TOPICAL REVIEW: Detection of charge distributions in insulator surfaces
Rezende, C. A.; Gouveia, R. F.; da Silva, M. A.; Galembeck, F.
2009-07-01
Charge distribution in insulators has received considerable attention but still poses great scientific challenges, largely due to a current lack of firm knowledge about the nature and speciation of charges. Recent studies using analytical microscopies have shown that insulators contain domains with excess fixed ions forming various kinds of potential distribution patterns, which are also imaged by potential mapping using scanning electric probe microscopy. Results from the authors' laboratory show that solid insulators are seldom electroneutral, as opposed to a widespread current assumption. Excess charges can derive from a host of charging mechanisms: excess local ion concentration, radiochemical and tribochemical reactions added to the partition of hydroxonium and hydronium ions derived from atmospheric water. The last factor has been largely overlooked in the literature, but recent experimental evidence suggests that it plays a decisive role in insulator charging. Progress along this line is expected to help solve problems related to unwanted electrostatic discharges, while creating new possibilities for energy storage and handling as well as new electrostatic devices.
Freund, Friedemann; Freund, Minoru M.; Batllo, Francois
1993-01-01
The electrical conductivity sigma of MgO single crystals shows a sharp increase at 500-800 C, in particular of sigma surface, generally attributed to surface contamination. Charge Distribution Analysis (CDA), a new technique providing information on fundamental properties that was previously unavailable, allows for the determination of surface charges, their sign and associated internal electric field. Data on 99.99% purity, arc-fusion grown MgO crystals show that mobile charge carriers start to appear in the bulk of the MgO crystals between 200 and 400 C when sigma (measured by conventional techniques) is in t he 10(exp -14) to 10(exp -16) /omega/cm range. Above 500 C, as sigma increases to 10(exp -6) to 10(exp -7)/omega/cm, more charges appear giving rise to a strong positive surface charge supported by a strong internal field. This indicates that charges are generated in the bulk and diffuse to the surface by an internally controlled process. On the basis of their positive sign they are identified as holes (defect electrons). Because of the low cation content of these very pure MgO crystals, theses holes cannnot be associated with transition metal impurties. Instead, they are associated with the O(2-) sublattice, e.g. consist of O(-) states or positive holes. This conclusion is supported by magnetic susceptibility data showing the appearance of 1000 +/- 500 ppm paramagnetic species between 200-500 C. The magnetic data are consistent with strongly coupled, diamagnetic O(-) pairs below 200-500 C, chemically equivalent to peroxy anions, O2(2-), and probably associated with cation vacancies in the MgO matrix. The formation of O2(2-) in arc-fusion grown MgO crystals is very unexpected because of the highly reducing growth conditions. Their presence implies an internal redox reaction involving dissolved 'water' by which OH(-) pairs convert to O2(2-) plus H2 molecules. This redox conversion is supported by mass spectroscopic measurements of the H2 release from highly
Distributed charging of electrical assets
Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun
2016-02-16
The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.
International Nuclear Information System (INIS)
Experimental measurements of the τ lifetime and leptonic branching ratios are combined to give updated world averages for these quantities. The results are then used to test the universality of the electroweak charged current couplings to the three lepton species and are found to be consistent with Standard Model predictions at the level of 0.2%, permitting limits to be derived on non-Standard Model physics such as the mass of the τ neutrino
On stable nuclei mass charge distribution
International Nuclear Information System (INIS)
The charge distribution of mass averaged stable nuclei about trajectory that cross the points with proton and neutron numbers nearly magic is investigated. It is shown that the charge distribution of ΔM have a symmetric property on nucleus charge z=45 and mass number A=103. The distribution of ΔM is compared with charge distribution of product of 206Th fission in framework of statistic model. 4 refs.; 1 fig. (author)
Numerical calculation of impurity charge state distributions
Energy Technology Data Exchange (ETDEWEB)
Crume, E. C.; Arnurius, D. E.
1977-09-01
The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly.
New approach to $^4{He}$ charge distribution
Wilets, L; Pepin, S; Stancu, F; Carlson, J; Koepf, W; Stancu, Fl.
1996-01-01
We present a study of the $^4$He charge distribution based on realistic nucleonic wave functions and incorporation of the nucleon's quark substructure. The central depression of the proton point density seen in modern four-body calculations is too small by itself to lead to a correct description of the charge distribution. We utilize six-quark structures calculated in the Chromodielectric Model for N-N interactions, and we find a swelling of the proton charge distribution as the internucleon distance decreases. These charge distributions are combined with the $^4$He wave function using the Independent Pair Approximation and two-body distributions generated from Green's Function Monte Carlo calculations. We obtain a reasonably good fit to the experimental charge distribution without including meson exchange currents.
Central depression of nuclear charge density distribution
International Nuclear Information System (INIS)
The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of 46Ar and 44S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in 46Ar and 44S prefer to occupy the 1d3/2 state rather than the 2s1/2 state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of 46Ar and 44S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.
Spherical charged fluid distributions in general relativity
International Nuclear Information System (INIS)
Formal features of Einstein--Maxwell equations for spherically symmetric distributions of a charged perfect fluid in equilibrium are discussed. An exact solution of the system of equations for a specified choice of matter density and fluid pressure, representing a charged perfect gas is presented
On equilibrium charge distribution above dielectric surface
Directory of Open Access Journals (Sweden)
Yu.V. Slyusarenko
2009-01-01
Full Text Available The problem of the equilibrium state of the charged many-particle system above dielectric surface is formulated. We consider the case of the presence of the external attractive pressing field and the case of its absence. The equilibrium distributions of charges and the electric field, which is generated by these charges in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equations of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface, is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface and by the inhomogeneous charge distribution upon it. In particular, the case of the "wavy" spatially periodic surface is considered taking into account the possible presence of the surface charges.
Review on Electric Vehicle, Battery Charger, Charging Station and Standards
Directory of Open Access Journals (Sweden)
Afida Ayob
2014-01-01
Full Text Available Electric vehicles are a new and upcoming technology in the transportation and power sector that have many benefits in terms of economic and environmental. This study presents a comprehensive review and evaluation of various types of electric vehicles and its associated equipment in particular battery charger and charging station. A comparison is made on the commercial and prototype electric vehicles in terms of electric range, battery size, charger power and charging time. The various types of charging stations and standards used for charging electric vehicles have been outlined and the impact of electric vehicle charging on utility distribution system is also discussed.
Charge distributions and coagulation of radioactive aerosols
International Nuclear Information System (INIS)
The self-charging of radioactive aerosols will be reduced by background ions, such as those produced by radioactive gases. The sources of these background ions and their production rates are specified for a reactor containment atmosphere during a possible nuclear accident. Previous theory is extended to calculate the charging of a polydisperse radioactive aerosol. Gaussian approximations to charge distributions on an aerosol of a given size, and are shown to give a good representation of the exact numerical charge distributions of a Cs aerosol at normal temperatures, and also for highly radioactive aerosol containing 131I in a containment atmosphere. Extensive calculations are performed for charged-induced modifications to Brownian coagulation rates between steady-state size distribution of these radioactive aerosols, and also between small-sized radioactive aerosol and larger (non-radioactive) aerosol. The results show considerable enhancements of the coagulation rates between large and small-sized aerosol, but also a strong suppression of coagulation between large particles. Rate modifications calculated using the Gaussian approximations are generally close to the exact values. Time-dependent calculations for a monodisperse α-decaying aerosol reveal enhancements in coagulation rates even when the average charge on the aerosol is positive. Our results are relevant to behaviour in a dusty plasma. (author)
Energy Technology Data Exchange (ETDEWEB)
Fairbairn, R.J.; Maunder, D.; Kenyon, P.
1999-07-01
This report summarises the findings of a study reviewing the distribution network in England, Scotland and Wales to evaluate its ability to accommodate more embedded generation from both fossil fuel and renewable energy sources. The background to the study is traced, and descriptions of the existing electricity supply system, the licence conditions relating to embedded generation, and the effects of the Review of Electricity Trading Arrangements are given. The ability of the UK distribution networks to accept embedded generation is examined, and technical benefits/drawbacks arising from embedded generation, and the potential for uptake of embedded generation technologies are considered. The distribution network capacity and the potential uptake of embedded generation are compared, and possible solutions to overcome obstacles are suggested. (UK)
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
Energy Technology Data Exchange (ETDEWEB)
Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071 (China); Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
2015-05-28
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
International Nuclear Information System (INIS)
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
Zhao, Mingtian; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai; Li, Baohui
2015-05-01
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar
Review of Variable Generation Integration Charges
Energy Technology Data Exchange (ETDEWEB)
Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.
2013-03-01
The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.
Central depression of the nuclear charge distribution
International Nuclear Information System (INIS)
As a systematic feature of all measured charge distributions we find a shift in the form-factor zeroes as compared to a simple folding model. To first order, this shift can be interpreted as resulting from the central depression w, caused by the Coulomb repulsion. Accounting for it leads to an increase in the surface width of nuclear charge distributions by 0.105 fm. This interpretation of the experimental findings is compared with the droplet model, which relates w with the compression modulus K and the asymmetry energy J. Accounting for w leads to an increase in the extrapolated nuclear matter density by 7.5%. However, this macroscopic model is not able to describe the experimental results in detail since w is also influenced by shell effects. HF+BCS calculations with effective Skyrme-type interactions reproduce part of the data, revealing the influence of shells on w. Here, too, there remain discrepancies in details. A level of accuracy is reached at which most probably also the skewness of the charge distribution must be taken into account. (orig.)
Device for measuring charge density distribution in charged particle beams
International Nuclear Information System (INIS)
A device to measure charge density distribution in charged particle beams has been described. The device contains a set of hollow interinsulated current-receiving electrodes, recording system, and cooling system. The invention is aimed at the increase of admissible capacity of the beams measured at the expense of cooling efficiency increase. The aim is achieved by the fact, that in the device a dynamic evaporating-condensational cooling of electrodes is realized by means of cooling agent supply in perpendicular to their planes through the tubes introduced inside special cups. Spreading in radial direction over electrode surface the cooling agent gradually and intensively washes the side surface of the cup, after that, it enters the cooling cavity in the form of vapour-liquid mixture. In the cavity the cooling agent, supplied using dispensina and receiving collectors in which vapoUr is condensed, circulates. In the device suggested the surface of electrode cooling is decreased significantly at the expense of side surface of the cups which receives the electrode heat
Josephson charge qubits:a brief review
Pashkin, Yuri; Astafiev, O.; Yamamoto, T.; Nakamura, Y.; Tsai, J. S.
2009-01-01
The field of solid-state quantum computation is expanding rapidly initiated by our original charge qubit demonstrations. Various types of solid-state qubits are being studied, and their coherent properties are improving. The goal of this review is to summarize achievements on Josephson charge qubits. We cover the results obtained in our joint group of NEC Nano Electronics Research Laboratories and RIKEN Advanced Science Institute, also referring to the works done by other groups. Starting fro...
The effect of single-particle charge limits on charge distributions in dusty plasmas
International Nuclear Information System (INIS)
An analytical expression for the stationary particle charge distribution in dusty plasmas is derived that accounts for the existence of single-particle charge limits. This expression is validated by comparison with the results of Monte Carlo charging simulations. The relative importance of the existence of charge limits for various values of the ratio of electron-to-ion density and ion mass is examined, and the effect of charge limits on the transient behavior of the charge distribution is considered. It is found that the time required to reach a steady-state charge distribution strongly decreases as the charge limit decreases, and that the existence of charge limits causes high-frequency charge fluctuations to become relatively more important than in the case without charge limits. (paper)
Electric Vehicle (EV) Charging Management with Dynamic Distribution System Tariff
DEFF Research Database (Denmark)
O'Connell, Niamh; Wu, Qiuwei; Østergaard, Jacob;
2011-01-01
congestions in local distribution systems from the day-ahead planning perspective. Locational marginal pricing method was used to determine the dynamic distribution system tariff based on predicted day-ahead spot prices and predicted charging behaviors. Distribution grids of the Bornholm power system were......An electric vehicle (EV) charging schedule algorithm was proposed in this paper in order to charge EVs to meet EV users’ driving needs with the minimum EV charging cost and respect the local distribution system constraints. A day-ahead dynamic distribution system tariff scheme was proposed to avoid...
Charge Distribution Dependency on Gap Thickness of CMS Endcap RPC
Park, Sung K; Lee, Kyongsei
2016-01-01
We report a systematic study of charge distribution dependency of CMS Resistive Plate Chamber (RPC) on gap thickness. Prototypes of double-gap RPCs with six different gap thickness ranging from from 1.0 to 2.0 mm in 0.2-mm steps have been built with 2-mm-thick phenolic high-pressure-laminated plates. The efficiencies of the six gaps are measured as a function of the effective high voltages. We report that the strength of the electric fields of the gap is decreased as the gap thickness is increased. The distributions of charges in six gaps are measured. The space charge effect is seen in the charge distribution at the higher voltages. The logistic function is used to fit the charge distribution data. Smaller charges can be produced within smaller gas gap. But the digitization threshold should be also lowered to utilize these smaller charges.
Charge-State Distributions of Accelerated ^{48}Ca Ions
Skobelev, N K; Astabatyan, R A; Vincour, J; Kulko, A A; Lobastov, S P; Lukyanov, S M; Markaryan, E R; Maslov, V A; Penionzhkevich, Yu E; Sobolev, Yu G; Ugryumov, V Yu
2003-01-01
A stepped pole broad-range magnetic analyzer has been used to measure the charge-state distributions of accelerated ^{48}Ca ions at the two incident energies 242.8 and 264.5 MeV after passing through thin carbon or gold target foils. The measured charge-state distributions and the mean equilibrium charge of the ^{48}Ca ions are compared with various calculations. It has been shown that the calculations can be used only for evaluation purposes.
Precipitation particle charge distribution and evolution of East Asian rainbands
Takahashi, Tsutomu
2012-11-01
Numerous videosondes, balloon-borne surveyors of precipitation particle morphology and charge, have been launched into cloud systems in many, disparate locations in East Asia. Reported here are videosonde-based observations of early summer, Baiu rainbands at Tanegashima in southern Japan and of summer rainbands at Chiang Rai in northern Thailand. Precipitation particles are mapped by type and charge over the course of cloud development, allowing particle and charge evolution to be derived. The basic charge distribution as observed in Hokuriku winter thunderclouds at different cloud life stages was seen at different locations characterized by vertical velocity profiles in the cloud. The charge structure of the rainbands in both locations was a basic tripole. The major charge carriers were graupel and ice crystals. As graupel and ice crystal concentrations increased, not only did space charge increase, but per-particle charge also increased. Increased lightning activity was associated with higher particle space charge and lower cloud-top temperature. The particle charge evolution of these systems includes several fundamental features: a. active negative charging of graupel in an intense updraft, b. descent of negative graupel along the edge of an updraft column, c. merging of negative graupel with positively charged raindrops falling in the central cloud, and d. extended distribution of positive ice crystals in the stratiform cloud. The observations suggest that riming electrification was the main charge separation mechanism.
Charge distribution over dust particles configured with size distribution in a complex plasma
Misra, Shikha; Mishra, Sanjay K.
2016-02-01
A theoretical kinetic model describing the distribution of charge on the dust particles configured with generalized Kappa size distribution in a complex plasma has been developed. The formulation is based on the manifestation of uniform potential theory with an analytical solution of the master differential equation for the probability density function of dust charge; the number and energy balance of the plasma constituents are utilized in writing the kinetic equations. A parametric study to determine the steady state plasma parameters and the charge distribution corresponding to a size distribution of dust grains in the complex plasma has been made; the numerical results are presented graphically. The charge distribution is seen sensitive to the population of small grains in the particle size distribution and thus in contrast to symmetrical distribution of charge around a mean value for uniform sized grains, the charge distribution in the present case peaks around lower charge.
Gastis, P.; Perdikakis, G.; Robertson, D.; Almus, R.; Anderson, T.; Bauder, W.; Collon, P.; Lu, W.; Ostdiek, K.; Skulski, M.
2016-04-01
Equilibrium charge state distributions of stable 60Ni, 59Co, and 63Cu beams passing through a 1 μm thick Mo foil were measured at beam energies of 1.84 MeV/u, 2.09 MeV/u, and 2.11 MeV/u respectively. A 1-D position sensitive Parallel Grid Avalanche Counter detector (PGAC) was used at the exit of a spectrograph magnet, enabling us to measure the intensity of several charge states simultaneously. The number of charge states measured for each beam constituted more than 99% of the total equilibrium charge state distribution for that element. Currently, little experimental data exists for equilibrium charge state distributions for heavy ions with 19 ≲Zp,Zt ≲ 54 (Zp and Zt, are the projectile's and target's atomic numbers respectively). Hence the success of the semi-empirical models in predicting typical characteristics of equilibrium CSDs (mean charge states and distribution widths), has not been thoroughly tested at the energy region of interest. A number of semi-empirical models from the literature were evaluated in this study, regarding their ability to reproduce the characteristics of the measured charge state distributions. The evaluated models were selected from the literature based on whether they are suitable for the given range of atomic numbers and on their frequent use by the nuclear physics community. Finally, an attempt was made to combine model predictions for the mean charge state, the distribution width and the distribution shape, to come up with a more reliable model. We discuss this new "combinatorial" prescription and compare its results with our experimental data and with calculations using the other semi-empirical models studied in this work.
Nuclear charge distribution in the spontaneous fission of 252Cf
Wang, Taofeng; Zhu, Liping; WANG, LIMING; Men, Qinghua; Han, Hongyin; Xia, Haihong
2015-01-01
The measurement for charge distributions of fragments in 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a dE-E particle telescope. We found that the fragment mass dependency of the average width of the charge distribution shows a systematic decreased trend with the obvious odd-even effect. The variation of widths of charge distribution with kinetic energies shows an approximate V-shape curve due to the large number of neu...
Mass and Charge Distribution in Low-Energy Fission
International Nuclear Information System (INIS)
The mass and charge distributions for thermal-neutron fission of U235 are discussed in considerable detail and compared with the corresponding distributions in other low-energy fission processes. Points discussed in connection with the mass distributions for binary fission include the positions of the peaks, valley and fine structure in a mass yield curve with respect to filled nuclear shells and the changes in the positions that occur with changing fissioning nucleus and excitation energy. The mass distribution from ternary fission is discussed also. For both binary and ternary fission comments are made concerning the mass distributions of primary fragments (before neutron evaporation) and of fission products (after neutron evaporation). Charge distribution is discussed in terms of charge dispersion among fission products with the same mass number and the variation with mass number of Zp, the ''most probable charge'' (non-integral) for a given mass number. Although direct information about charge distribution is limited to fission products, estimates are presented of charge distribution for primary fission fragments. Knowledge and estimates of mass and charge distribution for a fission process allow estimation of primary yields of all fission products or fragments. Although many estimated primary yields are quite uncertain mainly because of lack of knowledge of charge distribution, especially for fission products formed in low yield; some estimates of primary yields are presented to illustrate the need for and possible practicality of further experimentation. Fission processes other than thermal-neutron fission of U235 that are discussed include thermal-neutron fission of U233 and Pu239, spontaneous fission of Pu240 and Cf252, 14-MeV neutron fission of U235 and U238, 11-MeV proton fission of Ra226 and 22-MeV deuteron fission of Bi209. (author)
Charged fluid distribution in higher dimensional spheroidal space-time
Indian Academy of Sciences (India)
G P Singh; S Kotambkar
2005-07-01
A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.
The Calculation of the Electrostatic Potential of Infinite Charge Distributions
Redzic, Dragan V.
2012-01-01
We discuss some interesting aspects in the calculation of the electrostatic potential of charge distributions extending to infinity. The presentation is suitable for the advanced undergraduate level. (Contains 3 footnotes.)
Experimental Tests of Charge Symmetry Violation in Parton Distributions
Energy Technology Data Exchange (ETDEWEB)
J.T. Londergan; D.P. Murdock; A.W. Thomas
2005-07-01
Recently, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the allowed magnitude of such effects. We discuss two possible experiments that could search for isospin violation in valence parton distributions. We show that, given the magnitude of charge symmetry violation consistent with existing global data, such experiments might expect to see effects at a level of several percent. Alternatively, such experiments could significantly decrease the upper limits on isospin violation in parton distributions.
Charge and longitudinal momentum distributions in transverse coordinate space
Mondal, Chandan; Dahiya, Harleen; Chakrabarti, Dipankar
2016-01-01
We investigate the charge distributions for the $u$ and $d$ quarks in transverse coordinate space in a light-front quark-diquark model for the nucleons using the overlaps of the wave functions constructed from the soft-wall AdS/QCD prediction. We have also obtained the charge distributions for proton and neutron in transverse coordinate space and compared it with the distributions obtained in impact-parameter space. Further, we study the longitudinal momentum distributions using the wave functions in the transverse coordinate space. We have also shown the explicit fermionic and bosonic contributions for different struck $u$ and $d$ quarks.
Mass and charge distribution in heavy-ion collisions
International Nuclear Information System (INIS)
A statistical model based on the independent particle picture is used to calculate mass and charge distributions in deep inelastic heavy-ion collisions. Different assumptions on volume and charge equilibrations are compared with measured variances of charge distributions. One combination of assumptions is clearly favoured by experiment, and gives a reasonable description of the variance versus energy loss curves up to energy losses of about 200 MeV in the heavy systems Kr+Ho and Xe+Bi, and up to about 60 MeV for the light system Ar+Ca
Multiplicity distributions and charged-neutral ﬂuctuations
Indian Academy of Sciences (India)
Tapan K Nayak; M M Aggarwal; A Agnihotri; Z Ahammed; A L S Angelis; V Antonenko; V Arefiev; V Astakhov; V Avdeitchikov; T C Awes; P V K S Baba; S K Badyal; A Baldine; L Barabach; C Barlag; S Bathe; B Tatiounia; T Bernier; K B Bhalla; V S Bhatia; C Blume; R Bock; E-M Bohne; D Bucher; A Buijs; E-J Buis; H Büsching; L Carlen; V Chalyshev; S Chattopadhyay; K E Chenawi; R Cherbatchev; T Chujo; A Claussen; A C Das; M P Decowski; V Djordjadze; P Donni; I Doubovik; A K Dubey; M R Dutta Majumdar; S Eliseev; K Enosawa; H Feldmann; P Foka; S Fokin; V Frolov; M S Ganti; S Garpman; O Gavrishchuk; F J M Geurts; T K Ghosh; R Glasow; S K Gupta; B Guskov; H A Gustafsson; H H Gutbrod; R Higuchi; I Hrivnacova; M Ippolitov; H Kalechofsky; R Kamermans; K-H Kampert; K Karadjev; K Karpio; S Kato; S Kees; H Kim; B W Kolb; I Kosarev; I Koutcheryaev; A Kugler; P Kulinich; V Kumar; M Kurata; K Kurita; K Kuzmin; I Langbein; A Lebedev; Y Y Lee; H Löhner; D P Mahapatra; V Manko; M Martin; A Maximov; R Mehdiyev; G Mgebrichvili; Y Miake; D Mikhalev; G C Mishra; Y Miyamoto; B Mohanty; D Morrison; D S Mukhopadhyay; V Myalkovski; H Naef; B K Nandi; S K Nayak; T K Nayak; S Neumaier; A Nianine; V Nikitine; S Nikolaev; S Nishimura; P Nomokov; J Nystrand; F E Obenshain; A Oskarsson; I Otterlund; M Pachr; A Parfenov; S Pavliouk; T Peitzmann; V Petracek; F Plasil; M L Purschke; B Raeven; J Rak; R Raniwala; S Raniwala; V S Ramamurthy; N K Rao; F Retiere; K Reygers; G Roland; L Rosselet; I Roufanov; J M Rubio; S S Sambyal; R Santo; S Sato; H Schlagheck; H-R Schmidt; G Shabratova; I Sibiriak; T Siemiarczuk; B C Sinha; N Slavine; K Söderström; N Solomey; G Sood; S P Sørensen; P Stankus; G Stefanek; P Steinberg; E Stenlund; D Stüken; M Sumbera; T Svensson; M D Trivedi; A Tsvetkov; C Twenhöfel; L Tykarski; J Urbahn; N V Eijndhoven; W H V Heeringen; G J V Nieuwenhuizen; A Vinogradov; Y P Viyogi; A Vodopianov; S Vörös; M A Vos; B Wyslouch; K Yogi; Y Yokota; G R Young
2001-08-01
Results from the multiplicity distributions of inclusive photons and charged particles, scaling of particle multiplicities, event-by-event multiplicity ﬂuctuations, and charged-neutral ﬂuctuations in 158 GeV Pb+Pb collisions are presented and discussed. A scaling of charged particle multiplicity as $N^{1.07± 0:05}_{\\text{part}}$ and photons as $N^{1.12± 0:03}_{\\text{part}}$ have been observed, indicating violation of naive wounded nucleon model. The analysis of localized charged-neutral ﬂuctuation indicates a model-independent demonstration of non-statistical ﬂuctuations in both charged particles and photons in limited azimuthal regions. However, no correlated charged-neutral ﬂuctuations are observed.
Langevin description of fission fragment charge distribution from excited nuclei
Karpov, A V
2002-01-01
A stochastic approach to fission dynamics based on a set of three-dimensional Langevin equations was applied to calculate fission-fragment charge distribution of compound nucleus sup 2 sup 3 sup 6 U. The following collective coordinates have been chosen - elongation coordinate, neck-thickness coordinate, and charge-asymmetry coordinate. The friction coefficient of charge mode has been calculated in the framework of one-body and two-body dissipation mechanisms. Analysis of the results has shown that Langevin approach is appropriate for investigation of isobaric distribution. Moreover, the dependences of the variance of the charge distribution on excitation energy and on the two-body viscosity coefficient has been studied
Charge state distribution studies of the metal vapor vacuum arc ion source
International Nuclear Information System (INIS)
We have studied the charge state distribution of the ion beam produced by the MEVVA (metal vapor vacuum arc) high current metal ion source. Beams produced from a wide range of cathode materials have been examined and the charge state distributions have been measured as a function of many operational parameters. In this paper we review the charge state data we have accumulated, with particular emphasis on the time history of the distribution throughout the arc current pulse duration. We find that in general the spectra remain quite constant throughout most of the beam pulse, so long as the arc current is constant. There is an interesting early-time transient behavior when the arc is first initiated and the arc current is still rising, during which time the ion charge states produced are observed to be significantly higher than during the steady current region that follows. 12 refs., 5 figs
Directory of Open Access Journals (Sweden)
M. V. Rodrigues
2006-03-01
Full Text Available This work gives sequence to the study on the measurement of the electrostatic charges in aerosols. The particle charge classifier developed for this purpose and presented in the previous paper (Marra and Coury, 2000 has been used here to measure the particle charge distribution of a number of different aerosols. The charges acquired by the particles were naturally derived from the aerosol generation procedure itself. Two types of aerosol generators were used: the vibrating orifice generator and turntable Venturi plate generator. In the vibrating orifice generator, mono-dispersed particles were generated by a solution of water/ethanol/methylene blue, while in the rotating plate generator, six different materials were utilized. The results showed no clear dependence between electric charge and particle diameter for the mono-dispersed aerosol. However, for the poly-dispersed aerosols, a linear dependence between particle size and charge could be noticed.
Nuclear charge distribution in the spontaneous fission of 252Cf
Wang, Taofeng; Wang, Liming; Men, Qinghua; Han, Hongyin; Xia, Haihong
2015-01-01
The measurement for charge distributions of fragments in 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a dE-E particle telescope. We found that the fragment mass dependency of the average width of the charge distribution shows a systematic decreased trend with the obvious odd-even effect. The variation of widths of charge distribution with kinetic energies shows an approximate V-shape curve due to the large number of neutron emission for the high excitation energies and cold fragmentation with low excitation energies. As for the behavior of the average nuclear charge with respect to its deviation {\\Delta}Z from the unchanged charge distribution (UCD) as a function of the mass number of primary fragments A*, for asymmetric fission products {\\Delta}Z is negative value, while upon approaching mass symmetry {\\Delta}Z turns positive. Concerning the energy dependence of the most probable charge for given primary mass number A*, the obvious inc...
Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors
Energy Technology Data Exchange (ETDEWEB)
Poehlsen, Thomas
2010-04-15
In this work epitaxial n-type silicon diodes with a thickness of 100 {mu}m and 150 {mu}m are investigated. After neutron irradiation with fluences between 10{sup 14} cm{sup -2} and 4 x 10{sup 15} cm{sup -2} annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10{sup 14} cm{sup -2} showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time {tau}{sub eff}. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time {tau}{sub eff}(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 {mu}m thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)
Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors
International Nuclear Information System (INIS)
In this work epitaxial n-type silicon diodes with a thickness of 100 μm and 150 μm are investigated. After neutron irradiation with fluences between 1014 cm-2 and 4 x 1015 cm-2 annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 1014 cm-2 showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time τeff. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time τeff(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 μm thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)
Flat Bunches with a Hollow Distribution for Space Charge Mitigation
Oeftiger, Adrian; Findlay, Alan James; Hancock, Steven; Rumolo, Giovanni
2016-01-01
Longitudinally hollow bunches provide one means to mitigate the impact of transverse space charge. The hollow distributions are created via dipolar parametric excitation during acceleration in CERN's Proton Synchrotron Booster. We present simulation work and beam measurements. Particular emphasis is given to the alleviation of space charge effects on the long injection plateau of the downstream Proton Synchrotron machine, which is the main goal of this study.
Probing the electron charge distribution via Kapitza-Dirac diffraction
Sancho, Pedro
2016-01-01
We analyze the diffraction of elementary systems as the electron by light gratings when they are described by charge distributions instead of the usual point-like form. The treatment of the problem is based on the introduction, in analogy with atomic polarizability, of state-dependent non-permanent multi-pole moments for the charge. The diffraction patterns can provide bounds on these moments. With this approach we can experimentally explore some aspects of the interpretation of the wave pict...
Charged-particle inclusive distributions from hadronic Z0 decays
International Nuclear Information System (INIS)
We have measured inclusive distributions for charged particles in hadronic decays of the Z boson. The variables chosen for study were the mean charged-particle multiplicity (left-angle nch right-angle), scaled momentum (x), and momenta transverse to the sphericity axes (p perpendicular in and p perpendicular out). The distributions have been corrected for detector effects and are compared with data from e+e- annihilation at lower energies and with the predictions of several QCD-based models. The data are in reasonable agreement with expectations. 12 refs., 2 figs
Argon-ion charge distributions following near-threshold ionization
International Nuclear Information System (INIS)
When an atom is photoionized in an inner shell, there are two mechanisms by which the remaining electron cortege relaxes to fill the vacancy: x-ray emission and radiationless Auger and Coster-Kronig transitions. In the former, the inner-shell hole moves to a less tightly bound orbital without increasing the number of atomic vacancies. In Auger processes, however, the energy liberated by transfer of a less-tightly-bound electron to the inner-shell vacancy is transferred to another electron which is ejected into the continuum. In this case, the charge on the residual ion increases by one. Through a series of radiative and non-radiative processes, the initial vacancy bubbles up until all vacancies arrive at the outermost shell. Due to the many possible routes by which this may occur, there can be a broad distribution of residual ion charge states characteristic of the decay of a single inner-shell vacancy. Because so many processes can contribute to each charge state, it is difficult to determine the effect of each by examining the total ion charge distribution; the total-ion charge distribution represents an average over many effects. To overcome this limitation, the author has recently measured argon-ion production as a function of both photon energy and Auger decay channel following photoionization of K-shell electrons with highly monochromatic synchrotron radiation. When measured differential in decay channel, the ion charge distributions are greatly simplified. Analysis, in progress, of these simplified distributions will permit extraction of information about relative decay rates and shakeoff effects that is obscured in the single spectra
Radiobiology with heavy charged particles: a historical review
Energy Technology Data Exchange (ETDEWEB)
Skarsgard, L.D. [Dept. of Medical Biophysics, B.C. Cancer Research Centre and TRIUMF, Vancouver (Canada)
1997-09-01
The presentation will attempt to briefly review some of radiobiological data on the effects of heavy charged particles and to discuss the influence of those studies on the clinical application which followed. (orig./MG)
Charge distribution in neptunium compounds calculated from moessbauer spectroscopy data
International Nuclear Information System (INIS)
Calculations of the 5f-orbitals population density in the neptunium compounds are carried out on the basis of experimental data, obtained by the Moessbauer spectroscopy method. Charge distribution in compounds Np(3), Np(4), Np(5), Np(6) and Np(7) is presented. Approach to studying the correlation between the δ indices and orbital population densities is proposed
Charging Schedule for Electric Vehicles in Danish Residential Distribution Grids
DEFF Research Database (Denmark)
Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte;
2015-01-01
vehicle owner, vehicle fleet operator and other parties involved in the process could economically benefit from the process. This paper investigates an optimal EV charging plan in Danish residential distribution grids in view of supporting high volumes of wind power in electricity grids. The results of...
Ion distribution function in ion space-charge region
International Nuclear Information System (INIS)
Experimental results for the ion distribution functions measured into an ion space-charge region near the negatively biased grid of a multipolar confinement plasma system are presented. The ion space charge is produced in argon plasma at a pressure of about 10-4 mbar. Plasma parameters in source chamber were electron density in the range 108 to 1010 cm-3 and electron temperature in the range 0.5 to 6.0 eV. The ion distribution functions were measured using a small electrostatic analyser with two grids of about 8 mm effective diameter and 48% optical transparency. The are two regimes for ion space-charge formation: one regime is stable and another is unstable. The latter consists of large current fluctuations in external electrical circuits. The ion distribution functions for both regimes are measured and the differences between them are pointed out. In the nonstationary regime the ion distribution functions are broader than in the stationary one. This effect is more important if the distance between the grid and the electrostatic analyser is greater than the ion space-charge position. (authors)
Connection between elastic relativistic form factors and charge distribution
International Nuclear Information System (INIS)
A scheme by means of which one can establish the connection between form factors and charge distribution (for particles of any spin) in proposed. Except for the nonrelativistic domain our results differ from previous ones. Consequences of our relations (some of them in agreement with experimental and previous theoretical results) are briefly discussed
Response of electrostatic probes to eccentric charge distributions
DEFF Research Database (Denmark)
Johansson, Torben; McAllister, Iain Wilson
2001-01-01
The response of an electrostatic probe mounted in an electrode is examined with reference to eccentric charge distributions. The study involves using the probe λ function to derive a characteristic parameter. This parameter enables the response of the probe to different degrees of eccentricity to...
Leherte, Laurence; Vercauteren, Daniel P
2011-10-01
To generate reduced point charge models of proteins, we developed an original approach to hierarchically locate extrema in charge density distribution functions built from the Poisson equation applied to smoothed molecular electrostatic potential (MEP) functions. A charge fitting program was used to assign charge values to the so-obtained reduced representations. In continuation to a previous work, the Amber99 force field was selected. To easily generate reduced point charge models for protein structures, a library of amino acid templates was designed. Applications to four small peptides, a set of 53 protein structures, and four KcsA ion channel models, are presented. Electrostatic potential and solvation free energy values generated by the reduced models are compared with the corresponding values obtained using the original set of atomic charges. Results are in closer agreement with the original all-atom electrostatic properties than those obtained with a previous reduced model that was directly built from the smoothed MEP functions [Leherte and Vercauteren in J Chem Theory Comput 5:3279-3298, 2009]. PMID:21915750
Iavarone, Anthony T.; Jurchen, John C.; Williams, Evan R.
2000-01-01
The effects of solvent composition on both the maximum charge states and charge state distributions of analyte ions formed by electrospray ionization were investigated using a quadrupole mass spectrometer. The charge state distributions of cytochrome c and myoglobin, formed from 47%/50%/3% water/solvent/acetic acid solutions, shift to lower charge (higher m/z) when the 50% solvent fraction is changed from water to methanol, to acetonitrile, to isopropanol. This is also the order of increasing...
International Nuclear Information System (INIS)
Conventional wisdom has it that total sputtering yields correlate with high Z-impurity levels found in fusion plasmas. The charge, quantum states and energy distributions of sputtered atoms have been virtually ignored in these considerations. Impurity transport from the wall or limiter to the plasma is, however, strongly influenced by these factors which may play a crucial role in determining impurity levels in the deeper plasma regions. Preliminary calculations have shown that positively charged impurities would most likely be redeposited on their surfaces of origin. The conditions leading to charged or excited state atoms emission and the energy distributions of such species are reviewed. Techniques for measuring these quantities are discussed and the need for a wider data base in this field is pointed out
Probing charge-symmetry-violating quark distributions in semi-inclusive leptoproduction of hadrons
Londergan, J T; Thomas, A W; Pang, Alex
1996-01-01
Recent experiments by the HERMES group at HERA are measuring semi-inclusive electroproduction of pions from deuterium. We point out that by comparing the production of \\pi^+ and \\pi^- from an isoscalar target, it is possible, in principle, to measure charge symmetry violation in the valence quark distributions of the nucleons. It is also possible in the same experiments to obtain an independent measurement of the quark fragmentation functions. We review the information which can be deduced from such experiments and show the ``signature'' for charge symmetry violation in such experiments. Finally, we predict the magnitude of the charge symmetry violation, from both the valence quark distributions and the pion fragmentation function, which might be expected in these experiments.
Review and Progress on Distributed Fibre Sensing
Thévenaz, Luc
2006-01-01
Optical fibers have crucially contributed to promote the concept of distributed sensing with a large impact. The different types of fiber optics distributed sensing techniques are reviewed and their performances and limits are presented.
Ionic strength independence of charge distributions in solvation of biomolecules
Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.
2014-01-01
Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations...
Ionic strength independence of charge distributions in solvation of biomolecules.
Virtanen, J J; Sosnick, T R; Freed, K F
2014-12-14
Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other. PMID:25494774
Comparison of the charge distributions of the titanium isotopes
International Nuclear Information System (INIS)
Measurements have been made of the elastic electron scattering from the three even isotopes of titanium, Ti46, Ti48, and Ti50, with the objective of determining the differences in their ground state charge distributions. The experiment measures the ratios of the elastic cross sections of the three isotopes, thereby eliminating many of the uncertainties peculiar to an absolute cross section measurement. The experiment was done at the NBS Linac in Gaithersburg, Maryland. Theoretical calculations using a partial wave elastic scattering program, showed that the ratios of cross sections arising from scattering from two slightly different Fermi type 2 parameter charge distributions, depended strongly on the differences in the parameter describing the charge distribution, but only weakly on the actual values of these parameters. These ratio curves, considered as a function of momentum transfer, achieved their extreme values at momenta transfer near 1.0 F-1, which is near the point where the Born approximation form factor goes to zero. Therefore, ratios of cross sections were measured at momenta transfer ranging from .55 to 1.1 F-1; by holding the scattering angle fixed at 127.50 and varying the incident beam energy from 60 to 123 MeV. 43 refs., 45 figs., 9 tabs
Predicted angular distribution of fast charged particles with ionization
International Nuclear Information System (INIS)
Moliere theory of angular distribution for fast charged particles is improved to take into account ionization loss, by using Kamata-Nishimura formulation of the theory. Decrease of the particle energy along the passage hence increase of the screening angle brings a slight different results from those derived by Moliere-Bethe formulation for fixed energies. The present results are reduced to the same Moliere distribution with modified values of the expansion parameter and the unit of Moliere angle. Properties of the new distribution and differences from the traditional one are discussed. Angular distributions of particles penetrating through the mixed or compound substances are also investigated both under the relativistic and the nonrelativistic conditions, together with the Kamata-Nishimura constants characterizing their formulation. (author)
Electromagnetic contribution to charge symmetry violation in parton distributions
Directory of Open Access Journals (Sweden)
X.G. Wang
2016-02-01
Full Text Available We report a calculation of the combined effect of photon radiation and quark mass differences on charge symmetry violation (CSV in the parton distribution functions of the nucleon. Following a recent suggestion of Martin and Ryskin, the initial photon distribution is calculated in terms of coherent radiation from the proton as a whole, while the effect of the quark mass difference is based on a recent lattice QCD simulation. The distributions are then evolved to a scale at which they can be compared with experiment by including both QCD and QED radiation. Overall, at a scale of 5 GeV2, the total CSV effect on the phenomenologically important difference between the d and u-quark distributions is some 20% larger than the value based on quark mass differences alone. In total these sources of CSV account for approximately 40% of the NuTeV anomaly.
Review on Electric Vehicle, Battery Charger, Charging Station and Standards
Afida Ayob; Wan Mohd Faizal Wan Mahmood; Azah Mohamed Mohd Zamri Che Wanik; MohdFadzil Mohd Siam; Saharuddin Sulaiman; Abu Hanifah Azit; Mohamed Azrin Mohamed Ali
2014-01-01
Electric vehicles are a new and upcoming technology in the transportation and power sector that have many benefits in terms of economic and environmental. This study presents a comprehensive review and evaluation of various types of electric vehicles and its associated equipment in particular battery charger and charging station. A comparison is made on the commercial and prototype electric vehicles in terms of electric range, battery size, charger power and charging time. The various types o...
Distribution of charge and matter in nuclei: Charge density difference of 206Pb and 205Tl
International Nuclear Information System (INIS)
We contrast two calculations of the charge density difference of 206Pb and 205Tl. In the simplest model this difference in charge density is due to the occupation of an additional 3s/sub 1/2/ orbital in 206Pb. A standard mean-field calculation of the charge difference does not yield a satisfactory result. One may modify this result by assigning the 3s/sub 1/2/ orbital an occupation probability of seventy percent, with a corresponding increase to thirty percent of the occupation probability of a 2d/sub 3/2/ orbital. However, this modification of the mean-field analysis, while solving one problem, is seen to create a new problem in the fit to the data. In this work we present an alternative analysis: We maintain unit occupation probability for the 3s/sub 1/2/ orbital but use the medium-modified proton electromagnetic form factor we have calculated previously. Our model is able to give a better fit to the data without the introduction of free parameters into the analysis. Medium-modified form factors have recently been shown to be effective in explaining the charge distribution of 208Pb and their application to the interpretation of the 206Pb-205Tl charge density difference yields a result which is consistent with the experimental data and superior to that obtained in the adjusted mean-field analysis described above
Distribution of Electric Charge in a System of Charged Conductors of Finite Dimensions
Czech Academy of Sciences Publication Activity Database
Doležel, Ivo; Dvořák, P.; Šolín, Pavel; Ulrych, B.
Ostrava : VŠB Technická univerzita Ostrava, 2003, s. -. ISBN 80-248-0225-2. [International Scientific Conference /5./. Beskydy - Visalaje (CZ), 28.01.2003-29.01.2003] R&D Projects: GA ČR GA102/00/0933 Institutional research plan: CEZ:AV0Z2057903 Keywords : distribution of electric charge * finite dimensions Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Solute location in a nanoconfined liquid depends on charge distribution
Energy Technology Data Exchange (ETDEWEB)
Harvey, Jacob A.; Thompson, Ward H., E-mail: wthompson@ku.edu [Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (United States)
2015-07-28
Nanostructured materials that can confine liquids have attracted increasing attention for their diverse properties and potential applications. Yet, significant gaps remain in our fundamental understanding of such nanoconfined liquids. Using replica exchange molecular dynamics simulations of a nanoscale, hydroxyl-terminated silica pore system, we determine how the locations explored by a coumarin 153 (C153) solute in ethanol depend on its charge distribution, which can be changed through a charge transfer electronic excitation. The solute position change is driven by the internal energy, which favors C153 at the pore surface compared to the pore interior, but less so for the more polar, excited-state molecule. This is attributed to more favorable non-specific solvation of the large dipole moment excited-state C153 by ethanol at the expense of hydrogen-bonding with the pore. It is shown that a change in molecule location resulting from shifts in the charge distribution is a general result, though how the solute position changes will depend upon the specific system. This has important implications for interpreting measurements and designing applications of mesoporous materials.
Charge distribution and radii in clusters from nuclear pasta models
International Nuclear Information System (INIS)
We study the consistency of the description of charge distributions and radii of nuclear clusters obtained with semiclassical nuclear pasta models. These nuclei are expected to exist in the low density outer crust of neutron stars. Properties of the arising clusterized nucleon matter can be compared to realistic nuclear properties as experimentally extracted on earth. We focus on non iso-symmetric light clusters with nucleon number 8 ≤ A ≤ 30 and use Monte Carlo many-body techniques. We simulate isotopic chains for a set of selected nuclei using a model Hamiltonian consisting of the usual kinetic term, hadronic nucleon nucleon (NN), Coulomb and an effective density dependent Pauli potential. It is shown that for neutron rich (deficient) clusters neutron (proton) skins develop. Different (matter, neutron, proton, electric charge) radii are computed for this set of non iso-symmetric nuclei. Nuclear binding energies are also analyzed in the isotopic chains. (author)
Charge distribution dependency on gap thickness of CMS endcap RPC
Park, Sung Keun
2016-01-01
We present a systematic study of charge distribution dependency of CMS Resistive Plate Chamber (RPC) on gap thickness.Prototypes of double-gap with five different gap thickness from 1.8mm to 1.0mm in 0.2mm steps have been built with 2mm thick phenolic high-pressure-laminated (HPL) plates. The charges of cosmic-muon signals induced on the detector strips are measured as a function of time using two four-channel 400-MHz fresh ADCs. In addition, the arrival time of the muons and the strip cluster sizes are measured by digitizing the signal using a 32-channel voltage-mode front-end-electronics and a 400-MHz 64-channel multi-hit TDC. The gain and the input impedance of the front-end-electronics were 200mV/mV and 20 Ohm, respectively.
A distributed charge storage with GeO2 nanodots
International Nuclear Information System (INIS)
In this study, a distributed charge storage with GeO2 nanodots is demonstrated. The mean size and aerial density of the nanodots embedded in SiO2 are estimated to be about 5.5 nm and 4.3x1011 cm-2, respectively. The composition of the dots is also confirmed to be GeO2 by x-ray absorption near-edge structure analyses. A significant memory effect is observed through the electrical measurements. Under the low voltage operation of 5 V, the memory window is estimated to ∼0.45 V. Also, a physical model is proposed to demonstrate the charge storage effect through the interfacial traps of GeO2 nanodots
A. Aljanad; Azah Mohamed
2015-01-01
This study presents a comprehensive review of the potential technical impacts of plug-in hybrid electric vehicles on power distribution and transmission systems. This review also presents various power quality impacts on the power system in several aspects. This review conveys a detailed analysis of electric vehicle charging strategies on electrical distribution networks. The two charging aspects (coordinated/uncoordinated) and intelligent scheduling of charging are discussed in terms of thei...
Modifications of the Weibull distribution: A review
International Nuclear Information System (INIS)
It is well known that the Weibull distribution is the most popular and the most widely used distribution in reliability and in analysis of lifetime data. Unfortunately, its hazard function cannot exhibit non-monotonic shapes like the bathtub shape or the unimodal shape. Since 1958, the Weibull distribution has been modified by many researchers to allow for non-monotonic hazard functions. This paper gives an extensive review of some discrete and continuous versions of the modifications of the Weibull distribution. - Highlights: • A comprehensive review of known discrete modifications and generalizations of the Weibull distribution. • A comprehensive review of known continuous modifications and generalizations of the Weibull distribution. • Over 110 references on modifications/generalizations of the Weibull distribution. • More than 55% of the cited references appeared in the last 5 years
Charge Distributions in Transverse Coordinate Space and in Impact Parameter Space
Hwang, Dae Sung; Kim, Dong Soo; Kim, Jonghyun
2008-01-01
We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.
Revealing dressed quarks via the proton's charge distribution.
Cloët, Ian C; Roberts, Craig D; Thomas, Anthony W
2013-09-01
The proton is arguably the most fundamental of nature's readily detectable building blocks. It is at the heart of every nucleus and has never been observed to decay. It is nevertheless a composite object, defined by its valence-quark content: u+u+d--i.e., two up (u) quarks and one down (d) quark; and the manner by which they influence, inter alia, the distribution of charge and magnetization within this bound state. Much of novelty has recently been learned about these distributions; and it now appears possible that the proton's momentum-space charge distribution possesses a zero. Experiments in the coming decade should answer critical questions posed by this and related advances; we explain how such new information may assist in charting the origin and impact of key emergent phenomena within the strong interaction. Specifically, we show that the possible existence and location of a zero in the proton's electric form factor are a measure of nonperturbative features of the quark-quark interaction in the standard model, with particular sensitivity to the running of the dressed-quark mass. PMID:25166653
Kaialy, Waseem
2016-04-30
Pharmaceutical powders are typically insulators consisting of relatively small particles and thus they usually exhibit significant electrostatic charging behaviours. In the inhalation field, the measurement of electrostatic charge is an imperative stage during pharmaceutical formulation development. The electrostatic charge is affected by the interplay of many factors. This article reviews the factors affecting the electrostatic charging of pharmaceutical powders with a focus on dry powder inhalations. The influences of particle resistivity, size distribution, shape distribution, surface roughness, polymorphic form and hygroscopicity, as well as the effects of moisture uptake, environmental conditions, pharmaceutical processing (i.e., milling, sieving, spray drying and blending), and storage on the electrostatic charge behaviours of pharmaceuticals, with focus on inhalation powders, were reviewed. The influence of electrostatic charge on the performance of dry powder inhaler formulations in terms of drug content homogeneity, the passage of drug through the inhaler device, drug-carrier adhesion/detachment, and drug deposition on the respiratory airways were discussed. The understanding gained is crucial to improving the safety, quality, and efficiency of the pharmaceutical inhalation products. PMID:26836710
TOPICAL REVIEW: Charged-particle multiplicity in proton-proton collisions
Fiete Grosse-Oetringhaus, Jan; Reygers, Klaus
2010-08-01
This review summarizes and critically reviews measurements of charged-particle multiplicity distributions and pseudorapidity densities in p+p(\\bar{p}) collisions between \\sqrt{s} = 23.6 {\\;GeV} and \\sqrt{s} = 1.8\\;TeV. Related theoretical concepts are briefly introduced. Moments of multiplicity distributions are presented as a function of \\sqrt{s}. Feynman scaling, KNO scaling as well as the description of multiplicity distributions with a single negative binomial distribution and with combinations of two or more negative binomial distributions is discussed. Moreover, similarities between the energy dependence of charged-particle multiplicities in p+p(\\bar{p}) and e+e- collisions are studied. Finally, various predictions for pseudorapidity densities, average multiplicities in full phase space and multiplicity distributions of charged particles in p+p(\\bar{p}) collisions at the LHC energies of \\sqrt{s} = 7\\;TeV, 10\\;TeV and 14 TeV are summarized and compared.
The self-energy of a charged particle in the presence of a topological defect distribution
De Carvalho, A M M; Furtado, C; Moraes, Fernando; Furtado, Claudio
2004-01-01
In this work we study a charged particle in the presence of both a continuous distribution of disclinations and a continuous distribution of edge dislocations in the framework of the geometrical theory of defects. We obtain the self-energy for a single charge both in the internal and external regions of either distribution. For both distributions the result outside the defect distribution is the self-energy that a single charge experiments in the presence of a single defect.
Application of carbon stripping foil to HIRFL-CSR and measurement of charge state distribution
International Nuclear Information System (INIS)
Charged ions may be injected into the CSRm by means of the charge stripping injection or the multiple multi-turn injection. The charge state distribution of the ions passing through the carbon foil has great influence on the performance of the accelerator and thus plays a key role in the charge stripping injection. It's found that the charge state distribution is dependent on the thicknesses of the carbon foil and the energy of the ions. In present work, the carbon stripper was applied to HIRFL-CSR and the best optional charge state distribution was measured. (authors)
Influence of Multiple Ionization on Charge State Distributions
Hahn, Michael; Savin, Daniel Wolf
2015-08-01
The spectrum emitted by a plasma depends on the charge state distribution (CSD) of the gas. For collisionally ionized plasmas, the CSD is is determined by the corresponding rates for electron-impact ionization and recombination. In astrophysics, such plasmas are formed in stars, supernova remnants, galaxies, and galaxy clusters. Current CSD calculations generally do not account for electron-impact multiple ionization (EIMI), a process in which multiple electrons are ejected by a single electron-ion collision. We have estimated the EIMI cross sections for all charge states of iron using a combination of the available experimental data and semi-empirical formulae. We then modeled the CSD and observed the influence of EIMI compared to only including single ionization. One case of interest for astrophysics is nanoflare heating, which is a leading theory to explain the heating of the solar corona. In order to determine whether this theory can indeed explain coronal heating, spectroscopic measurements are being compared to model nanoflare spectra. Such models have attempted to predict the spectra of impulsively heated plasmas in which the CSD is time dependent. These nonequilbirium ionization calculations have so far ignored EIMI, but our findings suggest that EIMI can have a significant effect on the CSD of a nanoflare-heated plasma, changing the ion abundances by up to about 50%.
Pezeshkian, Weria; Norouzi, Davood; Mohammad-Rafiee, Farshid; Fazli, Hossein
2012-01-01
The distribution of counterions and the electrostatic interaction between two similarly charged dielectric slabs is studied in the strong coupling limit. Dielectric inhomogeneities and discreteness of charge on the slabs have been taken into account. It is found that the amount of dielectric constant difference between the slabs and the environment, and the discreteness of charge on the slabs have opposing effects on the equilibrium distribution of the counterions. At small inter-slab separations, increasing the amount of dielectric constant difference increases the tendency of the counterions toward the middle of the intersurface space between the slabs and the discreteness of charge pushes them to the surfaces of the slabs. In the limit of point charges, independent of the strength of dielectric inhomogeneity, counterions distribute near the surfaces of the slabs. The interaction between the slabs is attractive at low temperatures and its strength increases with the dielectric constant difference. At room t...
Review on Islanding Operation of Distribution System with Distributed Generation
DEFF Research Database (Denmark)
Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte
2011-01-01
The growing environmental concern and various benefits of distributed generation (DG) have resulted in significant penetration of DG in many distribution systems worldwide. One of the major expected benefits of DG is the improvement in the reliability of power supply by supplying load during power...... outage by operating in an island mode. However, there are many challenges to overcome before islanding operation of a distribution system with DG can become a viable solution in future. This paper reviews some of the major challenges with islanding operation and explores some possible solutions to...
Time-dependent charge distributions in polymer films under electron beam irradiation
International Nuclear Information System (INIS)
The time-dependent charge distribution in polymer film under electron beam irradiation is studied by both experiment and numerical simulation. In the experiment, the distribution is measured with the piezoinduced pressure wave propagation method. In the simulation, the initial charge distribution is obtained by the Monte Carlo method of electron scattering, and the charge drift in the specimen is simulated by taking into account the Poisson equation, the charge continuity equation, Ohm's law, and the radiation-induced conductivity. The results obtained show that the negative charge deposited in the polymer film, whose top and bottom surfaces are grounded, drifts toward both grounded electrodes and that twin peaks appear in the charge distribution. The radiation-induced conductivity plays an important role in determining the charge distribution in the polymer films under electron beam irradiation
International Nuclear Information System (INIS)
The charge form factors of elastic electron scattering for isotones with N=20 and N=28 are calculated using the phase-shift analysis method, with corresponding charge density distributions from relativistic mean-field theory. The results show that there are sharp variations at the inner parts of charge distributions with the proton number decreasing. The corresponding charge form factors are divided into two groups because of the unique properties of the s-states wave functions, though the proton numbers change uniformly in two isotonic chains. Meanwhile, the shift regularities of the minima are also discussed, and we give a clear relation between the minima of the charge form factors and the corresponding charge radii. This relation is caused by the diffraction effect of the electron. Under this conclusion, we calculate the charge density distributions and the charge form factors of the A=44 nuclei chain. The results are also useful for studying the central depression in light exotic nuclei. (authors)
A review of four distribution infrastructures
O'Connell, J.; Edwards, N.; Cole, R.
1994-06-01
The paper describes experiences in designing and implementing a groupware application (a shared whiteboard) on four different distribution infrastructures. We describe the application and how its design was influenced by reliability requirements. We review the four platforms and discuss the useful, and not so useful, features of each platform.
International Nuclear Information System (INIS)
For an optimal design of ion sources and for some aspects of plasma diagnostics it is important to study the influence of all processes and parameters that are essential for the production and loss of multiply charged ions. Till now all existing calculations of CSD neglected charge transfer because of missing data. Now many of the very big charge transfer cross sections are measured and so we are able to include them into our calculations. (orig.)
Dielectric sample with two-layer charge distribution for space charge calibration purposes
DEFF Research Database (Denmark)
Holbøll, Joachim; Henriksen, Mogens; Rasmussen, C.
2002-01-01
In the present paper is described a dielectric test sample with two very narrow concentrations of bulk charges, achieved by two internal electrodes not affecting the acoustical properties of the sample, a fact important for optimal application of most space charge measuring systems. Space charge...... formation was investigated under different electrical conditions by means of the laser induced pressure pulse (LIPP) method and the pulsed electro-acoustic method (PEA)....
The effect of polymer charge density and charge distribution on the formation of multilayers
Voigt, U; Tauer, K; Hahn, M; Jäger, W; Klitzing, K V
2003-01-01
Polyelectrolyte multilayers which are built up by alternating adsorption of polyanions and polycations from aqueous solutions at a solid interface are investigated by reflectometry and ellipsometry. Below a degree of charge of about 70% the adsorption stops after a certain number of dipping cycles and no multilayer formation occurs. This indicates an electrostatically driven adsorption process. Below a charge density of 70% an adsorption can take place if the charged segments are combined as a block of the polymer.
A Fully Distributed Approach for Plug-in Electric Vehicle Charging
Mohammadi, Javad; Vaya, Marina Gonzalez; Kar, Soummya; Hug, Gabriela
2016-01-01
Plug-in electric vehicles (PEVs) are considered as flexible loads since their charging schedules can be shifted over the course of a day without impacting drivers mobility. This property can be exploited to reduce charging costs and adverse network impacts. The increasing number of PEVs makes the use of distributed charging coordinating strategies preferable to centralized ones. In this paper, we propose an agent-based method which enables a fully distributed solution of the PEVs Coordinated ...
Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics
Energy Technology Data Exchange (ETDEWEB)
Buividovich, P.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Polikarpov, M.I. [Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)
2011-11-15
We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)
Saeed Hatamzadeh-Varmazyar; Zahra Masouri
2014-01-01
The focus of this article is on calculation of electrostatic charge distribution induced on conducting surfaces. For this purpose, the integral equation concept is used for mathematical modeling of the problem. A special set of exponential basis functions is introduced and defined to be used in formulation of a numerical method for solving the integral equation to obtain the charge distribution. The method is numerically evaluated via calculation of charge density for some structures by which...
Equilibrium charge state distributions of high energy heavy ions
International Nuclear Information System (INIS)
Equilibrium charge state fractions have been measured for N, O, Ne, S, Ar and Kr ions at 1.04 MeV/nucleon after passing through various stripping materials. Further data were obtained at higher energy for S ions (4.12 MeV/nucleon) and Ar ions (4.12 and 9.6 MeV/nucleon). The mean charge fractions can be fitted to universal curves for both solid and gaseous strippers. Measurements of the equilibrium fraction of krypton ions at 1.04 MeV/nucleon passing through heavy vapours have shown that a higher average charge state is obtained than for lighter gaseous strippers. (Auth.)
Charge distribution and Fermi level in bimetallic nanoparticles
Holmberg, Nico; Laasonen, Kari; Peljo, Pekka Eero
2016-01-01
Upon metal-metal contact, a transfer of electrons will occur between the metals until the Fermi levels in both phases are equal, resulting in a net charge difference across the metal-metal interface. Here, we have examined this contact electrification in bimetallic model systems composed of mixed Au-Ag nanoparticles containing ca. 600 atoms using density functional theory calculations. We present a new model to explain this charge transfer by considering the bimetallic system as a nanocapacit...
REVIEW OF CHECKPOINTING ALGORITHMS IN DISTRIBUTED SYSTEMS
Directory of Open Access Journals (Sweden)
Poonam Gahlan
2010-06-01
Full Text Available Checkpointing is the process of saving the status information. Checkpoint is defined as a designated place in a program at which normal processing is interrupted specifically to preserve the status information necessary to allow resumption of processing at a later time. Mobile computing raises many new issues such as lack of stablestorage, low bandwidth of wireless channel, high mobility, and limited battery life. Coordinated checkpointing is an attractive approach for transparently adding fault tolerance to distributed applications since it avoids domino effects and minimizes the stable storage requirement. This paper presents the review of the algorithms,which have been reported in the literature for checkpointing. This paper also covers backward error recovery techniques for distributed systems specially the distributed mobile systems.
Proximity effects in cold gases of multiply charged atoms (Review)
Chikina, I.; Shikin, V.
2016-07-01
Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) 0 and for the alkali and alkaline-earth elements Eproxi thermal decay are interesting in themselves as they determine the important phenomenon of dissociation of neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for
A thundercloud electric field sounding - Charge distribution and lightning
Weber, M. E.; Few, A. A.; Stewart, M. F.; Christian, H. J.
1982-01-01
An instrumented free balloon measured electric fields and field changes as it rose through a thundercloud above Langmuir Laboratory, New Mexico. The variation of the electric field with altitude implied that the cloud contained negative space charge of density -0.6 to -4 nC/cu m between 5.5 and 8.0 km MSL. The environmental temperature at these levels ranged from -5 to -20 C. The measurements imply that the areal extent of this negative charge center was significantly greater than that of the cloud's intense precipitation shafts. At altitudes greater than 8 km, the instrument ascended past net positive charge. In addition, positive space charge adjacent to the earth's surface (concentration 0.6 nC/cu m and in the lowest portion of the cloud (1.0 nC/cu m) is inferred from the measurements. Electric field changes from intracloud lightning were interpreted by using a simple model for the developing streamer of the initial phase. Thunder source reconstructions provided estimates for the orientation of lightning channels. Seven 'streamers' so analyzed propagated on the average, at 50,000 m/s and carried a current of 390 A. The mean charge dissipated during a flash was 30 C.
Charge distribution and Fermi level in bimetallic nanoparticles.
Holmberg, Nico; Laasonen, Kari; Peljo, Pekka
2016-01-28
Upon metal-metal contact, a transfer of electrons will occur between the metals until the Fermi levels in both phases are equal, resulting in a net charge difference across the metal-metal interface. Here, we have examined this contact electrification in bimetallic model systems composed of mixed Au-Ag nanoparticles containing ca. 600 atoms using density functional theory calculations. We present a new model to explain this charge transfer by considering the bimetallic system as a nanocapacitor with a potential difference equal to the work function difference, and with most of the transferred charge located directly at the contact interface. Identical results were obtained by considering surface contacts as well as by employing a continuum model, confirming that this model is general and can be applied to any multimetallic structure regardless of geometry or size (going from nano- to macroscale). Furthermore, the equilibrium Fermi level was found to be strongly dependent on the surface coverage of different metals, enabling the construction of scaling relations. We believe that the charge transfer due to Fermi level equilibration has a profound effect on the catalytic, electrocatalytic and other properties of bimetallic particles. Additionally, bimetallic nanoparticles are expected to have very interesting self-assembly for large superstructures due to the surface charge anisotropy between the two metals. PMID:26788999
Directory of Open Access Journals (Sweden)
A. Aljanad
2015-08-01
Full Text Available This study presents a comprehensive review of the potential technical impacts of plug-in hybrid electric vehicles on power distribution and transmission systems. This review also presents various power quality impacts on the power system in several aspects. This review conveys a detailed analysis of electric vehicle charging strategies on electrical distribution networks. The two charging aspects (coordinated/uncoordinated and intelligent scheduling of charging are discussed in terms of their impacts on power systems. Vehicle to grid technology are investigated, elaborated and evaluated based on technical, suitability and configuration aspects.
Coupling of mass and charge distributions for low excited nuclear fission
International Nuclear Information System (INIS)
The simple model for calculation of charge distributions of fission fragments for low exited nuclear fission from experimental mass distributions is offered. The model contains two parameters, determining amplitude of even-odd effect of charge distributions and its dependence on excitation energy. Results for reactions 233U(nth,f), 235U(nth,f), 229Th(nth,f), 249Cf(nth,f) are spent
Equilibrium charge-state distributions of highly stripped ions in carbon foils
International Nuclear Information System (INIS)
Asymmetric equilibrium charge-state distributions observed for heavy ions (Z approx. >= 7) in carbon foils at high velocities (v > 3.6 x 108 Z0sup(.)45 cm s-1) are closely approximated by a simple statistical distribution: the reduced chi-squared model. The dependences of the mean charge and of the standard deviation of the charge on the projectile velocity are obtained by a previously-known and a newly-proposed relation, respectively. Finally charge-state fractions may be easily predicted using a simple formula depending only on the atomic number and on the velocity of the projectile. (orig.)
Review of theories of charge transfer processes involving highly stripped heavy ions
International Nuclear Information System (INIS)
A review is made of various theoretical models to study charge transfer processes involving highly stripped heavy ions Asup(z+) + B → Asup((z-1)+) + B+. The limitations of applicability of these models are critically discussed. Detailed comparison is made between theories for examples of C6+ + H → C5+ + H+ and Fe26+ + H → Fe25+ + H+. Scaling rules of the charge transfer cross section with respect to Z and theoretical predictions of the distribution over the fimal states of the highly stripped heavy ion are summarized, which are important for application to nuclear fusion and to X-ray laser. The theoretical results are compared with the experimental data available at present. (author)
Energy Technology Data Exchange (ETDEWEB)
2014-09-01
Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.
Proximity effects in cold gases of multiply charged atoms (Review)
Chikina, I.; Shikin, V.
2016-07-01
Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) 0 and for the alkali and alkaline-earth elements Eproxi theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic example from work on weak solutions (including charged solutions)—the use of semi-impermeable membranes for studies of osmotic pressure—is highly appropriate for
Distribution of Electrical Charge in a System of Finite Conductors
Czech Academy of Sciences Publication Activity Database
Doležel, Ivo; Kloucek, P.; Šolín, Pavel; Ulrych, B.
2003-01-01
Roč. 48, č. 1 (2003), s. 1-13. ISSN 0001-7043 Grant ostatní: GA €R(CZ) GP102/01/D114; NSF(US) DMS -0107539 Institutional research plan: CEZ:MSM 212300016 Keywords : electrical charge * numerical modelling * integral equations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
International Nuclear Information System (INIS)
The evolution of the thermoluminescence glow curve of a natural Ca-Be rich aluminosilicate after annealing treatments at different temperatures has been studied in order to evaluate the changes in the trapped charge distribution. The glow curve consists of a single broad peak that continuously shifts toward higher temperatures when the sample is preheated up to increasing temperatures, thus indicating the presence of a continuous trap distribution. The glow curve fitting assuming different distribution functions shows how a gaussian distribution becomes a nearly exponential distribution owing to the thermal leakage of charge carriers from trapping centres. (authors)
Universities Review Overhead Charges; Some Alter Policies on President's Home.
Cordes, Colleen
1991-01-01
Congressional investigations into university overhead charges, especially those at Stanford University (California), for federally sponsored research are leading universities to reexamine and change some policies, including charging some housing costs for university officers to government contracts. (DB)
DEFF Research Database (Denmark)
Kordheili, Reza Ahmadi; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna;
2015-01-01
This paper proposes different smart charging algorithms for electric vehicles (EVs) to find out the maximum grid capability in dealing with these new devices. The main objective is to obtain maximum EV penetration in the distribution grid without reinforcing the grid in order to avoid any cost for...... distribution system operators (DSOs). Two smart charging algorithms are proposed in this study. The proposed algorithms are applied to a part of the Danish distribution grid as a case study. As a comparison, a dumb charging scenario, i.e. charging EVs without any specific order or algorithm, is also simulated....... Simulation results demonstrate the capability of the smart charging methods to increase the penetration of EVs up to three times, compared to the base case....
Distribution Locational Marginal Pricing for Optimal Electric Vehicle Charging Management
DEFF Research Database (Denmark)
Li, Ruoyang; Wu, Qiuwei; Oren, Shmuel S.
2013-01-01
prices (DLMPs) by solving the social welfare optimization of the Electric distribution system which considers EV aggregators as Price takers in the local DSO market and demand price elasticity. Nonlinear optimization has been used to solve the social welfare optimization problem in order to obtain the......This paper presents an integrated distribution locational marginal pricing (DLMP) method designed to alleviate congestion induced by electric vehicle (EV) loads in future power systems. In the proposed approach, the distribution system operator (DSO) determines distribution locational marginal...
Space charge distribution measurement methods and particle loaded insulating materials
Energy Technology Data Exchange (ETDEWEB)
Hole, S [Laboratoire des Instruments et Systemes d' Ile de France, Universite Pierre et Marie Curie-Paris6, 10 rue Vauquelin, 75005 Paris (France); Sylvestre, A [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Lavallee, O Gallot [Laboratoire d' Etude Aerodynamiques, CNRS UMR6609, boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope, Chasseneuil (France); Guillermin, C [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France); Rain, P [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Rowe, S [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France)
2006-03-07
In this paper the authors discuss the effects of particles (fillers) mixed in a composite polymer on the space charge measurement techniques. The origin of particle-induced spurious signals is determined and silica filled epoxy resin is analysed using the laser-induced-pressure-pulse (LIPP) method, the pulsed-electro-acoustic (PEA) method and the laser-induced-thermal-pulse (LITP) method. A spurious signal identified as the consequence of a piezoelectric effect of some silica particles is visible for all the method. Moreover, space charges are clearly detected at the epoxy/silica interface after a 10 kV mm{sup -1} poling at room temperature for 2 h.
Equilibrium charge state distributions of 14N and 20Ne ions emerging from solids
International Nuclear Information System (INIS)
A new technique of backscattering has been developed for the measurement of equilibrium charge state distributions of ions emerging from a solid medium. By this method, equilibrium charge fractions for nitrogen in the energy range from 0.8 to 1.7 MeV and for neon from 1.5 to 4.4 MeV have been measured. The influence of inner shell vacancies produced by violent collisions on the charge state equilibrium is discussed. (Auth.)
Kazansky, P G; Smith, A. R.; Russell, P. St. J.; Yang, G.M.; Sessler, G.M.
1995-01-01
For the first time charge distributions in thermally poled silica glass are mapped by using laser induced pressure pulse technique. The experimental results may be explained through postulating the formation of both real space charge layers and inside the the depletion region
International Nuclear Information System (INIS)
In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.
Conformally flat spherically symmetric charged perfect fluid distribution in general relativity
International Nuclear Information System (INIS)
A solution of Einstein's field equations representing spherically symmetric charged perfect fluid distribution, which are conformally flat, is obtained. Various physical properties of the model are also discussed. (author)
International Nuclear Information System (INIS)
The role of charge on aerosol evolution and hence the nuclear source term has been an issue of interest, and there is a need for both experimental techniques and modeling for quantifying this role. Our focus here is on further exploration of a tandem differential mobility analyzer (TDMA) technique to simultaneously measure both the size and charge (positive, negative and neutral) dependent aerosol distributions. We have generated graphite, gold, silver, and palladium nanoparticles (aerosol) using a spark generator. We measure the electrical mobility-size distributions for these aerosols using a TDMA, and from these data we deduce the full charge-size distributions. We observe asymmetry in the particle size distributions for negative and positive charges. This asymmetry could have a bearing on the dynamics of charged aerosols, indicating that the assumption of symmetry for size distributions of negatively and positively charged particles in source term simulations may not be always appropriate. Also, the experimental technique should find applications in measurements of aerosol rate processes that are affected by both particle charge and size (e.g. coagulation, deposition, resuspension), and hence in modeling and simulation of the nuclear source term.
Probabilistic Method to Assess the Impact of Charging of Electric Vehicles on Distribution Grids
David Martínez-Vicente; Andreas Sumper; Roberto Villafafila-Robles; Eduardo Valsera-Naranjo
2012-01-01
This paper describes a grid impact analysis of charging electric vehicles (EV) using charging curves with detailed battery modelling. A probabilistic method using Monte Carlo was applied to a typical Spanish distribution grid, also using mobility patterns of Barcelona. To carry out this analysis, firstly, an IEEE test system was adapted to a typical distribution grid configuration; secondly, the EV and its battery types were modeled taking into account the current vehicle market and the batte...
Measurements of charged-particle inclusive distributions in hadronic decays of the Z boson
International Nuclear Information System (INIS)
We have measured inclusive distributions for charged particles in hadronic decays of the Z boson. The variables chosen for study were charged-particle multiplicity, scaled momentum, and momenta transverse to the sphericity axes. The distributions have been corrected for detector effects and are compared with data from e+e- annihilation at lower energies and with the predictions of several QCD-based models. The data are in reasonable agreement with expectations
Tensor Metrics and Charged Containers for 3D Q-space Sample Distribution
Knutsson, Hans; Westin, Carl-Fredrik
2013-01-01
This paper extends Jones’ popular electrostatic repulsion based algorithm for distribution of single-shell Q-space samples in two fundamental ways. The first alleviates the single-shell requirement enabling full Q-space sampling. Such an extension is not immediately obvious since it requires distributing samples evenly in 3 dimensions. The extension is as elegant as it is simple: Add a container volume of the desired shape having a constant charge density and a total charge equal to the negat...
International Nuclear Information System (INIS)
The correlation between molecular structure and charge distribution was investigated in organometallic compounds of the lanthanoid (4f-) and actinoid (5f-) elements. These compounds are suitable models for two reasons: a) they are soluble in nonpolar solvents and b) in both series, there is a possibility for continuous variation of the ionic size of the central ion. Detailed investigation of several compound-classes with different molecular symmetry, has given important information concerning the influence of the molecular structure on the macroscopic charge distribution in the molecule. The anisotropy of the charge distribution in the molecule increases with decreasing of the molecular symmetry. Contrary to predictions previously discussed in the literature, it has been shown, that the molecular symmetry primarily does not depend on sterical interactions, but on the Coulomb-interaction between the central ion and the ligand. Using different models which take into account the molecular geometry and the charge distribution, it was possible to calculate the partial electrical moments between ligand and central ion for several coordinating atoms of the used ligands. The contribution of the f-electrons to the total charge distribution around the central ion can be quantitatively calculated from the molecular polarizability and the total charge distribution of the investigated molecule. (orig./RB)
Determination of the charge state distribution of a highly ionized coronal Au plasma
International Nuclear Information System (INIS)
We present the first definitive measurement of the charge state distribution of a highly ionized gold plasma in coronal equilibrium. The experiment utilized the Livermore electron beam ion trap EBIT-II in a novel configuration to create a plasma with a Maxwellian temperature of 2.5 keV. The charge balance in the plasma was inferred from spectral line emission measurements which accounted for charge exchange effects. The measured average ionization state was 46.8±0.75. This differs from the predictions of two modeling codes by up to four charge states
An axisymmetric charged dust distribution with NUT rotation in general relativity
Vargas-Rodriguez, H.; Gonzalez-Silva, R. A.; Lopez Benitez, L. I.
2010-07-01
An exact solution of the Einstein-Maxwell's field equations is presented. This solution describes an axisymmetric charged dust distribution, with NUT rotation, in the presence of an electromagnetic field of the pure magnetic type. In the comoving reference frame, there is magnetic field only, the dust's electric charges do not interact with themselves, this is due to the vanishing of the Lorentz force. A naked singularity with magnetic charge is present. The solution is of the Petrov type D and possesses four Killing vectors. This is a generalization of the Lukács solution to the case when dust is charged.
DEFF Research Database (Denmark)
Marra, Francesco; Træholt, Chresten; Larsen, Esben
2012-01-01
A great interest is recently paid to Electric Vehicles (EV) and their integration into electricity grids. EV can potentially play an important role in power system operation, however, the EV charging infrastructures have been only partly defined, considering them as limited to individual charging...... points, randomly distributed into the networks. This paper addresses the planning of public central charging stations (CCS) that can be integrated in low-voltage (LV) networks for EV parallel charging. The concepts of AC and DC architectures of CCS are proposed and a comparison is given on their...
Energy Technology Data Exchange (ETDEWEB)
Dougar-Jabon, V.D. [Escuela de Fisica, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Umnov, A.M. [Russian Friendship University, 117198 Moscow (Russia); Kutner, V.B. [Joint Institute for Nuclear Research, Dubna (Russia)
1996-03-01
It is common knowledge that the electrostatic pit in a core plasma of electron cyclotron resonance sources exerts strict control over generation of ions in high charge states. This work is aimed at finding a dependence of the lifetime of ions on their charge states in the core region and to elaborate a numerical model of ion charge dispersion not only for the core plasmas but for extracted beams as well. The calculated data are in good agreement with the experimental results on charge distributions and magnitudes for currents of beams extracted from the 14 GHz DECRIS source. {copyright} {ital 1996 American Institute of Physics.}
Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides
Sokalski, W. A.; Keller, D. A.; Ornstein, R. L.; Rein, R.
1993-01-01
The defects in atomic monopole models of molecular charge distribution have been analyzed for several model-blocked peptides and compared with accurate quantum chemical values. The results indicate that the angular characteristics of the molecular electrostatic potential around functional groups capable of forming hydrogen bonds can be considerably distorted within various models relying upon isotropic atomic charges only. It is shown that these defects can be corrected by augmenting the atomic point charge models by cumulative atomic multipole moments (CAMMs). Alternatively, sets of off-center atomic point charges could be automatically derived from respective multipoles, providing approximately equivalent corrections. For the first time, correlated atomic multipoles have been calculated for N-acetyl, N'-methylamide-blocked derivatives of glycine, alanine, cysteine, threonine, leucine, lysine, and serine using the MP2 method. The role of the correlation effects in the peptide molecular charge distribution are discussed.
Two rods confined by positive plates: effective forces and charge distribution profiles
International Nuclear Information System (INIS)
The effect of confinement on the interaction force between two negatively charged rods is studied through Monte Carlo simulations. Confinement is produced by two parallel, charged or uncharged plates. The system is immersed in a 0.1 M 1-1 restricted primitive model electrolyte. The effect on the rod-rod effective force by the plate charge distribution is analysed. A strong modification of the rod-rod effective force due to confinement is found, as compared to the bulk case. In particular, rod-rod attraction was found for plates having a charge equal to that of fully charged bilipid bilayers. In spite of the simplicity of the model, these results agree with some DNA-phospholipid experimental observations. On the other hand, for a model having the plate charges fixed on a grid, very long range, oscillatory rod-rod effective forces were obtained
Spatial distribution of ion charges in fast, partially stripped clusters traversing solid targets
Miskovic, Z L; Goodman, F O; Wang, Y N
2002-01-01
Joint statistical description of the distribution of ion charge states and the spatial structure of a cluster, made of heavy ions, allows a self-consistent generalization of the Brandt-Kitagawa variational theory, including dynamically-screened inter-ionic interactions, in a form of a non-linear integral equation. Solution of such an equation for fast clusters passing very thin foils shows the familiar reduction of charge per ion, compared to the charge on an isotactic ion, which is rather non-homogeneously distributed throughout the volume of the cluster. As a consequence, the distribution of individual ion charges in the cluster exhibits large dispersion around an average value, which drops with the increasing cluster size.
Spatial distribution of ion charges in fast, partially stripped clusters traversing solid targets
International Nuclear Information System (INIS)
Joint statistical description of the distribution of ion charge states and the spatial structure of a cluster, made of heavy ions, allows a self-consistent generalization of the Brandt-Kitagawa variational theory, including dynamically-screened inter-ionic interactions, in a form of a non-linear integral equation. Solution of such an equation for fast clusters passing very thin foils shows the familiar reduction of charge per ion, compared to the charge on an isotactic ion, which is rather non-homogeneously distributed throughout the volume of the cluster. As a consequence, the distribution of individual ion charges in the cluster exhibits large dispersion around an average value, which drops with the increasing cluster size
Wilcox, Bethany R.; Caballero, Marcos D.; Pepper, Rachel E.; Pollock, Steven J.
2013-01-01
Utilizing the integral expression of Coulomb's Law to determine the electric potential from a continuous charge distribution is a canonical exercise in Electricity and Magnetism (E&M). In this study, we use both think-aloud interviews and responses to traditional exam questions to investigate student difficulties with this topic at the upper-division level. Leveraging a theoretical framework for the use of mathematics in physics, we discuss how students activate, construct, execute and reflect on the integral form of Coulomb's Law when solving problems with continuous charge distributions. We present evidence that junior-level E&M students have difficulty mapping physical systems onto the mathematical expression for the Coulomb potential. Common challenges include difficulty expressing the difference vector in appropriate coordinates as well as determining expressions for the differential charge element and limits of integration for a specific charge distribution. We discuss possible implications of these findings for future research directions and instructional strategies.
Wilcox, Bethany R; Pepper, Rachel E; Pollock, Steven J
2012-01-01
Utilizing the integral expression of Coulomb's Law to determine the electric potential from a continuous charge distribution is a canonical exercise in Electricity and Magnetism (E&M). In this study, we use both think-aloud interviews and responses to traditional exam questions to investigate student difficulties with this topic at the upper-division level. Leveraging a theoretical framework for the use of mathematics in physics, we discuss how students activate, construct, execute and reflect on the integral form of Coulomb's Law when solving problems with continuous charge distributions. We present evidence that junior-level E&M students have difficulty mapping physical systems onto the mathematical expression for the Coulomb potential. Common challenges include difficulty expressing the difference vector in appropriate coordinates as well as determining expressions for the differential charge element and limits of integration for a specific charge distribution. We discuss possible implications of t...
Electronic structure, charge distribution and X-ray emission spectra of V3Si
International Nuclear Information System (INIS)
Cluster calculations of the electronic structure and charge distribution in V3Si have been performed using two different molecular orbital methods: a semiempirical LCAO and the MS Xα model. The results are compared with X-ray emission spectra and band structure calculations. An analysis of the calculated electronic distribution reveals a charge transfer from Si-atoms to V-atoms, the additional charge on a V-atom being 0.6e (LCAO) and 0.4e (MS Xα method). The results are in good agreement with experiment, which indicates that the cluster approach is adequate for the description of charge distributions and spectra characteristics of the A-15 compounds. (author)
DEFF Research Database (Denmark)
Liu, Zhaoxi; Wu, Qiuwei; Oren, Shmuel S.;
2016-01-01
This paper presents a distribution locational marginal pricing (DLMP) method through chance constrained mixed-integer programming designed to alleviate the possible congestion in the future distribution network with high penetration of electric vehicles (EVs). In order to represent the stochastic...... characteristics of the EV driving patterns, a chance constrained optimization of the EV charging is proposed and formulated through mixed-integer programming (MIP). With the chance constraints in the optimization formulations, it guarantees that the failure probability of the EV charging plan fulfilling...... constrained MIP can successfully alleviate the congestion in the distribution network due to the EV charging while keeping the failure probability of EV charging not meeting driving needs below the predefined confidence....
On the Electromagnetic Momentum of Static Charge and Steady Current Distributions
Gsponer, Andre
2007-01-01
Faraday's and Furry's formulae for the electromagnetic momentum of static charge distributions combined with steady electric current distributions are generalized in order to obtain full agreement with Poynting's formula in the case where all fields are of class C[superscript 1], i.e., continuous and continuously differentiable, and the…
Effect of Moliere theory on path length distribution of fast charged particles
International Nuclear Information System (INIS)
The path length distribution due to multiple Coulomb scattering, considering single scattering and more accurate screening potential than gaussian approximation, is discussed after Moliere theory. Solutions for restricted conditions are indicated, from which we discuss effects of Moliere cross section on the path length distribution of charged particles and the time structure of electromagnetic cascade showers. (author)
International Nuclear Information System (INIS)
There are problems concerned with reliability of integrated circuits due to charge trapping in the oxide such as hot carrier injection, ionizing radiation, etc. Trapped charges in the insulators change the threshold voltage of MOSFET and increase the leakage currents in IC. Generally, the density of oxide charge has been calculated by assuming that it is located near the Si-SiO2 interface. This assumption is a good approximation in many cases. However, it would introduce serious errors in cases where the oxide charge has a spatial distribution, in particular where both positive and negative charges are present. In this paper, the authors propose a method for measuring the charge distribution in the oxide layer. They will explain about the slanted etching method that they proposed and describe the results of applying this method to silicon dioxide with and without ammonia anneal and silicon dioxide-nitride films. They will investigate the charge distributions both in the oxide layer of MOS structure with and without ammonia annealing and in the insulators of MOS and MNOS structures before and after irradiation
Heavy ion charge-state distribution effects on energy loss in plasmas
Barriga-Carrasco, Manuel D.
2013-10-01
According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler is used to determine its mean charge state . This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Qeff, which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Qeff is greater than the mean charge state , which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.
International Nuclear Information System (INIS)
The ratio of the cumulant to factorial moments of the charged-particle multiplicity distribution is known to show a quasi-oscillatory behavior when plotted versus the order of the moments. This peculiar behavior is also predicted b;y the NNLLA of perturbative QCD assuming the validity of the LPHD hypothesis. Using the subjet multiplicity distribution obtained from both Durham and Cambridge jet algorithms, instead of the charged-particle multiplicity distribution, in order to vary the dependence on the LPHD hypothesis, it was found that the oscillations appear only for non-perturbative energy scales. (author)
International Nuclear Information System (INIS)
The ratio of the cumulant factorial to factorial moments of the charged particle multiplicity distribution is known to show a quasi-oscillatory behaviour when plotted versus the order of the moments. This peculiar behaviour is also predicted by the NNLLA of perturbative QCD assuming the validity of the LPHD hypothesis. Using the subjet multiplicity distribution obtained from both Durham and Cambridge jet algorithms, instead of the charged particle multiplicity distribution, in order to vary the dependence on the LPHD hypothesis; it is shown that the oscillations appear only for non-perturbative energy scales. (author)
Flavor and Charge Symmetry in the Parton Distributions of the Nucleon
Benesh, C J
1998-01-01
Recent calculations of charge symmetry violation(CSV) in the valence quark distributions of the nucleon have revealed that the dominant symmetry breaking contribution comes from the mass associated with the spectator quark system.Assuming that the change in the spectator mass can be treated perturbatively, we derive a model independent expression for the shift in the parton distributions of the nucleon. This result is used to derive a relation between the charge and flavor asymmetric contributions to the valence quark distributions in the proton, and to calculate CSV contributions to the nucleon sea. The CSV contribution to the Gottfried sum rule is also estimated, and found to be small.
Measurements of charge distributions of the fragments in the low energy fission reaction
International Nuclear Information System (INIS)
The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ−Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au–Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2⁎ and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.
Highly transverse velocity distribution of convoy electrons emitted by highly charged ions
Seliger, M.; Tőkési, K.; Reinhold, C. O.; Burgdörfer, J.
2003-05-01
We present a theoretical study of convoy electron emission resulting from highly charged ion (HCI) transport through carbon foils. Employing a classical transport theory we analyze the angular and energy distribution formed by multiple scattering of electrons in the solid. We find that the convoy electron distribution becomes highly transverse at intermediate foil thicknesses representing an oblate spheroidal distribution due to the stepwise excitation of the HCI. The calculated convoy electron spectra are found to be in good agreement with recent measurements.
Effect of surface charge distribution on the adsorption orientation of proteins to lipid monolayers.
Tiemeyer, Sebastian; Paulus, Michael; Tolan, Metin
2010-09-01
The adsorption orientation of the proteins lysozyme and ribonuclease A (RNase A) to a neutral 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and a negatively charged stearic acid lipid film was investigated by means of X-ray reflectivity. Both proteins adsorbed to the negatively charged lipid monolayer, whereas at the neutral monolayer, no adsorption was observed. For acquiring comprehensive information on the proteins' adsorption, X-ray reflectivity data were combined with electron densities obtained from crystallographic data. With this method, it is possible to determine the orientation of adsorbed proteins in solution underneath lipid monolayers. While RNase A specifically coupled with its positively charged active site to the negatively charged lipid monolayer, lysozyme prefers an orientation with its long axis parallel to the Langmuir film. In comparison to the electrostatic maps of the proteins, our results can be explained by the discriminative surface charge distribution of lysozyme and RNase A. PMID:20707324
Charge density distribution of transparent p-type semiconductor (LaO)CuS
Takase, Kouichi; Sato,Ken; Shoji, Osamu; Takahashi, Yumiko; Takano, Yoshiki; Sekizawa, Kazuko; Kuroiwa, Yoshihiro; GOTO, MANABU
2007-01-01
The charge density distributions of layered oxysulfide (LaO)CuS, known as a p-type transparent semiconductor, have been investigated by analyzing the synchrotron radiation powder diffraction profile with the maximum entropy method/Rietveld method. The bonding character of the Cu–S bond is revealed to be covalent. Meanwhile, the O–La bonding has both ionic and covalent characters. The number of electrons estimated by integrating the charge density around each atom gave direct evidence that eac...
Sikler, Ferenc
2012-01-01
The energy loss distribution of charged particles in silicon is approximated by a simple analytical parametrization. Its use is demonstrated through several examples. With the help of energy deposits in sensing elements of the detector, the position of track segments and the corresponding deposited energy are estimated with improved accuracy and less bias. The parametrization is successfully used to estimate the energy loss rate of charged particles, and it is applied to detector gain calibration tasks.
Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na
Energy Technology Data Exchange (ETDEWEB)
Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.
2003-01-03
The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.
Recoil ion charge state distribution following the beta(sup +) decay of 21Na
International Nuclear Information System (INIS)
The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions
The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid
Clement-Nyns, Kristien; Haesen, Edwin; Driesen, Johan
2010-01-01
Alternative vehicles, such as plug-in hybrid electric vehicles, are becoming more popular. The batteries of these plug-in hybrid electric vehicles are to be charged at home from a standard outlet or on a corporate car park. These extra electrical loads have an impact on the distribution grid which is analyzed in terms of power losses and voltage deviations. Without coordination of the charging, the vehicles are charged instantaneously when they are plugged in or after a fixed start delay. Thi...
Effects of charge distribution on water filling process in carbon nanotube
Institute of Scientific and Technical Information of China (English)
MENG LingYi; LI QiKai; SHUAI ZhiGang
2009-01-01
Using umbrella sampling technique with molecular dynamics simulation, we investigated the nanoflu-idic transport of water in carbon nanotube (CNT). The simulations showed that a positive charge modi-fication to the carbon nanotube can slow down the water column growth process, while the negative charge modification to the carbon nanotube will, on the other hand, quicken the water column growth process. The free energy curves were obtained through the statistical process of water column growth under different charge distributions, and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.
Effects of charge distribution on water filling process in carbon nanotube
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Using umbrella sampling technique with molecular dynamics simulation,we investigated the nanoflu-idic transport of water in carbon nanotube(CNT).The simulations showed that a positive charge modi-fication to the carbon nanotube can slow down the water column growth process,while the negative charge modification to the carbon nanotube will,on the other hand,quicken the water column growth process.The free energy curves were obtained through the statistical process of water column growth under different charge distributions,and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.
Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers
Himmelberger, Scott
2014-10-28
© 2014 American Chemical Society. Model semiconducting polymer blends of well-controlled molecular weight distributions are fabricated and demonstrated to be a simple method to control intermolecular disorder without affecting intramolecular order or degree of aggregation. Mobility measurements exhibit that even small amounts of low molecular weight material are detrimental to charge transport. Trends in charge carrier mobility can be reproduced by a simple analytical model which indicates that carriers have no preference for high or low molecular weight chains and that charge transport is limited by interchain hopping. These results quantify the role of long polymer tie-chains and demonstrate the need for controlled polydispersity for achieving high carrier mobilities.
Hierarchical charge distribution controls self-assembly process of silk in vitro
Zhang, Yi; Zhang, Cencen; Liu, Lijie; Kaplan, David L.; Zhu, Hesun; Lu, Qiang
2015-12-01
Silk materials with different nanostructures have been developed without the understanding of the inherent transformation mechanism. Here we attempt to reveal the conversion road of the various nanostructures and determine the critical regulating factors. The regulating conversion processes influenced by a hierarchical charge distribution were investigated, showing different transformations between molecules, nanoparticles and nanofibers. Various repulsion and compressive forces existed among silk fibroin molecules and aggregates due to the exterior and interior distribution of charge, which further controlled their aggregating and deaggregating behaviors and finally formed nanofibers with different sizes. Synergistic action derived from molecular mobility and concentrations could also tune the assembly process and final nanostructures. It is suggested that the complicated silk fibroin assembly processes comply a same rule based on charge distribution, offering a promising way to develop silk-based materials with designed nanostructures.
Howell, L. W.
1985-01-01
An APL program which numerically evaluates the probability density function (PDF) for the energy deposited in a thin absorber by a charged particle is proposed, with application to the construction, pointing, and control of spacecraft. With this program, the PDF of the restricted energy loss distribution of Watts (1973) is derived, and Vavilov's (1957) distribution is obtained by proper parameter selection. The method is demonstrated with the example of the effect of charged particle induced radiation on the Hubble Space Telescope (HST) pointing accuracy. A Monte Carlo study simulates the photon noise caused by charged particles passing through the photomultiplier tube window, and the stochastic variation of energy loss is introduced into the simulation by generating random energy losses from a power law distribution. The program eliminates annoying loop procedures, and model parameter sensitivity can be studied using the graphical output.
Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies
International Nuclear Information System (INIS)
Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.
Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies
Energy Technology Data Exchange (ETDEWEB)
Bu, Wei [Iowa State Univ., Ames, IA (United States)
2009-01-01
Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.
International Nuclear Information System (INIS)
A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured
Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin
2015-11-01
A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.
Indian Academy of Sciences (India)
S Haddad
2010-09-01
The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable.
Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu
Sadhukhan, Jhilam; Schunck, Nicolas
2016-01-01
In this letter, we outline a methodology to calculate microscopically mass and charge distributions of spontaneous fission yields. We combine the multi-dimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic characteristics.
Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu
Sadhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas
2016-01-01
We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic fission characteristics.
International Nuclear Information System (INIS)
The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and the central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable. (author)
Yu, Deyang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin
2015-01-01
A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking the advantages of high electric potential and narrow bandwidth in DC energetic charged beam measurements, current resolution better than 5 fA can be achieved. Two 128-channel Faraday cup arrays are built, and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.
International Nuclear Information System (INIS)
In this review of charged weak currents we shall concentrate on inclusive high energy neutrino physics. The plan of this review is the following: general structure of charged current; new results on total cross-section; Callan-Gross relation; antiquark distribution; scaling violations and tests of QCD. At the end we will give a very short summary on multilepton physics
International Nuclear Information System (INIS)
A method is described for determining ion cyclotron resonance (ICR) heating effects on multiply charged-ion energy distributions using a Monte Carlo fit to experimental time-of-flight spectrometer data. The method is general but is used here specifically to separate the effects of plasma ambipolar potential spread and ion temperature in an electron cyclotron resonance (ECR) heated magnetic mirror ion source (MIMI) [Phys. Fluids 28, 3116 (1985)]. A steady-state equilibrium model is also developed that models the relevant atomic processes occurring in MIMI plasmas. This model and the Monte Carlo analysis are used to relate the effect of midplane ICR heating on end loss ion charge state distributions to its effect on the confined ion distributions. The model allows for collisional, moderately collisional, and collisionless confinement, specific to each charge state in the distribution. Both experiment and modeling show that increased ion temperature causes a shift to lower-Z ion populations in both the confined and end loss charge-state distributions
Welivita, Indunee; Wattage, Premachandra; Gunawardena, Prasanthi
2015-12-01
Solid waste management has become a major issue in almost all municipalities especially in developing countries across the world. As more waste needs to be collected and disposed of in urban areas, the increased cost cannot be covered by the available funds in developing countries. Managing the Household Solid Waste (HSW) sector is very important as it is the main contributor of the waste that needs to be collected in residential areas. The reduction of the amount of HSW to be disposed of can be achieved by households themselves practising the "4R" activities: reducing, reusing, recycling and recovering. As a policy instrument, the Waste Management Charge (WMC) for HSW has shown much success in encouraging such activities all over the world. Given the already difficult context in which developing countries operate, it is important to careful consider what kind of charging system is implemented. Using available literature, this paper reviews the applicability of available charging methods, from a flat rate method, through to volume-based (bags, cans or tag/sticker) and weight-based charging methods. These charging methods were evaluated on the basis of overall cost, technology need possible other issues. By considering the conditions in developing countries, a 'pre-paid bag based charging method' could be suggested as the most suitable charging method for a WMC in Sri Lanka or other developing countries. The potential applicability of this method was also examined in the context of social, economic and political characteristics. Whilst the use of economic instruments, including WMC, was widely discussed in the literature, the selection of a charging method in the context of developing countries is rarely discussed. Having said that, this paper gives an insight to the policy makers in developing countries upon using pre-paid bag based charging method for HSW sector. It also provides recommendations regarding possible issues in implementing for developing countries
Distributed Agile Software Development: A Review
Shrivastava, Suprika Vasudeva
2010-01-01
Distribution of software development is becoming more and more common in order to save the production cost and reduce the time to market. Large geographical distance, different time zones and cultural differences in distributed software development (DSD) leads to weak communication which adversely affects the project. Using agile practices for distributed development is also gaining momentum in various organizations to increase the quality and performance of the project. This paper explores the intersection of these two significant trends for software development i.e. DSD and agile. We discuss the challenges faced by geographically distributed agile teams and proven practices to address these issues, which will help in building a successful distributed team.
Energy Technology Data Exchange (ETDEWEB)
Bracken, D.S.; Foxford, E.R.; Kwiatkowski, K. [and others
1995-10-01
Moving source fits have been performed for IMFs as a function of observables related to collision violence in the 1.8-4.8 GeV {sup 3}He +{sup nat}Ag, {sup l97}Au reactions. The systematic behavior of the source properties and fragment charge distributions will be reviewed. The evolution of the spectral Coulomb parameters provides evidence for nuclear expansion prior to multifragmentation, suggesting a breakup density of p/p{sub o} {approximately} 1/3. The charge distributions will be examined in terms of power-law fits and moment analyses.
Fragment charge and energy distributions in the 1.8-4.8 GeV 3He + natAg, 197Au reactions
International Nuclear Information System (INIS)
Moving source fits have been performed for IMFs as a function of observables related to collision violence in the 1.8-4.8 GeV 3He +natAg, l97Au reactions. The systematic behavior of the source properties and fragment charge distributions will be reviewed. The evolution of the spectral Coulomb parameters provides evidence for nuclear expansion prior to multifragmentation, suggesting a breakup density of p/po ∼ 1/3. The charge distributions will be examined in terms of power-law fits and moment analyses
Dust charging processes with a Cairns-Tsallis distribution function with negative ions
International Nuclear Information System (INIS)
Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., qd = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U0) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0
Dust charging processes with a Cairns-Tsallis distribution function with negative ions
Energy Technology Data Exchange (ETDEWEB)
Abid, A. A., E-mail: abidaliabid1@hotmail.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Khan, M. Z., E-mail: mzk-qau@yahoo.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yap, S. L. [Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Terças, H., E-mail: hugo.tercas@tecnico.ul.pt [Physics of Information Group, Instituto de Telecomunicações, Av. Rovisco Pais, Lisbon 1049-001 (Portugal); Mahmood, S. [Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A2 (Canada)
2016-01-15
Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q{sub d} = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U{sub 0}) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0.
Effects of charging and doping on orbital hybridizations and distributions in TiO2 clusters
Zhao, Hong Min; Wu, Miao Miao; Wang, Qian; Jena, Puru
2011-11-01
Charging and doping are two important strategies used in TiO2 quantum dots for photocatalysis and photovoltaics. Using small clusters as the prototypes for quantum dots, we have carried out density functional calculations to study the size-specific effects of charging and doping on geometry, electronic structure, frontier orbital distribution, and orbital hybridization. We find that in neutral (TiO2)n clusters the charge transfer from Ti to O is almost size independent, while for the anionic (TiO2)n clusters the corresponding charge transfer is reduced but it increases with size. When one O atom is substituted with N, the charge transfer is also reduced due to the smaller electron affinity of N. As the cluster size increases, the populations of 3d and 4s orbitals of Ti decrease with size, while the populations of the 4p orbital increase, suggesting size dependence of spd hybridizations. The present study clearly shows that charging and doping are effective ways for tailoring the energy gap, orbital distributions, and hybridizations.
Measurements of the charged particle multiplicity distribution in restricted rapidity intervals
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Meinhard, H; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1995-01-01
Charged particle multiplicity distributions have been measured with the ALEPH detector in restricted rapidity intervals |Y| \\leq 0.5,1.0, 1.5,2.0\\/ along the thrust axis and also without restriction on rapidity. The distribution for the full range can be parametrized by a log-normal distribution. For smaller windows one finds a more complicated structure, which is understood to arise from perturbative effects. The negative-binomial distribution fails to describe the data both with and without the restriction on rapidity. The JETSET model is found to describe all aspects of the data while the width predicted by HERWIG is in significant disagreement.
Ion charge state distributions of pulsed vacuum arc plasmas in strong magnetic fields
International Nuclear Information System (INIS)
Vacuum arc plasmas with discharge currents of 300 A and duration 250 μs have been produced in strong magnetic fields up to 4 T. Ion charge state distributions have been measured for C, Al, Ag, Ta, Pt, Ho, and Er with a time-of-flight charge-mass spectrometer. Our previous measurements have been confirmed which show that ion charge states can be considerably enhanced when increasing the magnetic field up to about 1 T. The new measurements address the question of whether or not the additional increase continues at even higher magnetic field strength. It has been found that the increase becomes insignificant for field strengths greater than 1 T. Ion charge state distributions are almost constant for magnetic field strengths between 2 and 4 T. The results are explained by comparing the free expansion length with the freezing length. The most significant changes of charge state distributions are observed when these lengths are similar. copyright 1998 American Institute of Physics
Ion charge state distributions of pulsed vacuum arc plasmas in strong magnetic fields
International Nuclear Information System (INIS)
Vacuum arc plasmas with discharge currents of 300 A and duration 250 μs have been produced in strong magnetic fields up to 4 T. Ion charge state distributions have been measured for C, Al, Ag, Ta, Pt, Ho, and Er with a time-of-flight charge-mass-spectrometer. Our previous measurements have been confirmed which show that ion charge states can be considerably enhanced when increasing the magnetic field up to about 1 T. The new measurements address the question of whether or not the additional increase continues at even higher magnetic field strength. It has been found that the increase becomes insignificant for field strengths greater than 1 T. Ion charge state distributions are almost constant for magnetic field strengths between 2 and 4 T. The results are explained by comparing the free expansion length with the freezing length. The most significant changes of charge state distributions are observed when these lengths are similar. copyright 1998 American Institute of Physics
Investigation of the W and Q 2 dependence of charged pion distributions in μ p scattering
Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.
1986-03-01
The W and Q 2 dependence of the fragmentation functions and of the average multiplicity of charged pions is investigated, using data from the NA9 experiment at the CERN SPS on muon-proton scattering at 280 GeV. A significant increase of pion production with increasing W is observed at fixed Q 2, leading to a rise of the average charged pion multiplicity, linear in ln W 2, and of the pion fragmentation function in the central region, i.e. at small | x F |. This increase can be understood from the kinematic widening of the cms rapidity range proportional to ln W 2 and the observed W independent height of the rapidity distribution. At fixed W, a rise of the average charged pion multiplicity with Q 2 is observed. This rise appears to be weaker than that observed for all charged hadrons implying a stronger rise with Q 2 for kaons and protons.
Directory of Open Access Journals (Sweden)
Mokhtaria Drissi
2013-01-01
Full Text Available The molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the in-crystal molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. In this crystal, the molecules form dimers via N–HS intermolecular hydrogen bonds. The dimers are further linked by C–HO hydrogen bonds into chains along the c crystallographic axis. This study has also allowed us to determine the electrostatic potential and therefore locate the electropositive part and the electronegative part in molecular scale of the title compound.
Charge symmetry breaking from a chiral extrapolation of moments of quark distribution functions
Shanahan, P. E.; Thomas, A. W.; Young, R.D.(ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia)
2013-01-01
We present a determination, from lattice QCD, of charge symmetry violation in the spin- independent and spin-dependent parton distribution functions of the nucleon. This is done by chirally extrapolating recent QCDSF/UKQCD Collaboration lattice simulations of the first several Mellin moments of the parton distribution functions of octet baryons to the physical point. We find small chiral corrections for the polarized moments, while the corrections are quantitatively significant in the unpolar...
Scaled momentum distributions of charged particles in dijet photoproduction at HERA
Energy Technology Data Exchange (ETDEWEB)
Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)
2009-04-15
The scaled momentum distributions of charged particles in jets have been measured for dijet photoproduction with the ZEUS detector at HERA using an integrated luminosity of 359 pb{sup -1}. The distributions are compared to predictions based on perturbative QCD carried out in the framework of the modified leading-logarithmic approximation (MLLA) and assuming local parton-hadron duality (LPHD). The universal MLLA scale, {lambda}{sub eff}, and the LPHD parameter, {kappa}{sup ch}, are extracted. (orig.)
Indian Academy of Sciences (India)
Fauad Rami
2003-05-01
Charged particle pseudorapidity distributions have been measured in Au + Au collisions using the BRAHMS detector at RHIC. The results are presented as a function of the collision centrality and the center of mass energy. They are compared to the predictions of different parton scattering models and the important role of hard scattering processes at RHIC energies is discussed.
Market-based coordinated charging of electric vehicles on the low-voltage distribution grid
M. Ghijsen; R D'hulst
2011-01-01
This paper presents a market based coordination mechanism for charging electric vehicles. In market based coordination, a virtual market is used to match supply and demand of a commodity. The goal is to limit the impact of the electric vehicles on the low voltage distribution grid. First it is shown
Polarized parton distributions from charged-current deep-inelastic scattering
International Nuclear Information System (INIS)
We investigate the capabilities of a neutrino factory in the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments, with special attention to the accuracy of this kind of measurements. We show that a neutrino factory would allow to distinguish between different theoretical scenarios for the proton spin structure
Surface valence charge distributions and scanning tunneling microscopy of WTe 2
Tang, S. L.; Kasowski, R. V.; Suna, A.; Parkinson, B. A.
1990-11-01
We have studied the surface electronic structures of the van der Waals surfaces of tungsten ditelluride (WTe 2) with first principles calculations of the spatial distribution of the surface valence charge densities and compared the results to images obtained with the scanning tunneling microscope (STM). The energy- and z(distance from the surface)-dependent calculations show that the valence charge density distribution above the Te surface could be derived from the surface Te layer, as we previously calculated, but the charge density distribution close to but below the Fermi energy has a distortion that coincidentally makes it appear to have a symmetry close to the paired, zig-zag and buckled rows of the W layer. These results dramatically illustrate that in highly covalent compounds, the surface valence charge density distribution does not necessarily follow the surface atomic positions even on ideal, unreconstructed surfaces. An alternative interpretation of the STM images of this surface is proposed in light of this new surface electronic structure. Our calculated and experimental results are also discussed with reference to recent STM results on other transition metal dichalcogenides.
International Nuclear Information System (INIS)
On the basis of the proposed numerical procedure the solution of the nonlinear Boltzmann-Poisson equation for bounded plasma in the presence of strong external electric field is obtained. The numerical analysis of the electric field, potential, and equilibrium profiles of charged particles distributions in the plasma half-space is performed in detail. 6 refs.; 8 figs. (author)
Distributed Information System Development: Review of Some Management Issues
Mishra, Deepti; Mishra, Alok
Due to the proliferation of the Internet and globalization, distributed information system development is becoming popular. In this paper we have reviewed some significant management issues like process management, project management, requirements management and knowledge management issues which have received much attention in distributed development perspective. In this literature review we found that areas like quality and risk management issues could get only scant attention in distributed information system development.
Sharma, Prashant
2015-01-01
Charge state distributions of $^{56}$Fe and $^{58}$Ni projectile ions passing through thin carbon foils have been studied in the energy range of 1.44 - 2.69 MeV/u using a novel method from the x-ray spectroscopy technique. Interestingly the charge state distribution in the bulk show Lorentzian behavior instead of usual Gaussian distribution. Further, different parameters of charge state distribution like mean charge state, distribution width and asymmetric parameter are determined and compared with the empirical calculations and ETACHA predictions. It is found that the x-ray measurement technique is appropriate to determine the mean charge state right at the interaction zone or in the bulk. Interestingly, empirical formalism predicts much lower projectile mean charge states compare to x-ray measurements which clearly indicate multi-electron capture from the target surface. The ETACHA predictions and experimental results are found to be comparable for energies $\\geq$ 2 MeV/u.
Charge particle accelerator - a brief review, future challenges and applications
International Nuclear Information System (INIS)
Charged particle accelerators are important tools to investigate hitherto inaccessible problems in various fields of science. The interaction of charged particles with materials reveals structural information at very small scale (-16 cm). Accelerator based equipments viz. scanning electron microscope (SEM), transmission electron microscope (TEM) and focused ion beam (FIB) machines are extensively being used to explore new possibilities in nanotechnology. Many experiments in nuclear and particle physics examine the fundamental laws of physics by colliding a high-energy beam of particles, such as electrons or protons, with a fixed target or with another beam of particles. Modern light sources, which are capable of producing high-energy photons such as X-rays, operate by 'bending' the path of electrons in an accelerator with magnets to generate radiation. State-of-the-art cancer treatment facilities utilize high-energy proton and heavier ion beams to treat inoperable tumors. The man made sun, International Thermonuclear Experimental Reactor (ITER), will utilize 1 MeV, 40 A neutral proton beams for additional heating of the plasma. A roadmap for developing accelerator driven systems (ADS) in India was prepared in 2001 and involves development of a 1 GeV, 30 mA proton linear accelerator. Due to potential applications, developing high energy accelerators worldwide is a challenge for the community. New acceleration schemes to make accelerator size compact have been realized. In the present talk, various types of accelerators, accelerator based programs worldwide and new acceleration scheme of charge particles will be discussed. The low energy ion beam facility (LEIBF) at IUAC and a few experimental results arising from this facility will be presented. Finally, I will touch some applications, particularly in nanotechnology, where accelerators are making a big impact. (author)
Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram; van den Ende, Dirk; Mugele, Frieder; Siretanu, Igor
2016-02-01
Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the surface charge and ζ -potential of these surfaces. However, because of the macroscopic averaging character these techniques cannot do justice to the role of local heterogeneities on the surfaces. In this work, we use dynamic atomic force microscopy (AFM) to determine the distribution of surface charge on the two (gibbsite-like and silica-like) basal planes of kaolinite nanoparticles immersed in aqueous electrolyte with a lateral resolution of approximately 30 nm. The surface charge density is extracted from force-distance curves using DLVO theory in combination with surface complexation modeling. While the gibbsite-like and the silica-like facet display on average positive and negative surface charge values as expected, our measurements reveal lateral variations of more than a factor of two on seemingly atomically smooth terraces, even if high resolution AFM images clearly reveal the atomic lattice on the surface. These results suggest that simple surface complexation models of clays that attribute a unique surface chemistry and hence homogeneous surface charge densities to basal planes may miss important aspects of real clay surfaces.
A flexible distributed framework for realising electric and plug-in hybrid vehicle charging policies
Stüdli, S.; Crisostomi, E.; Middleton, R.; Shorten, R.
2012-08-01
Motivated by the problems of charging a number of electric vehicles via limited capacity infrastructure, this article considers the problem of individual load adjustment under a total capacity constraint. For reasons of scalability and simplified communications, distributed solutions to this problem are sought. Borrowing from communication networks (AIMD algorithms) and distributed convex optimisation, we describe a number of distributed algorithms for achieving relative average fairness whilst maximising utilisation. We present analysis and simulation results to show the performance of these algorithms. In the scenarios examined, the algorithm's performance is typically within 5% of that achievable in the ideal centralised case, but with greatly enhanced scalability and reduced communication requirements.
Statistical interpretation of joint multiplicity distributions of neutrons and charged particles
International Nuclear Information System (INIS)
Experimental joint multiplicity distributions of neutrons and charged particles provide a striking signal of the characteristic decay processes of nuclear systems following energetic nuclear reactions. They present, therefore, a valuable tool for testing theoretical models for such decay processes. The power of this experimental tool is demonstrated by a comparison of an experimental joint multiplicity distribution to the predictions of different theoretical models of statistical decay of excited nuclear systems. It is shown that, while generally phase-space based models offer a quantitative description of the observed correlation pattern of such an experimental multiplicity distribution, some models of nuclear multifragmentation fail to account for salient features of the observed correlation
International Nuclear Information System (INIS)
Charge state distributions and charge-changing cross sections have been measured for heavy ions with atomic numbers between 18 and 92, in charge states from +9 to +68, and at energies in the range from 0.2 to 10 MeV/u using various gaseous and solid target materials. The experimental cross sections are compared with the theory of Bohr and Lindhard. The accuracy of predictions by means of known empirical formulae for average equilibrium charge states is briefly discussed. (author)
Sadeghi, F.; Ansari, R.; Darvizeh, M.
2016-06-01
In this research, a continuum-based model is presented to explore potential energy, force distribution and oscillatory motion of ions, and in particular chloride ion, inside carbon nanotubes (CNTs) decorated by functional groups at two ends. To perform this, van der Waals (vdW) interactions between ion and nanotube are modeled by the 6-12 Lennard-Jones (LJ) potential, whereas the electrostatic interactions between ion and functional groups are modeled by the Coulomb potential and the total interactions are analytically derived by summing the vdW and electrostatic interactions. Making the assumption that carbon atoms and charge of functional groups are all uniformly distributed over the nanotube surface and the two ends of nanotube, respectively, a continuum approach is utilized to evaluate the related interactions. Based on the actual force distribution, the equation of motion is also solved numerically to arrive at the time history of displacement and velocity of inner core. With respect to the proposed formulations, comprehensive studies on the variations of potential energy and force distribution are carried out by varying functional group charge and nanotube length. Moreover, the effects of these parameters together with initial conditions on the oscillatory behavior of system are studied and discussed in detail. It is found out that chloride ion escapes more easily from negatively charged CNTs which is followed by uncharged and positively charged ones. It is further shown that the presence of functional groups leads to enhancing the operating frequency of such oscillatory systems especially when the electric charges of ion and functional groups have different signs.
Song, Hongqiang; Chen, Yao; Zhang, Jie; Cheng, Xin; Zhao, Liang; Hu, Qiang; Li, Gang
2016-01-01
Magnetic clouds (MCs) are the interplanetary counterpart of coronal magnetic flux ropes. They can provide valuable information to reveal the flux rope characteristics at their eruption stage in the corona, which are unable to be explored in situ at present. In this paper, we make a comprehensive survey of the average iron charge state (Fe) distributions inside 96 MCs for solar cycle 23 using ACE (Advanced Composition Explorer) data. As the Fe in the solar wind are typically around 9+ to 11+, the Fe charge state is defined as high when the Fe is larger than 12+, which implies the existence of a considerable amount of Fe ions with high charge states (e.g., \\geq 16+). The statistical results show that the Fe distributions of 92 (~ 96%) MCs can be classified into four groups with different characteristics. In group A (11 MCs), the Fe shows a bimodal distribution with both peaks higher than 12+. Group B (4 MCs) presents a unimodal distribution of Fe with its peak higher than 12+. In groups C (29 MCs) and D (48 MCs...
Charge states distribution of 3350 keV He ions channeled in silicon
Bentini, G G; Bianconi, M; Lotti, R; Lulli, G
2002-01-01
When an ion beam is aligned along a major crystalline axis the dominant interaction is with valence electrons. In this condition the charge exchange processes mostly concern the interaction between the incident ion and a quasi-free electron gas and a strong reduction of the charge-changing probabilities is expected. In this work, 3350 keV He sup + and He sup 2 sup + ions were aligned at small tilt angles about the axis of a 4650 A silicon crystalline membrane. The charge state distribution (CSD) of the transmitted ions was detected by an electro-magnetic analyzer having a very small acceptance angle. In these conditions the equilibration of the CSD was not yet reached and this allowed, making use of simple approximations, for the measurement of the valence electron loss cross-section.
Hovestadt, D.; Klecker, B.; Hoefner, H.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.
1982-01-01
An analysis is presented of the ionic charge state distribution of He, C, O and Fe in the energetic storm particle event of September 28-29, 1978. Data were obtained with the ULEZEQ electrostatic analyzer-proportional counter on board the ISEE 3 spacecraft. The He(+)/He(++) ratio between 0.4 and 1 MeV/n is shown to be significantly lower during the energetic storm particle event than during the preceding period of solar flare particle enhancement, with a temporal evolution similar to that of the Fe/He ratio as reported by Klecker et al. (1981). Increases in the mean charge state for oxygen by about 3% and for iron by about 16% are also noted. The temporal variations in charge states are accounted for in terms of first-order Fermi acceleration of the pre-existing solar flare particles by a propagating interplanetary shock wave.
Charge state distribution analysis of Al and Pb ions from the laser ion source at IMP
International Nuclear Information System (INIS)
A prototype laser ion source that could demonstrate the possibility of producing intense pulsed high charge state ion beams has been established with a commercial Nd:YAG laser (Emax=3 J, 1064 nm, 8-10 ns) to produce laser plasma for the research of Laser Ion Source (LIS). At the laser ion source test bench, high purity (99.998%) aluminum and lead targets have been tested for laser plasma experiment. An Electrostatic Ion Analyzer (EIA) and Electron Multiply Tube (EMT) detector were used to analyze the charge state and energy distribution of the ions produced by the laser ion source. The maximum charge states of Al12+ and Pb7+ were achieved. The results will be presented and discussed in this paper. (authors)
Charge state distribution analysis of Al and Pb ions from the laser ion source at IMP
Shan, Sha; Zhang-Min, Li; Xiao-Hong, Guo; Lun-Cai, Zhou; Guo-Zhu, Cai; Liang-ting, Sun; Xue-Zhen, Zhang; Huan-Yu, Zhao; Xi-Meng, Chen; Hong-Wei, Zhao
2013-01-01
A prototype laser ion source that could demonstrate the possibility of producing intense pulsed high charge state ion beams has been established with a commercial Nd:YAG laser (E max = 3 J, 1064 nm, 8-10 ns) to produce laser plasma for the research of Laser Ion Source (LIS). At the laser ion source test bench, high purity (99.998 %) aluminum and lead targets have been tested for laser plasma experiment. An Electrostatic Ion Analyzer (EIA) and Electron Multiply Tube (EMT) detector were used to analyze the charge state and energy distribution of the ions produced by the laser ion source. The maximum charge states of Al12+ and Pb7+ were achieved. The results will be presented and discussed in this paper.
X-ray diffraction studies of charge density waves in cuprate superconductors: A brief review
International Nuclear Information System (INIS)
High temperature superconductivity in the cuprates has fascinated scientists for more than 25 years, but there is still no consensus on the pairing mechanism. Soon after the discovery of high temperature superconductivity, it was suggested that the cuprates have an incipient tendency towards spatial electronic order – spin and charge order. In this paper, I will review X-ray diffraction studies of charge density waves in the cuprates. These results, by a number of different groups, indicate that short-range charge correlations exist across the cuprate family, and in many cases are clearly competing with the superconductivity
International Nuclear Information System (INIS)
We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions
Energy Technology Data Exchange (ETDEWEB)
Yigit, Cemil; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin (Germany); Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine,” 14513 Teltow (Germany); Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Heyda, Jan [Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Praha 6 (Czech Republic)
2015-08-14
We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.
Zhang, Xiaoqing; Sessler, Gerhard M.; Xue, Yuan; Ma, Xingchen
2016-05-01
Laminated fluoropolymer films with a regular microstructure were made from compact fluoroethylenepropylene (FEP) and porous polytetrafluoroethylene (PTFE) using a process consisting of patterning and fusion bonding steps. The fabricated films were rendered piezoelectric via the contact charging or corona charging methods. The piezoelectric responses of such piezoelectret films were measured in the frequency range 100 Hz–100 kHz. The results show that the acoustic impedance of the FEP/PTFE films is around 0.014–0.030 MRayl. Dynamic piezoelectric d 33 coefficients of up to 500 pC N‑1 were achieved at 100 Hz for these films. Microphones built with such films exhibit flat response curves in a broad frequency range if the diffraction effects are eliminated. Bonded films with all positive charges deposited in the porous PTFE layers show the best thermal stability: after annealing for 1100 min at 125 °C, the remaining d 33 at 1020 Hz is about 30% of the initial value, corresponding to 105 pC N‑1, and it remains relatively stable at this temperature. This remarkable thermal stability has to be attributed to the fact that positive charges are more permanent in porous PTFE than in FEP. The entire charge distribution exhibits much better thermal stability than is achievable for customary polypropylene piezoelectrets.
Calculation of Coulomb energies for uniform charge distributions of arbitrary shape
International Nuclear Information System (INIS)
Three distinct surface-integral formulas are derived for calculating the Coulomb energies of uniform charge distributions of arbitrary shape. Of particular interest is an equation obtained by applying Gauss' divergence theorem twice. It is shown that this equation can be simply transformed to another expression which has been widely used for calculating Coulomb energies, with this derivation implying a third formula. The three formulas are also expressed in cylindrical coordinates for charge distributions possessing axial symmetry. For such shapes, numerical studies are presented showing the computational times and errors involved in calculating the Coulomb energies and generalized forces using Gaussian-Legendre quadrature formulas. It is shown that the double-divergence-derived formula is faster and more accurate than the other two surface-integral formulas and other formulas used in the literature
Institute of Scientific and Technical Information of China (English)
WANG Wei-Hua; ZOU Liang-Jian
2006-01-01
The electronic and magnetic properties as well as the spatial charge distribution of single Mn impurity in Ⅲ-V diluted magnetic semiconductors are obtained when the degeneracy of the p orbits contributed from the four nearest-neighbouring As(N) atoms is taken into account. We show that in the ground state, the Mn spin is strongly antiferromagnetically coupled to the surrounding As(N) atoms when the p - d hybridization Vpd is large and both the hole level Ev and the impurity level Ed are close to the Fermi energy. The spatial charge distribution of the Mn acceptor in the (110) plane is non-spherically symmetric, in good agreement with the recent STM images.
Charge state distribution of light ions at glancing collision with solid surface
International Nuclear Information System (INIS)
Many experimental results have suggested that the charge state distribution of ions have penetrated through solid is different from that inside the solid. It is important to clarify the physical process taking place at solid surface in order to know the states of ions inside the solid from those observed outside the solid. In the present paper, we report our measurement of charge state distributions of He+ and H2+ ions having been scattered in small angles (less than 40) at surfaces of Au, Ag and C. One of the advantages of the use of the glancing collision of ions at solid surface for the study of ion-surface interaction is that the dwell time of ion near solid surface can be made more than 100 times longer than that in normal transmission experiments. The longer dwell times may alter any contribution of solid surface to electron capture and loss of ions
Tian, Kai; Cao, Zhou; Xue, Yu-Xiong; Yang, Shi-Yu
2010-01-01
Heavy ions and pulsed lasers are important means to simulate the ionization damage effects on semiconductor materials. The analytic solution of high-energy heavy ion energy loss in silicon has been obtained using the Bethe-Bloch formula and the Kobetich-Katz theory, and some ionization damage parameters of Fe ions in silicon, such as the track structure and ionized charge density distribution, have been calculated and analyzed according to the theoretical calculation results. Using the Gaussian function and Beer's law, the parameters of the track structure and charge density distribution induced by a pulsed laser in silicon have also been calculated and compared with those of Fe ions in silicon, which provides a theoretical basis for ionization damage effect modeling.
An Independent Review Of The Fee-Charging Debt Management Industry
Collard, Sharon
2009-01-01
A debt management plan (DMP) provides a means for people to repay their consumer credit debts in full. An affordable payment is calculated, based on an assessment of an individual's inclome and expenditure. The person in debt makes one monthly payment to a debt management provider, which is then distributed between their creditors on a pro rata basis, either electronically or by cheque. DMPs are provided by fee-charging debt management companies, which generally charge their customers a set-u...
Charge transfer and structured vibrational distributions in H++CH4 low-energy collisions
International Nuclear Information System (INIS)
Inelastic and charge transfer collisions of protons with methane molecules have been investigated in a perpendicular-plane crossed beam experiment via the detection of the scattered protons and H atoms, respectively. Time-of-flight analysis of the protons and H atoms at scattering angles 00≤θ≤100 and collision energies 10≤E≤30 eV provided information on internal energy distributions of the CH4 and CH+4 products. Excitation of the n(ν1 ,ν3) +m (ν2 ,ν4) type vibrations, with n,m = 0, 1, 2,xxxwas found to be the most probable assignment of the observed structured energy distributions of CH4 (1 A1 ) at θ≤40. At θ>40, the energy transfer increases steeply up to the dissociation limit while the vibrational structure was no longer resolved. In the case of charge transfer, the observed narrow internal energy distributions corresponding to a most probable average internal energy of CH+4 of about 0.95 eV was centered at the recombination energy of the proton indicative of quasiresonant charge transfer. In addition, fragmentation of CH+4 formed in charge transfer collisions of H+ with CH4 was investigated in an independent experiment using mass spectrometric analysis to identify the individual fragment species. The relative intensities of the parent and fragment ions (i.e., of CH+4, CH+3, and CH+2) were found to be in good agreement with the known values of the appearance potentials of the fragment ions and the distribution of the CH+4 internal energy as obtained from the differential cross sections
Charged-particle pseudorapidity distributions in Au+Au collisions at RHIC
Institute of Scientific and Technical Information of China (English)
WANG Zeng-Wei; JIANG Zhi-Jin
2009-01-01
Using the Glauber model, we present the formulas for calculating the numbers of participants,spectators and binary nucleon-nucleon collisions. Based on this work, we get the pseudorapidity distributions of charged particles as the function of the impact parameter in nucleus-nucleus collisions. The theoretical results agree well with the experimental observations made by the BRAHMS Collaboration in Au+Au collisions at √SNN=200 GeV in different centrality bins over the whole pseudorapidity range.
Hazelrig, J B; Jones, M. K.; Segrest, J P
1993-01-01
Multiple amphipathic alpha-helical candidate domains have been identified in exchangeable apolipoproteins by sequence analysis and indirect experimental evidence. The distribution of charged residues can differ within and between these apolipoproteins. Segrest et al. (Segrest, J. P., H. DeLoof, J. G. Dohlman, C. G. Brouillette, and G. M. Anantharamaiah. 1990. Proteins. 8:103-117.) argued that these differences are correlated with lipid affinity. A mathematically defined motif for the particul...
Changes of the Nuclear Charge Distribution of Nd from Optical Isotope Shifts
Institute of Scientific and Technical Information of China (English)
马洪良; 李茂生; 杨福家
2001-01-01
The isotope shifts and hyperfine structures of seven optical transitions for all seven stable isotopes of Nd Ⅱ were measured by using collinear fast-ion-beam laser spectroscopy. The nuclear parameter λ was obtained from the measured optical isotope shifts for alI seven stable isotopes with improved accuracy. The λ values were analysed by using the Fermi distribution for the nuclear charge density. The values of δ, δ and δ were determined.
Pearson, Lee H.; Dennison, JR; Griffiths, Erick W.; Pearson, A. C.
2016-01-01
This paper discusses an effort to develop advanced pulsed electroacoustic (PEA) measurement system capabilities that incorporate state-of-the-art hardware and improved signal processing and modeling to characterize embedded charge distributions in thin dielectric films. Objectives in developing this system include: (1) improved spatial resolution, while maintaining reasonable temporal resolution; (2) improved signal processing tools for increased signal/noise ratios; (3) integrated PEA modeli...
Distributed Item Review: Administrator User Guide. Technical Report #1603
Irvin, P. Shawn
2016-01-01
The Distributed Item Review (DIR) is a secure and flexible, web-based system designed to present test items to expert reviewers across a broad geographic area for evaluation of important dimensions of quality (e.g., alignment with standards, bias, sensitivity, and student accessibility). The DIR is comprised of essential features that allow system…
Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma
International Nuclear Information System (INIS)
In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λL=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of Tr=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is Tr=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is inertially and
Coordinated Charging of Electric Vehicles for Congestion Prevention in the Distribution Grid
DEFF Research Database (Denmark)
Hu, Junjie; You, Shi; Lind, Morten;
2014-01-01
insufficient capacity in peak hours. This paper aims to coordinate the valuable services and operation constraints of three actors: the EV owner, the Fleet operator (FO) and the Distribution system operator (DSO), considering the individual EV owner’s driving requirement, the charging cost of EV and thermal...... limits of cables and transformers in a distribution grid capacity market framework. Firstly, a theoretical market framework is described. Within this framework, FOs who represent their customer’s (EV owners) interests will centrally guarantee the EV owners’ driving requirements and procure the energy for...
Unfolding of event-by-event net-charge distributions in heavy-ion collisions
Garg, P; Netrakanti, P K; Mohanty, A K; Mohanty, B
2013-01-01
An unfolding method, based on Bayes theorem is presented to obtain true event-by-event net-charge multiplicity distribution from a corresponding measured distribution, which is subjected to detector artifacts. The unfolding is demonstrated to work for widely varying particle production mechanism, beam energy and collision centrality. Further the necessity of taking into account the detector effects is emphasized before comparing the experimental measurements to the theoretical calculations, particularly in case of higher moments. The advantage of this approach being that one need not construct new observable to cancel out detector effects which loose their ability to be connected to physical quantities calculable in standard theories.
Poudel, Lokendra
Doxorubicin (trade name Adriamycin, abbreviated DOX) is a well-known an- thracyclic chemotherapeutic used in treating a variety of cancers including acute leukemia, lymphoma, multiple myeloma, and a range of stomach, lung, bladder, bone, breast, and ovarian cancers. The purpose of the present work is to study electronic structure, partial charge distribution and interaction energy of DOX under different environments. It provides a framework for better understanding of bioactivity of DOX with DNA. While in this work, we focus on DOX -- DNA interactions; the obtained knowledge could be translated to other drug -- target interactions or biomolecular interactions. The electronic structure and partial charge distribution of DOX in three dierent molecular environments: isolated, solvated, and intercalated into a DNA complex,were studied by rst principles density functional methods. It is shown that the addition of solvating water molecules to DOX and the proximity and interaction with DNA has a signicant impact on the electronic structure as well as the partial charge distribution. The calculated total partial charges for DOX in the three models are 0.0, +0.123 and -0.06 electrons for the isolated, solvated, and intercalated state, respectively. Furthermore, by using the more accurate ab initio partial charge values on every atom in the models, signicant improvement in estimating the DOX-DNA interaction energy is obtained in conjunction with the NAnoscale Molecular Dynamics (NAMD) code. The electronic structure of the DOX-DNA is further elucidated by resolving the total density of states (TDOS) into dierent functional groups of DOX, DNA, water, co-crystallized Spermine molecule, and Na ions. The surface partial charge distribution in the DOX-DNA is calculated and displayed graphically. We conclude that the presence of the solvent as well as the details of the interaction geometry matter greatly in the determination of the stability of the DOX complexion. Ab initio
DEFF Research Database (Denmark)
Huang, Shaojun; Wu, Qiuwei; Liu, Zhaoxi;
2014-01-01
This paper reviews the existing congestion management methods for distribution networks with high penetration of DERs documented in the recent research literatures. The congestion management methods for distribution networks reviewed can be grouped into two categories – market methods and direct...... control methods. The market methods consist of dynamic tariff, distribution capacity market, shadow price and flexible service market. The direct control methods are comprised of network reconfiguration, reactive power control and active power control. Based on the review of the existing methods, the...... authors suggest a priority list of the existing methods....
DEFF Research Database (Denmark)
Li, Chendan; Dragicevic, Tomislav; Vasquez, Juan Carlos;
2015-01-01
In this paper, a multiagent based distributed control algorithm has been proposed to achieve state of charge (SoC) balance of distributed energy storage (DES) units in an AC microgrid. The proposal uses frequency scheduling instead of adaptive droop gain. Each DES unit is taken as an agent...... and they schedule their own frequency reference given of the real power droop controller according to the SoC values of the other DES units. Further, to obtain the average SoC value of DES, dynamic average consensus algorithm is adapted by each agent. A smallsignal model of the system is developed in order...... to verify the stability of the control system and control parameters design. Simulation results demonstrate the effectiveness of the control strategy and also show the robustness against communication topology changes....
Basu, Sumit; Nayak, Tapan K.; Datta, Kaustuv
2016-06-01
Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged-particle multiplicity and pseudorapidity (η ) distributions. We have shown that the available experimental data on beam energy and centrality dependence of η distributions in heavy-ion (Au +Au or Pb +Pb ) collisions from √{sNN}=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the η distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of √{sNN}=5.02 TeV, we have obtained the charged-particle multiplicity densities, η distributions, and energy densities for various centralities. Incidentally, these results match well with some of the recently published data by the ALICE Collaboration.
Calculation of ion charge-state distribution in ECR ion sources
International Nuclear Information System (INIS)
Starting with the pioneering efforts of Y. Yongen (Louvain-la-Neuve, Belgium) a code has been developed to calculate the equilibrium ion charge-state distribution for electron-cyclotron resonance source (ECR) ion sources. Production of ions is caused by the impact ionization of the charge gas from ECR-heated electrons of a few keV. Loss of an ion of a given charge state is from charge exchange and radiative recombination. Ultimately, the ion flows out of the minimum-B containment region. The ion confinement times are calculated using an ion-trap-potential model which is based upon modeling calculations done at Lawrence Livermore National Laboratory (LLNL) for the Tandem Mirror Machine. Using this model requires the self-consistent determination of the trap potential and thermal electron density in the plasma. Code inputs are gas natural density, hot-electron temperature and density, ion temperature, cold-electron temperature, mirror ratio, physical dimensions, and atomic-physics data. Other than that there are no adjustable parameters. Results of comparison of calculations with the limited available data are reasonable
Probabilistic Method to Assess the Impact of Charging of Electric Vehicles on Distribution Grids
Directory of Open Access Journals (Sweden)
David Martínez-Vicente
2012-05-01
Full Text Available This paper describes a grid impact analysis of charging electric vehicles (EV using charging curves with detailed battery modelling. A probabilistic method using Monte Carlo was applied to a typical Spanish distribution grid, also using mobility patterns of Barcelona. To carry out this analysis, firstly, an IEEE test system was adapted to a typical distribution grid configuration; secondly, the EV and its battery types were modeled taking into account the current vehicle market and the battery characteristics; and, finally, the recharge control strategies were taken into account. Once these main features were established, a statistical probabilistic model for the household electrical demand and for the EV charging parameters was determined. Finally, with these probabilistic models, the Monte Carlo analysis was performed within the established scenario in order to study the lines’ and the transformers’ loading levels. The results show that an accurate model for the battery gives a more precise estimation about the impact on the grid. Additionally, mobility patterns have been proved to be some of the most important key aspects for these type of studies.
Ion charge state distributions of vacuum arc plasmas: The origin of species
International Nuclear Information System (INIS)
Vacuum arc plasmas are produced at micrometer-size, nonstationary cathode spots. Ion charge state distributions (CSD close-quote s) are experimentally known for 50 elements, but the theoretical understanding is unsatisfactory. In this paper, CSD close-quote s of vacuum arc plasmas are calculated under the assumption that the spot plasma experiences an instantaneous transition from equilibrium to nonequilibrium while expanding. Observable charge state distributions are the result of a freezing process at this transition. open-quotes Frozenclose quotes CSD close-quote s have been calculated using Saha equations in the Debye-Hueckel approximation of the nonideal plasma for all metals of the Periodic Table and for boron, carbon, silicon, and germanium. The results are presented in a open-quotes periodic table of CSD.close quotes The table contains also the mean ion charge state, the neutral vapor fraction, and the effective plasma temperature and density at the freezing point for each element. The validity of the concepts of open-quotes instantaneous freezingclose quotes and open-quotes effective temperature and densityclose quotes is discussed for low and high currents and for the presence of a magnetic field. Temperature fluctuations have been identified to cause broadening of CSD close-quote s. copyright 1997 The American Physical Society
The transverse space-charge force in tri-gaussian distribution
Energy Technology Data Exchange (ETDEWEB)
Ng, K.Y.; /Fermilab
2005-12-01
In tracking, the transverse space-charge force can be represented by changes in the horizontal and vertical divergences, {Delta}x{prime} and {Delta}y{prime} at many locations around the accelerator ring. In this note, they are going to list some formulas for {Delta}x{prime} and {delta}y{prime} arising from space-charge kicks when the beam is tri-Gaussian distributed. They will discuss separately a flat beam and a round beam. they are not interested in the situation when the emittance growth arising from space charge becomes too large and the shape of the beam becomes weird. For this reason, they can assume the bunch still retains its tri-Gaussian distribution, with its rms sizes {sigma}{sub x}, {sigma}{sub y}, and {sigma}{sub z} increasing by certain factors. Thus after each turn, {sigma}{sub x}, {sigma}{sub y}, and {sigma}{sub z} can be re-calculated.
Direct observation of charge re-distribution in a MgB2 superconductor
Wu, Sheng Yun; Shih, Po-Hsun; Ji, Jhong-Yi; Chan, Ting-Shan; Yang, Chun Chuen
2016-04-01
To study the origin of negative thermal expansion effects near the superconducting transition temperature TC in MgB2, low-temperature high-energy synchrotron radiation x-ray diffraction was used to probe the charge redistribution near the boron atoms. Our results reveal that the in-plane hole-distribution of B- hops through the direct orbital overlap of Mg2+ along the c-axis at 50 K and is re-distributed out-of-plane. This study shows that the out-of-plane π-hole distribution plays a dominant role in the possible origin of superconductivity and negative thermal effects in MgB2.
Effects of target size on the comparison of photon and charged particle dose distributions
International Nuclear Information System (INIS)
The work presented here is part of an ongoing project to quantify and evaluate the differences in the use of different radiation types and irradiation geometries in radiosurgery. We are examining dose distributions for photons using the ''Gamma Knife'' and the linear accelerator arc methods, as well as different species of charged particles from protons to neon ions. A number of different factors need to be studied to accurately compare the different modalities such as target size, shape and location, the irradiation geometry, and biological response. This presentation focuses on target size, which has a large effect on the dose distributions in normal tissue surrounding the lesion. This work concentrates on dose distributions found in radiosurgery, as opposed to those usually found in radiotherapy. 5 refs., 2 figs
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Buijs, A; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Valle, R T; De Walle, M; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M
2003-01-01
The charged-particle multiplicity distribution and the inclusive momentum distribution, in terms of the variable $\\xi$, are measured for all hadronic events as well as for light-quark and b-quark events in $\\mathrm{e}^{+}\\mathrm{e}^{-}$ collisions at the Z pole. Moments of the charged-particle multiplicity distributions are calculated, and the peak positions of the $\\xi$ distributions determined. The multiplicity distributions are studied in terms of their $H_q$ moments. Their quasi-oscillations when plotted versus the rank of the moment are compared with different theoretical approaches.
Axial ion charge state distribution in the vacuum arc plasma jet
International Nuclear Information System (INIS)
We report on our experimental studies of the ion charge state distribution (CSD) of vacuum arc plasmas using a time-of-flight diagnostic method. The dependence of the CSD on the axial distance from the plasma source region was measured for a titanium vacuum arc. It was found that the axial CSD profile is nonuniform. Generally, the mean charge state increases approximately linearly with axial distance from about 1.7 at 12 cm up to 1.9 at 25 cm from the plasma source. A model for ion transport in the free boundary plasma jet is proposed which is based on the existence of an electric field in the quasineutral plasma. This model qualitatively explains the experimental results. (c) 2000 American Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
Stollenwerk, L [Institut fuer Plasmaforschung, Pfaffenwaldring 31, 70569 Stuttgart (Germany)], E-mail: stollenwerk@ipf.uni-stuttgart.de
2009-10-15
In a planar, laterally extended dielectric barrier discharge (DBD) system operated in glow mode, a filamentary discharge is observed. The filaments tend to move laterally and hence tend to cause collisions. Thereby, usually one collision partner becomes destroyed. In this paper, the collision process and especially the preceding time period is investigated. Beside the luminescence density of the filaments, the surface charge density accumulated between the single breakdowns of the DBD is observed via an optical measurement technique based on the linear electro-optical effect (pockels effect). A ring-like substructure of the surface charge distribution of a single filament is found, which correlates to the filament interaction behaviour. Furthermore, a preferred filament distance is found, suggesting the formation of a filamentary quasi-molecule.
Space distribution and energy straggling of charged particles via Fokker-Planck equation
International Nuclear Information System (INIS)
The Fokker-Planck equation describing a beam of charged particles entering a homogeneous medium is solved here for a stationary case. Interactions are taken into account through Coulomb cross-section. Starting from the charged-particle distribution as a function of velocity and penetration depth, some important kinetic quantities are calculated, like mean velocity, range and the loss of energy per unit space. In such quantities the energy straggling is taken into account. This phenomenon is not considered in the continuous slowing-down approximation that is commonly used to obtain the range and the stopping power. Finally the well-know Bohr of Bethe formula is found as a first-order approximation of the Fokker-Planck equation
Das, Rahul K; Pappu, Rohit V
2013-08-13
The functions of intrinsically disordered proteins (IDPs) are governed by relationships between information encoded in their amino acid sequences and the ensembles of conformations that they sample as autonomous units. Most IDPs are polyampholytes, with sequences that include both positively and negatively charged residues. Accordingly, we focus here on the sequence-ensemble relationships of polyampholytic IDPs. The fraction of charged residues discriminates between weak and strong polyampholytes. Using atomistic simulations, we show that weak polyampholytes form globules, whereas the conformational preferences of strong polyampholytes are determined by a combination of fraction of charged residues values and the linear sequence distributions of oppositely charged residues. We quantify the latter using a patterning parameter κ that lies between zero and one. The value of κ is low for well-mixed sequences, and in these sequences, intrachain electrostatic repulsions and attractions are counterbalanced, leading to the unmasking of preferences for conformations that resemble either self-avoiding random walks or generic Flory random coils. Segregation of oppositely charged residues within linear sequences leads to high κ-values and preferences for hairpin-like conformations caused by long-range electrostatic attractions induced by conformational fluctuations. We propose a scaling theory to explain the sequence-encoded conformational properties of strong polyampholytes. We show that naturally occurring strong polyampholytes have low κ-values, and this feature implies a selection for random coil ensembles. The design of sequences with different κ-values demonstrably alters the conformational preferences of polyampholytic IDPs, and this ability could become a useful tool for enabling direct inquiries into connections between sequence-ensemble relationships and functions of IDPs. PMID:23901099
International Nuclear Information System (INIS)
Space, angular and energy distributions of the charged particle of radiation field outside the Serpukhov accelerator shielding at different protons beam energies obtained with the ΔE-E spectrometer are presented. The influence of the accelerating complex operation on the charged particles field shaping outside the concrete and heterogeneous steel-concrete shieldings has been analyzed. The ratios between neutrons and charged particles of the radiation field outside the 70 GeV accelerator shielding have been estimated
Dynamics of spherical distributions of charge with small internal dipolar motion
Flammer, P D
2016-01-01
This paper extends the Lorentz-Abraham model of an electron (i.e. the equations of motion for a small spherical shell of charge, which is rigid in its proper frame) to treat a small spherically symmetric charge distribution, allowing for small internal dipolar motion. This is done by dividing the distribution into thin spherical shells (in the continuum limit), and tracking the interactions between shells. Dipolar motion of each constituent spherical shell is allowed along the net dipole moment, but higher order multipole-moments are ignored. The amplitude of dipolar motion of each spherical shell is assumed to be linearly proportional to the net dipole moment. Under these assumptions, low velocity equations of motion are determined for both the center-of-mass motion and net dipolar motion of the distribution. This is then generalized to arbitrary (relativistic) center-of-mass velocity and acceleration, assuming the motion of individual shells is completely in phase or out of phase with the net dipole moment.
Anorexia Nervosa and Body Fat Distribution: A Systematic Review
Marwan El Ghoch; Simona Calugi; Silvia Lamburghini; Riccardo Dalle Grave
2014-01-01
The aim of this paper was to conduct a systematic review of body fat distribution before and after partial and complete weight restoration in individuals with anorexia nervosa. Literature searches, study selection, method development and quality appraisal were performed independently by two authors, and data was synthesized using a narrative approach. Twenty studies met the inclusion criteria and were consequently analyzed. The review had five main findings. First, during anorexia nervosa ado...
Wang, Huihui; Kaganovich, Igor D; Mustafaev, Alexander S
2016-01-01
Based on accurate representation of the He+-He differential angular scattering cross sections consisting of both elastic and charge exchange collisions, we performed detailed numerical simulations of the ion velocity distribution functions (IVDF) by Monte Carlo collision method (MCC). The results of simulations are validated by comparison with the experimental data of the mobility and the transverse diffusion. The IVDF simulation study shows that due to significant effect of scattering in elastic collisions IVDF cannot be separated into product of two independent IVDFs in the transverse and parallel to the electric field directions.
A direct and at nanometer scale study of electrical charge distribution on membranes of alive cells
Directory of Open Access Journals (Sweden)
Marlière Christian
2016-01-01
Full Text Available In this paper is presented an innovative method to map in-vivo and at nanometer scale the electrical charge distribution on membranes of alive cells. It relies on a new atomic force microscopy (AFM mode based on an electro-mechanical coupling effect. Furthermore, an additional electrical signal detected by both the deflection of the AFM cantilever and simultaneous direct current measurements was detected at low scanning rates. It was attributed to the detection of the current stemming from ionic channels. It opens a new way to directly investigate in situ biological electrical surface processes involved in bacterial adhesion, biofilm formation, microbial fuel cells, etc.
Average Distribution of Ionic Charges and Ionizability for the Au Plasma System
Institute of Scientific and Technical Information of China (English)
杨天丽; 蒋刚; 朱正和
2002-01-01
Using relativistic multi-configuration Dirac-Fock theory, we calculate the transition data of 3dj - n fj, (n =5, 6, 7) for the M-shell from an Ni-like Au ion to an As-like Auion using the GRASP programme with the core-polarization, quantum electrodynamical effect and Breit correction. Based on the present calculation results andthe experiment of the Xingguang-Ⅱ laser facilities, the average distribution of ionic charge and the ionizabilityhave been derived. The average ionization degree of Au plasma Z* is 49.06 ± 0.5, which is comparable with theresult of the Lawrence Livermore National Laboratory.
Shaping of proton distribution for raising the space-charge of the CERN PS Booster
Delahaye, J P; Magnani, L; Nassibian, G; Pedersen, F; Reich, K H; Schindl, Karlheinz; Schönauer, H O
1980-01-01
The intensity of the PS Booster is limited by space-charge defocusing forces which create a spread in the betatron tunes of up to Delta G approximately=0.5. Shaping of the transverse and longitudinal distributions was used for accommodating more particles in a given working area and enabled the Booster to accelerate 2*10/sup 13/ protons per pulse, twice the design intensity. Modifying the RF potential well by an experimental second harmonic cavity yields beam intensities and densities well beyond the present performance. The corresponding PSB experiments and improvements are described and an outlook on future developments is given. (14 refs).
Shaping of proton distribution for raising the space-charge of the CERN PS booster
International Nuclear Information System (INIS)
The intensity of the PS booster is limited by space-charge defocusing forces which create a spread in the betatron tunes of up to ΔQ approximately equal to 0.5. Shaping of the transverse and longitudinal distributions was used for accommodating more particles in a given working area and enabled the Booster to accelerate 2 x 1013 protons per pulse, twice the design intensity. Modifying the RF potential well by an experimental second-harmonic cavity yields beam intensities well beyond the present performance. The corresponding PSB experiments and improvements are described and an outlook on future developments is given. (Auth.)
Pseudorapidity Distribution of Charged Particles in d+Au Collisions at √(sNN)=200 GeV
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.
2004-08-01
The measured pseudorapidity distribution of primary charged particles in minimum-bias d+Au collisions at √(sNN)=200 GeV is presented for the first time. This distribution falls off less rapidly in the gold direction as compared to the deuteron direction. The average value of the charged particle pseudorapidity density at midrapidity is ∣η∣≤0.6=9.4±0.7(syst) and the integrated primary charged particle multiplicity in the measured region is 82±6(syst). Estimates of the total charged particle production, based on extrapolations outside the measured pseudorapidity region, are also presented. The pseudorapidity distribution, normalized to the number of participants in d+Au collisions, is compared to those of Au+Au and p+p¯ systems at the same energy. The d+Au distribution is also compared to the predictions of the parton saturation model, as well as microscopic models.
The Size Distribution of Bovine Casein Micelles: A Review
Holt, C.
1985-01-01
This review considers the average size and size distribution of bovine casein micelles as measured by electron microscopy, light scattering and controlled pore glass chromatography, and the origin and biological function of the size distribution. Recent work by electron microscopy has given average sizes in reasonable agreement with measurements on the same milk sample by light scattering . It is suggested that natural variations in averaqe micelle size and overestimation of micelle radii ...
An Experimental Review of Charged Lepton Flavor Violation in Muon Channel
Ootani, Wataru
2016-09-01
The flavor violating transition between generations of charged leptons is highly suppressed in the Standard Model of the elementary particle physics, whereas many of the promising new physics beyond the Standard Model predict sizable rates of the flavor violating processes within a reach of the ongoing or proposed experiments. The status and the perspectives of the experimental quests for the charged lepton flavor violation in muon channel are reviewed focusing on the three major processes, μ - N to e - N, μ + to e + γ , and μ + to e + e - e + .
Papoulia, A.; Carlsson, B. G.; Ekman, J
2016-01-01
Background: Atomic spectral lines from different isotopes display a small shift in energy, commonly referred to as the line isotope shift. One of the components of the isotope shift is the field shift, which depends on the extent and the shape of the nuclear charge density distribution. Purpose: To investigate how sensitive field shifts are with respect to variations in the nuclear size and shape and what information of nuclear charge distributions that can be extracted from measured field sh...
A stepped leader model for lightning including charge distribution in branched channels
International Nuclear Information System (INIS)
The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.
Repair activities on the LHC cryogenic distribution line in charge of TS/MME
Atieh, S; CERN. Geneva. TS Department
2005-01-01
The Cryogenic Distribution Line (QRL), running inside the machine tunnel parallel to the regular lattice of superconducting quadrupole and dipole magnets of LHC, transports the refrigeration power produced by the refrigerators over long distances. With a total length of about 25.8 km, QRL consists of a modular set-up of pipe and Service Modules (SM), Vacuum Barriers (VB), Fixed Points (FP), steps and elbows. TS department was charged to replace non-conform sliding tables included in the Cryogenic Distribution Line QRL. For this repair work, based on technologically advanced methods, TS/MME imposed a high level of quality assurance and follow-up for mechanical repair works as well as for the metrological measurements carried out which an innovative polyarticulated arm, a portable measuring device, and leak testing by argon.
Charge and mass distribution in 7Li induced fission of 232Th
International Nuclear Information System (INIS)
Formation cross sections of about forty fission products have been determined using recoil catcher technique followed by off line gamma-ray spectrometry in 7Li induced fission of 232Th at Elab=41.9, 36.6 and 31.4 MeV. The measured data have been used to deduce charge and mass distributions. Mass distribution is found to be asymmetric at all the three energies. Cross sections of evaporation residues formed in both transfer reactions (232,233,234Pa) as well as in complete fusion (234Np), have also been measured. The measured evaporation residue cross sections and the decay probabilities of target like nuclei (233,234,235Pa) formed in the various transfer reactions, as calculated by PACE2, have been used to estimate the transfer induced fission cross sections. The data indicated that the magnitude of transfer induced fission is very small
International Nuclear Information System (INIS)
To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Koichi, E-mail: tanak@mmc.co.jp [Central Research Institute, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka-shi, Ibaraki 311-0102 (Japan); Anders, André [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 53, Berkeley, California 94720 (United States)
2015-11-15
To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.
Nakagawa, T
2014-02-01
The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams. PMID:24593514
Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)
Nakagawa, T.
2014-02-01
The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams.
Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)
International Nuclear Information System (INIS)
The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams
International Nuclear Information System (INIS)
The HELIOS (High Energy Lepton and Ion Spectrometer) experiment, installed at the CERN Super Proton Synchrotron, proposes to examine in details the physical properties of a state of high energy created in nuclei by ultra-relativistic nucleus-nucleus collisions. It is generally believed that, at high densities or temperatures, a phase transition to a plasma of quark and gluons will occur. The dynamic of the expansion of such a plasma and its subsequent condensation into a hadron gas should markedly affect the composition and momentum distribution of the emerging particles and photons. The HELIOS experimental setup therefore combines 4π calorimetric coverage with measurements of inclusive particle spectra, two particle correlations, low and high mass lepton pairs and photons. The emphasis is placed on transverse energy flow (E/sub T/) measurements with good energy resolution, and the ability to trigger the acquisition of data in a variety of E/sub T/ ranges, thereby selecting the impact parameter or the violence of the collisions. This short note presents HELIOS results, for the most part still preliminary, on 16O-nucleus collisions at the incident energies of 60 and 200 GeV per nucleon. The E/sub T/ distributions from Al, Ag and W targets are discussed and compared to the associated charged particle multiplicities from W. Charged particle and (converted) photon spectra measured with the external magnetic spectrometer are compared for 16O + W and p + W collisions at 200 GeV per nucleon. 5 refs., 7 figs
International Nuclear Information System (INIS)
Addition of nanoparticles of the ferromagnetic material Fe3O4 can increase the positive impulse breakdown voltage of propylene carbonate by 11.65%. To further investigate the effect of ferromagnetic nanoparticles on the space charge distribution in the discharge process, the present work set up a Kerr electro-optic field mapping measurement system using an array photodetector to carry out time-continuous measurement of the electric field and space charge distribution in propylene carbonate before and after modification. Test results show that fast electrons can be captured by Fe3O4 nanoparticles and converted into relatively slow, negatively charged particles, inhibiting the generation and transportation of the space charge, especially the negative space charge
Tomographic measurement of the phase space distribution of a space-charge-dominated beam
Stratakis, Diktys
Many applications of accelerators, such as free electron lasers, pulsed neutron sources, and heavy ion fusion, require a good quality beam with high intensity. In practice, the achievable intensity is often limited by the dynamics at the low-energy, space-charge dominated end of the machine. Because low-energy beams can have complex distribution functions, a good understanding of their detailed evolution is needed. To address this issue, we have developed a simple and accurate tomographic method to map the beam phase using quadrupole magnets, which includes the effects from space charge. We extend this technique to use also solenoidal magnets which are commonly used at low energies, especially in photoinjectors, thus making the diagnostic applicable to most machines. We simulate our technique using a particle in cell code (PIC), to ascertain accuracy of the reconstruction. Using this diagnostic we report a number of experiments to study and optimize injection, transport and acceleration of intense space charge dominated beams. We examine phase mixing, by studying the phase-space evolution of an intense beam with a transversely nonuniform initial density distribution. Experimental measurements, theoretical predictions and PIC simulations are in good agreement each other. Finally, we generate a parabolic beam pulse to model those beams from photoinjectors, and combine tomography with fast imaging techniques to investigate the time-sliced parameters of beam current, size, energy spread and transverse emittance. We found significant differences between the slice emittance profiles and slice orientation as the beam propagates downstream. The combined effect of longitudinal nonuniform profiles and fast imaging of the transverse phase space provided us with information about correlations between longitudinal and transverse dynamics that we report within this dissertation.
International Nuclear Information System (INIS)
Axial and radial variations of electric field have been measured in dielectric shielded 0.025 m diameter parallel plate electrode with 0.0065 m gap for 1.6 mA, 2260 V helium dc discharge at 1.75 Torr. The axial and radial electric field profiles have been measured from the Stark splitting of 21S→11 1P transition through collision induced fluorescence from 43D→23P. The electric field values showed a strong radial variation peaking to 500 kV/m near the cathode radial boundary, and decreasing to about 100 kV/m near the anode edge, suggesting the formation of an obstructed discharge for this low nd condition, where n is the gas density and d is the gap distance. The off-axis Stark spectra showed that the electric field vector deviates from normal to the cathode surface which permits longer path electron trajectories in the inter-electrode gap. Also, the on-axis electric field gradient was very small and off-axis electric field gradient was large indicating a radially non-uniform current density. In order to obtain information about the space charge distribution in this obstructed discharge, it was modeled using the 2-d axisymmetric Poisson solver with the COMSOL finite element modeling program. The best fit to the measured electric field distribution was obtained with a space charge variation of ρ(r) = ρ0(r/r0)3, where ρ(r) is the local space charge density, ρ0 = 6 × 10−3 Coulomb/m3, r is the local radial value, and r0 is the radius of the electrode
Anorexia nervosa and body fat distribution: a systematic review.
El Ghoch, Marwan; Calugi, Simona; Lamburghini, Silvia; Dalle Grave, Riccardo
2014-09-01
The aim of this paper was to conduct a systematic review of body fat distribution before and after partial and complete weight restoration in individuals with anorexia nervosa. Literature searches, study selection, method development and quality appraisal were performed independently by two authors, and data was synthesized using a narrative approach. Twenty studies met the inclusion criteria and were consequently analyzed. The review had five main findings. First, during anorexia nervosa adolescent females lose more central body fat, while adult females more peripheral fat. Second, partial weight restoration leads to greater fat mass deposition in the trunk region than other body regions in adolescent females. Third, after short-term weight restoration, whether partial or complete, adults show a central adiposity phenotype with respect to healthy age-matched controls. Fourth, central fat distribution is associated with increased insulin resistance, but does not adversely affect eating disorder psychopathology or cause psychological distress in female adults. Fifth, the abnormal central fat distribution seems to normalize after long-term maintenance of complete weight restoration, indicating that preferential central distribution of body fat is a transitory phenomenon. However, a discrepancy in the findings has been noted, especially between adolescents and adults; besides age and gender, these appear to be related to differences in the methodology and time of body composition assessments. The PROSPERO Registry-Anorexia Nervosa and Body Fat Distribution: A Systematic Review (CRD42014008738). PMID:25251296
Anorexia Nervosa and Body Fat Distribution: A Systematic Review
Directory of Open Access Journals (Sweden)
Marwan El Ghoch
2014-09-01
Full Text Available The aim of this paper was to conduct a systematic review of body fat distribution before and after partial and complete weight restoration in individuals with anorexia nervosa. Literature searches, study selection, method development and quality appraisal were performed independently by two authors, and data was synthesized using a narrative approach. Twenty studies met the inclusion criteria and were consequently analyzed. The review had five main findings. First, during anorexia nervosa adolescent females lose more central body fat, while adult females more peripheral fat. Second, partial weight restoration leads to greater fat mass deposition in the trunk region than other body regions in adolescent females. Third, after short-term weight restoration, whether partial or complete, adults show a central adiposity phenotype with respect to healthy age-matched controls. Fourth, central fat distribution is associated with increased insulin resistance, but does not adversely affect eating disorder psychopathology or cause psychological distress in female adults. Fifth, the abnormal central fat distribution seems to normalize after long-term maintenance of complete weight restoration, indicating that preferential central distribution of body fat is a transitory phenomenon. However, a discrepancy in the findings has been noted, especially between adolescents and adults; besides age and gender, these appear to be related to differences in the methodology and time of body composition assessments. The PROSPERO Registry—Anorexia Nervosa and Body Fat Distribution: A Systematic Review (CRD42014008738.
The evolution of ion charge states in cathodic vacuum arc plasmas: a review
Energy Technology Data Exchange (ETDEWEB)
Anders, Andre
2011-12-18
Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.