in the valence and first inner shells of 208Pb. Large fluctuations of form factor radii are observed for individual levels superimposed on a general increase with separation energy. Average characteristics are introduced for groups of levels, namely the mean form factors, summed source terms and correction potentials, and their behaviour is presented. The role of the relative values of the interaction radius parameter and binding well radius is discussed in detail. (orig.)
Spectral Content of Isoscalar Nucleon Form Factors
Hammer, H. -W.; Ramsey-Musolf, M. J.
1998-01-01
The nucleon strange vector and isoscalar electromagnetic form factors are studied using a spectral decomposition. The K\\bar{K} contribution to the electric and magnetic radii as well as the magnetic moment is evaluated to all orders in the strong interaction using an analytic continuation of experimental KN scattering amplitudes and bounds from unitarity. The relationship between non-resonant and resonant K\\bar{K} contributions to the form factors is demonstrated, and values for the vector an...
Nucleon electromagnetic form factors in two-flavour QCD
Capitani, S; Djukanovic, D; von Hippel, G; Hua, J; Knippschild, B Jäger B; Meyer, H B; Rae, T D; Wittig, H
2015-01-01
We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ans\\"atze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting the form factors directly to the expressions of covariant baryonic chiral effective field theory. The final results for the charge radii and magnetic moment from our lattice calculations include, for the first time, a full error budget. We find that our estimates are compatible with experimental results within their overall u...
Heavy-baryon weak form factors
It has recently been shown that hadrons containing a single heavy quark exhibit a new flavor-spin symmetry of QCD. We exploit this symmetry to obtain model-independent absolutely normalized predictions for some heavy-baryon weak form factors at zero recoil as well as relations between such form factos at nonzero recoil. (orig.)
Hadronic Form Factors and Perturbative QCD
Sterman, George F; Sterman, George; Stoler, Paul
1997-01-01
The electromagnetic form factors of hadrons at large momentum transfer have been the subject of intense theoretical and experimental scrutiny over the past two decades, yet there is still not a universally-accepted framework for their description. This review is a synopsis of their current status at large momentum transfer. The basic theoretical approaches to form factors at large momentum transfer are developed, emphasizing the valence quark and Feynman (soft) pictures. The discussion includes the relation of these descriptions to the parton model, as well as the roles of factorization, evolution, Sudakov resummation and QCD sum rules. This is followed by a discussion of the experimental status of pion and nucleon elastic form factors and resonance production amplitudes in the light of recent data, highlighting the successes and shortcomings of various theoretical proposals.
Two-body form factors at high Q2
The charge form factor of a scalar deuteron at high momentum transfer is examined in a model employing scalar nucleons and mesons. With an eye toward establishing consistency criteria for more realistic calculations, several aspects of the model are examined in detail: the role of nucleon and meson singularities in the one-loop impulse diagram, the role of positive-and negative-energy nucleons, and the relationship to time-ordered perturbation theory. It is found that at large Q2 (1) the form factor is dominated by a term in which the spectator nucleon is on the mass shell, and (2) the meson singularity structure of the d-n-p vertex function is unimportant in determining the overall high-Q2 behaviour of the form factor
Paramagnetic form factors from itinerant electron theory
Elastic neutron scattering experiments performed over the past two decades have provided accurate information about the magnetic form factors of paramagnetic transition metals. These measurements have traditionally been analyzed in terms of an atomic-like theory. There are, however, some cases where this procedure does not work, and there remains the overall conceptual problem of using an atomistic theory for systems where the unpaired-spin electrons are itinerant. We have recently developed computer codes for efficiently evaluating the induced magnetic form factors of fcc and bcc itinerant electron paramagnets. Results for the orbital and spin contributions have been obtained for Cr, Nb, V, Mo, Pd and Rh based on local density bands. By using calculated spin enhancement parameters, we find reasonable agreement between theory and neutron form factor data. In addition, these zero parameter calculations yield predictions for the bulk susceptibility on an absolute scale which are in reasonable agreement with experiment in all treated cases except palladium
Form factors for semileptonic D decays
Palmer, Teresa
2013-01-01
We study the form factors for semileptonic decays of $D$-mesons. That is, we consider the matrix element of the weak left-handed quark current for the transitions $D \\rightarrow P$ and $D \\rightarrow V$, where $P$ and $V$ are light pseudoscalar or vector mesons, respectively. Our motivation to perform the present study of these form factors are future calculations of non-leptonic decay amplitudes. We consider the form factors within a class of chiral quark models. Especially, we study how the Large Energy Effective Theory (LEET) limit works for $D$-meson decays. Compared to previous work we also introduce light vector mesons $V = \\rho, K^*,...$ within chiral quark models. In order to determine some of the parameters in our model, we use existing data and results based on some other methods like lattice calculations, light-cone sum rules, and heavy-light chiral perturbation theory. We also obtain some predictions within our framework.
Hadronic form factors in kaon photoproduction
Syukurilla, L., E-mail: tmart@fisika.ui.ac.id; Mart, T., E-mail: tmart@fisika.ui.ac.id [Department Fisika, FMIPA, Universitas Indonesia, Depok, 164242 (Indonesia)
2014-09-25
We have revisited the effect of hadronic form factors in kaon photoproduction process by utilizing an isobaric model developed for kaon photoproduction off the proton. The model is able to reproduce the available experimental data nicely as well as to reveal the origin of the second peak in the total cross section, which was the main source of confusion for decades. Different from our previous study, in the present work we explore the possibility of using different hadronic form factors in each of the KΛN vertices. The use of different hadronic form factors, e.g. dipole, Gaussian, and generalized dipole, has been found to produce a more flexible isobar model, which can provide a significant improvement in the model.
Color-kinematic duality for form factors
Boels, Rutger H.; Kniehl, Bernd A.; Tarasov, Oleg V.; Yang, Gang [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2012-12-15
Recently a powerful duality between color and kinematics has been proposed for integrands of scattering amplitudes in quite general gauge theories. In this paper the duality proposal is extended to the more general class of gauge theory observables formed by form factors. After a discussion of the general setup the existence of the duality is verified in two and three loop examples in four dimensional maximally supersymmetric Yang-Mills theory which involve the stress energy tensor multiplet. In these cases the duality reproduces known results in a particularly transparent and uniform way. As a non-trivial application we obtain a very simple form of the integrand of the four-loop two-point (Sudakov) form factor which passes a large set of unitarity cut checks.
Color-kinematic duality for form factors
Recently a powerful duality between color and kinematics has been proposed for integrands of scattering amplitudes in quite general gauge theories. In this paper the duality proposal is extended to the more general class of gauge theory observables formed by form factors. After a discussion of the general setup the existence of the duality is verified in two and three loop examples in four dimensional maximally supersymmetric Yang-Mills theory which involve the stress energy tensor multiplet. In these cases the duality reproduces known results in a particularly transparent and uniform way. As a non-trivial application we obtain a very simple form of the integrand of the four-loop two-point (Sudakov) form factor which passes a large set of unitarity cut checks.
Aerodynamic Performance of Low Form Factor Spoilers
Harley, Christopher Donald
2011-01-01
The development of low form factor flight controls is driven by the benefits of reducingthe installed volume of the control device and/or minimising the change in external geometry, with particular application to flight control of low observable aircraft. Forthis work, the term „low form factor‟ does not refer to the aspect ratio of the controldevice rather the overall installed volume. This thesis compares the use of low formfactor geometric and f...
Form Factors of Kaon Semileptonic Decays
Afanasiev, A M; Afanasev, Andrei
1996-01-01
A calculation of the semi--leptonic decays of the kaon ($K_{l3}$) is presented. The results are direct predictions of a covariant model of the pion and kaon introduced earlier by Ito, Buck, Gross. The weak form factors for $K_{l3}$ are predicted with absolutely no parameter adjustments of the model. We obtained for the form factor parameters: $f_-(q^2=m_l^2)/f_+(q^2=m_l^2)=-0.28$ and $\\lambda_+$= 0.028, both within experimental error bars. Connections of this approach to heavy quark symmetry will also be discussed.
Nucleon electromagnetic form factors with Wilson fermions
The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Nucleon electromagnetic form factors with Wilson fermions
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)
2007-10-15
The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Dispersion-theoretical analysis of the nucleon electromagnetic form factors
The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the ππ, K anti K and the ρπ continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)
From form factors to generalized parton distributions
Diehl, Markus
2013-06-15
I present an extraction of generalized parton distributions from selected data on the electromagnetic nucleon form factors. The extracted distributions can in particular be used to quantify the contribution to the proton spin from the total angular momentum carried by valence quarks, as well as their transverse spatial distribution inside the proton.
Chiral analysis of baryon form factors
This work presents an extensive theoretical investigation of the structure of the nucleon within the standard model of elementary particle physics. In particular, the long range contributions to a number of various form factors parametrizing the interactions of the nucleon with an electromagnetic probe are calculated. The theoretical framework for those calculations is chiral perturbation theory, the exact low energy limit of Quantum Chromo Dynamics, which describes such long range contributions in terms of a pion-cloud. In this theory, a nonrelativistic leading one loop order calculation of the form factors parametrizing the vector transition of a nucleon to its lowest lying resonance, the Δ, a covariant calculation of the isovector and isoscalar vector form factors of the nucleon at next to leading one loop order and a covariant calculation of the isoscalar and isovector generalized vector form factors of the nucleon at leading one loop order are performed. In order to perform consistent loop calculations in the covariant formulation of chiral perturbation theory an appropriate renormalization scheme is defined in this work. All theoretical predictions are compared to phenomenology and results from lattice QCD simulations. These comparisons allow for a determination of the low energy constants of the theory. Furthermore, the possibility of chiral extrapolation, i.e. the extrapolation of lattice data from simulations at large pion masses down to the small physical pion mass is studied in detail. Statistical as well as systematic uncertainties are estimated for all results throughout this work. (orig.)
From form factors to generalized parton distributions
I present an extraction of generalized parton distributions from selected data on the electromagnetic nucleon form factors. The extracted distributions can in particular be used to quantify the contribution to the proton spin from the total angular momentum carried by valence quarks, as well as their transverse spatial distribution inside the proton.
Form factors from unitarity and analyticity
The report demonstrates how the calculation of form factors is performed within the S-matrix framework. Two examples are considered. A simple model of composite particles is studied in order to reveal the connection between the binding energy of the particle and its structure. A particular contribution to the magnetic moment of the nucleon is constructed from mass shell triodes
Nucleon and Elastic and Transition Form Factors
Segovia, Jorge; Cloët, Ian C.; Roberts, Craig D.; Schmidt, Sebastian M.
2014-12-01
We present a unified study of nucleon and elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector vector contact-interaction. The comparison emphasises that experiments are sensitive to the momentum dependence of the running couplings and masses in the strong interaction sector of the Standard Model and highlights that the key to describing hadron properties is a veracious expression of dynamical chiral symmetry breaking in the bound-state problem. Amongst the results we describe, the following are of particular interest: possesses a zero at Q 2 = 9.5 GeV2; any change in the interaction which shifts a zero in the proton ratio to larger Q 2 relocates a zero in to smaller Q 2; there is likely a value of momentum transfer above which ; and the presence of strong diquark correlations within the nucleon is sufficient to understand empirical extractions of the flavour-separated form factors. Regarding the -baryon, we find that, inter alia: the electric monopole form factor exhibits a zero; the electric quadrupole form factor is negative, large in magnitude, and sensitive to the nature and strength of correlations in the Faddeev amplitude; and the magnetic octupole form factor is negative so long as rest-frame P- and D-wave correlations are included. In connection with the transition, the momentum-dependence of the magnetic transition form factor, , matches that of once the momentum transfer is high enough to pierce the meson-cloud; and the electric quadrupole ratio is a keen measure of diquark and orbital angular momentum correlations, the zero in which is obscured by meson-cloud effects on the domain currently accessible to experiment. Importantly, within each framework, identical propagators and vertices are sufficient to describe all properties discussed herein. Our
The Mainz high-precision proton form factor measurement
Bernauer, Jan
2011-04-01
Form factors offer a direct approach to fundamental properties of the nucleons like the radius and charge distribution. Renewed interest was stirred up by the 5 sigma discrepancy between a recent determination of the proton radius from the Lamb shift in muonic hydrogen and preceding electron scattering results. The low-q shape of the form factors might also contain a direct signal of a pion cloud around the nucleus and is a strong test of hadron models. In my talk, I will discuss the electron scattering experiment performed with the 3-spectrometer-facility of the A1 collaboration at MAMI in Mainz, Germany. The data set covers the Q2-range from 0.004 to 1 (GeV / c) 2 and includes about 1400 separate cross section measurements, spanning the range of scattering angles from below 20° to above 120° at six beam energies between 180 and 855 MeV, with statistical uncertainties below 0.4%. The 3-spectrometer-setup allowed for a simultaneous monitoring of the luminosity and overlapping and redundant measurements of the cross section to achieve stringent control over systematic uncertainties. Beam stabilization systems and redundant current measurements further limit systematic effects. The measured cross sections were analyzed with the standard Rosenbluth separation technique and by employing direct fits of a large set of form factor models. The high redundancy of the data set allowed us to extract the form factors up to 0.6 (GeV / c) 2 with very small uncertainties and to give a new, precise value for the proton radius from electron scattering. From the form factors, the charge distribution and Zemach moments were calculated. The latter constitute important input for the theoretical corrections of the muonic Lamb shift experiment. However, the revised values can not explain the discrepancy. Further possible explanations include higher order QED-corrections, vacuum effects or even physics beyond the standard model.
Perturbative QCD and electromagnetic form factors
We calculate nucleon magnetic form factors using perturbative QCD for several distribution amplitudes including a general one given in terms of Appell polynomials. We find that the magnitude and sign of both nucleon magnetic form factors can be explained within perturbative QCD. The observed normalization of G/sub Mp/ requires that the distribution amplitude be broader than its superhigh momentum transfer limit, and the G/sub Mn//G/sub Mp/ data may require the distribution amplitude to be asymmetric, in accord with distribution amplitudes derived from QCD sum rules. Some speculation as to how an asymmetric distribution amplitude can come about is offered. Finally, we show that the soft contributions corresponding to the particular distribution amplitudes we use need not be bigger than the data. 16 refs., 6 figs
Nucleon form factors. Probing the chiral limit
The electromagnetic form factors provide important hints for the internal structure of the nucleon and continue to be of major interest for experimentalists. For an intermediate range of momentum transfers the form factors can be calculated on the lattice. However, reliability of the results is limited by systematic errors due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet unaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with Nf=2, non-perturbatively O(a)-improved Wilson fermions at very small quark masses down to 340 MeV pion mass, where we start to probe the relevant quark mass region. (orig.)
Form factors in theories with gravity duals
The prescription for calculating form factors at strong coupling in the theories with gravity duals was found in [L. F. Alday, J. Maldacena, JHEP 0711, 068 (2007). (arXiv:0710.1060 [hep-th])]. The use of integrability for similar objects culminated in the paper [L. F. Alday, J. Maldacena, A. Sever, P. Vieira, J. Phys. A A43, 485401 (2010). (arXiv:1002.2459 [hep-th])] where the Y-system for scattering amplitudes was found. In the paper [J. Maldacena, A. Zhiboedov, JHEP 1011, 104 (2010). (arXiv:1009.1139 [hep-th])] authors extended this scenario to the case of form factors in AdS3 kinematics. Some exact solutions were present. Here we briefly review the results of [J. Maldacena, A. Zhiboedov, JHEP 1011, 104 (2010). (arXiv:1009.1139 [hep-th])] and later developments of the problem.
Form factors of heavy mesons in QCD
Logarithmic corrections to form factors of mesons built from heavy quarks are dirived in the framework of quantum chromodynamics. The reactions e+e- → etasub(c)γ and H → J/PSIγ are considered as an example. A novel feature as compared to the well studied problem of the pion form factor is the existence of the transformations between the quark-antiquark state c anti c and the gluonic one. O(αsub(s)) corrections are calculated exactly. An infinite series of the leading logarithmic terms is summed up with the help of the operator technique. Apart from already known results for quark operators some new results referring to gluon operators and their mixing with the quark ones are used. Two alternative derivations of the multiplicatively renormalizable operators are given. The first one reduces to a direct computation of the mixing matrix and its diagonalization, the second derivation is based on conformal symmetry considerations
Baryon transition form factors at the pole
Tiator, L; Workman, R L; Hadžimehmedović, M; Osmanović, H; Omerović, R; Stahov, J; Švarc, A
2016-01-01
Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.
Nucleon form factors. Probing the chiral limit
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Physik-Dept.; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)
2006-10-15
The electromagnetic form factors provide important hints for the internal structure of the nucleon and continue to be of major interest for experimentalists. For an intermediate range of momentum transfers the form factors can be calculated on the lattice. However, reliability of the results is limited by systematic errors due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet unaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with Nf=2, non-perturbatively O(a)-improved Wilson fermions at very small quark masses down to 340 MeV pion mass, where we start to probe the relevant quark mass region. (orig.)
CALCULATION OF KAON ELECTROMAGNETIC FORM FACTOR
WANG ZHI-GANG; WAN SHAO-LONG; WANG KE-LIN
2001-01-01
The kaon meson electromagnetic form factor is calculated in the framework of coupled Schwinger-Dyson and Bethe-Salpeter formulation in simplified impulse approximation (dressed vertex) with modified fiat-bottom potential,which is a combination of the flat-bottom potential taking into consideration the infrared and ultraviolet asymptotic behaviours of the effective quark-gluon coupling. All the numerical results give a good fit to experimental values.
Elastic form factors at higher CEBAF energies
Petratos, G.G. [Kent State Univ., OH (United States)
1994-04-01
The prospects for elastic scattering from few body systems with higher beam energies at CEBAF is presented. The deuteron and{sup 3}He elastic structure functions A(Q{sup 2}) can be measured at sufficiently high momentum transfers to study the transition between the conventional meson-nucleon and the constituent quark-gluon descriptions. Possible improvements in the proton magnetic form factor data are also presented.
FORM FACTOR MEASUREMENT IN FERROMAGNETIC COBALT ORTHOVANADATE
Fuess, H.; Müller, R.; Schwabe, D.; Tasset, F.
1982-01-01
Single crystals of cobalt orthovanadate Co3V2O8 were grown by the Czochralski method. The substance is orthorhombic with two different crystallographic sites for the cobalt ions. Magnetization measurements in fields up to 15 Tesla show pronounced magnetic anisotropy and a ferromagnetic ordering below Tc = 6.3 (3)K. Neutron powder pattern and polarized measurements on a single crystal revealed different magnetic moments for the two cobalt ions. The analysis of the magnetic form factors gave th...
Effects of the d-state quarks on the nucleon electric form factors
Considering the d-orbital excitation of a quark in the bag, we calculate the nucleon electric form factors in the cloudy bag model. In these calculations, we have taken into account the πNN, πΔN and πγ form factors though neglecting the c.m. correction. It turns out that the neutron charge form factor is very sensitive to the d-state quark admixture in the overall region of the momentum transfer but the proton charge form factor remains unchanged. Taking the d-state quark admixture in the intermediate state baryons, we can obtain the nucleon rms radii in remarkable agreement with the experimental values. We also investigate the roles of Δ particles in the nucleon charge form factors. (author). 20 refs, 10 figs
Towards a four-loop form factor
Boels, Rutger; Yang, Gang
2016-01-01
The four-loop, two-point form factor contains the first non-planar correction to the lightlike cusp anomalous dimension. This anomalous dimension is a universal function which appears in many applications. Its planar part in N = 4 SYM is known, in principle, exactly from AdS/CFT and integrability while its non-planar part has been conjectured to vanish. The integrand of the form factor of the stress-tensor multiplet in N = 4 SYM including the non-planar part was obtained in previous work. We parametrise the difficulty of integrating this integrand. We have obtained a basis of master integrals for all integrals in the four-loop, two-point class in two ways. First, we computed an IBP reduction of the integrand of the N = 4 form factor using massive computer algebra (Reduze). Second, we computed a list of master integrals based on methods of the Mint package, suitably extended using Macaulay2 / Singular. The master integrals obtained in both ways are consistent with some minor exceptions. The second method indic...
Magnetic form factor studies of actinide compounds
Some results obtained at ILL on Actinide compound form factors are reviewed. In the paramagnetic NpO2 single crystal (5mg), an induced magnetic moment of 0.07μsub(B) was obtained at 4.2K (4.6T). In the ferromagnetic phase of NpAs2 single crystal (0.2mm3), the magnetic moment (1.46μsub(B)/Np atom) has been found fixed along the [001] direction. In both cases, the Np form factors fit satisfactorily the Np4+ form factor calculated with relativistic atomic wave functions. The Fermi length for Np was deduced (b(Np) = 1.015(15)10-12cm). In the paramagnetic Laves phase UNi2 compound, equally small moments are observed on U atom (0.013(1)μsub(B)) and on Ni atom (0.016(1)μsub(B)) confirming important changes in 3d band structure of Ni by hybridization with U electrons
Sine-Gordon breather form factors and quantum field equations
Using the results of previous investigations on sine-Gordon form factors, exact expressions of all breather matrix elements are obtained for several operators: all powers of the fundamental Bose field, general exponentials of it, the energy-momentum tensor and all higher currents. Formulae for the asymptotic behaviour of bosonic form factors are presented which are motivated by Weinberg's power counting theorem in perturbation theory. It is found that the quantum sine-Gordon field equation holds, and an exact relation between the 'bare' mass and the renormalized mass is obtained. Also a quantum version of a classical relation for the trace of the energy-momentum is proved. The eigenvalue problem for all higher conserved charges is solved. All results are compared with perturbative Feynman graph expansions and full agreement is found
Longitudinal electron scattering form factors for 54,56Fe
Salman, A. D.; Kadhim, D. R.
2014-09-01
In this paper, inelastic longitudinal electron scattering form factors for C2 transition have been studied in 54Fe and 56Fe with the aid of shell model calculations. The GX1 effective interaction for the fp-shell is used with the nucleon-nucleon realistic interaction Michigan three-range Yukawa and Modified surface delta interaction as a two-body interactions. The core polarization effects is taken into account through the first-order perturbation theory with the effective charge, which is taken to the proton and the neutron. The effective charge along with the core effects up to 6 ℏw enhanced the calculation very well and improving good agreement with the experimental data.
Baryon octet electromagnetic form factors in a confining NJL model
Carrillo-Serrano, Manuel E.; Bentz, Wolfgang; Cloët, Ian C.; Thomas, Anthony W.
2016-08-01
Electromagnetic form factors of the baryon octet are studied using a Nambu-Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that rEp quark masses.
Baryon octet electromagnetic form factors in a confining NJL model
Carrillo-Serrano, Manuel E.; Bentz, Wolfgang; Cloët, Ian C.; Thomas, Anthony W.
2016-08-01
Electromagnetic form factors of the baryon octet are studied using a Nambu-Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that rEp based on the dressed quark masses.
Higgs form factors in associated production
We further develop a form factor formalism characterizing anomalous interactions of the Higgs-like boson (h) to massive electroweak vector bosons (V) and generic bilinear fermion states (F). Employing this approach, we examine the sensitivity of pp→F→Vh associated production to physics beyond the Standard Model, and compare it to the corresponding sensitivity of h→VF decays. We discuss how determining the Vh invariant-mass distribution in associated production at LHC is a key ingredient for model-independent determinations of hVF interactions. We also provide a general discussion about the power counting of the form factor’s momentum dependence in a generic effective field theory approach, analyzing in particular how effective theories based on a linear and non-linear realization of the SU(2)L×U(1)Y gauge symmetry map into the form factor formalism. We point out how measurements of the differential spectra characterizing h→VF decays and pp→F→Vh associated production could be the leading indication of the presence of a nonlinear realization of the SU(2)L×U(1)Y gauge symmetry
Electric Form Factor of the Neutron
Feuerbach, Robert
2007-10-13
Recent polarization-based precision measurements of the nucleons' elastic electric form factors have led to surprising results. The measurement of the ratio of the proton's electromagnetic form factors, $\\mu_p G_E^p/G_M^p$, was found to drop nearly linearly with $Q^2$ out to at least $5 \\mathrm{GeV}^2$, inconsistent with the older Rosenbluth-type experiments. A recent measurement of $G_E^n$, the neutron's electric form-factor saw $G_E^n$ does not fall off as quickly as commonly expected up to $Q^2 \\approx 1.5 \\mathrm{GeV}^2$. Extending this study, a precision measurement of $G_E^n$ up to $Q^2=3.5 \\mathrm{GeV}^2$ was completed in Hall A at Jefferson Lab. The ratio $G_E^n/G_M^n$ was measured through the beam-target asymmetry $A_\\perp$ of electrons quasi-elastically scattered off polarized neutrons in the reaction ${}^{3}\\overrightarrow{He}(\\overrightarrow{e},e' n)$. The experiment took full advantage of the electron beam, recent target developments, as well as two detectors new to Jefferson Lab. The measurement used the accelerator's 100\\% duty-cycle high-polarization (typically 84\\%) electron beam and a new, hybrid optically-pumped polarized ${}^{3}\\overrightarrow{He}$ target which achieved in-beam polarizations in excess of 50\\%. A medium acceptance (80msr) open-geometry magnetic spectrometer (BigBite) detected the scattered electron, while a geometrically matched neutron detector observed the struck neutron. Preliminary results from this measurement will be discussed and compared to modern calculations of $G_E^n$.
Neutron electric form factor via recoil polarimetry
The ratio of the electric to the magnetic form factor of the neutron, GEn/GMn, was measured via recoil polarimetry from the quasielastic d((pol-e),e(prime)(pol-n)p) reaction at three values of Q2 [viz., 0.45, 1.15 and 1.47 (GeV/c)2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that GEn follows the Galster parameterization up to Q2 = 1.15 (GeV/c)2 and appears to rise above the Galster parameterization at Q2 = 1.47 (GeV/c)2
Neutron electric form factor via recoil polarimetry
Madey, Richard; Semenov, Andrei; Taylor, Simon; Aghalaryan, Aram; Crouse, Erick; MacLachlan, Glen; Plaster, Bradley; Tajima, Shigeyuki; Tireman, William; Yan, Chenyu; Ahmidouch, Abdellah; Anderson, Brian; Asaturyan, Razmik; Baker, O; Baldwin, Alan; Breuer, Herbert; Carlini, Roger; Christy, Michael; Churchwell, Steve; Cole, Leon; Danagoulian, Samuel; Day, Donal; Elaasar, Mostafa; Ent, Rolf; Farkhondeh, Manouchehr; Fenker, Howard; Finn, John; Gan, Liping; Garrow, Kenneth; Gueye, Paul; Howell, Calvin; Hu, Bitao; Jones, Mark; Kelly, James; Keppel, Cynthia; Khandaker, Mahbubul; Kim, Wooyoung; Kowalski, Stanley; Lung, Allison; Mack, David; Manley, D; Markowitz, Pete; Mitchell, Joseph; Mkrtchyan, Hamlet; Opper, Allena; Perdrisat, Charles; Punjabi, Vina; Raue, Brian; Reichelt, Tilmann; Reinhold, Joerg; Roche, Julie; Sato, Yoshinori; Seo, Wonick; Simicevic, Neven; Smith, Gregory; Stepanyan, Samuel; Tadevosyan, Vardan; Tang, Liguang; Ulmer, Paul; Vulcan, William; Watson, John; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yan, Chen; Yang, Seunghoon; Yuan, Lulin; Zhang, Wei-Ming; Zhu, Hong Guo; Zhu, Xiaofeng
2003-05-01
The ratio of the electric to the magnetic form factor of the neutron, G_En/G_Mn, was measured via recoil polarimetry from the quasielastic d({pol-e},e'{pol-n)p reaction at three values of Q^2 [viz., 0.45, 1.15 and 1.47 (GeV/c)^2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G_En follows the Galster parameterization up to Q^2 = 1.15 (GeV/c)^2 and appears to rise above the Galster parameterization at Q^2 = 1.47 (GeV/c)^2.
Transaction charges allocation using sensitivity factor methodology
S Charles Raja; J Jeslin Drusila Nesamalar; P Venkatesh
2014-04-01
Deregulation of the electricity industry aims for creating a competitive market to trade electricity, which generates a host of new technical challenges among market participants and power system researchers. One of the major challenges is to establish a cost for system services on a nondiscriminatory basis. In this paper, the evaluation of transmission cost is proposed based on sensitivity factor method like AC Power Transfer Distribution Factor (ACPTDF) method for bilateral and multilateral transactions. The transacted power is estimated by ACPTDF method for each transaction. The advantages of the proposed methodology are demonstrated on a sample 6 bus, IEEE 30 bus and Indian Utility 69 bus systems. The solution provides a better pricing approach that can impact a more reasonable economic indicator for transmission cost.
Helium Compton Form Factor Measurements at CLAS
Voutier, Eric
2013-01-01
The distribution of the parton content of nuclei, as encoded via the generalized parton distributions (GPDs), can be accessed via the deeply virtual Compton scattering (DVCS) process contributing to the cross section for leptoproduction of real photons. Similarly to the scattering of light by a material, DVCS provides information about the dynamics and the spatial structure of hadrons. The sensitivity of this process to the lepton beam polarization allows to single-out the DVCS amplitude in terms of Compton form factors that contain GPDs information. The beam spin asymmetry of the $^4$He($\\vec {\\mathrm e}$,e$' \\gamma ^4$He) process was measured in the experimental Hall B of the Jefferson Laboratory to extract the real and imaginary parts of the twist-2 Compton form factor of the $^4$He nucleus. The experimental results reported here demonstrate the relevance of this method for such a goal, and suggest the dominance of the Bethe-Heitler amplitude to the unpolarized process in the kinematic range explored by th...
Recent results on neutron electromagnetic form factors
The magnetic form factor Gmn was measured via the ratio of cross sections R = σD(e,e'n)/σD(e,e'p) on the deuteron in the q2-range 0.07-0.90 (GeV/c)2 with high precision at the Mainz Microtron. In the ratio R the dependence on the deuteron structure cancels and the sensitivity to meson exchange currents and final state interactions is small. The efficiency of the detector was measured at the high intensity neutron beam of Paul Scherrer Institute. We have also determined the electric form factor of the neutron Gen via H-vector,(e-vector,e'n) in quasi-elastic kinematics at 0.67 (GeV/c)2. Gen is extracted from the asymmetry ratio Aperpendicular/Aparallel which is measured with target spin perpendicular and parallel to the momentum transfer. Due to the dominance of the interference term Gmn Gen this method provides a high sensitivity to the small quantity Gen
Measurements of Hadron Form Factors at BESIII
Morales, Cristina Morales
2016-01-01
BEPCII is a symmetric $e^+e^-$-collider located in Beijing running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows the BESIII-experiment to measure hadron form factors both from direct $e^+e^-$-annihilation and from initial state radiation processes. In this paper, results on $e^+e^-\\rightarrow p\\bar{p}$ based on data collected by BESIII in 2011 and 2012 are presented. We also present preliminary results on $e^+e^-\\rightarrow \\Lambda \\bar{\\Lambda}$ based on the same data samples at 4 center-of-mass energies. BESIII results obtained from $e^+e^-\\rightarrow \\pi^+\\pi^-$ using the initial state radiation technique at the center-of-mass energy of 3.773 GeV are also summarized. Finally, expectations on the measurement of baryon electromagnetic form factors from the BESIII high luminosity energy scan in 2015 and from initial state radiation processes at different center-of-mass energies are also reported.
Pion Form Factor in Chiral Limit of Hard-Wall AdS/QCD Model
Anatoly Radyushkin; Hovhannes Grigoryan
2007-12-01
We develop a formalism to calculate form factor and charge density distribution of pion in the chiral limit using the holographic dual model of QCD with hard-wall cutoff. We introduce two conjugate pion wave functions and present analytic expressions for these functions and for the pion form factor. They allow to relate such observables as the pion decay constant and the pion charge electric radius to the values of chiral condensate and hard-wall cutoff scale. The evolution of the pion form factor to large values of the momentum transfer is discussed, and results are compared to existing experimental data.
Holography, chiral Lagrangian and form factor relations
Zuo, Fen
2013-01-01
We perform a detailed study of mesonic properties in a class of holographic models of QCD, which is described by the Yang-Mills plus Chern-Simons action. By decomposing the 5 dimensional gauge field into resonances and integrating out the massive ones, we reproduce the Chiral Perturbative Theory Lagrangian up to ${\\cal O}(p^6)$ and obtain all the relevant low energy constants (LECs). The numerical predictions of the LECs show minor model dependence, and agree reasonably with the determinations from other approaches. Interestingly, various model-independent relations appear among them. Some of these relations are found to be the large-distance limits of universal relations between form factors of the anomalous and even-parity sectors of QCD.
Measurement of the neutron magnetic form factor
The ratio of neutron and proton yields at quasifree kinematics was measured for the reactions 2H(e,e'n) and 2H(e,e'p) at momentum transfers Q2=0.125, 0.255, 0.417, and 0.605(GeV/c)2, detecting the neutron and the proton simultaneously in the same scintillator array. The neutron detection efficiency was measured in situ with the 1H(γ,π+)n reaction. From this the ratio R of 2H(e,e'n) and 2H(e,e'p) cross sections was determined and used to extract the neutron magnetic form factor GnM in a model insensitive approach, resulting in an inaccuracy between 2.1% and 3.3% in GnM
Elastic and Transition Form Factors in DSEs
Segovia, Jorge
2016-06-01
A symmetry preserving framework for the study of continuum quantum chromodynamics (QCD) is obtained from a truncated solution of the QCD equations of motion or QCD's Dyson-Schwinger equations (DSEs). A nonperturbative solution of the DSEs enables the study of, e.g., hadrons as composites of dressed-quarks and dressed-gluons, the phenomena of confinement and dynamical chiral symmetry breaking, and therefrom an articulation of any connection between them. It is within this context that we present a unified study of Nucleon, Delta and Roper elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector ⊗ vector contact-interaction.
Elastic and Transition Form Factors in DSEs
Segovia, Jorge
2016-01-01
A symmetry preserving framework for the study of continuum Quantum Chromodynamics (QCD) is obtained from a truncated solution of the QCD equations of motion or QCD's Dyson-Schwinger equations (DSEs). A nonperturbative solution of the DSEs enables the study of, e.g., hadrons as composites of dressed-quarks and dressed-gluons, the phenomena of confinement and dynamical chiral symmetry breaking (DCSB), and therefrom an articulation of any connection between them. It is within this context that we present a unified study of Nucleon, Delta and Roper elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector$\\,\\otimes\\,$vector contact-interaction.
Iodine ions of high charge states are observed upon irradiation of methyl iodide clusters with an intense femtosecond laser pulse. All signals from multicharged ions exhibit a peak splitting in the time-of-flight mass spectra, indicating their origin from a Coulomb explosion process. These main peaks are accompanied by smaller peaks attributed to field ionization of highly charged species in the ion optics of the TOF mass spectrometer. It is shown that highly charged atomic ions formed from Coulomb explosion, upon interaction with electric field close to the mesh, can lose another electron leading to the formation of even higher charged species. The observation of this charge stripping process is evidence for the formation of highly excited ions in the course of the Coulomb explosion process, providing new insights into the mechanisms of femtosecond ionization involving multi-electron loss. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
The Dirac form factor predicts the Pauli form factor in the Endpoint Model
Dagaonkar, Sumeet K.; Jain, Pankaj; Ralston, John P.
2016-07-01
We compute the momentum-transfer dependence of the proton Pauli form factor F2 in the Endpoint overlap Model. We find the model correctly reproduces the scaling of the ratio of F2 with the Dirac form factor F1 observed at the Jefferson Laboratory. The calculation uses the leading-power, leading-twist Dirac structure of the quark light-cone wave function and the same endpoint dependence previously determined from the Dirac form factor F1. There are no parameters and no adjustable functions in the Endpoint Model's prediction for the scaling behavior of F2. The model's predicted momentum dependence of the ratio F2(Q2)/F1(Q2) is quite insensitive to the endpoint wave function, which explains why the observed ratio scales like 1 / Q down to rather low momentum transfers. We also fit the magnitude of this ratio by adjusting the parameters of the wave function. The Endpoint Model appears to be the only comprehensive model consistent with all form factor information as well as reproducing fixed-angle proton-proton scattering at large momentum transfer. Any one of the processes is capable of predicting the others.
Flavor decomposition of the nucleon electromagnetic form factors at low Q2
Qattan, I. A.; Arrington, J.; Alsaad, A.
2015-06-01
Background: The spatial distribution of charge and magnetization within the proton is encoded in the elastic form factors. These have been precisely measured in elastic electron scattering, and the combination of proton and neutron form factors allows for the separation of the up- and down-quark contributions. Purpose: In this work, we extract the proton and neutron form factors from worldwide data with an emphasis on precise new data covering the low-momentum region, which is sensitive to the large-scale structure of the nucleon. From these, we separate the up- and down-quark contributions to the proton form factors. Method: We combine cross section and polarization measurements of elastic electron-proton scattering to separate the proton form factors and two-photon exchange (TPE) contributions. We combine the proton form factors with parametrization of the neutron form factor data and uncertainties to separate the up- and down-quark contributions to the proton's charge and magnetic form factors. Results: The extracted TPE corrections are compared to previous phenomenological extractions, TPE calculations, and direct measurements from the comparison of electron and positron scattering. The flavor-separated form factors are extracted and compared to models of the nucleon structure. Conclusions: With the inclusion of the precise new data, the extracted TPE contributions show a clear change of sign at low Q2, which is necessary to explain the high-Q2 form factor discrepancy while being consistent with the known Q2→0 limit. We find that the new Mainz data yield a significantly different result for the proton magnetic form factor and its flavor-separated contributions. We also observe that the rms radius of both the up- and down-quark distributions are smaller than the rms charge radius of the proton.
Explicit boundary form factors: The scaling Lee–Yang model
Hollo, L. [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics, P.O.B. 49, H-1525 Budapest 114 (Hungary); Laczko, Z.B. [Roland Eötvös University, Pázmány Péter sétány 1/A, 1117 Budapest (Hungary); Bajnok, Z. [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics, P.O.B. 49, H-1525 Budapest 114 (Hungary)
2014-09-15
We provide explicit expressions for boundary form factors in the boundary scaling Lee–Yang model for operators with the mildest ultraviolet behavior for all integrable boundary conditions. The form factors of the boundary stress tensor take a determinant form, while the form factors of the boundary primary field contain additional explicit polynomials.
Baryon Octet Electromagnetic Form Factors in a confining NJL model
Carrillo-Serrano, Manuel E; Cloët, Ian C; Thomas, Anthony W
2016-01-01
Electromagnetic form factors of the baryon octet are studied using a Nambu--Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result $r_{E}^p < r_{E}^{\\Sigma^+}$ and $|r_{E}^n| < |r_{E}^{\\Xi^0}|$, whereas the magnetic radii have a pattern largely consistent with a naive expectation based on the dressed quark masses.
Measurement of the $\\Lambda_{b}^{0}$ Decay Form Factor
Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crawley, B; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, Borut P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zinchenko, A I; Zupan, M
2004-01-01
The form factor of Lambda_b^0 baryons is estimated using 3.46 10^6 hadronic Z decays collected by the DELPHI experiment between 1992 and 1995. Charmed Lambda_c^+ baryons fully reconstructed in the pK-pi+, pK0_S, and Lambda pi+pi+pi- modes, are associated to a lepton with opposite charge in order to select Lambda_b^0 -> Lambda_c^+ l^- anti-nu_l decays. From a combined likelihood and event rate fit to the distribution of the Isgur-Wise variable w, and using the Heavy Quark Effective Theory (HQET), the slope of the b-baryon form factor is measured to be: rho-hat^2 = 2.03 +/- 0.46 (stat) ^{+0.72}_{-1.00} (syst). The exclusive semileptonic branching fraction Br(Lambda_b^0 -> Lambda_c^+ l^- anti-nu_l) can be derived from rho-hat^2 and is found to be (5.0^{+1.1}_{-0.8} (stat) ^{+1.6}_{-1.2} (syst))%. Limits on other branching fractions are also obtained.
Method to Factorize Fifteen with Josephson Charge Qubits
Vartiainen, J J; Nakahara, M; Salomaa, M M; Vartiainen, Juha J.; Niskanen, Antti O.; Nakahara, Mikio; Salomaa, Martti M.
2003-01-01
We investigate both the physical and algorithmic requirements for an implementation of Shor's factorization algorithm on a hypothetical Josephson charge qubit register. We represent an implementation which is optimal for small number of available qubits, but still provides a general method to factorize integer without a prior knowledge of the number to be factorized. Furthermore, our strategy is easily generalized to other realizations and parameter values. In order to meet the stringent requirements set by short decoherence time, we accelerate the algorithm by decomposing it into tailored two- and three-qubit gates and find their physical realizations through the numerical optimization.
On Ballistics Solution of HL Pressure Gun for Composite Charges Taking Most General Form Function
Padam Chand Gupta
1977-01-01
Full Text Available The present paper gives the solution of the equation of internal ballistics of H/L gun for composite charges taking most general form function assuming constant pressure in both the chambers during the second stage of burning, i.e., after the burning of the first component charge.
Charged anisotropic superdense stars with constant stability factor
Newton Singh, Ksh; Pant, Neeraj
2015-08-01
In this paper, we have presented charged anisotropic Vlasenko-Pronin solutions and a new charged anisotropic Schwarzschild interior solution of the general relativistic field equations in curvature coordinates. These exact solutions are stable and well behaved in all respects for a wide range of anisotropy parameter and charge parameter. These new solutions can be used to model charged, anisotropic neutron stars and quark stars whose masses are comparatively heavier. An interesting fact of these solutions is that their stability factors are constants. Also, we have presented a new and first solution where radial pressure is greater than transverse pressure (i.e. ). For a neutral solution it reduces to the Schwarzschild interior solution with constant density. Our charged analogue of the Schwarzschild solution has density decreasing outward to the surface of the star which is necessary for a physical star. The EOSs corresponding to the presented solutions are also studied with their stiffness or softness by comparing their compression moduli. Furthermore, these compression moduli are decreasing outwards from the center. We expect this as the core must be very compact compared to its surface.
Flavor decomposition of the nucleon electromagnetic form factors at low $Q^2$
Qattan, I A; Alsaad, A
2015-01-01
The spatial distribution of charge and magnetization within the proton is encoded in the elastic form factors. These have been precisely measured in elastic electron scattering, and the combination of proton and neutron form factors allows for the separation of the up- and down-quark contributions. In this work, we extract the proton and neutron form factors from world's data with an emphasis on precise new data covering the low-momentum region, which is sensitive to the large-scale structure of the nucleon. From these, we separate the up- and down-quark contributions to the proton form factors. We combine cross section and polarization measurements of elastic electron-proton scattering to separate the proton form factors and two-photon exchange (TPE) contributions. We combine the proton form factors with parameterization of the neutron form factor data and uncertainties to separate the up- and down-quark contributions to the proton's charge and magnetic form factors. The extracted TPE corrections are compare...
The pion form factor from analyticity and unitarity
B Ananthanarayan; Irinel Caprini; I Sentitemsu Imsong
2012-11-01
Analyticity and unitarity techniques are employed to estimate Taylor coefficients of the pion electromagnetic form factor at = 0 by exploiting the recently evaluated two-pion contribution to the muon ( − 2) and the phase of the pion electromagnetic form factor in the elastic region, known from scattering by Fermi–Watson theorem and the values of the form factor at several points in the space-like region. Regions in the complex -plane are isolated where the form factor cannot have zeros.
Nucleon shape and electromagnetic form factors in the chiral constituent quark model
Dahiya, Harleen
2010-01-01
The electromagnetic form factors are the most fundamental quantities to describe the internal structure of the nucleon and the shape of a spatially extended particle is determined by its intrinsic quadrupole moment which can be related to the charge radii. We have calculated the electromagnetic form factors, nucleon charge radii and the intrinsic quadrupole moment of the nucleon in the framework of chiral constituent quark model. The results obtained are comparable to the latest experimental studies and also show improvement over some theoretical interpretations.
Li, Hao-Song; Chen, Xiao-Lin; Deng, Wei-Zhen; Zhu, Shi-Lin
2016-01-01
We have systematically investigated the magnetic moments and magnetic form factors of the decuplet baryons to the next-to-next-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in the loops. We also calculate the charge and magnetic dipole form factors of the decuplet baryons. Our results may be useful to the chiral extrapolation of the lattice simulations of the decuplet electromagnetic properties.
Kaialy, Waseem
2016-04-30
Pharmaceutical powders are typically insulators consisting of relatively small particles and thus they usually exhibit significant electrostatic charging behaviours. In the inhalation field, the measurement of electrostatic charge is an imperative stage during pharmaceutical formulation development. The electrostatic charge is affected by the interplay of many factors. This article reviews the factors affecting the electrostatic charging of pharmaceutical powders with a focus on dry powder inhalations. The influences of particle resistivity, size distribution, shape distribution, surface roughness, polymorphic form and hygroscopicity, as well as the effects of moisture uptake, environmental conditions, pharmaceutical processing (i.e., milling, sieving, spray drying and blending), and storage on the electrostatic charge behaviours of pharmaceuticals, with focus on inhalation powders, were reviewed. The influence of electrostatic charge on the performance of dry powder inhaler formulations in terms of drug content homogeneity, the passage of drug through the inhaler device, drug-carrier adhesion/detachment, and drug deposition on the respiratory airways were discussed. The understanding gained is crucial to improving the safety, quality, and efficiency of the pharmaceutical inhalation products. PMID:26836710
Electromagnetic form factors of octet baryons in QCD
The electromagnetic form factors of octet baryons are estimated within light cone QCD sum rules method, using the most general form of the interpolating current for baryons. A comparison of our predictions on the magnetic dipole and electric form factors with the results of other approaches is performed
Virtuality Distributions and Pion Transition Form Factor
Radyushkin, A. V.
2015-02-01
Using the example of hard exclusive transition process γ*γ → π0 at the handbag level, we outline basics of a new approach to transverse momentum dependence in hard processes. In coordinate representation, matrix elements of operators (in the simplest case, bilocal 𝒪(0, z)) describing a hadron with momentum p, are functions of (pz) and z2 parametrized through virtuality distribution amplitudes (VDA) Φ(x, σ), with x being Fourier-conjugate to (pz) and σ Laplace-conjugate to z2. For intervals with z+ = 0, we introduce the transverse momentum distribution amplitude (TMDA) Ψ(x, k⊥), and write it in terms of VDA Φ(x, σ). We propose models for soft VDAs/TMDAs, and use them for comparison of handbag results with experimental (BaBar and BELLE) data. We also discuss the generation of hard tails of TMDAs from initially soft forms.
Magnetic form factors of rare earth ions
The magnetic scattering of neutrons by atoms has been investigated by exploiting its similarity to the radiation problem in spectroscopy. Expressions for the magnetic scattering amplitude were developed for cases in whcih an atom in the l/sup n/ electronic configuration is described either by a relativistic or nonrelativistic Hamiltonian. For each of these cases, it has been shown that the magnetic scattering amplitude can be expressed in terms of relativistic or nonrelativistic matrix elements of magnetic and electric multipole operators. For a nonrelativistic atom, the calculation of these matrix elements has been separated into evaluating radial matrix elements and matrix elements of Racah tensors W/(sup 0,k)k/ and W/(sup 1,k')k/. For a relativistic atom the effective operator approach has been used to define effective multipole operators so that a relativistic result is obtained by taking matrix elements of these effective operators between nonrelativistic states of the atom. The calculation of matrix elements of these effective operators has been reduced to evaluating relativistic radial integrals and matrix elements of the Racah tensors taken between nonrelativistic states of the atom. It is shown tha for the case of elastic scattering by either a relativistic or nonrelativistic atom in single Russel-Saunders state, the magnetic scattering amplitude can be written in the conventional form p(vector q)vector q/sub m/.vector sigma. General expressions for p(vector q) as well as elastic magnetic form factorshave been obtained. The formalism has been illustrated throughout by applying it to the case of scattering by rare earth ions
The neutron electric form factor to Q² = 1.45 (GeV/c)²
Bradley Plaster
2004-02-01
The nucleon elastic electromagnetic form factors are fundamental quantities needed for an understanding of nucleon and nuclear electromagnetic structure. The evolution of the Sachs electric and magnetic form factors with Q2, the square of the four-momentum transfer, is related to the distribution of charge and magnetization within the nucleon. High precision measurements of the nucleon form factors are essential for stringent tests of our current theoretical understanding of confinement within the nucleon. Measurements of the neutron form factors, in particular, those of the neutron electric form factor, have been notoriously difficult due to the lack of a free neutron target and the vanishing integral charge of the neutron. Indeed, a precise measurement of the neutron electric form factor has eluded experimentalists for decades; however, with the advent of high duty-factor polarized electron beam facilities, experiments employing polarization degrees of freedom have finally yielded the first precise measurements of this fundamental quantity. Following a general overview of the experimental and theoretical status of the nucleon form factors, a detailed description of an experiment designed to extract the neutron electric form factor from measurements of the neutron's recoil polarization in quasielastic 2H(e, e')1H scattering is presented. The experiment described here employed the Thomas Jefferson National Accelerator Facility's longitudinally polarized electron beam, a magnetic spectrometer for detection of the scattered electron, and a neutron polarimeter designed specifically for this experiment. Measurements were conducted at three Q2 values of 0.45, 1.13, and 1.45 (GeV/c)2, and the final results extracted from an analysis of the data acquired in this experiment are reported and compared with recent theoretical predictions for the nucleon form factors.
Spectrum of local boundary operators from boundary form factor bootstrap
Szots, M
2007-01-01
Using the recently introduced boundary form factor bootstrap equations, we map the complete space of their solutions for the boundary version of the scaling Lee-Yang model and sinh-Gordon theory. We show that the complete space of solutions, graded by the ultraviolet behaviour of the form factors can be brought into correspondence with the spectrum of local boundary operators expected from boundary conformal field theory, which is a major evidence for the correctness of the boundary form factor bootstrap framework.
K\\bar{K}-Continuum and Isoscalar Nucleon Form Factors
Hammer, H. -W.; Ramsey-Musolf, M. J.
1999-01-01
We analyse the isoscalar vector current form factors of the nucleon using dispersion relations. In addition to the usual vector meson poles, we account for the K\\bar{K}-continuum contribution by drawing upon a recent analytic continuation of KN scattering amplitudes. For the Pauli form factor all strength in the \\phi region is already given by the continuum contribution, whereas for the Dirac form factor additional strength in the \\phi region is required. The pertinent implications for the le...
Implications of the discrepancy between proton form factor measurements
Arrington, J.
2003-01-01
Recent polarization transfer measurements of the proton electromagnetic form factors yield very different results from previous Rosenbluth extractions. This inconsistency implies uncertainties in our knowledge of the form factors and raises questions about how to best combine data from these two techniques. If the discrepancy is due to missing correction to the cross section data, as has been suggested, then different applications will require the use of different form factors. We present two...
Progress in the calculation of nucleon transition form factors
Eichmann, Gernot
2016-01-01
We give a brief account of the Dyson-Schwinger and Faddeev-equation approach and its application to nucleon resonances and their transition form factors. We compare the three-body with the quark-diquark approach and present a quark-diquark calculation for the low-lying nucleon resonances including scalar, axialvector, pseudoscalar and vector diquarks. We also discuss the timelike structure of transition form factors and highlight the advantages of form factors over helicity amplitudes.
Liigand, Piia; Kaupmees, Karl; Kruve, Anneli
2016-07-01
The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low pK a1 and pK a2) and to have high hydrophobicity (logP ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions. Graphical Abstract ᅟ. PMID:27044024
Liigand, Piia; Kaupmees, Karl; Kruve, Anneli
2016-04-01
The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low pK a1 and pK a2) and to have high hydrophobicity (logP ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.
HERMES impact for the access of Compton form factors
Kumerički, K.; Müller, D.; Murray, M.
2014-07-01
We utilize the DVCS asymmetry measurements of the HERMES collaboration for access to Compton form factors in the deeply virtual regime and to generalized parton distributions. In particular, the (almost) complete measurement of DVCS observables allows us to map various asymmetries into the space of Compton form factors, where we still rely in this analysis on dominance of twist-two associated Compton form factors. We compare this one-to-one map with local Compton form factor fits and a model dependent global fit.
HERMES impact for the access of Compton form factors
Kumericki, Kresimir; Murray, Morgan
2013-01-01
We utilize the DVCS asymmetry measurements of the HERMES collaboration for access to Compton form factors in the deeply virtual regime and to generalized parton distributions. In particular, the (almost) complete measurement of DVCS observables allows us to map various asymmetries into the space of Compton form factors, where we still rely in this analysis on dominance of twist-two associated Compton form factors. We compare this one-to-one map with local Compton form factor fits and a model dependent global fit.
Analytical evaluation of atomic form factors: application to Rayleigh scattering
Safari, L; Amaro, P; Jänkälä, K; Fratini, F
2014-01-01
Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wavefunctions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.
Analytical evaluation of atomic form factors: Application to Rayleigh scattering
Safari, L., E-mail: laleh.safari@ist.ac.at [IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg (Austria); Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Santos, J. P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Amaro, P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg (Germany); Jänkälä, K. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Fratini, F. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG (Brazil)
2015-05-15
Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.
Baryon form factors from Dyson-Schwinger equations
Eichmann, Gernot
2011-01-01
I briefly summarize the application of the Dyson-Schwinger/Faddeev approach to baryon form factors. Recent results for nucleon electromagnetic and axial form factors as well as N-Delta-Gamma electromagnetic transition form factors are discussed. The calculation of the current diagrams from the quark-gluon level enables an analysis of common features, such as the implications of dynamical chiral symmetry breaking and quark orbital angular momentum, the timelike structure of the form factors, and their interpretation in terms of missing pion-cloud effects.
Nucleon form factors and hidden symmetry in holographic QCD
The vector dominance of the electromagnetic (EM) form factors both for mesons and baryons arises naturally in holographic QCD, where both the number of colors and the 't Hooft coupling are taken to be very large, offering a bona-fide derivation of the notion of vector dominance. The crucial ingredient for this is the infinite tower of vector mesons in the approximations made which share features that are characteristic of the quenched approximation in lattice QCD. We approximate the infinite sum by contributions from the lowest four vector mesons of the tower which turn out to saturate the charge and magnetic moment sum rules within a few % and compute them totally free of unknown parameters for momentum transfers Q2 approx.= 1 GeV2. We identify certain observables that can be reliably computed within the approximations and others that are not, and discuss how the improvement of the latter can enable one to bring holographic QCD closer to QCD proper. (author)
Evaluation of space radius formed by blasting pressure with linear charges
LIN Da-neng; CHEN Shou-ru; XIE Sheng-quan
2005-01-01
Based on the mechanism analysis of space form caused by blasting with linear charges, elastic-plastic model of space form caused by blasting was established in this paper. In terms of state equation of blasting and the balance of quality, evaluation formula based on elastic-plastic to estimate space diameter caused by blasting with linear charges was given. The procedure structure of evaluation was introduced. We did 18 experiments on situ and compared experiments results with evaluation ones. They are correspondent very well. Then a new method of evaluating underground space diameters caused by blasting with linear charges was given. The method has more great guidance significance to the optimism plan of the new blasting technology that utilizes the explosion effect of the explosive to compact the soil to form the underground space.
Model of separated form factors for unilamellar vesicles
Kiselev, M A; Lesieur, P; Kisselev, A. M.; D. Lombardo; Aksenov, V. L.
2001-01-01
New model of separated form factors is proposed for the evaluation of small-angle neutron scattering curves from large unilamellar vesicles. The validity of the model was checked by comparison to the model of hollow sphere. The model of separated form factors and hollow sphere model give reasonable agreement in the evaluation of vesicle parameters.
Hadron form factors using density-density correlators
Alexandrou, C.; Koutsou, G.; Neff, H.
2006-01-01
Gauge invariant density-density correlators yield detailed information on hadron structure. Hadron deformation and form factors can be extracted for momentum transfers up to about 6 GeV$^2$. We use stochastic techniques and dilution to compute the all to all propagator required for the exact evaluation of density-density correlators. We present first results for the pion form factor.
Nucleon to $\\Delta$ and $\\Delta$ form factors in Lattice QCD
Alexandrou, Constantia
2011-01-01
We present recent lattice QCD results on the electroweak nucleon to $\\Delta$ transition and $\\Delta$ form factors using dynamical fermion gauge configurations with a lowest pion mass of about 300 MeV, with special emphasis in the determination of the sub-dominant quadrupole $N\\gamma^*\\rightarrow \\Delta$ and $\\Delta$ electromagnetic form factors.
X-Ray Form Factor, Attenuation and Scattering Tables
SRD 66 X-Ray Form Factor, Attenuation and Scattering Tables (Web, free access) This database collects tables and graphs of the form factors, the photoabsorption cross section, and the total attenuation coefficient for any element (Z <= 92).
Form factors in SU(3)-invariant integrable models
Belliard, S; Ragoucy, E; Slavnov, N A
2013-01-01
We study SU(3)-invariant integrable models solvable by nested algebraic Bethe ansatz. We obtain determinant representations for form factors of diagonal entries of the monodromy matrix. This representation can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.
Relativistic quark model for the Omega- electromagnetic form factors
G. Ramalho, K. Tsushima, Franz Gross
2009-08-01
We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.
A measurement of the π0, η and η' electromagnetic form factors
We present measurement of the π0γ*γ, ηγ*γ and η'γ*γ-transition form factors. The π0-form factor is for the first time observed in the space-like region. The transition form factor of the η-meson is determined from its decay modes π+π-π0, π+π-γ and the neutral decay mode γγ. The decay of the η' is observed in the decay channels ργ, ηπ+π- with η→γγ and in the four charged prong final state stemming from ηπ+π- with the η decaying into π+π-(π0/γ). All form factors agree well with a simple ρ-pole predicted by the vector meson dominance model and also with the QCD inspired Brodsky-Lepage model. (orig.)
A measurement of the π0, η and η' electromagnetic form factors
We present measurements of he π0γ*γ.ηγ*γ and η'γ*γ-transition form factors. The π0-form factor is for the first time observed in the space-like region. The transition form factor of the η-meson is determined from its decay modes π+π-π0, π+π-γ and the neutral decay mode γγ. The decay of the η' is observed in the decay channels ργ, ηπ+π- with η→γγ and in the four charged prong final state stemming from ηπ+π- with the η decaying into π+π-(π0/γ). All form factors agree well with a simple ρ-pole predicted by the Vector Meson Dominance model and also with the QCD inspired Brodsky-Lepage model. (orig.)
Spectrum of local boundary operators from boundary form factor bootstrap
Szots, M.; Takacs, G.
2007-01-01
Using the recently introduced boundary form factor bootstrap equations, we map the complete space of their solutions for the boundary version of the scaling Lee-Yang model and sinh-Gordon theory. We show that the complete space of solutions, graded by the ultraviolet behaviour of the form factors can be brought into correspondence with the spectrum of local boundary operators expected from boundary conformal field theory, which is a major evidence for the correctness of the boundary form fact...
6Li electromagnetic form factors and phenomenological cluster models
The longitudinal form factors of the ground and 2.18 MeV (3+, T = 0) states, and the transverse form factors of the 3.56 MeV (0+, T = 1) and 5.37 MeV (2+, T = 1) states of 6Li are compared with the predictions based on fully antisymmetrized α-d and t-tau cluster models. The longitudinal form factors are adequately described by the α-d model, but the transverse form factors seem to be more consistent with a t-tau model which is close to the shell-model limit. Estimates are made for the ground state t and α spectroscopic factors. The 3.56 MeV M1 transition current density is calculated for both models and compared with experiment. (Auth.)
Nucleon Structure and Hyperon Form Factors from Lattice QCD
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon Σ and Ξ axial coupling constants are also performed for the first time in a lattice calculation, gσσ = 0.441(14) and gΞΞ -0.277(11)
Nucleon Structure and hyperon form factors from lattice QCD
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g#Sigma##Sigma# = 0.441(14) and g#Xi##Xi# = -0.277(11)
A note on connected formula for form factors
He, Song
2016-01-01
In this note we study the connected prescription, originally derived from Witten's twistor string theory, for tree-level form factors in ${\\cal N}=4$ super-Yang-Mills theory. The construction is based on the recently proposed four-dimensional scattering equations with $n$ massless on-shell states and one off-shell state, which we expect to work for form factors of general operators. To illustrate the universality of the prescription, we propose compact formulas for super form factors with chiral stress-tensor multiplet operator, and bosonic ones with scalar operators ${\\rm Tr}(\\phi^m)$ for arbitrary $m$.
Sudakov form factor in a massive vector field theory
The leading-logarithm approximation for the Sudakov form factor is examined in a theory containing massive fermion and massive neutral vector meson fields. In the on-shell case, where there is only one mass scale (the meson mass), the Sudakov form factor in this model agrees with the result in QED. In the off-shell case, however, with two different mass scales (the meson mass and the off-shell mass of the fermion), the Sudakov form factor differs from the QED result. copyright 1997 The American Physical Society
Light-cone sum rule approach for Baryon form factors
Offen, Nils
2016-01-01
We present the state-of-the-art of the light-cone sum rule approach to Baryon form factors. The essence of this approach is that soft Feynman contributions are calculated in terms of small transverse distance quantities using dispersion relations and duality. The form factors are thus expressed in terms of nucleon wave functions at small transverse separations, called distribution amplitudes, without any additional parameters. The distribution amplitudes, therefore, can be extracted from the comparison with the experimental data on form factors and compared to the results of lattice QCD simulations.
Roaming form factors for the tricritical to critical Ising flow
Horvath, D X; Takacs, G
2016-01-01
We study the massless flows described by the staircase model introduced by Al.B. Zamolodchikov through the analytic continuation of the sinh-Gordon S-matrix, focusing on the renormalisation group flow from the tricritical to the critical Ising model. We show that the properly defined roaming limits of certain sinh-Gordon form factors are identical to the form factors of the order and disorder operators for the massless flow. As a by-product, we also construct form factors for a semi-local field in the sinh-Gordon model, which can be associated with the twist field in the ultraviolet limiting free massless bosonic theory.
Roaming form factors for the tricritical to critical Ising flow
Horváth, D. X.; Dorey, P. E.; Takács, G.
2016-07-01
We study the massless flows described by the staircase model introduced by Al.B. Zamolodchikov through the analytic continuation of the sinh-Gordon S-matrix, focusing on the renormalisation group flow from the tricritical to the critical Ising model. We show that the properly defined roaming limits of certain sinh-Gordon form factors are identical to the form factors of the order and disorder operators for the massless flow. As a by-product, we also construct form factors for a semi-local field in the sinh-Gordon model, which can be associated with the twist field in the ultraviolet limiting free massless bosonic theory.
The Solar Wind Charge-Exchange Production Factor for Hydrogen
Kuntz, K D; Collier, M R; Connor, H K; Cravens, T E; Koutroumpa, D; Porter, F S; Robertson, I P; Sibeck, D G; Snowden, S L; Thomas, N E; Wash, B M
2015-01-01
The production factor, or broad band averaged cross-section, for solar wind charge-exchange with hydrogen producing emission in the ROSAT 1/4 keV (R12) band is $3.8\\pm0.2\\times10^{-20}$ count degree$^{-2}$ cm$^4$. This value is derived from a comparison of the Long-Term (background) Enhancements in the ROSAT All-Sky Survey with magnetohysdrodynamic simulations of the magnetosheath. This value is 1.8 to 4.5 times higher than values derived from limited atomic data, suggesting that those values may be missing a large number of faint lines. This production factor is important for deriving the exact amount of 1/4 keV band flux that is due to the Local Hot Bubble, for planning future observations in the 1/4 keV band, and for evaluating proposals for remote sensing of the magnetosheath. The same method cannot be applied to the 3/4 keV band as that band, being composed primarily of the oxygen lines, is far more sensitive to the detailed abundances and ionization balance in the solar wind. We also show, incidentally,...
Nucleon axial form factors from two-flavour Lattice QCD
Junnarkar, P M; Djukanovic, D; von Hippel, G; Hua, J; Jäger, B; Meyer, H B; Rae, T D; Wittig, H
2014-01-01
We present preliminary results on the axial form factor $G_A(Q^2)$ and the induced pseudoscalar form factor $G_P(Q^2)$ of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6' with $m_\\pi = 340 \\ \\text{MeV}$ and lattice spacing $a \\sim 0.05 \\ \\text{fm}$. The relevant three-point functions were computed with source-sink separations ranging from $t_s \\sim 0.6 \\ \\text{fm}$ to $t_s \\sim \\ 1.4 \\ \\text{fm}$. We observe that the form factors suffer from non-trivial excited-state contributions at the source-sink separations available to us. It is noted that naive plateau fits underestimate the excited-state contributions and that the method of summed operator insertions correctly accounts for these effects.
The connected prescription for form factors in twistor space
Brandhuber, Andreas; Panerai, Rodolfo; Spence, Bill; Travaglini, Gabriele
2016-01-01
We propose a connected prescription formula in twistor space for all tree-level form factors of the stress tensor multiplet operator in $\\mathcal{N}=4$ super Yang-Mills, which is a generalisation of the expression of Roiban, Spradlin and Volovich for superamplitudes. By introducing link variables, we show that our formula is identical to the recently proposed four-dimensional scattering equations for form factors. Similarly to the case of amplitudes, the link representation of form factors is shown to be directly related to BCFW recursion relations, and is considerably more tractable than the scattering equations. We also discuss how our results are related to a recent Grassmannian formulation of form factors, and comment on a possible derivation of our formula from ambitwistor strings.
Form factors in magnetic scattering of thermal neutrons
Ballou, Rafik
2007-01-01
This lecture addresses the concept of form factor in magnetic scattering of thermal neutrons, analyzing its meaning, discussing its measurement by polarized neutrons and detailing its computation for the ions by the spherical tensor operator formalism.
Infrared photons and gluons and the electromagnetic quark form factor
A method for a consistent treatment of the infrared behaviour of QED and QCD is presented. As an application of the method the calculation of the electromagnetic quark form factor is discussed. (M.F.W.)
Hadronic Form Factors in Asymptotically Free Field Theories
Gross, D. J.; Treiman, S. B.
1974-01-01
The breakdown of Bjorken scaling in asymptotically free gauge theories of the strong interactions is explored for its implications on the large q{sup 2} behavior of nucleon form factors. Duality arguments of Bloom and Gilman suggest a connection between the form factors and the threshold properties of the deep inelastic structure functions. The latter are addressed directly in an analysis of asymptotically free theories; and through the duality connection we are then led to statements about the form factors. For very large q{sup 2} the form factors are predicted to fall faster than any inverse power of q{sup 2}. For the more modest range of q{sup 2} reached in existing experiments the agreement with data is fairly good, though this may well be fortuitous. Extrapolations beyond this range are presented.
Pion Form Factor in the NLC QCD SR approach
Bakulev, A P; Stefanis, N G
2009-01-01
We present results of a calculation of the electromagnetic pion form factor within a framework of QCD Sum Rules with nonlocal condensates and using a perturbative spectral density which includes \\mathcal{O}(\\alpha_s) contributions.
Proton Form Factors Measurements in the Time-Like Region
Anulli, F.; /Frascati
2007-10-22
I present an overview of the measurement of the proton form factors in the time-like region. BABAR has recently measured with great accuracy the e{sup +}e{sup -} {yields} p{bar p} reaction from production threshold up to an energy of {approx} 4.5 GeV, finding evidence for a ratio of the electric to magnetic form factor greater than unity, contrary to expectation. In agreement with previous measurements, BABAR confirmed the steep rise of the magnetic form factor close to the p{bar p} mass threshold, suggesting the possible presence of an under-threshold N{bar N} vector state. These and other open questions related to the nucleon form factors both in the time-like and space-like region, wait for more data with different experimental techniques to be possibly solved.
Classical limit of diagonal form factors and HHL correlators
Bajnok, Zoltan
2016-01-01
We propose an expression for the classical limit of diagonal form factors in which we integrate the corresponding observable over the moduli space of classical solutions. In infinite volume the integral has to be regularized by proper subtractions and we present the one, which corresponds to the classical limit of the connected diagonal form factors. In finite volume the integral is finite and can be expressed in terms of the classical infinite volume diagonal form factors and subvolumes of the moduli space. We analyze carefully the periodicity properties of the finite volume moduli space and found a classical analogue of the Bethe-Yang equations. By applying the results to the heavy-heavy-light three point functions we can express their strong coupling limit in terms of the classical limit of the sine-Gordon diagonal form factors.
Rare $B$ decays using lattice QCD form factors
Horgan, R R; Meinel, S; Wingate, M
2015-01-01
In this write-up we review and update our recent lattice QCD calculation of $B \\to K^*$, $B_s \\to \\phi$, and $B_s \\to K^*$ form factors [arXiv:1310.3722]. These unquenched calculations, performed in the low-recoil kinematic regime, provide a significant improvement over the use of extrapolated light cone sum rule results. The fits presented here include further kinematic constraints and estimates of additional correlations between the different form factor shape parameters. We use these form factors along with Standard Model determinations of Wilson coefficients to give Standard Model predictions for several observables [arXiv:1310.3887]. The modest improvements to the form factor fits lead to improved determinations of $F_L$, the fraction of longitudinally polarized vector mesons, but have little effect on most other observables.
Lattice results on the meson electric form factor
A calculation is outlined and results presented for the electric form factor, measured at two values of the momentum, of the pseudo-Goldstone meson within the staggered formulation of lattice fermions
Normalization Of Thermal-Radiation Form-Factor Matrix
Tsuyuki, Glenn T.
1994-01-01
Report describes algorithm that adjusts form-factor matrix in TRASYS computer program, which calculates intraspacecraft radiative interchange among various surfaces and environmental heat loading from sources such as sun.
Breather boundary form factors in sine-Gordon theory
A previously conjectured set of exact form factors of boundary exponential operators in the sinh-Gordon model is tested against numerical results from boundary truncated conformal space approach in boundary sine-Gordon theory, related by analytic continuation to sinh-Gordon model. We find that the numerical data strongly support the validity of the form factors themselves; however, we also report a discrepancy in the case of diagonal matrix elements, which remains unresolved for the time being.
Charm and bottom hadronic form factors with QCD sum rules
We present a brief review of some calculations of form factors and coupling constants in vertices with charm and bottom mesons in the framework of QCD sum rules. We first discuss the motivation for this work, describing possible applications of these form factors to charm and bottom decays processes. We first make a summarize of the QCD sum rules method. We give special attention to the uncertainties of the method introducing by the intrinsic variation of the parameters. Finally we conclude.
In-medium modified energy-momentum tensor form factors
Jung, Ju-Hyun; Yakhshiev, Ulugbek; Kim, Hyun-Chul
2014-04-01
In this talk, we report a recent investigation on the energy-momentum tensor form factors of the nucleon in nuclear medium, based on the framework of the in-medium modified chiral soliton model. The model was constructed by taking into account the influence of the surrounding environment to the mesonic sector (π-, ρ- and ω-meson properties). We briefly discuss the results of the energy-momentum tensor form factors.
In-medium modified energy-momentum tensor form factors
In this talk, we report a recent investigation on the energy-momentum tensor form factors of the nucleon in nuclear medium, based on the framework of the in-medium modified chiral soliton model. The model was constructed by taking into account the influence of the surrounding environment to the mesonic sector (π-, ρ- and ω-meson properties). We briefly discuss the results of the energy-momentum tensor form factors. (author)
Electron-scattering form factors for 6Li in the ab initio symmetry-guided framework
Dytrych, T; Launey, K D; Draayer, J P; Maris, P; Vary, J P; Langr, D; Oberhuber, T
2015-01-01
We present an ab initio symmetry-adapted no-core shell-model description for $^{6}$Li. We study the structure of the ground state of $^{6}$Li and the impact of the symmetry-guided space selection on the charge density components for this state in momentum space, including the effect of higher shells. We accomplish this by investigating the electron scattering charge form factor for momentum transfers up to $q \\sim 4$ fm$^{-1}$. We demonstrate that this symmetry-adapted framework can achieve significantly reduced dimensions for equivalent large shell-model spaces while retaining the accuracy of the form factor for any momentum transfer. These new results confirm the previous outcomes for selected spectroscopy observables in light nuclei, such as binding energies, excitation energies, electromagnetic moments, E2 and M1 reduced transition probabilities, as well as point-nucleon matter rms radii.
Anastasia Zubareva
2013-07-01
Full Text Available Chitosan (Chi is a natural biodegradable cationic polymer with remarkable potency as a vehicle for drug or vaccine delivery. Chi possesses multiple groups, which can be used both for Chi derivatization and for particle formation. The aim of this work was to produce stable nanosized range Chi gels (nanogels, NGs with different charge and to study the driving forces of complex formation between Chi NGs and proteins or peptides. Positively charged NGs of 150 nm in diameter were prepared from hexanoyl chitosan (HC by the ionotropic gelation method while negatively charged NGs of 190 nm were obtained from succinoyl Chi (SC by a Ca2+ coacervation approach. NGs were loaded with a panel of proteins or peptides with different weights and charges. We show that NGs preferentially formed complexes with oppositely charged molecules, especially peptides, as was demonstrated by gel-electrophoresis, confocal microscopy and HPLC. Complex formation was accompanied by a change in zeta-potential and decrease in size. We concluded that complex formation between Chi NGs and peptide/proteins is mediated mostly by electrostatic interactions.
Online Soil Science Lesson 3: Soil Forming Factors
This lesson explores the five major factors of soil formation, namely: 1) climate; 2) organisms; 3) time; 4) topography; and 5) parent material and their influence in forming soil. The distinction between active and passive factors, moisture and temperature regimes, organism and topographic influen...
First lattice calculation of charmed hadrons' electromagnetic form factors
Electromagnetic form factors of D and D* mesons and Ξcc, Σc, Ωc and Ωcc baryons are calculated in 2+1 flavor lattice QCD. As a by product of this calculation electric/magnetic charge radii and magnetic moments are extracted. Compared to the PDG values of the light- sector, i.e. pion and proton, charmed hadron results are systematically smaller
Comment on "High-Precision Determination of the Electric and Magnetic Form Factors of the Proton"
Arrington, J
2011-01-01
In a recent Letter, Bernauer, et al. present fits to the proton electromagnetic form factors, GEp(Q^2) and GMp(Q^2), along with extracted proton charge and magnetization radii based on large set of new, high statistical precision (<0.2%) cross section measurements. The Coulomb corrections they apply differ dramatically from more modern and complete calculations, implying significant error in their final results.
Volume Effects on the Method of Extracting Form Factors at Zero Momentum
Tiburzi, Brian C.
2014-01-01
The Rome method allows one to extract form factors using lattice computations performed strictly at zero momentum. We investigate the size of finite volume effects resulting from this method. As a test case, we focus on the pion charge radius and show how to ascertain the finite volume effect with the aid of chiral perturbation theory. The framework developed can easily be generalized to account for modified infrared physics of other low-energy matrix elements extracted at zero momentum.
On a four-loop form factor in N=4
Boels, Rutger H; Yang, Gang
2016-01-01
We report on progress toward computing a four-loop supersymmetric form factor in maximally supersymmetric Yang-Mills theory. A representative example particle content from the involved supermultiplets is a stress-tensor operator with two on-shell gluons. In previous work, the integrand for this form factor was obtained using color-kinematic duality in a particularly simple form. Here the result of applying integration-by-parts identities is discussed and cross-checks of the result is performed. Rational IBP relations and their reduction are introduced as a potentially useful aide.
Nucleon form factors, generalized parton distributions and quark angular momentum
We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale μ=2 GeV to be Juv=0.230+0.009-0.024 and Jdv=-0.004+0.010-0.016.
Critical Success Factors for Implementing Road Charging Systems
Oehry, Bernhard
2010-01-01
Road user charging is used as an 'umbrella' term to describe a wide range of applications of pricing roads and infrastructure. Road user charging includes a number of charging measures that governments and other road owners use to: i) finance new or maintain existing road infrastructure ii) manage traffic (e.g. reduce congestion) iii) minimise environmental impacts of transport iv) internalise the external costs of road transport caused, e.g., by pollution and noise emissions. Historically, t...
Role of diquark correlations and the pion cloud in nucleon elastic form factors
Cloët, Ian C; Thomas, Anthony W
2014-01-01
Electromagnetic form factors of the nucleon in the space-like region are investigated within the framework of a covariant and confining Nambu-Jona-Lasinio model. The bound state amplitude of the nucleon is obtained as the solution of a relativistic Faddeev equation, where diquark correlations appear naturally as a consequence of the strong coupling in the colour $\\bar{3}$ $qq$ channel. Pion degrees of freedom are included as a perturbation to the "quark-core" contribution obtained using the Poincar\\'e covariant Faddeev amplitude. While no model parameters are fit to form factor data, excellent agreement is obtained with the empirical nucleon form factors (including the magnetic moments and radii) where pion loop corrections play a critical role for $Q^2 \\lesssim 1\\,$GeV$^2$. Using charge symmetry, the nucleon form factors can be expressed as proton quark sector form factors. The latter are studied in detail, leading, for example, to the conclusion that the $d$-quark sector of the Dirac form factor is much sof...
Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)
2015-02-01
We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then we compute the reflection and transmission coefficients and the absorption cross section for massive charged fermionic fields, and we show that the absorption cross section vanishes at the low- and high-frequency limits. However, there is a range of frequencies where the absorption cross section is not null. Furthermore, we study the effect of the mass and electric charge of the fermionic field over the absorption cross section. (orig.)
We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then we compute the reflection and transmission coefficients and the absorption cross section for massive charged fermionic fields, and we show that the absorption cross section vanishes at the low- and high-frequency limits. However, there is a range of frequencies where the absorption cross section is not null. Furthermore, we study the effect of the mass and electric charge of the fermionic field over the absorption cross section. (orig.)
Quantized form factor shift in the presence of free electron laser radiation
Fratini, F; Hayrapetyan, A G; Jänkälä, K; Amaro, P; Santos, J P
2015-01-01
In electron scattering, the target form factors contribute significantly to the diffraction pattern and carry information on the target electromagnetic charge distribution. Here we show that the presence of electromagnetic radiation, as intense as currently available in Free Electron Lasers, shifts the dependence of the target form factors by a quantity that depends on the number of photons absorbed or emitted by the electron as well as on the parameters of the electromagnetic radiation. As example, we show the impact of intense ultraviolet and soft X-ray radiation on elastic electron scattering by Ne-like Argon ion and by Xenon atom. We find that the shift brought by the radiation to the form factor is in the order of some percent. Our results may open up a new avenue to explore matter with the assistance of laser.
Heavy-to-light baryonic form factors at large recoil
Mannel, Thomas
2011-01-01
We analyze heavy-to-light baryonic form factors at large recoil and derive the scaling behavior of these form factors in the heavy quark limit. It is shown that only one universal form factor is needed to parameterize Lambda_b to p and Lambda_b to Lambda matrix elements in the large recoil limit of light baryons, while hadronic matrix elements of Lambda_b to Sigma transition vanish in the large energy limit of Sigma baryon due to the space-time parity symmetry. The scaling law of the soft form factor eta(P^{\\prime} \\cdot v), P^{\\prime} and v being the momentum of nucleon and the velocity of Lambda_b baryon, responsible for Lambda_b to p transitions is also derived using the nucleon distribution amplitudes in leading conformal spin. In particular, we verify that this scaling behavior is in full agreement with that from light-cone sum rule approach in the heavy-quark limit. With these form factors, we further investigate the Lambda baryon polarization asymmetry alpha in Lambda_b to Lambda gamma and the forward-...
Rößger, Lars; Schade, Jens; Tretvik, Terje
2009-01-01
The present paper aims to provide insights into freight operators’ attitudes with differentiated charges and their opinions about charges’ effectiveness and future behavioural responses. Thereby, we investigate whether motivational factors, particularly acceptability towards road charges, play an important role on future behavioural adaptations according to charging schemes. Interview surveys have been conducted and have focused on freight operators and road hauliers’ perception a...
Zero modes method and form factors in quantum integrable models
S. Pakuliak
2015-04-01
Full Text Available We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3-invariant R-matrix. Assuming that the monodromy matrix of the model can be expanded into series with respect to the inverse spectral parameter, we define zero modes of the monodromy matrix entries as the first nontrivial coefficients of this series. Using these zero modes we establish new relations between form factors of the elements of the monodromy matrix. We prove that all of them can be obtained from the form factor of a diagonal matrix element in special limits of Bethe parameters. As a result we obtain determinant representations for form factors of all the entries of the monodromy matrix.
Form factor ratio from unpolarized elastic electron proton scattering
Pacetti, Simone
2016-01-01
A reanalysis of unpolarized electron-proton elastic scattering data is done in terms of the electric to magnetic form factor squared ratio, $R^2$. The present analysis shows that $R^2$ is a useful quantity that contains reliable and coherent information. This ratio is in principle more robust against the experimental corrections. The comparison with the ratio extracted from the measurement of the longitudinal to transverse polarization of the recoil proton in polarized electron-proton scattering shows that the results are indeed compatible within the experimental errors. Limits are set on the kinematics where the physical information on the form factors can be safely extracted. The results presented in this work bring a decisive piece of information in the controversy on the deviation of the proton electromagnetic form factors from the dipole dependence.
Computation of 3D form factors in complex environments
The calculation of radiant interchange among opaque surfaces in a complex environment poses the general problem of determining the visible and hidden parts of the environment. In many thermal engineering applications, surfaces are separated by radiatively non-participating media and may be idealized as diffuse emitters and reflectors. Consenquently the net radiant energy fluxes are intimately related to purely geometrical quantities called form factors, that take into account hidden parts: the problem is reduced to the form factor evaluation. This paper presents the method developed for the computation of 3D form factors in the finite-element module of the system TRIO, which is a general computer code for thermal and fluid flow analysis. The method is derived from an algorithm devised for synthetic image generation. A comparison is performed with the standard contour integration method also implemented and suited to convex geometries. Several illustrative examples of finite-element thermal calculations in radiating enclosures are given
Time-like form factors of the nucleon
The electromagnetic form factors are an important tool to explore the structure of the nucleon. The extraction of space-like form factors from electron-proton scattering shows a discrepancy between data of unpolarized Rosenbluth measurements and of polarization experiments. This difference can be explained by means of two-photon exchange corrections. In the time-like region no comparable calculations have been done up to now for the corresponding processes. We investigate the influence of two-photon exchange in the reaction anti pp → e+e- with regard to determination of the time-like form factors and present calculations for future experiments at the PANDA rate at FAIR project.
New empirical fits to the proton electromagnetic form factors
Recent measurements of the ratio of the elastic electromagnetic form factors of the proton, GEp/GMp, using the polarization transfer technique at Jefferson Lab show that this ratio decreases dramatically with increasing Q2, in contradiction to previous measurements using the Rosenbluth separation technique. Using this new high quality data as a constraint, we have reanalyzed most of the world e-p elastic cross section data. In this paper, we present a new empirical fit to the reanalyzed data for the proton elastic magnetic form factor in the region 0 2 2. As well, we present an empirical fit to the proton electromagnetic form factor ratio, GEp/GMp, which is valid in the region 0.1 2 2
Kaon semileptonic decay form factors with HISQ valence quarks
Gamiz, E; Bazavov, A; Bernard, C; Bouchard, C; DeTar, C; Du, D; El-Khadra, A X; Foley, J; Freeland, E D; Gottlieb, Steven; Heller, U M; Kim, J; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Neil, E T; Oktay, M B; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, R
2012-01-01
We report on the status of our kaon semileptonic form factor calculations using the highly-improved staggered quark (HISQ) formulation to simulate the valence fermions. We present results for the form factor f_+^{K \\pi}(0) on the asqtad N_f=2+1 MILC configurations, discuss the chiral-continuum extrapolation, and give a preliminary estimate of the total error. We also present a more preliminary set of results for the same form factor but with the sea quarks also simulated with the HISQ action; these results include data at the physical light quark masses. The improvements that we expect to achieve with the use of the HISQ configurations and simulations at the physical quark masses are briefly discussed.
The Proton Form Factor Ratio Measurements at Jefferson Lab
Punjabi, Vina A. [Norfolk State University, Norfolk, VA (United States); Perdrisat, Charles F. [William and Mary College, Williamsburg, VA (United States)
2014-03-01
The ratio of the proton form factors, G{sub Ep}/G{sub Mp}, has been measured from Q{sup 2} of 0.5 GeV{sup 2} to 8.5 GeV{sup 2}, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The discovery that the proton form factor ratio measured in these experiments decreases approximately linearly with four-momentum transfer, Q{sup 2}, for values above ~1 GeV{sup 2}, is one of the most significant results to come out of JLab. These results have had a large impact on progress in hadronic physics; and have required a significant rethinking of nucleon structure. The increasingly common use of the double-polarization technique to measure the nucleon form factors, in the last 15 years, has resulted in a dramatic improvement of the quality of all four nucleon electromagnetic form factors, G{sub Ep}, G{sub Mp}, G{sub En} and G{sub Mn}. There is an approved experiment at JLab, GEP(V), to continue the ratio measurements to 12 GeV{sup 2}. A dedicated experimental setup, the Super Bigbite Spectrometer (SBS), will be built for this purpose. It will be equipped with a focal plane polarimeter to measure the polarization of the recoil protons. The scattered electrons will be detected in an electromagnetic calorimeter. In this presentation, I will review the status of the proton elastic electromagnetic form factors and discuss a number of theoretical approaches to describe nucleon form factors.
Factorization, resummation and sum rules for heavy-to-light form factors
Wang, Yu-Ming
2016-01-01
Precision calculations of heavy-to-light form factors are essential to sharpen our understanding towards the strong interaction dynamics of the heavy-quark system and to shed light on a coherent solution of flavor anomalies. We briefly review factorization properties of heavy-to-light form factors in the framework of QCD factorization in the heavy quark limit and discuss the recent progress on the QCD calculation of $B \\to \\pi$ form factors from the light-cone sum rules with the $B$-meson distribution amplitudes. Demonstration of QCD factorization for the vacuum-to-$B$-meson correlation function used in the sum-rule construction and resummation of large logarithms in the short-distance functions entering the factorization theorem are presented in detail. Phenomenological implications of the newly derived sum rules for $B \\to \\pi$ form factors are further addressed with a particular attention to the extraction of the CKM matrix element $|V_{ub}|$.
Sudakov effects in B -> pi l nu form factors
Descotes, S
2002-01-01
In order to obtain information about the Standard Model from exclusive hadronic two-body B-decays, we have to quantify non-perturbative QCD effects. Approaches based on the factorization of mass singularities into hadronic distribution amplitudes and form factors provide a rigorous theoretical framework for the evaluation of these effects in the heavy quark limit. But it is not possible to calculate power corrections in a model-independent way, because of non-factorizing long-distance contributions. It has been argued that Sudakov effects suppress these contributions and render the corresponding corrections perturbatively calculable. In this paper we examine this claim for the related example of semileptonic B -> pi decays and conclude that it is not justified. The uncertainties in our knowledge of the mesons' distribution amplitudes imply that the calculations of the form factors are not sufficiently precise to be useful phenomenologically. Moreover, a significant contribution comes from the non-perturbative...
Master integrals for the four-loop Sudakov form factor
Rutger H. Boels
2016-01-01
Full Text Available The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N=4 supersymmetric Yang–Mills theory (SYM in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. The simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was largely obtained in integrand form in a previous work for N=4 SYM, up to a free parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP identities using a modified version of Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. Moreover, two of the integral topologies vanish after reduction. The appearing master integrals are cross-checked using independent algebraic-geometry techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Discrepancies between explicitly solving the IBP relations and the MINT approach are highlighted. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N=4 SYM and beyond are identified.
Master integrals for the four-loop Sudakov form factor
The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N=4) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. Probably the simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was obtained in integrand form in a previous work for N=4 SYM, up to a single parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using (a tweaked version of) Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. The appearing master integrals are cross-checked using algebraic techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N=4 SYM and beyond are identified.
Master integrals for the four-loop Sudakov form factor
Boels, Rutger; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Yang, Gang [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Chinese Academy of Sciences, Beijing (China). Inst. of Theoretical Physics
2015-08-15
The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N=4) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. Probably the simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was obtained in integrand form in a previous work for N=4 SYM, up to a single parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using (a tweaked version of) Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. The appearing master integrals are cross-checked using algebraic techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N=4 SYM and beyond are identified.
Excited state systematics in extracting nucleon electromagnetic form factors
Capitani, Stefano; von Hippel, Georg; Jäger, Benjamin; Knippschild, Bastian; Meyer, Harvey B; Rae, Thomas D; Wittig, Hartmut
2012-01-01
We present updated preliminary results for the nucleon electromagnetic form factors for non-perturbatively $\\mathcal{O}(a)$ improved Wilson fermions in $N_f=2$ QCD measured on the CLS ensembles. The use of the summed operator insertion method allows us to suppress the influence of excited states in our measurements. A study of the effect that excited state contaminations have on the $Q^2$ dependence of the extracted nucleon form factors may then be made through comparisons of the summation method to standard plateau fits, as well as to excited state fits.
Pion transition form factor through Dyson-Schwinger equations
Raya, Khépani
2016-01-01
In the framework of Dyson-Schwinger equations (DSE), we compute the $\\gamma^*\\gamma\\to\\pi^0$ transition form factor, $G(Q^2)$. For the first time, in a continuum approach to quantun chromodynamics (QCD), it was possible to compute $G(Q^2)$ on the whole domain of space-like momenta. Our result agrees with CELLO, CLEO and Belle collaborations and, with the well-known asymptotic QCD limit, $2f_\\pi$. Our analysis unifies this prediction with that of the pion's valence-quark parton distribution amplitude (PDA) and elastic electromagnetic form factor.
Pion Form Factor in the Light-Front
Pacheco-Bicudo-Cabral de Melo, J
2004-01-01
The pion electromagnetic form factor is calculated with a light-front quark model. The "plus" and "minus" component of the electromagnetic current are used to calculate the electromagnetic form factor in the Breit frame with two models for the q\\bar{q} vertex. The light front constituent quark models describes very well hadronic wave function for pseudo-scalar and vector particles. Symmetry problems arinsing in the light-front approach are solved by the pole dislocation method. The results are compared with new experimental data and with other quark models.
The B → K* form factors on the lattice
Agadjanov, Andria; Bernard, Véronique; Meißner, Ulf-G.; Rusetsky, Akaki
2016-09-01
The extraction of the B →K* transition form factors from lattice data is studied, applying non-relativistic effective field theory in a finite volume. The possible mixing of πK and ηK states is taken into account. The two-channel analogue of the Lellouch-Lüscher formula is reproduced. Due to the resonance nature of the K*, an equation is derived, which allows to determine the form factors at the pole position in a process-independent manner. The infinitely-narrow width approximation of the results is discussed.
The $B\\to K^*$ form factors on the lattice
Agadjanov, Andria; Meißner, Ulf-G; Rusetsky, Akaki
2016-01-01
The extraction of the $B\\to K^*$ transition form factors from lattice data is studied, applying non-relativistic effective field theory in a finite volume. The possible mixing of $\\pi K$ and $\\eta K$ states is taken into account. The two-channel analogue of the Lellouch-L\\"uscher formula is reproduced. Due to the resonance nature of the $K^*$, an equation is derived, which allows to determine the form factors at the pole position in a process-independent manner. The infinitely-narrow width approximation of the results is discussed.
Vector and Axial Form Factors Applied to Neutrino Quasielastic Scattering
Budd, H; Arrington, J
2005-01-01
We calculate the quasielastic cross sections for neutrino scattering on nucleons using up to date fits to the nucleon elastic electromagnetic form factors GEp, GEn, GMp, GMn, and weak form factors. We show the extraction of Fa for neutrino experiments. We show how well \\minerva, a new approved experiment at FNAL, can measure Fa. We show the that Fa has a different contribution to the anti-neutrino cross section, and how the anti-neutrino data can be used to check Fa extracted from neutrino scattering.
3H and 3He electromagnetic form factors
We report the results of three experiments on elastic electron scattering from 3H and 3He. A detailed description of the experiments and the data obtained is given. We have performed a combined analysis of the world data on 3H and 3He. This analysis gives a complete experimental information on the trinucleon electromagnetic form factors up to q2=30 fm-2, and also provides a separation into the isoscalar and isovector form factors. The results are compared to selected calculations that include nucleonic and mesonic degrees of freedom. ((orig.))
Photon-meson transition form factors of light pseudoscalar mesons
Xiao, Bo-Wen; Ma, Bo-Qiang
2005-01-01
The photon-meson transition form factors of light pseudoscalar mesons $\\pi ^{0}$, $\\eta$, and $\\eta ^{\\prime}$ are systematically calculated in a light-cone framework, which is applicable as a light-cone quark model at low $Q^{2}$ and is also physically in accordance with the light-cone pQCD approach at large $Q^{2}$. The calculated results agree with the available experimental data at high energy scale. We also predict the low $Q^{2}$ behaviors of the photon-meson transition form factors of ...
Time-like pion form factor in lattice QCD
Feng, Xu; Hashimoto, Shoji; Kaneko, Takashi
2014-01-01
We perform a nonperturbative lattice calculation of the complex phase and modulus of the pion form factor in the time-like momentum region using the finite-volume technique. We use two ensembles of 2+1-flavor overlap fermion at pion masses m_pi = 380 and 290 MeV. By calculating the I = 1 correlators in the center-of-mass and three moving frames, we obtain the form factor at ten different values of the time-like momentum transfer around the vector resonance. We compare the results with the phenomenological model of Gounaris-Sakurai and its variant.
Pseudo-scalar form factors at three loops in QCD
Ahmed, Taushif; Gehrmann, Thomas; Mathews, Prakash; Rana, Narayan; Ravindran, V.
2015-11-01
The coupling of a pseudo-scalar Higgs boson to gluons is mediated through a heavy quark loop. In the limit of large quark mass, it is described by an effective Lagrangian that only admits light degrees of freedom. In this effective theory, we compute the three-loop massless QCD corrections to the form factor that describes the coupling of a pseudo-scalar Higgs boson to gluons. Due to the axial anomaly, the pseudo-scalar operator for the gluonic field strength mixes with the divergence of the axial vector current. Working in dimensional regularization and using the 't Hooft-Veltman prescription for the axial vector current, we compute the three-loop pseudo-scalar form factors for massless quarks and gluons. Using the universal infrared factorization properties, we independently derive the three-loop operator mixing and finite operator renormalisation from the renormalisation group equation for the form factors, thereby confirming recent results in the operator product expansion. The finite part of the three-loop form factor is an important ingredient to the precise prediction of the pseudo-scalar Higgs boson production cross section at hadron colliders. We discuss potential applications and derive the hard matching coefficient in soft-collinear effective theory.
Pion Electromagnetic Form Factor in Virtuality Distribution Formalism
Radyushkin, Anatoly V. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)
2016-01-01
We discuss two applications of the {\\it Virtuality Distribution Amplitudes} (VDA) formalism developed in our recent papers. We start with an overview of the main properties of the pion distribution amplitude emphasizing the quantitative measures of its width, and possibility to access them through the pion transition form factor studies. We formulate the basic concepts of the VDA approach and introduce the pion {\\it transverse momentum distribution amplitude} (TMDA) which plays, in a covariant Lagrangian formulation, a role similar to that of the pion wave function in the 3-dimensional Hamiltonian light-front approach. We propose simple factorized models for soft TMDAs, and use them to describe existing data on the pion transition form factor, thus fixing the scale determining the size of the transverse-momentum effects. Finally, we apply the VDA approach to the one-gluon exchange contribution for the pion electromagnetic form factor. We observe a very late $Q^2 \\gtrsim 20$ GeV$^2$ onset of transition to the asymptotic pQCD predictions and show that in the $Q^2 \\lesssim 10$ GeV$^2$ region there is essentially no sensitivity to the shape of the pion distribution amplitude. Furthermore, the magnitude of the one-gluon exchange contribution in this region is estimated to be an order of magnitude below the Jefferson Lab data, thus leaving the Feynman mechanism as the only one relevant to the pion electromagnetic form factor behavior for accessible $Q^2$.
Anto Sulaksono
2011-11-01
Full Text Available The differential cross-section of neutrino interaction with dense and warm electron gasses has been calculated by takinginto account the neutrino electromagnetic form factors. The significant effect of electromagnetic properties of neutrinocan be found if the neutrino dipole moment, μ ν , is ≥ 5.10-9 μB and neutrino charge radius, Rv, is ≥ 5.10-6 MeV-1. Theimportance of the retarded correction, detailed balance and Pauli blocking factors is shown and analyzed. Many-bodyeffects on the target matter which are included via random phase approximation (RPA correlation as well as photoneffective mass are also investigated.
OPE for all Helicity Amplitudes II. Form Factors and Data analysis
Basso, Benjamin; Cordova, Lucia; Sever, Amit; Vieira, Pedro
2015-01-01
We present the general flux tube integrand for MHV and non-MHV amplitudes, in planar N = 4 SYM theory, up to a group theoretical rational factor. We find that the MHV and non-MHV cases only differ by simple form factors which we derive. This information allows us to run the operator product expansion program for all sorts of non-MHV amplitudes and to test the recently proposed map with the so called charged pentagons transitions. Perfect agreement is found, on a large sample of non-MHV amplitudes, with the perturbative data available in the literature.
Nucleon form factors program with SBS at JLAB
Wojtsekhowski, Bogdan B. [JLAB
2014-12-01
The physics of the nucleon form factors is the basic part of the Jefferson Laboratory program. We review the achievements of the 6-GeV era and the program with the 12- GeV beam with the SBS spectrometer in Hall A, with a focus on the nucleon ground state properties.
The Proton Form Factor Ratio Measurements at Jefferson Lab
Punjabi, Vina
2014-01-01
The ratio of the proton form factors, GEp/GMp, has been measured from Q2 of 0.5 GeV2 to 8.5 GeV2, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The discovery that the proton form factor ratio measured in these experiments decreases approximately linearly with four-momentum transfer, Q2, for values above ? 1 GeV2, is one of the most significant results to come out of JLab. These results have had a large impact on progress in hadronic physics; and have required a significant rethinking of nucleon structure. The increasingly common use of the double-polarization technique to measure the nucleon form factors, in the last 15 years, has resulted in a dramatic improvement of the quality of all four nucleon electromagnetic form factors, GEp, GMp, GEn and GMn. There is an approved experiment at JLab, GEP(V), to continue...
Weak form factors in an extended hadron model
A relativistic quark model, similar to one developed by Feynman, Kislinger, and Ravndal, and by Lipes, is used to calculate the weak current of the nucleon. Form factors are found and are compared with the standard dipole fits. The cross section is plotted along with recent data for the process ν/sub μ/n→μ-p
Delta-isobar magnetic form factor in QCD
Belyaev, V M
1993-01-01
We consider the QCD sum rules approach for Delta-isobar magnetic form factor in the infra-red region $0
New results from BLAST on the nucleon electromagnetic form factors
Recently, a new experiment was carried out in the South Hall Ring at the MIT-Bates Accelerator Laboratory. This experiment utilized a polarized electron beam, a pure hydrogen (deuterium) internal polarized gas target, and the symmetric Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The proton electric to magnetic form factor ratio (GEp/GMp) at Q2= 0.15 - 0.65 (GeV/c)2 has been determined from the experiment by measuring the spin-dependent ep elastic scattering asymmetry in both sectors simultaneously. This is the first experiment to measure (GEp/GMp) using a polarized proton target, which is complementary to recoil polarimetry experiments. The neutron magnetic form factor GMn has been extracted from the measurement of the spin-dependent asymmetry from the inclusive d(vector sign)(e(vector sign),e) process in a similar Q2 with a vector polarized deuterium target, and the neutron electric form factor GEn has been extracted by measuring the spin-dependent asymmetry from the coincidence d(vector sign)(e(vector sign),e'n) process simultaneously. Preliminary results on the nucleon form factors from the BLAST experiment are presented
Factor Content of the Hill Interaction Matrix--Form B
Drummond, Robert J.; McIntire, Walter G.
1976-01-01
Investigates the construct validity of the Hill Interaction Matrix--Form B, a 64-item instrument designed to assess preferred modes of interaction in group settings. A factor analysis was performed by using 134 subjects. Results indicate that the items and the conceptual format are appropriate. (Author)
Nucleon and Δ Elastic and Transition Form Factors
We present a unified study of nucleon and Δ elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector ⊗ vector contact-interaction. The comparison emphasises that experiments are sensitive to the momentum dependence of the running couplings and masses in the strong interaction sector of the Standard Model and highlights that the key to describing hadron properties is a veracious expression of dynamical chiral symmetry breaking in the bound-state problem. Amongst the results we describe, the following are of particular interest: GpE(Q2)/GpM(Q2) possesses a zero at Q2 = 9.5 GeV2; any change in the interaction which shifts a zero in the proton ratio to larger Q2 relocates a zero in GnE(Q2)/GnM(Q2) to smaller Q2; there is likely a value of momentum transfer above which GnE>GpE ; and the presence of strong diquark correlations within the nucleon is sufficient to understand empirical extractions of the flavour-separated form factors. Regarding the Δ(1232) -baryon, we find that, inter alia: the electric monopole form factor exhibits a zero; the electric quadrupole form factor is negative, large in magnitude, and sensitive to the nature and strength of correlations in the Δ(1232) Faddeev amplitude; and the magnetic octupole form factor is negative so long as rest-frame P- and D-wave correlations are included. In connection with the N→Δ transition, the momentum-dependence of the magnetic transition form factor, G∗M , matches that of GnM once the momentum transfer is high enough to pierce the meson-cloud; and the electric quadrupole ratio is a keen measure of diquark and orbital angular momentum correlations, the zero in which is obscured by meson-cloud effects on the domain currently accessible to experiment. Importantly, within each framework, identical propagators
QCD sum rules form factors and wave functions
Radyushkin, A V
1997-01-01
The shape of hadronic distribution amplitudes (DAs) is a critical issue for the perturbative QCD of hard exclusive processes. Recent CLEO data on gamma gamma* -> pi^0 form factor clearly favor a pion DA close to the asymptotic form. We argue that QCD sum rules for the moments of the pion DA \\varphi_\\pi(x) are unreliable, so that the humpy shape of \\varphi_\\pi (x) obtained by Chernyak and Zhitnitsky is a result of model assumptions rather than an unambigous consequence of QCD sum rules. This conclusion is also supported by a direct QCD sum rule calculation of the gamma gamma* -> pi^0 form factor which gives a result very close to the CLEO data.
Nucleon form factors, generalized parton distributions and quark angular momentum
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kroll, Peter [Bergische Univ., Wuppertal (Germany). Fachbereich Physik; Regensburg Univ. (Germany). Institut fuer Theoretische Physik
2013-02-15
We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale {mu}=2 GeV to be J{sup u}{sub v}=0.230{sup +0.009}{sub -0.024} and J{sup d}{sub v}=-0.004{sup +0.010}{sub -0.016}.
The NE11 experiment at SLAC and the neutron form factors
The neutron electromagnetic form factors GEn and GMn, which reflect the charge and magnetization distributions within the neutron, are of fundamental importance for understanding nucleon structure, and are necessary for calculations of processes involving the electromagnetic interaction with complex nuclei. These quantities are functions of Q2, the four-momentum transfer squared. SLAC experiment NE11 has measured these form factors out to a Q2 of 4.0 (GeV/c)2 with high precision, and the results have been recently published. This paper provides some additional details on the extraction of GMn and GEn from the NE11 measurements. Several formalisms have been developed over the years which attempt to understand the nucleon form factors using basic physical principles. Vector Meson Dominance (VMD) models are based on superpositions of photon couplings to various vector mesons. These models generally involve free parameters which are fit to form factor data at low Q2, and are not expected to be valid at high Q2. For asymptotically large Q2, dimensional scaling methods and perturbative Quantum Chromodynamics (pQCD) predict form factor behavior at large Q2, but they do not make absolute magnitude predictions. To describe the form factor behavior at intermediate values of Q2, a hybrid model by Gari and Kruempelmann (GK) uses VMD constraints at low Q2 and pQCD constraints at high Q2. Free parameters in the model are adjusted to fit existing form factor data. Other approaches include the use of QCD sum rules to make absolute predictions, diquark models, and relativistic constituent quark models
Factors Affecting the Form of Substitute Family Care
Monika Chrenková
2015-11-01
Full Text Available Recently, the system of care for endangered children has changed from the institutional as well as legislative point of view. In one of the partial areas of ongoing changes, research activities realised within the Students’ Grant Competition called The Factors Affecting the Form of Substitute Family Care are being focused. We deal with this topic because various forms of substitute family care are distinguished in the Czech Republic, where children are placed for various reasons, but we do not know the correct context of such placements. The main aim of the realised research was to find out the frequency of choosing a given form of placing children in substitute family care according to followed variables. The research sample of the quantitative research was consisted of children placed in one of the forms of substitute family care in the Moravian-Silesian region.
Lattice QCD is an essential complement to the current and anticipated DOE-supported experimental program in hadronic physics. In this poster we address several key questions central to our understanding of the building blocks of nuclear matter, nucleons and pions. Firstly, we describe progress at computing the electromagnetic form factors of the nucleon, describing the distribution of charge and current, before considering the role played by the strange quarks. We then describe the study of transition form factors to the Delta resonance. Finally, we present recent work to determine the pion form factor, complementary to the current JLab experimental determination and providing insight into the approach to asymptotic freedom
Master integrals for the four-loop Sudakov form factor
Boels, Rutger; Yang, Gang
2016-01-01
The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally ($\\mathcal{N}=4$) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. Probably the simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was obtained in integrand form in a previous work for $\\mathcal{N}=4$ SYM, up to a single parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using (a tweaked version of) Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. The appearing master integrals are cross-checked using algebraic techniques explored in the Mint package. The ...