WorldWideScience

Sample records for cern lep

  1. CERN: Physics at LEP2

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-12-15

    With the LEP2 project pushing ahead to boost CERN's LEP electronpositron collider to higher energy, in February a Workshop on Physics at LEP2 will review the studies for the preparation and interpretation of LEP2 data. The organization of this Workshop and its final report will resemble the 1989 Workshop on Z Physics at LEP1.

  2. CERN: Physics at LEP2

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    With the LEP2 project pushing ahead to boost CERN's LEP electronpositron collider to higher energy, in February a Workshop on Physics at LEP2 will review the studies for the preparation and interpretation of LEP2 data. The organization of this Workshop and its final report will resemble the 1989 Workshop on Z Physics at LEP1

  3. CERN: Towards LEP 200

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In March a cryomodule with four superconducting radiofrequency accelerating cavities operated for the first time in CERN's new LEP electron-positron collider, the result of many years of careful research and development work and an important step on the road to boost LEP energies from their initial level around 50 GeV per beam to above the 82 GeV threshold for production of W pairs

  4. Le CERN fête le LEP

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    Members of government from around the world gathered at CERN on 9 October to celebrate the achievements of the Large Electron Positron collider (LEP), the Laboratory's flagship particle accelerator. Over the eleven years of its operational lifetime, LEP has not only added greatly to mankind's pool of knowledge about the Universe, but has also changed the way that particle physics research is done, and proved to be a valuable training ground for young professionals in many walks of life.

  5. CERN: Higher energies at LEP

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This year will be the last that CERN's 27-kilometre LEP electron-positron collider will run routinely at around 45 GeV per beam. In the run, scheduled to begin in May, the four big experiments will top up their harvest so far of over 12 million Z particles for a final polishing of precision Z data. Behind the scenes, LEP is being prepared for higher energy running and a new phase of physics. After a brief technical stop in October, the aim is for a test run of up to 70 GeV per beam before the end of the year. Higher energy demands more radiofrequency power, which will be supplied by superconducting cavities. With this goal in mind, a programme of development work began at CERN over ten years ago, when LEP was still on the drawing board. Initially this effort focused on cavities made from sheet niobium, but later switched to copper covered by a sputtered niobium film, which gives better thermal and r.f. performance (September 1990, page 24). The first industrially-manufactured four-cavity niobium coated module, complete with its cryostat and r.f plumbing, was installed in LEP in 1993. Although it quickly achieved its nominal accelerating gradient of 6 MV/m, its reliability was affected by unforeseen problems in the associated power couplers. This delayed the installation schedule, but after a crash programme of design and modification of the power couplers, together with improvements in actual cavity design and manufacture, module supply and testing has now attained a satisfactory rhythm. Two modules installed in LEP amassed between them over 50 days of continuous running in 1994, and confidence is now high that the emphasis can shift towards integrating the cavities into LEP, rather than running the cavities themselves. During LEP's 1994-5 winter shutdown, modules are being installed at Points 2 and 6. Later, additional cavities will be installed in Points 2, 6 and 8 prior to embarking on the higher energy test run at the end of the year. After

  6. CERN: LEP in action again

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    On 25 March, electron and positron beams were colliding again in LEP, CERN's new 27-kilometre electron-positron collider, marking the end of the winter shutdown and the commencement of a hefty run scheduled to last, with only minor interruptions, through to the end of August

  7. Around the Laboratories: CERN LEP vintage 1991; SuperLEARative

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-01-15

    When CERN's 27-kilometre LEP electron-positron collider finished its 1991 run in mid-November, the four big experiments - Aleph, Delphi, L3 and Opal - had each amassed about 300,000 Z particles over eight months. ; With CERN's SPS ring now only occasionally serving as a protonantiproton collider, the LEAR low energy antiproton ring at CERN is the main client for CERN's antiproton supply system.

  8. Around the Laboratories: CERN LEP vintage 1991; SuperLEARative

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    When CERN's 27-kilometre LEP electron-positron collider finished its 1991 run in mid-November, the four big experiments - Aleph, Delphi, L3 and Opal - had each amassed about 300,000 Z particles over eight months. ; With CERN's SPS ring now only occasionally serving as a protonantiproton collider, the LEAR low energy antiproton ring at CERN is the main client for CERN's antiproton supply system

  9. Around the laboratories: CERN: LEP in the Alps; Putting four LEP experiments together; Heavier ions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    With CERN's 27-kilometre LEP electron-positron collider shut down for the winter, LEP specialists met in Chamonix in the French Alps from 19-25 January to review the machine's 1991 performance and to look at the ways of improving it. ; Since they started taking data in August 1989, the four big LEP experiments - Aleph, Delphi, L3 and Opal - have been providing precision information about the Z particle, the electrically neutral carrier of the weak nuclear force and at 91 GeV the heavisest elementary particle known.; Work by a major international collaboration is progressing well for a new heavy ion system, capable of providing experiments at CERN with a wide range of heavy ions, extending up to the heaviest elements in the Periodic Table. First beams should be available in 1994

  10. LEP the lord of the collider rings at CERN 1980-2000

    CERN Document Server

    Schopper, Herwig Franz

    2009-01-01

    Housed by a 4 m diameter tunnel of 27 km circumference, with huge underground labs and numerous surface facilities, and set up with a precision of 0.1 mm per kilometer, the Large Electron-Positron Collider (LEP) was not only the largest but also one of the most sophisticated scientific research instrument ever created by Man. Located at CERN, near Geneva, LEP was built during the years 1983 - 1989, was operational until 2000, and corroborated the standard model of particle physics through continous high precision measurements. The Author, director-general of CERN during the crucial period of the construction of LEP, recounts vividly the convoluted decision-making and technical implementation processes - the tunnel alone being a highly challenging geo- and civil engineering project - and the subsequent extremely fruitful period of scientific research. Finally he describes the difficult decision to close down LEP, at a time when the discovery of the Higgs boson seemed within reach. LEP was eventually dismantled...

  11. CERN: A big year for LEP

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    In April this year's data-taking period for CERN's big LEP electron-positron collider got underway, and is scheduled to continue until November. The immediate objective of the four big experiments - Aleph, Delphi, L3 and Opal - will be to increase considerably their stock of carefully recorded Z decays, currently totalling about three-quarters of a million

  12. CERN: End of LEP's Z era

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-11-15

    Full text: Achapter of history at CERN's LEP electron-positron collider closed in October when the four big experiments, Aleph, Delphi, L3 and Opal, logged their final data at the Z energy, just over six years after LEP's first Z was detected. The LEP Z era has been one of great success, both in terms of physics results and the advances which have been made with the machine itself. LEP now takes a step towards becoming LEP2, when the energy is wound up from around 45 GeV to about 70 GeV per beam (September, page 6). By the end of LEP's 1995 run, each of the four LEP experiments had seen almost five million Zs. Now the spotlight at LEP shifts to producing pairs of W particles, the electrically charged counterparts of the Z. LEP's first Zs were recorded in August 1989, one month after the machine's first circulating beam. The 30,000 Z decays recorded by each experiment in 1989 confirmed that matter comes in just three distinct families of quarks and leptons. The values of the Z mass and width quoted in 1990 were 91.161 ± 0.031 GeV and 2.534 ± 0.027 GeV. By the beginning of 1995, these had been fine-tuned to the extraordinary accuracy of 91.1884 ± 0.0022 GeV and 2.4963 ± 0.0032 GeV, and when data from this year's run is included, will be even better. These results, combined with precision data from neutrino experiments and from Fermilab's Tevatron protonantiproton collider, have put the Standard Model of quarks and leptons through its most gruelling test yet. Right from the start, collaboration between LEP experiments and the accelerator team has been close, with frequent scheduling meetings determining how the machine is run. For the first few years, LEP ran on a diet of four bunches of electrons and four of positrons, but by the end of 1992, a way had been found to increase the luminosity by squeezing in more bunches. In 1993, the 'pretzel' scheme (October 1992, page 17), so called because of the shape traced out by the circulating beams, was running with eight

  13. CERN: LEP in the Alps

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: In January, when CERN's LEP electron-positron collider is enjoying a well-earned break, it has now become traditional for the hard pressed LEP team to have no respite. Instead they pack their bags and depart for Chamonix in the nearby French Alps to review the past year's experience and plan for the future. In the cold January 1993 light of Chamonix, 1992 (January/February, page 4) was deemed to have been a good year for LEP operations, with the switch to 90° betatron phase operation having paid off. The 65% improvement in integrated luminosity over 1991 was attributed to longer beam lifetimes, faster filling and improved overall efficiency. The commissioning of the eight-bunch 'pretzel' scheme was facilitated with the new optics, and break-even quickly achieved, so that physics could benefit from more bunches in the machine. During 1992, the injection chain was fully tested with eight bunches, and when this comes into routine operation this year, the pretzel scheme will benefit. Pretzel running also opens the possibility of still higher luminosity, up to 2x10 31 per sq cm per s, doubling the present level. However the finishing touches to high luminosity running are still more an art ('haute cuisine') than a science. Continuing studies of the inter correlation of different LEP conditions will help make this more systematic. The main factors affecting performance at 45 GeV are transverse mode coupling instabilities. The present working point gives good results, but there are still potentially interesting regions which need to be checked out. Beam lifetime and background are both limited by beam size and aperture. Background was reduced by improved focusing, while beam size is dominated by beam-beam effects. 90° operation proved its worth in 1992, but the inability to produce polarized beams was a disappointment, and a combined 90°/60° horizontal/vertical combination looked like offering the best of both worlds. Although

  14. Arrêt du L.E.P annoncé au CERN

    CERN Multimedia

    Causse, M

    2000-01-01

    Ruining the hopes of researchers that they might soon make an incredible discovery, the director of CERN has announced the closure of LEP at the end of the year and acceleration of the construction of the LHC (1/2 page).

  15. CERN: TeV Electron-Positron Linear Collider Studies; More polarization in LEP

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-09-15

    The world's highest energy electronpositron collider - CERN's LEP, with a circumference of 27 kilometres - will also be the last such machine to be built as a storage ring. With interest growing in electronpositron physics at energies beyond those attainable at LEP, the next generation of electron-positron colliders must be linear if prohibitive synchrotron radiation power losses are to be avoided. Very high energy linear colliders present many technical challenges but mastery of SLC at Stanford, the world's first electron-positron linear collider, is encouraging. The physics issues of a linear collider have been examined by the international community in ICFA workshops in Saariselka, Finland (September 1991) and most recently in Hawaii (April 1993). The emerging consensus is for a collider with an initial collision energy around 500 GeV, and which can be upgraded to over 1 TeV. A range of very different collider designs are being studied at Laboratories in Europe, the US, Japan and Russia. Following the report of the 1987 CERN Long Range Planning Committee chaired by Carlo Rubbia, studies for a 2 TeV linear collider have progressed at CERN alongside work towards the Laboratory's initial objective - the LHC high energy proton-proton collider in the LEP tunnel.

  16. CERN: TeV Electron-Positron Linear Collider Studies; More polarization in LEP

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The world's highest energy electronpositron collider - CERN's LEP, with a circumference of 27 kilometres - will also be the last such machine to be built as a storage ring. With interest growing in electronpositron physics at energies beyond those attainable at LEP, the next generation of electron-positron colliders must be linear if prohibitive synchrotron radiation power losses are to be avoided. Very high energy linear colliders present many technical challenges but mastery of SLC at Stanford, the world's first electron-positron linear collider, is encouraging. The physics issues of a linear collider have been examined by the international community in ICFA workshops in Saariselka, Finland (September 1991) and most recently in Hawaii (April 1993). The emerging consensus is for a collider with an initial collision energy around 500 GeV, and which can be upgraded to over 1 TeV. A range of very different collider designs are being studied at Laboratories in Europe, the US, Japan and Russia. Following the report of the 1987 CERN Long Range Planning Committee chaired by Carlo Rubbia, studies for a 2 TeV linear collider have progressed at CERN alongside work towards the Laboratory's initial objective - the LHC high energy proton-proton collider in the LEP tunnel

  17. CERN: LEP to higher energy/LHC magnet string test

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    At 19.45 on 31 October, CERN's LEP electron-positron collider, equipped with superconducting radiofrequency accelerating cavities, registered its first events at a record collision energy of 130 GeV. During November, LEP went on to operate in the 130-140 GeV collision energy range. Fabrication and installation of the superconducting radiofrequency accelerating cavities needed to boost the energy of LEP's electron and positron beams have speeded up as confidence and expertise have increased. 16 additional cavities were installed in a brief technical stop during October. For the substantially upgraded machine to supply 65 GeV beams immediately and at luminosities comparable to those routinely attained before shows that the complicated technology needed for the superconducting cavities and mastering the machine itself are well under control - yet another remarkable achievement in CERN's tradition of remarkable achievements. Before the end-1995 run, LEP had been operating around the Z resonance at 91 GeV ever since its commissioning in 1989. LEP precision data on the Z, the electrically neutral carrier of the weak nuclear force, is now complete, and attention shifts toward the next major objective, accumulating data on the W, the Z's electrically charged counterpart. Unlike the Z, produced singly in electron-positron annihilations, the electrically charged Ws have to be produced in pairs. During the coming long shutdown, more superconducting modules will be installed to prepare for recommencement of operations in June, this time at collision energies of 161 GeV, allowing a first step across a longawaited 2W threshold. Later in the year more cavities will be ready to boost collision energies to 176 GeV. However in the meantime the LEP experiments, no longer blinded by the Z resonance, will be keeping a sharp eye open for new physics, and in particular for signs of as yet unseen supersymmetric particles. Theorists have long been convinced that our

  18. CERN: A hinge between LEP and the LHC

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Later this year, if all goes well, the beam energy of CERN's LEP electron-positron collider should be increased to around 70 GeV per beam (collision energy 140 GeV), giving a foretaste of things to come. Since 1989, the 27-kilometre ring has been operating around 45 GeV per beam to feed its four physics experiments with a steady diet of Z particles, the electrically neutral carriers of the weak nuclear force. This has given precision results on vital parameters of the Standard Model. Meanwhile work has been steadily pushing ahead to upgrade LEP to LEP2, installing superconducting radiofrequency cavities (January 1994, page 6) and ancillary cryogenics equipment to boost the machine's energy and reach new areas of physics interest. The initial goal is to produce pairs of W particles, the electrically charged counterparts of the Z. As far as the machine is concerned, at these higher energies, the 'beambeam' interaction between the contra-rotating electrons and positrons is reduced, so more particles can be pumped into the ring. To achieve this, LEP has switched to the new 'bunch train' scheme (see page 14) each train containing several 'carriages' (bunches) of particles. To attain its physics objectives, LEP2's target is 500 inverse picobarns of integrated luminosity over the next few years. This is a challenge as LEP's integrated luminosity to date (since the machine was commissioned in 1989) is some 160 inverse picobarns, itself viewed as no mean achievement. To reach higher energies, the accelerating power at LEP is being increased with installation of superconducting radiofrequency cavities. After initial trials with solid niobium, LEP2 relies on the more reliable performance provided by copper, with its better heat conduction properties, coated with a superconducting film of niobium. Even so heroic preprocessing is required to ensure optimal performance. After initial trials revealed welding weaknesses, the

  19. Groundbreaking for LEP

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    On 13 September, CERN found itself once more in the international spotlight when President Frangois Mitterrand of France and President Pierre Aubert of Switzerland arrived for the official 'groundbreaking' ceremony for the 27-kilometre ring of the LEP electron-positron collider. As well as the Presidents of the two CERN host states under whose territory LEP will be constructed, there were ranking representatives of the CERN Member States, together with those of other countries who will take part in the first LEP experiments, expanding further the already large community of CERN users

  20. CERN: End of LEP's Z era

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: Achapter of history at CERN's LEP electron-positron collider closed in October when the four big experiments, Aleph, Delphi, L3 and Opal, logged their final data at the Z energy, just over six years after LEP's first Z was detected. The LEP Z era has been one of great success, both in terms of physics results and the advances which have been made with the machine itself. LEP now takes a step towards becoming LEP2, when the energy is wound up from around 45 GeV to about 70 GeV per beam (September, page 6). By the end of LEP's 1995 run, each of the four LEP experiments had seen almost five million Zs. Now the spotlight at LEP shifts to producing pairs of W particles, the electrically charged counterparts of the Z. LEP's first Zs were recorded in August 1989, one month after the machine's first circulating beam. The 30,000 Z decays recorded by each experiment in 1989 confirmed that matter comes in just three distinct families of quarks and leptons. The values of the Z mass and width quoted in 1990 were 91.161 ± 0.031 GeV and 2.534 ± 0.027 GeV. By the beginning of 1995, these had been fine-tuned to the extraordinary accuracy of 91.1884 ± 0.0022 GeV and 2.4963 ± 0.0032 GeV, and when data from this year's run is included, will be even better. These results, combined with precision data from neutrino experiments and from Fermilab's Tevatron protonantiproton collider, have put the Standard Model of quarks and leptons through its most gruelling test yet. Right from the start, collaboration between LEP experiments and the accelerator team has been close, with frequent scheduling meetings determining how the machine is run. For the first few years, LEP ran on a diet of four bunches of electrons and four of positrons, but by the end of 1992, a way had been found to increase the luminosity by squeezing in more bunches. In 1993, the 'pretzel' scheme (October 1992, page 17), so called because of the shape traced out by

  1. Tests of electroweak interactions at CERN's LEP Collider

    Science.gov (United States)

    Fearnley, T. A.

    1995-08-01

    Precision measurements of electroweak interactions at the Z0 energy are performed at four experiments at the Large Electron Positron (LEP) Collider at CERN in Geneva, Switzerland. The large amount of data obtained from 1989 until today allows detailed comparisons with the predictions made by the Standard Model. Within the experimental errors the agreement with the Standard Model is good. Fits to the LEP data allow an indirect determination of the mass of the top quark: Mt=173+12+18-13-20 GeV, assuming a Higgs boson mass of 300 GeV. The first errors reflect the experimental errors (systematic and statistical) on the measurements. The second errors correspond to the variation of the central value when varying the Higgs mass between 60 and 1000 GeV. This paper reviews the results of the measurements of electroweak interactions, and compares the results with predictions made by the Standard Model.

  2. The new generation of PowerPC VMEbus front end computers for the CERN SPS and LEP accelerators system

    CERN Document Server

    Charrue, P; Ghinet, F; Ribeiro, P

    1995-01-01

    The CERN SPS and LEP PowerPC project is aimed at introducing a new generation of PowerPC VMEbus processor modules running the LynxOS real-time operating system. This new generation of front end computers using the state-of-the-art microprocessor technology will first replace the obsolete XENIX PC based systems (about 140 installations) successfully used since 1988 to control the LEP accelerator. The major issues addressed in the scope of this large scale project are the technical specification for the new PowerPC technology, the re-engineering aspects, the interfaces with other CERN wide projects, and the set up of a development environment. This project offers also support for other major SPS and LEP projects interested in the PowerPC microprocessor technology.

  3. CERN: LEP delivers; Looking deeper at spin; Handling low energy antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-03-15

    One year ago, with the world catalogue of Z particles - the electrically neutral carrier of the weak nuclear force - containing a few hundred examples, it sounded extravagant when proponents of CERN's new LEP electron-positron collider promised a hundred thousand Zs by Christmas 1989. The first round of experiments in the North Area of CERN's SPS proton synchrotron included a considerable investment in studies using high energy muon beams. This paid off with important contribuions to physics, particularly in the measurement of the quark/gluon content (structure functions) of nucleons. ; The LEAR low energy antiproton ring at CERN takes its antimatter beams down to very low kinetic energies - less than 10 MeV - for a unique range of physics studies. However even these modest energies are too high for a series of experiments aiming to explore the effects of gravity on antimatter.

  4. The new generation of PowerPC VMEbus front end computers for the CERN SPS and LEP accelerators control system

    CERN Document Server

    Van den Eynden, M

    1995-01-01

    The CERN SPS and LEP PowerPC project is aimed at introducing a new generation of PowerPC VMEbus processor modules running the LynxOS real-time operating system. This new generation of front end computers using the state-of-the-art microprocessor technology will first replace the obsolete Xenix PC based systems (about 140 installations) successfully used since 1988 to control the LEP accelerator. The major issues addressed in the scope of this large scale project are the technical specification for the new PowerPC technology, the re-engineering aspects, the interfaces with other CERN wide projects, and the set up of a development environment. This project offers also support for other major SPS and LEP projects interested in the PowerPC microprocessor technology.

  5. CERN: LEP delivers; Looking deeper at spin; Handling low energy antiprotons

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    One year ago, with the world catalogue of Z particles - the electrically neutral carrier of the weak nuclear force - containing a few hundred examples, it sounded extravagant when proponents of CERN's new LEP electron-positron collider promised a hundred thousand Zs by Christmas 1989. The first round of experiments in the North Area of CERN's SPS proton synchrotron included a considerable investment in studies using high energy muon beams. This paid off with important contribuions to physics, particularly in the measurement of the quark/gluon content (structure functions) of nucleons. ; The LEAR low energy antiproton ring at CERN takes its antimatter beams down to very low kinetic energies - less than 10 MeV - for a unique range of physics studies. However even these modest energies are too high for a series of experiments aiming to explore the effects of gravity on antimatter

  6. Heavy quark and quarkonium production at CERN LEP2. kT-factorization versus data

    International Nuclear Information System (INIS)

    Lipatov, A.V.; Zotov, N.P.

    2005-02-01

    We present calculations of heavy quark and quarkonium production at CERN LEP2 in the κ T -factorization QCD approach. Both direct and resolved photon contribution are taken into account. The conservative error analysis is performed. The unintegrated gluon distribution in the photon is obtained from the full CCFM evolution equation. The traditional color-singlet mechanism to describe non-perturbative transition of QQ-pair into a final quarkonium is used. Our analysis covers polarization properties of heavy quarkonia at moderate and large transverse momenta. We find that the total and differential open charm production cross sections are consistent with the recent experimental data taken by the L3, OPAL and ALEPH collaborations. At the same time the DELPHI data for the inclusive J/ψ production exceed our predictions but experimental uncertainties are too large to claim a significant inconsistency. The bottom production in photon-photon collisions at CERN LEP2 is hard to explain within the κ T -factorization formalism. (orig.)

  7. [European particle accelerator conference, Rome, Italy, and visit to the LEP storage ring and LEP detectors L3 and ALEPH at CERN, Geneva, Switzerland, June 5-16, 1988]: Foreign trip report

    International Nuclear Information System (INIS)

    Blumberg, L.N.

    1988-01-01

    A selection of papers presented at the EPAC Conference relating to accelerator technology, facilities proposed, planned or under construction, and operating machines are discussed. Also noted are discussions at CERN with personnel from the LEP superconducting RF, the LEP L3 and ALEPH detectors, and the LHC superconducting magnet groups

  8. Focus on LEP

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-12-15

    When it begins operations early in 1989, the LEP electron-positron Collider now being built at CERN will provide beams of some 60 GeV (120 GeV collision energy). However with superconducting radiofrequency acceleration equipment complementing the conventional units, the beam energy eventually could be boosted to about 100 GeV per beam. In parallel with LEP construction, a vigorous development programme for these superconducting cavities has been underway at CERN.

  9. Focus on LEP

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    When it begins operations early in 1989, the LEP electron-positron Collider now being built at CERN will provide beams of some 60 GeV (120 GeV collision energy). However with superconducting radiofrequency acceleration equipment complementing the conventional units, the beam energy eventually could be boosted to about 100 GeV per beam. In parallel with LEP construction, a vigorous development programme for these superconducting cavities has been underway at CERN

  10. Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson

    CERN Document Server

    Carena, M S; Wagner, C E M

    2000-01-01

    We study the discovery potential of the CERN LHC, Fermilab Tevatron and CERN LEP colliders in the search for the neutral CP-even Higgs boson of the MSSM which couples to the weak gauge bosons with a strength close to the standard model one and, hence, plays a relevant role in the mechanism of electroweak symmetry breaking. We place special emphasis on the radiative effects which influence the discovery reach of these colliders. We concentrate on the Vbb channel, with V=Z or W, and on the channels with diphoton final states, which are the dominant ones for the search for a light standard model Higgs boson at LEP or Tevatron and LHC, respectively. By analyzing the parameters of the MSSM for which the searches become difficult at one or more of these three colliders, we demonstrate their complementarity in the search for a light Higgs boson which plays a relevant role in the mechanism of electroweak symmetry breaking. (32 refs).

  11. Charmed-hadron fragmentation functions from CERN LEP1 revisted

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Kramer, G.

    2006-07-01

    In Phys. Rev. D 58, 014014 (1998) and 71, 094013 (2005), we determined non-perturbative D 0 , D + , D *+ , D s + , and Λ c + fragmentation functions, both at leading and next-to-leading order in the MS factorization scheme, by fitting e + e - data taken by the OPAL Collaboration at CERN LEP1. The starting points for the evolution in the factorization scale μ were taken to be μ 0 -2m Q , where Q = c, b. For the reader's convenience, in this Addendum, we repeat this analysis for μ 0 =m Q , where the flavor thresholds of modern sets of parton density functions are located. (Orig.)

  12. LEP Inauguration

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    On 13 November, Heads of State, Heads of Government and Ministers from CERN's 14 Member States, together with more than a thousand invited guests, attended the inauguration ceremony of LEP, CERN's new 27-kilometre electron-positron collider

  13. LEP experiments take shape

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-05-15

    Excavation of the 27 kilometre tunnel and vast underground caverns for CERN's new LEP electronpositron collider is forging ahead, and equipment for the machine is arriving on the site in increasing quantities ready to attack the huge task of installation. At about the same time that LEP construction work began at CERN in 1983, physicists from some hundred research centres throughout the world began gearing up for the detailed design, construction and testing of the millions of components for the four big detectors – ALEPH, DELPHI, L3 and OPAL – which will study LEP's electron-positron collisions.

  14. LEP experiments take shape

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Excavation of the 27 kilometre tunnel and vast underground caverns for CERN's new LEP electronpositron collider is forging ahead, and equipment for the machine is arriving on the site in increasing quantities ready to attack the huge task of installation. At about the same time that LEP construction work began at CERN in 1983, physicists from some hundred research centres throughout the world began gearing up for the detailed design, construction and testing of the millions of components for the four big detectors – ALEPH, DELPHI, L3 and OPAL – which will study LEP's electron-positron collisions

  15. LEP beampipe section

    CERN Multimedia

    1989-01-01

    Short section of beampipe from the Large Electron Positron collider (LEP, for short). With its 27-kilometre circumference, LEP was the largest electron-positron accelerator ever built and ran from 1989 to 2000 at CERN. During 11 years of research, LEP's experiments provided a detailed study of the electroweak interaction. Measurements performed at LEP also proved that there are three – and only three – generations of particles of matter. LEP was closed down on 2 November 2000 to make way for the construction of the Large Hadron Collider in the same tunnel.

  16. LEP commissioning

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    On 14 July, as ail France celebrated the bicentenary of its revolution, CERN was the scene of a revolution of a very different kind. At 16.30 hrs, a 20 GeV positron beam went round the 27 kilometres (most of which is under French territory) of CERN's new LEP electron-positron storage ring. After more than a decade of careful planning and preparation, almost six years after groundbreaking, and two years after the start of equipment installation, the LEP team delivered on the day they had told people to mark five years ago

  17. LEP tunnel monorail

    CERN Multimedia

    1985-01-01

    A monorail from CERN's Large Electron Positron collider (LEP, for short). It ran around the 27km tunnel, transporting equipment and personnel. With its 27-kilometre circumference, LEP was the largest electron-positron accelerator ever built and ran from 1989 to 2000. During 11 years of research, LEP's experiments provided a detailed study of the electroweak interaction. Measurements performed at LEP also proved that there are three – and only three – generations of particles of matter. LEP was closed down on 2 November 2000 to make way for the construction of the Large Hadron Collider in the same tunnel.

  18. Observations on LEP with a view to SSC

    International Nuclear Information System (INIS)

    Toohig, T.E.

    1984-01-01

    From 24-29 October 1984 a visit was made to the LEP project at CERN with a view to extracting from the LEP planning and experience what might be useful in planning an SSC. With a circumference of 26.7 km, in a reasonably densely-populated area outside the boundaries of the CERN site, LEP already faces most of the problems of environment, public relations, maintenance and operation that will be faced by an SSC project. Information is presented under the headings of: (1) radiation protection; (2) heating, ventilation, and airconditioning; (3) electrical power distribution; (4) LEP experiments/UA1, UA2; (5) civil; (6) infrastructure installation; (7) survey; (8) safety; and (9) LEP controls. Each report lists the CERN individuals who generously provided their insights and help

  19. The new generation of PowerPC VMEbus front end computers for the CERN SPS and LEP accelerators system

    OpenAIRE

    Charrue, P; Bland, A; Ghinet, F; Ribeiro, P

    1995-01-01

    The CERN SPS and LEP PowerPC project is aimed at introducing a new generation of PowerPC VMEbus processor modules running the LynxOS real-time operating system. This new generation of front end computers using the state-of-the-art microprocessor technology will first replace the obsolete XENIX PC based systems (about 140 installations) successfully used since 1988 to control the LEP accelerator. The major issues addressed in the scope of this large scale project are the technical specificatio...

  20. The new generation of PowerPC VMEbus front end computers for the CERN SPS and LEP accelerators control system

    OpenAIRE

    Van den Eynden, M

    1995-01-01

    The CERN SPS and LEP PowerPC project is aimed at introducing a new generation of PowerPC VMEbus processor modules running the LynxOS real-time operating system. This new generation of front end computers using the state-of-the-art microprocessor technology will first replace the obsolete Xenix PC based systems (about 140 installations) successfully used since 1988 to control the LEP accelerator. The major issues addressed in the scope of this large scale project are the technical specificatio...

  1. Premiers résultats en provenance du LEP2

    CERN Multimedia

    CERN Press Office. Geneva

    1996-01-01

    CERN's Large Electron-Positron collider, LEP, produced its first pair of fundamental particles known as W+ and W- today, taking particle physics research into new and unexplored territory. This follows a busy winter of upgrades which have transformed LEP into a new accelerator, earning it the name LEP2. Hundreds of physicists from all over the world come to CERN to do their research at LEP2, which will be further upgraded over the coming years, bringing the possibility of new discoveries and extending our understanding of the Universe.

  2. Raising the last LEP dipole

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The last of the 3280 dipole magnets from the Large Electron-Positron (LEP) collider is seen on its journey to the surface on 12 February 2002. The LEP era, which began at CERN in 1989 and ended 2000, comes to an end.

  3. LEP inauguration

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-01-15

    13 November saw the culmination at CERN of weeks of intricate planning to put together a fitting formal inauguration of LEP, CERN's 27-kilometre electron-positron collider. The day was to witness an event worthy of the many years of assiduous endeavour to bring into being the world's largest scientific machine, a prime example of international collaboration and the portent of a new era in fundamental research.

  4. LEP inauguration

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    13 November saw the culmination at CERN of weeks of intricate planning to put together a fitting formal inauguration of LEP, CERN's 27-kilometre electron-positron collider. The day was to witness an event worthy of the many years of assiduous endeavour to bring into being the world's largest scientific machine, a prime example of international collaboration and the portent of a new era in fundamental research.

  5. Components for the CERN LEP ring

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    One of the most important experimental setups at the LEP (Large Electron Positron Collider) ring is called OPAL (Omni Purpose Apparatus for LEP). Sulzer-Escher Wyss, Zurich, is to deliver the iron yoke, i.e. the mechanical part of one of the nine OPAL detectors. The contract for the yoke includes essentially the two side parts, each consisting of ten modules and two end caps, the middle part, four special modules and two supporting rings, as well as both the poles. The combined weight of all the supply items comes to some 2300 t. (Auth.).

  6. $D^{0}, D^{+}, D_{s}^{+}$, and $\\Lambda_{c}^{+}$ Fragmentation Functions from CERN LEP1

    CERN Document Server

    Kniehl, Bernd A; Kniehl, Bernd A.; Kramer, Gustav

    2005-01-01

    We present new sets of nonperturbative fragmentation functions for D^0, D^+, and D_s^+ mesons as well as for Lambda_c^+ baryons, both at leading and next-to-leading order in the MSbar factorization scheme with five massless quark flavors. They are determined by fitting data of e^+e^- annihilation taken by the OPAL Collaboration at CERN LEP1. We take the charm-quark fragmentation function to be of the form proposed by Peterson et al. and thus obtain new values of the epsilon_c parameter, which are specific for our choice of factorization scheme.

  7. Slice of a LEP bending magnet

    CERN Multimedia

    This is a slice of a LEP dipole bending magnet, made as a concrete and iron sandwich. The bending field needed in LEP is small (about 1000 Gauss), equivalent to two of the magnets people stick on fridge doors. Because it is very difficult to keep a low field steady, a high field was used in iron plates embedded in concrete. A CERN breakthrough in magnet design, LEP dipoles can be tuned easily and are cheaper than conventional magnets.

  8. Physics at LEP

    International Nuclear Information System (INIS)

    Ellis, J.; Peccei, R.

    1986-01-01

    This report surveys physics which may be investigated at LEP, the Large Electron-Positron collider under construction at CERN. Five general areas are emphasized, namely: precision measurements at the Z 0 peak; studies of toponium; searches for possible new particles; QCD, γγ, and heavy quark studies; and experiments at the highest LEP energies up to and beyond the W + W - pair-production threshold. Wherever possible, full cross section formulae are given, together with references to the original literature where more details may be found. (orig.)

  9. CERN strives to stay ahead

    International Nuclear Information System (INIS)

    Sutton, Christine.

    1987-01-01

    The paper examines the future of CERN, with respect to its proposed research programme and its need to save money. Proposals concerning what accelerators CERN should build for the future are outlined; machines such as the Large Hadron Collider and the CERN Linear Collider have been proposed. Experimental expectations for the first Large Electron Positron (LEP) collider (now close to completion) are briefly described, along with the experimental investigations for the second phase of operation of LEP where modifications will increase the machine's energy. Criticisms of CERN's management by its governing body are also discussed. (UK)

  10. LEP Traceability

    CERN Document Server

    Billen, R

    2000-01-01

    After more than ten years of production for high energy physics, CERN's current flagship, LEP, will be closed down definitively October 1st, 2000. Starting immediately, some 30,000 tonnes of LEP materials will be removed from the tunnel to make room for LHC installation. The dismantling project is a major undertaking in terms of resources and constraints, which has to be completed in less than one year. Moreover, since LEP is classified as a nuclear installation in France (as if it was a nuclear power plant), special procedures have to be followed in addition to the normal environmental and safety issues. One major facet of the project is the "traceability" of everything that comes out of the LEP tunnel. This implies that each piece of equipment must be identified and tracked from its origin through any temporary storage to its final destination. Special procedures have to be followed for all materials even if they are not radioactive. As much of the equipment as possible will be recycled or disposed of. This...

  11. CERN LEP2 constraint on 4D QED having a dynamically generated spatial dimension

    International Nuclear Information System (INIS)

    Cho, G.-C.; Izumi, Etsuko; Sugamoto, Akio

    2002-01-01

    We study 4D QED in which one spatial dimension is dynamically generated from the 3D action, following the mechanism proposed by Arkani-Hamed, Cohen, and Georgi. In this model, the generated fourth dimension is discretized by an interval parameter a. We examine the phenomenological constraint on the parameter a coming from collider experiments on the QED process e + e - →γγ. It is found that the CERN e + e - collider LEP2 experiments give the constraint of 1/a > or approx. 461 GeV. The expected bound on the same parameter a at a future e + e - linear collider is briefly discussed

  12. LEP dominates LP-HEP

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Gordon

    1991-09-15

    CERN's LEP electron-positron collider was the star of this year's major physics meeting - the Joint International Lepton-Photon Symposium and Europhysics Conference on High Energy Physics (LP-HEP) - held in Geneva from 25 July - 1 August.

  13. The LEP project

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    At its 64th Session on 19-20 December, the CERN Council received a document from its Scientific Policy Committee entitled 'Proposal for the next major accelerator project at CERN'. Following the studies which have been carried out over the past few years, the SPC recommended that the 'Design Study of a 22 to 130 GeV electronpositron colliding beam machine (LEP)' should be used as the basis for planning the next accelerator for CERN and recommended that the accelerator should be built adjacent to the existing Laboratory.These recommendations were mostly favourably received by the delegates of the CERN Member States and the stage seems set for the formal presentation of the project in June of this year

  14. LEP dominates LP-HEP

    International Nuclear Information System (INIS)

    Fraser, Gordon

    1991-01-01

    CERN's LEP electron-positron collider was the star of this year's major physics meeting - the Joint International Lepton-Photon Symposium and Europhysics Conference on High Energy Physics (LP-HEP) - held in Geneva from 25 July - 1 August

  15. A look at LEP

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    While work on the tunnel linking England and France under the English Channel has not yet begun, the 26.6 kilometre ring being built at CERN for the LEP electron-positron collider is one of Europe's major engineering projects. (orig./HSI).

  16. LEP shuts down after eleven years of forefront research

    CERN Multimedia

    2000-01-01

    After extended consultation with the appropriate scientific committees, CERN’s Director-General Luciano Maiani announced today that the LEP accelerator had been switched off for the last time. LEP was scheduled to close at the end of September 2000 but tantalising signs of possible new physics led to LEP’s run being extended until 2 November. At the end of this extra period, the four LEP experiments had produced a number of collisions compatible with the production of Higgs particles with a mass of around 115 GeV. These events were also compatible with other known processes. The new data was not sufficiently conclusive to justify running LEP in 2001, which would have inevitable impact on LHC construction and CERN’s scientific programme. The CERN Management decided that the best policy for the Laboratory is to proceed full-speed ahead with the Large Hadron Collider (LHC) project. Steve Myers, Head of SL Division, with members of the LEP team, pulling the symbolic rope to swich off the accelerator. CERN Co...

  17. Inside the LEP control room at start-up

    CERN Multimedia

    1989-01-01

    Physicists grouped around a screen in the LEP control room at the strat-up of LEP on 14 July 1989. The emotion of the moment is clear. Carlo Rubbia, Director-General of CERN at the time, is in the centre and on his left, Herwig Schopper, former Director-General of the Organization.

  18. The fastbus trigger modules for the SAT detector in the DELPHI experiment at LEP, CERN

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.

    1992-09-01

    This thesis describes the functionality and performance of the fastbus trigger modules for the Small Angle Tagger (SAT) detector in the DELPHI experiment at the LEP machine at CERN. The main purpose of the modules is to provide a Bhabha trigger for the SAT calorimeter used for luminosity measurements. The author has bee responsible for the design, production, testing and installation of the trigger modules. All the test programs necessary to confirm that the modules function according to the specifications are included in this work. Is does not, however, aim to make detailed technical descriptions of the modules. 44 refs., 39 figs., 18 tabs

  19. The DELPHI experiment at LEP

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Bardin, D. Yu.; Bilen'kij, M.S.

    2000-01-01

    This paper summarizes the current status of the DELPHI experiment, which is operating at the Large Electron Positron (LEP) Collider at CERN. The results from running at the energies around the Z resonance (LEP1) are based on the full available data, while the results obtained at higher energies (LEP2) are based on the data collected up to 1998. The analysis of the data collected at the highest centre-of-mass energies (above 200 GeV) is still in progress and new results are expected. We present briefly some of the most important DELPHI results paying a special attention to the contribution of JINR group to the detector construction and data analysis

  20. Quark radiation from LEP

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Susan

    1992-04-15

    Like any other electrically charged particles, quarks should give out electromagnetic radiation (photons) when they vibrate. One of the physics results from CERN's LEP collider is the first clear observation of this quark radiation from electron-positron collisions. At lower energies this radiation could only be inferred.

  1. Implications of results from the CERN e+e- collider LEP for SO(10) grand unification with two intermediate stages

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Keith, E.; Pal, P.B.

    1993-01-01

    We consider the breaking of the grand unification group SO(10) to the standard model gauge group through several chains containing two intermediate stages. Using the values of the gauge coupling constants at a scale M Z derived from recent data from the CERN e + e- collider LEP, we determine the range of their intermediate and unification scales. In particular, we identify those chains that permit new gauge structure at relatively low energy (∼1 TeV)

  2. Monitoring the waste water of LEP

    CERN Document Server

    Rühl, I

    1999-01-01

    Along the LEP sites CERN is discharging water of differing quality and varying amounts into the local rivers. This wastewater is not only process water from different cooling circuits but also water that infiltrates into the LEP tunnel. The quality of the discharged wastewater has to conform to the local environmental legislation of our Host States and therefore has to be monitored constantly. The most difficult aspect regarding the wastewater concerns LEP Point 8 owing to an infiltration of crude oil (petroleum), which is naturally contained in the soil along octant 7-8 of the LEP tunnel. This paper will give a short summary of the modifications made to the oil/water separation unit at LEP Point 8. The aim was to obtain a satisfactory oil/water separation and to install a monitoring system for a permanent measurement of the amount of hydrocarbons in the wastewater.

  3. LEP Dismantling: Wagons Roll!

    CERN Multimedia

    2001-01-01

    The first trucks transporting material from LEP and its four experiments left CERN on 31 January. Since the LEP dismantling operation began, the material had been waiting to be removed from the sites of the four experiments and the special transit area on the Prévessin site. On the evening of 30 January, the French customs authorities gave the green light for the transport operation to begin. So first thing the next day, the two companies in charge of recycling the material, Jaeger & Bosshard (Switzerland) and Excoffier (France), set to work. Only 1500 truckloads to go before everything has been removed!

  4. Quark radiation from LEP

    International Nuclear Information System (INIS)

    Cartwright, Susan

    1992-01-01

    Like any other electrically charged particles, quarks should give out electromagnetic radiation (photons) when they vibrate. One of the physics results from CERN's LEP collider is the first clear observation of this quark radiation from electron-positron collisions. At lower energies this radiation could only be inferred

  5. LEP for twice the energy

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-01-15

    In 1995, CERN's 27-kilometre LEP electron-positron collider should start operating for physics at considerably higher energy. Since its commissioning in 1989, the machine has been operating around 45.5 GeV per beam to give collision energies that home in on the Z particle - the electrically neutral carrier of the weak nuclear force, with a mass of 91 GeV. The Z, discovered at CERN in 1983 by Carlo Rubbia's UA1 protonantiproton tour de force, was for a long time a rare physics jewel. Until LEP came along, only a handful had been seen. With millions now captured by the four LEP experiments - Aleph, Delphi, L3 and Opal - the Z has become everyday physics, and the accumulated precision Z data give an incisive view inside today's Standard Model. The self-consistency of these measurements make physicists confident that the sixth ('top') quark should turn up around 150 GeV. But the Z is only one side of the picture. For the self-consistency of the Standard Model to become really watertight, a precision fix is also needed on the W at 81 GeV, the electrically charged companion of the Z. While the neutral Z can be produced directly in electron-positron annihilations, the charged Ws can only be produced in pairs, hence the call for higher energies at LEP. (The project is known as LEP200, but 200 GeV is acknowledged as an optimistic energy target.) To roughly double beam energy from around 45 GeV for Z physics to the level needed for W production calls for an additional 1900 Megavolts of accelerating voltage.

  6. LEP for twice the energy

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    In 1995, CERN's 27-kilometre LEP electron-positron collider should start operating for physics at considerably higher energy. Since its commissioning in 1989, the machine has been operating around 45.5 GeV per beam to give collision energies that home in on the Z particle - the electrically neutral carrier of the weak nuclear force, with a mass of 91 GeV. The Z, discovered at CERN in 1983 by Carlo Rubbia's UA1 protonantiproton tour de force, was for a long time a rare physics jewel. Until LEP came along, only a handful had been seen. With millions now captured by the four LEP experiments - Aleph, Delphi, L3 and Opal - the Z has become everyday physics, and the accumulated precision Z data give an incisive view inside today's Standard Model. The self-consistency of these measurements make physicists confident that the sixth ('top') quark should turn up around 150 GeV. But the Z is only one side of the picture. For the self-consistency of the Standard Model to become really watertight, a precision fix is also needed on the W at 81 GeV, the electrically charged companion of the Z. While the neutral Z can be produced directly in electron-positron annihilations, the charged Ws can only be produced in pairs, hence the call for higher energies at LEP. (The project is known as LEP200, but 200 GeV is acknowledged as an optimistic energy target.) To roughly double beam energy from around 45 GeV for Z physics to the level needed for W production calls for an additional 1900 Megavolts of accelerating voltage

  7. LEP results

    International Nuclear Information System (INIS)

    Thresher, J.J.

    1990-01-01

    The first period of LEP operation ended on 22nd December 1989, rather less than two weeks before the start of this Conference. It brought to a close a most exciting time at CERN, starting in July 1989, when those involved in commissioning LEP attempted for the first time to start up the complete machine and then to give the experiments their first taste of what LEP had in store for them. By July almost all sections of LEP had been individually checked out. In particular, the entire injection chain had been tested with positrons a year earlier when a very successful injection test into the first completed LEP octant was carried out. Also by July the LEP detectors had been installed and were ready to take data with at least the most important sub-detector systems able to operate. By way of introduction a brief history of these first months of LEP operation is given in this paper. The first steps in bringing LEP into operation started on 14th July 1989 when positrons were injected into the ring for the first time. After only 55 minutes of magnet adjustments they had completed a full turn at the injection energy of 20 GeV. Further commissioning with positrons at this energy then followed to establish a stable circulating beam and then on 25th July the first electrons were successfully injected into LEP. By 31st July, after much work on beam accumulation had been done, a current of some 250 μA of positrons, i.e. about 60 μA in each of the four bunches was reached at 20 GeV and four days later on 4th August positrons were successfully ramped up to 47.5 GeV. Finally, at 23.15 on 13th August positrons were successfully ramped up to 47.5 GeV. Finally, at 23.15 on 13th August, just less than one month after the start of LEP commissioning, electrons and positrons were brought into collision at an energy of 45.5 GeV per beam

  8. CERN moves into the LHC era

    CERN Multimedia

    2001-01-01

    Dr Hans Eschelbacher (on the left), President of the CERN Council for the last three years, hands over to his successor Maurice Bourquin.  The CERN Council, where the representatives of the 20 Member States of the Organization decide on scientific programmes and financial resources, held its 116th session on 15 December under the chairmanship of Dr. Hans C. Eschelbacher (DE). 'Le Roi est mort. Vive le Roi !' The Large Electron Positron Collider (LEP) era has ended and CERN's future is the Large Hadron Collider (LHC), stated Director General, Prof. Luciano Maiani. He opened his report to Council with a 'homage to LEP', which reached the end of its career during 2000 and is now being dismantled to make way for CERN's next major machine, the LHC collider, in the same 27-kilometre tunnel. The strong indications of a Higgs boson at 115 GeV found during the year were the culmination of LEP's long and distinguished physics career, during which the machine opened up new regimes of precision physics, involvi...

  9. LEP superconducting cavities go into storage

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    Superconducting radio-frequency cavities from the LEP-2 phase (1996-2000) are put into storage in the tunnel that once housed the Intersecting Storage Rings (ISR), the world’s first proton collider, located at CERN.

  10. LEP takes to the hills

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    From 1-7 June the focal point of thinking about the European project for a very high energy electron-positron machine, LEP, moved up into the Swiss mountains. The European Committee for Future Accelerators, ECFA, organized a 'General Meeting on LEP' at the alpine resort of Villars. This was in the long tradition of ECFA meetings which try to ensure a broad consultation of the European High Energy Physics community before major decisions on CERN projects are taken. Over 400 physicists gathered at the Palace Hotel where they were very agreeably immersed in the happy Club Mediterranee ambience. The Conference was successful beyond expectation and left the feeling that the contacts and discussions had moved LEP significantly further towards its goals. Above all it demonstrated again the keenness of the community to become involved in the experimental programme of LEP and the great belief in the scientific promise of the machine

  11. Une énergie record ouvre de nouvelles perspectives de découvertes au LEP

    CERN Document Server

    CERN Press Office. Geneva

    1999-01-01

    At CERN on 2 August 1999 at 11h15, beams of electrons and positrons were accelerated in the Large Electron Positron Collider (LEP) to 100 GeV and brought into collision for the first time at this energy. There were two reasons for the backslapping, cheering and popping of corks that followed in the LEP control room. First, the setting of a new energy record for an electron-positron accelerator, represents a tremendous technical achievement by CERN accelerator specialists. Second, the collision energy of 200 GeV opens up exciting new discovery potential for the LEP experiments.

  12. Large hadron collider in the LEP tunnel. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    1984-01-01

    A Workshop, jointly organized by ECFA and CERN, took place at Lausanne and at CERN in March 1984 to study various options for a pp (or panti p) collider which might be installed at a later data alongside LEP in the LEP tunnel. Following the exploration of e + e - physics up to the highest energy now foreseeable, this would open up the opportunity to investigate hadron collisions in the new energy range of 10 to 20 TeV in the centre of mass. These proceedings put together the documents prepared in connection with this Workshop. They cover possible options for a Large Hadron Collider (LHC) in the LEP tunnel, the physics case as it stands at present, and studies of experimental possibilities in this energy range with luminosities as now considered. See hints under the relevant topics. (orig./HSI)

  13. Large hadron collider in the LEP tunnel. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    1984-01-01

    A Workshop, jointly organized by ECFA and CERN, took place at Lausanne and at CERN in March 1984 to study various options for a pp (or panti p) collider which might be installed at a later date alongside LEP in the LEP tunnel. Following the exploration of e + e - physics up to the highest energy now foreseeable, this would open up the opportunity to investigate hadron collisions in the new energy range of 10 to 20 TeV in the centre of mass. These proceedings put together the documents prepared in connection with this Workshop. They cover possible options for a Large Hadron Collider (LHC= in the LEP tunnel, the physics case at it stands at present, and studies of experimental possibilities in this energy range with luminosities as now considered. See hints under the relevant topics. (orig.)

  14. LEP a new instrument for high-energy physics

    CERN Document Server

    Udo, Fred

    1981-01-01

    Describes the LEP project of CERN. LEP (large electron/positron storage ring) is to be used to investigate electron/positron collisions at 44 to 260 GeV. The circumference of the ring will be 30.6 km. The theory is outlined. Two circular systems of beam bundles (electrons and positrons) move in opposite directions and are accelerated and focused (to 0.4 mm diameter) until collisions take place. (11 refs).

  15. LEP superconducting accelerating cavity module

    CERN Multimedia

    1995-01-01

    With its 27-kilometre circumference, the Large Electron-Positron (LEP) collider was the largest electron-positron accelerator ever built. The excavation of the LEP tunnel was Europe’s largest civil-engineering project prior to the Channel Tunnel. Three tunnel-boring machines started excavating the tunnel in February 1985 and the ring was completed three years later. In its first phase of operation, LEP consisted of 5176 magnets and 128 accelerating cavities. CERN’s accelerator complex provided the particles and four enormous detectors, ALEPH, DELPHI, L3 and OPAL, observed the collisions. LEP was commissioned in July 1989 and the first beam circulated in the collider on 14 July. The collider's initial energy was chosen to be around 91 GeV, so that Z bosons could be produced. The Z boson and its charged partner the W boson, both discovered at CERN in 1983, are responsible for the weak force, which drives the Sun, for example. Observing the creation and decay of the short-lived Z boson was a critical test of...

  16. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  17. LEP the large electron-positron project

    International Nuclear Information System (INIS)

    Schopper, H.

    1984-01-01

    LEP is an e + e - ring optimized for about 100 GeV per beam. The ring has a circumference of about 26.7 kilometers, and will be 80 to 125 meters deep underground. The existing accelerators, both the PS and the SPS, will be used as injectors. The cost of LEP is 910 million Swiss francs, at 1981 prices. This document describes the outline of the LEP project, especially, in relation to the present CERN site and experimental facilities. The present status of LEP, that is, machine ordering, installation or modification of the existing machines, is explained in the following areas: injection system, magnets, accelerating system, and experimental areas. As for the civil engineering works two international consortia are responsible for the excavation of the tunnel for the main ring. Some photographs are presented to show the status of the civil engineering works. For the transportation of both components and people, a monorail suspended from the ceiling of the tunnel is adopted. The first injection test into an octant is planned in the autumn of 1987, and the first beam all around the LEP will be at the end of 1988. (Aoki, K.)

  18. Industrial services at CERN

    CERN Multimedia

    2002-01-01

    The Bulletin looks at industrial services contracts and the real impact of the cost reductions at CERN. The level of industrial services contracts varies from one phase to another. For example, during the dismantling of LEP (photo) it rose substiantially to fall again at the end of dismantling. Industrial services contracts are an important resource for CERN. The level and nature of such contracts changes according to the phase of operation of the Laboratory. A construction phase, as for the LHC, requires a higher level of industrial services contracts compared with a period of normal running. During the operation of LEP, industrial services contracts were thus maintained at a level of 120 MCHF per year. The level rose to 156 MCHF in 2001 to include contracts awarded for dismantling LEP, and fell to about 144 MCHF in 2002 when the dismantling was complete. During the whole LHC construction period, up to 2007, industrial services spending will be stable in the range 135-140 MCHF per year. For the running pe...

  19. Fermilab Tevatron and CERN LEP II probes of minimal and string-motivated supergravity models

    International Nuclear Information System (INIS)

    Baer, H.; Gunion, J.F.; Kao, C.; Pois, H.

    1995-01-01

    We explore the ability of the Fermilab Tevatron to probe minimal supersymmetry with high-energy-scale boundary conditions motivated by supersymmetry breaking in the context of minimal and string-motivated supergravity theory. A number of boundary condition possibilities are considered: dilatonlike string boundary conditions applied at the standard GUT unification scale or alternatively at the string scale; and extreme (''no-scale'') minimal supergravity boundary conditions imposed at the GUT scale or string scale. For numerous specific cases within each scenario the sparticle spectra are computed and then fed into ISAGET 7.07 so that explicit signatures can be examined in detail. We find that, for some of the boundary condition choices, large regions of parameter space can be explored via same-sign dilepton and isolated trilepton signals. For other choices, the mass reach of Tevatron collider experiments is much more limited. We also compare the mass reach of Tevatron experiments with the corresponding reach at CERN LEP 200

  20. The LEP impedance model

    Energy Technology Data Exchange (ETDEWEB)

    Zotter, B [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-08-01

    This report describes a number of measurements and computations of the impedance of the Large Electron Positron collider LEP at CERN. The work has been performed over several years, together with D. Brandt, K. Cornelis, A. Hofmann, G. Sabbi and many others. The agreement between measurements of single bunch instabilities on the machine and computer simulations is in general excellent and gives confidence in the impedance model used. (author)

  1. Hint of a Z' boson from the CERN LEP II data

    International Nuclear Information System (INIS)

    Gulov, A. V.; Skalozub, V. V.

    2007-01-01

    The many-parametric fits of the LEP2 data on e + e - →e + e - , μ + μ - , τ + τ - processes are performed with the goal to estimate the signals of the Abelian Z ' boson. Four independent parameters must be fitted, if the derived already low-energy relations between the Z ' couplings to the standard model fermions are taken into consideration. No signals are found when the complete LEP2 data set for these processes is treated. In the fit of the backward bins, the hint at the 1.3σ confidence level is detected. The Z ' couplings to the vector and axial-vector lepton currents are constrained. The comparisons with the one-parameter fits and with the corresponding LEP1 experiments are fulfilled

  2. CERN Jackfest

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-07-15

    Over four decades, from his initial investigations which helped open up meson physics at the end of the 1940s to leadership of one of the big experiments being prepared or CERN's LEP electron-positron Collider, the career of Jack Steinberger has paced the development of particle physics.

  3. France at CERN, 11-14 March 1986. CERN Courier, May 1986, v. 26(4)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-05-15

    More firms participated in the 1986 'France at CERN' Exhibition than in the previous exhibition in 1983. This year 55 firms, including three Chambers of Commerce and Industry, took part in the exhibition which comprised 34 stands. The choice of firms was approved by the official with responsibility for CERN at the Scientific and Technical Mission of the Ministry of Research and Technology, thereby ensuring that the exhibits corresponded to CERN's immediate needs and in particular to those of LEP.

  4. ECFA Meeting in May: LEP project changes / Backing for HERA / HEP in Europe

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The European Committee for Future Accelerators held a Plenary Meeting at CERN on 9 May. The representatives of the Universities and Laboratories in the CERN Member States heard presentations on the latest developments concerning the LEP project at CERN. They supported a recommendation on the HERA project at DESY and they endorsed a detailed report on high energy physics in Europe

  5. ISOLDE 1985-1987: In the shadow of LEP construction

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    This report describes my time at CERN from 1985 to 1987. Only very briefly before, ISOLDE was recognized by the CERN Management as a CERN facility and not only as a collaboration performing experiments at the synchrocyclotron (SC). Due to LEP construction the human resources were extremely restricted and I acted in one person as ISOLDE Group Leader, as Coordinator of the Synchrocyclotron, and as person responsible for the ISOLDE Technical Group. In addition, I was responsible for the students of my research groups from Mainz University which were active in laser spectroscopy of neutron-deficient nuclides in the mercury region and in getting ISOLTRAP on the floor and into operation. Due to LEP construction also the financial resources were extremely limited and my requests to the EP Division Leader B. Hyams and to the Director General H. Schopper for financial support for installation of a laser ion source and ISOLTRAP were turned down. Still, I and my students had a lot of fun at ISOLDE and I am very happy th...

  6. CERN Jackfest

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Over four decades, from his initial investigations which helped open up meson physics at the end of the 1940s to leadership of one of the big experiments being prepared or CERN's LEP electron-positron Collider, the career of Jack Steinberger has paced the development of particle physics

  7. LEP Magnets Get a Second Lease of Life

    CERN Multimedia

    2001-01-01

    Removed one minute, recycled the next! Around 900 yokes from the LEP dipole magnets have been re-used as building material. 906 yokes from the LEP dipole magnets have been incorporated in the foundations of the new Building 954, where they have been used to create the underfloor space and reinforcements. The recycling of LEP is already under way. Over half of CERN's accelerator has been dismantled so far, and parts of its magnets are already beginning a new life: since 16 May, some of the LEP dipole magnet yokes have been re-used as building material. The dipole yokes, the only ones of their kind, are made up of steel plates and layers of concrete sandwiched together, thus forming blocks of reinforced concrete. It would be a painstaking task to separate the basic materials for re-use, which led to the idea of using the yokes intact as reinforcements. 906 LEP yokes have gone into the foundations of the brand-new Building 954 on the Prévessin site. They have been used to build the underfloor space ...

  8. Arrêt du LEP après onze années de recherches de pointe

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    After extended consultation with the appropriate scientific committees, CERN 's Director-General Luciano Maiani announced today that the LEP accelerator had been switched off for the last time. LEP was scheduled to close at the end of September 2000 but tantalising signs of possible new physics led to LEP's run being extended until 2 November. At the end of this extra period, the four LEP experiments had produced a number of collisions compatible with the production of Higgs particles with a mass of around 115 GeV.

  9. The Spirit counts - People at and around CERN

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    After a few biographical remarks I shall concentrate on human aspects which are not covered by official documents, but which are as important to the success of CERN as scientific and technical competence. The approval of LEP, general problems of the project management and the approval of the LEP experiments under conditions never encountered before at CERN will be covered. The special spirit created at CERN based on the competence and solidarity of the CERN staff and its users made it possible to find new ways of successful international collaboration combining competition with cooperation. Career Summary Physics diploma and doctorate from Hamburg University, now Prof. emer.; research assistant at Stockholm Technical University (with Lise Meitner); Cavendish Laboratory UK (with O.R.Frisch); Cornell University (with R.R. Wilson); research in optics, nuclear and elementary particle physics. various professorships in Germany and director of university institutes; Director of DESY, Hamburg, 1973-1980...

  10. France at CERN, 11-14 March 1986. CERN Courier, May 1986, v. 26(4)

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    More firms participated in the 1986 'France at CERN' Exhibition than in the previous exhibition in 1983. This year 55 firms, including three Chambers of Commerce and Industry, took part in the exhibition which comprised 34 stands. The choice of firms was approved by the official with responsibility for CERN at the Scientific and Technical Mission of the Ministry of Research and Technology, thereby ensuring that the exhibits corresponded to CERN's immediate needs and in particular to those of LEP

  11. The Large Hadron Collider in the LEP tunnel

    International Nuclear Information System (INIS)

    Brianti, G.; Huebner, K.

    1987-01-01

    The status of the studies for the CERN Large Hadron Collider (LHC) is described. This collider will provide proton-proton collisions with 16 TeV centre-of-mass energy and a luminosity exceeding 10 33 cm -2 s -1 per interaction point. It can be installed in the tunnel of the Large Electron-Positron Storage Ring (LEP) above the LEP elements. It will use superconducting magnets of a novel, compact design, having two horizontally separated channels for the two counter-rotating bunched proton beams, which can collide in a maximum of seven interaction points. Collisions between protons of the LHC and electrons of LEP are also possible with a centre-of-mass energy of up to 1.8 TeV and a luminosity of up to 2 x 10 32 cm -2 s -1 . (orig.)

  12. Performance of the upgraded small angle tile calorimeter at LEP

    CERN Document Server

    Alvsvaag, S J; Barreira, G; Benvenuti, Alberto C; Bigi, M; Bonesini, M; Bozzo, M; Camporesi, T; Carling, H; Cassio, V; Castellani, L; Cereseto, R; Chignoli, F; Della Ricca, G; Dharmasiri, D R; Espirito-Santo, M C; Falk, E; Fenyuk, A; Ferrari, P; Gamba, D; Giordano, V; Guz, Yu; Guerzoni, M; Gumenyuk, S A; Hedberg, V; Jarlskog, G; Karyukhin, A N; Klovning, A; Konoplyannikov, A K; Kronkvist, I J; Lanceri, L; Leoni, R; Maeland, O A; Maio, A; Mazza, R; Migliore, E; Navarria, Francesco Luigi; Nossum, B; Obraztsov, V F; Onofre, A; Paganoni, M; Pegoraro, M; Peralta, L; Petrovykh, L P; Pimenta, M; Poropat, P; Prest, M; Read, A L; Romero, A; Shalanda, N A; Simonetti, L; Skaali, T B; Stugu, B; Terranova, F; Tomé, B; Torassa, E; Trapani, P P; Verardi, M G; Vallazza, E; Vlasov, E; Zaitsev, A

    1998-01-01

    The small angle tile calorimeter (STIC) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with so- called "shashlik" technique, $9 allows the insertion of tracking detectors within the sampling structure, in order to make it possible to determine the direction of the showering particle. Presented here are some results demonstrating the performance of the $9 calorimeter and of these tracking detectors at LEP. (5 refs).

  13. CERN: Making CLIC tick

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    While the Large Hadron Collider (LHC) scheme for counter-rotating proton beams in a new superconducting ring to be built in CERN's existing 27-kilometre LEP tunnel is being pushed as the Laboratory's main construction project for the 1990s, research and development continues in parallel for an eventual complementary attack on new physics frontiers with CERN's Linear Collider - CLIC - firing TeV electron and positron beams at each other

  14. People and things. CERN Courier, January-February 1982, v. 22(1)

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events. The project to build a large electron- positron storage ring, LEP, at CERN already had the backing of the twelve CERN Member States, but three votes remained subject to conditions. At a CERN Council meeting in December this 'ad referendum' was lifted by the Netherlands, Norway and Sweden. The LEP project thus has the unconditional support of all Member States.New members of the IUPAP International Commission on Particles and Fields have been elected. The International Committee for Future Accelerators (ICFA) held its sixth meeting at Protvino, USSR, on the occasion of the ICFA Workshop on very high field (10 Tesla) superconducting magnets

  15. PARTICLE PHYSICS: CERN Gives Higgs Hunters Extra Month to Collect Data.

    Science.gov (United States)

    Morton, O

    2000-09-22

    After 11 years of banging electrons and positrons together at higher energies than any other machine in the world, CERN, the European laboratory for particle physics, had decided to shut down the Large Electron-Positron collider (LEP) and install a new machine, the Large Hadron Collider (LHC), in its 27-kilometer tunnel. In 2005, the LHC will start bashing protons together at even higher energies. But tantalizing hints of a long-sought fundamental particle have forced CERN managers to grant LEP a month's reprieve.

  16. The Influence of Train Leakage Currents on the LEP Dipole Field

    CERN Document Server

    Bravin, Enrico; Dehning, Bernd; Drees, A; Galbraith, Peter; Geitz, M A; Henrichsen, K N; Koratzinos, M; Mugnai, G

    1998-01-01

    The determination of the mass and the width of the Z boson at CERN's LEP accelerator, an e+e- storage ring with a circumference of approximately 27 kilometres, imposes heavy demands on the knowledge of the LEP counter-rotating electron and positron beam energies. The precision required is of the order of 1 MeV or »20 ppm frequency. Due to its size the LEP collider is influenced by various macroscopic and regional factors such as the position of the moon or seasonal changes of the rainfall in the area, as reported earlier. A new and not less surprising effect of the LEP energy was observed in 1995: railroad trains in the Geneva region perturb the dipole field. A parasitic flow of electricity, originating from the trains, travels along the LEP ground cable and the vacuum chamber, interacting with the dipole field. An account of the phenomenon with its explanation substantiated by dedicated measurements is presented.

  17. Installation and management of the SPS and LEP control system computers

    International Nuclear Information System (INIS)

    Bland, Alastair

    1994-01-01

    Control of the CERN SPS and LEP accelerators and service equipment on the two CERN main sites is performed via workstations, file servers, Process Control Assemblies (PCAs) and Device Stub Controllers (DSCs). This paper describes the methods and tools that have been developed to manage the file servers, PCAs and DSCs since the LEP startup in 1989. There are five operational DECstation 5000s used as file servers and boot servers for the PCAs and DSCs. The PCAs consist of 90 SCO Xenix 386 PCs, 40 LynxOS 486 PCs and more than 40 older NORD 100s. The DSCs consist of 90 OS-968030 VME crates and 10 LynxOS 68030 VME crates. In addition there are over 100 development systems. The controls group is responsible for installing the computers, starting all the user processes and ensuring that the computers and the processes run correctly. The operators in the SPS/LEP control room and the Services control room have a Motif-based X window program which gives them, in real time, the state of all the computers and allows them to solve problems or reboot them. ((orig.))

  18. Rock samples from LEP/LHC tunnel excavation

    CERN Multimedia

    1985-01-01

    Rock samples taken from 0 to 170 m below ground on the CERN site when the LEP (Large Electron Positron collider) pit number 6 was drilled in Bois-chatton (Versonnex). The challenges of LHC civil engineering: A mosaic of works, structures and workers of differents crafts and origins. Three consulting consortia for the engineering and the follow-up of the works. Four industrial consortia for doing the job. A young team of 25 CERN staff, 30 surface buildings, 32 caverns of all sizes, 170 000 m3 of concrete, 420 000 m3 excavated. 1998-2004 : six years of work and 340 millions Swiss Francs.

  19. CERN: The best of the bunch

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, F.

    1992-10-15

    As other factors governing the electron-positron collision rate in CERN's LEP 27-kilometre storage ring reach their limit, one way of coaxing the collision rate higher is to increase the number of bunches stored in the ring.

  20. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  1. CERN: Fixed target targets

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: While the immediate priority of CERN's research programme is to exploit to the full the world's largest accelerator, the LEP electron-positron collider and its concomitant LEP200 energy upgrade (January, page 1), CERN is also mindful of its long tradition of diversified research. Away from LEP and preparations for the LHC proton-proton collider to be built above LEP in the same 27-kilometre tunnel, CERN is also preparing for a new generation of heavy ion experiments using a new source, providing heavier ions (April 1992, page 8), with first physics expected next year. CERN's smallest accelerator, the LEAR Low Energy Antiproton Ring continues to cover a wide range of research topics, and saw a record number of hours of operation in 1992. The new ISOLDE on-line isotope separator was inaugurated last year (July, page 5) and physics is already underway. The remaining effort concentrates around fixed target experiments at the SPS synchrotron, which formed the main thrust of CERN's research during the late 1970s. With the SPS and LEAR now approaching middle age, their research future was extensively studied last year. Broadly, a vigorous SPS programme looks assured until at least the end of 1995. Decisions for the longer term future of the West Experimental Area of the SPS will have to take into account the heavy demand for test beams from work towards experiments at big colliders, both at CERN and elsewhere. The North Experimental Area is the scene of larger experiments with longer lead times. Several more years of LEAR exploitation are already in the pipeline, but for the longer term, the ambitious Superlear project for a superconducting ring (January 1992, page 7) did not catch on. Neutrino physics has a long tradition at CERN, and this continues with the preparations for two major projects, the Chorus and Nomad experiments (November 1991, page 7), to start next year in the West Area. Delicate neutrino oscillation effects could become

  2. CERN: Fixed target targets

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-03-15

    Full text: While the immediate priority of CERN's research programme is to exploit to the full the world's largest accelerator, the LEP electron-positron collider and its concomitant LEP200 energy upgrade (January, page 1), CERN is also mindful of its long tradition of diversified research. Away from LEP and preparations for the LHC proton-proton collider to be built above LEP in the same 27-kilometre tunnel, CERN is also preparing for a new generation of heavy ion experiments using a new source, providing heavier ions (April 1992, page 8), with first physics expected next year. CERN's smallest accelerator, the LEAR Low Energy Antiproton Ring continues to cover a wide range of research topics, and saw a record number of hours of operation in 1992. The new ISOLDE on-line isotope separator was inaugurated last year (July, page 5) and physics is already underway. The remaining effort concentrates around fixed target experiments at the SPS synchrotron, which formed the main thrust of CERN's research during the late 1970s. With the SPS and LEAR now approaching middle age, their research future was extensively studied last year. Broadly, a vigorous SPS programme looks assured until at least the end of 1995. Decisions for the longer term future of the West Experimental Area of the SPS will have to take into account the heavy demand for test beams from work towards experiments at big colliders, both at CERN and elsewhere. The North Experimental Area is the scene of larger experiments with longer lead times. Several more years of LEAR exploitation are already in the pipeline, but for the longer term, the ambitious Superlear project for a superconducting ring (January 1992, page 7) did not catch on. Neutrino physics has a long tradition at CERN, and this continues with the preparations for two major projects, the Chorus and Nomad experiments (November 1991, page 7), to start next year in the West Area. Delicate neutrino oscillation effects could become visible for the first

  3. LEP at 90°

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-01-15

    With twice as many Z particles logged this year, the performance of CERN's LEP electron-positron collider continues to improve. Paradoxically, the improvement would have been even better had it not been for teething problems with new operating conditions which will eventually boost performance still higher. Now solidly established, these new conditions, notably the 90° (instead of the previous 60°) phase for transverse betatron oscillations, and the 'pretzel' scheme for eight bunches per beam instead of four (October, page 17), first had to be assimilated, and it took a few weeks before the LEP operating crews could add them to their full repertoire. Collision performance (measured by 'luminosity') continues to improve. Although in principle LEP has yet to deliver its 'design' luminosity of 1.3 x 10{sup 31} per sq cm per s at any one time, its best performance to date is not far off - 1.1 x 10{sup 31}. The crews have become very skilled at optimizing conditions during each beam coast, with continual careful grooming of the beams ensuring high collision rates. This, together with improved performance at the four detectors - Aleph, Delphi, L3, and Opal - have led to average efficiency increasing to 57% from 44% in 1991, so that the luminosity delivered over a day has exceeded what could have been expected initially, says Steve Myers.

  4. LEP at 90°

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    With twice as many Z particles logged this year, the performance of CERN's LEP electron-positron collider continues to improve. Paradoxically, the improvement would have been even better had it not been for teething problems with new operating conditions which will eventually boost performance still higher. Now solidly established, these new conditions, notably the 90° (instead of the previous 60°) phase for transverse betatron oscillations, and the 'pretzel' scheme for eight bunches per beam instead of four (October, page 17), first had to be assimilated, and it took a few weeks before the LEP operating crews could add them to their full repertoire. Collision performance (measured by 'luminosity') continues to improve. Although in principle LEP has yet to deliver its 'design' luminosity of 1.3 x 10 31 per sq cm per s at any one time, its best performance to date is not far off - 1.1 x 10 31 . The crews have become very skilled at optimizing conditions during each beam coast, with continual careful grooming of the beams ensuring high collision rates. This, together with improved performance at the four detectors - Aleph, Delphi, L3, and Opal - have led to average efficiency increasing to 57% from 44% in 1991, so that the luminosity delivered over a day has exceeded what could have been expected initially, says Steve Myers

  5. CERN: New cooperation agreement with China

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    As preparations gather momentum for its LHC proton collider to be built in the 27-kilometre LEP tunnel, CERN is encouraging increased international involvement in the project, both for the machine itself and for the experiments which will use it

  6. CERN: The best of the bunch

    International Nuclear Information System (INIS)

    Gagliardi, F.

    1992-01-01

    As other factors governing the electron-positron collision rate in CERN's LEP 27-kilometre storage ring reach their limit, one way of coaxing the collision rate higher is to increase the number of bunches stored in the ring

  7. Radiological impact of the future CERN program (LEP)

    International Nuclear Information System (INIS)

    Goebel, K.

    1982-01-01

    The author discusses the radiation problems which are the radiological influences of LEP which interest the majority of the members of the personnel. The first studies done in this domain are achieved, and the results are published this summer, among others the doses of radiation and of radioactivity and equally the concentration of hoxions gases on the exterior of the enclosure of future installations. The results are the object of discussions and are compared with the norms of radioprotection and with the actual situation in this region. (orig.)

  8. Polarization at LEP. Vol. 2

    International Nuclear Information System (INIS)

    Alexander, G.; Altarelli, G.; Blondel, A.; Coignet, G.; Keil, E.; Plane, D.E.; Treille, D.

    1988-01-01

    This report contains a collection of papers covering the most important part of studies carried out by five study groups in view of a programme of experiments with polarized beams at LEP, the Large Electron-Positron collider under construction at CERN. The emphasis is on precision measurements at the Z peak. Such measurements are shown to be of considerable theoretical interest as well as very clean from the point of view of theoretical and experimental uncertainties. The measurement of the beam polarization can certainly be performed with sufficient accuracy, thanks to the availability of both e + and e - beam polarization. The normalization of the data taken with different beam helicities poses certain constraints that are described. Substantial progress has been made in understanding the possibility of providing longitudinally polarized beams in the LEP machine: The design of new wigglers and spin rotators, the study of correction procedures and results of numerical simulations are presented. (orig.)

  9. Shimon Pérès visite le CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1995-01-01

    Shimon Peres, Israel's Foreign Minister, made an official visit to CERN on 26 January. He was accompanied by the Israeli Ambassador to the International Organizations in Geneva, Yosef Lamdan, and was received by CERN's Director General, Prof. Christopher Llewellyn Smith. The visit took place at the site of the giant OPAL experiment, on the Large Electron Positron Collider (LEP), where there is major Israeli involvement.

  10. Follow-up research at CERN

    International Nuclear Information System (INIS)

    1993-01-01

    At The European Center for High Energy Physics (Conseil Europeen de Recherche Nucleaire - CERN) basic research is carried out based on some of the world's largest particle accelerators, especially the Large Electron Positron collider (LEP). Danish membership of CERN gives Danish physicists access to these machines and the Accelerator Committee offers advice on their utilization and related financing. Danish research carried out at CERN is described, based on contributions from individual research groups. The functions, administration and budgets of the Accelerator Committee are explained in addition to other forms of administration connected with CERN, such as the Danish CERN Delegation, and an evaluation of Danish experimentation within physics is presented. Information is given on individual Danish members of the CERN groups of scientists and a list of the publications of international research groups which include Danish subjects, covering the years 1991-93, is presented. The publication is related to the delegation of grants for research projects carried out by Danish physicists. (AB)

  11. High-precision improved-analytic-exponentiation results for multiple-photon effects in low-angle Bhabha scattering at the SLAC Linear Collider and the CERN e+e- collider LEP

    International Nuclear Information System (INIS)

    Jadach, S.; Richter-Was, E.; Ward, B.F.L.; Was, Z.

    1991-01-01

    Starting from an earlier benchmark analytical calculation of the luminosity process e + e-→e + e-+(γ) at the SLAC Linear Collider (SLC) and the CERN e + e- collider LEP, we use the methods of Yennie, Frautschi, and Suura to develop an analytical improved naive exponentiated formula for this process. The formula is compared to our multiple-photon Monte Carlo event generator BHLUMI (1.13) for the same process. We find agreement on the overall cross-section normalization between the exponentiated formula and BHLUMI below the 0.2% level. In this way, we obtain an important cross-check on the normalization of our higher-order results in BHLUMI and we arrive at formulas which represent the LEP/SLC luminosity process in the below 1% Z 0 physics tests of the SU(2) L xU(1) theory in complete analogy with the famous high-precision Z 0 line-shape formulas for the e + e-→μ + μ - process discussed by Berends et al., for example

  12. The CERN LEP-SPS Librarian system

    International Nuclear Information System (INIS)

    Corniaux, C.; Morpurgo, G.

    1990-01-01

    The complexity of a software working environment, such as the control system for the SPS and LEP accelerators, requires a considerable management effort. The software needed to run the machines is continuously evolving, as new releases of application and system programs are introduced rather frequency. Ideally the management effort must coordinate all the different software developers and their users (the machine operating team). A software tool, the Librarian, has been written to help them in performing this task. Its ultimate goal is to enable the accelerator operators to retain control of all the software running in the control system. All the source files needed to produce a piece of running software (a 'product') are saved together, and can be retrieved either individually or as a whole. Management of the different versions of a product is also implemented, as well as a scheme for protections and access rights depending on the type of user (Librarian manager, application manager or software developer). The data base ORACLE has been used to maintain logical links between files saved under the Librarian. (orig.)

  13. Monitoring and control of the muon detector in the L3 experiment at LEP

    International Nuclear Information System (INIS)

    Gonzalez, E.

    1990-01-01

    In this report the monitoring system of the muon spectrometer of the L3 detector in LEP at CERN is presented. The system is based on a network of VME's using the OS9 operating system. The design guiding lines and the present system configuration are described both from the hardware and the software point of view. In addition, the report contains the description of the monitored parameters showing typical data collected durintg the first months of LEP operation. (Author)

  14. People and things. CERN Courier, May 1985, v. 25(4)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-05-15

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events. A workshop is being arranged to discuss the potential of the CERN SPS proton-antiproton Collider for the early 90s in view of the then simultaneous operation of the Tevatron at Fermilab, LEP at CERN and HERA at DESY, and to evaluate the need for a new Collider detector.

  15. CERN'S Fire and Rescue Group Gets New Ambulance

    CERN Multimedia

    2000-01-01

    The ambulance is to replace another based on the off-road vehicle design which was originally acquired for the civil engineering phase of LEP construction. Just one figure, in 1999, the CERN ambulance was called out 195 times.

  16. XUIMS the X-Window User Interface Management System at CERN

    CERN Document Server

    Van den Eynden, M

    1995-01-01

    The CERN X-Window User Interface Management System (XUIMS) is a modular and highly configurable software development environment allowing the interactive design, prototyping, and production of OSF/Motif Human Computer Interfaces (HCI). Fully compliant with the X11R5 and OSF/Motif industry standards, XUIMS covers complex software areas like the development of schematics, the visualization and on-line interactions with 2D and 3D scientific data, the display of relational database data, and the direct access to CERN SPS and LEP accelerators equipment. The guarantee of consistency across the applications and the encapsulation of complex functionality in re-usable and user-friendly components has also been implemented through the development of home made graphical objects (widgets) and templates. The XUIMS environment is built with commercial software products integrated in the CERN SPS and LEP controls infrastructure with a very limited home-made effort. Productivity and quality have been improved through less co...

  17. CERN and Israel

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Israel (along with the US, Japan, Canada, the Russian Federation and India) is one of the CERN non- Member State nations targeted for substantial future participation in CERN's experimental programme, in particular for the LHC proton collider to be built in the 27-kilometre LEP tunnel and which was formally approved by CERN Council in December (January/February, page 1). In keeping with their illustrious scientific traditions, Israeli experimental physicists have collaborated in experiments at many of the world's major high energy Laboratories - Brookhaven, Fermilab and SLAC in the US, and in Europe, DESY, Hamburg, as well as CERN. However CERN, as the geographically closest major Laboratory (as well as the largest), plays a special role for Israeli scientists. At CERN, the advent of preparations in the early 1980s for the experimental programme at the LEP electron-positron collider was the signal for Israeli researchers to mount a concerted effort and contribute to one of the experiments - Opal - at a level comparable to that of major nations. This allowed Israeli teams to participate fully in the planning and construction phase of this branch of Big Science. Underlining this commitment, and to coordinate the various national agencies involved in this aspect of Big Science, in 1983 the Israel Commission for High Energy Physics (ICHEP) was formed. It is currently chaired by David Horn of Tel Aviv. The initial ICHEP/CERN contract established the official CERN/lsrael link under which, in the short-term, teams from three major research centres - the Weizmann Institute, Tel- Aviv University, and Haifa's Technion - contributed to Opal, as the flagship experiment, while providing a framework for longer-term collaboration. (At CERN, Israeli physicists also participate in the NA45 heavy ion experiment and the NA47 Spin Muon Collaboration - SMC.) Opal groups some 320 scientists from 32 research centres in eight countries, and includes a 21-strong Israeli

  18. New control architecture for the SPS accelerator at CERN

    International Nuclear Information System (INIS)

    Kissler, K.H.; Rausch, R.

    1992-01-01

    The Control System for the 450 Gev proton accelerator SPS at CERN was conceived and implemented some 18 years ago. The 16 Bit minicomputers with their proprietary operating system and interconnection with a dedicated network do not permit the use of modern workstations, international communication standards and industrial software packages. The upgrading of the system has therefore become necessary. After a short review of the history and the current state of the SPS control system, the paper describes how CERN's new control architecture, which will be common to all accelerators, will be realized at the SPS. The migration path ensuring a smooth transition to the final system is outlined. Once the SPS upgrade is complete and following some enhancements to the LEP control system, the operator in the SPS/LEP control center will be working in a single uniform control environment. (author)

  19. Promise of Higgs fails to save CERN collider

    CERN Multimedia

    Abbott, A

    2000-01-01

    After eleven years and a three-month reprieve, the death knell for LEP has finally been sounded. Luciano Maiani, director-general of CERN, rejected requests to keep the collider running for another year, ruling it shoud be dismantled in the new year (1/2 page).

  20. The W bosons physics and four-fermion processes in the LEP2 experiments - Monte Carlo approach

    International Nuclear Information System (INIS)

    Skrzypek, M.

    1998-06-01

    The computer codes LoralW and YFSWW for Monte Carlo simulation of the four-fermion processes is presented. These programs are dedicated for prediction of W bosons pairs production and theirs decay at LEP experiments at CERN

  1. The LHC Physics Centre at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Although raw physics data is produced at CERN, thanks to the GRID its analysis is performed in various institutes worldwide. In addition, workshops, conferences and meetings take place all over the world. The physicist community is decentralized, and CERN must continue to provide intellectual leadership. The LHC Physics Centre is the tool that will make this possible.   Until the early days of LEP, a large part of the scientific activity related to CERN’s experiments was strongly centered at the Laboratory. Few places had the infrastructure to host activities such as the working groups preparing the Yellow Reports, and the limited access to information in the pre-web era made CERN the natural place to learn what was happening in the field. “I remember the days when we, the theorists, would come to CERN just to read the most recent preprints, which were reaching CERN's Library before we could get them in our institutes”, says Michelangelo Mangano, a member of the Theo...

  2. 50 years of synchrotrons. Early synchrotrons in Britain, and early work for CERN. - The CERN synchrotrons. Lectures

    International Nuclear Information System (INIS)

    Lawson, J.; Brianti, G.

    1997-01-01

    In the first report, 'Early synchrotrons in Britain, and early work for CERN', John Lawson gives an extended account of the material presented at the John Adams lecture, and at the same time a revised and shortened version of RAL report 97-011, which contains fuller archival references and notes. During the period covered by this report there was extensive work in Russia, where the principle of phase stability had been discovered in 1944 by Veksler. Unfortunately, all experimental work was kept secret until Veksler's talk at the first 'Atoms for Peace' conference at Geneva in August 1955. In the second lecture, 'The CERN Synchrotrons', Giorgio Brianti outlines the history of alternating-gradient synchrotrons from 1953/54 until today. In preparing this lecture he was confronted with a vast amount of material, while the time at his disposal was not even one minute per year, implying a time compression factor close to one million. Therefore, he had to exercise drastic choices, which led him to concentrate on CERN hadron synchrotrons and colliders and leave aside the Large Electron-Positron storage ring (LEP). Indeed, LEP was the subject of the John Adams Memorial Lecture in 1990, and it may be treated again in the future in connection with its energy upgrade. Even with these severe limitations, it was impossible to do justice to the number and variety of events and to the ingenuity of the people who have carved the history of CERN and of particle physics on the magnets, radiofrequency cavities, vacuum etc., and on the record performance of our machines. (orig./WL)

  3. China and CERN renew their Co-operation Agreement

    CERN Multimedia

    2004-01-01

    Dr. Liu Yanhua, Chinese Vice Minister of Science and Technology, and Dr. Robert Aymar, Director-General of CERN, sign a new Co-operation Agreement between the Government of the People's Republic of China and CERN. During his visit to CERN on 17 February, Liu Yanhua, Vice Minister of Science and Technology of the People's Republic of China, signed a new Co-operation Agreement with the Laboratory. The Agreement, which is valid for a period of five years and renewable, lays down the framework for the development of scientific and technological co-operation between CERN and China. This includes China's participation, as a non-Member State, in CERN's research projects as well as its main programmes. Robert Aymar and Liu Yanhua underlined that this Agreement will provide an excellent framework for close co-operation on the LHC Programme and Grid and accelerator technologies. Scientific co-operation between China and CERN is nothing new, as Chinese physicists already took part in the LEP experiments. Today, CERN's C...

  4. 1990 CERN School of Physics

    International Nuclear Information System (INIS)

    1992-01-01

    The CERN School of Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These Proceedings contain reports of lectures on the following topics: Field theory, electroweak theory, physics beyond the Standard Model, QCD, heavy flavours and CP violation, results from LEP experiments, particle accelerator technology, tau charm factories, and the Large Hadron Collider project. (orig.)

  5. 1986 CERN school of physics

    International Nuclear Information System (INIS)

    1987-01-01

    The CERN school of physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain reports of lecture series on the following topics: introduction to symmetries and gauge theories, quark dynamics, experimental tests of gauge theories, proton antiproton collider results and detectors, physics at LEP, superphysics, and quantum black holes. (orig.)

  6. b-tagging in DELPHI at LEP

    CERN Document Server

    Abdallah, J; Adam, W; Adye, T; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bates, M; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bibby, J; Biffi, P; Bloch, D; Blom, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Branchini, P; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Couchot, F; Crawley, B; Crennell, D J; Cuevas-Maestro, J; D'Almagne, B; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Dijkstra, H; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Geralis, T; Gokieli, R; Golob, B; Gómez-Cadenas, J J; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Hansen, J; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Hernando, J A; Herr, H; Heuser, J M; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jalocha, P; Jarlskog, C; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Karlsson, M; Katsanevas, S; Katsoufis, E C; Keränen, R; Kernel, G; Kersevan, Borut P; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Kucewicz, W; Kurowska, J; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Meyer, W T; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Niezurawski, P; Nikolenko, M; Nomerotski, A; Norman, A; Nygren, A; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stavitski, I; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tinti, N; Tkatchev, L G; Tobin, M; Todorovova, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Trischuk, W; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tyndel, M; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verbeure, F; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weilhammer, Peter; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zimin, N I; Zinchenko, A I; Zupan, M

    2004-01-01

    The standard method used for tagging b-hadrons in the DELPHI experiment at the CERN LEP Collider is discussed in detail. The main ingredient of b-tagging is the impact parameters of tracks, which relies mostly on the vertex detector. Additional information, such as the mass of particles associated to a secondary vertex, significantly improves the selection efficiency and the background suppression. The paper describes various discriminating variables used for the tagging and the procedure of their combination. In addition, applications of b-tagging to some physics analyses, which depend crucially on the performance and reliability of b-tagging, are described briefly.

  7. Microscopic examination and elemental analysis of surface defects in LEP superconducting cavities

    International Nuclear Information System (INIS)

    Benvenuti, C.; Cosso, R.; Hauer, M.; Hellgren, N.; Lacarrere, D.

    1996-01-01

    A diagnostic tool, based on a computer controlled surface analysis instrument, incorporating secondary electron imaging, static auger electron spectroscopy and scanning auger mapping has been designed and built at CERN to characterize the inner surface of LEP superconducting cavities with provide unsatisfactory radio-frequency performance. The experimental results obtained to date are reported and discussed. (author)

  8. Britain's delegation to CERN, the European Centre for Nuclear Research near Geneva, voted in favour of a project which take seven years to build, involve a 27 kilometre long tunnel, and cost 230 million pounds. Now LEP receives the go-ahead later this month

    CERN Multimedia

    Llewellyn Smith, Christopher Hubert

    1981-01-01

    Britain's delegation to CERN, the European Centre for Nuclear Research near Geneva, voted in favour of a project which take seven years to build, involve a 27 kilometre long tunnel, and cost 230 million pounds. Now LEP receives the go-ahead later this month

  9. Environmental radiation monitoring on the CERN sites during 1995

    International Nuclear Information System (INIS)

    Moritz, L.; Wittekind, D.

    1996-01-01

    The CERN environmental monitoring programme covers the Meyrin and Prevessin sites, the six isolated islands (BA1, BA2, BA3, BA4, BA5, BA6) along the SPS Main Ring, the neutrino cave (BA7), and the seven surface areas PA2-PA8 specific to LEP. The results of the routine environmental monitoring programme enable CERN's compliance with national regulations of the host states and CERN's own Radiation Protection Policy to be assessed. Part I of this Annual Report describes the results of measurements which are relevant for assessing the radiological impact of CERN operations on the environment and the population living in the vicinity of the CERN sites. Measurements of radioactivity released into the atmosphere and into water, as well as measurements of stray radiation at or near the CERN site boundaries are reported

  10. High accuracy magnetic field mapping of the LEP spectrometer magnet

    CERN Document Server

    Roncarolo, F

    2000-01-01

    The Large Electron Positron accelerator (LEP) is a storage ring which has been operated since 1989 at the European Laboratory for Particle Physics (CERN), located in the Geneva area. It is intended to experimentally verify the Standard Model theory and in particular to detect with high accuracy the mass of the electro-weak force bosons. Electrons and positrons are accelerated inside the LEP ring in opposite directions and forced to collide at four locations, once they reach an energy high enough for the experimental purposes. During head-to-head collisions the leptons loose all their energy and a huge amount of energy is concentrated in a small region. In this condition the energy is quickly converted in other particles which tend to go away from the interaction point. The higher the energy of the leptons before the collisions, the higher the mass of the particles that can escape. At LEP four large experimental detectors are accommodated. All detectors are multi purpose detectors covering a solid angle of alm...

  11. The LEP 2 machine : pushing to the limits 209 GeV! Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    By installing 288 new superconducting accelerating cavities after 1995,and thanks to the excellent work of the CERN teams,energies up to 209 GeV -well beyond LEP 's original design energy -have been achieved.Significant experi- mental data have been collected at energies in excess of 206 GeV.

  12. Experiments at CERN in 1984

    International Nuclear Information System (INIS)

    1984-11-01

    This book is a compilation of the current experimental program at CERN. The experiments listed are being performed at one of the following machines: the Super Proton Synchrotron (SPS), the Proton Synchrotron (PS) and the Synchro-Cyclotron (SC). The Intersecting Storage Rings (ISR) have ceased functioning early this year. The four approved experiments to be done by means of the Large Electron Positron machine (LEP) are also listed. (orig./HSI)

  13. People and things. CERN Courier, Dec 1987, v. 27(10)

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events:; The third symposium 'Astronomy, Cosmology and Fundamental Physics' organized by CERN and ESO (European Southern Observatory) will be held in Bologna, Italy, from 16-18 May on the special occasion of the ninth centenary of the University of Bologna. At CERN, a prototype superconducting accelerating cavity of the type envisaged for LEP beams has been installed for tests in the SPS ring, where it helped take an electron beam to 18 GeV

  14. People and things. CERN Courier, Dec 1987, v. 27(10)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-12-15

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events:; The third symposium 'Astronomy, Cosmology and Fundamental Physics' organized by CERN and ESO (European Southern Observatory) will be held in Bologna, Italy, from 16-18 May on the special occasion of the ninth centenary of the University of Bologna. At CERN, a prototype superconducting accelerating cavity of the type envisaged for LEP beams has been installed for tests in the SPS ring, where it helped take an electron beam to 18 GeV.

  15. Hunt for Higgs particle wins time for CERN collider

    CERN Multimedia

    Abbott, A

    2000-01-01

    Physicists at CERN believe that a new analysis of their recent data indicates it is possible they have witnessed the creation of the Higgs boson. As a result the director general has agreed to extend the operation of LEP by one more month (1/2 page).

  16. The LHC road at CERN

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To explore the 1 TeV energy scale where fundamental particle interactions should encounter new conditions, two major routes were proposed - a high magnetic field proton collider in the LEP tunnel, dubbed LHC for Large Hadron Collider, and the CERN Linear Collider (CLIC) to supply beams of electrons and positrons. Exploratory studies have shown that while CLIC remains a valid long-term goal, LHC appears as the most cost-effective way for CERN to enter the 1 TeV arena. High-field superconducting magnet prototype work demonstrates that a 'two-in-one' design supplying the 10 tesla fields needed to handle LHC's 8 TeV proton beams (collision energy 16 TeV) is a practical proposition. (orig./HSI).

  17. CERN: LHC progress

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The push for CERN's next major project, the LHC proton collider to be built in the 27-kilometre LEP tunnel, is advancing on a wide front. For the machine itself, there has been considerable progress in the detailed design. While the main thrust is for proton-proton collisions, heavy ions are also on the LHC collision menu. On the experimental side, proposals are coming into sharper focus. For the machine, the main aim is for the highest possible proton collision energies and collision rates in the confines of the existing LEP tunnel, and the original base design looked to achieve these goals in three collision regions. Early discussions on the experimental programme quickly established that the most probable configuration would have two collision regions rather than three. This, combined with hints that the electronics of several detectors would have to handle several bunch crossings at a time, raised the question whether the originally specified bunch spacing of 15 ns was still optimal

  18. CERN's vacuums honoured to the full

    CERN Multimedia

    2002-01-01

    CERN's Cristoforo Benvenuti is awarded one of the most prestigious prizes in the world of vacuum techniques     Because we constantly run into such individuals, we tend to forget that CERN has specialists with world reputations. It takes the international prizes they win to remind us of the fact. One such prize, the American Vacuum Society (AVS)'s Gaede-Langmuir Award for 2002, has gone to Cristoforo Benvenuti, Leader of the Surfaces and Materials Technologies Group in EST Division. The award, conferred once every two years, is one of the leading prizes in the vacuum field. By coincidence, its very first winner was Pierre Auger, one of CERN's founding fathers, back in 1978. Cristoforo Benvenuti, a senior physicist who joined CERN in 1966, has been singled out for his work on getter technologies. These technologies made their name at CERN with the coming of LEP, where they were used for pumping the machine. Getter is a material with the property of capturing gas molecules and thereby actin...

  19. People and things. CERN Courier, Apr 1986, v. 26(3)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-04-15

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events. A Summer Study to be held in Snowmass, Colorado, from 23 June to 11 July will allow the US particle physics community to critically evaluate all aspects of the proposed US Superconducting Super Collider (SSC) in the light of conceptual design, progress in accelerator technology, new developments in collider physics, and innovations in instrumentation. Organized jointly by the European Committee for Future Accelerators (ECFA) and the Rheinisch-Westfälische Technische Hochschule in Aachen, a 'LEP 200' Workshop is being arranged from 29 September to 1 October to work out the physics objectives and experimental requirements for running LEP at around 100 GeV per beam. A four-day practical course on microelectronics is being hosted by CERN and the International School of Geneva.

  20. Le CERN s'envole vers des énergies plus élevées

    CERN Multimedia

    CERN Press Office. Geneva

    1995-01-01

    CERN's Large Electron-Positron Collider LEP has moved up a gear. On 31 October, particle collisions were observed for the first time at 130 GeV, the highest energy ever achieved in an electron-positron collider. After six years of studying the elementa ry particle known as the Z, LEP moved smoothly up to its new energy, bringing the possibility of discovering new particles and furthering our understanding of how the Universe works.

  1. The long-term performance of the S-band klystron modulator system in the CERN LEP pre-injector

    CERN Document Server

    McMonagle, G; Rossat, G

    2000-01-01

    The Large Electron-Positron collider (LEP) is the final machine in a chain of four accelerators that are used to create particle collisions for high-energy physics experiments. LEP collides bunches of electrons (e/sup -/) with bunches of positrons (e/sup +/) that have originated in the LEP Injector Linac (LIL). These particles travel around the 27 km circumference of the LEP ring in opposite directions at velocities close to the speed of light. When bunches of particles collide, bursts of very high energy are created during a tiny fraction of a second, emulating the state of the early Universe. Four huge detector assemblies record the tracks of particles created in this way, and provide the physicists with a means of looking at the behaviour of matter at these high energies. LIL is at the front end of this chain and is used to produce the sequence of e/sup -/ and e/sup +/ beam pulses that are accumulated in 4 or 8 bunches, at a 100 Hz rate, in the Electron Positron Accumulator (EPA). The klystron- modulators,...

  2. Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP

    CERN Document Server

    Schael, S.; Bruneliere, R.; Buskulic, D.; De Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Jezequel, S.; Lees, J.P.; Lucotte, A.; Martin, F.; Merle, E.; Minard, M.N.; Nief, J.Y.; Odier, P.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Comas, P.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Orteu, S.; Pacheco, A.; Park, I.C.; Perlas, J.; Riu, I.; Ruiz, H.; Sanchez, F.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Bazarko, A.; Becker, U.; Boix, G.; Bird, F.; Blucher, E.; Bonvicini, B.; Bright-Thomas, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Greening, T.C.; Hagelberg, R.; Halley, A.W.; Gianotti, F.; Girone, M.; Hansen, J.B.; Harvey, J.; Jacobsen, R.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Knobloch, J.; Kado, M.; Lehraus, I.; Lazeyras, P.; Maley, P.; Mato, P.; May, J.; Moutoussi, A.; Pepe-Altarelli, M.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Schmitt, B.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Tournefier, E.; Veenhof, R.; Valassi, A.; Wiedenmann, W.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Ferdi, C.; Fayolle, D.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Pascolo, J.M.; Perret, P.; Podlyski, F.; Bertelsen, H.; Fernley, T.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Lindahl, A.; Mollerud, R.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Machefert, F.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Tanaka, R.; Verderi, M.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Picchi, P.; Colrain, P.; ten Have, I.; Hughes, I.S.; Kennedy, J.; Knowles, I.G.; Lynch, J.G.; Morton, W.T.; Negus, P.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J.M.; Smith, K.; Thompson, A.S.; Turnbull, R.M.; Wasserbaech, S.; Buchmuller, O.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, W.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Goodsir, S.; Marinelli, N.; Martin, E.B.; Nash, J.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Buck, P.G.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Keemer, N.R.; Pearson, M.R.; Robertson, N.A.; Sloan, T.; Smizanska, M.; Snow, S.W.; Williams, M.I.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Bauerdick, L.A.T.; Blumenschein, U.; van Gemmeren, P.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kasemann, M.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Wanke, R.; Zeitnitz, C.; Ziegler, T.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Etienne, F.; Fouchez, D.; Motsch, F.; Payre, P.; Rousseau, D.; Tilquin, A.; Talby, M.; Thulasidas, M.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Buscher, V.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Seywerd, H.; Stenzel, H.; Villegas, M.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, Ph.; Jacholkowska, A.; Le Diberder, F.; Lefrancois, J.; Mutz, A.M.; Schune, M.H.; Serin, L.; Veillet, J.J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Fidecaro, F.; Foa, L.; Giammanco, A.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Edwards, M.; Haywood, S.J.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Emery, S.; Fabbro, B.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Tuchming, B.; Vallage, B.; Black, S.N.; Dann, J.H.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Barberio, E.; Bohrer, A.; Brandt, S.; Burkhardt, H.; Feigl, E.; Grupen, C.; Hess, J.; Lutters, G.; Meinhard, H.; Minguet-Rodriguez, J.; Mirabito, L.; Misiejuk, A.; Neugebauer, E.; Ngac, A.; Prange, G.; Rivera, F.; Saraiva, P.; Schafer, U.; Sieler, U.; Smolik, L.; Stephan, F.; Trier, H.; Apollonio, M.; Borean, C.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Pitis, L.; He, H.; Kim, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Bellantoni, L.; Berkelman, K.; Cinabro, D.; Conway, J.S.; Cranmer, K.; Elmer, P.; Feng, Z.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Grahl, J.; Harton, J.L.; Hayes, O.J.; Hu, H.; Jin, S.; Johnson, R.P.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Sharma, V.; Walsh, A.M.; Walsh, J.; Wear, J.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, S.L.; Wu, X.; Yamartino, J.M.; Zobernig, G.; Dissertori, G.; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K-H.; Begalli, M.; Behrmann, A.; Belous, K.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; De Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Duperrin, A.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gele, D.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S-O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, J.N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E.K.; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kerzel, U.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Nulty, R.Mc; Meroni, C.; Meyer, W.T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolaenko, V.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Ripp-Baudot, I.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Simard, L.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M-L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, P.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, V.P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; De Asmundis, R.; D'eglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S.N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, G.; Grimm, O.; Gruenewald, M.W.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, A.; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Jin, B.N.; Jindal, P.; Jones, L.W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, J.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.; Pirou'e, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Rembeczki, S.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, K.; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, S.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, S.C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.; Abbiendi, G.; Ackerstaff, K.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, J.; Altekamp, N.; Ametewee, K.; Anagnostou, G.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Bartoldus, R.; Batley, R.J.; Baumann, S.; Bechtle, P.; Bechtluft, J.; Beeston, C.; Behnke, T.; Bell, K.W.; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bentvelsen, S.; Berlich, P.; Bethke, S.; Biebel, O.; Boeriu, O.; Blobel, V.; Bloodworth, I.J.; Bloomer, J.E.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Bosch, H.M.; Boutemeur, M.; Bouwens, B.T.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, R.M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Cammin, J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, M.; Dallison, S.; de Jong, S.; De Roeck, A.; Dervan, P.; De Wolf, E.A.; del Pozo, L.A.; Desch, K.; Dienes, B.; Dixit, M.S.; do Couto e Silva, E.; Donkers, M.; Doucet, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Edwards, J.E.G.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Evans, M.; Fabbri, F.; Fanti, M.; Fath, P.; Feld, L.; Ferrari, P.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Fong, D.G.; Ford, M.; Foucher, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geddes, N.I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Giunta, M.; Glenzinski, D.; Goldberg, J.; Goodrick, M.J.; Gorn, W.; Graham, K.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hart, P.A.; Hartmann, C.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hilse, T.; Hobson, P.R.; Hocker, A.; Hoffman, K.; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Hughes-Jones, R.E.; Huntemeyer, P.; Hutchcroft, D.E.; Igo-Kemenes, P.; Imrie, D.C.; Ingram, M.R.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeffreys, P.W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jones, G.; Jones, M.; Jones, R.W.L.; Jost, U.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; King, B.J.; Kirk, J.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, R.V.; Kramer, T.; Krasznahorkay, A., Jr.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Lahmann, R.; Lai, W.P.; Landsman, H.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lewis, C.; Liebisch, R.; Lillich, J.; List, B.; List, J.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, A.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Markus, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Matthews, W.; Mattig, P.; McDonald, W.J.; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McNab, A.I.; McPherson, R.A.; Mendez-Lorenzo, P.; Meijers, F.; Menges, W.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, N.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Morii, M.; Muller, U.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nellen, B.; Nijjhar, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oldershaw, N.J.; Omori, T.; Oreglia, M.J.; Orito, S.; Pahl, C.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pearce, M.J.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, D.E.; Poffenberger, P.; Polok, J.; Poli, B.; Pooth, O.; Posthaus, A.; Przybycien, M.; Przysiezniak, H.; Quadt, A.; Rabbertz, K.; Rees, D.L.; Rembser, C.; Renkel, P.; Rick, H.; Rigby, D.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rooke, A.; Ros, E.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rosvick, M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D.R.; Rylko, R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sasaki, M.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schenk, P.; Schieck, J.; Schmitt, S.; Schorner-Sadenius, T.; Schroder, M.; Schultz-Coulon, H.C.; Schulz, M.; Schumacher, M.; Schutz, P.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A.M.; Smith, T.J.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Springer, R.W.; Sproston, M.; Stahl, A.; Steiert, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, D.; Strohmer, R.; Strumia, F.; Stumpf, L.; Surrow, B.; Szymanski, P.; Tafirout, R.; Talbot, S.D.; Tanaka, S.; Taras, P.; Tarem, S.; Taylor, R.J.; Tasevsky, M.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Toya, D.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsukamoto, T.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Utzat, P.; Vachon, B.; Van Kooten, R.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Vikas, P.; Vincter, M.; Vokurka, E.H.; Vollmer, C.F.; Voss, H.; Vossebeld, J.; Wackerle, F.; Wagner, A.; Waller, D.; Ward, C.P.; Ward, D.R.; Ward, J.J.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilkens, B.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wotton, S.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.; Zivkovic, L.

    2013-01-01

    Electroweak measurements performed with data taken at the electron-positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3~fb$^{-1}$ collected by the four LEP experiments ALEPH, DELPHI, L3 and OPAL, at centre-of-mass energies ranging from $130~GeV$ to $209~GeV$. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron-positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose-Einstein correlations between the two W decay systems arising ...

  3. Physics at LEP2. Vol. 2

    International Nuclear Information System (INIS)

    Altarelli, G.; Sjoestrand, T.; Zwirner, F.

    1995-01-01

    This is final report of the Workshop on Physics at LEP2, held at CERN during 1995. The first part of vol. 1 is devoted to aspects of machine physics of particular relevance to experiments, including the energy, luminosity and interaction regions, as well as the measurement of beam energy. The second part of vol. 1 is a relatively concise, but fairly complete, handbook on the physics of e + e - annihilation above the WW threshold and up to √s∼200 GeV. It contains discussions on WW cross-sections and distributions, W mass determination, Standard Model processes, QCD and gamma-gamma physics, as well as aspects of discovery physics, such as Higgs, new particle searches, triple gauge boson couplings and Z'. The second volume contains a review of the existing Monte Carlo generators for LEP2 physics. These include generators for WW physics, QCD and gamma-gamma processes, Bhabha scattering and discovery physics. A special effort was made to co-ordinate the different parts, with a view to achieving a systematic and balanced review of the subject, rather than just publishing a collection of separate contributions. (orig.)

  4. Physics at LEP2. Vol. 1

    International Nuclear Information System (INIS)

    Altarelli, G.; Sjoestrand, T.; Zwirner, F.

    1996-01-01

    This is the final report of the Workshop on Physics at LEP2, held at CERN during 1995. The first part of vol. 1 is devoted to aspects of machine physics of particular relevance to experiments, including the energy, luminosity and interaction regions, as well as the measurement of beam energy. The second part of vol. 1 is a relatively concise, but fairly complete, handbook on the physics of e + e - annihilation above the WW threshold and up to √s∼200 GeV. It contains discussions on WW cross-sections and distributions, W mass determination, Standard Model processes, QCD and gamma-gamma physics, as well as aspects of discovery physics, such as Higgs, new particle searches, triple gauge boson couplings and Z'. The second volume contains a review of the existing Monte Carlo generators for LEP2 physics. These include generators for WW physics, QCD and gamma-gamma processes, Bhabha scattering and discovery physics. A special effort was made to co-ordinate the different parts, with a view to achieving a systematic and balanced review of the subject, rather than just publishing a collection of separate contributions. (orig.)

  5. Physics at LEP2. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Altarelli, G [ed.; Sjoestrand, T [ed.; Zwirner, F [ed.

    1995-02-19

    This is final report of the Workshop on Physics at LEP2, held at CERN during 1995. The first part of vol. 1 is devoted to aspects of machine physics of particular relevance to experiments, including the energy, luminosity and interaction regions, as well as the measurement of beam energy. The second part of vol. 1 is a relatively concise, but fairly complete, handbook on the physics of e{sup +}e{sup -} annihilation above the WW threshold and up to {radical}s{approx}200 GeV. It contains discussions on WW cross-sections and distributions, W mass determination, Standard Model processes, QCD and gamma-gamma physics, as well as aspects of discovery physics, such as Higgs, new particle searches, triple gauge boson couplings and Z`. The second volume contains a review of the existing Monte Carlo generators for LEP2 physics. These include generators for WW physics, QCD and gamma-gamma processes, Bhabha scattering and discovery physics. A special effort was made to co-ordinate the different parts, with a view to achieving a systematic and balanced review of the subject, rather than just publishing a collection of separate contributions. (orig.).

  6. CDD CERN Drawings Directory User's manual Version 1.1

    CERN Document Server

    Delamare, Christophe; Jeannin, F; Petit, S

    1996-01-01

    CDD (CERN Drawings Directory) is a multi-platform utility which manages engineering drawings made in any division at CERN. The aim of CDD is not to store the graphical drawing itself, but to store a reference with some information related to the drawing. Access to this data is provided via a graphical user interface which is based upon ORACLE Forms and via WWW. Drawings following different numbering systems and different management rules can be handled by CDD. The only condition is that those particular functionalities are well defined. Several drawing systems have been identified in CERN and therefore considered when designing the application. The current version of CDD focuses on systems EST, LEP, ST-IE, SPS, ST-CE and the experiments ALICE, ATLAS, CMS and LHCb. Other CERN systems could be easily integrated upon demand.

  7. Using e-e+→ b bar b to test properties of new interactions at CERN LEP 2 and higher energies

    International Nuclear Information System (INIS)

    Gounaris, G.J.; Papadamou, D.T.; Renard, F.M.

    1997-01-01

    We show that in e - e + colliders at energies above the Z peak, the process e - e + →b bar b becomes very sensitive to the presence of residual new physics (NP) effects described by the dim=6 SU(3)xSU(2)xU(1) gauge invariant operators O qW , O qB , and O bB . This observation should be combined with the already known great sensitivity of the light fermion production through e - e + annihilation above the Z peak to the bosonic operators bar O DW and bar O DB . It is important to emphasize that the effects of all these operators are largely hidden at the Z peak; while they are enhanced beyond it since these operators grow like q 2 , a fact which becomes transparent when using the open-quotes Z-peak subtracted representation.close quotes The observability limits for detecting these operators at CERN LEP 2 and the Next Linear Collider, through such light fermion production processes, are also established. copyright 1997 The American Physical Society

  8. LEP physics

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Various aspects of the physics made at LEP 1 and LEP 2 (precision measurements and searches for new physics will be discussed, from the fundamental motivations to the publication of the results. The techniques and tools developed and applied to reach the a priori goals of LEP (beam energy measurement, luminosity determination, event selection,...) will be described with a few meaningful examples. The high level techniques & bright ideas which allowed LEP to exceed by a large amount its design performance, and the consequences outcome will also be presented.

  9. CERN Council pauses for effect (LHC approval a step nearer)

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Aweek of intense diplomatic activity which had high level telephones ringing across Europe culminated in an imaginative and unexpected move on 24 June, when delegates adjourned the 100th session of CERN's governing body, Council, to be reconvened at a later date. On the Council table was the vote for CERN's next major machine, now universally agreed as the world focus of particle physics research for the start of the 21st century, the LHC proton-proton collider, to be built in CERN's 27-kilometre LEP tunnel, and the largest and most complex scientific joint effort ever undertaken in Europe

  10. People and things. CERN Courier, Apr 1986, v. 26(3)

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events. A Summer Study to be held in Snowmass, Colorado, from 23 June to 11 July will allow the US particle physics community to critically evaluate all aspects of the proposed US Superconducting Super Collider (SSC) in the light of conceptual design, progress in accelerator technology, new developments in collider physics, and innovations in instrumentation. Organized jointly by the European Committee for Future Accelerators (ECFA) and the Rheinisch-Westfälische Technische Hochschule in Aachen, a 'LEP 200' Workshop is being arranged from 29 September to 1 October to work out the physics objectives and experimental requirements for running LEP at around 100 GeV per beam. A four-day practical course on microelectronics is being hosted by CERN and the International School of Geneva

  11. People and things. CERN Courier, Oct 1991, v. 31(8)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-10-15

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: ; Hampton University Graduate Studies (HUGS) at CEBAF, a summer program in electromagnetic nuclear physics held at the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, has completed its sixth year. ; With research and development work pushing ahead for the experimental programme at the proposed LHC proton collider in CERN's LEP tunnel, attention is also turning to preparations for the experiments themselves.

  12. CERN, accelerator of motivation

    CERN Multimedia

    François Becler

    2014-01-01

    Have your dreams ever come true? My dream did, when I was lucky enough to be allowed into the world’s largest particle physics laboratory and spend five whole days there.   François, in front of LEP's DELPHI detector, displayed in the LHCb cavern. François was given the opportunity to visit the experiment during his placement at CERN. I’m a pupil in my last year at the Collège Jean-Jacques Rousseau in Saint-Julien-en-Genevois and was on a work experience placement at CERN from 16 to 20 December last year. I’m so happy I was chosen because working alongside physicists and engineers of all nationalities was like a dream come true. The first thing that impressed me was the size of the site, its infrastructures and facilities but also the fact that I was working in a prestigious, world-renowned organisation. I spent lots of time looking at the map and trying to find my way around... CERN's such a massive place ! Th...

  13. CERN: A tale of two photons

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    When precision data from the several million Zs carefully collected over several years by the four big experiments - Aleph, Delphi, L3 and Opal - at CERN's LEP electron-positron collider have otherwise consistently underlined conventional physics, a hint of something unexplained quickly packs the seminar rooms. In 1991, the L3 experiment turned up two examples of Z decays producing a muon pair accompanied by a widely separated pair of high energy photons, with the photon pair in each case taking some 60 GeV of energy (actually 58.8 and 59.0 GeV). Nothing to get excited about at the time, but ongoing data analysis tuned into this channel. This year two more events turned up, one again with a muon pair accompanied by a 60 GeV photon pair, the other with an electron (electron-positron) pair and a 62 GeV photon pair. At first L3 preferred to keep this quiet, and the news was not announced at the major international meeting in Dallas last August. The first public announcement of the four unexplained events (out of a total of 1.6 million Z decays) came in a LEP Experiments Committee session at CERN in October

  14. People and things. CERN Courier, Oct 1991, v. 31(8)

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: ; Hampton University Graduate Studies (HUGS) at CEBAF, a summer program in electromagnetic nuclear physics held at the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, has completed its sixth year. ; With research and development work pushing ahead for the experimental programme at the proposed LHC proton collider in CERN's LEP tunnel, attention is also turning to preparations for the experiments themselves

  15. CASE in CERN's accelerator sector

    International Nuclear Information System (INIS)

    Albrecht, A.; Cabas-Alonso, A.; Chevrier, F.

    1992-01-01

    As in the software industry where computer aided software engineering (CASE) methodologies and tools are commonly used, CERN endeavours to introduce this technology to improve the efficiency of designing, producing and maintaining software. A large project is currently under development in the administrative area whereas a dedicated group had been set up to evaluate state of the art techniques for software development relating to physics experiments. A similar activity, though on a smaller scale, has been initiated in the accelerator sector also in view of the large amount of software that will be required by the LEP200 and the LHC projects. This paper briefly describes this technology and gives an account of current experience with the use of CASE methods and tools for technical projects in the accelerator sector at CERN. (author)

  16. CERN agonizes over whether to keep up the hunt for the Higgs

    CERN Multimedia

    2000-01-01

    Senior managers at CERN were meeting as Nature went to press, to decide whether to fund a one-year extension for LEP, at an estimated cost of 100 million CHF, in a bid to confirm possible earlier sightings of the Higgs boson (3 paragraphs).

  17. Proposal for the award of an industrial support contract for radiation monitoring services for LEP dismantling

    CERN Document Server

    2000-01-01

    This document concerns the award of an Industrial Service contract for radiation monitoring services for LEP dismantling. Following a market survey carried out among 34 firms in nine Member States, a call for tenders (IT-2769/SL/LEP) was sent on 13 March 2000 to seven firms and three consortia in five Member States. By the closing date, CERN had received six tenders from three firms and three consortia in four Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium ISS MULTISERVICE (CH), NFI (SE) and ISS GEBÄUDESERVICE (DE), the lowest technically qualified bidder, for radiation monitoring services for LEP dismantling for a total amount of 990 792 Swiss francs, not subject to revision. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: CH-59%, DE-26%, SE-15%.

  18. Comparison of Different Methods for Transverse Emittance Measurement and Recent Results from LEP

    CERN Document Server

    Bovet, Claude; Jung, R

    1997-01-01

    The knowledge of its position and angular transverse distributions is of utmost interest to assess the good behaviour of a beam within an accelerator. After a short reminder of beam "emittance" definitions, a review is made of various measurement techniques used so far both in single pass machines and colliders. Results of measurements made at CERN in the future LHC injection complex and in LEP are presented and discussed.

  19. The DELPHI distributed information system for exchanging LEP machine related information

    International Nuclear Information System (INIS)

    Doenszelmann, M.; Gaspar, C.

    1994-01-01

    An information management system was designed and implemented to interchange information between the DELPHI experiment at CERN and the monitoring/control system for the LEP (Large Electron Positron Collider) accelerator. This system is distributed and communicates with many different sources and destinations (LEP) using different types of communication. The system itself communicates internally via a communication system based on a publish-and-subscribe mechanism, DIM (Distributed Information Manager). The information gathered by this system is used for on-line as well as off-line data analysis. Therefore it logs the information to a database and makes it available to operators and users via DUI (DELPHI User Interface). The latter was extended to be capable of displaying ''time-evolution'' plots. It also handles a protocol, implemented using a finite state machine, SMI (State Management Interface), for (semi-)automatic running of the Data Acquisition System and the Slow Controls System. ((orig.))

  20. The software for the CERN LEP beam orbit measurement system

    International Nuclear Information System (INIS)

    Morpurgo, G.

    1992-01-01

    The Beam Orbit Measurement (BOM) system of LEP consists of 504 pickups, distributed all around the accelerator, that are capable of measuring the positions of the two beams. Their activity has to be synchronized, and the data produced by them have to be collected together, for example to form a 'closed orbit measurement' or a 'trajectory measurement'. On the user side, several clients can access simultaneously the results from this instrument. An automatic acquisition mode, and an 'on request' one, can run in parallel. This results in a very flexible and powerful system. The functionality of the BOM system is fully described, as well as the structure of the software processes which constitute the system, and their interconnections. Problems solved during the implementation are emphasized. (author)

  1. Radiation problems in the design of the large electron-positron collider (LEP)

    International Nuclear Information System (INIS)

    Fasso, A.; Goebel, K.; Hoefert, M.; Rau, G.; Schoenbacher, H.; Stevenson, G.R.; Sullivan, A.H.; Swanson, W.P.; Tuyn, J.W.N.

    1984-01-01

    This is a comprehensive review of the radiation problems taken into account in the design studies for the Large Electron-Positron collider (LEP) now under construction at CERN. It provides estimates and calculations of the magnitude of the most important hazards, including those from non-ionizing radiations and magnetic fields as well as from ionizing radiation, and describes the measures to be taken in the design, construction, and operation to limit them. Damage to components is considered as well as the risk to people. More general explanations are given of the physical processes and technical parameters that influence the production and effects of radiation, and a comprehensive bibliography provides access to the basic theories and other discussions of the subject. The report effectively summarizes the findings of the Working Group on LEP radiation problems and parallels the results of analogous studies made for the previous large accelerator. The concluding chapters describe the LEP radiation protection system, which is foreseen to reduce doses far below the legal limits for all those working with the machine or living nearby, and summarize the environmental impact. Costs are also briefly considered. (orig.)

  2. CERN/KEK: Very high accelerating gradients

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-01-15

    Full text: A world-wide effort is under way to develop linear electron-positron colliders so that physics experiments can be extended into a range of energies where circular machines (necessarily much larger than CERN's 27-kilometre LEP machine) would be crippled by synchrotron radiation. CERN is studying the feasibility of building a 2 TeV machine called CLIC powered not by individual klystrons, but by a high intensity electron 'drive' linac running parallel to the main linac (November 1990, page 7). This drive linac will itself be powered by similar superconducting cavities to those developed for LEP. A high gradient is an obvious design aim for any future high energy linear collider because it makes it shorter and therefore cheaper - the design figure for the CLIC machine is 80 MV/m. The CLIC study group has taken a significant step forward in demonstrating the technical feasibility of their machine by achieving peak and average accelerating gradients of 137 MV/m and 84 MV/m respectively in a short section of accelerating structure during high gradient tests at the Japanese KEK Laboratory last year. This result obtained within the framework of a CERN/KEK collaboration on linear colliders was obtained using a 20-cell accelerating section built at CERN using state-of the- art technology which served both as a model for CLIC studies as well as a prototype for the Japanese Linear Collider studies. The operating frequency of the model accelerating section is 2.6 times lower than the CLIC frequency but was chosen because a high power r.f. source and pulse compression scheme has been developed for this frequency at KEK. Testing CLIC models at 11.4 GHz is however more stringent than at 30 GHz because the chance of electrical breakdown increases as the frequency is lowered. This recent result clearly demonstrates that a gradient of 80 MV/m is feasible.

  3. CERN/KEK: Very high accelerating gradients

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: A world-wide effort is under way to develop linear electron-positron colliders so that physics experiments can be extended into a range of energies where circular machines (necessarily much larger than CERN's 27-kilometre LEP machine) would be crippled by synchrotron radiation. CERN is studying the feasibility of building a 2 TeV machine called CLIC powered not by individual klystrons, but by a high intensity electron 'drive' linac running parallel to the main linac (November 1990, page 7). This drive linac will itself be powered by similar superconducting cavities to those developed for LEP. A high gradient is an obvious design aim for any future high energy linear collider because it makes it shorter and therefore cheaper - the design figure for the CLIC machine is 80 MV/m. The CLIC study group has taken a significant step forward in demonstrating the technical feasibility of their machine by achieving peak and average accelerating gradients of 137 MV/m and 84 MV/m respectively in a short section of accelerating structure during high gradient tests at the Japanese KEK Laboratory last year. This result obtained within the framework of a CERN/KEK collaboration on linear colliders was obtained using a 20-cell accelerating section built at CERN using state-of the- art technology which served both as a model for CLIC studies as well as a prototype for the Japanese Linear Collider studies. The operating frequency of the model accelerating section is 2.6 times lower than the CLIC frequency but was chosen because a high power r.f. source and pulse compression scheme has been developed for this frequency at KEK. Testing CLIC models at 11.4 GHz is however more stringent than at 30 GHz because the chance of electrical breakdown increases as the frequency is lowered. This recent result clearly demonstrates that a gradient of 80 MV/m is feasible

  4. Experiments at CERN in 1997

    International Nuclear Information System (INIS)

    1997-11-01

    This book summarises the current experimental programme at CERN. The experiments listed are taking place at one of the following machines: the Large Electron Positron Collider (LEP), the Super Proton Synchroton (SPS), the 28 GeV Proton Synchrotron (PS), including the Antiproton Decelerator (AD) for slow antiprotons and the ISOLDE facility for short-lived ions. The three experiments now approved for installation at the Large Hadron Collider (LHC) and the R and D projects aimed at the development of new detector technologies and data acquisition systems for the LHC experiments are also listed. (orig./WL)

  5. Missing energy at LEP2: W boson and new physics; Energie manquante a LEP2: boson W et physique nouvelle

    Energy Technology Data Exchange (ETDEWEB)

    Zerwas, Dirk [Lab. de l`Accelerateur Lineaire, Paris-11 Univ., 91 - Orsay (France)

    1998-04-01

    In 1995 LEP, CERN`s large e{sup +}e{sup -} collider, increased its center-of-mass energy beyond the Z boson resonance up to 184 GeV in 19997. The data recorded by the ALEPH detector allow to study the parameters of the standard model and to search for new particles. The mass of the W boson can be determined at LEP via the measurement of the cross section of W pairs at the production threshold. Two selections for the final states l{nu}l{nu} and {tau}{nu}qq-bar are developed. In combination with the other decay channels, the mass of the W boson and its branching ratios are measured. The reaction e{sup +}e{sup -} {yields} We{nu} gives access to the coupling {gamma}WW. The cross section of this process is measured and limits on the anomalous couplings ({lambda}{sub {gamma}},{kappa}{sub {gamma}}) are determined. The non-minimal standard model with an extra scalar doublet predicts the existence of charged Higgs bosons. A selection of the final state {tau}{nu}qq`-bar is developed. In absence of a signal, limits on the mass of the charged Higgs bosons are determined. In a supersymmetric theory each boson is associated to a fermion and vice versa. A search for sleptons, the supersymmetric partners of the leptons, is performed. The result is interpreted in the framework of the minimal supersymmetric extension of the standard model (MSSM). Moreover, in the MSSM a practically invisible W decay is possible. This decay can be detected if the second W decays to standard model particles. A limit on the invisible branching ratio of the W boson is deduced. (author) 116 refs., 73 figs., 12 tabs.

  6. Electroweak interactions at LEP

    International Nuclear Information System (INIS)

    Borgia, B.

    1991-01-01

    Electroweak interaction at LEP are a subject based on a wealth of data, given the success of the CERN e + e - storage ring. The author will report on the results from the four experiments, ALEPH, DELPHI, L3 and OPAL after the analysis of about 1/2 of the data collected in 1989 and 1990. The review will cover the electroweak aspects of the process e + e - → Z* → f bar f where the fermions can be either quarks or leptons. The analysis of experimental data is based on the determination of the cross section integrated on the solid angle and on the asymmetry of forward-backward leptons in the final state. In this game the knowledge of the center mass energy is fundamental as the determination of the luminosity by which the event rate is normalized to compute the absolute cross section. Therefore a specific attention is given to these subjects

  7. The transmission of accelerator timing information around CERN

    International Nuclear Information System (INIS)

    Beetham, C.G.; Kohler, K.; Parker, C.R.C.B.; Ribes, J.B.

    1992-01-01

    Prior to the construction of the Large Electron Positron (LEP) collider, machine timing information was transmitted around CERN's accelerators using a labyrinth of dedicated copper wires. However, at an early stage in the design of the LEP control system, it was decided to use an integrated communication system based on Time Division Multiplex (TDM) techniques. Therefore it was considered appropriate to use this facility to transmit timing information over long distances. This note describes the overall system, with emphasis placed on the connectivity requirements for the CCITT G.703 series of recommendations. In addition the methods used for error detection and correction, and also for redundancy, are described. The cost implications of using such a TDM based system are also analyzed. Finally the performance and reliability obtained by using this approach are discussed. (author)

  8. Feasibility study of a 2 GeV superconducting $H^{-}$ linac as injector for the CERN PS

    CERN Document Server

    Garoby, R; Hill, C E; Lombardi, A M; Ostroumov, P N; Tessier, J M; Vretenar, Maurizio

    1998-01-01

    This preliminary feasibility study is based on the availability of the CERN LEP2 superconducting RF system after LEP de-commissioning. The option that is explored is to use this system as part of a high energy H- linac injecting at 2 GeV into the CERN PS, with the aim of reliably providing at its output twice the presently foreseen transverse beam brightness at the ultimate intensity envisaged for LHC. This requires the linac to be pulsed at the PS repetition rate of 0.8 Hz with a mean beam current of 10 mA which is sufficient for filling the PS in 240 ms (i.e. about 100 turns) with the ultimate intensity foreseen for injection for the LHC. The linac is composed of two RFQs with a chopping section, a room temperature DTL, a superconducting section with reduced beta cavities up to 1 GeV, and a section of LEP2 cavities up to 2 GeV. This study deals, in particular, with the problems inherent in H- acceleration up to high energy and in the pulsed operation of SC cavities. Means for compensating microphonic vibrat...

  9. CERN prepares for the LHC and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Peter

    2000-05-01

    The phrase ''needle in a haystack'' - the challenge of finding something small but important in the midst of a much, much larger object - is often used to describe CERN. It could be applied to searching for someone's office in one of the 373 buildings that occupy the laboratory's site at Meyrin, just outside Geneva on the Swiss rench border, but the real needle in the haystack at CERN is the Higgs boson. The Higgs is the particle that is responsible for other fundamental particles such as quarks and Z-bosons having mass. It is also the main reason that CERN is building a machine called the Large Hadron Collider (LHC) at a cost of SwFr 2bn. Particles predicted by supersymmetry the theory that every particle has a supersymmetric partner with the same mass and charge but different ''spin'' are the other top priority. There is a chance, albeit it a small one, that particle physicists might find the Higgs boson at CERN's large electron positron (LEP) collider before it is shut down to make way for the LHC. It all depends on how high the beam energy at LEP which currently stands at 103 GeV (103 X 109 electron volts) can be raised. ''1 GeV can matter at this stage'', says Luciano Maiani, the lab's director general. ''Exploring up to a mass of 114 GeV is optimistic but not impossible. Unless we see the Higgs, the current plan is for LEP to be dismantled after it stops running at the end of September. Installation of the LHC in the LEP tunnel will then start in October.'' The LHC will collide protons at a centre-of-mass energy of 14 TeV (14 000 GeV), and two massive general-purpose detectors ATLAS and CMS will search for evidence of the Higgs and supersymmetry. A third experiment called LHC-b will probe the difference between matter and antimatter, while the ALICE experiment will study the extreme state of matter known as the quark gluon plasma. Meanwhile, two massive teams

  10. Transporting the last superconducting module to be removed from LEP

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    All 72 of LEP's superconducting modules have now been raised to the surface. Some 80% will be preserved at CERN, with 10% being reused for the LHC and a further 10% of obsolete non-radioactive material destined for recycling. These pictures show the last of these modules on its journey from PM18 to the old ISR tunnel where the modules will be stored in the short term. Photo 01: The Ansaldo 1020 module leaves PM18 by lorry. Photo 03: The module on the SM18 site. Photos 06, 08: The module on the road.

  11. Technical Developments on Reduced $\\beta$ Superconducting Cavities at CERN

    CERN Document Server

    Aberle, O; Calatroni, Sergio; Chiaveri, Enrico; Häbel, E; Hanni, R; Losito, R; Marque, S; Tückmantel, Joachim

    1999-01-01

    Several authors proposed the construction of superconducting proton linacs using the LEP2 cavities once LEP will be decommissioned. However only a fraction (about half) of these cavities can be used as they are for the high-energy part (b~1) of such a linac, the low energy part requiring the development of accelerating structures optimized for lower values of the particle velocity. At CERN an R&D programme on reduced-b single-cell cavities started in 1996 in order to study and explore the limits of the technology successfully used for the production of LEP2 cavities (copper cavities niobium-plated using the magnetron sputtering technique). Four different geometries were extensively investigated, each representing part of a multicell structure optimized for particles having b=0.48, b=0.625, b=0.66 and b=0.8 respectively. The results were encouraging for the last two types and therefore a new phase of R&D aimed at the production of multicell cavities for b=0.66 and b=0.8 was started. The goal is to demo...

  12. People and things. CERN Courier, Oct 1986, v. 26(8)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-10-15

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events. Already acknowledged as the world's most versatile system of particle accelerators, CERN's complex of big machines put on a spectacular performance after the short summer shutdown. On 3 September, the new LEP Injection Linac (LIL) was put through its paces and the ejection line tested in readiness for the next step. The 1986 Dirac Medals of the International Centre for Theoretical Physics, Trieste, Italy, have been awarded to Ybichiro Nambu and Alexander Polyakov for their important contributions to mathematical physics.

  13. People and things. CERN Courier, Oct 1986, v. 26(8)

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events. Already acknowledged as the world's most versatile system of particle accelerators, CERN's complex of big machines put on a spectacular performance after the short summer shutdown. On 3 September, the new LEP Injection Linac (LIL) was put through its paces and the ejection line tested in readiness for the next step. The 1986 Dirac Medals of the International Centre for Theoretical Physics, Trieste, Italy, have been awarded to Ybichiro Nambu and Alexander Polyakov for their important contributions to mathematical physics

  14. Controls for the CERN large hadron collider (LHC)

    International Nuclear Information System (INIS)

    Kissler, K.H.; Perriollat, F.; Rabany, M.; Shering, G.

    1992-01-01

    CERN's planned large superconducting collider project presents several new challenges to the Control System. These are discussed along with current thinking as to how they can be met. The high field superconducting magnets are subject to 'persistent currents' which will require real time measurements and control using a mathematical model on a 2-10 second time interval. This may be realized using direct links, multiplexed using TDM, between the field equipment and central servers. Quench control and avoidance will make new demands on speed of response, reliability and surveillance. The integration of large quantities of industrially controlled equipment will be important. Much of the controls will be in common with LEP so a seamless integration of LHC and LEP controls will be sought. A very large amount of new high-tech equipment will have to be tested, assembled and installed in the LEP tunnel in a short time. The manpower and cost constrains will be much tighter than previously. New approaches will have to be found to solve many of these problems, with the additional constraint of integrating them into an existing frame work. (author)

  15. Multijets at LEP

    CERN Document Server

    Lutz, P

    1996-01-01

    At LEP 2, multi-jet events will become an important subject, both for standard physics (measurements of the W boson mass and the three-boson couplings) and in direct searches for new particles within or beyond the Standard Model. This presentation gives a comprehensive report of what has been learnt in this field at LEP 1 and LEP 1.5, emphasizing the measurements of the colour factors in QCD and the difficulties encountered when searching Higgs bosons in multi-jet events.

  16. LEP is upgraded

    CERN Multimedia

    1995-01-01

    A superconducting radio-frequency cavity is installed on the Large Electron-Positron (LEP) collider. This upgrade, known as LEP-2, allowed the accelerator to reach new, higher energies and so investigate new areas of physics.

  17. Design concept for a 100 GeV e+e- storage ring (LEP)

    International Nuclear Information System (INIS)

    Bennett, J.R.J.; Carne, A.; Gray, D.A.; Harold, M.R.; Klemperer, S.; Maidment, J.R.M.; Rees, G.H.; Wheldon, A.; Richter, B.; Suzuki, T.

    1977-01-01

    This report presents the conclusions of a Study Group, set up early in 1976 at CERN, to examine the feasibility of constructing a large electron-positron storage ring (LEP). The assumed centre-of-mass energy of 200 GeV and luminosity of about 10 32 cm -2 sec -1 would meet the experimental-physics requirements considered by a parallel Study Group. The machine would have an average radius of about 8 km and provide eight experimental-physics insertions with 10 m of free space either side of the crossing points. (Auth.)

  18. submitter LEP Higgs

    CERN Document Server

    Mori, T

    2001-01-01

    As the LEP experiments verified the gauge interactions more and more rigorously, searches for the Higgs boson, which forms the very basis of the gauge theories, were taking on more and more importance in LEP physics. How this last missing particle in the Standard Model may be discovered (or totally excluded) will be the key to new physics beyond the Standard Model. Here I briefly describe how the LEP experiments together have closed in on this God particle during their 11 year running.

  19. Fast luminosity monitor at LEP

    International Nuclear Information System (INIS)

    Bini, C.; De Pedis, D.; De Zorzi, G.; Diambrini-Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1994-01-01

    In 1990 the LEP-5 experiment measured luminosity at LEP by detecting the single bremsstrahlung photons emitted in the e + e - collisions. In 1991 the experiment was upgraded to exploit the intrinsic high speed of the method which allows luminosity measurement of the single bunches of LEP. In this paper the LEP-5 upgrade is described and the results of a test performed are discussed. ((orig.))

  20. After LEP

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The idea emerged for a ring of superconducting magnets, installed above the LEP ring, to collide protons together (or protons with antiprotons) at as high an energy as possible. Some work has been done to firm up the ideas for the new Collider: determining the best configuration for the proton-proton option and establishing its advantages over a realistic proton-antiproton option; assessing collisions between the electron beam of LEP and one proton beam; designing a complete section of the machine; making tentative designs of superconducting magnets providing between 8 and 10 tesla, and working out a European magnet development programme towards this goal; outlining where and how the various types of collisions could be exploited in the LEP tunnel. (orig./HSI).

  1. Steering the LEP project

    International Nuclear Information System (INIS)

    Adams, J.B.

    1979-01-01

    The plans for LEP are discussed with particular reference to the economic and political aspects rather than the scientific ones. The author outlines the steps which must be taken and the obstacles to be overcome before LEP can be built. Specific points considered are the energy of LEP, its size and siting and the cost and energy consumption. (W.D.L.)

  2. CERN prepares for the LHC and beyond

    International Nuclear Information System (INIS)

    Rodgers, Peter

    2000-01-01

    The phrase ''needle in a haystack'' - the challenge of finding something small but important in the midst of a much, much larger object - is often used to describe CERN. It could be applied to searching for someone's office in one of the 373 buildings that occupy the laboratory's site at Meyrin, just outside Geneva on the Swiss rench border, but the real needle in the haystack at CERN is the Higgs boson. The Higgs is the particle that is responsible for other fundamental particles such as quarks and Z-bosons having mass. It is also the main reason that CERN is building a machine called the Large Hadron Collider (LHC) at a cost of SwFr 2bn. Particles predicted by supersymmetry the theory that every particle has a supersymmetric partner with the same mass and charge but different ''spin'' are the other top priority. There is a chance, albeit it a small one, that particle physicists might find the Higgs boson at CERN's large electron positron (LEP) collider before it is shut down to make way for the LHC. It all depends on how high the beam energy at LEP which currently stands at 103 GeV (103 X 109 electron volts) can be raised. ''1 GeV can matter at this stage'', says Luciano Maiani, the lab's director general. ''Exploring up to a mass of 114 GeV is optimistic but not impossible. Unless we see the Higgs, the current plan is for LEP to be dismantled after it stops running at the end of September. Installation of the LHC in the LEP tunnel will then start in October.'' The LHC will collide protons at a centre-of-mass energy of 14 TeV (14 000 GeV), and two massive general-purpose detectors ATLAS and CMS will search for evidence of the Higgs and supersymmetry. A third experiment called LHC-b will probe the difference between matter and antimatter, while the ALICE experiment will study the extreme state of matter known as the quark gluon plasma. Meanwhile, two massive teams of physicists are preparing the two detectors for the LHC. Both ATLAS and CMS have the same basic

  3. CERN honours Carlo Rubbia

    CERN Multimedia

    2009-01-01

    On 7 April CERN will be holding a symposium to mark the 75th birthday of Carlo Rubbia, who shared the 1984 Nobel Prize for Physics with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. Following a presentation by Rolf Heuer, lectures will be given by eminent speakers on areas of science to which Carlo Rubbia has made decisive contributions. Michel Spiro, Director of the French National Institute of Nuclear and Particle Physics (IN2P3) of the CNRS, Lyn Evans, sLHC Project Leader, and Alan Astbury of the TRIUMF Laboratory will talk about the physics of the weak interaction and the discovery of the W and Z bosons. Former CERN Director-General Herwig Schopper will lecture on CERN’s accelerators from LEP to the LHC. Giovanni Bignami, former President of the Italian Space Agency and Professor at the IUSS School for Advanced Studies in Pavia will speak about his work with Carlo Rubbia. Finally, Hans Joachim Sch...

  4. CERN honours Carlo Rubbia

    CERN Multimedia

    2009-01-01

    On 7 April CERN will be holding a symposium to mark the 75th birthday of Carlo Rubbia, who shared the 1984 Nobel Prize for Physics with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. Following a presentation by Rolf Heuer, lectures will be given by eminent speakers on areas of science to which Carlo Rubbia has made decisive contributions. Michel Spiro, Director of the French National Institute of Nuclear and Particle Physics (IN2P3) of the CNRS, Lyn Evans, sLHC Project Leader, and Alan Astbury of the TRIUMF Laboratory will talk about the physics of the weak interaction and the discovery of the W and Z bosons. Former CERN Director-General Herwig Schopper will lecture on CERN’s accelerators from LEP to the LHC. Giovanni Bignami, former President of the Italian Space Agency, will speak about his work with Carlo Rubbia. Finally, Hans Joachim Schellnhuber of the Potsdam Institute for Climate Research and Sven Kul...

  5. Internal lecture | LEP II era/precision physics (1994-2004) | Main Auditorium | 25 July

    CERN Multimedia

    2014-01-01

    LEP II era/precision physics, by Lydia Fayard, Roberto Tenchini, and Steve Myers.   3.30 p.m. - 3.45 p.m.: coffee 3.45 p.m. - 4.30 p.m.: The quest for the direct CP Violation in the Kaon System at CERN: The NA31 & NA48 experiments by Lydia Iconomidou-Fayard (Université de Paris-Sud 11 (FR)). Abstract After years of studying kaon properties at CERN, the hunt for direct CP violation in this system started in the 1980s and lasted about two decades. While expected to be small, this component is a probe into the validity of the Standard Model and its precise measurement was the main goal of two experiments at CERN, namely NA31 and NA48. In this talk, we will review the two collaborations in their historical contexts. The challenging detectors and beams, the analyses, the innovative methods and tools, and the first non-zero evidence of Re(epsilon'/epsilon) that resulted in the evolution from NA31 to NA48 in order to increase accuracy and further squeeze the...

  6. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  7. CAD for LEP

    CERN Multimedia

    1983-01-01

    A work station of the Computer-Aided Design system which was installed in 1982 to aid in the mechanics design for LEP. Visible on the screen is a design made for a pick-up for LEP. See Annual Report 1982 p. 79, Fig. 2.

  8. CERN: Ten-Tesla twin

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    An important step in the development of the high field superconducting magnets for CERN's proposed LHC proton collider came on 21 October when a 1 metre-long model of the proposed twin-dipole magnet produced a field of 10 Tesla in its two o beam apertures at the design temperature of 1.8K. The LHC designers have to plan for proton beams approaching 8 TeV to attain the right conditions for the quarks and gluons hidden deep inside protons to produce new physics. To contain these very high energy protons in the tight track of the 27-kilometre LEP tunnel would need the strongest magnetic bending power ever used in a full storage ring

  9. Status report on CERN activities aiming at the production of sputter-coated copper superconducting RF cavities for LEP

    International Nuclear Information System (INIS)

    Benvenuti, C.; Bloess, D.; Chiaveri, E.; Hilleret, N.; Minestrini, M.; Weingarten, W.

    1990-01-01

    To upgrade LEP energy above 55 GeV, the first step will consist in installing 32 SC cavities of 352 MHz frequency at Point 2 of the machine. This operation will be carried out in steps and should be completed by the end of 1991. It has been decided that 8 of the 32 cavities will be Nb coated copper cavities, the crucial part of which (i.e. the cavity proper) will be manufactured and coated at CERN. For the time being, 4 of these 8 cavities have been prepared. They present Q 0 values at low field of about 10 10 , while at the specified operating field of 5 MV/m their Q 0 range between 5 and 7 x 10 9 . In order to carry out assembly, coating and rinsing of cavities in better (i.e. cleaner) conditions, an experimental hall is being prepared, which will become operational after summer 1989, such as to be used for the manufacturing of the second batch of 4 coated cavities. In parallel with this main activity, some work is also being devoted to the study of coatings of higher T c materials, namely NbTiN. Due to the higher T c , these new coatings should present a lower BCS RF resistivity, a necessary condition to obtain higher Q 0 values. The first cavity coated so far with NbTiN (a single cell cavity of 500 MHz frequency) gave encouraging results, which however are not better than what was obtained with a Nb film. (author)

  10. Charged particle multiplicity distributions in e+e--annihilation processes in the LEP experiments

    International Nuclear Information System (INIS)

    Shlyapnikov, P.V.

    1992-01-01

    Results of studies of the charged particle multiplicity distributions in the process of e + e - -annihilation into hadrons obtained in experiments at LEP accelerator in CERN are reviewed. Universality in energy dependence of the average charged particle multiplicity in e + e - and p ± p collisions, evidence for KNO-scaling in e + e - data, structure in multiplicity distribution and its relation to the jet structure of events, average particle multiplicities or quark and gluon jets, 'clan' picture and other topics are discussed. 73 refs.; 20 figs.; 3 tabs

  11. People and things. CERN Courier, March 1980, v. 20(1)

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events, like the Europhysics Study Conference on the Unification of Fundamental Interactions in Sicily, or the International Conference on Experimentation at LEP in Uppsala. In other news it has been decided at the Stanford Linear Accelerator Center to put money into research and development for the Single Pass Collider Project

  12. Little-Higgs corrections to precision data after CERN LEP2

    International Nuclear Information System (INIS)

    Marandella, Guido; Schappacher, Christian; Strumia, Alessandro

    2005-01-01

    We reconsider little-Higgs corrections to precision data. In five models with global symmetries SU(5), SU(6), SO(9) corrections are (although not explicitly) of 'universal' type. We get simple expressions for the S-circumflex,T-circumflex,W,Y parameters, which summarize all effects. In all models W,Y≥0 and in almost all models S-circumflex>(W+Y)/2. Results differ from previous analyses, which are sometimes incomplete, sometimes incorrect, and because we add LEP2 ee→ff cross sections to the data set. Depending on the model, the constraint on f ranges between 2 and 20 TeV. We next study the simplest little-Higgs model (and propose a related model) which is not universal and affects precision data due to the presence of an extra Z ' vector. By restricting the data set to the most accurate leptonic data we show how corrections to precision data generated by a generic Z ' can be encoded in four effective S-circumflex,T-circumflex,W,Y parameters, giving their expressions

  13. Y2K INTERVENTIONS AT CERN

    CERN Multimedia

    Peter Sollander/ST

    1999-01-01

    Although the laboratory will be closed from December 18th to January 3rd, several services will still be running: gates will be manned by the guards, the fire brigade will be ready for interventions and the operators of the technical control room (TCR)will be supervising CERN's technical infrastructure.Despite the thorough Y2K testing performed, remote supervision by the TCR may be unavailable on January 1st. To cope with this situation, the TCR and equipment groups concerned have prepared special Y2K instructions for important installations.Special instructions exist for High Voltage electricity distribution, LEP flood pumps, fire and gas detection, reject water monitoring and for the control system that relays information from the equipment sensors to the TCR and fire brigade.On-call personnel for different technical infrastructure systems will visit CERN on the first of January to verify that their systems are functioning correctly and report on the status in a meeting organised in the TCR during the after...

  14. CERN and Portugal

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    is 10.3 million Swiss francs. This is 7 5% of the eventual national contribution, rising on a sliding scale established when Portugal joined CERN ten years ago. This 'discount' in Portugal's contribution to the CERN budget goes into its national effort. Hopefully this funding will not suffer once the CERN contribution reaches its cruising altitude. With no national accelerator, Portuguese research in particle physics is fully focused on CERN, with prominent participation in LEP (Delphi) and in heavy ion research (NA 38). Portuguese researchers also collaborate in the NA 50 and 51 experiments and in CP-LEAR, as well as some solid state research based on the Isolde on-line isotope separator

  15. Major Refit for CERN's 400 kV Substation

    CERN Multimedia

    2001-01-01

    The 400 kV substation on the Prévessin site brings in the electricity that powers CERN's accelerators and the majority of the Laboratory's installations. It was originally built in the 1970s for the SPS, and is one of only five privately owned 400 kV sub-stations in France. Three of the others belong to the national railway company, SNCF, supplying the Paris-Marseilles TGV line, the other is at the Cadarache research centre near mouth of the Rhone. After nearly thirty years of service, CERN's substation has just undergone a complete overhaul. The new main 18 kV switchboard for the SPS pulsed network. The electricity supply for the original Prévessin substation was from the 400 kV EDF network, delivered through three 90 MW transformers at 18 kV to the SPS pulsed network, With the arrival of LEP, two 110 MW transformers were added to supply the new accelerator. Now, as CERN gears up for the LHC, additional pulsed power capacity is needed to supply the transfer lines carrying protons from...

  16. Full steam ahead for the CERN Accelerator School

    CERN Multimedia

    2003-01-01

    The CERN Accelerator School (CAS), now in its 20th year, has a new head, Daniel Brandt. Here he talks to the Bulletin about the most recent school, which was held in collaboration with the Paul Scherrer Institute (PSI), and about the school's future. The CERN Accelerator School has been running since 1983. It holds training courses for accelerator physicists and engineers twice a year, with a pattern of introductory, intermediate and specialised courses. The courses, which take place in different Member States, consist of a programme of lectures and tutorials spread over a period of one or two weeks. Participants come from Member States and other countries world-wide. This year, CAS has a new head, Daniel Brandt, who has taken over from Ted Wilson. Brandt, an accelerator physicist, has been at CERN since 1981, working on aspects of LEP from the early days of design, and throughout most of its operation. More recently his responsibilities have included the LHC Heavy Ions Programme (Heavy Ions in the LHC). Th...

  17. submitter LEP precision results

    CERN Document Server

    Kawamoto, T

    2001-01-01

    Precision measurements at LEP are reviewed, with main focus on the electroweak measurements and tests of the Standard Model. Constraints placed by the LEP measurements on possible new physics are also discussed.

  18. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  19. Upgrade of the cryogenic CERN RF test facility

    International Nuclear Information System (INIS)

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B.; Koettig, T.

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented

  20. People and things. CERN Courier, Sep-Oct 1990, v. 30(7)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: ; At the June meeting of CERN Council, Director General Carlo Rubbia outlined the plan for the LHC proton collider in the LEP tunnel as CERN's major project for the coming decade. ; After initial trials of injection and storage of oxygen ions last year, CERN's LEAR low energy 'antiproton' ring has electron-cooled oxygen ions, achieving momentum 'spreads' down to 4 x 10{sup -4} , and stacked up to 13.8 x 10{sup 9} charges at 11.4 MeV per nucleon, with subsequent acceleration taking the ions to 408 Me V per nucleon before extraction for experiments. ; Under the North Holland Physics Publishing imprint, the History of CERN, Volume 1, became available in 1987. ; The Atlanta Conference on the SSC will be held on the 13-15 November and will focus on industrial and scientific opportunities, covering the status of the project, industry, university and laboratory participation, the development efforts now underway for major detectors and progress toward defining the initial research programme.

  1. People and things. CERN Courier, Sep-Oct 1990, v. 30(7)

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: ; At the June meeting of CERN Council, Director General Carlo Rubbia outlined the plan for the LHC proton collider in the LEP tunnel as CERN's major project for the coming decade. ; After initial trials of injection and storage of oxygen ions last year, CERN's LEAR low energy 'antiproton' ring has electron-cooled oxygen ions, achieving momentum 'spreads' down to 4 x 10 -4 , and stacked up to 13.8 x 10 9 charges at 11.4 MeV per nucleon, with subsequent acceleration taking the ions to 408 Me V per nucleon before extraction for experiments. ; Under the North Holland Physics Publishing imprint, the History of CERN, Volume 1, became available in 1987. ; The Atlanta Conference on the SSC will be held on the 13-15 November and will focus on industrial and scientific opportunities, covering the status of the project, industry, university and laboratory participation, the development efforts now underway for major detectors and progress toward defining the initial research programme

  2. LEP dismantling starts

    CERN Multimedia

    2000-01-01

    Since the end of November, various teams have been getting stuck into dismantling the LEP accelerator and its four experiments. After making the installations safe, the dismantling and removal of 40,000 tonnes of equipment is underway. Down in the tunnel, it is a solemn moment. It is 10 o'clock on 13 December and Daniel Regin, one of those heading the dismantling work, moves in on a magnet, armed with a hydraulic machine. Surrounded by teams gathered there for a course in dismantling, he makes the first cut into LEP. The great deconstruction has begun. In little over than a year, the accelerator will have been cleared away to make room for its successor, the LHC. The start of the operation goes back to 27 November. Because before setting about the machine with hydraulic shears and monkey wrenches, LEP had first to be made safe - it was important to make sure the machine could be taken apart without risk. All the SPS beam injection systems to LEP were cut off. The fluids used for cooling the magnets and superc...

  3. People and things. CERN Courier, May 1990, v.30(4)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-05-15

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: ; Implications for 'dark matter' - the invisible mass of the Universe - were a talking point at the recent astrophysics workshop in the Moriond series, and a focus of the meeting 'LEP and the Universe' at CERN. ; This year's DESY Theory Workshop from 1-3 October will be on 'Waiting for the Top Quark'. ; To explore in detail and update the physics possibilities for the Large Hadron Collider (LHC) project at CERN, the European Committee for Future Accelerators (ECFA) is now preparing for an LHC Workshop to be held in Aachen from 4-9 October. ; An important milestone for the HERA electron-proton collider being built at the German DESY Laboratory in Hamburg was passed early in April when the turbines of the HERA refrigeration plant were switched on to cool down the first octant of the superconducting proton ring.

  4. GPS Precision Timing at CERN

    CERN Document Server

    Beetham, C G

    1999-01-01

    For the past decade, the Global Positioning System (GPS) has been used to provide precise time, frequency and position co-ordinates world-wide. Recently, equipment has become available specialising in providing extremely accurate timing information, referenced to Universal Time Co-ordinates (UTC). This feature has been used at CERN to provide time of day information for systems that have been installed in the Proton Synchrotron (PS), Super Proton Synchrotron (SPS) and the Large Electron Positron (LEP) machines. The different systems are described as well as the planned developments, particularly with respect to optical transmission and the Inter-Range Instrumentation Group IRIG-B standard, for future use in the Large Hadron Collider (LHC).

  5. 1984 CERN school of computing

    International Nuclear Information System (INIS)

    1985-01-01

    The eighth CERN School of Computing covered subjects mainly related to computing for elementary-particle physics. These proceedings contain written versions of most of the lectures delivered at the School. Notes on the following topics are included: trigger and data-acquisition plans for the LEP experiments; unfolding methods in high-energy physics experiments; Monte Carlo techniques; relational data bases; data networks and open systems; the Newcastle connection; portable operating systems; expert systems; microprocessors - from basic chips to complete systems; algorithms for parallel computers; trends in supercomputers and computational physics; supercomputing and related national projects in Japan; application of VLSI in high-energy physics, and single-user systems. See hints under the relevant topics. (orig./HSI)

  6. A measurement of the B0 anti B0 mixing parameter at LEP using a neural network

    International Nuclear Information System (INIS)

    Los, M.E.

    1995-01-01

    In this thesis the B 0 - anti B 0 mixing parameter χ is measured. The data have been collected using the DELPHI detector at the electron-positron accelerator LEP at CERN in Geneva. At the LEP energy of about 91 GeV the Z 0 particle is produced. About 15 percent of the time the Z 0 decays into a b anti b-pair, which makes LEP an ideal environment to study the properties of the heavy b quark. In this thesis, the signal for the measurement of χ consists of events in which there are two leptons in the final state. If both leptons directly originate from a b quark decay (b→l), then their charge reflects the one of the b quark. Events with leptons of the same sign indicate the presence of B 0 - anti B 0 mixing. The neural network variable achieves a better separation between the signal and the background than the transverse moemntum. Using data recorded by DELPHI in 1992, one obtains for the mixing parameter χ=8.6%±2.3%(stat)±0.6%(sys). (orig./WL)

  7. High-Q, high gradient niobium-coated cavities at CERN

    CERN Document Server

    Calatroni, Sergio; Darriulat, Pierre; Peck, M A; Valente, A M; Van't Hof, C A

    1999-01-01

    Superconducting cavities made by sputter-deposition of a thin niobium film onto copper have proven over the years to be a viable alternative to bulk niobium, the best example being the very successful operation of LEP at 200 GeV. It will be shown that this technology, investigated at 1.5 GHz by a dedicated R&D effort at CERN, can be developed to unprecedented performance, proving that no fundamental limitation prevents high quality factors to be maintained over a broad range of accelerating field.

  8. A higher dimensional explanation of the excess of Higgs-like events at CERN LEP

    CERN Document Server

    Van der Bij, J J

    2006-01-01

    Searches for the SM Higgs boson by the four LEP experiments have found a 2.3 sigma excess at 98 GeV and a smaller 1.7 sigma at around 115 GeV. We interpret these excesses as evidence for a Higgs boson coupled to a higher dimensional singlet scalar. The fit implies a relatively low dimensional mixing scale mu_{lhd} 100 GeV. The data show a slight preference for a five-dimensional over a six-dimensional field. This Higgs boson cannot be seen at the LHC, but can be studied at the ILC.

  9. The performance of the DELPHI hadron calorimeter at LEP

    International Nuclear Information System (INIS)

    Ajinenko, I.; Beloous, K.; Chudoba, J.

    1996-01-01

    The DELPHI Hadron Calorimeter was conceived more than ten years ago, as an instrument to measure the energy of hadrons and hadronic jets from e + e - collisions at the CERN collider LEP. In addition it was expected to provide a certain degree of discrimination between pions and muons. The detector is a rather simple and relatively inexpensive device consisting of around 20,000 limited streamer plastic tubes, with inductive pad read-out, embedded in the iron yoke of the 1.2 T DELPHI magnet. Its depth is at minimum 6.6 nuclear interaction lengths. The electronics necessary for the pad readout was designed to have an adequate performance for a reasonable cost. This detector has proved over six years of operation to have an entirely satisfactory performance and great reliability; for example less than 1% of the streamer tubes have failed and electronic problems remain at the per mil level. During the past two years an improvement program has been under way. It has been found possible to use the streamer tubes as strips, hence giving better granularity and particle tracking, by reading out the cathode of individual tubes. The constraints on this were considerable because of the inaccessibility of the detectors in the magnet yoke. However, a cheap and feasible solution has been found. The cathode readout leads to an improved energy resolution, better μ identification, a better π/μ separation and to possibilities of neutral particle separation. The simultaneous anode read-out of several planes of the endcaps of the detector will provide a fast trigger in the forward/backward direction which is an important improvement for LEP200. On the barrel the system will provide a cosmic trigger which is very useful for calibration as counting rates at LEP200 will be very low

  10. Reports of the working groups on precision calculations for LEP2 physics. Proceedings

    International Nuclear Information System (INIS)

    Jadach, S.; Passarino, G.; Pittau, R.

    2000-01-01

    This is the report of the LEP2 Monte Carlo Workshop held at CERN from 1999 to 2000. It consists of four parts. In the first part, the most recent developments in the calculation of four-fermion processes in electron-positron collisions at LEP2 are presented, concentrating on predictions for four main reactions: W-pair production, visible photons in four-fermion events, single-W production, and Z-pair production. Based on a comparison of results within different approaches, theoretical uncertainties on these prediction are established. The second part is devoted to QCD issues, focusing on improving the understanding and the Monte Carlo simulation of multijet final states due to hard QCD processes at LEP, i.e. quark-antiquark plus multigluon and/or secondary quark production, with particular emphasis on four-jet final states and b-quark mass effects. Specific topics covered are: relevant developments in the main event generators; description and tuning of inclusive (all-flavour) jet rates; quark mass effects in the three- and four-jet rates; mass, higher-order and hadronization effects in four-jet angular and shape distributions; b-quark fragmentation and gluon splitting into b-quarks. In the third part, γγ physics is discussed. After a detailed description of the physics modelling of the most recent versions of the currently available codes, comparisons between the results of the different event generators, as well as between LEP data and the theoretical predictions are presented, together with the problem of background due to γγ processes in searches for new particles. In the last part, recent developments in the theoretical calculation of two-fermion processes are reported. The Bhabha process and the production of muon, tau, neutrino and quark pairs is covered. On the basis of comparison of various calculations, theoretical uncertainties are estimated and compared with those needed for the final LEP2 data analysis. The subjects for further study are identified

  11. The LEP program

    International Nuclear Information System (INIS)

    Allaby, J.V.

    1986-01-01

    Details of the LEP program are discussed in this paper. LEP is an electron-positron collider 26 kms in circumference. At present, four interaction regions are to be equipped with experiments, although there is the potential for eight crossing points with four-bunch operation. Before reviewing the experiments, some basic facts about LEP are recalled. The collider is located underground between the outskirts of Geneva and the Jura mountains. The major part of the tunnel in which LEP will be installed will be bored by machine in the ''molasse'' (a kind of sandstone) that lies at depths of several tens of meters below the surface of the ground in this region, which is formed of glacial moraine. However, about one-eighth of the circumference lies under the foothills of the Jura and here the tunnel must pass through the limestone rock where a boring machine cannot be used. Since the surface of the ground is itself not flat over this huge area, the plane of the machine is not horizontal, but slightly inclined to minimize the distance from the surface to the interaction regions; hence, the cost of the access shafts

  12. Cooperation Agreement between the Government of Australia and the European Orgaization for Nuclear Research (CERN) concerning the further development of scientific and technical co-operation in the research projects of CERN Ministry - Regulatory Decree No 3/92 of 6 March

    International Nuclear Information System (INIS)

    1991-01-01

    The agreement provides for co-operation on research projects. Australian specialists may participate in CERN research projects, in particular in connection with the Large Electron-Position Collider-LEP. The Agreement entered into force on the date of its signature for an initial period of five years and is renewable. (NEA)

  13. CAS CERN Accelerator School third general accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    The general course on accelerator physics given in Salamanca, Spain, closely followed those organised by the CERN Accelerator School at Gif-sur-Yvette, Paris in 1984, and at Aarhus, Denmark in 1986 and whose proceedings were published as CERN Yellow Reports 85-19 (1985) and 87-10 (1987) respectively. However, certain topics were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include beam-cooling concepts, Liouville's theorem and emittance, emittance dilution in transfer lines, weak-betatron coupling, diagnostics, while the seminars are on positron and electron sources, linac structures and the LEP L3 experiment, together with industrial aspects of particle accelerators. Also included are errata and addenda to the Yellow Reports mentioned above. (orig.)

  14. Multiplicities and Correlations at LEP

    International Nuclear Information System (INIS)

    Sarkisyan, E.K.G.

    2002-01-01

    A brief review on recent charge multiplicity and correlation measurements at LEP is given. The measurements of un biased gluon jet multiplicity are discussed. Recent results on charged particle Bose-Einstein and Fermi-Dirac correlations at LEP1 are reported. New results on two-particle correlations of neutral pions are given. Correlations of more than two particles (high-order correlations) obtained using different methods are performed. Recent Bose-Einstein correlation measurements at LEP2 are discussed. (author)

  15. Multiplicities and correlations at LEP

    CERN Document Server

    Sarkisyan-Grinbaum, E

    2002-01-01

    A brief review on recent charge multiplicity and correlation measurements at LEP is given. The measurements of unbiased gluon jet multiplicity are discussed. Recent results on charged particle Bose- Einstein and Fermi-Dirac correlations at LEP1. are reported. New results on two-particle correlations of neutral pions are given. Correlations of more than two particles (high-order correlations) obtained using different methods are performed. Recent Bose-Einstein correlation measurements at LEP2 are discussed. (13 refs).

  16. The LEP physics program

    International Nuclear Information System (INIS)

    Davier, M.

    1985-06-01

    The physics program of LEP is reviewed in the context of recent developments from the SpantipS collider. LEP offers the unique possibility to unambiguously explore the particle spectrum up to a mass of 100 GeV i.e. over the mass range typical of the electroweak symmetry breaking. 31 refs.

  17. The convergent LEP and SPS control systems

    International Nuclear Information System (INIS)

    Altaber, J.

    1987-01-01

    The major design contraint of the control system for LEP is the compatibility with the existing SPS control system. The first reason for this compatibility is to allow a long term convergence of the SPS control system towards the LEP one. The second reason is to operate both LEP and SPS machines from a unique main control room. The distributed architecture of LEP and the existing SPS control systems are described. The design of the equipment interface for both machines is explained. Finally, the infrastructure of the common main control room for LEP and SPS is described

  18. LEP and CEBAF polarimeters

    International Nuclear Information System (INIS)

    Placidi, M.; Burkert, V.; Rossmanith, R.

    1988-01-01

    This paper gives an overview on high energy electron (positron) polarimeters by describing in more detail the plans for the LEP polarimeter and the CEBAF polarimeters. Both LEP and CEBAF will have laser polarimeters. In addition CEBAF will be equipped with a Moller polarimeter (for currents below 1μA). 10 figs

  19. People and things. CERN Courier, May 1990, v.30(4)

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: ; Implications for 'dark matter' - the invisible mass of the Universe - were a talking point at the recent astrophysics workshop in the Moriond series, and a focus of the meeting 'LEP and the Universe' at CERN. ; This year's DESY Theory Workshop from 1-3 October will be on 'Waiting for the Top Quark'. ; To explore in detail and update the physics possibilities for the Large Hadron Collider (LHC) project at CERN, the European Committee for Future Accelerators (ECFA) is now preparing for an LHC Workshop to be held in Aachen from 4-9 October. ; An important milestone for the HERA electron-proton collider being built at the German DESY Laboratory in Hamburg was passed early in April when the turbines of the HERA refrigeration plant were switched on to cool down the first octant of the superconducting proton ring

  20. Geneva University honours two CERN staff members

    CERN Multimedia

    2001-01-01

    Albert Hofmann Steve Myers On 8 June, two CERN staff members will receive Geneva University's highest distinction. On the proposal of the University's particle physicists, Steve Myers and Albert Hoffmann, who orchestrated LEP commissioning and operation and were instrumental in its success, will awarded the distinction of doctor honoris causa. The ceremony, interspersed with musical interludes, will be followed by a formal reception and is open to all. The Uni Dufour car park will be free to members of the public attending the ceremony. 8 June 2001 at 10.00 a.m. Uni Dufour, Auditoire Piaget 24, rue Général Dufour, Geneva.

  1. A study of the b-quark fragmentation function with the DELPHI detector at LEP I and an averaged distribution obtained at the Z Pole

    Czech Academy of Sciences Publication Activity Database

    Abdallah, J.; Abreu, A.; Adam, W.; Mašík, Jiří; Němeček, Stanislav; Řídký, Jan; Todorovová, Šárka; Trávníček, Petr; Vrba, Václav

    2011-01-01

    Roč. 71, č. 2 (2011), 1-50 ISSN 1434-6044 R&D Projects: GA MŠk LA08015 Institutional research plan: CEZ:AV0Z10100502 Keywords : parton: shower s * bottom: fragmentation function * jet: hadronization * CERN * LEP * DELPHI * quantum chromodynamics * PYTHIA * ALEPH * OPAL * SLD Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.631, year: 2011

  2. A measurement of the B{sup 0} anti B{sup 0} mixing parameter at LEP using a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Los, M E

    1995-11-27

    In this thesis the B{sup 0}- anti B{sup 0} mixing parameter {chi} is measured. The data have been collected using the DELPHI detector at the electron-positron accelerator LEP at CERN in Geneva. At the LEP energy of about 91 GeV the Z{sup 0} particle is produced. About 15 percent of the time the Z{sup 0} decays into a b anti b-pair, which makes LEP an ideal environment to study the properties of the heavy b quark. In this thesis, the signal for the measurement of {chi} consists of events in which there are two leptons in the final state. If both leptons directly originate from a b quark decay (b{yields}l), then their charge reflects the one of the b quark. Events with leptons of the same sign indicate the presence of B{sup 0}- anti B{sup 0} mixing. The neural network variable achieves a better separation between the signal and the background than the transverse moemntum. Using data recorded by DELPHI in 1992, one obtains for the mixing parameter {chi}=8.6%{+-}2.3%(stat){+-}0.6%(sys). (orig./WL).

  3. Drilling a borehole for LEP

    CERN Multimedia

    1981-01-01

    Boreholes were drilled along the earlier proposed line of the LEP tunnel under the Jura to find out the conditions likely to be encountered during the construction of the LEP tunnel (Annual Report 1981 p. 106, Fig. 10).

  4. Precision electroweak physics at LEP

    Energy Technology Data Exchange (ETDEWEB)

    Mannelli, M.

    1994-12-01

    Copious event statistics, a precise understanding of the LEP energy scale, and a favorable experimental situation at the Z{sup 0} resonance have allowed the LEP experiments to provide both dramatic confirmation of the Standard Model of strong and electroweak interactions and to place substantially improved constraints on the parameters of the model. The author concentrates on those measurements relevant to the electroweak sector. It will be seen that the precision of these measurements probes sensitively the structure of the Standard Model at the one-loop level, where the calculation of the observables measured at LEP is affected by the value chosen for the top quark mass. One finds that the LEP measurements are consistent with the Standard Model, but only if the mass of the top quark is measured to be within a restricted range of about 20 GeV.

  5. Review of LEP results

    CERN Document Server

    Parodi, F

    2001-01-01

    I present a review of the results obtained during 10 years of activity in b-physics at LEP. Special emphasis is put on measurements that attained precisions not even envisaged at the beginning of the LEP programme (V/sub ub/ and Delta m/sub s/). Finally the impact of these measurements on the CKM parameters determination is presented. (16 refs).

  6. submitter Searches at LEP

    CERN Document Server

    Kawagoe, Kiyotomo

    2001-01-01

    Searches for new particles and new physics were extensively performed at LEP. Although no evidence for new particle/physics was discovered, the null results set very stringent limits to theories beyond the standard model. In this paper, searches at LEP and anomalies observed in the searches are presented. Future prospect of searches at the new energy frontier machines is also discussed.

  7. Two members of the CERN personnel receive the 2002 Accelerator Prize

    CERN Multimedia

    2002-01-01

    Kurt H bner and Frank Zimmermann have been awarded the 2002 Accelerator Prize by the Interdivisional Group on Accelerators of the European Physical Society (EPS-IGA).   Kurt H bner Frank Zimmermann Kurt H bner is well known to CERN, as he was Director of Accelerators from 1994 to 2001, after having been PS Division Leader. A member of the CERN personnel since 1966, Kurt H bner, who is of Austrian nationality, has taken part in the design and operation of many accelerators including the PS, the ISR and LEP. He has received the award for his major contributions to accelerator physics and for his excellent leadership in this field. In its citation, the Prize Selection Committee stated that «he has provided guidance for generations of accelerator physicists and engineers, thereby contributing immensely to the prosperity of accelerators at CERN and many other laboratories around the world.» Frank Zimmermann has been awarded the prize for an individual in the early part of his or her career who has made a rece...

  8. The design, construction and commissioning of the CERN Large Electron-Positron collider

    International Nuclear Information System (INIS)

    Myers, S.; Picasso, E.

    1990-01-01

    A description is given of the most important parameters considered in the design of the CERN Large Electron-Positron collider. It is shown how these parameters affect the collider performance and how they have been optimised with respect to the cost of the project. The functioning of each major subsystem is described with respect to its role as part of the collider. Finally, the planning, testing and initial commissioning of LEP is described and possible future developments are outlined. (author)

  9. 1987 CERN school of computing

    International Nuclear Information System (INIS)

    Verkerk, C.

    1988-01-01

    These Proceedings contain written versions of most of the lectures delivered at the 1987 CERN School of Computing. Five lecture series treated various aspects of data communications: integrated services networks, standard LANs and optical LANs, open systems networking in practice, and distributed operating systems. Present and future computer architectures were covered and an introduction to vector processing was given, followed by lectures on vectorization of pattern recognition and Monte Carlo code. Aspects of computing in high-energy physics were treated in lectures on data acquisition and analysis at LEP, on data-base systems in high-energy physics experiments, and on Fastbus. The experience gained with personal work stations was also presented. Various other topics were covered: the use of computers in number theory and in astronomy, fractals, and computer security and access control. (orig.)

  10. At LEP, a new Physics. The dark matter

    International Nuclear Information System (INIS)

    Bouquet, A.; Haissinski, J.; Perrottet, M.; Renard, F.M.; Sadoulet, B.; Savoy, C.; Treille, D.

    1990-01-01

    The starting of LEP (European Large Electron-Positron storage rings) took place, in July 1989 and the 5 reports introduced during the 21th Summer School on Particle Physics (Ecole de Gif) locate, after a rapid recall of standard model, the problems that LEP will have to resolve in a more or less long time, LEP 100 or LEP 200. These reports are indexed separately [fr

  11. The CTF3 team who performed the first electron beam recombination in an isochronous ring at CERN.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 0210004_1: Part of CTF3 collaboration. From left to right: T. Ekelof (Uppsala), A. Gallo (LNF), P. Royer (Lausanne), F. Tecker (CERN), L. Rinolfi (CERN), A. Ferrari (Uppsala), R. Corsini (CERN), S. Quaglia, (LNF). Photo 0210004_2: A. Ferrari (left), T. Ekelof (middle) and A. Rydberg (right), from Uppsala University, Sweden, standing where the phase monitor HR.PHM60 is installed. Photo 0210004_4: A. Gallo (LNF) standing in front of the RF deflector designed by INFN-Frascati. Photo 0210004_7: The team who designed the CTF3 complex starting from the existing LEP Pre-Injector. From left to right L. Rinolfi, A. Ferrari, F. Tecker (standing up) and R. Corsini, P. Royer (kneeling down) in front of the electron transfer line between the linac and the combiner ring. Photo 0210004_9: The CTF3 team who performed the first electron beam recombination in an isochronous ring at CERN. From left to right, L. Rinolfi, P. Royer, F. Tecker, R. Corsini standing up in front of the two RF deflectors built at CERN and working...

  12. Strongly coupled SU(2v boson and LEP1 versus LEP2

    Directory of Open Access Journals (Sweden)

    M. Bilenky

    1993-10-01

    Full Text Available If new strong interactions exist in the electroweak bosonic sector (e.g., strong Higgs sector, dynamical electroweak breaking, etc., it is natural to expect new resonances, with potentially strong couplings. We consider an additional vector-boson triplet, V+-, V0, associated with an SU(2v local symmetry under the specific (but rather natural assumption that ordinary fermions are SU(2v singlets. Mixing of the V triplet with the W+-, Z0 bosons effectively leads to an SU(2L×U(1Y violating vector-boson-fermion interaction which is strongly bounded by LEP1 data. In contrast, the potentially large deviation of the Z0W+W- coupling from its SU(2L×U(1Y value is hardly constrained by LEP1 data. Results from experiments with direct access to the trilinear Z0W+W− coupling (LEP200, NLC are urgently needed.

  13. The design and construction of a double-sided Silicon Microvertex Detector for the L3 experiment at CERN

    International Nuclear Information System (INIS)

    Adam, A.; Ambrosi, G.; Babucci, E.; Bertucci, B.; Biasini, M.; Bilei, G.M.; Caria, M.; Checcucci, B.; Easo, S.; Fiandrini, E.; Krastev, V.R.; Massetti, R.; Pauluzzi, M.; Santocchia, A.; Servoli, L.; Baschirotto, A.; Bosetti, M.; Pensotti, S.; Rancoita, P.G.; Rattaggi, M.; Terzi, G.; Battiston, R.; Bay, A.; Burger, W.J.; Extermann, P.; Perrin, E.; Susinno, G.F.; Bencze, G.Y.L.; Kornis, J.; Toth, J.; Bobbink, G.J.; Duinker, P.; Brooks, M.L.; Coan, T.E.; Kapustinsky, J.S.; Kinnison, W.W.; Lee, D.M.; Mills, G.B.; Thompson, T.C.; Busenitz, J.; DiBitonto, D.; Camps, C.; Commichau, V.; Hangartner, K.; Schmitz, P.; Chen, A.; Hou, S.; Lin, W.T.; Gougas, A.; Kim, D.; Paul, T.; Hauviller, C.; Herve, A.; Josa, I.; Landi, G.; Lebeau, M.; Lecomte, P.; Viertel, G.M.; Waldmeier, S.; Leiste, R.; Lejeune, E.; Weill, R.; Lohmann, W.; Nowak, H.; Sachwitz, M.; Schoeniech, B.; Tonisch, F.; Trowitzsch, G.; Vogt, H.; Passaleva, G.; Yeh, S.C.

    1993-01-01

    A Silicon Microvertex Detector (SMD) has been commissioned for the L3 experiment at the Large Electron-Positron colliding-beam accelerator (LEP) at the European Center for Nuclear Physics, (CERN). The SMD is a 72,672 channel, two layer barrel tracker that is comprised of 96 ac-coupled, double-sided silicon detectors. Details of the design and construction are presented

  14. Scenarios for physics at LEP

    International Nuclear Information System (INIS)

    Glashow, S.L.

    1979-01-01

    The author states his views regarding the importance of the experiments made possible if LEP is built. The main contribution of the LEP will be to understanding the physics of leptons, quarks and quantum chromodynamics. The author suggests the directions in which the new results might lead. (W.D.L.)

  15. Inter-string Bose-Einstein correlations in hadronic Z decays using the L3 detector at LEP

    CERN Document Server

    Wang, Qin

    2008-01-01

    Bose-Einstein Correlations (BEC) of identical bosons can be used for the femtoscopy of the pro- duction properties of bosons in high energy particle collisions. This quantum mechanical BEC effect is a direct consequence of the symmetrization of the wave function of a boson system and is frequently used on photons in Astophysics to measure the angular size and other properties of distant stars. In particle collisions, the effect can be observed experimentally as an enhancement of the production of identical bosons with small four-momentum difference Q relative to a production that would occur in a world without Bose-Einstein statistics. In this thesis, BEC are studied between identical pions produced in electron-positron collisions at a center-of-mass energy of 91 GeV in the LEP e+ e− Collider of CERN, near Geneva. The final-state particles of these collisions are detected in the detector of the L3 experiment, which is positioned at one of the four intersections of LEP. According to the present picture of bo...

  16. Proposal for the award of an industrial support contract for dismantling LEP cooling and ventilation equipment

    CERN Document Server

    2000-01-01

    This document concerns the award of an Industrial Service contract for dismantling LEP cooling and ventilation equipment. Following a market survey carried out among 68 firms in fourteen Member States, a call for tenders (IT-2658/ST/SL) was sent on 11 February 2000 to 14 firms and one consortium in eight Member States. By the closing date, CERN had received nine tenders from seven firms and two consortia in six Member States. The Finance Committee is invited to agree to the negotiation of a contract with the firm ZVVZ (CZ), the lowest bidder, for a total amount of 822 005 Swiss francs, not subject to revision. The contract will include options for additional dismantling work in the LEP structure, specified in the tender, for a total amount of 313 311 Swiss francs, not subject to revision, bringing the total amount to a maximum of 1 135 316 Swiss francs, not subject to revision. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: CZ-100%.

  17. Report of the Working Group on High Luminosities at LEP

    International Nuclear Information System (INIS)

    Blucher, E.; Jowett, J.; Merritt, F.; Mikenberg, G.; Panman, J.; Renard, F.M.; Treille, D.

    1991-01-01

    The availability of an order-of-magnitude increase in the luminosity of LEP (CERN's Large Electron-Positron Collider) can dramatically increase its physics output. With the help of a pretzel scheme, it should be possible to increase the peak luminosity beyond 10 32 cm -2 s -1 at the Z energy and to significantly increase the luminosity around the W-pari threshold. This report spells out the physics possibilities opened up by the availability of several 10 7 Z events. The three domains of physics that benefit mostly from this abundance are very accurate measurements of Standard Model parameters, rare decays of the Z, and the physics of fermion-antifermion states such as B physics. The possibilities and implications for the machine and the experiments are presented. The physics possibilities are explored and compared with those at other accelerators. (orig.)

  18. Combination of the LEP II ffbar Results

    CERN Document Server

    Geweniger, C; Elsing, M; Goy, C; Holt, J; Liebig, W; Minard, M N; Renton, P B; Riemann, S; Sachs, K; Ward, P; Wynhoff, S

    2002-01-01

    Preliminary combinations of measurements of the 4 LEP collaborations of the process e+e-->ffbar at LEP-II are presented, using data from the full LEP-II data set where available. Cross-sections and forward-backward asymmetry measurements are combined for the full LEP-II data set. Combined differential cross-sections $\\frac{{\\rm d}\\sigma}{{\\rm d}\\cos\\theta}$ for electron-pairs, muon pair and tau-pair final states are presented. Measurements of the production of heavy flavours are combined. The combined results are interpreted in terms of contact interactions and the exchange Z' bosons and leptoquarks, and within models of low scale gravity in large extra dimensions.

  19. submitter LEP W measurements

    CERN Document Server

    Saeki, Takayuki

    2001-01-01

    of pair-production of W bosons, and LEP2 experiments started. ALEPH, DELPHI, L3, and OPAL experiments observed the pair-production of W bosons for the first time in $e^{+}e^{-}$ collisions. Since then, the four experiments had been collecting data successfully at the energies of 161 - 209 GeV, and the data acquisition of LEP experiments was finished on 2nd November 2001. The total integrated luminosities amounted to about 710 pb$^{-1}$ per each experiment and about 46 k W-pair events were produced in total. In this article, the results on W physics in LEP2 are presented, which cover the total cross section of the W boson pair-production, the W decay branching fractions, the triple gauge-boson couplings and the mass of the W boson. All the results are consistent with the Standard Model expectations within the measurement errors.

  20. Probing the Big Bang with LEP

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1990-06-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is ∼6% of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting that the favorite non-baryonic dark matter candidates of a few years ago. 59 refs., 4 figs., 2 tabs

  1. Probing the Big Bang with LEP

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-06-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is {approximately}6% of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting that the favorite non-baryonic dark matter candidates of a few years ago. 59 refs., 4 figs., 2 tabs.

  2. Probing the Big Bang with LEP

    Science.gov (United States)

    Schramm, David N.

    1990-01-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis, and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is approximately 6 percent of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting than the favorite non-baryonic dark matter candidates of a few years ago.

  3. Prototype steel-concrete LEP dipole magnet

    CERN Multimedia

    1981-01-01

    The magnetic field needed in the LEP dipole magnets was rather low, of a fraction of tesla. This lead to the conception of a novel yoke structure consisting of stacks of 1.5 mm thick low-carbon steel laminations spaced by 4.1 mm with the spaces filled with concrete. The excitation coils were also very simple: aluminium bars insulated by polyester boxes in this prototype, by glass-epoxy in the final magnets. For details see LEP-Note 118,1978 and LEP-Note 233 1980. See also 8111529,7908528X.

  4. Supersymmetric particles at LEP

    International Nuclear Information System (INIS)

    Barbiellini, G.; Coignet, G.; Gaillard, M.K.; Bonneaud, G.; Ellis, J.; Matteuzzi, C.; Wiik, H.

    1979-10-01

    The authors examine whether the supersymmetrization of nature at a mass scale up to 100 GeV can be confirmed or excluded by experiments with LEP. They review the qualitative features of the spectroscopy suggested by supersymmetric theories. Then they discuss possible production rates and means of detection of these particles at LEP. In this framework they make some remarks about other projects for future high energy physics machines which can be used for the study of supersymmetric phenomena. (HSI)

  5. B physics at LEP

    International Nuclear Information System (INIS)

    Kowalewski, R.V.; Rizzo, G.; Stocchi, A.

    1995-01-01

    LEP has contributed substantially to our knowledge of B hadrons. Results will be presented on the lifetimes of weakly decaying B hadrons and on BB oscillations; in each case the LEP results are the most precise measurements of these quantities. The first observations of orbitally excited beauty mesons and of Σ b and Σ b * baryons, obtained during the past year, will be reviewed. Recent measurements of charmonium production in B decays and searches for B c will also be presented. (orig.)

  6. The Heavy Baryon Physics by means LEP

    International Nuclear Information System (INIS)

    Lesiak, T.

    2000-07-01

    This report describes the experimental research about the heavy baryons which were obtained in the last decade at LEP. The most important among them concern the lifetimes of beauty baryons. The methods of theoretical description of heavy hadrons together with the LEP experimental apparatus are also discussed. Heavy baryon studies are shown in a broader perspective of other LEP results: the test of the standard model and the latest measurements concerning the beauty mesons. (author)

  7. Electroweak physics with LEP

    International Nuclear Information System (INIS)

    Davier, M.

    1992-03-01

    The present status of electroweak physics at LEP is presented. The LEP machine and the detectors are described. The decays of Z neutral bosons in both leptonic and hadronic channels are studied. Neutral and charged sector are investigated, and a precise test of the Standard Model is given. Higgs boson searches and τ decay measurements are also described as well as quark mixing and B 0 B-bar 0 oscillations. All the seven contributions are individually indexed and abstracted for the INIS database. (K.A.) 100 refs

  8. The LEP e+e−ring at the energy frontier of circular lepton colliders

    CERN Document Server

    Hofmann, Albert

    2016-01-01

    The Large Electron Positron ring (LEP) was a circular lepton collider at CERN. It operated at beam energies around 47GeV to produce the neutral Z0 particle and above 80 GeV to create pairs of the charged W± bosons. At these high energies the emission of synchrotron radiation was important and demanded a very high voltage of the RF-system. It also influenced the choice of many other machine parameters. This presentation tries to show how the basic accelerator physics was used to optimize the machine and to find innovative solutions for some problems: magnets with concrete between the laminations, modulated cavities, Nb-Cu superconducting cavities, nonevaporable getter pumps, optics analysis from multi-turn data and many more.

  9. Z Physics at LEP 1. Vol. 3

    International Nuclear Information System (INIS)

    Altarelli, G.; Kleiss, R.; Verzegnassi, C.

    1989-01-01

    The contents of this final report from the Workshop on Z Physics at LEP can be divided into two parts. The first part, comprising Vols. 1 and 2, is a relatively concise but fairly complete handbook on the physics of e + e - annihilation near the Z peak (with normal LEP luminosity and unpolarized beams, appropriate for the first phase of LEP operation). The second part (Vol. 3) is devoted to a review of the existing Monte Carlo event generators for LEP physics. A special effort has been made to co-ordinate the different parts of this report, with the aim of achieving a systematic and balanced review of the subject, rather than having simply a collection of separate contributions. (orig.)

  10. Z physics at LEP 1. Vol. 1

    International Nuclear Information System (INIS)

    Altarelli, G.; Kleiss, R.; Verzegnassi, C.

    1989-01-01

    The contents of this final report from the Workshop on Z Physics at LEP can be divided into two parts. The first part, comprising Vols. 1 and 2, is a relatively concise but fairly complete handbook on the physics of e + e - annihilation near the Z peak (with normal LEP luminosity and unpolarized beams, appropriate for the first phase of LEP operation). The second part (Vol. 3) is devoted to a review of the existing Monte Carlo event generators for LEP physics. A special effort has been made to co-ordinate the different parts of this report, with the aim of achieving a systematic and balanced review of the subject, rather than having simply a collection of separate contributions. (orig.)

  11. LEP des inquiétudes subsistent

    CERN Multimedia

    1984-01-01

    Certains propriétaires de terrains et de constructions situés sur le pourtour du LEP restent inquiets: qu'arriverait-il an cas de contestation sur la valeur de réparation d'éventuels dommages causés par la construction du LEP? (1 page).

  12. Colour Reconnection at LEP2

    CERN Document Server

    Nandakumar, Raja

    2001-01-01

    Colour reconnection is the final state interaction between quarks from different sources. It is not yet fully understood and is a source of systematic error for W-boson mass and width measurements in hadronic \\WW decays at LEP2. The methods of measuring this effect and the results of the 4 LEP experiments at $183\\gev\\leq\\rts\\leq 202\\gev$ will be presented.

  13. 20 years ago: first collisions (at LEP)

    CERN Multimedia

    2009-01-01

    It’s been 20 years since the first electron positron collision at LEP, and I have to confess to a little self-indulgence in my message this week. Back then I was a member of the OPAL collaboration, the first to see collisions at LEP just before midnight on 13 August 1989 and almost exactly one month after the first circulating beam. It was a historic moment, and the atmosphere in the OPAL control room, 100 metres underground, was one of anticipation and excitement. We reported back to the LEP control room, champagne duly arrived, and over the next few hours, all the experiments were recording data. The pilot run was as smooth as it could be, and within weeks we were announcing new physics. It’s interesting to contrast the start-up of LEP with that of the LHC. With the benefit of hindsight, LEP seems to have got going without a hitch, and indeed it was a smooth start. We circulated beam on 14 July, much to the joy of one of our host states, and it was just a month ...

  14. Exotic searches at lep

    International Nuclear Information System (INIS)

    Seager, P.

    2001-01-01

    The search for exotic processes at LEP is presented. The Standard Model Higgs has as yet not been observed. This provides freedom to search for processes beyond the Standard Model and even beyond the minimal version of the supersymmetric extension to the Standard Model. This paper outlines the searches for charged Higgs bosons, fermiophobic Higgs bosons, invisibly decaying Higgs bosons, technicolor, leptoquarks, unstable heavy leptons and excited leptons. The results presented are those from the LEP collaborations using data taken up to a centre-of-mass energy of √s = 202 GeV. (author)

  15. CERN's surveyors are pushing back the frontiers of precision

    CERN Multimedia

    2001-01-01

    Aiming at a target on the other side of the Alps, 730 kilometres from CERN, or controlling the positions of thousands of devices to a precision of one tenth of a millimetre, these are just some of the painstaking tasks undertaken by the surveyors in the Positioning Metrology and Surveying Group. These masters of measurement are pushing precision to its very limit.Go down into the LEP tunnel, walk about half a mile and then try to imagine how you could possibly take precise aim at something hundreds of kilometres away without any reference to the surface. Absurd, you might think? Not entirely, for that, in a nutshell, is the geodetic challenge of the Gran Sasso project. Indeed it is just one of the challenges faced by the surveyors in CERN's Positioning Metrology and Surveying Group, whose task it will be to aim a neutrino beam at a detector located in an underground cavern 732 kilometres away at INFN's Gran Sasso laboratory in Italy. The tools for solving such problems are provided by geodetics, the branch of...

  16. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ``Superconductivity in Particle Accelerators``. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.).

  17. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ''Superconductivity in Particle Accelerators''. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.)

  18. Radio frequency superconductivity at CERN: a status report

    International Nuclear Information System (INIS)

    Arnolds-Mayer, G.; Benvenuti, C.; Bernard, P.

    1988-01-01

    Up to 1984 the efforts in superconducting (s.c.) cavity development at CERN were mainly concentrated on 500 MHz cavities, leading to the test of a 5-cell, 500 MHz cavity at PETRA. The results confirmed that the achievable accelerating fields do not decrease at lower frequencies as strongly as previously suspected. Therefore, it was decided in 1984 to concentrate efforts on 352 MHz cavities. This frequency choice is suggested by the fact that LEP will be equipped at the beginning with 128 Cu cavities at 352 MHz which will bring up energies to 55 GeV/beam [5]. There is an obvious interest to install at a later stage s.c. cavities with the same frequency and to use at maximum the existing installation of radio frequency (r.f.) power sources. With the installed r.f. power of 16 MW, LEP could be upgraded to ∼ 90 GeV by using s.c. cavities. This will require the construction, testing and installation of several hundred of s.c. cavities, therefore arguments of economy and reliability are of outstanding importance. The LEP program asks for many additional items and substantial work has gone into the development, construction and testing of cryostats, main couplers, Higher-Order Mode (HOM) couplers and frequency tuners. Besides the main line based on Nb-cavities another development has been pursued and that is the deposition of a thin niobium layer on copper cavities. Results look very promising but more efforts will be needed to reach the same level of know-how as for Nb cavities. 34 references, 7 figures, 2 tables

  19. Radiation protection activities around the CERN accelerators

    International Nuclear Information System (INIS)

    Silari, M.

    1997-01-01

    The staff of the Survey Section of Radiation Protection (RP) working around the CERN accelerators were as usual very busy. The LEP2 programme is now fully on its way, with the installation of additional superconducting RF cavities carried out during both the winter and summer shutdowns. The LEP energy per beam was thus increased to 80.5 GeV in summer and to 86 GeV in autumn. ACOL and LEAR ended their operational life on 19 December producing, for the last time, antiprotons for the experiments in the South Hall; all experiments will be dismantled in 1997. This programme will be partly replaced by the future Antiproton Decelerator, which was approved by the Research Board in November. Several experiments also came to their end in the North and West Experimental Areas of the SPS. NA44 (in EHN1) and NA47 (in EHN2) ended this year. All experiments installed in beam lines HI, H3, XI and X3 in the West Area also terminated, as these beam lines will be dismantled in the course of 1997 to make room for test facilities for the LHC. Several modifications in the West and North Experimental Areas have already been undertaken at the end of the year and will be continued in 1997. Some equipment installed in the West Area will be moved to the North Area. In addition to routine work, several measurements of synchrotron radiation were made in LEP for the two new energy levels reached in 1996. A number of dedicated measurements were also undertaken in EHN1 (North Area) at the end of the year, during the lead-ion run which closed the physics period. A detailed assessment of releases of radioactivity from the ISOLDE facility was also made

  20. People and things. CERN Courier, Mar 1984, v. 24(2)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-03-15

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events. Some time ago, Wolfgang ('Pief') Panofsky, Director of SLAC since 1961 and one of the prime movers behind both the famous two-mile electron linac and the Laboratory itself, announced his intention to step down in 1984. Immediately a search began for a worthy successor. Carlo Rubbia, leader of the UA 1 experiment at CERN which last year discovered the W and Z particles, was named by the US science magazine 'Discover' as its 1983 'Scientist of the Year'. A CERN-ECFA Workshop to study the feasibility of hadron colliders which it might at some time in the future be possible to install in the LEP tunnel, is to be held at the University of Lausanne from 21-24 March. Fermilab will host the 1984 US Summer School on High Energy Particle Accelerators from 13-24 August - the fourth in this series of summer schools.The 1984 CERN School of Computing, the eighth in the biennial series, is being organized in collaboration with the Instituto Estudios Energeticos (Junta de Energia Nuclear, Madrid) and the Facultad de Informatica, Barcelona, and will be held from 9-22 September at Aiguablava, Spain. The 1984 Users' Meeting of the High Energy Discussion Group (HEDG) at Brookhaven on 29-31 March will include a Workshop on the possible physics from an improved Alternating Gradient Synchrotron.

  1. Prototype superconducting radio-frequency cavity for LEP

    CERN Multimedia

    1985-01-01

    This niobium superconducting cavity was part of the prototype stages for an upgrade to LEP, known as LEP-2. Superconducting cavities would eventually replace the traditional copper cavities and allow beam energies of 100 GeV.

  2. slice of LEP beamtube with getter strip

    CERN Multimedia

    1989-01-01

    A section of the LEP beam pipe. This is the chamber in which LEP's counter-rotating electron and positron beams travel. It is made of lead-clad aluminium. The beams circulate in the oval cross-section part of the chamber. In the rectangular cross-section part, LEP's innovative getter-strip vacuum pump is installed. After heating to purify the surface of the getter, the strip acts like molecular sticky tape, trapping any stray molecules left behind after the accelerator's traditional vacuum pumps have done their job.

  3. UX-15 Reaches LEP

    CERN Multimedia

    2001-01-01

    The creation of the world's largest sandstone cavern, not a small feat! At the bottom, cave-in preventing steel mesh can be seen clinging to the top of the tunnel. The digging of UX-15, the cavern that will house ATLAS, reached the upper ceiling of LEP on October 10th. The breakthrough which took place nearly 100 metres underground occurred precisely on schedule and exactly as planned. But much caution was taken beforehand to make the LEP breakthrough clean and safe. To prevent the possibility of cave-ins in the side tunnels that will eventually be attached to the completed UX-15 cavern, reinforcing steel mesh was fixed into the walls with bolts. Obviously no people were allowed in the LEP tunnels below UX-15 as the breakthrough occurred. The area was completely evacuated and fences were put into place to keep all personnel out. However, while personnel were being kept out of the tunnels below, this has been anything but the case for the work taking place up above. With the creation of the world's largest...

  4. INVITATION Replay of the Rudra-Béjart Ballet for the CERN Staff

    CERN Multimedia

    Luciano Maiani

    2000-01-01

    Most of you couldn't attend the ballet performance given by the Rudra-Béjart School at the LEP Ministerial Ceremony on 9 October due to the limited space on the seating - and I felt that was a great pity. But I am very happy to announce now, prompted by the quality of the show and the unanimous enthusiasm of those present, that I have asked the Rudra-Béjart School to repeat the show for you - not on CERN Site this time - but nonetheless in excellent conditions. Not only has Maurice Béjart accepted, but this second performance also gives great joy to the young dancers of his School, who felt so proud to perform at CERN. A private performance will be given for you at the Geneva ARENA on Tuesday 5 December at 8.00 pm sharp, and will last longer than the original performance at CERN: 1 hour 20 instead of 35 minutes. I encourage you all to attend this performance-bring in great numbers yourselves, members of your family, and your friends. 2,020 places are available, for which tick...

  5. Last LEP superconducting module travels to surface

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    The last superconducting module is raised from the Large Electron-Positron (LEP) collider tunnel, through the main shaft, to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  6. Restructuring the Water Supply at CERN

    CERN Document Server

    Nonis, M

    1999-01-01

    The CERN water network is the result of continuous extensions made to meet the different needs of the experiments and accelerators. Several studies concerning the current water consumption and the foreseen needs for the running of the new accelerators show a need to optimize the network and, where possible, reduce the consumption. Site construction works will begin in February 1999 and will continue until 2003; important modification works on the water network will only be possible during the shutdown for the dismantling of LEP. This paper will present the technical outlines and will report the status of the project. ST Division is involved in reorganizing the demineralized and primary cooling water circuits for the accelerators while Services Industriels de Genève (SIG) will be responsible for the works on pumping stations and on water networks.

  7. Preparing last LEP superconducting module for removal

    CERN Multimedia

    Patrice Loïez

    2000-01-01

    The last superconducting module travels along the LEP tunnel towards one of the shafts where it will be lifted to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  8. B physics at LEP

    International Nuclear Information System (INIS)

    Kowalewski, R.V.

    1993-01-01

    The experiments at LEP now dominate the world average b hadron lifetime, and have measured individual lifetimes for the pseudo-scalar B mesons and for b baryons with precisions of 15-20%. Measurements of the average mixing parameter [χ] at LEP suggest substantial B s mixing. Flavor oscillations have been observed directly for the B d , and searches for B s oscillations are underway. Some exclusive B decays have been reconstructed, and the mass of the B s has been measured. Most analyses are statistics limited, so further improvements can be expected as the data sample increases

  9. LEP Electroweak and QCD Exhibition Lepton-Photon 2001

    CERN Multimedia

    2001-01-01

    The LEP collider an at centre-of-mass energies around the Z mass from 1989 to 1995 (LEP1).F om 1995 to 2000 (LEP2),the energy was gradually increased, crossing the W-pair production threshold in 1996,and eaching 208 GeV in 2000. Each of the four experiments,ALEPH,DELPHI,L3 and OPAL,observed around 4.5 million Z and 12 thousand W-pair events.

  10. W boson physics at LEP2

    International Nuclear Information System (INIS)

    Tonazzo, A.

    2000-01-01

    The precision study of W boson properties is one of the most important goals of the LEP2 physics programme. This paper provides an overview of the measurements performed by the four LEP experiments, with particular emphasis on the extraction of the W mass. A review of the results obtained with the data collected until 1999 is also presented

  11. Electroweak physics at LEP2

    CERN Document Server

    Hemingway, Richard J

    2002-01-01

    On 2 November 2000 the LEP machine was finally closed after 12 years of glorious running. With the 4 operating detectors, ALEPH, DELPHI, L3, and OPAL, an enormous wealth of new data at the highest centre- of-mass energies has been recorded. These lectures will focus on aspects of electroweak physics within the energy span of LEP2, namely 130-209 GeV. All current data are in very good agreement with the electroweak standard model. (50 refs).

  12. The radiological impact of the LEP project on the environment

    International Nuclear Information System (INIS)

    Goebel, K.

    1981-01-01

    The siting of the large electron-positron (LEP) accelerator, its experimental areas, and its supporting infrastructure are discussed with respect to the radiological impact on the surrounding areas and on the population in the Pays de Gex and the Canton de Geneve. The final conclusions are based on work done by the former LEP Study Group and by the LEP Radiation Working Group. The calculations and estimates show that the stray ionizing radiation, the radioactivity, and the radiation-induced noxious chemical products released by the LEP installation will have only an insignificant impact on the area, the individual members of the public, and the population as a whole. This result for LEP 'phase 85' can also be extrapolated under reasonable assumptions for LEP 125 - a possible future development phase of the present project. (orig.)

  13. The muon spectrometer of the L3 detector at LEP

    International Nuclear Information System (INIS)

    Peng, Y.

    1988-01-01

    In this thesis the construction of the muon spectrometer of the L3 detector is described, one of the four detectors presently being prepared for experimentation at LEP. This accelerator is built at CERN, Geneva, and is due to start operation in July 1989. One of the unique features of the L3 experiment is the measurement of the momentum of the muons produced in the e + e - collisions iwht an independent muon spectrometer. This makes it possible to study final states involving muons, with high accuracy (δP/P = 2% at 45 GeV). The muon spectrometer consists of 80 large drift chambers, arranged in 16 modules or 'octants', that fill a cylindrical volume of 12 m in length, 5 m inner diameter and 12 m outer diameter. The design of the drift chambers, the construction, the alignment procedure and the test results for the complete octants are described. 51 refs.; 57 figs.; 16 tabs

  14. The Dismantling Project for the Large Electron Positron (LEP) Collider

    CERN Document Server

    Poole, John

    2002-01-01

    The LEP accelerator was installed in a circular tunnel 27 km in length with nine access points distributed around the circumference in the countryside and villages which surround CERN's sites. The dismantling project involved the removal in less than 15 months of around 29000 tonnes of equipment from the accelerator itself and a further 10000 tonnes from the four experiments - all of which were located at an average depth of 100 m below ground level. There was no contamination risk in the project and less than 3% of the materials removed were classified as radioactive. However, the materials which were classified as radioactive have to be temporarily stored and they consume considerable resources. The major difficulties for the project were in the establishment of the theoretical radiological zoning, implementation of the traceability systems and making appropriate radiation measurements to confirm the zoning. The absence of detailed guidelines from the French authorities, having no threshold levels for relea...

  15. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  16. The LEP2 superconducting RF system

    CERN Document Server

    Butterworth, A; Brunner, O; Ciapala, Edmond; Frischholz, Hans; Geschonke, Günther; Peschardt, E; Sladen, J

    2008-01-01

    The upgrade of LEP2 energy to beyond the W boson production threshold required the progressive installation of a completely new radio-frequency (RF) accelerating system. The new system used superconducting (SC) cavities, which complemented and partially replaced the original LEP1 RF system based on conventional copper cavity technology. The final system consisted of 56 copper and 288 SC cavities and provided a peak acceleration of more than 3600 MV/turn. This paper describes the main elements of the SC system and reviews the 5 years of LEP2 operation at gradients well beyond the design specification. Also presented are some of the main performance limitations and problems encountered together with the various solutions and procedures found to eliminate them or reduce their effects.

  17. 4-jet events at LEP

    CERN Document Server

    Bizouard, M A

    1997-01-01

    Results of a special study made by the four LEP experiments on 4-jet events recorded at Vs = 130 - 136 , 161 and 172 GeV are related. This study concerns the ALEPH analysis which has shown an excess of 4-jet events in data recorded at Vs = 130 - 136 GeV. No significant evidence has been found by the 3 other experiments. Results have been combined after several checks which did not show differences of performance between the four LEP experiments.

  18. τ physics at LEP

    International Nuclear Information System (INIS)

    Dam, M.

    1992-05-01

    Untill the end of the 1991 data taking period, the four LEP experiments have collected about 80000 τ + τ - pairs. Many precise measurements of the production and decay properties of the τ lepton at the Z o resonance have been performed. Accurate measurements of the τ lifetime along with measurements of inclusive and exclusive branching ratios provide interesting consistency tests in τ decays. Measurements from LEP confirm nonzero values of the average polarization of the τ, starting to yield precise measurements of the weak mixing parameter sin 2 θ w . A test of CP invariance in τ + τ - production has been performed. 23 refs., 6 tabs

  19. Experiments at CERN in 1988

    International Nuclear Information System (INIS)

    1988-11-01

    This book is a compilation of the current experimental programme at CERN. The experiments listed are being performed at one of the following machines: The Super Proton Synchrotron (SPS), the Proton Synchrotron (PS) and the Synchro Cyclotron (SC). The four experiments planned for the Large Electron Positron machine (LEP) are also listed. The schematic layouts of beams and experimental areas at the different machines appear at the beginning of the report. The experiments are briefly described and a schematic layout of each apparatus is included together with lists of participants and institutions. The status of the experiments (preparation/data-taking/completed) corresponds to the situation at the end of 1988. The 'completed' status means that data-taking is finished, not necessarily the analysis of the results; this status is kept for two years and then the experiment is removed from the catalogue. A complete list of all the experiments published in these books since 1974 is given at the end. (orig./HSI)

  20. Heavy flavour decays at LEP

    CERN Document Server

    Rousseau, D H

    2001-01-01

    Recent heavy flavour results from LEP experiments are presented. Special emphasis is put on complex inclusive B reconstruction methods with high potentialities for lifetime, mixing, CP violation studies and new measurements of IVubl· The new world average of r8-f'r8o is 1.08 ± 0.03. The new world average of Re parameter measured in inclusive B0 decay is 0.001 ± 0.009. The new LEP average of JV ub I measured from inclusive b->ulv branching fraction is 4.

  1. Selected topics on B physics at Lep

    International Nuclear Information System (INIS)

    Roudeau, P.

    1989-05-01

    I will consider mainly those aspects of B physics which are peculiarly relevant at LEP. I will envisage two scenarios for LEP operation: the standard one with the nominal luminosity and also a high luminosity run during which more than 10 8 hadronic Z 0 decays can be registered

  2. High precision measurements of the luminosity at LEP

    International Nuclear Information System (INIS)

    Pietrzyk, B.

    1994-01-01

    The art of the luminosity measurements at LEP is presented. First generation LEP detectors have measured the absolute luminosity with the precision of 0.3-0.5%. The most precise present detectors have reached the 0.07% precision and the 0.05% is not excluded in future. Center-of-mass energy dependent relative precision of the luminosity detectors and the use of the theoretical cross-section in the LEP experiments are also discussed. (author). 18 refs., 6 figs., 6 tabs

  3. People and things. CERN Courier, Mar 1984, v. 24(2)

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events. Some time ago, Wolfgang ('Pief') Panofsky, Director of SLAC since 1961 and one of the prime movers behind both the famous two-mile electron linac and the Laboratory itself, announced his intention to step down in 1984. Immediately a search began for a worthy successor. Carlo Rubbia, leader of the UA 1 experiment at CERN which last year discovered the W and Z particles, was named by the US science magazine 'Discover' as its 1983 'Scientist of the Year'. A CERN-ECFA Workshop to study the feasibility of hadron colliders which it might at some time in the future be possible to install in the LEP tunnel, is to be held at the University of Lausanne from 21-24 March. Fermilab will host the 1984 US Summer School on High Energy Particle Accelerators from 13-24 August - the fourth in this series of summer schools.The 1984 CERN School of Computing, the eighth in the biennial series, is being organized in collaboration with the Instituto Estudios Energeticos (Junta de Energia Nuclear, Madrid) and the Facultad de Informatica, Barcelona, and will be held from 9-22 September at Aiguablava, Spain. The 1984 Users' Meeting of the High Energy Discussion Group (HEDG) at Brookhaven on 29-31 March will include a Workshop on the possible physics from an improved Alternating Gradient Synchrotron

  4. Drift chamber vertex detectors for SLC/LEP

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, K G

    1988-03-01

    Factors influencing the design of drift chamber vertex detectors for SLC and LEP are discussed including global strategy, chamber gas, cell design, and signal processing. The designs of the vertex chambers for the L3 and OPAL experiments at LEP and the Mark II experiment at the SLC are described.

  5. Missing energy at LEP2: W boson and new physics

    International Nuclear Information System (INIS)

    Zerwas, Dirk

    1998-04-01

    In 1995 LEP, CERN's large e + e - collider, increased its center-of-mass energy beyond the Z boson resonance up to 184 GeV in 19997. The data recorded by the ALEPH detector allow to study the parameters of the standard model and to search for new particles. The mass of the W boson can be determined at LEP via the measurement of the cross section of W pairs at the production threshold. Two selections for the final states lνlν and τνqq-bar are developed. In combination with the other decay channels, the mass of the W boson and its branching ratios are measured. The reaction e + e - → Weν gives access to the coupling γWW. The cross section of this process is measured and limits on the anomalous couplings (λ γ ,κ γ ) are determined. The non-minimal standard model with an extra scalar doublet predicts the existence of charged Higgs bosons. A selection of the final state τνqq'-bar is developed. In absence of a signal, limits on the mass of the charged Higgs bosons are determined. In a supersymmetric theory each boson is associated to a fermion and vice versa. A search for sleptons, the supersymmetric partners of the leptons, is performed. The result is interpreted in the framework of the minimal supersymmetric extension of the standard model (MSSM). Moreover, in the MSSM a practically invisible W decay is possible. This decay can be detected if the second W decays to standard model particles. A limit on the invisible branching ratio of the W boson is deduced. (author)

  6. Detectors for LEP: methods and techniques

    International Nuclear Information System (INIS)

    Fabjan, C.

    1979-01-01

    This note surveys detection methods and techniques of relevance for the LEP physics programme. The basic principles of the detector physics are sketched, as recent improvement in understanding points towards improvements and also limitations in performance. Development and present status of large detector systems is presented and permits some conservative extrapolations. State-of-the-art techniques and technologies are presented and their potential use in the LEP physics programme assessed. (Auth.)

  7. A 6 kW at 4.5 K helium refrigerator for CERN's Cryogenic Test Station

    International Nuclear Information System (INIS)

    Gistau, G.M.; Bonneton, M.

    1994-01-01

    For purposes of testing the present LEP superconducting resonant cavities and the future LHC magnets, CERN built a test station the cryogenic power of which is presently supplied by a dedicated 6 kW at 4.5 K helium refrigerator. The thermodynamic cycle is discussed and special emphasis is put on a new cryogenic expansion turbine operating in the liquid phase. Information is given about: the cycle screw compressors' performances, the general performance of the refrigerator, the expected efficiency enhancement due to the liquid turbine, an off-design turn down operation

  8. Pouring concrete to form a model LEP dipole yoke

    CERN Multimedia

    1979-01-01

    The magnetic field needed in the LEP dipole magnets was rather low, of a fraction of tesla. This lead to the conception of a novel yoke structure consisting of stacks of 1.5 mm thick low-carbon steel laminations spaced by 4.1 mm with the spaces filled with concrete. For details see LEP-Note 118,1978 and LEP-Note 233,1980. See also 8111529, 8111710X, 7901023X,7908294

  9. The CERN Control Centre Setting Standards for the 21st Century

    CERN Document Server

    Manglunki, Django

    2008-01-01

    In 2003, CERN decided to build a unified control centre to replace four of its control rooms: the â€ワMeyrin Control Room” which controlled the PS complex, the â€ワPrevessin Control Room” (PCR) which controlled the SPS and until 2000 LEP, the Technical Control Room (TCR), and the Cryogenics Control Room (QCR). After first contemplating a possible implementation next to the â€ワGlobe of Science and Innovation”, it was decided for budgetary reasons to build the new CERN Control Centre (CCC) on the same location as the PCR. This represented a 50% saving in construction costs as most of the technical infrastructure (computer network, water, electricity, ventilation) was already in place, but added stringent time constraints: civil engineering could not begin before the SPS shutdown in November 2004, yet the room had to be ready for the accelerator operations to resume in March 2006. Although this presented a strict construction schedule, it allowed the project to be completely driven by th...

  10. CERN moves to http://home.cern

    CERN Multimedia

    2015-01-01

    A new top-level domain for CERN will be inaugurated next week, with the migration of the core website to http://home.cern.   The new home.cern webpage. The .cern top-level domain is intended for the exclusive use of CERN and its affiliates, and will soon be open for applications from within the community. Clear governance mechanisms for registration and management of .cern domains have been put in place. Applications for domains may be submitted by current members of the CERN personnel, and must be sponsored by a CERN entity such as a department, experiment, project or CERN-recognised experiment. For more information please refer to the registration policy. The acquisition of the .cern top-level domain was negotiated via ICANN’s new gTLD programme by a board comprising members of the CERN Legal Service, Communications group and IT department. .cern is one of over 1,300 new top-level domains that will launch over the coming months and years. The .cern domain nam...

  11. Light Higgs bosons at LEP

    International Nuclear Information System (INIS)

    Ekspong, G.

    1981-11-01

    Among possible production reactions for neutral Higgs bosons it is known that e + e - →Z 0 +H 0 offers advantages of relatively high production cross section and low background from other reactions. With Z 0 decaying to two electrons, which are measured, the existence of a Higgs candidate will be seen as a peak in the missing mass spectrum. It is shown that a sufficiently good mass resolution is obtainable to make a search for Higgs feasible at LEP. In its first phase, the energy of LEP limits the search to Higgs bosons of mass around 10 GeV. (Auth.)

  12. Determination of the LEP beam energy

    CERN Document Server

    Torrence, E

    2000-01-01

    This article describes the determination of the LEP beam energy above the production threshold for W boson pairs. A brief overview of the magnetic extrapolation method is presented which is currently used to determine the LEP beam energy to a relative precision of 2*10/sup -4 /. A new method for beam energy measurements based on an in-line energy spectrometer is presented, and current developments in the commissioning of this device are outlined. (2 refs).

  13. Search for new phenomena at LEP

    International Nuclear Information System (INIS)

    Richard, F.

    1992-01-01

    Recent searches for new particles and rare Z degree decays performed at LEP are reviewed. With the first few 10 4 events collected at LEP, many searches have already been performed: pair-produced heavy fermions and scalar bosons, light Higgs boson from the Standard Model (SM) and its most popular supersymmetric extension (MSSM). A large amount of territory has thus been already covered and one is left, after collecting 10 6 z 0 events with the four LEP experiments, with the difficult task to explore the Higgs sector and other Z 0 decays with very low branching ratios, typically a few 10 -5 . This experimental stuggle already pushes the various detectors at the limit of their capabilities and takes advantage of specific properties: momentum resolution for muons, energy resolution for electrons and photons, identification properties for leptons, hadronic calorimetry and hermeticity for neutrinos. 34 refs., 16 figs., 7 tabs

  14. Recent results from L3+COSMICS at CERN L3 collaboration

    CERN Document Server

    Bertaina, M

    2002-01-01

    11x10 sup 9 cosmic ray muon events above 20 GeV have been collected with the L3+C detector at LEP, CERN, in 1999 and 2000. During the last year the energy, core position and direction of the air showers causing the observed muons could be derived for part of the data. Preliminary results for the vertical muon flux and charge ratio depending on the muon momentum are shown. The influence of the air shower energy on the muon properties is studied. A search for muon rate increase during the solar flare of the 14 sup t sup h July 2000 is performed. Meteorological effects on cosmic ray intensity measurements are discussed.

  15. Probing anomalous gauge boson couplings at LEP

    International Nuclear Information System (INIS)

    Dawson, S.; Valencia, G.

    1994-01-01

    We bound anomalous gauge boson couplings using LEP data for the Z → bar ∫∫ partial widths. We use an effective field theory formalism to compute the one-loop corrections resulting from non-standard model three and four gauge boson vertices. We find that measurements at LEP constrain the three gauge boson couplings at a level comparable to that obtainable at LEPII

  16. Primary structure of Lep d I, the main Lepidoglyphus destructor allergen.

    Science.gov (United States)

    Varela, J; Ventas, P; Carreira, J; Barbas, J A; Gimenez-Gallego, G; Polo, F

    1994-10-01

    The most relevant allergen of the storage mite Lepidoglyphus destructor (Lep d I) has been characterized. Lep d I is a monomer protein of 13273 Da. The primary structure of Lep d I was determined by N-terminal Edman degradation and partially confirmed by cDNA sequencing. Sequence polymorphism was observed at six positions, with non-conservative substitutions in three of them. No potential N-glycosylation site was revealed by peptide sequencing. The 125-residue sequence of Lep d I shows approximately 40% identity (including the six cysteines) with the overlapping regions of group II allergens from the genus Dermatophagoides, which, however, do not share common allergenic epitopes with Lep d I.

  17. Single-cell LEP-type cavity on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    A single-cell cavity, made of copper, with tapered connectors for impedance measurements. It was used as a model of LEP-type superconducting cavities, to investigate impedance and higher-order modes and operated at around 600 MHz (the LEP acceleration frequency was 352.2 MHz). See 8202500.

  18. QCD at LEP

    CERN Document Server

    Metzger, W.J.

    2003-01-01

    Several preliminary QCD results from e+e- interactions at LEP are reported. These include studies of event shape variables, which are used to determine alpha_s and for studies of the validity of power corrections. Further, a study of color reconnection effects in 3-jet Z decays is reported.

  19. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  20. CERN: ALICE in the looking-glass

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    While proton-proton collisions will provide the main research thrust at CERN's planned LHC high energy collider to be built in the LEP tunnel, its 27-kilometre superconducting magnet ring will also be able to handle all the other high energy beams on the CERN menu, opening up the possibility of both heavy ion and electron-proton collisions to augment the LHC research programme. A major new character in the LHC cast - ALICE (A Large Ion Collider Experiment) - has recently published a letter of intent, announcing its intention to appear on the LHC stage. Three letters of intent for major LHC proton-proton experiments were aired last year (January, page 6), and ALICE, if approved, would cohabit with the final solution for the protonproton sector (see box). Only a single major heavy ion experiment is envisaged. The protonproton detectors have some heavy ion capability, but could only look at some very specific signals. (Detailed plans for LHC's electron proton collision option are on hold, awaiting the initial exploration of this field by the new HERA collider which came into operation last year at the DESY Laboratory in Hamburg.) Describing the ALICE detector and its research aims, spokesman Jurgen Schukraft echoes T.D.Lee's observations on the state of particle physics. It is becoming increasingly clear that resolving some of today's particle puzzles require a deeper understanding of the vacuum

  1. Experimentation at LEP

    International Nuclear Information System (INIS)

    Wiik, B.H.

    1979-01-01

    Some of the more basic processes in e + e - annihilation are discussed and the rates estimated. The following topics are treated: 1. Estimate of e + e - → hadrons. 2. Strong Interaction Issues. 3. Weak Interaction Issues. 4. The Higgs Particle(s). The contribution of experiments at LEP energies is assessed. (Auth.)

  2. People and things. CERN Courier, Apr-May 1995, v. 35(3)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-04-15

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: Spokesmen at the CDF experiment at Fermilab's tevatron protonantiproton collider serve two-year terms. Most recently Mel Shochet (Chicago) and Bill Carithers ( LBL ) were co-spokesmen. Before the recent round of elections, Mel declared that he did not want to run again, having served for six and a half years (following the departure of Roy Schwitters to the SSC). Bill Carithers (who replaced Alvin Tollestrup two years ago) did decide to run again. Through a complicated process, a long list of nominees was narrowed to six candidates and an election held via the World Wide Web. Results were announced on January 19: Bill Carithers was reelected for another term, and Giorgio Bellettini (Pisa) becomes his new cospokesman. (see Top discovery' - page 1). Career milestone - Lucien Montanet: Officially 'retiring' from CERN is Lucien Montanet, whose impressive career spans a wide range of physics interests and is characterized by his ebullient enthusiasm. Joining CERN in 1957 for cosmic ray experiments, he went on to participate in pioneer CERN investigations using bubble chambers and using antiprotons, going on in the 1960s to play a prominent role in the discovery and investigation of hadron resonances, and becoming a key figure in the international Particle Data Group. His objective review talks on the complex hadron resonance scene became a feature at international meetings. In the 1970s he pushed the development of the European Hybrid Spectrometer project and went on to join the L3 and Crystal Barrel collaborations at LEP and LEAR respectively. As well as experimental physics, he has also contributed to theoretical work (with Francis Low) and phenomenology (with Leon van Hove). In 1985 he became the CERN-Russia coordinator, a demanding responsibility now inherited by Jim Allaby as coordinator

  3. People and things. CERN Courier, Apr-May 1995, v. 35(3)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: Spokesmen at the CDF experiment at Fermilab's tevatron protonantiproton collider serve two-year terms. Most recently Mel Shochet (Chicago) and Bill Carithers ( LBL ) were co-spokesmen. Before the recent round of elections, Mel declared that he did not want to run again, having served for six and a half years (following the departure of Roy Schwitters to the SSC). Bill Carithers (who replaced Alvin Tollestrup two years ago) did decide to run again. Through a complicated process, a long list of nominees was narrowed to six candidates and an election held via the World Wide Web. Results were announced on January 19: Bill Carithers was reelected for another term, and Giorgio Bellettini (Pisa) becomes his new cospokesman. (see Top discovery' - page 1). Career milestone - Lucien Montanet: Officially 'retiring' from CERN is Lucien Montanet, whose impressive career spans a wide range of physics interests and is characterized by his ebullient enthusiasm. Joining CERN in 1957 for cosmic ray experiments, he went on to participate in pioneer CERN investigations using bubble chambers and using antiprotons, going on in the 1960s to play a prominent role in the discovery and investigation of hadron resonances, and becoming a key figure in the international Particle Data Group. His objective review talks on the complex hadron resonance scene became a feature at international meetings. In the 1970s he pushed the development of the European Hybrid Spectrometer project and went on to join the L3 and Crystal Barrel collaborations at LEP and LEAR respectively. As well as experimental physics, he has also contributed to theoretical work (with Francis Low) and phenomenology (with Leon van Hove). In 1985 he became the CERN-Russia coordinator, a demanding responsibility now inherited by Jim

  4. End view of steel-concrete prototype yoke for LEP dipoles

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The magnetic field needed in the LEP dipole magnets was rather low, of a fraction of tesla. This lead to the conception of a novel yoke structure consisting of stacks of 1.5 mm thick low-carbon steel laminations spaced by 4.1 mm with the spaces filled with concrete. For details see LEP-Note 118,1978 and LEP-Note 233,1980. See also 7908528X, 8111710X, 8111529.

  5. Experiments at CERN in 1985

    International Nuclear Information System (INIS)

    1985-11-01

    This book is a compilation of the current experimental program at CERN. The experiments listed are being performed at one of the following machines: the Super Proton Synchrotron (SPS), the Proton Synchrotron (PS) and the Synchro-Cyclotron (SC). The four experiments to be done by means of the Large Electron Positron machine (LEP) are also listed. The schematic layouts of beams and experiments at the various machines are given in the beginning of the report. The experiment goals and methods are briefly described and a schematic layout of the apparatus is included. Lists of participants and their institutions are also given. The status of the experiments (preparation, data-taking, completed) corresponds to the situation as of 1st November, 1985. ''Completed'' means only that data-taking is finished, not necessarily the analysis of the results; this status is kept for two years and then the experiment is removed from the catalogue. A complete list of all experiments published in this book since 1975 is given at the end of the catalogue. (orig./HSI)

  6. Two years of real progress in European HEP networking: A CERN perspective

    International Nuclear Information System (INIS)

    Carpenter, B.E.; Fluckiger, F.; Gerard, J.M.; Lord, D.; Segal, B.

    1987-01-01

    The last two years have been marked by real progress in networking in HEP. Home-made developments, studies and plans have given way to the use of real networks involving hundreds of HEP and other computers and based on externally produced software and hardware. Within the last year, the first generation of industrial software products following some of the international standards for networking have become available. Related developments are taking place in networking for on-line systems and indeed the LEP experiments are distinguished by their heavy and crucial reliance on both local and wide-area networks. This paper describes the progress made at CERN since the last two years and looks at perspectives for the future. (orig.)

  7. The LEP alarm system

    International Nuclear Information System (INIS)

    Tyrrell, M.W.

    1992-01-01

    Unlike alarm systems for previous accelerators, the LEP alarm system caters not only for the operation of the accelerator but also for technical services and provides the direct channel for personnel safety. It was commissioned during 1989 and has seen a continued development up to the present day. The system, comprising over 50 computers including 5 different platforms and 4 different operating systems, is described. The hierarchical structure of the software is outlined from the interface to the equipment groups, through the front end computers to the central server, and finally to the operator consoles. Reasons are given for choosing a conventional, as opposed to a 'knowledge based' approach. Finally, references are made to a prototype real time expert system for surveying the power converters of LEP, which was conducted during 1990 as part of the alarm development program. (author)

  8. Bottonium production at LEP

    International Nuclear Information System (INIS)

    Abraham, K.J.

    1989-03-01

    The production of γ ('3S 1 ) and η b ( 1 S 0 ) with two gluons from Z decay is investigated. It is found that at LEP luminosities experimental detection will hardly be feasible. (author). 9 refs.; 1 fig

  9. LEP Dismantling Reaches Half-Way Stage

    CERN Multimedia

    2001-01-01

    LEP's last superconducting module leaves its home port... Just seven months into the operation, LEP dismantling is forging ahead. Two of the eight arcs which form the tunnel have already been emptied and the last of the accelerator's radiofrequency (RF) cavities has just been raised to the surface. The 160 people working on LEP dismantling have reason to feel pleased with their progress. All of the accelerator's 72 superconducting RF modules have already been brought to the surface, with the last one being extracted on 2nd May. This represents an important step in the dismantling process, as head of the project, John Poole, explains. 'This was the most delicate part of the project, because the modules are very big and they could only come out at one place', he says. The shaft at point 1.8 through which the RF cavity modules pass is 18 metres in diameter, while each module is 11.5 metres long. Some modules had to travel more than 10 kilometres to reach the shaft. ... is lifted up the PM 1.8 shaft, after a m...

  10. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  11. LEP Dismantling - a first Step into New Era

    CERN Multimedia

    2000-01-01

    The aim of the project is to remove the LEP machine and most of the services from the underground areas in order to install the LHC within the time constraints of its civil engineering and installation programmes The dismantling of LEP will be the first project to be executed under the new INB (Installation Nucléaire de Base) convention for the LHC. This talk will give an overview of the LEP Dismantling project covering traceability, planning, infrastructure and execution. It will explain what it means for our accelerators to be classified as INB's and will introduce the changes in working and safety procedures, which will be enforced from the beginning of October. Note: The presentation will be made in French with the transparencies in English.

  12. The OPAL Detector (an~Omni~Purpose~Apparatus~for~Lep)

    CERN Multimedia

    Schaile, D A; Watson, N; Craciun, M; Hanson, G; Mcmahon, T J; Stokes, W; Wilson, G W; Carter, J; Plane, D; Scharff-hansen, P; Sahr, O M; Rembser, C; Saeki, T; Nisius, R; Campana, S; Kormos, L L; Marchant, T E; Takeda, H; Kupper, M; Hill, J C; Hajdu, C; Hauschild, M; Charlton, D; Kellogg, R; Kluth, S; Asai, S; Nellen, B; Bright-thomas, P; Polok, J; Guenther, P O; Keeler, R; Schwick, C; Stephens, K; Zankel, K; Watkins, P; Chang, C Y; Roney, M; Fischer, H; Dubbert, J

    2002-01-01

    The OPAL Detector (an Omni Purpose Apparatus for Lep) \\\\ \\\\OPAL, a general purpose detector, was designed to study a wide range of unexplored physics at LEP. \\\\ \\\\At LEP1, one of the central issues is the precise determination of the mass, width and couplings to quarks and leptons of the Z$^{0}$ boson. At LEP2 the mass and couplings of the W$^\\pm$ bosons are determined. Accurate measurements of these quantities might reveal the mechanisms by which symmetries are broken. Many topics relating to heavy flavours are studied, including the properties of tau leptons, and the spectroscopy, lifetimes and mixing of hadrons containing b-quarks. \\\\ \\\\There are very active QCD and Two-Photon groups. Among the topics being studied are the determination of the strong coupling constant, $ \\alpha _{S} $, tests of the group structure of QCD, differences between quark- and gluon-induced jets, many aspects of the fragmentation process measurements of many different final states in photon-photon collision, and measurement of str...

  13. Measurement of e-γ interactions at LEP

    International Nuclear Information System (INIS)

    Palomares, C.

    2001-01-01

    This report shows the studies of different eγ interaction processes at LEP. The cross-section of the quasi-real Compton scattering has been measured at centre-of-mass energies between 20 GeV and 185 GeV, using the L3 detector at LEP. The production of single neutral intermediate vector bosons in Compton scattering is analyzed by the DELPHI and OPAL experiments. The production of single excited electrons in a eγ interaction has bee consider as well. (author)

  14. A newly observed Effect affects the LEP Beam Energy

    CERN Document Server

    Brun, G; Galbraith, Peter; Henrichsen, K N; Koratzinos, M; Placidi, Massimo; Puzo, P; Drees, A; Geitz, M A

    1996-01-01

    The LEP magnetic bending field and therefore the beam energy is changed by a current flow over the vacuum chamber. The current is created by trains travelling between the Geneva main station and destinations in France. Some of the rail current leaks into earth and returns to the power station via the LEP tunnel, where the vacuum chamber is one of the conductors. Train leakage currents penetrate LEP at the injection lines from the SPS close to IP1 and between IP5 and IP7, thereby interacting with the magnetic dipole field. The observed changes in B field cause beam energy increases of several MeV.

  15. Rare B decays at LEP

    CERN Document Server

    Kluit, P M

    2001-01-01

    The results of the LEP experiments for rare B decays will be reviewed, covering hadronic final states, radiative and other rare decays and results for the inclusive charmless branching ratio. (8 refs).

  16. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  17. Precision Experiments at LEP

    CERN Document Server

    de Boer, Wim

    2015-01-01

    The Large Electron Positron Collider (LEP) established the Standard Model (SM) of particle physics with unprecedented precision, including all its radiative corrections. These led to predictions for the masses of the top quark and Higgs boson, which were beautifully confirmed later on. After these precision measurements the Nobel Prize in Physics was awarded in 1999 jointly to 't Hooft and Veltman "for elucidating the quantum structure of electroweak interactions in physics". Another hallmark of the LEP results were the precise measurements of the gauge coupling constants, which excluded unification of the forces within the SM, but allowed unification within the supersymmetric extension of the SM. This increased the interest in Supersymmetry (SUSY) and Grand Unified Theories, especially since the SM has no candidate for the elusive dark matter, while Supersymmetry provides an excellent candidate for dark matter. In addition, Supersymmetry removes the quadratic divergencies of the SM and {\\it predicts} the Hig...

  18. Searches for Higgs bosons and supersymmetry at LEP

    CERN Document Server

    van Vulpen, I B

    2004-01-01

    This note presents an overview of the main results from searches for Higgs bosons and supersymmetry at LEP. Most of the results presented here are combined results from the four LEP experiments (ALEPH, DELPHI, L3 and OPAL). No signal is observed and the (negative) search results are interpreted in a wide class of models allowing parameter space to be excluded. All limits are set at 95% CL.

  19. LEP asymmetries and fits of the standard model

    International Nuclear Information System (INIS)

    Pietrzyk, B.

    1994-01-01

    The lepton and quark asymmetries measured at LEP are presented. The results of the Standard Model fits to the electroweak data presented at this conference are given. The top mass obtained from the fit to the LEP data is 172 -14-20 +13+18 GeV; it is 177 -11-19 +11+18 when also the collider, ν and A LR data are included. (author). 10 refs., 3 figs., 2 tabs

  20. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The structure of LEP, with long bending magnets and little access to the vacuum chamber between them, required distributed pumping. This is an early prototype for the LEP vacuum chamber, made from extruded aluminium. The main opening is for the beam. The small channel to the right is for cooling water, to carry away the heat deposited by the synchroton radiation from the beam. The 4 slots in the channel to the left house the strip-shaped ion-getter pumps (see 7810255). The ion-getter pumps depended on the magnetic field of the bending magnets, too low at injection energy for the pumps to function well. Also, a different design was required outside the bending magnets. This design was therefore abandoned, in favour of a thermal getter pump (see 8301153 and 8305170).

  1. LEP and results obtained by DELPHI after four years of operation; LEP i wyniki uzyskane przez DELPHI po czterech latach dzialania

    Energy Technology Data Exchange (ETDEWEB)

    Blocki, J. [Warsaw Univ. (Poland). Inst. Fizyki Doswiadczalnej; Brueckman de Renstrom, P.; Budziak, A. [Institute of Nuclear Physics, Cracow (Poland)] [and others

    1993-10-01

    We characterize the most important problems of modern elementary particles physics, for the solution of which the LEP (Large Electron Positron) accelerator was built. We present the characteristics of this accelerator. The structure and properties of the DELPHI detector are described with special emphasis on the contribution of Polish groups. The most important results obtained so far in the LEP accelerator are discussed. (author). 12 refs, 17 figs, 1 tab.

  2. Electroacoustic oscillations in the LEP SC. cavities

    CERN Document Server

    Boussard, Daniel; Tückmantel, Joachim

    1996-01-01

    The LEP superconducting cavities have been plagued by electroacoustic oscillations. Tests have been done to eliminate these by a special feed-back loop in the tuning circuit as well as a feed-forward path, but they could only be eliminated safely up to the design field by running the cavities close to tune neglecting beam-loading compensation. This technique proved successful during the first LEP2 test run at 70 GeV. The mechanism and essential parameters driving these oscillations have been analysed as well as the corresponding stronger loading of the power coupler.

  3. Measurement of the W mass at LEP

    CERN Document Server

    Przysiezniak, H

    2000-01-01

    The mass of the W boson is measured using W pair events collected with the ALEPH, DELPHI, L3 and OPAL detectors at LEP2. Three methods are used: the cross section method, the lepton energy spectrum method and the direct reconstruction method, where the latter is described more in detail. For data collected at E/sub cm/=161, 172 and 183 GeV, the following combined preliminary result is obtained: M/sub W//sup LEP/=80.37+or-0.08 GeV/c/sup 2/. (5 refs).

  4. Soft gluon coherence at LEP

    International Nuclear Information System (INIS)

    Gaidot, A.

    1993-01-01

    After a brief overview of the experimental status on colour coherence at LEP we will focus on two recent approaches to the subject: the sub-jet multiplicities and the azimuthal correlations between pair of particles. (author)

  5. Cryogenics for CERN experiments past, present and future

    CERN Document Server

    Bremer, J; Delikaris, D; Delruelle, N; Kesseler, G; Passardi, Giorgio; Rieubland, Jean Michel; Tischhauser, Johann; Haug, F

    1997-01-01

    Use of cryogenics at CERN was originated (in the 1960s) by bubble chambers and the associated s.c. solenoids. Complex cryoplants were installed to provide cooling at LH2 and LHe temperatures. Continuity (in the 1970s) in He cryogenics for experiments was provided by spectrometer magnets for fixed target physics of the SPS accelerator. More recently (in the 1980s), large "particle-transparent" s.c. solenoids for collider experiments (LEP) have been built demanding new cryoplants. The LHC experiments (in the 2000s) will continue the tradition with s.c. dipoles (ALICE and LHCb), solenoids (CMS, ATLAS) and toroids (ATLAS) of unusual size. Cryogenics for experiments using noble liquids follows the same trend since the development (in the 1970s) of the first shower LAr detectors. A LKr calorimeter (about 10 m3) will be operated in 1996 and the ATLAS experiment foresees a set of three huge LAr calorimeters (almost 90 m3 total volume of liquid) to be installed underground.

  6. Building, running and dismantling the world's largest scientific instrument with the same database tools

    CERN Document Server

    Billen, R; CERN. Geneva. SPS and LHC Division

    2001-01-01

    Many people have heard of CERN, the European Organisation for Nuclear Research, and its enormous scientific masterpiece LEP, the Large Electron Positron collider. This is a 27-kilometer long particle accelerator designed to peek deeply inside the structure of matter in the framework of fundamental research. Despite the millions of Internet users, few of them know that the World Wide Web was invented at CERN in 1989, the same year that LEP was commissioned. Even fewer people know that CERN was among the first European organisations to have purchased the Oracle RDBMS back in 1983 and effectively put it in use for mission critical data management applications. Since that date, Oracle databases have been used extensively at CERN and in particular for technical and scientific data. This paper gives an overview of the use of Oracle throughout the lifecycle of CERN's flagship: the construction, exploitation and dismantling of LEP.

  7. People and things. CERN Courier, Dec 1995, v. 35(9)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-12-15

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: José Mariano Gago, president of LIP, the national Laboratory for experimental high energy physics and related research and development projects, in Lisbon becomes Portuguese Minister of Science and Technology. As well as being a prominent Portuguese particle physicist, Professor Gago is well known at CERN and played a vital role in his country's becoming a CERN Member State from 1986. (For a report on CERN-Portugal affairs, see September, page 22.) CERN Research Director from 1989- 93, Walter Hoogland left CERN in October to return to the Dutch NIKHEF Laboratory. Director General Chris Llewellyn Smith recalled Walter Hoogland's valuable contributions in strengthening ties between CERN and non-Member States anxious to participate in CERA/'S experimental programme, and in the establishment of the Detector Research and Development Committee which blazed a trail for work towards LHC detectors. Brian Foster of Bristol has been invited to serve for the period from 1 September to 31 December 1995 as a member and for the period 1 January to 31 August 1998 as Chairman of the UK Particle Physics and Astronomy Research Council's Particle Physics Committee, succeeding David Saxon.; Aldo Michelini retires: Following a successful and wide ranging career at the forefront of particle physics, Aldo Michelini formally retired from CERN at the end of October. He joined CERN in 1960, following a series of experiments with tracking chambers, including some time with Jack Steinberger's group in Columbia. At CERN, he first worked on the CERN Wilson chamber, which now performs valuable service as an aquarium! Four years later, he led a CERN/ETH Zurich/IC London collaboration studying strong interactions using a then novel approach - spark chambers in a large magnet. From 1969 - 73, he led the Omega spectrometer

  8. People and things. CERN Courier, Dec 1995, v. 35(9)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: José Mariano Gago, president of LIP, the national Laboratory for experimental high energy physics and related research and development projects, in Lisbon becomes Portuguese Minister of Science and Technology. As well as being a prominent Portuguese particle physicist, Professor Gago is well known at CERN and played a vital role in his country's becoming a CERN Member State from 1986. (For a report on CERN-Portugal affairs, see September, page 22.) CERN Research Director from 1989- 93, Walter Hoogland left CERN in October to return to the Dutch NIKHEF Laboratory. Director General Chris Llewellyn Smith recalled Walter Hoogland's valuable contributions in strengthening ties between CERN and non-Member States anxious to participate in CERA/'S experimental programme, and in the establishment of the Detector Research and Development Committee which blazed a trail for work towards LHC detectors. Brian Foster of Bristol has been invited to serve for the period from 1 September to 31 December 1995 as a member and for the period 1 January to 31 August 1998 as Chairman of the UK Particle Physics and Astronomy Research Council's Particle Physics Committee, succeeding David Saxon.; Aldo Michelini retires: Following a successful and wide ranging career at the forefront of particle physics, Aldo Michelini formally retired from CERN at the end of October. He joined CERN in 1960, following a series of experiments with tracking chambers, including some time with Jack Steinberger's group in Columbia. At CERN, he first worked on the CERN Wilson chamber, which now performs valuable service as an aquarium! Four years later, he led a CERN/ETH Zurich/IC London collaboration studying strong interactions using a then novel approach - spark chambers in a large magnet. From 1969 - 73, he

  9. Testing the tau lepton universality at LEP

    CERN Document Server

    Dittmar, M

    1991-01-01

    Measurements of r lepton production and its decay properties at LEP are reviewed and compared with the corresponding µ results. Excellent agreement of lepton universality in z0 decays has been found, taking the average values from the four LEP experiments, the ratio of the partial width for z0 decays into r- and µ pairs is 0.996 ± 0.016. The search for flavour changing leptonic z0 decays is discussed; from the absence of any signal, stringent limits (95% c.l.) of the zo branching ratio of 7.2 x 10-5 and 35 x io-5 were obtained for z0 decays into er and µr. The first preliminary results on leptonic r branching ratios are in good agreement with the world average. Therefore the existing two sigma puzzle, the too small leptonic branching ratio or the too long r lifetime, remains. These first results indicate also that much higher precision should be achieved during the next years of LEP, sufficient to establish or resolve this problem. Finally, the r polarisation measurements are compared. The most accurate m...

  10. Compositeness at LEP

    International Nuclear Information System (INIS)

    Bardadin-Otwinowska, M.

    1992-01-01

    Searches for compositeness made by four LEP collaborations are reported. Limits are set on excited fermion masses and couplings. A limit on the branching ratio Z→γγγ is determined. Four-fermion and two-fermion, two-boson contact terms are studied in the reactions e + e - →l + l - and e + e - →γγ respectively and limits are obtained on the energy scale of a new interaction

  11. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  12. Purification and characterization of Lep d I, a major allergen from the mite Lepidoglyphus destructor.

    Science.gov (United States)

    Ventas, P; Carreira, J; Polo, F

    1992-04-01

    A major allergen of the storage mite Lepidoglyphus destructor (Lep d I) has been purified by affinity chromatography using an anti-Lep d I monoclonal antibody. The purity of the protein obtained by this procedure was assessed by reverse-phase HPLC. Lep d I displayed a molecular weight of 14 kD on SDS-PAGE under non-reducing conditions, and 16 kD in the presence of a reducing agent. Analytical IEF revealed a little charge microheterogeneity, showing three bands with pIs 7.6-7.8. Purified Lep d I retained IgE-binding ability, as proved by immunoblotting experiments after SDS-PAGE and RAST with individual sera from L. destructor-sensitive patients. Results from the latter technique demonstrated that 87% of L. destructor-allergic patients had specific IgE to Lep d I, and a good correlation between IgE reactivity with L. destructor extract and Lep d I was found. In addition, RAST inhibition experiments showed that IgE-binding sites on Lep d I are major L. destructor-allergenic determinants, since Lep d I could inhibit up to 75% the binding of specific IgE to L. destructor extract; on the other hand, Lep d I did not cross-react with D. pteronyssinus allergens.

  13. Address on the report of the High Energy Particle Physics Review Group's inquiry into UK participation in high energy particle physics

    International Nuclear Information System (INIS)

    Kendrew, J.

    1985-01-01

    The UK international participation is mainly at CERN although some British high energy physicists work at DESY in Germany, the Fermi Laboratory in the USA and, indeed, elsewhere as well. The UK subscription to CERN is 16% of the budget. The present state of high energy physics at CERN is summarized and the building of LEP explained. The Group's recommendations are that the UK's financial contribution to CERN should continue until LEP is built (by the early 1990s) but should then, because of the prevailing financial climate gradually be reduced by 25%. (U.K.)

  14. Radiation protection considerations in the design of the LHC, CERN's large hadron collider

    International Nuclear Information System (INIS)

    Hoefert, M.; Huhtinen, M.; Moritz, L.E.; Nakashima, H.; Potter, K.M.; Rollet, S.; Stevenson, G.R.; Zazula, J.M.

    1996-01-01

    This paper describes the radiological concerns which are being taken into account in the design of the LHC (CERN's future Large Hadron Collider). The machine will be built in the 27 km circumference ring tunnel of the existing LEP collider at CERN. The high intensity of the circulating beams (each containing more than 10 14 protons at 7 TeV) determines the thickness specification of the shielding of the main-ring tunnel, the precautions to be taken in the design of the beam dumps and their associated caverns and the radioactivity induced by the loss of protons in the main ring by inelastic beam-gas interactions. The high luminosity of the collider is designed to provide inelastic collision rates of 10 9 per second in each of the two principal detector installations, ATLAS and CMS. These collisions determine the shielding of the experimental areas, the radioactivity induced in both the detectors and in the machine components on either side of the experimental installations and, to some extent, the radioactivity induced in the beam-cleaning (scraper) systems. Some of the environmental issues raised by the project will be discussed. (author)

  15. Design of a 120 MeV $H^{-}$ Linac for CERN High-Intensity Applications

    CERN Document Server

    Gerigk, F

    2002-01-01

    The SPL (Superconducting Proton Linac) study at CERN foresees the construction of a 2.2 GeV linac as a high beam-power driver for applications such as a second-generation radioactive ion beam facility or a neutrino superbeam. At the same time such a high-performance injector would both modernize and improve the LHC injection chain. The 120 MeV normal-conducting section of the SPL could be used directly in a preliminary stage for H- charge-exchange injection into the PS Booster. This would increase the proton flux to the CERN experiments while also improving the quality and reliability of the beams for the LHC. The 120 MeV linac consists of a front-end, a conventional Drift Tube Linac (DTL) to 40 MeV and a Cell Coupled Drift Tube Linac (CCDTL) to the full energy. All the RF structures will operate at 352 MHz, using klystrons and RF equipment recovered from the LEP collider. This paper concentrates on the design of the 3 to 120 MeV section. It introduces the design criteria for high-stability beam optics and th...

  16. Lack of specific hybridization between the lep genes of Salmonella typhimurium and Bacillus licheniformis

    NARCIS (Netherlands)

    van Dijl, J M; Jong, de Anne; Smith, H; Bron, Sierd; Venema, G

    1991-01-01

    This paper describes an attempt to clone the Bacillus licheniformis lep gene, encoding signal peptidase, using the Salmonella typhimurium lep gene as a hybridization probe. Although a hybridizing fragment was obtained, DNA sequence analysis indicated that it did not contain the lep gene. Instead,

  17. Polarization at LEP: Status and prospects

    International Nuclear Information System (INIS)

    Koutchouk, J.P.

    1993-01-01

    The first evidence of a measurable signal of transverse polarization was observed at the end of 1990. In 1991, polarized beams were repeatedly obtained with average and peak polarization levels of 10 and 19% and used to calibrate the beam energy by resonant depolarization. Simulation studies show that the polarization level can be increased above the 50% by harmonic spin matching. This is sufficient to open the possibility of doing physics with longitudinally polarized beams. A spin rotator has been designed for LEP. The feasibility study of operating LEP in this mode concludes at the possibility of providing polarized beams at a good performance level, if the high photon background can be reduced to a tolerable level. (author). 10 refs, 3 figs, 5 tabs

  18. First Tuesday @ CERN: Industrial Impact of Information Technology from CERN

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    CERN is where the web was born, and remains a hothouse of innovation in information technology (IT). In this fourth First Tuesday @ CERN, we look at industrial partnership at CERN in the IT area from several different angles. The approach taken by CERN with software licencing - a very hot topic in the world of IT - will be discussed. The benefits that CERN hardware and software suppliers gain from working with CERN will be presented, and the CERN openlab, a new approach to industrial partnership at CERN, will be covered. A novel ingredient of this First Tuesday @ CERN is that it will be run in parallel with a similar event for the business community in London, and there will be webcast presentations between the Queen Elizabeth II Conference Centre in London and CERN during the event. Thus, First Tuesday @ CERN will take on a truly European dimension, to reflect CERN's European character.

  19. First Tuesday @ CERN: Industrial Impact of Information Technology from CERN

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    CERN is where the web was born, and remains a hothouse of innovation in information technology (IT). In this fourth First Tuesday @ CERN, we look at industrial partnership at CERN in the IT area from several different angles. The approach taken by CERN with software licencing - a very hot topic in the world of IT - will be discussed. The benefits that CERN hardware and software suppliers gain from working with CERN will be presented, and the CERN openlab, a new approach to industrial partnership at CERN, will be covered. A novel ingredient of this First Tuesday @ CERN is that it will be run in parallel with a similar event for the business community in London, and there will be webcast presentations between the Queen Elizabeth II Conference Centre in London and CERN during the event. Thus, First Tuesday @ CERN will take on a truly European dimension, to reflect CERN's European character. More information: http://www.rezonance.ch, or view the joint UK event program

  20. Heavy quark physics from LEP

    International Nuclear Information System (INIS)

    Dornan, P.J.

    1997-01-01

    A review of some of the latest results on heavy flavor physics from the LEP Collaborations is presented. The emphasis is on B physics, particularly new results and those where discrepancies is given of the many techniques which have been developed to permit these analyses

  1. Heavy quark physics from LEP

    Energy Technology Data Exchange (ETDEWEB)

    Dornan, P.J. [Imperial College of Science Technology and Medicine, London (United Kingdom)

    1997-01-01

    A review of some of the latest results on heavy flavor physics from the LEP Collaborations is presented. The emphasis is on B physics, particularly new results and those where discrepancies is given of the many techniques which have been developed to permit these analyses.

  2. People and things. CERN Courier, Oct 1995, v. 35(7)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: Gentner-Kastler Prize: T he prestigious Gentner-Kastler Prize, jointly awarded by the French and German Physical Societies, goes this year to Walter Schmidt-Parzefall of DESY, formerly leader of the Argus group at the DORIS electron-positron collider at the DESY Laboratory Hamburg, which has made many significant contributions to heavy quark spectroscopy. Subsequently he joined Hamburg University, and has recently played a prominent role in establishing the HERA-B experiment at DESY's HERA electron-proton collider. Before working at DESY, Schmidt-Parzefall spent some time at CERN's Intersecting Storage Rings.; Thirty ISR years: A discreet lunch event at CERN marked the 30th anniversary of the historic decision to go ahead with the Intersecting Storage Rings (ISR) at CERN. Among those present were Victor Weisskopf, CERN's Director General at the time, and Mervyn Hine, responsible for CERN's longterm planning under Weisskopf. The ISR, the world's first proton collider, came into operation in 1971, ahead of schedule, but was shut down in 1984, also ahead of schedule, as part of the bid to divert funds to LEP construction. The ISR, which used the idea of particle stacking to build up the stored beam intensity, was long regarded as a masterpiece of accelerator building, and blazed a trail for CERN's future accelerator projects. Many CERN specialists cut their accelerator teeth at the ISR.; ICTP Dirac Medal: The International Centre for Theoretical Physics (ICTP), Trieste, is awarding its 1995 Dirac Medal to Michael Berry of Bristol for his discovery of the non-integrable phase that arises in adiabatic processes in quantum theory. This effect was first detected in 1986 in an optics experiment by Tomita and Chiao in which the rotation of the polarization plane of a

  3. Important changes for cern.market and other newsgroups at CERN

    CERN Multimedia

    2007-01-01

    The "cern.market" is moving to the web! You should now use http://cern.ch/cern.market to read and post messages. After 25 June it will no longer be possible to post messages from a newsreader. More generally, the CERN newsgroup service (news.cern.ch) will be progressively decommissioned in June/July 2007. The newsgroup functionality for CERN discussion forums such as the cern.market is moving to web-based discussion forums and RSS feeds. As of 9 July, public services will need to be used to access public newsgroups (those not starting with "cern"), as the internal news.cern.ch server will cease to provide them. Please read http://cern.ch/mail/help/?fdid=33 for more information. The Mail Services team

  4. LEP shines light on dark matter

    International Nuclear Information System (INIS)

    Fox, Patrick J.; Harnik, Roni; Kopp, Joachim; Tsai, Yuhsin

    2011-01-01

    Dark matter pair production at high energy colliders may leave observable signatures in the energy and momentum spectra of the objects recoiling against the dark matter. We use LEP data on monophoton events with large missing energy to constrain the coupling of dark matter to electrons. Within a large class of models, our limits are complementary to and competitive with limits on dark matter annihilation and on WIMP-nucleon scattering from indirect and direct searches. Our limits, however, do not suffer from systematic and astrophysical uncertainties associated with direct and indirect limits. For example, we are able to rule out light (< or approx. 10 GeV) thermal relic dark matter with universal couplings exclusively to charged leptons. In addition, for dark matter mass below about 80 GeV, LEP limits are stronger than Fermi constraints on annihilation into charged leptons in dwarf spheroidal galaxies. Within its kinematic reach, LEP also provides the strongest constraints on the spin-dependent direct detection cross section in models with universal couplings to both quarks and leptons. In such models the strongest limit is also set on spin-independent scattering for dark matter masses below ∼4 GeV. Throughout our discussion, we consider both low energy effective theories of dark matter, as well as several motivated renormalizable scenarios involving light mediators.

  5. Heavy quark physics in ep collisions at LEP+LHC

    International Nuclear Information System (INIS)

    Ali, A.; Barreiro, F.; Troconiz, J.F. de; Schuler, G.A.; Bij, J.J. van der

    1990-12-01

    We study electroweak production of heavy quarks - charm, beauty, and top - in deep inelastic electron-proton collisions at the proposed LEP+LHC collider at CERN. The assumed energy for the collisions is E e =50 GeV, E p =8000 GeV, providing an ep center of mass energy, √s≅1.26 TeV. We invoke the boson-gluon fusion model to estimate theoretical cross sections and distributions for the heavy quarks. Higher order QCD corrections are only approximately taken into account, by assuming a (normalization) K-factor of 2 for the charm and beauty quark production rates and incorporating the parton shower cascades. With these assumptions and the parameterization of Eichten et al. for the structure functions (EHLQ, set 1), we find the following cross sections: σ(ep→c+X)≅O(3 μb), σ(ep→b+X)≅O(40 nb), and σ(ep→t+X)≅4 pb for m t =120 GeV, decreasing to 0.5 pb for m t =250 GeV. These cross sections would provide O(6x10 9 ) charmed hadrons, O(8x10 7 ) beauty hadrons, and O(10 3 ) top hadrons, for an integrated ep luminosity of 1000 pb -1 . The heavy quark rates in ep collisions are considerably smaller than the corresponding rates in pp collisions at LHC, with √s=16 TeV. This gives a clear advantage to pp collisions for top searches. However, for the charmed and beauty quarks only a tiny fraction of the cross sections in p+p→Q+X can be triggered in comparison to the corresponding cross sections in e+p→Q+X, resulting in comparable number of measured heavy quark events in the ep and pp mode. We sketch the energy-momentum profile of heavy quark events in ep collisions and illustrate the kind of analyses that experiments at the LEP+LHC collider would undertake to quantitatively study heavy quark physics. In particular, prospects of measuring the particle-antiparticle mixing parameter x s =ΔM/Γ for the B s 0 -anti B s 0 meson system are evaluated, and search strategies for the top quark in ep collisions are presented. (orig.)

  6. Important changes for cern.market and other newsgroups at CERN

    CERN Multimedia

    2007-01-01

    The "cern.market" is moving to the web! You should now use http://cern.ch/cern.market to read and post messages. After 25 June it will no longer be possible to post messages from a newsreader. More generally, the CERN newsgroup service (news.cern.ch) will be progressively decommissioned in June/July 2007. The newsgroup functionality for CERN discussion forums such as the cern.market is moving to web-based discussion forums and RSS feeds. As of 9 July, public services will need to be used to access public newsgroups (those not starting with "cern"), as the internal news.cern.ch server will cease to provide them. Please read go there for more information. The Mail Services team

  7. Summary of the Photon Structure Functions - Measurements at LEP

    International Nuclear Information System (INIS)

    Przybycien, M.

    2002-01-01

    The present status of the photon structure functions measurements at LEP is discussed. The short introduction to the kinematics and theoretical framework of the structure functions measurements at LEP is given first. Then follow presentations of the most important measurements, ranging from the QED photon structure function, through the hadronic structure functions of real and virtual photons, and at the end the first measurement of the electron structure function is shown. (author)

  8. Synchrotron radiation interferences between small dipoles at LEP

    International Nuclear Information System (INIS)

    Bovet, C.; Burns, A.; Meot, F.; Placidi, M.; Rossa, E.; Vries, J. de

    1997-06-01

    Synchrotron Radiation interferences between small dipoles in the very low (visible) frequency range have been studied at the LEP diagnostic mini-wiggler. Their understanding allowed a substantial brightness gain by adequate layout modifications. The phenomenon is described analytically in terms of time coherence effects. This serves as a basis for further detailed numerical simulations of the experiment by means of stepwise ray-tracing, and allows precise interpretation of the spectral, polarization and intensity measurements collected at LEP. It also provides guidelines for SR diagnostic at injection energy in LHC

  9. Measurement of muon pair production around the Z-resonance using the L3 detector at LEP

    International Nuclear Information System (INIS)

    Timmermans, C.W.J.P.

    1992-01-01

    The Z and W ± bosons, both detected at CERN in 1983, are among the most important particles in the standard model of electro-weak interactions. Together with the massles γ, these heavy bosons are the carriers of the so-called electro-weak force. The LEP (Large Electron Positron) collider provides the opportunity of a precise measurement of the properties of the Z-boson. Its mass M Z and width Γ Z are key-parameters in the standard model. In spite of the relatively small partial width Γ μ for Z -> μ + μ - , the reaction e + e - >μ + μ - (γ) is the cleanest channel to test the standard model. The measurements of the lineshape and forward-backward asymmetry of this reaction belong to the best methods to determine g V and g A , the neutral current vector and axial vector coupling constants. Accurate measurements of M Z , Γ Z , Γ μ , g V and g A provide a stringent test of consistencies and predictions of the standard model. The measurements presented here are performed with the L 3 detector, one of the four detectors at the LEP-ring. In this thesis, first a number of aspects of the standard model are discussed. This is followed by a description of the L 3 detector, in particular the muon detector. After that the measurements are presented. Finally, the measured lineshape and asymmetry are interpreted in terms of standard model variables, and compared to standard model predictions. (author). 62 refs., 50 figs., 22 tabs

  10. Linear accelerator laboratory progress report: July 1983 - October 1985

    International Nuclear Information System (INIS)

    1987-01-01

    Different experiments presented are Asterix at Lear (CERN), DM2 at DCI (Orsay), NA3 and NA9 at SPS (CERN), NA9 at SPS, Cello at Desy (Hamburg), NA14 and NA31 at SPS, UA2 at SpantipS (CERN), the experiment ''proton meanlife'' at the underground laboratory of Modane. Experiments in preparation are Aleph (Lep), Delphi (Lep), H1. Technical projects are researches in acceleration techniques, experimental data acquisition with Fastbus standard and event analysis in 3D graphics [fr

  11. The LEP injection monitors: Design and first results with beam

    International Nuclear Information System (INIS)

    Burtin, G.; Colchester, R.; Fischer, C.; Halvarsson, B.; Hemery, J.Y.; Jung, R.; Levitt, S.; Vouillot, J.M.

    1989-01-01

    The LEP injection monitors comprise of split foil monitors, luminescent screens and beam stoppers. The monitors are described with particular emphasis on their special features. These include: their low loss factors, their protection against synchrotron radiation and the screen read-out with a CCD chip. The results obtained during the positron injection tests in LEP in July 1988 are reported. 8 figs

  12. Determination of the LEP Beam Energy using Radiative Fermion-pair Events, 2004

    CERN Document Server

    Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Asai, S; Axen, D A; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brown, R M; Burckhart, H J; Campana, S; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, A; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, R J; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanzaki, J; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, A; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rossi, A M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    2004-01-01

    We present a determination of the LEP beam energy using "radiative return" fermion-pair events recorded at centre-of-mass energies from 183 GeV to 209 GeV. We find no evidence of a disagreement between the OPAL data and the LEP Energy Workings Group's standard calibration. Including the energy- averaged 11 MeV uncertainty in the standard determination, the beam energy we obtain from the OPAL data is higher than that obtained from the LEP calibration by 0+-34(stat.)+-27(syst.)MeV

  13. Prospects for the Higgs boson in e+e- collisions at LEP 200

    International Nuclear Information System (INIS)

    Gross, E.; Lellouch, D.; Read, A.L.

    1998-05-01

    The authors evaluate the combined sensitivity of the four LEP collaborations to exclude or discover the Standard Model Higgs boson with the LEP collider at centre-of-mass energies of 189-200 GeV. It is argued that neighter Standard Model nor the Supersymmetric Higgs search benefits from an upgrade of LEP to its peak centre-of-mass energy (e.g. upgrade 198 GeV to 200 GeV) if this degrades the integrated luminosity by a factor of two or more. 7 refs., 11 figs

  14. A new LAN concept for LEP machine networks

    CERN Document Server

    Guerrero, L E

    1995-01-01

    LEP networks, implemented in 1987, are based on two Token-ring backbones using TDM as the transmission medium. The general topology is based on routers and on a distributed backbone. To avoid the instabilities introduced by the TDM and all the conversion layers it has been decided to upgrade the LEP machine network and to evaluate a new concept for the overall network topology. The new concept will also fulfil the basic requirements for the future LHC network. The new approach relies on a large infrastructure which connects all the eight underground pits of LEP with single-mode fibres from the Prevessin control room (PCR). From the bottom of the pits, the two adjacent alcoves will be cabled with multi-mode fibres. FDDI has been selected as the MAC protocol. This new concept is based on switching and routing between the PCR and the eight pits. In each pit a hub will switch between the FDDI LMA backbone and the local Ethernet segments. Two of these segments will reach the alcoves by means of a 10Base-F link. In...

  15. Deformation analysis of LEP

    International Nuclear Information System (INIS)

    Jin, F.; Mayoud, M.; Quesnel, J.P.

    1999-01-01

    LEP (Large Electron Positron Collider) is in an underground accelerator, located in a tunnel of 27 km circumference and from 40 to 160 m deep. It is the largest accelerator in the world. The electrons and positrons circulate in opposite directions and hit each other in four points. The collisions are observed by means of detectors, housed in large underground caverns. Due to the sensitivity of such accelerators to alignment errors a complete leveling is made every year, followed by a 'smoothing' process - i.e. an optimal refinement of successive positions - which makes that the accelerator is kept operational with respect to misalignments. The annual leveling of LEP can be characterised as follows: - A quasi circle of 27 km circumference in tunnel; - Measurements with a LEICA NA3000 (σ = ± 0.4 mm/km, statistically ± 0.04 to ± 0.05 mm/station, at intervals of 39.5 m); - Maximum height difference of 120 m between the highest point and the lowest point; - Measured points: alignment reference targets of the quadrupole magnets (entrance and exit points); -800 quadrupole magnets, 1600 points to measure; - Cholesky method, with two independent traverses (forward/backward loops). The data processing is made by least squares, according to a free network concept. In addition, a smoothing procedure (successive fits within a sliding window) is also carried out after each annual leveling measurement, in the purpose of refining the successive positions and finding the points being vertically too far (more than 0.3 mm in general) from the local smoothing curve. These points are then brought physically on their smoothed position (realignment) in order to keep the vertical configuration of LEP as optimal as possible. Tilt (transverse slope) measurements are also taken during this realignment process, thus putting the corrected element back to its right transverse position and reducing the correlated radial movement associated to this defect. (authors)

  16. ALEPH model

    CERN Multimedia

    1989-01-01

    A wooden model of the ALEPH experiment and its cavern. ALEPH was one of 4 experiments at CERN's 27km Large Electron Positron collider (LEP) that ran from 1989 to 2000. During 11 years of research, LEP's experiments provided a detailed study of the electroweak interaction. Measurements performed at LEP also proved that there are three – and only three – generations of particles of matter. LEP was closed down on 2 November 2000 to make way for the construction of the Large Hadron Collider in the same tunnel. The cavern and detector are in separate locations - the cavern is stored at CERN and the detector is temporarily on display in Glasgow physics department. Both are available for loan.

  17. Advances in particle physics: the LEP contribution, Conclusions and perspectives

    CERN Document Server

    Richard, F

    2002-01-01

    LEP1 precision measurements, combined with LEP2 searches for the Higgs boson, define the framework for future investigations in subatomic physics. In particular they define the energy and the luminosity which are needed at a future e sup + e sup - collider to settle the issue of the origin of mass and to complement the LHC on the various scenarios proposed beyond the Standard Model. (authors)

  18. Economics of Large Helium Cryogenic Systems experience from Recent Projects at CERN

    CERN Document Server

    Claudet, S; Lebrun, P; Tavian, L; Wagner, U

    1999-01-01

    Large projects based on applied superconductivity, such as particle accelerators, tokamaks or SMES, require powerful and complex helium cryogenic systems, the cost of which represents a significant, if not dominant fraction of the total capital and operational expenditure. It is therefore important to establish guidelines and scaling laws for costing such systems, based on synthetic estimators of their size and performance. Although such data has already been published for many years, the experience recently gathered at CERN with the LEP and LHC projects, which have de facto turned the laboratory into a major world cryogenic center, can be exploited to update this information and broaden the range of application of the scaling laws. We report on the economics of 4.5 K and 1.8 K refrigeration, cryogen distribution and storage systems, and indicate paths towards their cost-to-performance optimisation.

  19. CERN: Council Session

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The coming years will be dominated by the building of LEP and the preparation for the four approved experiments. Construction of the underground ring tunnel to house the electron-positron collider will begin very soon and about half of the contracts for machine components have been placed. The four experiments, ALEPH, DELPHI, L3 and OPAL have been designed and costed in detail. Over 900 physicists are involved and contracts with the participating research centres are being drawn up specifying responsibilities and financial commitments. Thus the whole timescale and expenditure profile of the LEP project is now much clearer

  20. Radiation protection activities around the CERN accelerators

    International Nuclear Information System (INIS)

    Fasso, A.

    1996-01-01

    In 1995 several operational circumstances required careful watching by the Radiation Protection Group. Most of these were linked with new or recently started CERN activities: for instance the increasing importance assumed by ISOLDE operation and the breakdowns encountered which have given rise to contamination of the target region and to activity releases. In the SPS ring, several difficulties were brought about by a toilsome installation of a new interlock system, while lead ion operation marked the end of the year, as usual, with higher radiation levels in the SPS experimental areas, despite the fact that existing shielding had been improved. Also at the end of the year, the increase of LEP beam energy to 68 GeV caused a rise of dose rate levels from synchrotron radiation. This was expected, but studies are still needed to assess the full implications for different aspects of radiation protection. On the other hand, the ageing of magnet coils and other equipment (insulators, cables, flexible pipes), aggravated by the high proton beam intensities, has resulted in an increasing frequency of failures (mainly water leaks) both at the PS and at the SPS. If the apparent trend is confirmed, difficulties could be expected in the future for two reasons: the shortage of specialized staff, some of them approaching the CERN dose limit of 15 mSv annually, who can be assigned to repair work; and the lack of spare parts to replace the damaged items. Luckily, the long cooling times following high intensity proton runs provided by the operation with heavy-ions and by the winter shutdown mitigate this situation

  1. Measurement of triple-gauge-boson couplings in the experiment ALEPH and at LEP; Mesure des couplages a trois bosons dans l'experience ALEPH et au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Bruneliere, R

    2003-04-01

    Precise measurements at LEP1 and SLD dramatically confirm the Standard Model predictions. Nevertheless, the most crucial consequence of a non-Abelian gauge theory, namely the specific form of the self-couplings of the W, Z and {gamma} was poorly tested. W pair production at LEP2 was a unique opportunity to measure accurately both W boson parameters and its gauge couplings. This thesis presents a study of WW events reconstruction on one hand, and a measurement of the anomalous couplings on the other hand. A precise measurement of the W mass (accuracy {approx} 10{sup -4}) is a major goal of the LEP2 program. The reconstruction of W mass disintegration products, used for this measurement, is very sensitive to the simulation defaults: an essential task is to understand and minimize their effects. This work presents a detailed study of the electromagnetic showers simulation in ALEPH. From this study, a new event reconstruction is proposed, which is tested on the LEP energy measurement obtained from Z return process. Triple gauge-boson couplings are measured from the data collected with the ALEPH detector between 1997 and 2000. Then, results are combined with the other three LEP experiments. This measurement directly confirms the non-Abelian nature of the electroweak sector. No deviation from the Standard Model is observed. (author)

  2. Model of Dipole Field Variations in the LEP Bending Magnets

    CERN Document Server

    Bravin, Enrico; Drees, A; Mugnai, G

    1998-01-01

    The determination of the Z mass at LEP requires a knowledge of the relative beam energy in the order of 10 ppm, therefore it is essential to understand the dipole field variations to the same level of accuracy. In LEP the bending magnet field shows a relative increase of the order of 100 ppm over 10 hours, which was found to be caused by leakage currents from railways flowing along the vacuum cham ber and temperature variations. A LEP dipole test bench was set up for systematic investigations. Field variations were monitored with NMR probes while the cooling water temperature of both coil and vacuum chamber was kept under control. The results lead to a parametrisation of the magnetic field variation as a function of the vacuum chamber current and temperature.

  3. Program LEP to addition of gamma spectra from germanium detectors; Programa LEPS para suma de espectros gammas de detectores de germanio

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L

    1986-07-01

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs.

  4. L3 experiment dismantling at LEP

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    The last muon chamber is removed from the L3 experiment at the LEP collider, which was in operation from 1989 to 2000. The large red magnet yoke will be reused by the ALICE experiment when the LHC is constructed.

  5. Hall full of LEP magnets waiting to be installed in November 1987

    CERN Multimedia

    1987-01-01

    The white magnets in the background are LEP's innovative dipole magnets. They are made of plates of stell with the intervening spaces filled out with concrete. For the relatively low bending fields used in LEP, this technique offers a much cheaper alternative to solid steel costing about half the price. The blue magnets in the foreground are quadrupole focusing magnets and the small yellow magnets in the background are sextupoles which correct the beams "chromaticity", just as optical systems correct for the different wavelengths which make up light, these sextupoles correct for the spread of momenta in LEP's particle beams.

  6. Radiative four-fermion processes at LEP2

    International Nuclear Information System (INIS)

    Montagna, G.; Nicrosini, O.; Osmo, M.; Piccinini, F.; Moretti, M.

    2001-01-01

    The production of four fermions plus a visible photon in electron-positron collisions is analyzed, with particular emphasis on the LEP2 energy range. The study is based on the calculation of exact matrix elements, including the effect of fermion masses. In the light of the present measurements performed at LEP, triple and quartic anomalous gauge couplings are taken into account. Due to the presence of a visible photon in the final state, particular attention is paid to the treatment of higher-order QED corrections. Explicit results for integrated cross sections and differential distributions are shown and commented on. The features of the Monte Carlo program WRAP, used to perform the calculation and available for experimental analysis, are described. (orig.)

  7. Quantum chromodynamics studies at LEP2

    Indian Academy of Sciences (India)

    swaban swaban

    Studies of the annihilation process at LEP2 have given rise to results on jet rate, event ..... The electroweak theory explain the data at all these energies. .... like (a) smooth suppression of hadron-like and point-like 7 interaction, (b) dual parton.

  8. Maailmas lokkab globaalne terrorism / Ando Leps

    Index Scriptorium Estoniae

    Leps, Ando, 1935-

    2002-01-01

    29. märtsil moodustati Riias ülemaailmsel kuritegevuse- ja terrorismivastasel foorumil Läänemerega piirnevate riikide Kuritegevuse- ja Terrorismivastane Foorum. Võeti vastu põhikiri, nimetati ametisse juhatus ja büroo direktor. Foorumi üheks kaasesimeheks valiti Ando Leps. Autor: Keskerakond. Parlamendisaadik

  9. Globaliseeruv kuritegevus ja terror / Ando Leps

    Index Scriptorium Estoniae

    Leps, Ando, 1935-

    2002-01-01

    29. märtsil moodustati Riias ülemaailmsel kuritegevuse- ja terrorismivastasel foorumil Läänemerega piirnevate riikide Kuritegevuse- ja Terrorismivastane Foorum. Võeti vastu põhikiri, nimetati ametisse juhatus ja büroo direktor. Foorumi üheks kaasesimeheks valiti Ando Leps. Autor: Keskerakond. Parlamendisaadik

  10. People and things. CERN Courier, April 1982, v. 22(3)

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events. Now that the LEP electron-positron collider project is under way at CERN, decisions have been taken on the management of the machine construction and on preparations for the experimental programme.In bad shape with the 1982 budget inherited from the previous administration, the US high energy physics funding has been reviewed by the Reagan administration in the light of the current US economic situation. In the meantime the US High Energy Physics Advisory Panel (HEPAP) formed a committee under the chairmanship of George Trilling to look at the implications of different possible funding levels for the long range planning of US high energy physics. Work on the 3.8 km circumference ISABELLE tunnel began in 1978 and is now largely complete. The Tevatron II project at Fermilab to convert the Energy Saver to full 1000 GeV experimental operation has received US government authorization. Some 150 physicists met at SLAC recently to discuss reports on the experimental prospects at the SLAC Linear Collider (SLC). This meeting concluded the first phase of study for the SLC physics programme. More news from the CESR electron-positron ring at Cornell to update our recent story. After further operation with the new mini-beta insertions, normal operating luminosity has been improved by a factor of three

  11. Higgs particle searches at LEP

    International Nuclear Information System (INIS)

    Martin, J.P.

    1996-01-01

    Results on searches for the Higgs particle performed by the four LEP experiments are received in the framework of the Standard Model, Two Doublet Model, and Minimal Supersymmetric Model. The combined mass lower limit for the standard Higgs boson is 66 GeV/c 2 at 95 % CL for a statistics of 14.6 Million hadronic Z decays. (authors)

  12. Colour reconnection at LEP2

    CERN Document Server

    Abreu, P

    2002-01-01

    The preliminary results on the search of colour reconnection effects (CR) from the four experiments at LEP, ALEPH, DELPHI, L3 and OPAL, are reviewed. Extreme models are excluded by studies of standard variables, and on going studies of a method first suggested by L3, the particle flow method (D. Duchesneau, (2001)), are yet inconclusive. (22 refs).

  13. Early prototype of a superconducting RF cavity for LEP

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    As early as 1979, before LEP became an approved project, studies were located in the ISR Division. Although Cu-cavities were foreseen, certainly for the 1st energy-stage, superconducting cavities were explored as a possible alternative for the 2nd energy-stage. This began with very basic studies of manufacture and properties of Nb-cavities. This one, held by Mr.Girel, was made from bulk Nb-sheet, 2.5 mm thick. It was dimensioned for tests at 500 MHz (LEP accelerating RF was 352.2 MHz). See also 8004204, 8007354, 8209255, 8210054, 8312339.

  14. Particle physics and the LEP project

    International Nuclear Information System (INIS)

    Roussarie, A.

    1985-01-01

    A very didactic chronological account of the last 20 years of elementary particle physics is presented. After some recall on matter constituents and interactions between these constituents, some details are given on researches which will be made in LEP, the e + -e - collider [fr

  15. Britain at CERN

    CERN Multimedia

    2000-01-01

    H. E. Mr Christopher Hulse, Ambassador of United Kingdom in Switzerland, CERN Director General Luciano Maiani, Sir David Wright, Chief Executive of British Trade International and Roger Cashmore, CERN Director of research visit the Britain at CERN exhibition. From 14 to 17 November 30 British companies exhibited leading edge technologies at CERN. This is Britain's 18th exhibition at CERN since 1968. Out of the 30 companies, which attended the Britain at CERN exhibition in 1998, 25 have received an order or a contract relating to CERN during the last two years. The exhibition was inaugurated on Tuesday by Sir David Wright, Chief Executive of British Trade International. He was accompanied by H.E. Mr Christopher Hulse CMG, OBE, Her Majesty's Ambassador to Switzerland, and Mr. David Roberts, Deputy Head of Mission and Director of Trade Promotion at the British Embassy in Bern. CERN Director-General, Professor Luciano Maiani, underlined the major contribution of British physicists to CERN, pointing out the fact ...

  16. section of an accelerating cavity from LEP

    CERN Multimedia

    This is a section of an accelerating cavity from LEP, cut in half to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  17. Demonstration model of LEP bending magnet

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    To save iron and raise the flux density, the LEP bending magnet laminations were separated by spacers and the space between the laminations was filled with concrete. This is a demonstration model, part of it with the spaced laminations only, the other part filled with concrete.

  18. Feasibility study for a B-meson factory in the CERN ISR tunnel

    International Nuclear Information System (INIS)

    Nakada, T.

    1990-01-01

    A feasibility study has been made for a B-meson factory, using the ISR tunnel and the LEP injector at CERN. An electron-positron collider operated with asymmetric beam energies of 8 and 3.5 GeV at a luminosity of 10 34 cm -2 s -1 will permit decisive answers on the question of CP violation within the framework of the Standard Model. This report outlines the physics motivation and detector requirements and gives a description of the machine design. It is proposed that the design goal is reached in two stages, with a collider with two rings of equal size. In the first stage a luminosity of 10 33 cm -2 s -1 may be achieved, allowing a rich programme of charm, beauty and τ-lepton physics. A further tenfold increase of the luminosity would require additional R and D on various machine aspects. (orig.)

  19. New wave form surveillance and diagnostics for the LEP injection kickers

    CERN Document Server

    Carlier, E; Verhagen, H

    1995-01-01

    The introduction of the Bunch Train Scheme in LEP requires a more precise and automatic supervision of the stability of the LEP injection kickers in timing and amplitude. Comprehensive and user-friendly diagnostic tools are required for in-depth investigation of equipment behaviour. A new system is currently being prepared using to a large extent commercial data acquisition hardware and hardware independent software products.

  20. 30 CERN

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-11-15

    September marked the 30th Anniversary of the coming into force of the Convention establishing the European Organization for Nuclear Research (CERN). A formal ceremony, attended by the King of Spain, was the highlight of the celebrations. Throughout the month, an exhibition of many of the important documents from CERN's early history (including the original Convention, kindly loaned by UNESCO, with the signatures of representatives of the twelve founding States) was presented at CERN. A concert by the Geneva Orchestre de la Suisse Romande was given in CERN's honour. An Open Day at the Laboratory drew thousands of visitors. A full day's 'history seminar' enabled a team presently working on CERN history to consult with many of the pioneers.

  1. The LEP project

    International Nuclear Information System (INIS)

    Picasso, E.

    1988-01-01

    This paper reports on the present state of installation of utilities (electricity, cooling, ventilation, access equipment, lifts, travelling cranes, emergency exits, etc.) and machine components, closely followed the installation schedule. The controls and the beam instrumentation systems of LEP are being mounted and tested. It is in fact foreseen that the installation of 7 out of 8 octants will be completed at the beginning of next year and the last octant (under the Jura) required an accelerated installation program. The installation of the machine is under way simultaneously in at least three quarters of the ring

  2. Bienvenue au CERN !

    CERN Multimedia

    CERN Press Office. Geneva

    1998-01-01

    CERN, the Laboratory which invented the World-Wide Web has re-invented its public Web site. The new face of CERN has gone live at http://www.cern.ch/ Public . CERN's new Web pages have been designed to give visitors an informative introduction to the fascinating world of particle physics. For those whose whirl around the Web only allows a short stop, there's the 'CERN in two minutes' page.

  3. Production of new particles in e+e- reactions at LEP I energies

    International Nuclear Information System (INIS)

    Dobado, A.

    1987-01-01

    The possibility of lep I of producing new particles is considered. We arrive at the general conclusion that lep I may make it possible to complete the detection of the particles that make up the ''standard model'' and, in addition, to discover some supersymmetric particle or to rule out most of the supersymmetric models. (author)

  4. CERN Rocks

    CERN Multimedia

    2004-01-01

    The 15th CERN Hardronic Festival took place on 17 July on the terrace of Rest 3 (Prévessin). Over 1000 people, from CERN and other International Organizations, came to enjoy the warm summer night, and to watch the best of the World's High Energy music. Jazz, rock, pop, country, metal, blues, funk and punk blasted out from 9 bands from the CERN Musiclub and Jazz club, alternating on two stages in a non-stop show.  The night reached its hottest point when The Canettes Blues Band got everybody dancing to sixties R&B tunes (pictured). Meanwhile, the bars and food vans were working at full capacity, under the expert management of the CERN Softball club, who were at the same time running a Softball tournament in the adjacent "Higgs Field". The Hardronic Festival is the main yearly CERN music event, and it is organized with the support of the Staff Association and the CERN Administration.

  5. LEP1 measurement of heavy quark forward-backward asymmetries with Opal detector

    International Nuclear Information System (INIS)

    Lafoux, H.

    1996-01-01

    Using all data collected by OPAL during the first phase of LEP operation, called LEP1, we have measured the b and c quark forward-backward asymmetries on and around the Z 0 peak. The measurement, which is based on prompt leptons produced in semileptonic decays of heavy quarks, has been optimized using artificial neural networks whenever necessary, that is whenever the problem to solve implied taking into account simultaneously a large number of parameters. Our results are compatible with other LEP measurements and with the Standard Model predictions for a top quark of 174±31 GeV/c□ and a Higgs boson mass between 60 and 1000 GeV/c□. (author). 159 refs., 88 figs., 37 tabs

  6. SUMMER STUDENT LECTURE PROGRAMME

    CERN Multimedia

    Academic Training; Tel. 73127

    2001-01-01

    Main Auditorium bldg. 500 Date Time Lecturer Title Monday 30 July 9:15 10:15 11:15 G. Guidice / CERN T. Nakada / CERN P. Wells / CERN Beyond the Standard Model (1/3) Violation of Particle Anti-particle Symmetry (3/3) LEP Physics (3/4) Tuesday 31 July 9:15 10:15 11:15 G. Guidice / CERN F. Dydak / CERN P. Wells / CERN P. Lebrun / CERN P. Lebrun / CERN Beyond the Standard Model (2/3) Neutrino Physics (1/4) LEP Physics (4/4) Superconducting Technology for particle accelerators (1/2) Superconducting Technology for particle accelerators (2/2) Wednesday 1 August 9:15 10:15 11:15 G. Guidice / CERN F. Dydak / CERN G. Guidice; P. Wells G. Guidice in main auditorium, P. Wells in TH auditorium) O. Grobner / CERN O. Grobner / CERN Beyond the Standard Model (3/3) Neutrino Physics (2/4) Discussion Session Ultra High Vacuum Technology (1/2) Ultra High Vacuum Technology (2/2) Thursday 2 August 9:15 10:15 11:15 F. Antinori / CERN F. Dydak / CERN J. Aysto / CERN Heavy Ions (1/2) Neutrino Physics (3/4) Isolde Physics O...

  7. Lep vertical tunnel movements - lessons for future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, R [CERN-Conseil Europeen pour la recherche nucleaire, Clic-Study Group and the Survey Group, Geneve (Switzerland)

    1999-07-01

    The data from 10 years of vertical surveys verify for all of LEP the previous observation, localized to region P1, that LEP floor movements are predominantly deterministic. This rules out the ATL model as being correct for this tunnel. If generalized, for yearly movements a random ATL model underestimates the possible maximum long-term motions. In contrast, extrapolation of the LEP vertical data to the short-term (hours and days) time-scale shows that the random approach predicts larger short-term movements than the deterministic model. This means that simulations using the ATL hypothesis are overtly pessimistic with regard to the frequency of operational realignments required. Depending on the constants chosen in the models these differences can be large, of the order of a magnitude and more. This paper deals solely with the directly measured months-to-years tunnel motions in rock, and the extrapolation of such ground motions to hourly or daily time-spans It does not, address the important question of the contribution of hourly-scale movements of the accelerator components, which could have a random part, to the combined motion. Nor does it address the question of movements of accelerator tunnels like HERA or TRISTAN which are built in water and debris, and not in solid rock. (author)

  8. Lep vertical tunnel movements - lessons for future colliders

    International Nuclear Information System (INIS)

    Pitthan, R.

    1999-01-01

    The data from 10 years of vertical surveys verify for all of LEP the previous observation, localized to region P1, that LEP floor movements are predominantly deterministic. This rules out the ATL model as being correct for this tunnel. If generalized, for yearly movements a random ATL model underestimates the possible maximum long-term motions. In contrast, extrapolation of the LEP vertical data to the short-term (hours and days) time-scale shows that the random approach predicts larger short-term movements than the deterministic model. This means that simulations using the ATL hypothesis are overtly pessimistic with regard to the frequency of operational realignments required. Depending on the constants chosen in the models these differences can be large, of the order of a magnitude and more. This paper deals solely with the directly measured months-to-years tunnel motions in rock, and the extrapolation of such ground motions to hourly or daily time-spans It does not, address the important question of the contribution of hourly-scale movements of the accelerator components, which could have a random part, to the combined motion. Nor does it address the question of movements of accelerator tunnels like HERA or TRISTAN which are built in water and debris, and not in solid rock. (author)

  9. Global voltage control for the LEP RF system

    International Nuclear Information System (INIS)

    Ciapala, E.; Butterworth, A.; Peschardt, E.

    1993-01-01

    The LEG RF system is installed as independent 16 cavity units. In addition to the eight copper cavity units originally installed 12 units with super-conducting cavities are being added for the LEP200 energy upgrade. The total RF voltage determines the synchrotron tune (Qs) and must be controlled precisely during energy ramping. Local function generators in each of the RF units are pre-loaded such that when triggered simultaneously by ramp timing events transmitted over the general timing system the total voltage varies to give the Qs function required. A disadvantage is that loss of RF in a unit at any time after the loading process cannot be corrected. As the number of RF units increases automatic control of the total RF voltage and its distribution around LEP becomes desirable. A global voltage control system, based on a central VME controller, has recently been installed. It has direct and rapid access to the RF units over the LEP time division multiplexing system. Initial tests on operation and performance at fixed energy and during energy ramping are described, as well as the implementation of a Qs loop in which Qs can be set directly using on-line synchrotron frequency measurements

  10. CERN Choir

    CERN Multimedia

    Staff Association

    2015-01-01

      Do you like singing? The CERN Choir is looking for basses and tenors Join us! Programme Spring Session 2015: Donizetti: Misere & Missa di Gloria e Credo Bellini: Salve Regina Bruckner: Requiem in D minor Next concert: Sunday 31 May 2015 at 17:00 Musicales de Comesières (GE) Rehearsals at CERN Main Auditorium, building 500 On Wednesdays from 20.00 to 22:00 Membership fee: January to June 150 CHF September to December: 100CHF Contact: Baudouin.bleus@cern.ch Facebook/Choeur-du-CERN

  11. 30 CERN

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    September marked the 30th Anniversary of the coming into force of the Convention establishing the European Organization for Nuclear Research (CERN). A formal ceremony, attended by the King of Spain, was the highlight of the celebrations. Throughout the month, an exhibition of many of the important documents from CERN's early history (including the original Convention, kindly loaned by UNESCO, with the signatures of representatives of the twelve founding States) was presented at CERN. A concert by the Geneva Orchestre de la Suisse Romande was given in CERN's honour. An Open Day at the Laboratory drew thousands of visitors. A full day's 'history seminar' enabled a team presently working on CERN history to consult with many of the pioneers

  12. searches for physics beyond the standard model in production at ...

    Indian Academy of Sciences (India)

    production at LEP II. PETER JOHN HOLT. CERN, CH-1211 Geneva, Switzerland. Abstract. Preliminary combinations of measurements of the 4 LEP Collaborations of the process e+e- ff at LEP II are presented. The combined results are interpreted in terms of contact interactions and the exchange of Ζ' bosons and within ...

  13. LEP and results obtained by DELPHI after four years of operation

    International Nuclear Information System (INIS)

    Blocki, J.

    1993-10-01

    We characterize the most important problems of modern elementary particles physics, for the solution of which the LEP (Large Electron Positron) accelerator was built. We present the characteristics of this accelerator. The structure and properties of the DELPHI detector are described with special emphasis on the contribution of Polish groups. The most important results obtained so far in the LEP accelerator are discussed. (author). 12 refs, 17 figs, 1 tab

  14. LEP1 measurement of heavy quark forward-backward asymmetries with Opal detector; Mesure de l`asymetrie avant-arriere des quarks lourds a LEP1 avec le detecteur Opal

    Energy Technology Data Exchange (ETDEWEB)

    Lafoux, H

    1996-04-30

    Using all data collected by OPAL during the first phase of LEP operation, called LEP1, we have measured the b and c quark forward-backward asymmetries on and around the Z{sup 0} peak. The measurement, which is based on prompt leptons produced in semileptonic decays of heavy quarks, has been optimized using artificial neural networks whenever necessary, that is whenever the problem to solve implied taking into account simultaneously a large number of parameters. Our results are compatible with other LEP measurements and with the Standard Model predictions for a top quark of 174{+-}31 GeV/c{open_square} and a Higgs boson mass between 60 and 1000 GeV/c{open_square}. (author). 159 refs., 88 figs., 37 tabs.

  15. LEP sees the end of the tunnel

    CERN Multimedia

    2002-01-01

    After 14 months, which have seen the removal of 30,000 tonnes of material from the tunnel, the LEP dismantling operation has now been completed. LHC installation, which will be subject to new safety rules, can go ahead.

  16. Colour reconnection in DELPHI at LEP

    International Nuclear Information System (INIS)

    Abreu, P.

    2003-01-01

    The preliminary results of two different methods for the search of colour reconnection effects (CR), used in the DELPHI experiment at LEP are presented. The methods were found to be largely uncorrelated, and a combined likelihood for values of the κ strength parameter in the SK-I model is given

  17. Semileptonic b branching fractions at LEP

    CERN Document Server

    Gagnon, P

    2000-01-01

    I review recent results on semileptonic branching fractions at LEP for Z/sup 0/ to bb data, for the average b hadron then for b baryons. From the inclusive BR(b to lX), one can obtain the most precise value for the CKM matrix element V/sub cb/. (14 refs).

  18. Search for charged Higgs bosons at LEP2 with Delphi detector; Recherche des bosons de higgs charges a LEP2 avec le detecteur DELPHI

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, R

    1997-09-01

    Charged Higgs bosons are particles that are predicted by most theoretical models based on the minimal standard model, they are responsible for the breaking of the symmetry implied by the gauge group SU(2){sub L}*U(1){sub Y}. This work is devoted to the search after this particle in the experimental data collected by the DELPHI experiment. Different analysis strategies have been defined to study the 3 possible final states: H{sup +}H{sup -} {yields} {tau}{sup +}{nu}{sub {tau}}{tau}{sup -}{nu}-bar{sub {tau}}, H{sup +}H{sup -} {yields} cs{tau}{nu}{sub {tau}} and H{sup +}H{sup -} {yields} cs-bar c-bar s. Different hypothesis have been made about the value of the branching ratio of the hadronic decay of Higgs boson. After having analysed the experimental data collected when electron-positron collision energy was 161.3 GeV (in the mass center frame) the author concludes that: m{sub H} > 48.7 GeV/c{sup 2} if Br(H{sup +} {yields} hadrons) < 0.6 (90% CL). A similar analysis performed on all the experimental data leads to: m{sub H} > 52 GeV/c{sup 2} if Br(H{sup +} {yields} hadrons) < 0.7 (95% CL). At the end of 1995 the LEP collider entered a new operating phase (LEP2) which would eventually enable the collision energy to reach 192 GeV in the mass center frame. An analysis of a simulation representing LEP2 operating at 192 GeV has been made. From this analysis the author concludes first that it will be possible to discover a Higgs boson in LEP2 only if its mass is less than 60 GeV/c{sup 2}, secondly that if no Higgs boson is detected at the end of LEP2 phase, it will mean that its mass is greater than 70 GeV/c{sup 2}. (A.C.)

  19. L3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-01-15

    This is the final article in the CERN Courier series marking a decade of the four big experiments - Aleph, Delphi, L3 and Opal - at CERN's LEP electron-positron collider. Data-taking started soon after LEP became operational in July 1989, followed by substantial runs in 1990 and 1991. Because of the long lead times involved in today's major physics undertakings, preparations for these four experiments got underway in the early 1980s.

  20. Radio frequency systems for present and future accelerators

    International Nuclear Information System (INIS)

    Raka, E.C.

    1987-01-01

    Rf systems are described for the FNAL Main Ring and Tevatron Ring, CERN SPS and LEP, and HERA proton acceleration system, CERN PS e + e/sup minus/ acceleration system, and CERN EPA monochromatic cavity. Low impedance rf systems in CERN ISR, the Brookhaven CBA, and SSC are also discussed

  1. A Common Software Configuration Management System for CERN SPS and LEP Accelerators and Technical Services

    CERN Document Server

    Hatziangeli, Eugenia; Bragg, A E; Ninin, P; Patino, J; Sobczak, H

    1999-01-01

    Software configuration management activities are crucial to assure the integrity of current operational and the quality of new software either being developed at CERN or outsourced. The functionality of the present management system became insufficient with large maintenance overheads. In order to improve our situation, a new software configuration management system has been set up. It is based on Razor, a commercial tool, which supports the management of file versions and operational software releases, along with integrated problem reporting capabilities. In addition to the basic tool functionality, automated procedures were custom made, for the installation and distribution of operational software. Policies were developed and applied over the software development life cycle to provide visibility and control. The system ensures that, at all times, the status and location of all deliverable versions are known, the state of shared objects is carefully controlled and unauthorised changes prevented. It provides ...

  2. A Common Software-Configuration Management System for CERN SPS and LEP Accelerators and Technical Services

    CERN Document Server

    Hatziangeli, Eugenia; Bragg, A E; Ninin, P; Patino, J; Sobczak, H

    2000-01-01

    Software-configuration management activities are crucial to ensure the integrity of current operational software and the quality of new software either being developed at CERN or outsourced. The functionality of the present management system became insufficient with large maintenance overheads. In order to improve our situation, a new software-configuration management system has been set up. It is based on Razor R, a commercial tool, which supports the management of file versions and operational software releases, along with integrated problem-reporting capabilities. In addition to the basic tool functionality, automated procedures were custom-made for the installation and distribution of operational software. The system ensures that, at all times, the status and location of all deliverable versions are known, the state of shared objects is carefully controlled and unauthorized changes prevented. This paper outlines the reasons for selecting the chosen tool, the implementation of the system and the final goal...

  3. Electroweak couplings from heavy flavors at LEP

    CERN Document Server

    Clare, R

    1991-01-01

    This talk presents the results of the four LEP experiments, Aleph, Delphi, 13 and Opal, on the partial widths for z0 --> cc and z0 --> bb (r cc and r biJ, and the forward-backward asymmetries Ace and Abb.

  4. Interlocks for the LEP Radio-Frequency System

    CERN Document Server

    Livesley, S

    2000-01-01

    Interlocks for the LEP RF system totalled more than 7000. They provided protection for the personnel and a wide range of equipment: copper cavities, superconducting cavities, klystrons and high voltage equipment. The interlock system layout, functionality and components are described.

  5. Performance of a shashlik calorimeter at LEP II

    CERN Document Server

    Ferrari, P; Klovning, A; Maeland, O A; Stugu, B; Benvenuti, Alberto C; Giordano, V; Guerzoni, M; Navarria, Francesco Luigi; Verardi, M G; Camporesi, T; Bozzo, M; Cereseto, R; Barreira, G; Espirito-Santo, M C; Maio, A; Onofre, A; Peralta, L; Pimenta, M; Tomé, B; Carling, H; Falk, E; Hedberg, V; Jarlskog, G; Kronkvist, I J; Bonesini, M; Chignoli, F; Gumenyuk, S A; Leoni, R; Mazza, R; Negri, P; Paganoni, M; Petrovykh, L P; Terranova, F; Dharmasiri, D R; Nossum, B; Read, A L; Skaali, T B; Castellani, L; Pegoraro, M; Fenyuk, A; Guz, Yu; Karyukhin, A N; Konoplyannikov, A K; Obraztsov, V F; Shalanda, N A; Vlasov, E; Zaitsev, A; Bigi, M; Cassio, V; Gamba, D; Migliore, E; Romero, A; Simonetti, L; Torassa, E; Trapani, P P; Bari, M D; Della Ricca, G; Lanceri, L; Poropat, P; Prest, M; Vallazza, E

    1999-01-01

    The small angle tile calorimeter (STIC) is a sampling lead- scintillator calorimeter, built with "shashlik" technique. Results are presented from extensive studies of the detector performance at LEP. (5 refs).

  6. A Study of the Magnetic Dipole Field of LEP during the 1995 Energy Scan

    CERN Document Server

    Dehning, Bernd; Geitz, M A

    1996-01-01

    In preparation for the 1995 LEP energy scan additional instrumentation was installed in two tunnel dipoles to monitor the time evolution of the magnetic field during experimental fills. Significant increase of the bending field superimposed by day-time dependent fluctuations on a minute time scale were revealed. These unexpected features could be correlated with earth currents captured by the LEP vacuum chamber and the ground cable. The currents are produced in particular by trains circulating in the Geneva area. This study presents a summary of our understanding of the LEP dipole field.

  7. $B^{0}\\overline{B^{0}}$ oscillations at LEP

    CERN Document Server

    Palla, Fabrizio

    2001-01-01

    We report the LEP results on B/sup 0/B/sup 0/ oscillations, together with a review of the analysis strategies. Many measurements of the B /sub d//sup 0/ oscillation frequency have been performed giving an average, Delta m/sub d/=0.486+or-0.015 ps/sup -1/. Lower limits on Delta m/sub s/ are presented, giving a LEP-combined limit, Delta m /sub s/>11.8 ps/sup -1/, with an expected exclusion limit of 14.5 ps /sup -1/. When combined with SLD and CDF, a tantalising 2.5% effect at about 17 ps/sup -1/ is observed, having a probability of about 2.5% for a fluctuation of a sample where the true frequency is beyond the global sensitivity. (19 refs).

  8. Bose-Einstein correlations in W+ W- events at LEP2

    CERN Document Server

    van Dalen, Jorn A

    2000-01-01

    Analyses of Bose-Einstein Correlations in w+w- events at LEP2 by the four LEP collaborations are presented. In particular, Bose-Einstein correlations in w+w- overlap are investigated and the possible existence of these correlations between particles coming from different W's, which may influence the W mass measurements in the fully-hadronic channel e+e- --+ w+w- --+ qiihq3ij<. No evidence for such an inter-W Bose-Einstein correlation is found by L3 and ALEPH. Possible indication of these correlations by DELPHI is mentioned.

  9. A users view of the SPS and LEP control systems

    International Nuclear Information System (INIS)

    Bailey, R.

    1992-01-01

    Every accelerator has a control system; at present the SPS has two, both of which are needed to run the machine. Consequently a user of the SPS/LEP complex has to be concurrently familiar with three control systems. While this situation brings problems it allows, even forces, comparison between the different systems, which in turn enriches the user viewpoint. This paper assesses the SPS and LEP control systems from the point of view of the user, who may be an equipment specialist, operator, accelerator physicist or combinations thereof. (author)

  10. Particle Correlations at LEP

    CERN Document Server

    Kress, Thomas

    2002-01-01

    Particle correlations are extensively studied to obtain information about the dynamics of hadron production. From 1989 to 2000 the four LEP collaborations recorded more than 16 million hadronic Z0 decays and several thousand W+W- events. In Z0 decays, two-particle correlations were analysed in detail to study Bose-Einstein and Fermi-Dirac correlations for various particle species. In fully-hadronic W+W- decays, particle correlations were used to study whether the two W bosons decay independently. A review of selected results is presented.

  11. Collide@CERN Geneva

    CERN Multimedia

    CERN. Geneva; Kieffer, Robert; Blas Temino, Diego; Bertolucci, Sergio; Mr. Decelière, Rudy; Mr. Hänni, Vincent

    2014-01-01

    CERN, the Republic and Canton of Geneva, and the City of Geneva are delighted to invite you to “Collide@CERN Geneva Music”. Come to the public lecture about collisions between music and particle physics by the third winners of Collide@CERN Geneva, Vincent Hänni & Rudy Decelière, and their scientific inspiration partners, Diego Blas and Robert Kieffer. The event marks the beginning of their residency at CERN, and will be held at the CERN Globe of Science and Innovation on 16 October 2014 at 19.00. Doors will open at 18.30.

  12. CERN Photo club

    CERN Multimedia

    CERN Photo club

    2016-01-01

    The CERN Photo Club organizes in collaboration with Canon Switzerland a photo contest open to all members of the CERN (Persons with a CERN access card). The only restriction is that the photos must have been taken with a CANON camera (DSLR, bridge or compact) between 1 and 31 October 2016. Send your three best pictures at  Photo.Contest@cern.ch with a short description explaining the images. Further information on the Photo club website: http://photoclub.web.cern.ch/content/photo-contest-october-2016

  13. CERN Cricket Club

    CERN Multimedia

    CERN Cricket Club

    2010-01-01

    CERN Cricket Club Match Reports The cricket season is well under way, despite the weather, and several matches have been played. The match reporters have, however, found it too difficult to limit their reports to ¼ of a page, hence the reports have not appeared in the bulletin. All reports can be found at http://cern.ch/Club-Cricket/reports/reports.html The list of forthcoming matches can be consulted at http://cern.ch/Club-Cricket/fixtures.html Further information about the CERN Cricket Club can be found at http://cern.ch/Club-Cricket/

  14. LEP constraints on grand unified theories

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    1993-01-01

    Recent developments on grand unified theories (GUTs) in the context of the LEP measurements of the coupling constants are reviewed. The three coupling constants at the electroweak scale have been measured at LEP quite precisely. One can allow these couplings to evolve with energy following the renormalization group equations for the various groups and find out whether all the coupling constants meet at any energy. It was pointed out that the minimal SU(5) grand unified theory fails to satisfy this test. However, various extensions of the theory are still allowed. These extensions include (i) supersymmetric SU(5) GUT, with some arbitrariness in the susy breaking scale arising from the threshold corrections, (ii) non-susy SU(5) GUTs with additional fermions as well as Higgs multiplets, which has masses of the order of TeV, and (iii) non-renormalizable effect of gravity with a fine tuned relation among the coupling constants at the unification energy. The LEP results also constrain GUTs with an intermediate symmetry breaking scale. By adjusting the intermediate symmetry breaking scale, one usually can have unification, but these theories get constrained. For example, the left-right symmetric theories coming from GUTs can be broken only at energies higher than about ∼10 10 GeV. This implies that if right handed gauge bosons are found at energies lower than this scale, then that will rule out the possibility of grand unification. Another recent interesting development on the subject, namely, low energy unification, is discussed in this context. All the coupling constants are unified at energies of the order of ∼10 8 GeV when they are embedded in an SU(15)GUT, with some particular symmetry breaking pattern. But even in this case the results of the intermediate symmetry breaking scale remain unchanged. (author). 16 refs., 3 figs

  15. Fermion pair physics at LEP2

    International Nuclear Information System (INIS)

    Georgios, Anagnostou

    2004-01-01

    Combined measurements of the 4 LEP collaborations for the fermion pair processes e + e - →f anti f are presented. The results show no significant deviations when compared with the Standard Model predictions and are used to set limits on contact interactions, Z' gauge bosons and low scale gravity models with large extra dimensions. (orig.)

  16. CERN Cricket Club

    CERN Document Server

    CERN Cricket Club

    2018-01-01

    The CERN Cricket Club 2018 season begins soon, the first net practice is scheduled (weather permitting) for Thursday April 12th, at 18.00!  The club is always looking for new players and newcomers will be made very welcome. Anyone who is interested in joining the club should sign up on our web site: http://cern.ch/cricket/ or turn up for net practice, which takes place each Thursday evening (apart from CERN official holidays) until the end of September (starting at 18:00 to around 20:00) at the CERN Prévessin site: http://cern.ch/cricket/CERN-Ground.html The first matches will be in the Geneva T20 competition on Saturday and Sunday, April 14th / 15th. 

  17. Electro-Magnetic Bunch Length Measurement in LEP

    CERN Document Server

    Vos, L

    1998-01-01

    Bunch lengths between 3 and 12 mm have been measured routinely in LEP in 1997 with a small (7 mm diameter) button electrode. The measurement method is based on the spectral analysis of the electrode signal and relies on the fact that the transfer function of the complete set-up, including the signal cable, can be computed rather exactly thus eliminating the need for external calibration. The information of beam intensity is recovered as a by-product. It provides an interesting internal validation of the measurement by comparison with the normal intensity measurement. The system has been used to detect subtle but real bunch length changes with bunch intensity which can be attributed to the inductive impedance in LEP. A value for the imaginary (inductive) longitudinal impedance is derived from the observations. An indication for the resistive part of the impedance is given as well.

  18. Advanced Superconducting Technology for Global Science The Large Hadron Collider at CERN

    CERN Document Server

    Lebrun, P

    2002-01-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organisation for Nuclear Research near Geneva (Switzerland), will be, upon its completion in 2005 and for the next twenty years, the most advanced research instrument of the world's high-energy physics community, providing access to the energy frontier above 1 TeV per elementary constituent. Re-using the 26.7-km circumference tunnel and infrastructure of the past LEP electron-positon collider, operated until 2000, the LHC will make use of advanced superconducting technology - high-field Nb-Ti superconducting magnets operated in superfluid helium and a cryogenic ultra-high vacuum system - to bring into collision intense beams of protons and ions at unprecedented values of center-of-mass energy and luminosity (14 TeV and 1034 cm-2.s-1, respectively with protons). After some ten years of focussed R&D, the LHC components are presently series-built in industry and procured through world-wide collaboration. After briefly recalling ...

  19. TLEP design study forges ahead

    CERN Multimedia

    Alain Blondel & Mike Koratzinos

    2013-01-01

    As the Future Circular Collider (FCC) study is launched, one of its component parts, TLEP, enjoys a successful workshop at CERN. The FCC study looks at all options for a future circular collider with the emphasis on a hadron machine with TLEP as a possible intermediate step.   The poster of the sixth TLEP workshop that took place at CERN. Japanese artist Kazuya Akimoto kindly agreed to the use of one of his works as the basis for the poster’s backdrop. October 16 to 18 saw a three-day workshop on TLEP, the sixth in the series. The workshop took place at CERN and was well attended, informative and stimulating. To name just one of the influential people present, Herwig Schopper, ex-Director General of CERN and instrumental in the approval, construction and success of LEP, was among the participants. But what exactly is TLEP? The name was, somehow serendipitously, coined from future lepton collider option studies and stands for triple-LEP, a machine three times the size of LEP. But th...

  20. Determination of the bending field integral of the LEP spectrometer dipole

    International Nuclear Information System (INIS)

    Chritin, R.; Cornuet, D.; Dehning, B.; Hidalgo, A.; Hildreth, M.; Kalbreier, W.; Leclere, P.; Mugnai, G.; Palacios, J.; Roncarolo, F.; Torrence, E.; Wilkinson, G.

    2005-01-01

    The LEP spectrometer performed calibrations of the beam energy in the 2000 LEP run, in order to provide a kinematical constraint for the W boson mass measurement. The beam was deflected in the spectrometer by a steel core dipole, and the bending angle was measured by Beam-Position Monitors on either side of the magnet. The energy determination relies on measuring the change in bending angle when ramping the beam from a reference point at 50GeV to an energy within the LEP W physics regime, typically 93GeV. The ratio of integrated bending fields at these settings (approximately 1.18Tm/0.64Tm) must be known with a precision of a few 10 -5 . The paper reports on the field mapping measurements which were conducted to determine the bending integral under a range of excitation currents and coil temperatures. These were made in the laboratory before and after spectrometer operation, using a test-bench equipped with a moving arm, carrying an NMR probe and Hall probes, and in the LEP tunnel itself, with a mapping trolley inside the vacuum chamber. The mapping data are related to local readings supplied by fixed NMR probes in the dipole, and a predictive model developed which shows good consistency for all datasets within the estimated uncertainty, which is 14x10 -5 for the moving arm, and 3x10 -5 for the mapping trolley. Measurements are also presented of the field gradient inside the dipole, and of the environmental magnetic fields in the LEP tunnel. When applied to the spectrometer energy calibrations, the bending field model calculates the ratio of integrated fields with an estimated uncertainty of 1.5x10 -5

  1. CERN honours Georges Charpak

    CERN Multimedia

    2009-01-01

    CERN pays tribute to the work of Georges Charpak at a colloquium in honour of his 85th birthday. var flash_video_player=get_video_player_path(); insert_player_for_external('Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-0753-kbps-480x360-25-fps-audio-64-kbps-44-kHz-stereo', 'mms://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-Multirate-200-to-753-kbps-480x360.wmv', 'false', 480, 360, 'https://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-posterframe-480x360-at-10-percent.jpg', '1167500', true, 'Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-0600-kbps-maxH-360-25-fps-audio-128-kbps-48-kHz-stereo.mp4'); Watch the video conference of Georges Charpak.   On 9 March CERN’s Main Auditorium was the venue for a fascinating and moving celebration marking the 85th birthday of Georges Charpak, who was awarded the Nobel Prize for Physics in 1992 for his inven...

  2. New development of hadron physics at new laser electron beam line (LEP2) of SPring-8

    International Nuclear Information System (INIS)

    Muramatsu, Norihito; Niiyama, Masayuki; Yosoi, Masaru

    2015-01-01

    This paper introduces the outline of LEPS2 beam line and two types of large detectors (electromagnetic calorimeter BGOegg and solenoid spectrometer), LEPS2/BGOegg experiment, and the target physics using LEPS2 solenoid spectrometer. In LEPS2 beam line, experiments are performed with the improvement of beam intensity by nearly one digit due to the simultaneous incidence of multiple lasers of high output, as well as with the installation of a large solid angle high-resolution detector. In LEPS2/BGOegg experiment, direct observation with a large solid angle of mesons such as π 0 , η, η', and ω has become possible, which has given expectation for new physics. As one of the physics at the core of BGOegg experiments, there is the systematic examination of interaction between η' and nucleus/nucleon. In the physics using a solenoid spectrometer, the first target is the measurement of penta-quark particle Θ + . (A.O.)

  3. L3 detector

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This is the final article in the CERN Courier series marking a decade of the four big experiments - Aleph, Delphi, L3 and Opal - at CERN's LEP electron-positron collider. Data-taking started soon after LEP became operational in July 1989, followed by substantial runs in 1990 and 1991. Because of the long lead times involved in today's major physics undertakings, preparations for these four experiments got underway in the early 1980s

  4. CERN Video News

    CERN Document Server

    2003-01-01

    From Monday you can see on the web the new edition of CERN's Video News. Thanks to a collaboration between the audiovisual teams at CERN and Fermilab, you can see a report made by the American laboratory. The clip concerns the LHC magnets that are being constructed at Fermilab. Also in the programme: the spectacular rotation of one of the ATLAS coils, the arrival at CERN of the first American magnet made at Brookhaven, the story of the discovery 20 years ago of the W and Z bosons at CERN. http://www.cern.ch/video or Bulletin web page.

  5. Britain at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1996-01-01

    On 8 October, H.E. Mr David Beattie, British Ambassador to Switzerland, Mr John R. Nichols, H.M. Consul-General in Geneva and, Prof. Christopher Llewellyn Smith, CERN*'s Director General, formally opened the industrial exhibition of thirty-three British hi-tech companies at CERN, which takes place from 8 to 11 October, 1996. The exhibition offers British companies the opportunity to display their products in fields that are of immediate importance to the scientists, engineers and technicians working at CERN, and also to scientists from non-Member States who take part in research projects at CERN.

  6. LEP - Large Electron Positron Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The Large Electron-Positron Collider (LEP) is 27 km long. Its four detectors (ALEPH, DELPHI, L3, OPAL) measure precisely what happens in the collisions of electrons and positrons. These conditions only exist-ed in the Universe when it was about 10 -10 sec old.

  7. Study of event shape variables at LEP

    CERN Document Server

    Sarkar, Subir

    1997-01-01

    We present the LEP results on the study of the hadronic event shape variables. Excellent detector performance and improved theoretical calculations make it possible to study quantum chromodynamics with small experimental and theoretical uncertainties. QCD predictions describe data well at energies above the Z peak.

  8. Young Artists@ CERN

    CERN Multimedia

    2004-01-01

    In view of 50th anniversary of CERN, about 20 young artists will be visiting CERN from 26 to 31 January to learn about the laboratory's research and the mysterious world of particle physics. The impressions they take home will be the main inspiration for the artwork they will then produce for an exhibition to be inaugurated in October 2004 as part of CERN's 50th anniversary celebration. We are looking for scientists who are interested in the Art-Science synergy and who can volunteer to discuss their work at CERN to these young artists during this week (25-31/01). Please contact renilde.vanden.broeck@cern.ch if you are interested. The project is called Young Artists@ CERN and for more information look at this website: http://www.hep.ucl.ac.uk/~andy/CERNart/

  9. CERN Cricket club

    CERN Multimedia

    CERN Cricket club

    2015-01-01

    The CERN Cricket Club 2015 season begins soon, the first net practice is scheduled (weather permitting) for Thursday April 16th, at 18:00! The club is always looking for new players and newcomers will be made very welcome. Anyone who is interested in joining the club should sign up on our web site: http://cern.ch/Club-Cricket/ or turn up for net practice, which takes place each Thursday evening from April 16th (apart from CERN official holidays) until the end of September (starting at 18:00 to around 19:30) at the CERN Prévessin site: http://club-cricket.web.cern.ch/Club-Cricket/CERN-Ground.html The first match will be at home on Sunday, April 19th against Rhone CC from Lyon.

  10. CERN Table Tennis Club

    CERN Multimedia

    CERN Table Tennis Club

    2014-01-01

    CERN Table Tennis Club Announcing CERN 60th Anniversary Table Tennis Tournament to take place at CERN, from July 1 to July 15, 2014   The CERN Table Tennis Club, reborn in 2008, is encouraging people at CERN to take more regular exercise. This is why the Club, thanks to the strong support of the CERN Staff Association, installed last season a first outdoor table on the terrace of restaurant # 1, and will install another one this season on the terrace of Restaurant # 2. Table tennis provides both physical exercise and friendly social interactions. The CERN Table Tennis club is happy to use the unique opportunity of the 60th CERN anniversary to promote table tennis at CERN, as it is a game that everybody can easily play, regardless of level. Table tennis is particularly well suited for CERN, as many great physicists play table tennis, as you might already know: “Heisenberg could not even bear to lose a game of table tennis”; “Otto Frisch played a lot of table tennis;...

  11. CERN Medtech:Hackathon

    CERN Multimedia

    Olofsson, Simon

    2018-01-01

    The CERN Medtech:Hackathon, organised by CERN Knowledge Transfer, was held in IdeaSquare during 6-9 April. Teams from all around the world gathered, by using CERN technology, to solve problems posed by the Medtech industry.

  12. Scattering of thermal photons by a 46 GeV positron beam at LEP

    International Nuclear Information System (INIS)

    Bini, C.; De Zorzi, G.; Diambrini-Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1991-01-01

    The scattering of thermal photons present in the vacuum pipe of LEP against the high energy positron beam has been detected. The spectrum of the back-scattered photons is presented for a positron beam energy of 46.1 GeV. Measurements have been performed in the interaction region 1 with the LEP-5 experiment calorimeter. (orig.)

  13. Mass of the W and trilinear gauge couplings at DELPHI and LEP

    International Nuclear Information System (INIS)

    Parzefall, Ulrich

    2000-01-01

    Preliminary measurements of the W boson mass and of the trilinear gauge boson couplings are presented using data taken by DELPHI at centre-of-mass energies of 189 GeV and below. Results from the other three LEP collaborations ALEPH, L3 and OPAL are included to obtain the combined LEP measurements. The experimental methods used in DELPHI to determine the W mass and the trilinear gauge couplings are described

  14. CERN in 2030

    CERN Multimedia

    Laëtitia Pedroso

    2011-01-01

    A competition will soon be launched to select the architect, urban planner or landscape designer to undertake the first phase of redevelopment of the parking area by the flagpoles, between Entrances A and B. This will be the first stage in a wider development project aimed at sprucing up the CERN site and enhancing its image. Work to create a pleasant and harmonious area at the CERN entrance will start in 2013 while preparatory work for other developments inside the CERN site has already begun…   CERN as it is today.  By 2030, CERN will be a greener place, much like a university campus. The arrival of the tramway on 30 April will be an opportunity to forge ahead with the urban plan aimed at rejuvenating the CERN site and redefining how it is organised. "Nearly sixty years after CERN's first buildings went up, this plan will help transform the site and give it a welcoming, friendly face, a bit like a university campus," explains Thierry Chanard, urban plannin...

  15. Germany at CERN

    CERN Multimedia

    2005-01-01

    From left to right: Maximilian Metzger, CERN's Secretary-General, Hermann Schunck, Director at the German Federal Ministry of Education and Research, and Robert Aymar, CERN's Director-General, talking to Wolfgang Holler from Butting, one of the companies at the "Germany at CERN" exhibition. Far right : Susanne-Corinna Langer-Greipl from BMBF, delegate to the CERN Finance Committee. For three days, CERN's Main Building was transformed into a showcase for German industry. Twenty-nine companies from sectors related to particle physics (electrical engineering, vacuum and low temperature technology, radiation protection, etc.) were here for the ninth "Germany at CERN" exhibition, organised by the German Federal Ministry of Education and Research (BMBF), which gave them the opportunity to meet scientists and administrators from the Laboratory. On 1 March the exhibition was visited by a German delegation headed by Dr Hermann Schunck, Director at BMBF.

  16. Search for new physics at LEP 2

    CERN Document Server

    Gross, Eilam

    1997-01-01

    The results of the search for Higgs bosons, Charginos, Neutralinos, Sleptons, Squarks and light Gravitinos with the LEP accelerator at 130-172 GeV center-of-mass energy are briefly described. Prospects for Standard Model Higgs search at higher center-of-mass energies are also given.

  17. Beam instrumentation in the LEP Pre-injector

    International Nuclear Information System (INIS)

    Battisti, S.; Bottollier, J.F.; Frammery, B.; Szeless, B.; Van Rooy, M.

    1987-01-01

    The main purpose of this paper is to review the beam instrumentation of the LEP pre-injector (LPI) including its design philosophy and software. The usefulness of these equipments for the LPI start-up is considered from an operational point of view and encountered problems are mentioned

  18. RF Trip and Beam Loss Diagnostics in LEP using GPS timing

    CERN Document Server

    Arnaudon, L; Beetham, G; Ciapala, Edmond; Juillard, J C; Olsen, R; CERN. Geneva. SPS and LEP Division

    2000-01-01

    A fast diagnostics system has been installed in LEP to allow precise time-stamping of RF unit trips. The system also monitors the fast decay of current when a beam loss occurs. From the information gathered it is now possible to determine which RF units have provoked a beam loss at high energy and which have tripped as a result. The system uses GPS equipment installed at all of the even points of LEP together with fast local DSP acquisition and event recording units in each RF sector. An overall control application driven by the LEPExec arms the system at the start of each fill, calculates and displays RF and trip beam loss events in sequence, then stores the results in a database. The system installation was completed in time for the LEP 2000 startup and initial problems were quickly resolved. Throughout the year it has proved invaluable for high energy running. The experience gained will also be very useful for similar diagnostics applications in LHC.

  19. France at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Rolf Heuer, CERN Director General, visits the exhibition "La France au CERN". The exhibition France at CERN, organized by UBIFRANCE in collaboration with CERN's GS/SEM (Site Engineering and Management) service, took place from Monday 7 to Wednesday 9 June in the Main Building. The 36 French firms taking part came to present their products and technologies related to the Organization's activities. The next exhibition will be "Netherlands at CERN" in November.

  20. Report of the 1997 LEP2 working group on 'searches'

    International Nuclear Information System (INIS)

    Allanach, B.C.; Blair, G.A.; Diaz, M.A.

    1997-08-01

    A number of research program reports are presented from the LEP2 positron-electron collider in the area of searches for Higgs bosons, supersymmetry and supergravity. Working groups' reports cover prospective sensitivity of Higgs boson searches, radiative corrections to chargino production, charge and colour breaking minima in minimal Supersymmetric Standard Model, R-party violation effects upon unification predictions, searches for new pair-produced particles, single sneutrino production and searches related to effects similar to HERA experiments. The final section of the report summarizes the LEP 2 searches, concentrating on gians from running at 200 GeV and alternative paradigms for supersymmetric phenomenology. (UK)

  1. Program LEPS to addition of gamma spectra from germanium detectors

    International Nuclear Information System (INIS)

    Romero, L.

    1986-01-01

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs

  2. CERN Shop Christmas Sale

    CERN Multimedia

    Visits & Exhibition Service/ETT-VE

    2001-01-01

    11-13.12.2001 Looking for Christmas present ideas? Come to the Reception Shop Special Stand in Meyrin, Main Building, ground floor, from Tuesday 11 to Thursday 13 December from 10.30 to 16.00. CERN Calendar 10.- CERN Sweat-shirts(M, L, XL) 30.- CERN T-shirt (M, L, XL) 20.- New CERN silk tie (2 colours) 35.- Fancy silk tie (blue, bordeau) 25.- Silk scarf (light blue, red, yellow) 35.- Swiss army knife with CERN logo 25.- CERN watch 25.- CERN baseball cap 15.- CERN briefcase 15.- Book 'Antimatter' (English) 35.- Book 'How the web was born' (English) 25.- The Search for Infinity (French, Italian, English, German) 40.-   If you miss this special occasion, the articles are also available at the Reception Shop in Building 33 from Monday to Saturday between 08.30 and 17.30 hrs.

  3. Statistical methods and the Higgs at 115 GeV at LEP; Methodes statistiques et le Higgs a 115 GeV au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, P

    2001-07-01

    The purpose of these lectures is to give the means to understand the results provided by the Higgs working group (HWG) that combines data from 4 experiments concerning the search for the Higgs boson at LEP. The first part deals with experimental analysis, it means phenomenology and how to select the interesting events. In the second part, the author presents statistical methods and statistical tools that are used to process data, it is shown that combining different analyses may increase the sensitivity level. The third part is dedicated to the situation at the LEP concerning the search for the Higgs boson by July 2001. Data are consistent for either a standard Higgs at around 115.6 GeV or a minimal supersymmetric model scenario.

  4. CERN Photo Club (CPC) / Canon Contest - My View of CERN

    CERN Multimedia

    Steyaert, Didier

    2016-01-01

    The CERN Photo Club has organized in collaboration with Canon Switzerland a photo contest open to all members of the CERN (Persons with a CERN access card). The only restriction is that the photos must have been taken with a CANON camera (DSLR, bridge or compact) between 1 and 31 October 2016.

  5. What's new@CERN, episode 2

    CERN Multimedia

    CERN Video productions

    2011-01-01

    On Monday 7 November at 4pm in English and 4.20pm in French, watch "What's new@CERN" on webcast.cern.ch. In this second episode: LHC performance, a journey to the particle source and this past month's news.   var flash_video_player=get_video_player_path(); insert_player_for_external('Video/Public/Movies/2011/CERN-MOVIE-2011-164/CERN-MOVIE-2011-164-0753-kbps-640x360-25-fps-audio-64-kbps-44-kHz-stereo', 'mms://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2011/CERN-MOVIE-2011-164/CERN-MOVIE-2011-164-Multirate-200-to-753-kbps-640x360-25-fps.wmv', 'false', 480, 360, 'https://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2011/CERN-MOVIE-2011-164/CERN-MOVIE-2011-164-posterframe-640x360-at-30-percent.jpg', '1394250', true, 'Video/Public/Movies/2011/CERN-MOVIE-2011-164/CERN-MOVIE-2011-164-0600-kbps-maxH-360-25-fps-audio-128-kbps-48-kHz-stereo.mp4');

  6. Production of excited charmed mesons at LEP

    CERN Document Server

    Abbaneo, D

    2000-01-01

    Studies od the production of orbitally excited charmed and charmed strange mesons in e+e- collisions, performed by the LEP collaborations are reviewed. Measurements of the production rates of orbitally excited charmed mesons in semileptonic b decays are presented. Searches for charmed meson radial excitations are also briefly discussed.

  7. Doing business with CERN

    CERN Multimedia

    2015-01-01

    The Procurement Service, in collaboration with the Communications group’s Design team, has recently launched a new information campaign targeted at companies wishing to supply their products and services to CERN. This campaign comprises:   A brochure, available in hard and soft copy:  http://procurement.web.cern.ch/brochures/doing-business-with-cern.   A 6-minute video overview: https://procurement-dev.web.cern.ch/doing-business-with-cern. This campaign is intended for Member State firms with whom CERN is yet to do business. The key objectives are: To emphasise that CERN can be considered a major customer across a wide range of activities;   To present CERN’s procurement procedures in a dynamic and digestible way;   To highlight the information available on CERN’s procurement website: http://procurement.web.cern.ch. Furthermore, a new section called “Having a contract with CERN” is also now ava...

  8. On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches

    International Nuclear Information System (INIS)

    Ellis, J.; Zwirner, F.

    1991-01-01

    We present calculations of the one-loop radiative corrections to the mass of the neutral CP-odd Higgs boson (A) in the minimal supersymmetric extension of the standard model, as well as to the neutral CP-even Higgs (h, H) masses and mixing angles. We use these results to recalculate the cross-sections for Higgs production at LEP in the h + (Z * + fanti f), h (H)Z 0 and h (H) A final states. We delineate the domains of parameter space accessible at LEP at the Z 0 peak and at LEP II with a center-of-mass energy of 180, 190 or 200 GeV. (orig.)

  9. Muon bundles from the Universe

    Directory of Open Access Journals (Sweden)

    Kankiewicz P.

    2018-01-01

    Full Text Available Recently the CERN ALICE experiment, in its dedicated cosmic ray run, observed muon bundles of very high multiplicities, thereby confirming similar findings from the LEP era at CERN (in the CosmoLEP project. Significant evidence for anisotropy of arrival directions of the observed high multiplicity muonic bundles is found. Estimated directionality suggests their possible extragalactic provenance. We argue that muonic bundles of highest multiplicity are produced by strangelets, hypothetical stable lumps of strange quark matter infiltrating our Universe.

  10. Use of Ethernet and TCP/IP socket communications library routines for data acquisition and control in the LEP RF system

    International Nuclear Information System (INIS)

    Ciapala, E.; Collier, P.; Lienard, P.

    1991-01-01

    A general move is being made at CERN towards the direct connection of intelligent equipment and device controllers to the control room consoles by the use of local Ethernet segments bridged to the main Token Ring networks. Communications is based on standard TCP/IP protocols which allows immediate use of standard software packages. The Data Managers which control the LEP RF accelerating units and transverse feedback systems have recently been connected. The implementation of Ethernet and TCP/IP socket communications routines for RF data acquisition and control is described. The adaptation of almost all of the existing software for RF system control, data acquisition and diagnostics to make use of this means of communication has proved straightforward. Furthermore the transparent transfer of data in the form of 'C' structures from the Data Managers to the control center workstations and other computers has considerably simplified the software required for remote surveillance and data logging with a corresponding increase in speed and reliability

  11. The CERN Library

    CERN Multimedia

    Hester, Alec G

    1968-01-01

    Any advanced research centre needs a good Library. It can be regarded as a piece of equipment as vital as any machine. At the present time, the CERN Library is undergoing a number of modifications to adjust it to the changing scale of CERN's activities and to the ever increasing flood of information. This article, by A.G. Hester, former Editor of CERN COURIER who now works in the Scientific Information Service, describes the purposes, methods and future of the CERN Library.

  12. Search for neutral MSSM Higgs bosons at LEP

    CERN Document Server

    Schael, S.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Mannocchi, G.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Muller, A.S.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Bohrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, K.; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A.; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, S.L.; Wu, X.; Zobernig, G.; Dissertori, G.; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, P.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, J.N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E.K.; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kerzel, U.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, P.; Van Eldik, J.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Achard, P.; Zupan, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, V.P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S.N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, G.; Grimm, O.; Gruenewald, M.W.; Guida, M.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, A.; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, J.; Jin, B.N.; Jindal, P.; Jones, L.W.; de Jong, P.; Josa-Mutuberra, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, J.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Rembeczki, S.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, S.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, S.C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.; Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, J.; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, K.W.; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, R.M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; de Jong, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, J.W.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, M.; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, K.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jost, U.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, P.; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, N.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, D.E.; Poli, B.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, M.; Schumacher, M.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, D.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, L.; Heinemeyer, S.; Pilaftsis, A.; Weiglein, G.

    2006-01-01

    The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for the neutral Higgs bosons which are predicted by the Minimal Supersymmetric Standard Model (MSSM). The data of the four collaborations are statistically combined and examined for their consistency with the background hypothesis and with a possible Higgs boson signal. The combined LEP data show no significant excess of events which would indicate the production of Higgs bosons. The search results are used to set upper bounds on the cross-sections of various Higgs-like event topologies. The results are interpreted within the MSSM in a number of ``benchmark" models, including CP-conserving and CP-violating scenarios. These interpretations lead in all cases to large exclusions in the MSSM parameter space. Absolute limits are set on the parameter tanb and, in some scenarios, on the masses of neutral Higgs bosons.

  13. Handing-over the baton

    CERN Multimedia

    2002-01-01

    From left to right: M. Bühler-Broglin, A. Fucci, C. Roche, P. Troendle. After serving the Organisation for three decades, an emblematic figure of CERN, Manfred Bühler-Broglin, has just retired. At CERN he initially spent several years in experimental physics before becoming involved in the planning of CERN resources, first in the administration of research, and then in the administration of the two largest projects at CERN: LEP and the LHC. During the course of the past twenty years, he became the privileged and highly respected CERN linkman with the elected regional authorities. In this capacity he represented CERN during the delicate discussions prior to the construction of LEP and the LHC. In particular, he was Editor of the impressive Etude d'impact  (Impact study), crucial for the approval of the implementation of LHC in the Pays de Gex by the French authorities. Highly motivated by the protection of our wonderful environment, he also advised the Director-General in this fiel...

  14. From the CERN web: knowledge transfer, sustainability, CERN openlab and more

    CERN Multimedia

    2015-01-01

    This section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing...   Previous successful Knowledge Transfer enterprises have helped to develop several useful technologies, such as these photonic crystals, which glow when high-energy charged particles pass through, and are used for medical imaging. New Knowledge Transfer website to grow CERN’s industry links 23 November – by Harriet Jarlett  CERN’s Knowledge Transfer Group has just launched a new tool to encourage CERN researchers and businesses to share their technologies, ideas and expertise. It’s hoped that by facilitating these exchanges the tool will inspire new ways to apply CERN technologies commercially, to help benefit industry and society. Continue to read…    The power station at CERN's Prévessin site. (Image: Margot Frenot/CERN). CERN an...

  15. Comparison of LEP and QST and their contribution to standard sensory diagnostic assessment of spinal lesions: a pilot study.

    Science.gov (United States)

    Geber, Christian; Baumgärtner, Ulf; Fechir, Marcel; Vogt, Thomas; Birklein, Frank; Treede, Rolf-Detlef

    2011-06-01

    This study evaluates the additional use of laser-evoked potentials (LEP) and quantitative sensory testing (QST) in the sensory assessment of spinal lesions. Four consecutive patients with spinal lesions verified by MRI and clinical evidence for mild spinothalamic tract involvement were included. The electrophysiological workup [somatosensory evoked potentials (SEP) and LEP] was compared to QST. Electrophysiology and QST were reassessed after about 6 months. LEP detected impaired spinothalamic tract function in 7/8 examinations. QST pointed to spinothalamic tract lesions by loss of thermal function (3/8); most frequent positive sensory signs (3/8) were paradoxical heat sensations. LEP and QST results were concordant in 6/8 examinations. SEPs were abnormal in 2/8 examinations. Congruent results between SEP and both LEP and QST were obtained in 3/8 examinations. LEP detected more deficits than any single QST parameter or their combination but additional QST allows the detection of positive sensory signs. The diagnostic gain of SEP was limited.

  16. Lessons on Ancient China for LEP Adolescents.

    Science.gov (United States)

    Wigglesworth, Pierre Giles

    A unit in a Glendale, California sixth grade social studies curriculum is presented as a model for addressing two problems in the instruction of the growing population of limited English-proficient (LEP) students: (1) inadequate teacher training; and (2) shortage of appropriate, effective instructional materials. For the curriculum segment on…

  17. Joachim Tückmantel (1948 - 2013)

    CERN Multimedia

    2013-01-01

    The news of the sudden death of Joachim Tückmantel on 7 December 2013 filled us, his colleagues and friends, with immense grief and deep sadness. He passed away shortly after retiring from CERN where he worked for 40 years.   Joachim joined CERN in 1973 and made significant contributions to the design and understanding of particle accelerators. From the start, he was involved with superconducting RF technology and performed pioneering work for the LEP and PETRA cavities. In particular, he invented the DC bias to prevent the multipactor effect in the LEP2 RF system; this was essential for the success of LEP2. He authored the Semi Analytic Processor (SAP), the core of many electromagnetic simulation codes. He was equally expert in impedances and wake fields, and the mitigation of their effect. Joachim was also a respected authority for both technology and simulation of RF systems, and his advice was sought out for many accelerators at CERN and worldwide. He made important contribution...

  18. Emilio Picasso (1927-2014)

    CERN Multimedia

    2014-01-01

    Many people in the high-energy physics community will be deeply saddened to learn that Emilio Picasso passed away on Sunday 12 October after a long illness. His name is closely linked in particular with the construction of CERN’s Large Electron-Positron (LEP) collider.   Emilio studied physics at the University of Genoa. He came to CERN in 1964 as a research associate to work on the ‘g-2’ experiments, which he was to lead when he became a staff member in 1966. These experiments spanned two decades at two different muon storage rings and became famous for their precision studies of the muon and tests of quantum electrodynamics. In 1979, Emilio became responsible for the coordination of work by several institutes, including CERN, on the design and construction of superconducting RF cavities for LEP. Then, in 1981, the Director-General, Herwig Schopper, appointed him as a CERN director and LEP project leader. Emilio immediately set up a management board of the best exp...

  19. Future frontiers for e+e- collisions: physics of SLC and LEP

    International Nuclear Information System (INIS)

    Dorfan, J.M.

    1986-04-01

    A brief historical review is given of the contribution to particle physics of e + e - interactions, followed by a discussion of the LEP and SLC machines and the reasons for developing linear colliders. A brief overview of the Standard Model and some essential formalism for the process e + e - → f anti f are presented, followed by a discussion of detectors. Tests of the Standard Model and physics beyond the Standard Model that can be made running at the Z 0 are considered. LEP physics at energies above the Z 0 is discussed

  20. Search for R-parity violating decays of supersymmetric particles in final states with jets and leptons using the OPAL detector at LEP

    CERN Document Server

    Mutter, Andreas

    2004-01-01

    Of all the data of the years 1998 to 2000 taken with the OPAL detector at the e+e-- collider LEP at CERN, final states with jets and leptons have been analysed. A search for decays of new particles postulated by supersymmetric extensions of the standard model of particle physics has been performed. Only decays violating the quantum number R-parity (Rp) that is introduced in supersymmetric models have been investigated. The violation of Rp leads to experimental signatures that are in general completely different from those in the Rp conserving case. If Rp is violated, processes that lead to a rapid decay of the proton might be possible. In order to avoid such processes, in most investigations Rp is assumed to be conserved. However, there is no theoretically compelling reason for this assumption. Therefore, the possibility of R-parity violation should also be considered.

  1. CERN, Geneva

    CERN Multimedia

    2007-01-01

    "The Large Hadron Collider (pages 1-3) is being built at CERN, the European Centre for Nuclear Research near Geneva. CERN offers some extremely exciting opportunities to see "big bang" in action. (1 page)

  2. Logistics of LEP installation

    International Nuclear Information System (INIS)

    Genier, C.; Capper, S.

    1988-01-01

    The size of the LEP project, coupled with the tight construction schedules, calls for organized planning, logistics, monitoring and control. This is being carried out at present using tools such as ORACLE the Relational Database Management System, running on a VAX cluster for data storage and transfer, micro-computers for on-site follow-up, and PC's running Professional ORACLE, DOS and XENIX linked to a communications network to receive data feedback concerning transport and handling means. Following over 2 years of installations, this paper presents the methods used for the logistics of installation and their results

  3. Jet physics at LEP

    International Nuclear Information System (INIS)

    Venus, W.

    1991-01-01

    The results of studies of the jet structure of hadronic Z 0 decays performed in the first year of Large Electron-Positron collider (LEP) operation are reviewed. The measurements of the quantum chromodynamics (QCD) coupling constant α s (M z )and the detection of the presence of the triple gluon vertex are summarized. After a brief review of the promising status of QCD in relation to even the very soft processes, the running of the coupling constants to high energy is considered in the context of grand unified theories. The necessity and importance of further theoretical work is stressed. (author)

  4. Fermion pair production at LEP2 and interpretations

    International Nuclear Information System (INIS)

    Abbiendi, G.

    2001-01-01

    Preliminary results on e + e - → f f-bar, f = e, μ, τ, q, including all LEP2 data are discussed. Good agreement is found with the Standard Model up to the highest energies. Limits on possible new physics are extracted

  5. The DELPHI Trigger System at LEP2 Energies

    CERN Document Server

    Augustinus, A; Charpentier, P; De Wulf, J P; Fontanelli, F; Formenti, F; Gaspar, C; Gavillet, P; Goorens, R; Laugier, J P; Musico, P; Paganoni, M; Sannino, M; Valenti, G

    2003-01-01

    In this paper we describe the modifications carried out on the DELPHI trigger complex since the beginning of the high energy runs of LEP. The descriptions of the trigger configurations and performances for the 2000 data taking period are also presented.

  6. Potentials of heat recovery from 850C LEP cooling water

    International Nuclear Information System (INIS)

    Koelling, M.

    1982-06-01

    Most of the cooling water from LEP has a too low temperature (30 to 40 0 C) to be considered for economical recovery of energy. However, it is hoped that the heat from the klystrons be removed at a temperature of 85 0 C and that this part of the LEP cooling water might be used for saving primary energy. In this study different possibilities have been investigated to make use of the waste heat for heating purposes during winter time, for saving energy in the refrigeration process in summer and for power generation. Cost estimates for these installations are also given and show their economic drawbacks. (orig.)

  7. Small-x physics at LEP/LHC

    International Nuclear Information System (INIS)

    Bartels, J.; Schuler, G.A.

    1990-12-01

    The small-x behavior of deep inelastic structure functions in QCD is discussed. After a brief review of theoretical ideas we describe numerical estimates which show that LEP/LHC will be extremely useful for distinguishing between 'standard QCD' and 'new' physics in the low-x region. We also discuss which measurements will be useful for unravelling the new features of small-x physics. (orig.)

  8. The CERN's year; L'annee du CERN

    Energy Technology Data Exchange (ETDEWEB)

    Chadli, M. [Universite de Picardie Jules Verne, CREA, 80 - Amiens (France); Coppier, H. [Ecole Superieure d' Ingenieurs en Electrotechnique et Electronique d' Amiens - ESIEE Amiens, 80 - Amiens (France); Pezzeti, M. [Conseil Europeen pour la Recherche Nucleaire (CERN), Geneve (Switzerland)

    2007-12-15

    CERN, the European organization for nuclear research, has just celebrated its fifty years of existence. Its first goal was to counterbalance the migration of physics scientists towards the USA by the creation of a physics laboratory gathering scientists from the different European countries. Today, the CERN's mission has changed and has overcome all the expectations of its founders. In 2008, it will become, with the LHC (Large Hadron Collider), the biggest particle accelerator in the world. The CERN employs about 3000 physicists, engineers, technicians and workers. There is also 6500 people from 80 different countries who use the CERN's facilities during the year. The CERN is controlled by 20 European member states and 6 observer countries, and 20 non-member countries participate to the programs in progress. The CERN's power comes from its international and cosmopolitan spirit. The whole most famous physicists of the world can work together for the progress of science and for a better understanding of matter, of its interactions and of our universe. Two Nobel prices of physics come from the CERN: C. Rubbia and S. Van der Meer in 1983 for the discovery of W{sup +}, W{sup -} and Z{sub 0} bosons, and G. Charpak for the development of particle detectors. One can foresee that the LHC will allow new scientific achievements, like for instance, during experiments for the quest of the famous Higgs boson. It is important also to mention that the CERN has been at the origin of several technological innovations in all technical and engineering domains in the framework of its fundamental physics researches. (J.S.)

  9. From the CERN web: Collide@CERN, Fermilab neutrinos and more

    CERN Multimedia

    2015-01-01

    This new section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing...   Ruth Jarman and Joe Gerhardt. (Photo: Matthias H. Risse). Collide@CERN Ars Electronica Award goes to “Semiconductor” 10 August – Collide@CERN Ruth Jarman and Joe Gerhardt, two English artists collaborating under the name Semiconductor, are this year’s recipients of the Collide@CERN Ars Electronica Award. In the coming months, they will begin a two-month residency at CERN.  Continue to read…     Illustration: Fermilab/Sandbox Studio.   Fermilab experiment sees neutrinos change over 500 miles 7 August - Fermilab press release Scientists on the NOvA experiment saw their first evidence of oscillating neutrinos, confirming that the extraordinary detector built for the project not only functions as planned but is also making great p...

  10. At work on LEP, the world’s most powerful electron–positron collider

    CERN Document Server

    Patrice Loiez,

    1999-01-01

    The LHC will be built inside the same tunnel as an existing accelerator, the Large Electron Positron (LEP) collider which came on stream in 1989. LEP will be removed from the tunnel at the end of this year to make way for the LHC. Here technicians make delicate adjustments to one of LEP’s thousands of magnets.

  11. QCD measurements in photon-photon collisions at LEP

    OpenAIRE

    Csilling, Akos

    2001-01-01

    An overview of the latest results of the LEP collaborations on QCD measurements in photon-photon collisions is presented, including measurements of the total hadronic cross-section, the production of heavy quarks and dijets and the structure functions of real and virtual photons.

  12. Exclusive Channels in Photon-Photon Collisions at LEP

    OpenAIRE

    Braccini, Saverio

    2002-01-01

    The study of exclusive channels in photon-photon collisions at e+e- colliders allows to investigate the structure and the properties of hadrons in a very clean experimental environment. A concise review of the most recent results obtained at LEP is presented.

  13. CERN Relay Race

    CERN Multimedia

    Running Club

    2010-01-01

    This year’s CERN Relay Race will take place around the Meyrin site on Thursday 20th May at 12h00. This annual event is for teams of 6 runners covering distances of 1000m, 800m, 800m, 500m, 500m and 300m respectively. Teams may be entered in the Seniors, Veterans, Ladies, Mixed or Open categories. The registration fee is 10 CHF per runner, and each runner receives a souvenir prize. As usual, there will be a programme of entertainments from 12h in the arrival area, in front of the Restaurant no. 1. Drinks, food, CERN club information and music will be available for the pleasure of both runners and spectators. The race starts at 12h15, with results and prize giving at 13:15.   For details of the race, and of how to sign up a team, please visit: https://espace.cern.ch/Running-Club/CERN-Relay The event is organised by the CERN Running Club with the support of the CERN Staff Association.  

  14. Sharing resources@CERN

    CERN Multimedia

    2002-01-01

    The library is launching a 'sharing resources@CERN' campaign, aiming to increase the library's utility by including the thousands of books bought by individual groups at CERN. This will improve sharing of information among CERN staff and users. Until now many people were unaware that copies of the same book (or standard, or journal) are often held not only by the library but by different divisions. (Here Eduardo Aldaz, from the PS division, and Isabel Bejar, from the ST division, read their divisional copies of the same book.) The idea behind the library's new sharing resources@CERN' initiative is not at all to collect the books in individual collections at the CERN library, but simply to register them in the Library database. Those not belonging to the library will in principle be unavailable for loan, but should be able to be consulted by anybody at CERN who is interested. "When you need a book urgently and it is not available in the library,' said PS Division engineer Eduardo Aldaz Carroll, it is a sham...

  15. CERN Pensioners Association

    CERN Multimedia

    The GAC Committee

    2004-01-01

    Open Day To all CERN retired staff As part of the celebrations organised for the 50th anniversary of CERN, an Open Day will be held on Saturday 16 October 2004. Anyone willing to act as a guide, either to help and inform visitors at the reception points or to guide groups of visitors, sharing your knowledge with them, is invited to fill in the attached form. A preparatory meeting will be arranged for those who left CERN some time ago and whose knowledge of the site may no longer be quite up-to-date. The Open Day organisers need your help, which will be very much appreciated. We hope that many pensioners will participate. People with internet access may enrol directly without coming to CERN, http://www.cern.ch/CERN50/openday The GAC Committee OPEN DAY : CALL FOR VOLUNTEERS 16th October 2004 So now you are excited about the Open Day, how can you participate? As you can imagine, for such a large number of activities, we need many volunteers. Please return the following form to Elena Battis...

  16. Measurement of the W mass at LEP 200

    International Nuclear Information System (INIS)

    Bijnens, J.; Zeppenfeld, D.; Kunszt, Z.

    1987-01-01

    Each of the four LEP experiments can measure in at least three ways the mass of the W boson at LEP 200 with an accuracy of the order of 100 MeV (or better). W mass measurement from the threshold behavior of σ (e + e - →W + W - ), W mass reconstruction using the W decay products, and W mass reconstruction from the end point of the lepton energy spectrum. The integrated luminosity of 500 events/pb used in this study provides a better statistical accuracy (50-60 MeV) but it appears difficult to control the systematical uncertainties at such a level. All the methods proposed in this report require the knowledge of the machine beam energy which gives in any case an absolute limit on the W mass measurement accuracy. Then, the theoretical interest in measuring M W at the 1 o/oo level is discussed. 22 figs; 25 refs

  17. CERN Holiday Gift Guide

    CERN Multimedia

    2013-01-01

    Do you have last-minute gifts to get? Stuck for ideas? The CERN Shop and the ATLAS and CMS secretariats have some wonderfully unique gifts and stocking-fillers for sale this year - perfect for the physics fanatics in your life. Let's take a look...   1. CERN Notebook, 10 CHF - 2. CERN Pop-up book, 30 CHF - 3. USB Stick 8GB, 25 CHF - 4. CERN Tumbler, 12 CHF 5. ATLAS 3D Viewer, 5 CHF - 6. ATLAS Puzzle, 15 CHF - 7. CMS Umbrella, 25 CHF   These gifts are all available at the CERN Shop, with the exception of the ATLAS 3D Viewer and the CMS umbrella, which are only available from the respective secretariats. Don’t forget! If you’re from CERN, you still have time to take advantage of a 10% off discount at the CERN shop. Offer ends 20 December.

  18. The CERN's year

    International Nuclear Information System (INIS)

    Chadli, M.; Coppier, H.; Pezzeti, M.

    2007-01-01

    CERN, the European organization for nuclear research, has just celebrated its fifty years of existence. Its first goal was to counterbalance the migration of physics scientists towards the USA by the creation of a physics laboratory gathering scientists from the different European countries. Today, the CERN's mission has changed and has overcome all the expectations of its founders. In 2008, it will become, with the LHC (Large Hadron Collider), the biggest particle accelerator in the world. The CERN employs about 3000 physicists, engineers, technicians and workers. There is also 6500 people from 80 different countries who use the CERN's facilities during the year. The CERN is controlled by 20 European member states and 6 observer countries, and 20 non-member countries participate to the programs in progress. The CERN's power comes from its international and cosmopolitan spirit. The whole most famous physicists of the world can work together for the progress of science and for a better understanding of matter, of its interactions and of our universe. Two Nobel prices of physics come from the CERN: C. Rubbia and S. Van der Meer in 1983 for the discovery of W + , W - and Z 0 bosons, and G. Charpak for the development of particle detectors. One can foresee that the LHC will allow new scientific achievements, like for instance, during experiments for the quest of the famous Higgs boson. It is important also to mention that the CERN has been at the origin of several technological innovations in all technical and engineering domains in the framework of its fundamental physics researches. (J.S.)

  19. Radiation protection activities around the CERN accelerators

    International Nuclear Information System (INIS)

    Silari, M.

    1998-01-01

    In 1997 the physics programme of the SPS and LEP was seriously affected by a fire in one of the surface building of the SPS; the incident caused a delay in the LEP start-up, an interruption of several weeks in the SPS fixed-target programme, and the cancellation of the lead ion run for 1997. The consequences for the experiments were, nevertheless, kept to a minimum thanks to the excellent performance of the accelerators. The neutrino experiments even accumulated a record intensity. Experiments at the ISOLDE facility benefited from 315 shifts instead of 200 as originally scheduled, and new experiments started measuring the properties of unstable elements which play a crucial role in the stars. LEP also reached record energy and luminosity in 1997. Measurements of synchrotron radiation in the LEP tunnel were repeated at the new energy value of 92 GeV, to comply with the demands of the INB procedure. Following the end of operation of ACOL and LEAR in December 1996, decommissioning of the Antiproton Accumulator and transformation of the Antiproton Collector into the Antiproton Decelerator started. Experiments in the South Hall were dismantled during the year and the hall will be used partly as a storage area for radioactive components and partly as a test area

  20. Hypothalamic growth hormone receptor (GHR) controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons.

    Science.gov (United States)

    Cady, Gillian; Landeryou, Taylor; Garratt, Michael; Kopchick, John J; Qi, Nathan; Garcia-Galiano, David; Elias, Carol F; Myers, Martin G; Miller, Richard A; Sandoval, Darleen A; Sadagurski, Marianna

    2017-05-01

    The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR) are active in the central nervous system (CNS) and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb)-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (Lepr EYFPΔGHR ). The mice were generated by crossing the Lepr cre on the cre-inducible ROSA26-EYFP mice to GHR L/L mice. Parameters of body composition and glucose homeostasis were evaluated. Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in Lepr EYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in Lepr EYFPΔGHR mice. These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding.

  1. Hypothalamic growth hormone receptor (GHR controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb expressing neurons

    Directory of Open Access Journals (Sweden)

    Gillian Cady

    2017-05-01

    Full Text Available Objective: The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR are active in the central nervous system (CNS and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. Methods: To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR. The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. Results: Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. Conclusion: These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding. Keywords: Growth hormone receptor, Hypothalamus, Leptin receptor, Glucose production, Liver

  2. Heavy quark production at SLC and LEP

    International Nuclear Information System (INIS)

    Hearty, C.

    1990-06-01

    Experiments at SLC and LEP have made preliminary measurements of the relative partial widths of the c and b quarks. Using D* tagging, DELPHI has found R c bar c triple-bond/Γ c bar c/Γ hadr. = 0.162 ± 0.032 ± 0.031, in good agreement with the Standard Model value of 0.171. ALEPH has used semileptonic decays of charm to obtain 0.148 ± 0.044 -0.038 +0.045 . Three experiments have used semileptonic Β decays to measurement R b bar b: R b bar b = 0.23 ± 0.10 (Mark II), 0.218 ± 0.010 ± 0.021 (L3), and 0.220 ± 0.016 ± 0.024 (ALEPH). All agree well with the expected value of 0.217. The uncertainty in branching ratios of c and b hadrons is the largest systematic error in all of the results. Future LEP measurements of the branching ratios may reduce the errors. R b bar b will also be measured with different, and possibly lower, systematic errors by Mark II using impact parameter tagging

  3. Integrity at CERN

    CERN Document Server

    Department, HR

    2015-01-01

    In the fulfillment of its mission, CERN relies upon the trust and material support of its Member States and partners, and is committed to exercising exemplary stewardship of the resources with which it is entrusted. Accordingly, CERN expects the highest level of integrity from all its contributors (whether members of the personnel, consultants, contractors working on site, or persons engaged in any other capacity at or on behalf of CERN). Integrity is a core value of CERN, defined in the Code of Conduct as “behaving ethically, with intellectual honesty and being accountable for one’s own actions”.

  4. Capability of LEP-type surfaces to describe noncollinear reactions 2 - Polyatomic systems

    CERN Document Server

    Espinosa-Garcia, Joaquin

    2001-01-01

    In this second article of the series, the popular LEP-type surface for collinear reaction paths and a "bent" surface, which involves a saddle point geometry with a nonlinear central angle, were used to examine the capacity of LEP-type surfaces to describe the kinetics and dynamics of noncollinear reaction paths in polyatomic systems. Analyzing the geometries, vibrational frequencies, curvature along the reaction path (to estimate the tunneling effect and the reaction coordinate-bound modes coupling), and the variational transition- state theory thermal rate constants for the NH//3 + O(**3P) reaction, we found that the "collinear" LEP-type and the "bent" surfaces for this polyatomic system show similar behavior, thus allowing a considerable saving in time and computational effort. This agreement is especially encouraging for this polyatomic system because in the Cs symmetry the reaction proceeds via two electronic states of symmetries **3A prime and **3A double prime , which had to be independently calibrated....

  5. CernVM Online and Cloud Gateway: a uniform interface for CernVM contextualization and deployment

    International Nuclear Information System (INIS)

    Lestaris, G; Charalampidis, I; Berzano, D; Blomer, J; Buncic, P; Ganis, G; Meusel, R

    2014-01-01

    In a virtualized environment, contextualization is the process of configuring a VM instance for the needs of various deployment use cases. Contextualization in CernVM can be done by passing a handwritten context to the user data field of cloud APIs, when running CernVM on the cloud, or by using CernVM web interface when running the VM locally. CernVM Online is a publicly accessible web interface that unifies these two procedures. A user is able to define, store and share CernVM contexts using CernVM Online and then apply them either in a cloud by using CernVM Cloud Gateway or on a local VM with the single-step pairing mechanism. CernVM Cloud Gateway is a distributed system that provides a single interface to use multiple and different clouds (by location or type, private or public). Cloud gateway has been so far integrated with OpenNebula, CloudStack and EC2 tools interfaces. A user, with access to a number of clouds, can run CernVM cloud agents that will communicate with these clouds using their interfaces, and then use one single interface to deploy and scale CernVM clusters. CernVM clusters are defined in CernVM Online and consist of a set of CernVM instances that are contextualized and can communicate with each other.

  6. Tunnel Linking the CERN Sites: Discontinuation of the (small) 'Attestation CERN'

    CERN Multimedia

    Service des Relations avec les Pays-hôtes

    2004-01-01

    With effect from 1st June 2004, members of the personnel whose contracts with the Organization are too short for them to hold legitimation documents issued by the Host States will be required to carry only the following documents to use the Tunnel linking the CERN sites: their national identity card, if accepted by the French and Swiss regulations, or their passport (with a visa/visas if required by the French and/or Swiss regulations) and their blue CERN card (access card). The (small) 'Attestation CERN' (CERN certificate) issued by the Users Office or the Human Resources Department will no longer be required. This amendment to paragraph 10 b) and to Annex 3 of the Rules for Use of the Tunnel (ref. CERN/DSU-DO/RH/8200) is related to the addition of an expiry date on blue CERN cards, which has been compulsory since 1st January 2003, and to the recording of all relevant information in the database used for the systematic checking of tunnel users by means of card readers installed at the tunnel. Relations...

  7. Search for Excited Leptons at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hakobyan, R.S.; Hansen, J.M.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2003-01-01

    A search for charged and neutral excited leptons is performed in 217 pb-1 of data collected with the L3 detector at LEP at centre-of-mass energies up to 209 GeV. The pair- and single-production mechanisms are investigated and no signals are detected. Combining with L3 results from searches at lower centre-of-mass energies, gives improved limits on the masses and couplings of excited leptons.

  8. The LHC timeline: a personal recollection (1980-2012)

    Science.gov (United States)

    Maiani, Luciano; Bonolis, Luisa

    2017-12-01

    The objective of this interview is to study the history of the Large Hadron Collider in the LEP tunnel at CERN, from first ideas to the discovery of the Brout-Englert-Higgs boson, seen from the point of view of a member of CERN scientific committees, of the CERN Council and a former Director General of CERN in the years of machine construction.

  9. CERN - better than science fiction!

    CERN Document Server

    2007-01-01

    From left to right: Allan Cameron (Production Designer), Sam Breckham (Location Manager), James Gillies (Head of Communication at CERN), Jacques Fichet (from the CERN audiovisual service), Rolf Landua (former spokesman of the ATHENA antihydrogen experiment at CERN and Head of CERN's Education Group), Ron Howard, and Renilde Vanden Broeck (CERN press officer).

  10. The 1956 CERN Symposium

    CERN Document Server

    Jarlskog, Cecilia

    2014-01-01

    CERN, currently the largest organization in the world for particle physics, was founded in 1954. Originally located in Meyrin, at the outskirts of the city of Geneva in Switzerland, it has with time extended into neighboring France. The Theoretical Study Division of CERN, however, was created already in 1952, i.e., before the official inauguration of CERN. It was situated in Copenhagen. Christian Møller [1] was appointed (part-time) as the Director and there were two full time senior staff members, Gunnar Källén and Ben R. Mottelson. While constructing buildings and accelerators were in progress, an international conference was organized by CERN in the city of Geneva. This “CERN Symposium on High Energy Accelerators and Pion Physics”, 11–23 June 1956, attracted about 250 participants from outside CERN, among them at least 18 Nobel Laureates or future Laureates. Unfortunately, the participants from CERN are not listed in the Proceedings [2]. The conference focused on measuring devices such as bubbl...

  11. CERN: Digitally open, too

    CERN Multimedia

    Computer Security Team

    2013-01-01

    The Open Days are here!! From tomorrow onwards, we will be welcoming thousands of people to CERN. No barriers, no boundaries!   For decades, we have welcomed researchers and visitors from around the world to work at CERN, discuss physics research and attend our training sessions, lectures and conferences. This is how fundamental research should be conducted!!! But have you ever noticed how you are welcome at CERN in the digital world, too? Once you are affiliated and are registered with CERN, you receive a CERN computing account and e-mail address.  You can register your laptops, PCs and smartphones to use our (wireless) network, you can easily create your personal webpage, and profit from a vast disk space for file storage (AFS and DFS). CERN is indeed an Open Campus and not only during the Open Days. CERN is an Open Campus in the digital world. This digital Open Campus culture is exactly the reason why “computer security” has been dele...

  12. Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN

    CERN Document Server

    Delruelle, N; Leclercq, Y; Pirotte, O; Williams, L

    2015-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for eac...

  13. Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP.

    Science.gov (United States)

    Yu, Qin; Hu, Liyan; Yao, Qing; Zhu, Yongqun; Dong, Na; Wang, Da-Cheng; Shao, Feng

    2013-06-01

    Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.

  14. OPAL: selection and acquisition of LEP data

    International Nuclear Information System (INIS)

    Le Du, P.

    1985-01-01

    The OPAL project (Omni Purpose aparatus for LEP) is presented. It will be a frame and an example to explain the main problems and limitations concerning the mode of event selection, acquisition and information transfer to the final registering system. A quick review of the different problems related to data selection and acquisition is made [fr

  15. Synchro-betatron resonance excitation in LEP

    International Nuclear Information System (INIS)

    Myers, S.

    1987-01-01

    The excitation of synchrotro-betatron resonances due to spurious dispersion and induced transverse deflecting fields at the RF cavities has been simulated for the LEP storage ring. These simulations have been performed for various possible modes of operation. In particular, a scenario has been studied in which LEP is operated at the maximum possible value of the synchrotron tune throughout the acceleration cycle, in an attempt to maximise the threshold intensity at which the Transverse Mode Coupling Instability (TMCI) occurs. This mode of operation necessitates the crossing of synchro-betatron resonances at some points in the acceleration cycle if low order non-linear machine resonances are to be avoided. Simulations have been performed in which the machine tune is swept across these synchro-betratron resonances at a rate given by the bandwidth of the magnet plus power supply circuits of the main quadrupole chain. The effect of longitudinal and transverse wake-fields on the excitation of these resonances has been investigated. These studies indicate that the distortion of the RF potential well caused by the longitudinal wake fields increases the non-linear content of the synchrotron motion and consequently increases significantly the excitation of the higher order synchro-betatron resonances

  16. LEP Higgs boson searches beyond the standard model

    Indian Academy of Sciences (India)

    These include the searches for charged Higgs bosons, models with two Higgs field doublets, searches for 'fermiophobic' Higgs decay, invisible Higgs boson decays, decay-mode independent searches, and limits on Yukawa and anomalous Higgs couplings. I review the searches done by the four LEP experiments and ...

  17. MapCERN: the CERN map on your mobile

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    On the initiative of the GS Department, a new smartphone application called MapCERN has just been released. Available in two different versions – one from the Apple Store for iPhones and the other from the web for Android and Blackberry – it will help you to find the building you're looking for more easily.     The Globe of Science and Innovation as "seen" in the augmented reality of the iPhone.  You've got an appointment with someone at the other end of the CERN site and you're planning to use the CERN map to find your way there but you suddenly realise you've left it in your office… No need to panic! Simply take out your smartphone and let it guide you to the building you're looking for. This first official CERN application, which has been developed by the GS Department in collaboration with private industry, is available free of charge from the Apple Store in the case of iPhones an...

  18. Measurement of the W boson mass and width in e+e- collisions at LEP

    International Nuclear Information System (INIS)

    Schael, S.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmueller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rouge, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Sloan, T.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Hoelldorfer, F.; Jakobs, K.; Kayser, F.; Mueller, A.-S.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huettmann, K.; Luetjens, G.; Maenner, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Boehrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, K.; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara III, P.A.; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2006-01-01

    The mass of the W boson is determined from the direct reconstruction of W decays in WW→q anti qq anti q and WW→lνq anti q events in e + e - collisions at LEP. The data sample corresponds to an integrated luminosity of 683 pb -1 collected with the ALEPH detector at centre-of-mass energies up to 209 GeV. To minimise any effect from colour reconnection a new procedure is adopted in which low energy particles are not considered in the mass determination from the q anti qq anti q channel. The combined result from all channels is m W=80.440 ±0.043 (stat.) ±0.024 (syst.) ±0.009 (FSI) ±0.009 (LEP) GeV/c 2 , where FSI represents the possible effects of final state interactions in the q anti qq anti q channel and LEP indicates the uncertainty in the beam energy. From two-parameter fits to the W mass and width, the W width is found to be Γ W = 2.14 ±0.09 (stat.) ±0.04 (syst.) ±0.05 (FSI) ±0.01 (LEP) GeV. (orig.)

  19. Jonathan Sladen (1957-2009)

    CERN Multimedia

    2009-01-01

    We deeply regret to announce the death of Mr Jonathan Sladen on 19 May 2009. Mr Sladen, who was born on 9 February 1957, was a member of the BE Department and had worked at CERN since 1985. The Director-General has sent his family a message of condolence on behalf of the CERN personnel. Social Affairs Human Resources Department Jonathan made outstanding contributions to the success of the LEP collider. The fast timing system he developed for synchronizing the LEP RF system performed unfailingly and with excellent precision throughout the lifetime of the accelerator. He was a highly motivated member of the LEP RF team, participating enthusiastically in the huge task of maintaining the RF system in a state of peak operational availability for physics. He contributed to many important performance enhancements which allowed LEP to reach such high energies. Later in his career Jonathan took responsibility for the low level RF system of the CLIC Test Facility. Here he...

  20. Golden Jubilee Photos: Laying the Ground for the LHC

    CERN Multimedia

    2004-01-01

    In 1997, a prototype of the LHC dipole magnet, with the two beampipes running through the centre. Even before digging the LEP tunnel, in the early eighties CERN scientists began laying the plans for the second-generation collider to go in the tunnel. From the beginning, physicists had their eyes fixed on certain goals such as finding the Higgs boson and signs of supersymmetric particles. To reach the desired energies within the LEP tunnel, instead of LEP's electrons and positrons, the next collider would need to use more massive particles that radiate away less energy as they travel around the circular tunnel. Also, since the United States was planning the Superconducting Super Collider (SSC) with a circumference even larger than LEP's, CERN scientists conceived of their next collider as a "high-luminosity" machine that would excel at producing a high number of collisions. But since making a strong antiproton beam is laborious, this collider would have to smash together two proton beams. Thus the LHC project ...