WorldWideScience

Sample records for cerevisiae fermentando mosto

  1. ACÚMULO DE CÁDMIO POR Saccharomyces cerevisiae FERMENTANDO MOSTO DE MELAÇO

    Directory of Open Access Journals (Sweden)

    L.G. do PRADO-FILHO

    1998-01-01

    Full Text Available O presente trabalho visou o estudo do acúmulo de cádmio (Cd por Saccharomyces cerevisiae, fermentando mosto de melaço com contaminações controladas em níveis sub-tóxicos do citado metal. As condições de fermentação foram similares às reinantes na produção industrial de etanol. O mosto, não esterilizado, continha 12% de açúcares redutores totais (ART e pH 4,5. Para a contaminação controlada empregou-se dois sais de cádmio, cloreto e acetato e, quatro níveis de contaminação 0,5; 1,0; 2,0 e 5,0 mg Cd.kg-1 mosto. A inoculação do mosto foi executada com fermento de panificação (10% p/p. Após a fermentação (4 horas foram determinados, porcentagem de fermento no vinho centrifugado e teor alcoólico. Na levedura separada foram determinados peso úmido, matéria seca, proteína bruta e teores de cádmio por espectrofotometria de absorção atômica. Em todos os níveis de contaminação estudados houve acúmulo de Cd pela levedura e diminuição do rendimento em etanol.The aim of this paper was to study the cadmium (Cd accumulation by Saccharomyces cerevisiae fermenting wort of molasses, under sub-toxic levels of controlled cadmium contamination. Fermentation conditions were similar to industrial alcohol production. Non-sterelized wort had 12% of total reducing sugars (w/w and pH 4.5. For the controlled contamination, two cadmium salts were used (chloride and acetate, at four levels of contamination: 0.5; 1.0; 2.0 and 5.0 mg Cd.kg-1 wort. The inoculation of the wort was carried out with commercial bread yeast (10% w/w. After fermentation (4 hours, samples were evaluated for cellular viability, alcohol content and yeast percentage in the centrifuged wine. The centrifuged yeast cells were evaluated for total fresh and dry weight, total protein, and cadmium concentration by atomic absortion spectroscopy. In all Cd levels, there was cadmium accumulation by yeast and a decrease in ethanol yield.

  2. ACÚMULO DE CÁDMIO POR Saccharomyces cerevisiae FERMENTANDO MOSTO DE CALDO DE CANA ACCUMULATION OF CADMIUM BY Saccharomyces cerevisiae FERMENTING MUST OF SUGAR-CANE

    Directory of Open Access Journals (Sweden)

    S.M.G. da SILVA

    1998-10-01

    Full Text Available O presente trabalho estudou o acúmulo de cádmio (Cd por Saccharomyces cerevisiae, fermentando mosto de caldo de cana com contaminações controladas, em níveis sub-tóxicos, do citado metal. O ensaio de fermentação foi conduzido em erlenmayers de 500 mL, acondicionados em estufa B.O.D. O mosto, não esterilizado, continha 12% de açúcares redutores totais (ART e pH 4,5. Para a contaminação controlada empregou-se cloreto de cádmio em quatro níveis de contaminações: 0,5; 1,0; 2,0 e 5,0 mg Cd kg-1 mosto. A inoculação do mosto foi executada com fermento de panificação (10% p/p. Após a fermentação (4 horas foram determinados, porcentagem de fermento no vinho centrifugado e teor alcoólico do mesmo. Na levedura separada por centrifugação, foram determinados peso úmido, matéria seca, proteína bruta e teores de cádmio por espectrofotometria de absorção atômica. Em todos os níveis de contaminação estudados houve acúmulo de Cd pela levedura.The aim of this paper is to study the absorption and cadmium (Cd concentration by Saccharomyces cerevisiae, fermenting must of sugar-cane, with control contamination, under toxic levels of cadmium (mg Cd kg-1 must. The fermentation was performed in 500 mL erlemmayers. Non-sterilized must showed 12% of total reducing sugar (w/w e pH 4,5. For the control contamination, was applied cadmium chloride, with four levels of contamination: 0,5; 1,0; 2,0 and 5,0 mg Cd kg-1 must. The inoculation of must was carried out with bread yeast (10% w/w. After fermentation (4 hours, samples were colected to evaluate cellular viability and yeast percentage. Fermenting mid was centrifuged and analysis of mid without yeast and raw yeast were performed. The alcohol content was measured , as well as the total humid weight for the yeast material, raw protein and heavy metal by atomic absorption spectroscopy. Watch all level studied have accumulation of cadmium at yeast.

  3. ACÚMULO DE CÁDMIO POR Saccharomyces cerevisiae EM CALDO DE CANA-DE-AÇÚCAR CONTAMINADO COM ACETATO DE CÁDMIO

    Directory of Open Access Journals (Sweden)

    Mariano-da-Silva Samuel

    1999-01-01

    Full Text Available O presente trabalho visou estudar o acúmulo de cádmio (Cd por Saccharomyces cerevisiae, fermentando mosto de caldo de cana-de-açúcar com contaminações controladas, em níveis sub-tóxicos do citado metal. As condições de fermentação foram similares às reinantes na produção industrial de etanol. O mosto, não esterelizado, continha 12% de açúcares redutores totais (ART e pH 4,5. Para a contaminação controlada empregou-se acetato de cádmio em quatro níveis de contaminações (0,5; 1,0; 2,0 e 5,0 mg Cd kg-1 mosto. A inoculação do mosto foi executada com fermento de panificação (10% p/p. Após a fermentação (4 horas foram determinados, porcentagem de fermento no vinho centrifugado e teor alcoólico do mesmo. Na levedura separada foram determinados peso úmido, matéria seca, proteína bruta e teores de cádmio por espectrofotometria de absorção atômica. Em todos os níveis de contaminação estudados houve acúmulo de Cd pela levedura.

  4. Aminoácidos livres e uréia durante a fermentação do mosto de Cabernet Sauvignon com diferentes leveduras

    Directory of Open Access Journals (Sweden)

    DUTRA Sandra Valduga

    1999-01-01

    Full Text Available A análise de aminoácidos e uréia em mosto de Cabernet Sauvignon fermentado com diferentes leveduras, foram os principais objetivos desse trabalho. Cabernet Sauvignon foi utilizada por ser teoricamente uma cultivar com alto teor de prolina e baixo teor de arginina, em comparação com cultivares com alto teor e predominância de arginina. Os mostos foram coletados em Santana do Livramento, RS e transportados para a UFSM; lá foram dividos em dois lotes aos quais foram adicionados diferentes leveduras: Saccharomyces cerevisiae Fermol Bouquet e Saccharomyces cerevisiae 2056. A análise dos aminoácidos foi realizada utilizando um analizador de aminoácidos marca Hitachi L-8500 conforme SANDERS e OUGH (21. Uréia foi determinada de acordo com ALMY e OUGH (1 modificado por PEREIRA e DAUDT (19. O aminoácido encontrado no mosto, em maior quantidade foi a prolina (847mg/l seguido por arginina (235mg/l e alanina (87mg/l. A maioria dos aminoácidos (exceção de prolina foram consumidos pelas leveduras logo após o início da fermentação. A liberação máxima de uréia no meio coincidiu com o consumo máximo de arginina, que na fermentação com a levedura 2056 ocorreu à 19° Brix (2,7mg/l e com a levedura Fermol Bouquet ocorreu com o mosto a 15° Brix (4,1mg/l. O teor de prolina permaneceu elevado durante todo o processo fermentativo, confirmando a pouca preferência das leveduras por este aminoácido. Os aminoácidos arginina, treonina, serina, aspartato e isoleucina, podem ser considerados melhores fontes de nitrogênio para as leveduras.

  5. Aminoácidos livres e uréia durante a fermentação de mosto de Chardonnay com diferentes leveduras

    Directory of Open Access Journals (Sweden)

    DUTRA Sandra Valduga

    1999-01-01

    Full Text Available A análise de aminoácidos e uréia durante a fermentação da cultivar Chardonnay, fermentada com diferentes leveduras, foram os principais objetivos deste trabalho. Os mostos foram coletados em Santana do Livramento, RS, transportados para a UFSM; lá foram divididos em dois lotes aos quais foram adicionadas diferentes leveduras: Saccharomyces cerevisiae Fermol Bouquet e Saccharomyces cerevisiae D47. O aminoácido encontrado no mosto em maior quantidade foi a prolina (327 mg/L seguido por treonina, arginina e alanina (239 mg/L. A maioria dos aminoácidos foi consumida pelas leveduras, logo após o início da fermentação. A liberação máxima de uréia no meio coincidiu com o máximo de consumo de arginina, que para a levedura Fermol Bouquet foi com 15ºBrix e para a levedura D47 com 11ºBrix. Confirmando a pouca preferência de prolina pelas leveduras, o teor deste aminoácido permaneceu elevado durante o processo fermentativo. Os aminoácidos, arginina, alanina, treonina, serina, ácido aspártico e isoleucina podem ser considerados as melhores fontes de nitrogênio para as leveduras.

  6. Uso alternativo de las frutas en preparación de mostos y fermentos.

    Directory of Open Access Journals (Sweden)

    Ramírez Buitrago María Elvira

    2000-06-01

    Full Text Available El presente trabajo busca establecer una técnica que permita aumentar la vida de anaquel por períodos prolongados de mostos y fermentos obtenidos de pulpas de frutas, para su aprovechamiento en la industria vinícola. Con este fin se realizó el estudio cinético de la fermentación alcohólica de pulpa de guayaba concentrada, aplicando dos tratamientos: mosto fresco y mosto conservado usando una combinación de métodos químicos y deshidratación osmótica. Se realizaron 18 fermentaciones, 9 para cada tratamiento, bajo control automático de las principales variables de operación, en proceso discontinuo y volumen de 12 litros. Se hizo el seguimiento, durante el proceso, de las concentraciones de sustrato, producto y biomasa durante 14 horas de fermentación, manteniendo el mismo valor de pH, concentración inicial de mosto, nutrientes y velocidad de agitación para todas las fermentaciones. Los valores de las variables correspondientes a la máxima productividad de alcohol fueron: temperatura 30°C, concentración inicial de sustrato, medido como azúcares reductores totales ART, 200 g/l y concentración de inóculo de 60 g/l. Dicha productividad máxima fue 7.39 g/l, habiéndose establecido que no existe diferencia estadísticamente significativa entre mosto fresco y mosto conservado.

  7. Cinética de crescimento de levedura em mosto de cagaita para produção de bebida fermentada

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Alencar Lopes

    2015-07-01

    Full Text Available Resumo: Objetivo deste trabalho foi realizar o estudo inicial da cinética de crescimento de levedura para servir como base para futuros estudos visando determinar a potencialidade do mosto de cagaita como fonte de substrato na fermentação alcoólica de S. cerevisiae visando a produção de bebida fermentada. Os frutos foram coletados na região sul do estado de Tocantins e após clarificação foi realizado a inoculação com concentração inicial de 1,8 x 103 Células por ml. Os parâmetros analisados foram, pH, teor de sólidos solúveis e densidade ótica a 550nm e taxa de crescimento celular. Como resultados observamos que o TSS inicial apresenta valor bem acima do encontrado em outras frutas como cajá, melancia e caju, os valores de pH inicial do mosto encontra-se abaixo da maioria dos dados da literatura e abaixo do considerado ideal para o crescimento de leveduras e ainda que a velocidade de crescimento abaixo da maioria dos dados disponíveis na literatura são possivelmente decorrentes de fatores nutricionais ou em relação à cepa utilizada.Kinetics of growth of yeast in wort of cagaita for production of fermented beverage Abstract: The objective this work was the initial study of growth kinetics of yeast to serve as a basis for future studies to determine the potential of the wort cagaita as a source of substrate in the fermentation of  Saccharomyces cerevisiae aimed at producing of fermented drink. Fruits were collected in the southern state of Tocantins and after clarification was conducted inoculation with initial concentration of 1.8 x 103 cells per ml. The analyzed parameters were pH, soluble solids, and optical density at 550nm and cell growth rate. As a result we observe that the initial TSS presented value well above that found in other fruits like cajá, watermelon and cashew, the values of initial pH of the wort is below the majority of the literature data and below the considered ideal for the growth of yeasts and

  8. Avaliação de mosto de uva fermentado Evaluation of fermented grape must

    Directory of Open Access Journals (Sweden)

    Maria Eugênia de Oliveira Mamede

    2007-06-01

    Full Text Available O objetivo deste estudo foi determinar a concentração de compostos voláteis nos mostos de uva Chardonnay e Pinot Noir fermentados pela Pichia membranaefaciens, como também analisar as fases de crescimento da levedura durante a fermentação a 15 e 20 °C. Compostos voláteis majoritários da fermentação como: etanol, acetato de etila, acetato de isoamila, acetaldeido, 1-propanol, isobutanol e álcool isoamílico foram isolados e quantificados pelo sistema de "Purge and Trap". A fermentação conduzida a 15 °C mostrou ser mais adequada na produção de acetato de etila, com valores inferiores a 200 mg.L-1 (131,3 e 147,0 mg.L-1 nos mostos Pinot Noir e Chardonnay, respectivamente, enquanto que a 20 °C a produção foi de 286,0 e 270,0 mg.L-1 nos mostos Pinot Noir e Chardonnay, respectivamente.The aim of this study was to determine the concentration of volatile compounds in Chardonnay and Pinot Noir grape musts. The study also aims to analyze yeast growth phases during fermentation at 15 and 20 °C. Major volatile compounds of fermentation such as ethanol, ethyl acetate, isoamyl acetate, acetaldehyde, 1-propanol, 3-methyl butanol and 2-methyl butanol were isolated and quantified using the Purge and Trap system. Fermentation carried out at 15 °C was more appropriate in the production of ethyl acetate (131.3 and 147.0 mg.L-1 in the Pinot Noir and Chardonnay musts, respectively, whilst at 20 °C the production was of 286.0 and 270.0 mg.L-1 in the Pinot Noir and Chardonnay musts respectively.

  9. Aplicaci??n de los SIG para determinar la variabilidad espacial de par??metros de calidad del mosto de uva. Experiencia en la D.O. Bierzo

    OpenAIRE

    Rodr??guez P??rez, Jos?? Ram??n, 1968-; ??lvarez Taboada, Mar??a Flor; Peters, Stefan

    2008-01-01

    Los estudios tradicionales sobre par??metros de calidad del mosto abarcan grandes bloques de vi??edo y se centran en determinar la evoluci??n temporal de estas variables para decidir la ??poca de vendimia m??s adecuada. En este trabajo se propone una metodolog??a para el an??lisis de la variabilidad espacial de los par??metros del mosto y se exponen los resultados obtenidos en la DO Bierzo, para cuatro variedades diferentes de vid. Los resultados permiten identificar zonas homogeneas en cuant...

  10. Composição físico-química do mosto e do vinho branco de cultivares de videiras em resposta a porta-enxertos

    Directory of Open Access Journals (Sweden)

    Marlon Jocimar Rodrigues da Silva

    2015-11-01

    Full Text Available Resumo: O objetivo deste trabalho foi avaliar a influência dos porta-enxertos 'IAC 766 Campinas' e '106-8 Mgt Ripária do Traviú' sobre as características físico-químicas do mosto e do vinho das uvas 'IAC 116-31 Rainha', 'IAC 21-14 Madalena' e 'BRS Lorena'. O mosto das uvas foi avaliado quanto ao pH, sólidos solúveis (SS, acidez total (AT e relação SS/AT. No vinho, realizaram-se as seguintes análises físico-químicas: densidade, teor alcoólico; acidez total, volátil e fixa; pH; extrato seco; açúcares redutores; extrato seco reduzido; álcool em peso/extrato seco reduzido; dióxido de enxofre livre e total; índice de polifenóis totais (I 280, polifenóis totais, flavonoides; e atividade antioxidante. As características do mosto da 'IAC 21-14 Madalena' não foram influenciadas pelos porta-enxertos, no entanto, o porta-enxerto 'IAC 766 Campinas' promoveu maior SS/AT no mosto da 'IAC 116-31 Rainha' e menor SS/AT no da 'BRS Lorena. Os porta-enxertos 'IAC 766 Campinas' e '106-8 Mgt Ripária do Traviú' influenciaram o pH e o teor alcoólico do vinho da 'IAC 116-31 Rainha', o extrato seco do vinho da 'IAC 21-14 Madalena' e a acidez fixa do vinho da 'BRS Lorena'. Não houve influência dos porta-enxertos sobre os compostos fenólicos e a atividade antioxidante dos vinhos.

  11. Efeito da safra vitícola na composição da uva, do mosto e do vinho Isabel da Serra Gaúcha, Brasil

    OpenAIRE

    Rizzon,Luiz Antenor; Miele,Alberto

    2006-01-01

    Entre os fatores que interferem na composição e na qualidade do vinho, destaca-se a safra vitícola, com suas variações climáticas. Com este objetivo, avaliou-se o efeito das safras de 1999, 2000 e 2001 na composição da uva, do mosto e do vinho Isabel da Serra Gaúcha. Nesse sentido, foram selecionados vinte e dois produtores de uva Isabel de onze municípios dessa região. Por ocasião da maturação, para as avaliações da uva e do mosto e a elaboração das microvinificações, foram colhidos 60kg de ...

  12. Efeito da safra vitícola na composição da uva, do mosto e do vinho Isabel da Serra Gaúcha, Brasil

    Directory of Open Access Journals (Sweden)

    Rizzon Luiz Antenor

    2006-01-01

    Full Text Available Entre os fatores que interferem na composição e na qualidade do vinho, destaca-se a safra vitícola, com suas variações climáticas. Com este objetivo, avaliou-se o efeito das safras de 1999, 2000 e 2001 na composição da uva, do mosto e do vinho Isabel da Serra Gaúcha. Nesse sentido, foram selecionados vinte e dois produtores de uva Isabel de onze municípios dessa região. Por ocasião da maturação, para as avaliações da uva e do mosto e a elaboração das microvinificações, foram colhidos 60kg de uva de cada viticultor. A safra vitícola interferiu significativamente no peso do cacho e da baga, mas não alterou a relação peso da ráquis/peso do cacho. No mosto, observaram-se diferenças em todas as variáveis, exceto para a relação degreesBrix/acidez total. No vinho, teve efeito na maior parte das variáveis avaliadas, com exceção aos cátions K, Mn, Cu e Rb. Em geral, a safra de 1999 foi a melhor, pois apresentou parâmetros mais adequados de acidez total, extrato seco, extrato seco reduzido, alcalinidade das cinzas, taninos, antocianinas e glicerol, variáveis essas que determinam a estrutura e a cor dos vinhos, importantes fatores para sua qualidade.

  13. Obtención y caracterización de nanopartículas de oro a partir de mostos

    OpenAIRE

    Lamo Santamaría, Beatriz de

    2015-01-01

    En este Trabajo Fin de Grado se describe la síntesis de nanopartículas de oro empleando mostos de uvas tintas de diferentes variedades como agentes reductores. Las nanopartículas obtenidas han sido caracterizadas utilizando diferentes técnicas. Mediante espectroscopia UV-Visible se ha estudiado tanto el comportamiento de las nanoestructuras en función del tiempo, como el efecto del volumen de agente reductor empleado para la síntesis. Por otro lado, se ha estudiado la forma, tamaño y estructu...

  14. Evaluación del etanol obtenido a partir de residuos forestales como aditivo en gasolina para motores de combustión interna

    OpenAIRE

    Flores Quintero, Jesús Enrique; Marín Lopez, Angie M.

    2016-01-01

    La presente investigación consistió en la obtención de etanol a partir de residuos forestales para ser evaluado como aditivo en gasolina. Se obtuvo un mosto (a partir de residuos forestales) rico en azúcares a través de una hidrólisis ácida con ácido sulfúrico al 6% por 3 horas a 80 ºC. Se definieron experimentalmente las condiciones del proceso de fermentación del mosto obtenido con levadura Saccharomices cerevisiae al 50% durante 6 días y destilación simple para la purificación del etanol h...

  15. Desenvolvimento de processo termico otimizado para mosto de caldo de cana na fermentação alcoolica

    OpenAIRE

    Jonas Nolasco Junior

    2005-01-01

    Resumo: Nesta pesquisa é proposto um processo de tratamento térmico do mosto, com máxima preservação do conteúdo em açúcares fermentescíveis (sacarose, glicose e frutose), a fim de promover a inativação térmica de seus contaminantes bacterianos e por extensão os da fermentação alcoólica. Com esse objetivo foram examinadas as cinéticas de degradação térmica da sacarose, glicose, frutose e açúcares redutores totais (ART) (110 ? 140ºC) e também dos esporos de B. stearothermophilus (98 ? 130ºC), ...

  16. Efeitos da concentração dos compostos fenólicos no mosto da fermentação alcoólica

    OpenAIRE

    Henrique, Míriam Roberta [UNESP

    2013-01-01

    O objetivo deste trabalho foi avaliar a relação da concentração dos compostos fenólicos do mosto com a viabilidade celular, viabilidade de brotamento, brotamento celular da levedura alcoólica e a eficiência da fermentação por subprodutos durante a safra 2011/2012 na Usina São Manoel, São Manuel (SP). Esta unidade iniciou a safra com a levedura selecionada CAT-1. Durante a safra, as cepas nativas adentraram o processo fermentativo e também foram avaliadas quanto à sensibilidade a concentração ...

  17. Utilização de mostos concentrados na produção de cervejas pelo processo contínuo: novas tendências para o aumento da produtividade Use of concentrated worts for high gravity brewing by continuous process: new tendencies for the productivity increase

    Directory of Open Access Journals (Sweden)

    Giuliano Dragone

    2007-08-01

    Full Text Available O presente trabalho avaliou a produtividade volumétrica em etanol durante a fermentação de mostos com elevadas concentrações de extrato original, para a produção de cerveja pelo processo contínuo, utilizando as leveduras imobilizadas em bagaço de malte. Os mostos com diferentes concentrações de extrato original (14,3 ºP, 15,2 ºP e 19,6 ºP foram preparados a partir de um mosto de 22 ºP elaborado com malte e adjunto de alta maltose em uma relação adjunto: malte de 1:2,8. As fermentações foram conduzidas em um reator de coluna de bolhas, a 15 ºC, empregando uma taxa de diluição de 0,04 h-1 e um fluxo constante de gases de 250 mL/min (200 mL/min de CO2 e 50 mL/min de ar. De acordo com os resultados, a produtividade volumétrica em etanol aumentou quando a concentração de extrato original do mosto foi aumentada, sendo o valor máximo (2,09 g.L-1.h-1 obtido para o mosto de 19,6 ºP. Esse valor representa um aumento de 345% quando comparado com a produtividade (0,47 g.L-1.h-1 da fermentação descontínua de um mosto de 20 ºP. Conclui-se, então, que o processo contínuo de fermentação de mostos com elevadas concentrações de extrato para a produção de cerveja permite obter expressivos ganhos na produtividade em etanol quando comparado ao processo descontínuo.The present work evaluated the ethanol volumetric productivity during fermentation of worts with elevated original extract, for high gravity brewing by continuous process using yeasts immobilized on brewer's spent grain. Worts with different original extract (14.3 ºP, 15.2 ºP and 19.6 ºP were prepared from a wort of 22 ºP elaborated with malt and high maltose adjunct in an adjunct:malt ratio of 1:2.8. The fermentations were performed in a bubble column reactor, at 15 ºC, using a dilution rate of 0.04 h-1 and a constant gas flow of 250 mL/min (200 mL/min CO2 and 50 mL/min air. According to the results, the ethanol volumetric productivity increased when the

  18. Leveduras de processos de bioetanol: potencial para a produção de cerveja especial com mosto de alta densidade

    OpenAIRE

    Renata Maria Christofoleti Furlan

    2016-01-01

    A crescente demanda por cervejas especiais tem levado o setor a buscar inovações. No âmbito da fermentação, as leveduras constituem o ponto crucial, tanto no que se refere à tolerância aos estresses do processo quanto no que tange à produção dos compostos aromáticos da bebida. Processos cervejeiros com mosto de alta densidade (high-gravity (HG)) impõem condições mais estressantes às leveduras devido à maior pressão osmótica no início da fermentação e maior teor alcoólico ao final da mesma. Le...

  19. Avaliação da produção dos compostos majoritários da fermentação de mosto de uva por leveduras isoladas da região da "Serra Gaúcha" (RS Evaluation of the major compounds formed during grape must fermentation by yeast isolated from "Serra Gaúcha" (RS region

    Directory of Open Access Journals (Sweden)

    Maria Eugênia de Oliveira Mamede

    2004-09-01

    Full Text Available O objetivo deste trabalho foi estudar o comportamento do crescimento, bem como a produção de compostos voláteis durante a fermentação de mosto de uva pelas leveduras Kloeckera apiculata e Saccharomyces cerevisiae. As concentrações dos compostos voláteis majoritários da fermentação foram dependentes da temperatura de fermentação. Nas fermentações a 20°C, as concentrações da massa celular seca e dos compostos voláteis foram maiores do que na fermentação a 15°C. A Kloeckera apiculata produziu altas concentrações de acetato de etila (197,0mg/L - 310,0mg/L e acetato de isoamila (19,3mg/L - 31,3mg/L, ésteres de grande importância sensorial. No entanto, a concentração de etanol obtida foi baixa, cerca de 6,3g/L - 24,0g/L, em comparação à conseguida utilizando Saccharomyces cerevisiae como agente de fermentação (27,3g/L - 34,0g/L.The objective of this work was to study the growth behavior, as well as, volatile compounds production during grape must fermentation by Kloeckera apiculata and Saccharomyces cerevisiae. The concentrations of the major volatile compounds during the fermentation were dependent of the temperature of the fermentation. In fermentation at 20°C, the concentration of the dry weight biomass and volatile compounds were greater than that ones at 15°C. The Kloeckera apiculata produced high concentrations of the ethyl acetate (197.0mg/L - 310.0mg/L and isoamyl acetate (19.3mg/L - 31.3mg/L, esters of great sensory importance. However, the ethanol concentration obtained was lower, about 6.3g/L - 24.0g/L, than that one obtained with fermentation by Saccharomyces cerevisiae (27.3g/L - 34.0g/L.

  20. COMPORTAMENTO DAS FERMENTAÇÕES ALCOÓLICA E ACÉTICA DE SUCOS DE KIWI (Actinidia deliciosa: COMPOSIÇÃO DOS MOSTOS E MÉTODOS DE FERMENTAÇÃO ACÉTICA BEHAVIOUR OF ALCOHOLIC AND ACETIC FERMENTATIONS OF KIWI MASHES (Actinidia deliciosa; COMPOSITION OF MASHES AND PRODUCTION METHODS

    Directory of Open Access Journals (Sweden)

    Fabiana BORTOLINI

    2001-08-01

    Full Text Available A cultura de kiwi vem se expandindo e a obtenção de vinagre é uma alternativa para o aproveitamento de excedentes de safra e diversificação da produção. Os mostos foram preparados em seis tratamentos: suco de kiwi natural (T1; suco de kiwi e nutrientes (T2; suco de kiwi e sacarose até 18°Brix (T3; suco de kiwi a 18°Brix, e nutrientes (T4; suco de kiwi e sacarose até 22°Brix (T5 e suco de kiwi a 22°Brix, e nutrientes (T6. A fermentação alcoólica ocorreu a 28°C, com inóculo de 10(6UFC/mL de Saccharomyces cerevisiae. Foram utilizados na fermentação acética apenas os tratamentos 1, 3 e 5, considerando que a adição de nutrientes não influenciou a produção de etanol. Na fermentação acética, foram utilizados gerador vertical (PG a temperatura ambiente e fermentador submerso (PS a 25°C, com agitação de 500rpm e fluxo de oxigênio de 0,05vvm, com volume de trabalho de 2 litros. Os rendimentos da fermentação alcoólica variaram entre 38,65 e 47,23%, com eficiências de 75,62 a 92,41% e produtividades entre 0,74 e 2,0g/L.h. Os valores de pH foram maiores ao final da fermentação alcoólica nos mostos com menor concentração de açúcares totais (T1 e T2. Na fermentação acética pelo PG, a composição dos mostos não aumentou a produtividade, por outro lado, pelo PS, os mostos com concentrações de etanol superiores foram mais produtivos. Os vinagres obtidos pelo PS produziram em 12 horas entre 1,00 e 1,78% (p/v de ácido acético, com rendimentos variando entre 93,24 e 98,34% e produtividades entre 0,83 e 1,73g/L.h. A análise sensorial, através do teste de ordenação, indicou que os vinagres de kiwi obtidos pelo PG foram superiores, com índices de aceitabilidade acima de 70%.The kiwi culture has been expanding and the production of vinegar is an alternative that aims to use surplus fruits to diversify production. In this study, kiwi fruit (Actinidia deliciosa vinegar was produced using submerse and generator

  1. Fungos toxigênicos em solos de vinhas, uvas e mostos e Ocratoxina A em vinhos e sucos do Vale do Submédio São Francisco

    OpenAIRE

    Terra, Michelle Ferreira

    2014-01-01

    A ocratoxina A (OTA) tem sido freqüentemente encontrada como contaminante de uvas, vinhos e suco de uva, sendo considerada uma das micotoxinas mais prejudiciais para a saúde humana. Neste contexto, este estudo foi realizado com o objetivo de avaliar a ocorrência de fungos ocratoxigênicos do gênero Aspergillus Seção Nigri em solos cultivados com videiras, uvas e mostos do Nordeste brasileiro, bem como verificar os níveis de Ocratoxina A em vinhos e sucos de uva elaborados com variedades cultiv...

  2. Susceptibility of Saccharomyces cerevisiae and lactic acid bacteria from the alcohol industry to several antimicrobial compounds Susceptibilidade de Saccharomyces cerevisiae e bactérias láticas provenientes de indústrias alcooleiras a vários compostos antimicrobianos

    Directory of Open Access Journals (Sweden)

    Pedro de Oliva-Neto

    2001-03-01

    Full Text Available The antimicrobial effect of several products including commercial formulations currently used in sugar and alcohol factories was determined by adapted MIC (Minimal Inhibitory Concentration test on Saccharomyces cerevisiae and on natural contaminants Lactobacillus fermentum and Leuconostoc mesenteroides. The MIC test by macrodilution broth method was adapted by formulating of the culture medium with cane juice closely simulating industrial alcoholic fermentation must. Acid penicillin V (MIC 0.10-0.20 µg/ml and clindamycin (MIC 0.05-0.40 µg/ml were most effective against bacterial growth in 24 h. Among the chemicals, sulphite (MIC 10-40 µg/ml, nitrite (MIC 50 µg/ml. Methyldithiocarbamate was efficient only on L. fermentum (MIC 2.5 µg/ml and S. cerevisiae (MIC 5.0 µg/ml. Thiocianate (MIC 1.2-5.0 µg/ml, bromophenate (MIC 9-18 µg/ml and n- alkyldimethylbenzylammonium cloride (MIC 1-8 µg/ml affected S. cerevisiae at similar inhibitory concentration for L. mesenteroides or L. fermentum. Formaldehyde was more effective on bacteria (MIC 11.5 - 23 µg/ml in both pH (4.5 and 6.5 than yeast (MIC 46-92 µg/ml. Several tested formulated biocides seriously affect S. cerevisiae growth in the similar dosages of the bacterial inhibition, so these products should be avoided or used only in special conditions for the bacterium control of fermentation process. For this step, the control of these contaminants by antibiotics are more suitable and effective.O efeito antimicrobiano de vários produtos incluindo formulações comerciais usualmente utilizadas em usinas de açúcar e álcool foi determinado pelo teste da Concentração Mínima Inibitória (CMI adaptada para Saccharomyces cerevisiae e os contaminantes naturais Lactobacillus fermentum and Leuconostoc mesenteroides. O teste da CMI foi feito pela adaptação do método da Macrodiluição em caldo pela formulação de um meio de cultivo com caldo de cana em condições similares ao mosto da fermenta

  3. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Science.gov (United States)

    2010-04-01

    ...) antibody (ASCA) test systems. 866.5785 Section 866.5785 Food and Drugs FOOD AND DRUG ADMINISTRATION... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  4. Effects of using mixed wine yeast cultures in the production of Chardonnay wines Efecto del uso de cultivos mixtos de levaduras en la producción de vinos Chardonnay

    Directory of Open Access Journals (Sweden)

    V. García

    2010-09-01

    Full Text Available The effect of using mixed cultures of non-Saccharomyces and Saccharomyces cerevisiae yeasts in the physicochemical and sensory qualities of the wines were analyzed in this study. Based on growth curves, sugar consumption and glycerol production in synthetic must, Candida membranifaciens L1805 was selected from a group of four Candidas spp. isolates from Chile and Argentina. This yeast was subsequently used in combination with S. cerevisiae in Chardonnay must. A monoculture of S. cerevisiae was used as control. The wines fermented with mixed cultures had lower volatile acidity and ethanol concentration than the control. Furthermore, the chromatographic analysis showed that the wines from mixed cultures presented differences in the concentration of esters and propanol. These characteristics positively influenced the sensory qualities of the wines produced with mixed cultures, which was reflected in the preference for these wines by a panel of enologists. This study shows that the use of non-Saccharomyces yeasts could be a strategy to obtain distinctive wines using the native microorganisms from each winemaking area.En este estudio se analizó el efecto del uso de cultivos mixtos de levaduras no-Saccharomyces y Saccharomyces cerevisiae en las cualidades fisicoquímicas y sensoriales de los vinos. Candida membranifaciens L1805 fue elegida de un grupo de cuatro Candida spp. aisladas de Chile y Argentina, sobre la base de las curvas de crecimiento, el consumo de azúcar y la producción de glicerol en mosto sintético. Posteriormente, esta levadura fue usada en cultivo mixto con S. cerevisiae en mosto Chardonnay. Como control se utilizó un monocultivo de S. cerevisiae. Los vinos producidos por cultivos mixtos tuvieron menor acidez volátil y producción de etanol que los correspondientes al control. Los análisis cromatográficos mostraron que estos vinos presentaron diferencias en la concentración de ésteres y de propanol. Estas caracter

  5. Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bojsen, Rasmus K; Andersen, Kaj Scherz; Regenberg, Birgitte

    2012-01-01

    Microbial biofilms can be defined as multi-cellular aggregates adhering to a surface and embedded in an extracellular matrix (ECM). The nonpathogenic yeast, Saccharomyces cerevisiae, follows the common traits of microbial biofilms with cell-cell and cell-surface adhesion. S. cerevisiae is shown t...

  6. Saccharomyces cerevisiae en la fabricación del licor Cocuy.

    OpenAIRE

    Yegres, F; Fernández-Zeppenfeldt, G; Padin, CG; Rovero, L; Richard-Yegres, N

    2003-01-01

    El licor "cocuy" es una bebida artesanal, producida por las comunidades rurales en el occidente de Venezuela mediante un proceso de fermentación y destilación del mosto extraído del Agave cocui. Este estudio fue enmarcado en el "Programa Agave" con el propósito de contribuir a rescatar esta actividad productiva tradicional. En vista de la falta de información en relación al proceso autóctono se hicieron estudios de las levaduras fermentadoras, la optimización de la producción de etanol y la u...

  7. Correção do mosto da uva Isabel com diferentes produtos na Serra Gaúcha Must correction of the Isabel grape with different products in the Serra Gaúcha - RS, Brazil

    Directory of Open Access Journals (Sweden)

    Luiz Antenor Rizzon

    2005-04-01

    Full Text Available A uva Isabel da Serra Gaúcha geralmente não alcança teor de açúcar suficiente para produzir vinho equilibrado e, em determinados casos, para atingir 10% v/v de álcool, concentração mínima para vinho de mesa estabelecida pela legislação brasileira. O objetivo do presente trabalho foi avaliar o efeito de diferentes produtos utilizados para correção do mosto na composição química do vinho Isabel. O experimento constou de seis tratamentos: testemunha (sem correção, sacarose, açúcar mascavo, mosto concentrado, álcool vínico e glicose de milho. Os vinhos foram elaborados em microvinificações, com seis repetições. As amostras foram avaliadas através das análises clássicas, efetuadas por métodos físico-químicos, e dos elementos minerais por absorção atômica. A sacarose foi o produto mais adequado para a correção do mosto, pois não incorporou componentes estranhos, não alterou a relação álcool em peso/extrato seco reduzido e apresentou elevado rendimento alcoólico. O álcool vínico pode ser utilizado desde que seja um produto genuíno de procedência garantida, preferencialmente obtido de vinho branco.The cv. Isabel grown in the Serra Gaúcha region in general does not produce a balanced wine, because it sometimes does not reach, the minimum stablished by Brazilian legislation 10% v/v of alcohol. The aim of this work was to evaluate the effects of different products used in the must sugar correction on the chemical composition of the Isabel wine. The experiment had six treatments - control (without correction and correction with saccharose, brown sugar, concentrated must, wine alcohol and mayz glucose; there were six replications. The wine was elaborated by microvinification. The samples were evaluated through classical analysis made by physico-chemical methods and the mineral elements determined by atomic absorption. Results showed that saccharose was the most adequate product for chaptalisation because it did

  8. ESTUDIO DE LOS DERIVADOS SÓLIDOS OBTENIDOS DE LA ELECTROCOAGULACIÓN DEL MOSTO DE LAS DESTILERÍAS COMO INHIBIDOR DE LA CORROSIÓN DEL COBRE EN SOLUCIONES AMONIACALES A TEMPERATURAS ELEVADAS

    OpenAIRE

    Matos-Tamayo, Roger; Vera-Preval, Fárida

    2011-01-01

    El presente trabajo forma parte de una de las líneas de investigación que realiza la Facultad de Ingeniería Química de la Universidad de Oriente, en la búsqueda de soluciones que permitan de forma económica disminuir la corrosión de los equipos y materiales metálicos. El objetivo principal, es el análisis de las variables que influyen en la velocidad de corrosión del cobre técnico en soluciones amoniacales y la eficiencia de inhibidores ecológicos obtenidos a partir de la vinaza o mosto de la...

  9. Utilização de abacaxi (Ananas comosus L. cv. Pérola e Smooth cayenne para a produção de vinhos: estudo da composição química e aceitabilidade Utilization of pineapple (Ananas comosus L. cv. Pérola and Smooth cayenne for wine making: study of chemical composition and acceptance

    Directory of Open Access Journals (Sweden)

    Kátia Gomes Lima Araújo

    2009-03-01

    Full Text Available Foram estudadas as características químicas de vinhos produzidos com as cultivares de abacaxi Pérola e Smooth cayenne, com vistas a predizer a qualidade das bebidas, tomando-se como base a sua composição e aceitabilidade. Os mostos de abacaxi foram analisados quanto ao pH, acidez total, ácidos orgânicos fixos, açúcar total, pectina total, compostos fenólicos, K, Ca, Fe, Cu, N e P, enquanto nos vinhos analisou-se também a acidez volátil, teor alcoólico, alcoóis superiores, acetaldeído, acetato de etila, glicerol, metanol e cor. Os resultados indicaram que existem semelhanças em relação à composição química de mostos e vinhos de abacaxis e uvas. A análise dos compostos voláteis formados durante a fermentação alcoólica indicou que a composição do mosto de abacaxi interferiu nas quantidades de alguns voláteis produzidos pela levedura Saccharomyces cerevisiae. O teste de aceitabilidade com escala hedônica de nove pontos indicou que os vinhos elaborados com as duas cultivares de abacaxi foram igualmente aceitos.The objective of the present work was to study the chemical characteristics of wine made with two different varieties of pineapple: Pérola and Smooth cayenne, in order to predict its quality based on composition and acceptance. The pineapple musts were chemically characterized through the analysis of pH, total acidity, fixed organic acids, total sugar, total pectin, phenolic compounds, and K, Ca, N e P. The wines were characterized by volatile acidity, alcoholic grade, higher alcohols, acetaldehyde, ethyl acetate, glycerol, methanol, and color. The results showed that there are similarities between the pineapple and grape musts and wines. The analysis of volatile compunds performed during the alcoholic fermentation showed that the pineapple must composition interfered with the quantities of volatiles formed by Saccharomyces cerevisiae. The 9-point hedonic scale acceptance indicated that the two varieties of wine

  10. Compositions and methods for modeling Saccharomyces cerevisiae metabolism

    DEFF Research Database (Denmark)

    2012-01-01

    The invention provides an in silica model for determining a S. cerevisiae physiological function. The model includes a data structure relating a plurality of S. cerevisiae reactants to a plurality of S. cerevisiae reactions, a constraint set for the plurality of S. cerevisiae reactions, and comma...

  11. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains.

    Science.gov (United States)

    van der Aa Kühle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-05-01

    The probiotic potential of 18 Saccharomyces cerevisiae strains used for production of foods or beverages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Oxgall. Adhesion to the nontumorigenic porcine jejunal epithelial cell line (IPEC-J2) was investigated by incorporation of 3H-methionine into the yeast cells and use of liquid scintillation counting. Only few of the food-borne S. cerevisiae strains exhibited noteworthy adhesiveness with the strongest levels of adhesion (13.6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1alpha decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar effects hence indicating that food-borne strains of S. cerevisiae may possess probiotic properties in spite of low adhesiveness.

  12. [Saccharomyces cerevisiae infections].

    Science.gov (United States)

    Souza Goebel, Cristine; de Mattos Oliveira, Flávio; Severo, Luiz Carlos

    2013-01-01

    Saccharomyces cerevisiae is an ubiquitous yeast widely used in industry and it is also a common colonizer of the human mucosae. However, the incidence of invasive infection by these fungi has significantly increased in the last decades. To evaluate the infection by S. cerevisiae in a hospital in southern Brazil during a period of 10 years (2000-2010). Review of medical records of patients infected by this fungus. In this period, 6 patients were found to be infected by S. cerevisiae. The age range of the patients was from 10 years to 84. Urine, blood, ascitic fluid, peritoneal dialysis fluid, and esophageal biopsy samples were analyzed. The predisposing factors were cancer, transplant, surgical procedures, renal failure, use of venous catheters, mechanical ventilation, hospitalization in Intensive Care Unit, diabetes mellitus, chemotherapy, corticosteroid use, and parenteral nutrition. Amphotericin B and fluconazole were the treatments of choice. Three of the patients died and the other 3 were discharged from hospital. We must take special precautions in emerging infections, especially when there are predisposing conditions such as immunosuppression or patients with serious illnesses. The rapid and specific diagnosis of S. cerevisiae infections is important for therapeutic decision. Furthermore, epidemiological and efficacy studies of antifungal agents are necessary for a better therapeutic approach. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  13. Effects of fermentation by Saccharomyces cerevisiae and ...

    African Journals Online (AJOL)

    yassine

    2013-02-13

    Feb 13, 2013 ... Effect of Saccharomyces cerevisiae fermentation on the ... beetroot, fermentation, Saccharomyces cerevisiae, betalain compounds. ... by Saccharomyces cerevisiae strains (González et al., .... Both red and yellow pigments were influenced during S. .... in beverages such as white wine, grape fruit, and green.

  14. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    van der Aa Kuhle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-01-01

    .6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1α decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli...... strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar......The probiotic potential of IS Saccharomyces cerevisiae strains used for production of foods or bevel-ages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Ox-all. Adhesion...

  15. Apoptosis - Triggering Effects: UVB-irradiation and Saccharomyces cerevisiae.

    Science.gov (United States)

    Behzadi, Payam; Behzadi, Elham

    2012-12-01

    The pathogenic disturbance of Saccharomyces cerevisiae is known as a rare but invasive nosocomial fungal infection. This survey is focused on the evaluation of apoptosis-triggering effects of UVB-irradiation in Saccharomyces cerevisiae. The well-growth colonies of Saccharomyces cerevisiae on Sabouraud Dextrose Agar (SDA) were irradiated within an interval of 10 minutes by UVB-light (302 nm). Subsequently, the harvested DNA molecules of control and UV-exposed yeast colonies were run through the 1% agarose gel electrophoresis comprising the luminescent dye of ethidium bromide. No unusual patterns including DNA laddering bands or smears were detected. The applied procedure for UV exposure was not effective for inducing apoptosis in Saccharomyces cerevisiae. So, it needs another UV-radiation protocol for inducing apoptosis phenomenon in Saccharomyces cerevisiae.

  16. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  17. Fatal Saccharomyces Cerevisiae Aortic Graft Infection

    Science.gov (United States)

    Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua

    2002-01-01

    Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.

  18. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluc......Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration...

  19. Local isolate of Saccharomyces cerevisiae as biocompetitive agent of Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Eni Kusumaningtyas

    2006-12-01

    Full Text Available Aspergillus flavus is a toxigenic fungus that contaminates feed and influences the animal health. Saccharomyces cerevisiae can be used as a biocompetitive agent to control the contamination. The ability of local isolate of S. cerevisiae as a biocompetitive agent for A. flavus was evaluated. A. flavus (30ml was swept on Sabouraud dextrose agar (SDA, while S. cerevisiae was swept on its left and right. Plates were incubated at 28oC for nine days. Lytic activity of S. cerevisiae was detected by pouring its suspension on the centre of the cross streaks of A. flavus. Plates were incubated at 28oC for five days. Growth inhibition of A. flavus by S. cerevisiae was determined by mixing the two fungi on Potato dextrose broth and incubated at 28oC for 24 hours. Total colony of A. flavus were then observed at incubation time of 2, 4, 6 and 24 hours by pour plates method on the SDA plates and incubated on 28oC for two days. Growth of hyphae of A. flavus sweep were inhibited with the swept of S. cerevisiae. The width of A. flavus colony treated with S. cerevisiae is narrower (3,02 cm than that of control ( 4,60 cm. The growth of A. flavus was also inhibited on the centre of cross streak where the S. cerevisiae poured. S. cerevisiae gradually reduced the colony number of A. flavus in the mixed culture of broth fungi ie. 14 x 103 CFU/ml while colony number of control is 80 x 103 CFU/ml. Results showed that S. cerevisiae could be used as biocompetitive agent of A. flavus.

  20. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response

    Science.gov (United States)

    Yong-Su Jin; Jose M. Laplaza; Thomas W. Jeffries

    2004-01-01

    Native strains of Saccharomyces cerevisiae do not assimilate xylose. S. cerevisiae engineered for D-xylose utilization through the heterologous expression of genes for aldose reductase ( XYL1), xylitol dehydrogenase (XYL2), and D-xylulokinase ( XYL3 or XKS1) produce only limited amounts of ethanol in xylose medium. In recombinant S. cerevisiae expressing XYL1, XYL2,...

  1. Effect of Temperature on the Prevalence of Saccharomyces Non cerevisiae Species against a S. cerevisiae Wine Strain in Wine Fermentation: Competition, Physiological Fitness, and Influence in Final Wine Composition

    Science.gov (United States)

    Alonso-del-Real, Javier; Lairón-Peris, María; Barrio, Eladio; Querol, Amparo

    2017-01-01

    Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S. cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behavior during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non-cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different temperatures. First, we developed a new method, based on QPCR, to quantify the proportion of different Saccharomyces yeasts in mixed cultures. This method was used to assess the effect of competition on the growth fitness. In addition, fermentation kinetics parameters and final wine compositions were also analyzed. We observed that some cryotolerant Saccharomyces yeasts, particularly S. uvarum, seriously compromised S. cerevisiae fitness during competences at lower temperatures, which explains why S. uvarum can replace S. cerevisiae during wine fermentations in European regions with oceanic and continental climates. From an enological point of view, mixed co-cultures between S. cerevisiae and S. paradoxus or S. eubayanus, deteriorated fermentation parameters and the final product composition compared to single S. cerevisiae inoculation. However, in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with S. cerevisiae, there were fermentation

  2. Avaliação da farinha de mandioca e do fubá de milho como substratos para a obtenção de bebida fermento-destilada

    Directory of Open Access Journals (Sweden)

    I. M. Demiate

    1997-08-01

    Full Text Available A farinha de mandioca e o fubá de milho foram avaliados como matérias-primas alternativas na obtenção de uma bebida fermento-destilada, visando gerar informações úteis à aplicação industrial. Os substratos foram caracterizados e comparou-se a eficiência da mosturação, o perfil de açúcares no mosto, bem como as curvas de fermentação dos substratos. Os resultados demonstraram que o conteúdo de amido foi de 78,1 % para o fubá de milho e 92,7 % para a farinha de mandioca. Quanto ao rendimento da mosturação foi de 57, 4 % para o milho e 66,4 % para a mandioca, sendo que o perfil de açúcares no mosto demonstrou que 95 % dos açúcares presentes no mosto de mandioca foi glicose e o restante pequenas porcentagens de dextrinas e maltose. Já o perfil do mosto de milho apresentou cerca de 85 % de glicose , 10 % de dextrinas e cerca de 4 % de maltose. Para o processo fermentativo, observou -se que o consumo de açúcares no mosto de mandioca foi mais rápido que no mosto de milho.

  3. [Saccharomyces cerevisiae invasive infection: The first reported case in Morocco].

    Science.gov (United States)

    Maleb, A; Sebbar, E; Frikh, M; Boubker, S; Moussaoui, A; El Mekkaoui, A; Khannoussi, W; Kharrasse, G; Belefquih, B; Lemnouer, A; Ismaili, Z; Elouennass, M

    2017-06-01

    Saccharomyces cerevisiae is a cosmopolitan yeast, widely used in agro-alimentary and pharmaceutical industry. Its impact in human pathology is rare, but maybe still underestimated compared to the real situation. This yeast is currently considered as an emerging and opportunistic pathogen. Risk factors are immunosuppression and intravascular device carrying. Fungemias are the most frequent clinical forms. We report the first case of S. cerevisiae invasive infection described in Morocco, and to propose a review of the literature cases of S. cerevisiae infections described worldwide. A 77-year-old patient, with no notable medical history, who was hospitalized for a upper gastrointestinal stenosis secondary to impassable metastatic gastric tumor. Its history was marked by the onset of septic shock, with S. cerevisiae in his urine and in his blood, with arguments for confirmation of invasion: the presence of several risk factors in the patient, positive direct microbiological examination, abundant and exclusive culture of S. cerevisiae from clinical samples. Species identification was confirmed by the study of biochemical characteristics of the isolated yeast. Confirmation of S. cerevisiae infection requires a clinical suspicion in patients with risk factors, but also a correct microbiological diagnosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Prevalence and susceptibility of Saccharomyces cerevisiae causing vaginitis in Greek women.

    Science.gov (United States)

    Papaemmanouil, V; Georgogiannis, N; Plega, M; Lalaki, J; Lydakis, D; Dimitriou, M; Papadimitriou, A

    2011-12-01

    Saccharomyces cerevisiae is an ascomycetous yeast, that is traditionally used in wine bread and beer production. Vaginitis caused by S. cerevisiae is rare. The aim of this study was to evaluate the frequency of S. cerevisiae isolation from the vagina in two groups of women and determined the in vitro susceptibility of this fungus. Vaginal samples were collected from a total of 262 (asymptomatic and symptomatic) women with vaginitis attending the centre of family planning of General hospital of Piraeus. All blastomycetes that isolated from the vaginal samples were examined for microscopic morphological tests and identified by conventional methods: By API 20 C AUX and ID 32 C (Biomerieux). Antifungal susceptibility testing for amphotericin B,fluconazole itraconazole,voriconazole, posaconazole and caspofungin was performed by E -test (Ab BIODIKS SWEDEN) against S. cerevisiae. A total of 16 isolates of S. cerevisiae derived from vaginal sample of the referred women, average 6.10%. Susceptibility of 16 isolates of S. cerevisiae to a variety of antimycotic agents were obtained. So all isolates of S. cerevisiae were resistant to fluconazole, posaconazole and intraconazole, but they were sensitive to voriconazole caspofungin and Amphotericin B which were found sensitive (except 1/16 strains). None of the 16 patients had a history of occupational domestic use of baker's yeast. Vaginitis caused by S. cerevisiae occur, is rising and cannot be ignored. Treatment of Saccharomyces vaginitis constitutes a major challenge and may require selected and often prolonged therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    Science.gov (United States)

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress.

    Science.gov (United States)

    Liu, Jidong; Zhu, Yibo; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2013-07-01

    In the present study, we investigated the mode of cell response induced by D-limonene in Saccharomyces cerevisiae. D-limonene treatment was found to be accompanied by intracellular accumulation of reactive oxygen species (ROS). Since ROS impair cell membranes, an engineered strain with enhanced membrane biosynthesis exhibited a higher tolerance to D-limonene. Subsequent addition of an ROS scavenger significantly reduced the ROS level and alleviated cell growth inhibition. Thus, D-limonene-induced ROS accumulation plays an important role in cell death in S. cerevisiae. In D-limonene-treated S. cerevisiae strains, higher levels of antioxidants, antioxidant enzymes, and nicotinamide adenine dinucleotide phosphate (NADPH) were synthesized. Quantitative real-time PCR results also verified that D-limonene treatment triggered upregulation of genes involved in the antioxidant system and the regeneration of NADPH at the transcription level in S. cerevisiae. These data indicate that D-limonene treatment results in intracellular ROS accumulation, an important factor in cell death, and several antioxidant mechanisms in S. cerevisiae were enhanced in response to D-limonene treatment.

  7. Investigation of autonomous cell cycle oscillation in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, Morten Skov

    2007-01-01

    Autonome Oscillationer i kontinuert kultivering af Saccharomyces cerevisiae Udgangspunktet for dette Ph.d. projekt var at søge at forstå, hvad der gør det muligt at opnå multiple statiske tilstande ved kontinuert kultivering af Saccharomyces cerevisiae med glukose som begrænsende substrat...

  8. Interactions between Lactobacillus kefiranofaciens and Saccharomyces cerevisiae in mixed culture for kefiran production.

    Science.gov (United States)

    Cheirsilp, Benjamas; Shoji, Hirofumi; Shimizu, Hiroshi; Shioya, Suteaki

    2003-01-01

    Since a positive effect on the growth and kefiran production of Lactobacillus kefiranofaciens was observed in a mixed culture with Saccharomyces cerevisiae, the elucidation of the interactions between L. kefiranofaciens and S. cerevisiae may lead to higher productivity. Hence, the microbial interaction of each strain was investigated. Apart from the positive effect of a reduction in the amount of lactic acid by S. cerevisiae, a positive effect of S. cerevisiae on the growth and kefiran production of L. kefiranofaciens in a mixed culture was observed. Various experiments were carried out to study this effect. In this study, the observed increase in capsular kefiran in a mixed culture with inactivated S. cerevisiae correlated well to that in an anaerobic mixed culture. Differences in capsular kefiran production were observed for different initial S. cerevisiae concentrations under anaerobic conditions. From these fermentation results, it was concluded that the physical contact with S. cerevisiae mainly enhanced the capsular kefiran production of L. kefiranofaciens in a mixed culture. Therefore, in an anaerobic mixed culture, this direct contact resulted in higher capsular kefiran production than that in pure culture.

  9. Secretory Overexpression of Bacillus thermocatenulatus Lipase in Saccharomyces cerevisiae Using Combinatorial Library Strategy.

    Science.gov (United States)

    Kajiwara, Shota; Yamada, Ryosuke; Ogino, Hiroyasu

    2018-04-10

    Simple and cost-effective lipase expression host microorganisms are highly desirable. A combinatorial library strategy is used to improve the secretory expression of lipase from Bacillus thermocatenulatus (BTL2) in the culture supernatant of Saccharomyces cerevisiae. A plasmid library including expression cassettes composed of sequences encoding one of each 15 promoters, 15 secretion signals, and 15 terminators derived from yeast species, S. cerevisiae, Pichia pastoris, and Hansenula polymorpha, is constructed. The S. cerevisiae transformant YPH499/D4, comprising H. polymorpha GAP promoter, S. cerevisiae SAG1 secretion signal, and P. pastoris AOX1 terminator, is selected by high-throughput screening. This transformant expresses BTL2 extra-cellularly with a 130-fold higher than the control strain, comprising S. cerevisiae PGK1 promoter, S. cerevisiae α-factor secretion signal, and S. cerevisiae PGK1 terminator, after cultivation for 72 h. This combinatorial library strategy holds promising potential for application in the optimization of the secretory expression of proteins in yeast. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Oral administration of myostatin-specific recombinant Saccharomyces cerevisiae vaccine in rabbit.

    Science.gov (United States)

    Liu, Zhongtian; Zhou, Gang; Ren, Chonghua; Xu, Kun; Yan, Qiang; Li, Xinyi; Zhang, Tingting; Zhang, Zhiying

    2016-04-29

    Yeast is considered as a simple and cost-effective host for protein expression, and our previous studies have proved that Saccharomyces cerevisiae can deliver recombinant protein and DNA into mouse dendritic cells and can further induce immune responses as novel vaccines. In order to know whether similar immune responses can be induced in rabbit by oral administration of such recombinant S. cerevisiae vaccine, we orally fed the rabbits with heat-inactivated myostatin-recombinant S. cerevisiae for 5 weeks, and then myostatin-specific antibody in serum was detected successfully by western blotting and ELISA assay. The rabbits treated with myostatin-recombinant S. cerevisiae vaccine grew faster and their muscles were much heavier than that of the control group. As a common experimental animal and a meat livestock with great economic value, rabbit was proved to be the second animal species that have been successfully orally immunized by recombinant S. cerevisiae vaccine after mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Saccharomyces cerevisiae var. boulardii fungemia following probiotic treatment

    OpenAIRE

    Appel-da-Silva, Marcelo C.; Narvaez, Gabriel A.; Perez, Leandro R.R.; Drehmer, Laura; Lewgoy, Jairo

    2017-01-01

    Probiotics are commonly prescribed as an adjuvant in the treatment of antibiotic-associated diarrhea caused by Clostridium difficile. We report the case of an immunocompromised 73-year-old patient on chemotherapy who developed Saccharomyces cerevisiae var. boulardii fungemia in a central venous catheter during treatment of antibiotic-associated pseudomembranous colitis with the probiotic Saccharomyces cerevisiae var. boulardii. Fungemia was resolved after interruption of probiotic administrat...

  12. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hana Šuranská

    2016-03-01

    Full Text Available Abstract In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines.

  13. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    The simple eukaryote Saccharomyces cerevisiae has proved to be a useful organism for elucidating the mechanisms that govern cell cycle progression in eukaryotic cells. The excellent in vivo system permits a cell cycle study using temperature sensitive mutants. In addition, it is possible to study...... many genes and gene products from higher eukaryotes in Saccharomyces cerevisiae because many genes and biological processes are homologous or similar in lower and in higher eukaryotes. The highly developed methods of genetics and molecular biology greatly facilitates studies of higher eukaryotic...... processes.Programmmed cell death with apoptosis plays a major role in development and homeostatis in most, if not all, animal cells. Apoptosis is a morphologically distinct form of death, that requires the activation of a highly regulated suicide program. Saccharomyces cerevisiae provides a new system...

  14. Biosorption of the strontium ion by irradiated Saccharomyces cerevisiae under culture conditions.

    Science.gov (United States)

    Qiu, Liang; Feng, Jundong; Dai, Yaodong; Chang, Shuquan

    2017-06-01

    As a new-emerging method for strontium disposal, biosorption has shown advantages such as high sorption capacity; low cost. In this study, we investigated the potential of Saccharomyces cerevisiae (S. cerevisiae) in strontium disposal under culture conditions and the effects of irradiation on their biosorption capabilities. We found that S. cerevisiae can survive irradiation and grow. Pre-exposure to irradiation rendered S. cerevisiae resistant to further irradiation. Surprisingly, the pre-exposure to irradiation can increase the biosorption capability of S. cerevisiae. We further investigated the factors that influenced the biosorption efficiency, which were (strongest to weakest): pH > strontium concentration > time > temperature. In our orthogonal experiment, the optimal conditions for strontium biosorption by irradiated S. cerevisiae were: pH 7, 150 mg L -1 strontium at the temperature of 32 °C with 30 h. The equilibrium of strontium biosorption was analyzed by Langmuir and Freundlich models, from which the formal model is found to provide a better fit for the experimental results. The kinetics of strontium biosorption by living irradiated S. cerevisiae was found to be comprised of three phases: dramatically increased during 0-9 h, decreased during 12-24 h, and increased during 30-50 h. These results provide a systematic understanding of the biosorption capabilities of irradiated S. cerevisiae, which can contribute to the development of remediating nuclear waste water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Efficient screening of environmental isolates for Saccharomyces cerevisiae strains that are suitable for brewing.

    Science.gov (United States)

    Fujihara, Hidehiko; Hino, Mika; Takashita, Hideharu; Kajiwara, Yasuhiro; Okamoto, Keiko; Furukawa, Kensuke

    2014-01-01

    We developed an efficient screening method for Saccharomyces cerevisiae strains from environmental isolates. MultiPlex PCR was performed targeting four brewing S. cerevisiae genes (SSU1, AWA1, BIO6, and FLO1). At least three genes among the four were amplified from all S. cerevisiae strains. The use of this method allowed us to successfully obtain S. cerevisiae strains.

  16. Selección Saccharomyces cerevisiae con baja producción de etanol para control del grado alcohólico en zonas cálidas

    OpenAIRE

    Morata Barrado, Antonio; Loira, Iris; Palomero Rodriguez, Felipe; Benito Saez, Santiago; Gonzalez Chamorro, M. Carmen; Suarez Lepe, Jose Antonio

    2010-01-01

    En la enología española existen muchas regiones en las que el clima favorece maduraciones sacarimétricas excesivas lo que supone que durante la fermentación se alcancen grados alcohólicos elevados. La levadura metaboliza el azúcar (glucosa y fructosa) por vía fermentativa produciendo como productos mayoritarios etanol y CO2. Sin embargo, no todas las levaduras alcanzan el mismo grado alcohólico para un mosto con una concentración de azúcares igual. Normalmente las variaciones son pequeñas y s...

  17. Functional expression of rat VPAC1 receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, M.K.; Tams, J.W.; Fahrenkrug, Jan

    1999-01-01

    G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide......G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide...

  18. Creation of a synthetic xylose-inducible promoter for Saccharomyces cerevisiae

    Science.gov (United States)

    Saccharomyces cerevisiae is currently used to produce ethanol from glucose, but it cannot utilize five-carbon sugars contained in the hemicellulose component of biomass feedstocks. S. cerevisiae strains engineered for xylose fermentation have been made using constitutive promoters to express the req...

  19. Sucrose and Saccharomyces cerevisiae: a relationship most sweet.

    Science.gov (United States)

    Marques, Wesley Leoricy; Raghavendran, Vijayendran; Stambuk, Boris Ugarte; Gombert, Andreas Karoly

    2016-02-01

    Sucrose is an abundant, readily available and inexpensive substrate for industrial biotechnology processes and its use is demonstrated with much success in the production of fuel ethanol in Brazil. Saccharomyces cerevisiae, which naturally evolved to efficiently consume sugars such as sucrose, is one of the most important cell factories due to its robustness, stress tolerance, genetic accessibility, simple nutrient requirements and long history as an industrial workhorse. This minireview is focused on sucrose metabolism in S. cerevisiae, a rather unexplored subject in the scientific literature. An analysis of sucrose availability in nature and yeast sugar metabolism was performed, in order to understand the molecular background that makes S. cerevisiae consume this sugar efficiently. A historical overview on the use of sucrose and S. cerevisiae by humans is also presented considering sugarcane and sugarbeet as the main sources of this carbohydrate. Physiological aspects of sucrose consumption are compared with those concerning other economically relevant sugars. Also, metabolic engineering efforts to alter sucrose catabolism are presented in a chronological manner. In spite of its extensive use in yeast-based industries, a lot of basic and applied research on sucrose metabolism is imperative, mainly in fields such as genetics, physiology and metabolic engineering. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Removal of Strontium Ions by Immobilized Saccharomyces Cerevisiae in Magnetic Chitosan Microspheres

    Directory of Open Access Journals (Sweden)

    Yanan Yin

    2017-02-01

    Full Text Available A novel biosorbent, immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres was prepared, characterized, and used for the removal of Sr2+ from aqueous solution. The structure and morphology of immobilized S. cerevisiae before and after Sr2+adsorption were observed using scanning electron microscopy with energy dispersive X-ray spectroscopy. The experimental results showed that the Langmuir and Freundlich isotherm models could be used to describe the Sr2+ adsorption onto immobilized S. cerevisiae microspheres. The maximal adsorption capacity (qm was calculated to be 81.96 mg/g by the Langmuir model. Immobilized S. cerevisiae was an effective adsorbent for the Sr2+ removal from aqueous solution.

  1. Habitat Predicts Levels of Genetic Admixture in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Viranga Tilakaratna

    2017-09-01

    Full Text Available Genetic admixture can provide material for populations to adapt to local environments, and this process has played a crucial role in the domestication of plants and animals. The model yeast, Saccharomyces cerevisiae, has been domesticated multiple times for the production of wine, sake, beer, and bread, but the high rate of admixture between yeast lineages has so far been treated as a complication for population genomic analysis. Here, we make use of the low recombination rate at centromeres to investigate admixture in yeast using a classic Bayesian approach and a locus-by-locus phylogenetic approach. Using both approaches, we find that S. cerevisiae from stable oak woodland habitats are less likely to show recent genetic admixture compared with those isolated from transient habitats such as fruits, wine, or human infections. When woodland yeast strains do show recent genetic admixture, the degree of admixture is lower than in strains from other habitats. Furthermore, S. cerevisiae populations from oak woodlands are genetically isolated from each other, with only occasional migration between woodlands and local fruit habitats. Application of the phylogenetic approach suggests that there is a previously undetected population in North Africa that is the closest outgroup to the European S. cerevisiae, including the domesticated Wine population. Careful testing for admixture in S. cerevisiae leads to a better understanding of the underlying population structure of the species and will be important for understanding the selective processes underlying domestication in this economically important species.

  2. Habitat Predicts Levels of Genetic Admixture in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tilakaratna, Viranga; Bensasson, Douda

    2017-09-07

    Genetic admixture can provide material for populations to adapt to local environments, and this process has played a crucial role in the domestication of plants and animals. The model yeast, Saccharomyces cerevisiae , has been domesticated multiple times for the production of wine, sake, beer, and bread, but the high rate of admixture between yeast lineages has so far been treated as a complication for population genomic analysis. Here, we make use of the low recombination rate at centromeres to investigate admixture in yeast using a classic Bayesian approach and a locus-by-locus phylogenetic approach. Using both approaches, we find that S. cerevisiae from stable oak woodland habitats are less likely to show recent genetic admixture compared with those isolated from transient habitats such as fruits, wine, or human infections. When woodland yeast strains do show recent genetic admixture, the degree of admixture is lower than in strains from other habitats. Furthermore, S. cerevisiae populations from oak woodlands are genetically isolated from each other, with only occasional migration between woodlands and local fruit habitats. Application of the phylogenetic approach suggests that there is a previously undetected population in North Africa that is the closest outgroup to the European S. cerevisiae , including the domesticated Wine population. Careful testing for admixture in S. cerevisiae leads to a better understanding of the underlying population structure of the species and will be important for understanding the selective processes underlying domestication in this economically important species. Copyright © 2017 Tilakaratna and Bensasson.

  3. Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering.

    Directory of Open Access Journals (Sweden)

    Guoqiang Xu

    Full Text Available Fumaric acid (FA is a promising biomass-derived building-block chemical. Bio-based FA production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here we report on FA production by direct fermentation using metabolically engineered Saccharomyces cerevisiae with the aid of in silico analysis of a genome-scale metabolic model. First, FUM1 was selected as the target gene on the basis of extensive literature mining. Flux balance analysis (FBA revealed that FUM1 deletion can lead to FA production and slightly lower growth of S. cerevisiae. The engineered S. cerevisiae strain obtained by deleting FUM1 can produce FA up to a concentration of 610±31 mg L(-1 without any apparent change in growth in fed-batch culture. FT-IR and (1H and (13C NMR spectra confirmed that FA was synthesized by the engineered S. cerevisiae strain. FBA identified pyruvate carboxylase as one of the factors limiting higher FA production. When the RoPYC gene was introduced, S. cerevisiae produced 1134±48 mg L(-1 FA. Furthermore, the final engineered S. cerevisiae strain was able to produce 1675±52 mg L(-1 FA in batch culture when the SFC1 gene encoding a succinate-fumarate transporter was introduced. These results demonstrate that the model shows great predictive capability for metabolic engineering. Moreover, FA production in S. cerevisiae can be efficiently developed with the aid of in silico metabolic engineering.

  4. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  5. Removal of strontium ions by immobilized saccharomyces cerevisiae in magnetic chitosan microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yanan; Wang, Jian Long; Yang, Xiao Yong; Li, Weihua [Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China)

    2017-02-15

    A novel biosorbent, immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres was prepared, characterized, and used for the removal of Sr{sup 2+} from aqueous solution. The structure and morphology of immobilized S. cerevisiae before and after Sr{sup 2+}adsorption were observed using scanning electron microscopy with energy dispersive X-ray spectroscopy. The experimental results showed that the Langmuir and Freundlich isotherm models could be used to describe the Sr{sup 2+} adsorption onto immobilized S. cerevisiae microspheres. The maximal adsorption capacity (q{sub m}) was calculated to be 81.96 mg/g by the Langmuir model. Immobilized S. cerevisiae was an effective adsorbent for the Sr{sup 2+} removal from aqueous solution.

  6. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  7. The Transcriptional Response of Diverse Saccharomyces cerevisiae Strains to Simulated Microgravity

    Science.gov (United States)

    Neff, Lily S.; Fleury, Samantha T.; Galazka, Jonathan M.

    2018-01-01

    Spaceflight imposes multiple stresses on biological systems resulting in genome-scale adaptations. Understanding these adaptations and their underlying molecular mechanisms is important to clarifying and reducing the risks associated with spaceflight. One such risk is infection by microbes present in spacecraft and their associated systems and inhabitants. This risk is compounded by results suggesting that some microbes may exhibit increased virulence after exposure to spaceflight conditions. The yeast, S. cerevisiae, is a powerful microbial model system, and its response to spaceflight has been studied for decades. However, to date, these studies have utilized common lab strains. Yet studies on trait variation in S. cerevisiae demonstrate that these lab strains are not representative of wild yeast and instead respond to environmental stimuli in an atypical manner. Thus, it is not clear how transferable these results are to the wild S. cerevisiae strains likely to be encountered during spaceflight. To determine if diverse S. cerevisiae strains exhibit a conserved response to simulated microgravity, we will utilize a collection of 100 S. cerevisiae strains isolated from clinical, environmental and industrial settings. We will place selected S. cerevisiae strains in simulated microgravity using a high-aspect rotating vessel (HARV) and document their transcriptional response by RNA-sequencing and quantify similarities and differences between strains. Our research will have a strong impact on the understanding of how genetic diversity of microorganisms effects their response to spaceflight, and will serve as a platform for further studies.

  8. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...

  9. Construction of killer industrial yeast Saccharomyces cerevisiae HAU-1 and its fermentation performance

    Directory of Open Access Journals (Sweden)

    Bijender K. Bajaj

    2010-06-01

    Full Text Available Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccharomyces cerevisiae MTCC 475, a killer strain. The resultant fusants were characterized for desirable fermentation characteristics. All the technologically important characteristics of distillery yeast Saccharomyces cerevisiae HAU-1 were retained in the fusants, and in addition the killer trait was also introduced into them. Further, the killer activity was found to be stably maintained during hostile conditions of ethanol fermentations in dextrose or molasses, and even during biomass recycling.

  10. Directed Evolution towards Increased Isoprenoid Production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Carlsen, Simon; Nielsen, Michael Lynge; Kielland-Brandt, Morten

    production can easily be scaled to meet current demands and it is also an environmental benign production method compared to organic synthesis. Thus it would be attractive to engineer a microorganism to produce high amounts of IPP and other immediate prenyl precursors such as geranyl pyrophosphate, farnesyl...... for discovering new genetic perturbations, which would results in and increased production of isoprenoids by S. cerevisiae has been very limited. This project is focus on creating diversity within a lycopene producing S. cerevisiae strain by construction of gDNA-, cDNA-, and transposon-libraries. The diversified...... coloration which is the result of higher amount of lycopene is being produced and hence high amount of isoprenoid precursor being available. This will elucidate novel genetic targets for increasing isoprenoid production in S. cerevisiae...

  11. Saccharomyces cerevisiae var. boulardii fungemia following probiotic treatment

    Directory of Open Access Journals (Sweden)

    Marcelo C. Appel-da-Silva

    2017-12-01

    Full Text Available Probiotics are commonly prescribed as an adjuvant in the treatment of antibiotic-associated diarrhea caused by Clostridium difficile. We report the case of an immunocompromised 73-year-old patient on chemotherapy who developed Saccharomyces cerevisiae var. boulardii fungemia in a central venous catheter during treatment of antibiotic-associated pseudomembranous colitis with the probiotic Saccharomyces cerevisiae var. boulardii. Fungemia was resolved after interruption of probiotic administration without the need to replace the central venous line. Keywords: Saccharomyces, Probiotics, Fungemia, Critical illness, Clostridium difficile

  12. Desempenho de leveduras obtidas em indústria de Mato Grosso do Sul na produção de etanol em mosto a base de cana de açúcar

    OpenAIRE

    Batistote, Margateth; Cardoso, Cláudia Andrea Lima; Ramos, Dayane Doffinger; Ernandes, Jose Roberto [UNESP

    2010-01-01

    The process of ethanol production in Brazil uses sucrose as the sugar cane juice or molasses as a substrate for Saccharomyces cerevisiae which results in high production of ethanol. This study aims to evaluate the biotechnological potential of strains of Saccharomyces cerevisiae used in sugarcane mills in the southern region of Mato Grosso do Sul, the main power strain used in the region are: Catanduva 1, Pedra 2, Barra Grande 1 and Fleischmann. Microbiological analysis showed similarities be...

  13. Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Teixeira, Paulo Goncalves; Gossing, Michael

    2018-01-01

    Triacylglycerols (TAGs) are valuable versatile compounds that can be used as metabolites for nutrition and health, as well as feedstocks for biofuel production. Although Saccharomyces cerevisiae is the favored microbial cell factory for industrial production of biochemicals, it does not produce...... large amounts of lipids and TAGs comprise only ~1% of its cell dry weight. Here, we engineered S. cerevisiae to reorient its metabolism for overproduction of TAGs, by regulating lipid droplet associated-proteins involved in TAG synthesis and hydrolysis. We implemented a push-and-pull strategy...... PXA1 led to accumulation of  254 mg∙gCDW−1. The TAG levels achieved here are the highest titer reported in S. cerevisiae, reaching 27.4% of the maximum theoretical yield in minimal medium with 2% glucose. This work shows the potential of using an industrially established and robust yeast species...

  14. SORPTION OF Au(III BY Saccharomyces cerevisiae BIOMASS

    Directory of Open Access Journals (Sweden)

    Amaria Amaria

    2010-07-01

    Full Text Available Au(III sorption by S. cerevisiae biomass extracted from beer waste industry was investigated. Experimentally, the sorption was conducted in batch method. This research involved five steps: 1 identification the functional groups present in the S. cerevisiae biomass by infrared spectroscopic technique, 2 determination of optimum pH, 3 determination of the sorption capacity and energy, 4 determination of the sorption type by conducting desorption of sorbed Au(III using specific eluents having different desorption capacity such as H2O (van der Waals, KNO3 (ion exchange, HNO3 (hydrogen bond, and tiourea (coordination bond, 5 determination of effective eluents in Au(III desorption by partial desorption of sorbed Au(III using thiourea, NaCN and KI. The remaining Au(III concentrations in filtrate were analyzed using Atomic Absorption Spectrophotometer. The results showed that: 1 Functional groups of S. cerevisiae biomass that involved in the sorption processes were hydroxyl (-OH, carboxylate (-COO- and amine (-NH2, 2 maximum sorption was occurred at pH 4, equal to 98.19% of total sorption, 3 The sorption capacity of biomass was 133.33 mg/g (6.7682E-04 mol/g and was involved sorption energy 23.03 kJ mol-1, 4 Sorption type was dominated by coordination bond, 5 NaCN was effective eluent to strip Au(III close to 100%.   Keywords: sorption, desorption, S. cerevisiae biomass, Au(III

  15. Increased mannoprotein content in wines produced by Saccharomyces kudriavzevii×Saccharomyces cerevisiae hybrids.

    Science.gov (United States)

    Pérez-Través, Laura; Querol, Amparo; Pérez-Torrado, Roberto

    2016-11-21

    Several wine quality aspects are influenced by yeast mannoproteins on account of aroma compounds retention, lactic-acid bacterial growth stimulation, protection against protein haze and astringency reduction. Thus selecting a yeast strain that produces high levels of mannoproteins is important for the winemaking industry. In this work, we observed increased levels of mannoproteins in S. cerevisiae×S. kudriavzevii hybrids, compared to the S. cerevisiae strain, in wine fermentations. Furthermore, the expression of a key gene related to mannoproteins biosynthesis, PMT1, increased in the S. cerevisiae×S. kudriavzevii hybrid. We showed that artificially constructed S. cerevisiae×S. kudriavzevii hybrids also increased the levels of mannoproteins. This work demonstrates that either natural or artificial S. cerevisiae×S. kudriavzevii hybrids present mannoprotein overproducing capacity under winemaking conditions, a desirable physiological feature for this industry. These results suggest that genome interaction in hybrids generates a physiological environment that enhances the release of mannoproteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Metabolic Engineering of Saccharomyces cerevisiae Microbial Cell Factories for Succinic Acid Production

    DEFF Research Database (Denmark)

    Otero, José Manuel; Nielsen, Jens; Olsson, Lisbeth

    2007-01-01

    anhydride. There are several biomass platforms, all prokaryotic, for succinic acid production; however, overproduction of succinic acid in S. cerevisiae offers distinct process advantages. For example, S. cerevisiae has been awarded GRAS status for use in human consumables, grows well at low p......H significantly minimizing purification and acidification costs associated with organic acid production, and can utilize diverse carbon substrates in chemically defined medium. S. cerevisiae offers the unique advantage of being the most well characterized eukaryotic expression system. Here we describe the use...

  17. Direct conversion of starch to ethanol using recombınant Saccharomyces cerevisiae containing glucoamylase gene

    Science.gov (United States)

    Purkan, P.; Baktir, A.; Puspaningsih, N. N. T.; Ni'mah, M.

    2017-09-01

    Saccharomyces cerevisiae is known for its high fermentative capacity, high ethanol yield and its high ethanol tolerance. The yeast is inability converting starch (relatively inexpensive substrate) into biofuel ethanol. Insertion of glucoamylase gene in yeast cell of Saccharomyces cerevisiae had been done to increase the yeast function in ethanol fermentation from starch. Transformation of yeast of S. cerevisiae with recombinant plasmid yEP-GLO1 carrying gene encoding glucoamylase (GLO1) produced the recombinant yeast which enable to degrade starch. Optimizing of bioconversion process of starch into ethanol by the yeast of recombinant Saccharomyces cerevisiae [yEP-GLO1] had been also done. Starch concentration which could be digested by recombinant yeast of S. cerevisiae [yEP-GLO1] was 10% (w/v). Bioconversion of starch having concentration 10% (b/v) using recombinant yeast of S. cerevisiae BY5207 [yEP-GLO1] could result ethanol as 20% (v/v) to alcoholmeter and 19,5% (v/v) to gas of chromatography. Otherwise, using recombinant yeast S. cerevisiae S. cerevisiae AS3324 [yEP-GLO1] resulted ethanol as 17% (v/v) to alcoholmeter and 17,5% (v/v) to gas of chromatography. The highest ethanol in starch bioconversion using both recombinant yeasts BY5207 and AS3324 could be resulted on 144 hours of fermentation time as well as in pH 5.

  18. Zinc oxide and silver nanoparticles toxicity in the baker's yeast, Saccharomyces cerevisiae.

    Science.gov (United States)

    Galván Márquez, Imelda; Ghiyasvand, Mergan; Massarsky, Andrey; Babu, Mohan; Samanfar, Bahram; Omidi, Katayoun; Moon, Thomas W; Smith, Myron L; Golshani, Ashkan

    2018-01-01

    Engineered nanomaterials (ENMs) are increasingly incorporated into a variety of commercial applications and consumer products; however, ENMs may possess cytotoxic properties due to their small size. This study assessed the effects of two commonly used ENMs, zinc oxide nanoparticles (ZnONPs) and silver nanoparticles (AgNPs), in the model eukaryote Saccharomyces cerevisiae. A collection of ≈4600 S. cerevisiae deletion mutant strains was used to deduce the genes, whose absence makes S. cerevisiae more prone to the cytotoxic effects of ZnONPs or AgNPs. We demonstrate that S. cerevisiae strains that lack genes involved in transmembrane and membrane transport, cellular ion homeostasis, and cell wall organization or biogenesis exhibited the highest sensitivity to ZnONPs. In contrast, strains that lack genes involved in transcription and RNA processing, cellular respiration, and endocytosis and vesicular transport exhibited the highest sensitivity to AgNPs. Secondary assays confirmed that ZnONPs affected cell wall function and integrity, whereas AgNPs exposure decreased transcription, reduced endocytosis, and led to a dysfunctional electron transport system. This study supports the use of S. cerevisiae Gene Deletion Array as an effective high-throughput technique to determine cellular targets of ENM toxicity.

  19. Saccharomyces cerevisiae as a model organism: a comparative study.

    Directory of Open Access Journals (Sweden)

    Hiren Karathia

    Full Text Available BACKGROUND: Model organisms are used for research because they provide a framework on which to develop and optimize methods that facilitate and standardize analysis. Such organisms should be representative of the living beings for which they are to serve as proxy. However, in practice, a model organism is often selected ad hoc, and without considering its representativeness, because a systematic and rational method to include this consideration in the selection process is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: In this work we propose such a method and apply it in a pilot study of strengths and limitations of Saccharomyces cerevisiae as a model organism. The method relies on the functional classification of proteins into different biological pathways and processes and on full proteome comparisons between the putative model organism and other organisms for which we would like to extrapolate results. Here we compare S. cerevisiae to 704 other organisms from various phyla. For each organism, our results identify the pathways and processes for which S. cerevisiae is predicted to be a good model to extrapolate from. We find that animals in general and Homo sapiens in particular are some of the non-fungal organisms for which S. cerevisiae is likely to be a good model in which to study a significant fraction of common biological processes. We validate our approach by correctly predicting which organisms are phenotypically more distant from S. cerevisiae with respect to several different biological processes. CONCLUSIONS/SIGNIFICANCE: The method we propose could be used to choose appropriate substitute model organisms for the study of biological processes in other species that are harder to study. For example, one could identify appropriate models to study either pathologies in humans or specific biological processes in species with a long development time, such as plants.

  20. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii.

    Science.gov (United States)

    Datta, Suprama; Timson, David J; Annapure, Uday S

    2017-07-01

    Saccharomyces cerevisiae var. boulardii is the only yeast species with probiotic properties. It is considered to have therapeutic significance in gastrointestinal disorders. In the present study, a comparative physiological study between this yeast and Saccharomyces cerevisiae (BY4742) was performed by evaluating two prominent traits of probiotic species, responses to different stress conditions and antioxidant capacity. A global metabolite profile was also developed aiming to identify which therapeutically important secondary metabolites are produced. Saccharomyces cerevisiae var. boulardii showed no significant difference in growth patterns but greater stress tolerance compared to S. cerevisiae. It also demonstrated a six- to 10-fold greater antioxidant potential (judged by the 1,1-diphenyl-2-picrylhydrazyl assay), with a 70-fold higher total phenolic content and a 20-fold higher total flavonoid content in the extracellular fraction. These features were clearly differentiated by principal component analysis and further indicated by metabolite profiling. The extracellular fraction of the S. cerevisiae var. boulardii cultures was found to be rich in polyphenolic metabolites: vanillic acid, cinnamic acid, phenyl ethyl alcohol (rose oil), erythromycin, amphetamine and vitamin B 6 , which results in the antioxidant capacity of this strain. The present study presents a new perspective for differentiating the two genetically related strains of yeast, S. cerevisiae and S. cerevisiae var. boulardii by assessing their metabolome fingerprints. In addition to the correlation of the phenotypic properties with the secretory metabolites of these two yeasts, the present study also emphasizes the potential to exploit S. cerevisiae var. boulardii in the industrial production of these metabolites. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Fenologia, produção e composição do mosto da 'Cabernet sauvignon' e 'Tannat' em clima subtropical

    Directory of Open Access Journals (Sweden)

    Alessandro Jefferson Sato

    2011-06-01

    Full Text Available O objetivo deste trabalho foi caracterizar a fenologia e a produção das videiras 'Cabernet Sauvignon' e 'Tannat' (Vitis vinifera L., em clima subtropical, para a elaboração de vinho tinto. A área experimental foi instalada em uma propriedade comercial pertencente à Vinícola Intervin®, em Maringá-PR, e as videiras foram conduzidas em latada sobre o 'IAC 766 Campinas', em espaçamento 4,0 x 1,5m. As avaliações tiveram início a partir das podas de frutificação, realizadas no fim do inverno, durante quatro safras consecutivas (2003, 2004, 2005 e 2006. Foram utilizadas 20 plantas representativas de cada variedade, sendo avaliada a duração em dias das principais fases fenológicas das videiras, bem como estimadas a produção por planta e a produtividade de cada variedade. A evolução de maturação das uvas foi determinada pela análise semanal do pH, teor de sólidos solúveis totais (SST e acidez titulável (AT do mosto das bagas. A duração média do ciclo da videira 'Cabernet Sauvignon' foi de 130,3 dias, enquanto da 'Tannat' foi de 131,3. As estimativas médias da produção por planta e da produtividade foram, respectivamente, de 4,5 kg e 8,9 t ha-1 para a uva 'Cabernet Sauvignon' e 7,3 kg e 12,1 t ha-1 para a 'Tannat'. Os teores médios de pH, SST e AT foram, respectivamente, de 3,3; 14,5 ºBrix e 1,1% de ácido tartárico para a uva 'Cabernet Sauvignon', e 3,3; 17,7 ºBrix e 1,1% de ácido tartárico para a 'Tannat'.

  2. Saccharomyces cerevisiae variety diastaticus friend or foe?-spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization.

    Science.gov (United States)

    Meier-Dörnberg, Tim; Kory, Oliver Ingo; Jacob, Fritz; Michel, Maximilian; Hutzler, Mathias

    2018-06-01

    Saccharomyces cerevisiae variety diastaticus is generally considered to be an obligatory spoilage microorganism and spoilage yeast in beer and beer-mixed beverages. Their super-attenuating ability causes increased carbon dioxide concentrations, beer gushing and potential bottle explosion along with changes in flavor, sedimentation and increased turbidity. This research shows clear differences in the super-attenuating properties of S. cerevisiae var. diastaticus yeast strains and their potential for industrial brewing applications. Nineteen unknown spoilage yeast cultures were obtained as isolates and characterized using a broad spectrum of genetic and phenotypic methods. Results indicated that all isolates represent genetically different S. cerevisiae var. diastaticus strains except for strain TUM PI BA 124. Yeast strains were screened for their super-attenuating ability and sporulation. Even if the STA1 gene responsible for super-attenuation by encoding for the enzyme glucoamylase could be verified by real-time polymerase chain reaction, no correlation to the spoilage potential could be demonstrated. Seven strains were further characterized focusing on brewing and sensory properties according to the yeast characterization platform developed by Meier-Dörnberg. Yeast strain TUM 3-H-2 cannot metabolize dextrin and soluble starch and showed no spoilage potential or super-attenuating ability even when the strain belongs to the species S. cerevisiae var. diastaticus. Overall, the beer produced with S. cerevisiae var. diastaticus has a dry and winey body with noticeable phenolic off-flavors desirable in German wheat beers.

  3. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae

    Science.gov (United States)

    Hyma, Katie E; Saerens, Sofie M; Verstrepen, Kevin J; Fay, Justin C

    2011-01-01

    The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production. PMID:22093681

  4. Functional co-operation between the nuclei of Saccharomyces cerevisiae and mitochondria from other yeast species

    DEFF Research Database (Denmark)

    Spirek, M.; Horvath, A.; Piskur, Jure

    2000-01-01

    We elaborated a simple method that allows the transfer of mitochondria from collection yeasts to Saccharomyces cerevisiae. Protoplasts prepared from different yeasts were fused to the protoplasts of the ade2-1, ura3-52, kar1-1, rho (0) strain of S. cerevisiae and were selected for respiring cybrids....... italicus, S, oviformis, S. capensis and S. chevalieri) exhibited complete compatibility with S. cerevisiae nuclei. The closely related S. douglasii mitochondrial genome could also partially restore respiration-deficiency in rho (0) S. cerevisiae, whereas mitochondrial genomes from phylogenetically less...

  5. Accumulation of gold using Baker's yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Roy, Kamalika; Lahiri, Susanta; Sinha, P.

    2006-01-01

    Authors have reported preconcentration of 152 Eu, a long-lived fission product, by yeast cells, Saccharomyces cerevisiae. Gold being a precious metal is used in electroplating, hydrogenation catalyst, etc. Heterogeneous composition of samples and low concentration offers renewed interest in its selective extraction of gold using various extractants. Gold can be recovered from different solutions using various chemical reagents like amines, organophosphorus compounds, and extractants containing sulphur as donor atom, etc. In the present work, two different strains of baker's yeast, Saccharomyces cerevisiae have been used to study the preconcentration of gold at various experimental conditions

  6. Effects of Saccharomyces cerevisiae or boulardii yeasts on acute stress induced intestinal dysmotility.

    Science.gov (United States)

    West, Christine; Stanisz, Andrew M; Wong, Annette; Kunze, Wolfgang A

    2016-12-28

    To investigate the capacity of Saccharomyces cerevisiae ( S. cerevisiae ) and Saccharomyces boulardii ( S. boulardii ) yeasts to reverse or to treat acute stress-related intestinal dysmotility. Adult Swiss Webster mice were stressed for 1 h in a wire-mesh restraint to induce symptoms of intestinal dysmotility and were subsequently killed by cervical dislocation. Jejunal and colon tissue were excised and placed within a tissue perfusion bath in which S. cerevisiae , S. boulardii , or their supernatants were administered into the lumen. Video recordings of contractility and gut diameter changes were converted to spatiotemporal maps and the velocity, frequency, and amplitude of propagating contractile clusters (PCC) were measured. Motility pre- and post-treatment was compared between stressed animals and unstressed controls. S. boulardii and S. cerevisiae helped to mediate the effects of stress on the small and large intestine. Restraint stress reduced jejunal transit velocity (mm/s) from 2.635 ± 0.316 to 1.644 ± 0.238, P boulardii helped to restore jejunal and colonic velocity towards the unstressed controls; 1.833 ± 0.688 to 2.627 ± 0.664, P boulardii or S. cerevisiae supernatants also helped to restore motility to unstressed values in similar capacity. There is a potential therapeutic role for S. cerevisiae and S. boulardii yeasts and their supernatants in the treatment of acute stress-related gut dysmotility.

  7. PRODUKSI ETANOL DARI TETES TEBU OLEH Saccharomyces cerevisiae PEMBENTUK FLOK (NRRL – Y 265 (Ethanol Production from Cane Molasses by Flocculant Saccharomyces cerevisiae (NRRL – Y 265

    Directory of Open Access Journals (Sweden)

    Agustin Krisna Wardani

    2013-08-01

    Full Text Available The potential use of sugar cane molasses by flocculant Saccharomyces cerevisiae in ethanol production was investigated. In order to minimize the negative effect of calcium on yeast growth, pretreated sugar cane molasses with dilute acid was performed. The influence of process parameters such as sugar concentration and inoculum concentration were evaluated for enhancing bioethanol production. Result showed that maximum ethanol concentration of 8,792% (b/v was obtained at the best condition of inoculum concentration 10% (v/v and sugar concentration 15% (b/v. Based on the experimental data, maximum yield of ethanol production of 65% was obtained. This result demonstrated the potential of molasses as promising biomass resources for ethanol production. Keywords: Ethanol, preteated cane molasses, flocculant Saccharomyces cerevisiae, fermentation   ABSTRAK Efisiensi produksi bioetanol diperoleh melalui ketepatan pemilihan jenis mikroorganisme, bahan baku, dan kontrol proses fermentasi. Alternatif proses untuk meminimalisasi biaya produksi etanol adalah dengan mengeliminasi tahap pemisahan sentrifugasi sel dari produk karena memerlukan biaya instalasi dan biaya perawatan yang tinggi. Proses sentrifugasi merupakan tahapan penting untuk memisahkan sel mikroba dari medium fermentasi pada produksi bioetanol. Untuk meminimalisir biaya produksi akibat proses tersebut digunakan inokulum Saccharomyces cerevisiae pembentuk flok dan tetes tebu sebagai sumber gula. Penelitian ini bertujuan untuk mendapatkan konsentrasi penambahan inokulum Saccharomyces cerevisiae pembentuk flok dan konsentrasi sumber gula dalam tetes tebu yang tepat dalam produksi etanol yang maksimum. Saccharomyces cerevisiae sebanyak 5%, 10%, dan 15% (v/v diinokulasikan pada medium tetes tebu hasil pretreatment dengan kandungan gula 15%, 20%, dan 25% (b/v pada pH 5. Fermentasi dilakukan pada suhu 30°C dan agitasi 100 rpm selama 72 jam. Etanol tertinggi didapat pada kondisi konsentrasi inokulum

  8. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering

    DEFF Research Database (Denmark)

    Asadollahi, Mohammadali; Maury, Jerome; Patil, Kiran Raosaheb

    2009-01-01

    A genome-scale metabolic model was used to identify new target genes for enhanced biosynthesis of sesquiterpenes in the yeast Saccharomyces cerevisiae. The effect of gene deletions on the flux distributions in the metabolic model of S. cerevisiae was assessed using OptGene as the modeling framework...

  9. Evaluation of Lactobacillus plantarum and Saccharomyces cerevisiae in the Presence of Bifenthrin.

    Science.gov (United States)

    Đorđević, Tijana M; Đurović-Pejčev, Rada D

    2016-06-01

    This work describes the effect of insecticide bifenthrin on Lactobacillus plantarum and Saccharomyces cerevisiae. Growths of used microorganisms in growth media supplemented with pesticide were studied. Determination of bacterial and yeast fermentation efficiency in wheat supplemented with bifenthrin was conducted. Additionally, investigation of bifenthrin dissipation during microbiological activity was performed. Experiments applying bifenthrin in different concentrations highlighted a negligible impact of the pesticide on the growth of L. plantarum and S. cerevisiae. This insecticide overall negatively affected the yeast fermentation of wheat, while its presence in wheat had a slight negative impact on lactic acid fermentation. The results of bifenthrin dissipation during lactic acid and yeast fermentations of wheat showed that activities of L. plantarum and S. cerevisiae caused lower pesticide reductions. Average bifenthrin residue reduction within samples fermented with L. plantarum was 5.4 % (maximum ~16 %), while within samples fermented with S. cerevisiae, it was 11.6 % (maximum ~17 %).

  10. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.

    Science.gov (United States)

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok

    2017-12-20

    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  11. Study on biosorption of uranium by alginate immobilized saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Wang Baoe; Xu Weichang; Xie Shuibo; Guo Yangbin

    2005-01-01

    Saccharomyces cerevisiae has great capability of biosorption of uranium. The maxium uptake is 172.4 mg/g according to this study. To adapt to the application of the biomass in the field, the biosorption of uranium by cross-linked and alginate calcium immobilized Saccharomyces cerevisiae is studied. Results indicate the maxium uptake is 185.2 mg/g by formaldehyde cross-linked biomass, and it is 769.2 mg/g by alginate calcium immobilized biomass. (authors)

  12. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.

    Science.gov (United States)

    Bely, Marina; Stoeckle, Philippe; Masneuf-Pomarède, Isabelle; Dubourdieu, Denis

    2008-03-20

    Conventional wine yeasts produce high concentrations of volatile acidity, mainly acetic acid, during high-sugar fermentation. This alcoholic fermentation by-product is highly detrimental to wine quality and, in some cases, levels may even exceed legal limits. In this study, a non-conventional species, Torulaspora delbrueckii, was used, in pure cultures and mixed with Saccharomyces cerevisiae yeast, to ferment botrytized musts. Fermentation rate, biomass growth, and the formation of volatile acidity, acetaldehyde, and glycerol were considered. This study demonstrated that T. delbrueckii, often described as a low acetic producer under standard conditions, retained this quality even in a high-sugar medium. Unlike S. cerevisiae, this species did not respond to the hyper-osmotic medium by increasing acetic production as soon as it is inoculated into the must. Nevertheless, this yeast produced low ethanol and biomass yields, and the fermentation was sluggish. As a result, T. delbrueckii fermentations do not reach the required ethanol content (14%vol.), although this species can survive at this concentration. A mixed culture of T. delbrueckii and S. cerevisiae was the best combination for improving the analytical profile of sweet wine, particularly volatile acidity and acetaldehyde production. A mixed T. delbrueckii/S. cerevisiae culture at a 20:1 ratio produced 53% less in volatile acidity and 60% less acetaldehyde than a pure culture of S. cerevisiae. Inoculating S. cerevisiae after 5 days' fermentation by T. delbrueckii had less effect on volatile acidity and acetaldehyde production and resulted in stuck fermentation. These results contribute to a better understanding of the behaviour of non-Saccharomyces and their potential application in wine industry.

  13. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Roca, Christophe Francois Aime; Haack, Martin Brian; Olsson, Lisbeth

    2004-01-01

    analysed for changes in xylose consumption rate and ethanol production rate during anaerobic batch and chemostat cultivations on a mixture of 20 g l(-1) glucose and 50 g l(-1) xylose, and their characteristics were compared to the parental strain S. cerevisiae TMB3001 (XYL1, XYL2, XKS1). Improvement...... that xylose is a repressive sugar for S. cerevisiae....

  14. Intracellular Ca2+ Regulation in Calcium Sensitive Phenotype of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    HERMANSYAH

    2010-03-01

    Full Text Available Intracellular cytosolic Ca2+ concentration accumulation plays an essential information in Saccharomyces cerevisiae i.e. to explain cellular mechanism of Ca2+ sensitive phenotype. Disruption both S. cerevisiae PPase PTP2 and MSG5 genes showed an inhibited growth in the presence of Ca2+. On the other hand, by using Luminocounter with apoaequorin system, a method based upon luminescent photoprotein aequorin, intracellular Ca2+ concentration was accumulated as a consequence of calcium sensitive phenotype of S. cerevisiae. This fact indicated that PPase ptp2Δ and msg5Δ were involved in intracellular Ca2+ transport in addition their already known pathways i.e Mitogen Activated Protein Kinase cell wall integrity pathway, high osmolarity glycerol (HOG pathway, and pheromone response FUS3 pathway.

  15. The adsorption of Sr(II) and Cs(I) ions by irradiated Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Yiming Tan; Jundong Feng; Liang Qiu; Zhentian Zhao; Xiaohong Zhang; Haiqian Zhang

    2017-01-01

    Adsorption behavior and mechanism of Sr(II) and Cs(I) in single and binary solutions using irradiated Saccharomyces cerevisiae was investigated. The effects of several environmental factors on Sr(II) and Cs(I) adsorption to irradiated Saccharomyces cerevisiae was determined. The equilibrium experimental data were simulated by different kinetic models and isotherm models. The combined effect of Sr(II) and Cs(I) on Saccharomyces cerevisiae is generally antagonistic. SEM and EDS analyses indicate that crystals formed on the cell surface are precipitate of Sr(II) and Cs(I), respectively. (author)

  16. Induction of homologous recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  17. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.

    Science.gov (United States)

    Turner, Timothy L; Kim, Heejin; Kong, In Iok; Liu, Jing-Jing; Zhang, Guo-Chang; Jin, Yong-Su

    To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker's yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.

  18. Fatty acid metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    van Roermund, C. W. T.; Waterham, H. R.; IJlst, L.; Wanders, R. J. A.

    2003-01-01

    Peroxisomes are essential subcellular organelles involved in a variety of metabolic processes. Their importance is underlined by the identification of a large group of inherited diseases in humans in which one or more of the peroxisomal functions are impaired. The yeast Saccharomyces cerevisiae has

  19. Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae.

    Science.gov (United States)

    Padukone, S Usha; Natarajan, K A

    2011-11-01

    Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Repair of UV-damaged incoming plasmid DNA in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Keszenman-Pereyra, David

    1990-01-01

    A whole-cell transformation assay was used for the repair of UV-damaged plasma DNA in highly-transformable haploid strains of Saccharomyces cerevisiae having different repair capabilities. The experiments described demonstrate that three epistasis groups (Friedberg 1988) are involved in the repair of UV-incoming DNA and that the repair processes act less efficiently on incoming DNA than they do on chromosomal DNA. The implications of these findings for UV repair in Saccharomyces cerevisiae are discussed. (author)

  1. A Novel Saccharomyces cerevisiae Killer Strain Secreting the X Factor Related to Killer Activity and Inhibition of S. cerevisiae K1, K2 and K28 Killer Toxins.

    Science.gov (United States)

    Melvydas, Vytautas; Bružauskaitė, Ieva; Gedminienė, Genovaitė; Šiekštelė, Rimantas

    2016-09-01

    It was determined that Kx strains secrete an X factor which can inhibit all known Saccharomyces cerevisiae killer toxins (K1, K2, K28) and some toxins of other yeast species-the phenomenon not yet described in the scientific literature. It was shown that Kx type yeast strains posess a killer phenotype producing small but clear lysis zones not only on the sensitive strain α'1 but also on the lawn of S. cerevisiae K1, K2 and K28 type killer strains at temperatures between 20 and 30 °C. The pH at which killer/antikiller effect of Kx strain reaches its maximum is about 5.0-5.2. The Kx yeast were identified as to belong to S. cerevisiae species. Another newly identified S. cerevisiae killer strain N1 has killer activity but shows no antikilller properties against standard K1, K2 and K28 killer toxins. The genetic basis for Kx killer/antikiller phenotype was associated with the presence of M-dsRNA which is bigger than M-dsRNA of standard S. cerevisiae K1, K2, K28 type killer strains. Killer and antikiller features should be encoded by dsRNA. The phenomenon of antikiller (inhibition) properties was observed against some killer toxins of other yeast species. The molecular weight of newly identified killer toxins which produces Kx type strains might be about 45 kDa.

  2. 2μ plasmid in Saccharomyces species and in Saccharomyces cerevisiae.

    Science.gov (United States)

    Strope, Pooja K; Kozmin, Stanislav G; Skelly, Daniel A; Magwene, Paul M; Dietrich, Fred S; McCusker, John H

    2015-12-01

    We determined that extrachromosomal 2μ plasmid was present in 67 of the Saccharomyces cerevisiae 100-genome strains; in addition to variation in the size and copy number of 2μ, we identified three distinct classes of 2μ. We identified 2μ presence/absence and class associations with populations, clinical origin and nuclear genotypes. We also screened genome sequences of S. paradoxus, S. kudriavzevii, S. uvarum, S. eubayanus, S. mikatae, S. arboricolus and S. bayanus strains for both integrated and extrachromosomal 2μ. Similar to S. cerevisiae, we found no integrated 2μ sequences in any S. paradoxus strains. However, we identified part of 2μ integrated into the genomes of some S. uvarum, S. kudriavzevii, S. mikatae and S. bayanus strains, which were distinct from each other and from all extrachromosomal 2μ. We identified extrachromosomal 2μ in one S. paradoxus, one S. eubayanus, two S. bayanus and 13 S. uvarum strains. The extrachromosomal 2μ in S. paradoxus, S. eubayanus and S. cerevisiae were distinct from each other. In contrast, the extrachromosomal 2μ in S. bayanus and S. uvarum strains were identical with each other and with one of the three classes of S. cerevisiae 2μ, consistent with interspecific transfer. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Systems Biology of Saccharomyces cerevisiae Physiology and its DNA Damage Response

    DEFF Research Database (Denmark)

    Fazio, Alessandro

    The yeast Saccharomyces cerevisiae is a model organism in biology, being widely used in fundamental research, the first eukaryotic organism to be fully sequenced and the platform for the development of many genomics techniques. Therefore, it is not surprising that S. cerevisiae has also been widely...... used in the field of systems biology during the last decade. This thesis investigates S. cerevisiae growth physiology and DNA damage response by using a systems biology approach. Elucidation of the relationship between growth rate and gene expression is important to understand the mechanisms regulating...... set of growth dependent genes by using a multi-factorial experimental design. Moreover, new insights into the metabolic response and transcriptional regulation of these genes have been provided by using systems biology tools (Chapter 3). One of the prerequisite of systems biology should...

  4. Improved bread-baking process using Saccharomyces cerevisiae displayed with engineered cyclodextrin glucanotransferase.

    Science.gov (United States)

    Shim, Jae-Hoon; Seo, Nam-Seok; Roh, Sun-Ah; Kim, Jung-Wan; Cha, Hyunju; Park, Kwan-Hwa

    2007-06-13

    A bread-baking process was developed using a potential novel enzyme, cyclodextrin glucanotransferase[3-18] (CGTase[3-18]), that had previously been engineered to have enhanced hydrolyzing activity with little cyclodextrin (CD) formation activity toward starch. CGTase[3-18] was primarily manipulated to be displayed on the cell surface of Saccharomyces cerevisiae. S. cerevisiae carrying pdeltaCGT integrated into the chromosome exhibited starch-hydrolyzing activity at the same optimal pH and temperature as the free enzyme. Volumes of the bread loaves and rice cakes prepared using S. cerevisiae/pdeltaCGT increased by 20% and 45%, respectively, with no detectable CD. Retrogradation rates of the bread and rice cakes decreased significantly during storage. In comparison to the wild type, S. cerevisiae/pdeltaCGT showed improved viability during four freeze-thaw cycles. The results indicated that CGTase[3-18] displayed on the surface of yeast hydrolyzed starch to glucose and maltose that can be used more efficiently for yeast fermentation. Therefore, display of an antistaling enzyme on the cell surface of yeast has potential for enhancing the baking process.

  5. Molecular genetic diversity of the Saccharomyces yeasts in Taiwan: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii.

    Science.gov (United States)

    Naumov, Gennadi I; Lee, Ching-Fu; Naumova, Elena S

    2013-01-01

    Genetic hybridization, sequence and karyotypic analyses of natural Saccharomyces yeasts isolated in different regions of Taiwan revealed three biological species: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Intraspecies variability of the D1/D2 and ITS1 rDNA sequences was detected among S. cerevisiae and S. kudriavzevii isolates. According to molecular and genetic analyses, the cosmopolitan species S. cerevisiae and S. kudriavzevii contain local divergent populations in Taiwan, Malaysia and Japan. Six of the seven known Saccharomyces species are documented in East Asia: S. arboricola, S. bayanus, S. cerevisiae, S. kudriavzevii, S. mikatae, and S. paradoxus.

  6. Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport.

    Science.gov (United States)

    Batista, Anderson S; Miletti, Luiz C; Stambuk, Boris U

    2004-01-01

    Sucrose is the major carbon source used by Saccharomyces cerevisiae during production of baker's yeast, fuel ethanol and several distilled beverages. It is generally accepted that sucrose fermentation proceeds through extracellular hydrolysis of the sugar, mediated by the periplasmic invertase, producing glucose and fructose that are transported into the cells and metabolized. In the present work we analyzed the contribution to sucrose fermentation of a poorly characterized pathway of sucrose utilization by S. cerevisiae cells, the active transport of the sugar through the plasma membrane and its intracellular hydrolysis. A yeast strain that lacks the major hexose transporters (hxt1-hxt7 and gal2) is incapable of growing on or fermenting glucose or fructose. Our results show that this hxt-null strain is still able to ferment sucrose due to direct uptake of the sugar into the cells. Deletion of the AGT1 gene, which encodes a high-affinity sucrose-H(+) symporter, rendered cells incapable of sucrose fermentation. Since sucrose is not an inducer of the permease, expression of the AGT1 must be constitutive in order to allow growth of the hxt-null strain on sucrose. The molecular characterization of active sucrose transport and fermentation by S. cerevisiae cells opens new opportunities to optimize yeasts for sugarcane-based industrial processes.

  7. Saccharomyces cerevisiae in the Production of Fermented Beverages

    Directory of Open Access Journals (Sweden)

    Graeme M Walker

    2016-11-01

    Full Text Available Alcoholic beverages are produced following the fermentation of sugars by yeasts, mainly (but not exclusively strains of the species, Saccharomyces cerevisiae. The sugary starting materials may emanate from cereal starches (which require enzymatic pre-hydrolysis in the case of beers and whiskies, sucrose-rich plants (molasses or sugar juice from sugarcane in the case of rums, or from fruits (which do not require pre-hydrolysis in the case of wines and brandies. In the presence of sugars, together with other essential nutrients such as amino acids, minerals and vitamins, S. cerevisiae will conduct fermentative metabolism to ethanol and carbon dioxide (as the primary fermentation metabolites as the cells strive to make energy and regenerate the coenzyme NAD+ under anaerobic conditions. Yeasts will also produce numerous secondary metabolites which act as important beverage flavour congeners, including higher alcohols, esters, carbonyls and sulphur compounds. These are very important in dictating the final flavour and aroma characteristics of beverages such as beer and wine, but also in distilled beverages such as whisky, rum and brandy. Therefore, yeasts are of vital importance in providing the alcohol content and the sensory profiles of such beverages. This Introductory Chapter reviews, in general, the growth, physiology and metabolism of S. cerevisiae in alcoholic beverage fermentations.

  8. Redox balancing in recombinant strains of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Anderlund, M

    1998-09-01

    In metabolically engineered Saccharomyces cerevisiae expressing Pichia stipitis XYL1 and XYL2 genes, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, xylitol is excreted as the major product during anaerobic xylose fermentation and only low yields of ethanol are produced. This has been interpreted as a result of the dual cofactor dependence of XR and the exclusive use of NAD{sup +} by XDH. The excretion of xylitol was completely stopped and the formation of glycerol and acetic acid were reduced in xylose utilising S. cerevisiae strains cultivated in oxygen-limited conditions by expressing lower levels of XR than of XDH. The expression level of XYL1 and XYL2 were controlled by changing the promoters and transcription directions of the genes. A new functional metabolic pathway was established when Thermus thermophilus xylA gene was expressed in S. cerevisiae. The recombinant strain was able to ferment xylose to ethanol when cultivated on a minimal medium containing xylose as only carbon source. In order to create a channeled metabolic transfer in the two first steps of the xylose metabolism, XYL1 and XYL2 were fused in-frame and expressed in S. cerevisiae. When the fusion protein, containing a linker of three amino acids, was co expressed together with native XR and XDH monomers, enzyme complexes consisting of chimeric and native subunits were formed. The total activity of these complexes exhibited 10 and 9 times higher XR and XDH activity, respectively, than the original conjugates, consisting of only chimeric subunits. This strain produced less xylitol and the xylitol yield was lower than with strains only expressing native XR and XDH monomers. In addition, more ethanol and less acetic acid were formed. A new gene encoding the cytoplasmic transhydrogenase from Azotobacter vinelandii was cloned. The enzyme showed high similarity to the family of pyridine nucleotide-disulphide oxidoreductase. To analyse the physiological effect of

  9. Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and stress resistance

    Directory of Open Access Journals (Sweden)

    Vanda Renata Reis

    Full Text Available Abstract Strains of Saccharomyces cerevisiae may display characteristics that are typical of rough-type colonies, made up of cells clustered in pseudohyphal structures and comprised of daughter buds that do not separate from the mother cell post-mitosis. These strains are known to occur frequently in fermentation tanks with significant lower ethanol yield when compared to fermentations carried out by smooth strains of S. cerevisiae that are composed of dispersed cells. In an attempt to delineate genetic and phenotypic differences underlying the two phenotypes, this study analysed 10 microsatellite loci of 22 S. cerevisiae strains as well as stress resistance towards high concentrations of ethanol and glucose, low pH and cell sedimentation rates. The results obtained from the phenotypic tests by Principal-Component Analysis revealed that unlike the smooth colonies, the rough colonies of S. cerevisiae exhibit an enhanced resistance to stressful conditions resulting from the presence of excessive glucose and ethanol and high sedimentation rate. The microsatellite analysis was not successful to distinguish between the colony phenotypes as phenotypic assays. The relevant industrial strain PE-2 was observed in close genetic proximity to rough-colony although it does not display this colony morphology. A unique genetic pattern specific to a particular phenotype remains elusive.

  10. Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: Effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice.

    Science.gov (United States)

    Minnaar, P P; Jolly, N P; Paulsen, V; Du Plessis, H W; Van Der Rijst, M

    2017-09-18

    Kei-apple (Dovyalis caffra) is an evergreen tree indigenous to Southern Africa. The fruit contains high concentrations of l-malic acid, ascorbic acid, and phenolic acids. Kei-apple juice was sequentially inoculated with Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts. A reference fermentation using only S. cerevisiae was included. The fermentation was monitored by recording mass loss. At the end of fermentation, twelve untrained judges conducted free choice aroma profiling on the fruit wines. The Kei-apple juice and wines were analysed for total titratable acidity, total soluble solids, pH, alcohol, l-malic acid, and phenolic acids. Total titratable acidity was ca. 70% lower in Kei-apple wines produced with S. pombe+S. cerevisiae than in Kei-apple juice. Kei-apple wines produced with S. pombe+S. cerevisiae showed substantially lower concentrations of l-malic acid than Kei-apple wines produced with S. cerevisiae only. Wines produced with S. cerevisiae only proved higher in phenolic acid concentrations than wines produced with S. pombe+S. cerevisiae. Chlorogenic acid was the most abundant phenolic acid measured in the Kei-apple wines, followed by protocatechuic acid. Judges described the Kei-apple wines produced with S. pombe+S. cerevisiae as having noticeable off-odours, while wines produced with S. cerevisiae were described as fresh and fruity. Kei-apple wines (S. pombe+S. cerevisiae and S. cerevisiae) were of comparable vegetative and organic character. Saccharomyces cerevisiae produced Kei-apple wine with increased caffeic, chlorogenic, protocatechuic, and sinapic acids, whereas S. pombe+S. cerevisiae produced Kei-apple wines with increased ferulic, and p-coumaric acids and low l-malic acid. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Weinert, Brian Tate; Iesmantavicius, Vytautas; Moustafa, Tarek

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation...

  12. Evaluation of cytochrome P-450 concentration in Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Míriam Cristina Sakuragui Matuo

    2010-09-01

    Full Text Available Saccharomyces cerevisiae has been widely used in mutagenicity tests due to the presence of a cytochrome P-450 system, capable of metabolizing promutagens to active mutagens. There are a large number of S. cerevisiae strains with varying abilities to produce cytochrome P-450. However, strain selection and ideal cultivation conditions are not well defined. We compared cytochrome P-450 levels in four different S. cerevisiae strains and evaluated the cultivation conditions necessary to obtain the highest levels. The amount of cytochrome P-450 produced by each strain varied, as did the incubation time needed to reach the maximum level. The highest cytochrome P-450 concentrations were found in media containing fermentable sugars. The NCYC 240 strain produced the highest level of cytochrome P-450 when grown in the presence of 20 % (w/v glucose. The addition of ethanol to the media also increased cytochrome P-450 synthesis in this strain. These results indicate cultivation conditions must be specific and well-established for the strain selected in order to assure high cytochrome P-450 levels and reliable mutagenicity results.Linhagens de Saccharomyces cerevisiae tem sido amplamente empregadas em testes de mutagenicidade devido à presença de um sistema citocromo P-450 capaz de metabolizar substâncias pró-mutagênicas à sua forma ativa. Devido à grande variedade de linhagens de S. cerevisiae com diferentes capacidades de produção de citocromo P-450, torna-se necessária a seleção de cepas, bem como a definição das condições ideais de cultivo. Neste trabalho, foram comparados os níveis de citocromo P-450 em quatro diferentes linhagens de S. cerevisiae e avaliadas as condições de cultivo necessárias para obtenção de altas concentrações deste sistema enzimático. O maior nível enzimático foi encontrado na linhagem NCYC 240 em presença de 20 % de glicose (p/v. A adição de etanol ao meio de cultura também produziu um aumento na s

  13. Anti-Saccharomyces cerevisiae and perinuclear anti-neutrophil cytoplasmic antibodies in coeliac disease before and after gluten-free diet.

    Science.gov (United States)

    Granito, A; Zauli, D; Muratori, P; Muratori, L; Grassi, A; Bortolotti, R; Petrolini, N; Veronesi, L; Gionchetti, P; Bianchi, F B; Volta, U

    2005-04-01

    Anti-Saccharomyces cerevisiae and perinuclear anti-neutrophil cytoplasmic autoantibodies are markers of Crohn's disease and ulcerative colitis respectively. To determine the prevalence of anti-S. cerevisiae and perinuclear anti-neutrophil cytoplasmic autoantibodies in a large series of coeliac disease patients before and after gluten free diet, and to correlate anti-S. cerevisiae-positivity with intestinal mucosal damage. One hundred and five consecutive coeliac disease patients and 141 controls (22 ulcerative colitis, 24 Crohn's disease, 30 primary sclerosing cholangitis, 15 postenteritis syndrome, 50 blood donors) were tested for anti-S. cerevisiae by enzyme-linked immunosorbent assay and for perinuclear anti-neutrophil cytoplasmic autoantibodies by indirect immunofluorescence. In coeliac disease anti-S. cerevisiae (immunoglobulin G and/or immunoglobulin A) were slightly less frequent (59%) than in Crohn's disease (75%, P = 0.16) and significantly more frequent than in ulcerative colitis (27%), primary sclerosing cholangitis (30%), postenteritis syndrome (26%) and blood donors (4%) (P = 0.009, P = 0.0002, P = 0.025, P < 0.0001). No correlation was found between anti-S. cerevisiae and degree of mucosal damage. Perinuclear anti-neutrophil cytoplasmic autoantibodies were detected only in one coeliac. After gluten free diet the disappearance of anti-S. cerevisiae-immunoglobulin A (93%) was more frequent than that of immunoglobulin G (17%, P = 0.0001); perinuclear anti-neutrophil cytoplasmic autoantibodies disappeared in the only coeliac positive at diagnosis. More than half of untreated coeliacs are anti-S. cerevisiae-positive irrespective of the severity of mucosal damage. Differently from immunoglobulin A, anti-S. cerevisiae-immunoglobulin G persisted in more than 80% after gluten free diet. The high prevalence of anti-S. cerevisiae in coeliac disease suggests that they may be the effect of a non-specific immune response in course of chronic small bowel disease.

  14. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Background: The limited xylose utilizing ability of native Saccharomyces cerevisiae has been a major obstacle for efficient cellulosic ethanol production from lignocellulosic materials. Haploid laboratory strains of S. cerevisiae are commonly used for genetic engineering to enable its xylose utiliza...

  15. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Miletti Luiz C

    2008-02-01

    Full Text Available Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by

  16. Switching the mode of sucrose utilization by Saccharomyces cerevisiae.

    Science.gov (United States)

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-02-27

    Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells

  17. On the origins and industrial applications of Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids.

    Science.gov (United States)

    Peris, David; Pérez-Torrado, Roberto; Hittinger, Chris Todd; Barrio, Eladio; Querol, Amparo

    2018-01-01

    Companies based on alcoholic fermentation products, such as wine, beer and biofuels, use yeasts to make their products. Each industrial process utilizes different media conditions, which differ in sugar content, the presence of inhibitors and fermentation temperature. Saccharomyces cerevisiae has traditionally been the main yeast responsible for most fermentation processes. However, the market is changing due to consumer demand and external factors such as climate change. Some processes, such as biofuel production or winemaking, require new yeasts to solve specific challenges, especially those associated with sustainability, novel flavours and altered alcohol content. One of the proposed solutions is the application of yeast hybrids. The lager beer market has been dominated by S. cerevisiae × S. eubayanus hybrids. However, several less thoroughly studied hybrids have been isolated from other diverse industrial processes. Here we focus on S. cerevisiae × S. kudriavzevii hybrids, which have been isolated from diverse industrial conditions that include wine, ale beer, cider and dietary supplements. Emerging data suggest an extended and complex story of adaptation of these hybrids to traditional industrial conditions. S. cerevisiae × S. kudriavzevii hybrids are also being explored for new industrial applications, such as biofuels. This review describes the past, present and future of S. cerevisiae × S. kudriavzevii hybrids. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Nitrogen Catabolite Repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hofman-Bang, H Jacob Peider

    1999-01-01

    In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Da180, and Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence S' GATAA 3'. Gln3...

  19. [Molecular evolution of the sulphite efflux gene SSU1 in Saccharomyces cerevisiae].

    Science.gov (United States)

    Peng, Li-Xin; Sun, Fei-Fei; Huang, Yan-Yan; Li, Zhen-Chong

    2013-11-01

    The SSU1 gene encoding a membrane sulfite pump is a main facilitator invovled in sulfite efflux. In Saccharomyce cerevisiae, various range of resistance to sulfite was observed among strains. To explore the evolution traits of SSU1 gene, the population data of S. cerevisiae were collected and analyzed. The phylogenetic analysis indicated that S. cerevisiae population can be classified into three sub-populations, and the positive selection was detected in population by McDonald-Kreitman test. The anaylsis of Ka/Ks ratios further showed that S. cerevisiae sub-population was undergoing positive selection. This finding was also supported by PAML branch model. Nine potential positive selection sites were predicted by branch-site model, and four sites exclusively belong to the sub-population under positive seletion. The data from ssulp protein structure demonstrated that three sites are substitutions between polar and hydrophobic amino acids, and only one site of substitutaion from basic amino acid to basic amino acid (345R/K). Because amino acid pKa values are crucial for sulfite pump to maintain their routine function, positive selection of these amino acid substitutions might affect sulfite efflux efficient.

  20. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.

    Directory of Open Access Journals (Sweden)

    Yan-Lin Zheng

    Full Text Available The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature.

  1. PRODUCTION, PROPERTIES AND APPLICATION OF SACCHAROMYCES CEREVISIAE VGSH-2 INULINASE

    Directory of Open Access Journals (Sweden)

    G. P. Shuvaeva

    2014-01-01

    Full Text Available Summary. Experimental data on an acid and thermal inactivation of a high refined inulinase (2,1-β-D- fructanfructanohydrolase, KF 3.2.17, produced by the race of Saccharomyces cerevisiae VGSh-2 yeast are presented. The strain of S. cerevisiae VGSh-2 was produced by the method of the induced mutagenesis and deposited to the collection of pure cultures of the chair of biochemistry and biotechnology of Voronezh state university of engineering technologies. The cells of source culture (S. cerevisiae XII were affected step-by-step by the ultra-violet radiation (UFR and UFR in a complex with a chemical mutagen (etilenimine. The culture was grown up by the method of liquid-phase deep cultivation on a constant nutrient medium. Refining conditions for inulinase are sorted out. Activity of enzyme dependence on physical and chemical factors (рН and temperature is obtained and numerical values of the main kinetic constants – Km and Vmax are determined. The structure of enzyme molecule is studied by an infrared-spectroscopy method: the type and relative quantity of elements of secondary structure of protein are defined. Substrate binding groups of the active center of an inulinase are found. The comparative analysis of the ability to hydrolysis of inulin in several enzyme preparations from Jerusalem artichoke and to the subsequent their fermentation by the VGSh-2 and XI S. cerevisiae yeasts is carried out. Optimum conditions of enzyme hydrolysis of inulin are selected. Research of the fermentation process of starchcontaining raw materials by yeasts of VGSh-2 and XI races is done. It is established that the using of VGSh-2 S. cerevisiae yeast for a grain wort and the Jerusalem artichoke fermentation, allows to increase an extraction of ethyl alcohol comparing to control race, to improve its quality characteristics, and also allows to predict the using of new race in the food industry for production ethanol from grain raw materials and a fermentation of

  2. Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory

    DEFF Research Database (Denmark)

    Otero, José Manuel; Cimini, Donatella; Patil, Kiran Raosaheb

    2013-01-01

    Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought......-direction of carbon fluxes in S. cerevisiae, and hence show proof of concept that this is a potentially attractive cell factory for over-producing different platform chemicals....

  3. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    Science.gov (United States)

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-02

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae : Xylose Isomerase as a Key Component

    NARCIS (Netherlands)

    Van Maris, A.J.A.; Winkler, A.A.; Kuyper, M.; De Laat, W.T.; Van Dijken, J.P.; Pronk, J.T.

    2007-01-01

    Metabolic engineering of Saccharomyces cerevisiae for ethanol production from d-xylose, an abundant sugar in plant biomass hydrolysates, has been pursued vigorously for the past 15 years. Whereas wild-type S. cerevisiae cannot ferment d-xylose, the ketoisomer d-xylulose can be metabolised slowly.

  5. Invertase SUC2 Is the Key Hydrolase for Inulin Degradation in Saccharomyces cerevisiae

    OpenAIRE

    Wang, Shi-An; Li, Fu-Li

    2013-01-01

    Specific Saccharomyces cerevisiae strains were recently found to be capable of efficiently utilizing inulin, but genetic mechanisms of inulin hydrolysis in yeast remain unknown. Here we report functional characteristics of invertase SUC2 from strain JZ1C and demonstrate that SUC2 is the key enzyme responsible for inulin metabolism in S. cerevisiae.

  6. Saccharomyces cerevisiae in the Production of Whisk(ey

    Directory of Open Access Journals (Sweden)

    Graeme M. Walker

    2016-12-01

    Full Text Available Whisk(ey is a major global distilled spirit beverage. Whiskies are produced from cereal starches that are saccharified, fermented and distilled prior to spirit maturation. The strain of Saccharomyces cerevisiae employed in whisky fermentations is crucially important not only in terms of ethanol yields, but also for production of minor yeast metabolites which collectively contribute to development of spirit flavour and aroma characteristics. Distillers must therefore pay very careful attention to the strain of yeast exploited to ensure consistency of fermentation performance and spirit congener profiles. In the Scotch whisky industry, initiatives to address sustainability issues facing the industry (for example, reduced energy and water usage have resulted in a growing awareness regarding criteria for selecting new distilling yeasts with improved efficiency. For example, there is now a desire for Scotch whisky distilling yeasts to perform under more challenging conditions such as high gravity wort fermentations. This article highlights the important roles of S. cerevisiae strains in whisky production (with particular emphasis on Scotch and describes key fermentation performance attributes sought in distiller’s yeast, such as high alcohol yields, stress tolerance and desirable congener profiles. We hope that the information herein will be useful for whisky producers and yeast suppliers in selecting new distilling strains of S. cerevisiae, and for the scientific community to stimulate further research in this area.

  7. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains. Current state and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Matsushika, Akinori; Inoue, Hiroyuki; Sawayama, Shigeki [National Inst. of Advanced Industrial Science and Technology (AIST), Hiroshima (JP). Biomass Technology Research Center (BTRC); Kodaki, Tsutomu [Kyoto Univ. (Japan). Inst. of Advanced Energy

    2009-08-15

    Bioethanol production from xylose is important for utilization of lignocellulosic biomass as raw materials. The research on yeast conversion of xylose to ethanol has been intensively studied especially for genetically engineered Saccharomyces cerevisiae during the last 20 years. S. cerevisiae, which is a very safe microorganism that plays a traditional and major role in industrial bioethanol production, has several advantages due to its high ethanol productivity, as well as its high ethanol and inhibitor tolerance. However, this yeast cannot ferment xylose, which is the dominant pentose sugar in hydrolysates of lignocellulosic biomass. A number of different strategies have been applied to engineer yeasts capable of efficiently producing ethanol from xylose, including the introduction of initial xylose metabolism and xylose transport, changing the intracellular redox balance, and overexpression of xylulokinase and pentose phosphate pathways. In this review, recent progress with regard to these studies is discussed, focusing particularly on xylose-fermenting strains of S. cerevisiae. Recent studies using several promising approaches such as host strain selection and adaptation to obtain further improved xylose-utilizing S. cerevisiae are also addressed. (orig.)

  8. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the deve......Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up...... the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...

  9. Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and stress resistance.

    Science.gov (United States)

    Reis, Vanda Renata; Antonangelo, Ana Teresa Burlamaqui Faraco; Bassi, Ana Paula Guarnieri; Colombi, Débora; Ceccato-Antonini, Sandra Regina

    Strains of Saccharomyces cerevisiae may display characteristics that are typical of rough-type colonies, made up of cells clustered in pseudohyphal structures and comprised of daughter buds that do not separate from the mother cell post-mitosis. These strains are known to occur frequently in fermentation tanks with significant lower ethanol yield when compared to fermentations carried out by smooth strains of S. cerevisiae that are composed of dispersed cells. In an attempt to delineate genetic and phenotypic differences underlying the two phenotypes, this study analysed 10 microsatellite loci of 22 S. cerevisiae strains as well as stress resistance towards high concentrations of ethanol and glucose, low pH and cell sedimentation rates. The results obtained from the phenotypic tests by Principal-Component Analysis revealed that unlike the smooth colonies, the rough colonies of S. cerevisiae exhibit an enhanced resistance to stressful conditions resulting from the presence of excessive glucose and ethanol and high sedimentation rate. The microsatellite analysis was not successful to distinguish between the colony phenotypes as phenotypic assays. The relevant industrial strain PE-2 was observed in close genetic proximity to rough-colony although it does not display this colony morphology. A unique genetic pattern specific to a particular phenotype remains elusive. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Functional relevance of water and glycerol channels in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sabir, Farzana; Loureiro-Dias, Maria C; Soveral, Graça; Prista, Catarina

    2017-05-01

    Our understanding of the functional relevance of orthodox aquaporins and aquaglyceroporins in Saccharomyces cerevisiae is essentially based on phenotypic variations obtained by expression/overexpression/deletion of these major intrinsic proteins in selected strains. These water/glycerol channels are considered crucial during various life-cycle phases, such as sporulation and mating and in some life processes such as rapid freeze-thaw tolerance, osmoregulation and phenomena associated with cell surface. Despite their putative functional roles not only as channels but also as sensors, their underlying mechanisms and their regulation are still poorly understood. In the present review, we summarize and discuss the physiological relevance of S. cerevisiae aquaporins (Aqy1 and Aqy2) and aquaglyceroporins (Fps1 and Yfl054c). In particular, the fact that most S. cerevisiae laboratory strains harbor genes coding for non-functional aquaporins, while wild and industrial strains possess at least one functional aquaporin, suggests that aquaporin activity is required for cell survival under more harsh conditions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maksim I. Sorokin

    2014-01-01

    Full Text Available The yeast Saccharomyces cerevisiae is successfully used as a model organism to find genes responsible for lifespan control of higher organisms. As functional decline of higher eukaryotes can start as early as one quarter of the average lifespan, we asked whether S. cerevisiae can be used to model this manifestation of aging. While the average replicative lifespan of S. cerevisiae mother cells ranges between 15 and 30 division cycles, we found that resistances to certain stresses start to decrease much earlier. Looking into the mechanism, we found that knockouts of genes responsible for mitochondriato-nucleus (retrograde signaling, RTG1 or RTG3, significantly decrease the resistance of cells that generated more than four daughters, but not of the younger ones. We also found that even young mother cells frequently contain mitochondria with heterogeneous transmembrane potential and that the percentage of such cells correlates with replicative age. Together, these facts suggest that retrograde signaling starts to malfunction in relatively young cells, leading to accumulation of heterogeneous mitochondria within one cell. The latter may further contribute to a decline in stress resistances.

  12. Physiological impact and context dependency of transcriptional responses : A chemostat study in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Tai, S.L.

    2007-01-01

    This thesis is a compilation of a four-year PhD project on bakers' yeast (Saccharomyces cerevisiae). Since the entire S. cerevisiae genome sequence became available in 1996, DNA-microarray analysis has become a popular high-information-density tool for analyzing gene expression in this important

  13. Performance evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces cerevisiae in industrial tequila fermentation.

    Science.gov (United States)

    Amaya-Delgado, L; Herrera-López, E J; Arrizon, Javier; Arellano-Plaza, M; Gschaedler, A

    2013-05-01

    Traditionally, industrial tequila production has used spontaneous fermentation or Saccharomyces cerevisiae yeast strains. Despite the potential of non-Saccharomyces strains for alcoholic fermentation, few studies have been performed at industrial level with these yeasts. Therefore, in this work, Agave tequilana juice was fermented at an industrial level using two non-Saccharomyces yeasts (Pichia kluyveri and Kluyveromyces marxianus) with fermentation efficiency higher than 85 %. Pichia kluyveri (GRO3) was more efficient for alcohol and ethyl lactate production than S. cerevisiae (AR5), while Kluyveromyces marxianus (GRO6) produced more isobutanol and ethyl-acetate than S. cerevisiae (AR5). The level of volatile compounds at the end of fermentation was compared with the tequila standard regulation. All volatile compounds were within the allowed range except for methanol, which was higher for S. cerevisiae (AR5) and K. marxianus (GRO6). The variations in methanol may have been caused by the Agave tequilana used for the tests, since this compound is not synthesized by these yeasts.

  14. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2010-03-01

    Full Text Available Abstract Background Baker's yeast (Saccharomyces cerevisiae has been engineered for xylose utilization to enable production of fuel ethanol from lignocellulose raw material. One unresolved challenge is that S. cerevisiae lacks a dedicated transport system for pentose sugars, which means that xylose is transported by non-specific Hxt transporters with comparatively low transport rate and affinity for xylose. Results In this study, we compared three heterologous xylose transporters that have recently been shown to improve xylose uptake under different experimental conditions. The transporters Gxf1, Sut1 and At5g59250 from Candida intermedia, Pichia stipitis and Arabidopsis thaliana, respectively, were expressed in isogenic strains of S. cerevisiae and the transport kinetics and utilization of xylose was evaluated. Expression of the Gxf1 and Sut1 transporters led to significantly increased affinity and transport rates of xylose. In batch cultivation at 4 g/L xylose concentration, improved transport kinetics led to a corresponding increase in xylose utilization, whereas no correlation could be demonstrated at xylose concentrations greater than 15 g/L. The relative contribution of native sugar transporters to the overall xylose transport capacity was also estimated during growth on glucose and xylose. Conclusions Kinetic characterization and aerobic batch cultivation of strains expressing the Gxf1, Sut1 and At5g59250 transporters showed a direct relationship between transport kinetics and xylose growth. The Gxf1 transporter had the highest transport capacity and the highest xylose growth rate, followed by the Sut1 transporter. The range in which transport controlled the growth rate was determined to between 0 and 15 g/L xylose. The role of catabolite repression in regulation of native transporters was also confirmed by the observation that xylose transport by native S. cerevisiae transporters increased significantly during cultivation in xylose and

  15. Cellular responses of Saccharomyces cerevisiae to DNA damage

    International Nuclear Information System (INIS)

    Ciesla, Z.; Sledziewska-Gojska, E.; Nowicka, A.; Mieczkowski, P.; Fikus, M.U.; Koprowski, P.

    1998-01-01

    Full text. Several experimental strategies have been used to study responses of S. cerevisiae cells to DNA damage. One approach was based on the isolation of novel genes, the expression of which is induced by lesions in DNA. One of these genes, DIN7, was cloned and partially characterized previously. The product of DIN7 belongs to a large family of proteins involved in DNA repair and mutagenesis. This family includes Rad2, Rad27 and ExoI proteins of S. cerevisiae and their respective human homologues, all of which are endowed with DNA nuclease activity. To study cellular function of Din7 we constructed the pPK3 plasmid carrying DIN7 fused to the GAL1 promoter. Effects of DIN7 overproduction on the phenotypes of wild-type cells and of rad27 and exoI mutants were examined. Overproduction of Din7 does not seem to affect the proficiency of wild-type S. cerevisiae cells in recombination and mutagenesis. Also, overexpression of DIN7 does not suppress the deficiency of the EXOI gene product, the closest homologue of Din7, both in recombination and in controlling the fidelity of DNA replication. Unexpectedly, we found that elevated levels of Din7 result in a very high frequency of mitochondrial rho - mutants. A high frequency of production of rho - mutants wa s also observed in strains defective in the functioning of the Dun1 protein kinase involved in signal transmission in cells exposed to DNA damaging agents. Interestingly, deficiency of Dun1 results also in a significant derepression of the DIN7 gene. Experiments are under way to distinguish whether a high cellular level of Din7 specifically decreases stability of mitochondrial DNA or affects stability of chromosomal DNA as well. Analysis of previously constructed S. cerevisiae strains carrying random geno mic fusions with reporter lacZ gene, allowed us to identify the reading frame YBR173c, on chromosome II as a novel damage inducible gene - DIN8. We have shown that DIN8-lacZ fusion is induced in yeast cells treated

  16. Glucose-free fructose production from Jerusalem artichoke using a recombinant inulinase-secreting Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Yu, Jing; Jiang, Jiaxi; Ji, Wangming; Li, Yuyang; Liu, Jianping

    2011-01-01

    Using inulin (polyfructose) obtained from Jerusalen artichokes, we have produced fructose free of residual glucose using a recombinant inulinase-secreting strain of Saccharomyces cerevisiae in a one-step fermentation of Jerusalem artichoke tubers. For producing fructose from inulin, a recombinant inulinase-producing Saccharomyce cerevisiae strain was constructed with a deficiency in fructose uptake by disruption of two hexokinase genes hxk1 and hxk2. The inulinase gene introduced into S. cerevisiae was cloned from Kluyveromyces cicerisporus. Extracellular inulinase activity of the recombinant hxk-mutated S. cerevisiae strain reached 31 U ml(-1) after 96 h growth. When grown in a medium containing Jerusalem artichoke tubers as the sole component without any additives, the recombinant yeast accumulated fructose up to 9.2% (w/v) in the fermentation broth with only 0.1% (w/v) glucose left after 24 h.

  17. Rendimento e composição das aguardentes de cana, laranja e uva com utilização de lecitina no processo fermentativo Yield and composition of sugar cane, orange and grape spirits using lecithin in the fermentation process

    Directory of Open Access Journals (Sweden)

    Francisco Vicente Gaiotto Cleto

    2004-06-01

    Full Text Available O presente trabalho foi desenvolvido com o objetivo de avaliar o efeito da adição de lecitina aos mostos de cana, laranja e uva sobre o rendimento e composição das aguardentes. O delineamento empregado para a análise estatística foi o de blocos casualizados, no esquema fatorial 2x3, empregando-se dois fatores - lecitina e mosto - em dois níveis para lecitina: ausência (índice um e presença (índice dois; e em três níveis para mosto: cana, laranja e uva. A metodologia empregada foi a recomendada pelo setor aguardenteiro e as análises químicas dos componentes secundários foram realizadas por cromatografia gasosa e espectrofotometria. Pelos resultados, conclui-se que quando se adiciona lecitina aos mostos de cana, laranja e uva, o vinho obtido após a fermentação tem maior concentração de glicerol, e as aguardentes produzidas pela destilação têm maior concentração de isobutanol. Já nos mostos em que foi adicionada a lecitina, o rendimento alcoólico total das aguardentes foi menor do que nos mostos que não a recebeu. Os componentes secundários acetaldeído, acetato de etila e acidez total aumentaram com o aumento da acidez nos vinhos. Por outro lado, o propanol, isobutanol e álcool isoamílico aumentaram com os aumentos dos pH e das concentrações nos mostos, dos aminoácidos treonina, valina e leucina. A concentração do furfural foi maior nas aguardentes provenientes dos mostos de cana e laranja.The present research was carried out to evaluate the effect of lecithin addition into sugar cane, orange and grape musts on the spirits yield and composition. The statistical design was randomized blocks, in 2x3 factorial array, using two factors: lecithin and must, two levels for lecithin (absence and presence; and three levels for must (sugar cane, orange and grape. The method used in this work is recommended by mills. The measurement of by-products was made through gas chromatography and spectrophotometry. The results

  18. Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Cherlys Infante J.

    2014-06-01

    Full Text Available Objective. In this study the biomass of the yeast Saccharomyces cerevisiae was used to remove lead, mercury and nickel in the form of ions dissolved in water. Materials and methods. Synthetic solutions were prepared containing the three heavy metals, which were put in contact with viable microorganisms at different conditions of pH, temperature, aeration and agitation. Results. Both individual variables and the interaction effects influenced the biosorption process. Throughout the experimental framework it was observed that the biomass of Saccharomyces cerevisiae removed a higher percentage of lead (86.4% as compared to mercury and nickel (69.7 and 47.8% respectively. When the pH was set at a value of 5 the effect was positive for all three metals. Conclusions. pH was the variable that had a greater influence on the biosorption of lead on the biomass of Saccharomyces cerevisiae. The affinity of the heavy metals for the biomass followed the order Pb>Hg>Ni.

  19. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Henriksen, Peter; Wagner, Sebastian Alexander; Weinert, Brian Tate

    2012-01-01

    Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine...... acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S....... cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved...

  20. Torulaspora delbrueckii contribution in mixed brewing fermentations with different Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Canonico, Laura; Comitini, Francesca; Ciani, Maurizio

    2017-10-16

    In recent years, there has been growing demand for distinctive high quality beer. Fermentation management has a fundamental role in beer quality and the levels of aroma compounds. Use of non-conventional yeast has been proposed to enhance beer bioflavor. In the present work we investigated mixed fermentations using three commercial Saccharomyces cerevisiae strains, without and with addition of a selected Torulaspora delbrueckii strain evaluating their interactions, as well as the aroma profiles. At the S. cerevisiae/T. delbrueckii co-inoculation ratio of 1:20, viable cell counts indicated that T. delbrueckii dominated all of the three combinations. In the mixed fermentations, T. delbrueckii provided higher levels of higher alcohols (excepting of β-phenyl ethanol), in contrast to data obtained in winemaking, where higher alcohols had lower levels. Moreover, mixed fermentations showed significantly higher ethyl acetate (from 5 to 16mg/L) and isoamyl acetate (from 0.019 to 0.128mg/L), and were generally lower in ethyl hexanoate and ethyl octanoate. Therefore, irrespective of S. cerevisiae strain, T. delbrueckii influenced on all mixed fermentations. On the other hand, the mixed fermentations were also affected by each of the three S. cerevisiae strains, which resulted in beers with distinctive flavors. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of fermentation by Saccharomyces cerevisiae and ...

    African Journals Online (AJOL)

    yassine

    2013-02-13

    Feb 13, 2013 ... Full Length Research Paper. Effect of Saccharomyces cerevisiae fermentation on the ... 2003). Besides, several alcoholic beverages such as wine or liqueurs are obtained from fruit juices fermented by Saccharomyces ..... (2003). Kinetics of pigment release from hairy root cultures of Beta vulgaris under the ...

  2. Characterisation of Saccharomyces cerevisiae hybrids selected for ...

    African Journals Online (AJOL)

    Wine yeasts (Saccharomyces cerevisiae) vary in their ability to develop the full aroma potential of Sauvignon blanc wine due to an inability to release volatile thiols. Subsequently, the use of 'thiolreleasing' wine yeasts (TRWY) has increased in popularity. However, anecdotal evidence suggests that some commercially ...

  3. Hybridization of Palm Wine Yeasts ( Saccharomyces Cerevisiae ...

    African Journals Online (AJOL)

    Haploid auxotrophic strains of Saccharomyces cerevisiae were selected from palm wine and propagated by protoplast fusion with Brewers yeast. Fusion resulted in an increase in both ethanol production and tolerance against exogenous ethanol. Mean fusion frequencies obtained for a mating types ranged between 8 x ...

  4. Sporulation in the Budding Yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Neiman, Aaron M.

    2011-01-01

    In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae. PMID:22084423

  5. Incorporating Protein Biosynthesis into the Saccharomyces cerevisiae Genome-scale Metabolic Model

    DEFF Research Database (Denmark)

    Olivares Hernandez, Roberto

    Based on stoichiometric biochemical equations that occur into the cell, the genome-scale metabolic models can quantify the metabolic fluxes, which are regarded as the final representation of the physiological state of the cell. For Saccharomyces Cerevisiae the genome scale model has been construc......Based on stoichiometric biochemical equations that occur into the cell, the genome-scale metabolic models can quantify the metabolic fluxes, which are regarded as the final representation of the physiological state of the cell. For Saccharomyces Cerevisiae the genome scale model has been...

  6. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.

    Science.gov (United States)

    Dong, Shi-Jun; Lin, Xiang-Hua; Li, Hao

    2015-11-01

    During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Saccharomyces cerevisiae metabolism in ecological context

    OpenAIRE

    Jouhten, Paula; Ponomarova, Olga; González García, Ramón; Patil, Kiran R.

    2016-01-01

    The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype?metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype?phenotype relations may originate in the evolutionarily shaped cellular operating principles ...

  8. Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid.

    Science.gov (United States)

    Kresnowati, M T A P; van Winden, W A; van Gulik, W M; Heijnen, J J

    2008-11-01

    Saccharomyces cerevisiae is known to be able to adapt to the presence of the commonly used food preservative benzoic acid with a large energy expenditure. Some mechanisms for the adaptation process have been suggested, but its quantitative energetic and metabolic aspects have rarely been discussed. This study discusses use of the stimulus response approach to quantitatively study the energetic and metabolic aspects of the transient adaptation of S. cerevisiae to a shift in benzoic acid concentration, from 0 to 0.8 mM. The information obtained also serves as the basis for further utilization of benzoic acid as a tool for targeted perturbation of the energy system, which is important in studying the kinetics and regulation of central carbon metabolism in S. cerevisiae. Using this experimental set-up, we found significant fast-transient (< 3000 s) increases in O(2) consumption and CO(2) production rates, of approximately 50%, which reflect a high energy requirement for the adaptation process. We also found that with a longer exposure time to benzoic acid, S. cerevisiae decreases the cell membrane permeability for this weak acid by a factor of 10 and decreases the cell size to approximately 80% of the initial value. The intracellular metabolite profile in the new steady-state indicates increases in the glycolytic and tricarboxylic acid cycle fluxes, which are in agreement with the observed increases in specific glucose and O(2) uptake rates.

  9. Expression of a Dianthus flavonoid glucosyltransferase in Saccharomyces cerevisiae for whole-cell biocatalysis.

    Science.gov (United States)

    Werner, Sean R; Morgan, John A

    2009-07-15

    Glycosyltransferases are promising biocatalysts for the synthesis of small molecule glycosides. In this study, Saccharomyces cerevisiae expressing a flavonoid glucosyltransferase (GT) from Dianthus caryophyllus (carnation) was investigated as a whole-cell biocatalyst. Two yeast expression systems were compared using the flavonoid naringenin as a model substrate. Under in vitro conditions, naringenin-7-O-glucoside was formed and a higher specific glucosyl transfer activity was found using a galactose inducible expression system compared to a constitutive expression system. However, S. cerevisiae expressing the GT constitutively was significantly more productive than the galactose inducible system under in vivo conditions. Interestingly, the glycosides were recovered directly from the culture broth and did not accumulate intracellularly. A previously uncharacterized naringenin glycoside formed using the D. caryophyllus GT was identified as naringenin-4'-O-glucoside. It was found that S. cerevisiae cells hydrolyze naringenin-7-O-glucoside during whole-cell biocatalysis, resulting in a low final glycoside titer. When phloretin was added as a substrate to the yeast strain expressing the GT constitutively, the natural product phlorizin was formed. This study demonstrates S. cerevisiae is a promising whole-cell biocatalyst host for the production of valuable glycosides.

  10. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Ke; Tong, Mengmeng; Gao, Kehui; Di, Yanan; Wang, Pinmei; Zhang, Chunfang; Wu, Xuechang; Zheng, Daoqiong

    2015-02-01

    Baker's yeast (Saccharomyces cerevisiae) is the common yeast used in the fields of bread making, brewing, and bioethanol production. Growth rate, stress tolerance, ethanol titer, and byproducts yields are some of the most important agronomic traits of S. cerevisiae for industrial applications. Here, we developed a novel method of constructing S. cerevisiae strains for co-producing bioethanol and ergosterol. The genome of an industrial S. cerevisiae strain, ZTW1, was first reconstructed through treatment with an antimitotic drug followed by sporulation and hybridization. A total of 140 mutants were selected for ethanol fermentation testing, and a significant positive correlation between ergosterol content and ethanol production was observed. The highest performing mutant, ZG27, produced 7.9 % more ethanol and 43.2 % more ergosterol than ZTW1 at the end of fermentation. Chromosomal karyotyping and proteome analysis of ZG27 and ZTW1 suggested that this breeding strategy caused large-scale genome structural variations and global gene expression diversities in the mutants. Genetic manipulation further demonstrated that the altered expression activity of some genes (such as ERG1, ERG9, and ERG11) involved in ergosterol synthesis partly explained the trait improvement in ZG27.

  11. Probiotic Activity of Saccharomyces cerevisiae var. boulardii Against Human Pathogens

    Directory of Open Access Journals (Sweden)

    Katarzyna Rajkowska

    2012-01-01

    Full Text Available Infectious diarrhoea is associated with a modification of the intestinal microflora and colonization of pathogenic bacteria. Tests were performed for seven probiotic yeast strains of Saccharomyces cerevisiae var. boulardii, designated for the prevention and treatment of diarrhoea. To check their possible effectiveness against diarrhoea of different etiologies, the activity against a variety of human pathogenic or opportunistic bacteria was investigated in vitro. In mixed cultures with S. cerevisiae var. boulardii, a statistically significant reduction was observed in the number of cells of Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus, by even 55.9 % in the case of L. monocytogenes compared with bacterial monocultures. The influence of yeasts was mostly associated with the shortening of the bacterial lag phase duration, more rapid achievement of the maximum growth rates, and a decrease by 4.4–57.1 % (L. monocytogenes, P. aeruginosa, or an increase by 1.4–70.6 % (Escherichia coli, Enterococcus faecalis, Salmonella Typhimurium in the exponential growth rates. Another issue included in the research was the ability of S. cerevisiae var. boulardii to bind pathogenic bacteria to its cell surface. Yeasts have shown binding capacity of E. coli, S. Typhimurium and additionally of S. aureus, Campylobacter jejuni and E. faecalis. However, no adhesion of L. monocytogenes and P. aeruginosa to the yeast cell wall was noted. The probiotic activity of S. cerevisiae var. boulardii against human pathogens is related to a decrease in the number of viable and active cells of bacteria and the binding capacity of yeasts. These processes may limit bacterial invasiveness and prevent bacterial adherence and translocation in the human intestines.

  12. Peran Direct Fed Microbials (DFM Saccharomyces cerevisiae dan Aspergillus oryzae terhadap Produktivitas Ternak Ruminansia : Review

    Directory of Open Access Journals (Sweden)

    H. Suryani

    2015-02-01

    Full Text Available Mikroorganisme yang biasa digunakan dalam pakan ternak ruminansia biasanya berupa probiotik. Probiotik memiliki makna yang bersepadanan dengan Direct Fed Microbials (DFM. Penambahan DFM jenis Saccharomyces cerevisiae dan Aspergillus oryzae pada pakan ternak ruminansia mampu memanipulasi rumen dengan meningkatkan populasi bakteri pemecah serat sehingga dapat meningkatkan kecernaan dan meningkatkan bobot badan. Mekanisme kerja S. cerevisiae dan A. oryzae yang masuk kedalam tubuh ternak dan mempengaruhi pencernaan atau penyerapan, ada yang sudah diketahui secara jelas tetapi ada juga yang masih berupa hipotesa. Pemanfaatan DFM jenis S. cerevisiae dan A. oryzae secara tunggal maupun kombinasi sebagian telah diamati dan memberikan respon positif.

  13. Genome-wide screening of Saccharomyces cerevisiae genes regulated by vanillin.

    Science.gov (United States)

    Park, Eun-Hee; Kim, Myoung-Dong

    2015-01-01

    During pretreatment of lignocellulosic biomass, a variety of fermentation inhibitors, including acetic acid and vanillin, are released. Using DNA microarray analysis, this study explored genes of the budding yeast Saccharomyces cerevisiae that respond to vanillin-induced stress. The expression of 273 genes was upregulated and that of 205 genes was downregulated under vanillin stress. Significantly induced genes included MCH2, SNG1, GPH1, and TMA10, whereas NOP2, UTP18, FUR1, and SPR1 were down regulated. Sequence analysis of the 5'-flanking region of upregulated genes suggested that vanillin might regulate gene expression in a stress response element (STRE)-dependent manner, in addition to a pathway that involved the transcription factor Yap1p. Retardation in the cell growth of mutant strains indicated that MCH2, SNG1, and GPH1 are intimately involved in vanillin stress response. Deletion of the genes whose expression levels were decreased under vanillin stress did not result in a notable change in S. cerevisiae growth under vanillin stress. This study will provide the basis for a better understanding of the stress response of the yeast S. cerevisiae to fermentation inhibitors.

  14. Irradiation effects on the alcohol fermentation ability of saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Sadi, Suharni

    1987-01-01

    Irradiation effects on the alcohol fermentation ability of saccharomyces cerevisiae. S. cerevisiae suspensions of 1.5x10 8 clls/ml were exposed to single and fractionated doses of gamma irradiation, i.e. 0; 0.30; 0.60; 0.90; and 1.20 kGy in aerobic condition at dose rate of 1.63 kGy/hour. The fractionated doses were given with time interval of 15, 30 and 45 minutes. The fermentation was held at 30 0 C for 40 hours. It is seen that an increase of alcohol production was obtained when cells were irradiated at 0.60 kGy, although the result has no significant difference statistically with control. At the dose of 1.20 kGy the alcohol fermentation ability of S. cerevisiae decreased drastically as compared to control. Irradiation using single or fractionated doses with time interval of 15-45 minutes did not influence the alcohol production. Comparing the time interval of 45 minutes at 0.60 kGy and at 1.20 kGy, it appeared that the yield of alcohol was different. (author). 17 refs.; 4 figs

  15. Saccharomyces cerevisiae Boulardii Reduces the Deoxynivalenol-Induced Alteration of the Intestinal Transcriptome

    Directory of Open Access Journals (Sweden)

    Imourana Alassane-Kpembi

    2018-05-01

    Full Text Available Type B trichothecene mycotoxin deoxynivalenol (DON is one of the most frequently occurring food contaminants. By inducing trans-activation of a number of pro-inflammatory cytokines and increasing the stability of their mRNA, trichothecene can impair intestinal health. Several yeast products, especially Saccharomyces cerevisiae, have the potential for improving the enteric health of piglets, but little is known about the mechanisms by which the administration of yeast counteracts the DON-induced intestinal alterations. Using a pig jejunum explant model, a whole-transcriptome analysis was performed to decipher the early response of the small intestine to the deleterious effects of DON after administration of S. cerevisiae boulardii strain CNCM I-1079. Compared to the control condition, no differentially expressed gene (DE was observed after treatment by yeast only. By contrast, 3619 probes—corresponding to 2771 genes—were differentially expressed following exposure to DON, and 32 signaling pathways were identified from the IPA software functional analysis of the set of DE genes. When the intestinal explants were treated with S. cerevisiae boulardii prior to DON exposure, the number of DE genes decreased by half (1718 probes corresponding to 1384 genes. Prototypical inflammation signaling pathways triggered by DON, including NF-κB and p38 MAPK, were reversed, although the yeast demonstrated limited efficacy toward some other pathways. S. cerevisiae boulardii also restored the lipid metabolism signaling pathway, and reversed the down-regulation of the antioxidant action of vitamin C signaling pathway. The latter effect could reduce the burden of DON-induced oxidative stress. Altogether, the results show that S. cerevisiae boulardii reduces the DON-induced alteration of intestinal transcriptome, and point to new mechanisms for the healing of tissue injury by yeast.

  16. Saccharomyces cerevisiae Boulardii Reduces the Deoxynivalenol-Induced Alteration of the Intestinal Transcriptome.

    Science.gov (United States)

    Alassane-Kpembi, Imourana; Pinton, Philippe; Hupé, Jean-François; Neves, Manon; Lippi, Yannick; Combes, Sylvie; Castex, Mathieu; Oswald, Isabelle P

    2018-05-15

    Type B trichothecene mycotoxin deoxynivalenol (DON) is one of the most frequently occurring food contaminants. By inducing trans-activation of a number of pro-inflammatory cytokines and increasing the stability of their mRNA, trichothecene can impair intestinal health. Several yeast products, especially Saccharomyces cerevisiae , have the potential for improving the enteric health of piglets, but little is known about the mechanisms by which the administration of yeast counteracts the DON-induced intestinal alterations. Using a pig jejunum explant model, a whole-transcriptome analysis was performed to decipher the early response of the small intestine to the deleterious effects of DON after administration of S. cerevisiae boulardii strain CNCM I-1079. Compared to the control condition, no differentially expressed gene (DE) was observed after treatment by yeast only. By contrast, 3619 probes-corresponding to 2771 genes-were differentially expressed following exposure to DON, and 32 signaling pathways were identified from the IPA software functional analysis of the set of DE genes. When the intestinal explants were treated with S. cerevisiae boulardii prior to DON exposure, the number of DE genes decreased by half (1718 probes corresponding to 1384 genes). Prototypical inflammation signaling pathways triggered by DON, including NF-κB and p38 MAPK, were reversed, although the yeast demonstrated limited efficacy toward some other pathways. S. cerevisiae boulardii also restored the lipid metabolism signaling pathway, and reversed the down-regulation of the antioxidant action of vitamin C signaling pathway. The latter effect could reduce the burden of DON-induced oxidative stress. Altogether, the results show that S. cerevisiae boulardii reduces the DON-induced alteration of intestinal transcriptome, and point to new mechanisms for the healing of tissue injury by yeast.

  17. Characterization of the Viable but Nonculturable (VBNC State in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Mohammad Salma

    Full Text Available The Viable But Non Culturable (VBNC state has been thoroughly studied in bacteria. In contrast, it has received much less attention in other microorganisms. However, it has been suggested that various yeast species occurring in wine may enter in VBNC following sulfite stress.In order to provide conclusive evidences for the existence of a VBNC state in yeast, the ability of Saccharomyces cerevisiae to enter into a VBNC state by applying sulfite stress was investigated. Viable populations were monitored by flow cytometry while culturable populations were followed by plating on culture medium. Twenty-four hours after the application of the stress, the comparison between the culturable population and the viable population demonstrated the presence of viable cells that were non culturable. In addition, removal of the stress by increasing the pH of the medium at different time intervals into the VBNC state allowed the VBNC S. cerevisiae cells to "resuscitate". The similarity between the cell cycle profiles of VBNC cells and cells exiting the VBNC state together with the generation rate of cells exiting VBNC state demonstrated the absence of cellular multiplication during the exit from the VBNC state. This provides evidence of a true VBNC state. To get further insight into the molecular mechanism pertaining to the VBNC state, we studied the involvement of the SSU1 gene, encoding a sulfite pump in S. cerevisiae. The physiological behavior of wild-type S. cerevisiae was compared to those of a recombinant strain overexpressing SSU1 and null Δssu1 mutant. Our results demonstrated that the SSU1 gene is only implicated in the first stages of sulfite resistance but not per se in the VBNC phenotype. Our study clearly demonstrated the existence of an SO2-induced VBNC state in S. cerevisiae and that the stress removal allows the "resuscitation" of VBNC cells during the VBNC state.

  18. Adaption of Saccharomyces cerevisiae expressing a heterologous protein

    DEFF Research Database (Denmark)

    Krogh, Astrid Mørkeberg; Beck, Vibe; Højlund Christensen, Lars

    2008-01-01

    Production of the heterologous protein, bovine aprotinin, in Saccharomyces cerevisiae was shown to affect the metabolism of the host cell to various extent depending on the strain genotype. Strains with different genotypes, industrial and laboroatory, respectively, were investigated. The maximal...

  19. Effect of Saccharomyces cerevisiae fermentation on the colorants of ...

    African Journals Online (AJOL)

    Effect of Saccharomyces cerevisiae fermentation on the colorants of heated red beetroot extracts. Hayet Ben Haj Koubaier, Ismahen Essaidi, Ahmed Snoussi, Slim Zgoulli, Mohamed Moncef Chaabouni, Phillipe Thonart, Nabiha Bouzouita ...

  20. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation.

    Science.gov (United States)

    Yamaoka, Chizuru; Kurita, Osamu; Kubo, Tomoko

    2014-12-01

    The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose. In the late stage of fermentation after the complete death of K. lactis, S. cerevisiae in mixed cultures was more ethanol-tolerant than that in pure culture. The chronological life span of S. cerevisiae was shorter in pure culture than mixed cultures. The yeast cells of the late stationary phase both in pure and mixed cultures had a low buoyant density with no significant difference in the non-quiescence state between both cultures. In mixed cultures, the glycerol contents increased and the alanine contents decreased when compared with the pure culture of S. cerevisiae. The distinctive intracellular amino acid pool concerning its amino acid concentrations and its amino acid composition was observed in yeast cells with different ethanol tolerance in the death phase. Co-cultivation of K. lactis seems to prompt S. cerevisiae to be ethanol tolerant by forming opportune metabolites such as glycerol and alanine and/or changing the intracellular amino acid pool. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Microbial cells as biosorbents for heavy metals: accumulation of Uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.

    1981-01-01

    Uranium accumulated extracellularly on the surfaces of Saccharomyces cerevisiae cells. The rate and extent of accumulation were subject to environmental parameters, such as pH, temperature, and interference by certain anions and cations. Uranium accumulation by Pseudomonas aeruginosa occurred intracellularly and was extremely rapid (<10 s), and no response to environmental parameters could be detected. Metabolism was not required for metal uptake by either organism. Cell-bound uranium reached a concentration of 10 to 15% of the dry cell weight, but only 32% of the S. cerevisiae cells and 44% of the P. aeruginosa cells within a given population possessed visible uranium deposits when examined by electron microscopy. Rates of uranium uptake by S. cerevisiae were increased by chemical pretreatment of the cells. Uranium could be removed chemically from S. cerevisiae cells, and the cells could then be reused as a biosorbent

  2. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery.

    Directory of Open Access Journals (Sweden)

    Jonathan T Martiniuk

    Full Text Available Wine is produced by one of two methods: inoculated fermentation, where a commercially-produced, single Saccharomyces cerevisiae (S. cerevisiae yeast strain is used; or the traditional spontaneous fermentation, where yeast present on grape and winery surfaces carry out the fermentative process. Spontaneous fermentations are characterized by a diverse succession of yeast, ending with one or multiple strains of S. cerevisiae dominating the fermentation. In wineries using both fermentation methods, commercial strains may dominate spontaneous fermentations. We elucidate the impact of the winery environment and commercial strain use on S. cerevisiae population structure in spontaneous fermentations over two vintages by comparing S. cerevisiae populations in aseptically fermented grapes from a Canadian Pinot Noir vineyard to S. cerevisiae populations in winery-conducted fermentations of grapes from the same vineyard. We also characterize the vineyard-associated S. cerevisiae populations in two other geographically separate Pinot Noir vineyards farmed by the same winery. Winery fermentations were not dominated by commercial strains, but by a diverse number of strains with genotypes similar to commercial strains, suggesting that a population of S. cerevisiae derived from commercial strains is resident in the winery. Commercial and commercial-related yeast were also identified in the three vineyards examined, although at a lower frequency. There is low genetic differentiation and S. cerevisiae population structure between vineyards and between the vineyard and winery that persisted over both vintages, indicating commercial yeast are a driver of S. cerevisiae population structure. We also have evidence of distinct and persistent populations of winery and vineyard-associated S. cerevisiae populations unrelated to commercial strains. This study is the first to characterize S. cerevisiae populations in Canadian vineyards.

  3. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery.

    Science.gov (United States)

    Martiniuk, Jonathan T; Pacheco, Braydon; Russell, Gordon; Tong, Stephanie; Backstrom, Ian; Measday, Vivien

    2016-01-01

    Wine is produced by one of two methods: inoculated fermentation, where a commercially-produced, single Saccharomyces cerevisiae (S. cerevisiae) yeast strain is used; or the traditional spontaneous fermentation, where yeast present on grape and winery surfaces carry out the fermentative process. Spontaneous fermentations are characterized by a diverse succession of yeast, ending with one or multiple strains of S. cerevisiae dominating the fermentation. In wineries using both fermentation methods, commercial strains may dominate spontaneous fermentations. We elucidate the impact of the winery environment and commercial strain use on S. cerevisiae population structure in spontaneous fermentations over two vintages by comparing S. cerevisiae populations in aseptically fermented grapes from a Canadian Pinot Noir vineyard to S. cerevisiae populations in winery-conducted fermentations of grapes from the same vineyard. We also characterize the vineyard-associated S. cerevisiae populations in two other geographically separate Pinot Noir vineyards farmed by the same winery. Winery fermentations were not dominated by commercial strains, but by a diverse number of strains with genotypes similar to commercial strains, suggesting that a population of S. cerevisiae derived from commercial strains is resident in the winery. Commercial and commercial-related yeast were also identified in the three vineyards examined, although at a lower frequency. There is low genetic differentiation and S. cerevisiae population structure between vineyards and between the vineyard and winery that persisted over both vintages, indicating commercial yeast are a driver of S. cerevisiae population structure. We also have evidence of distinct and persistent populations of winery and vineyard-associated S. cerevisiae populations unrelated to commercial strains. This study is the first to characterize S. cerevisiae populations in Canadian vineyards.

  4. Excessive by-product formation : A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains

    NARCIS (Netherlands)

    Milne, N.S.W.; Wahl, S.A.; Van Maris, A.J.A.; Pronk, J.T.; Daran, J.M.

    2016-01-01

    It is theoretically possible to engineer Saccharomyces cerevisiae strains in which isobutanol is the predominant catabolic product and high-yielding isobutanol-producing strains are already reported by industry. Conversely, isobutanol yields of engineered S. cerevisiae strains reported in the

  5. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Koopman Frank

    2012-12-01

    Full Text Available Abstract Background Flavonoids comprise a large family of secondary plant metabolic intermediates that exhibit a wide variety of antioxidant and human health-related properties. Plant production of flavonoids is limited by the low productivity and the complexity of the recovered flavonoids. Thus to overcome these limitations, metabolic engineering of specific pathway in microbial systems have been envisaged to produce high quantity of a single molecules. Result Saccharomyces cerevisiae was engineered to produce the key intermediate flavonoid, naringenin, solely from glucose. For this, specific naringenin biosynthesis genes from Arabidopsis thaliana were selected by comparative expression profiling and introduced in S. cerevisiae. The sole expression of these A. thaliana genes yielded low extracellular naringenin concentrations ( Conclusion The results reported in this study demonstrate that S. cerevisiae is capable of de novo production of naringenin by coexpressing the naringenin production genes from A. thaliana and optimization of the flux towards the naringenin pathway. The engineered yeast naringenin production host provides a metabolic chassis for production of a wide range of flavonoids and exploration of their biological functions.

  6. Anti-oxidant effects of pomegranate juice on Saccharomyces cerevisiae cell growth.

    Science.gov (United States)

    Aslan, Abdullah; Can, Muhammed İsmail; Boydak, Didem

    2014-01-01

    Pomegranate juice has a number of positive effects on both human and animal subjects. Four groups were used in this study. i: Control group, ii: H2O2 group, iii: Pomegranate juice (PJ) group and iv: PJ + H2O2 group. Following the sterilization method for pomegranate juice (10%) and H2O2 (6% v/v), Saccharomyces cerevisiae cultures were added and the cultivation incubated at 35°C for 72 hours. Fatty acids and vitamin concentrations were measured using HPLC and GC and the total protein bands profile were determined by SDS-PAGE. According to our results statistically significant differences have been determined among the study groups in terms of fatty acids and vitamin (pPomegranate juice increased vitamins, fatty acids and total protein expression in Saccharomyces cerevisiae in comparison with the control. Pomegranate juice has a positive effect on fatty acid, vitamin and protein synthesis by Saccharomyces cerevisiae. Accordingly, we believe that it has significantly decreased oxidative damage thereby making a positive impact on yeast development.

  7. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    Science.gov (United States)

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  8. Ferrofluid modified Saccharomyces cerevisiae cells for biocatalysis

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Miroslava; Maděrová, Zdeňka; Šafařík, Ivo

    2009-01-01

    Roč. 42, - (2009), s. 521-524 ISSN 0963-9969 R&D Projects: GA MPO 2A-1TP1/094; GA MŠk(CZ) OC 157 Institutional research plan: CEZ:AV0Z60870520 Keywords : Saccharomyces cerevisiae * magnetic fluid * hydrogen peroxide Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.414, year: 2009

  9. Substrate Channelling and Energetics of Saccharomyces cerevisiae ...

    African Journals Online (AJOL)

    Data collected during the high-cell-density cultivation of Saccharomyces cerevisiae DSM 2155 on glucose in a simulated five-phase feeding strategy of fed-batch process, executed on the Universal BIoprocess CONtrol (UBICON) system using 150L bioreactor over a period of 24h have been analysed. The consistency of the ...

  10. Transcriptomic analysis of Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids during low temperature winemaking [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jordi Tronchoni

    2017-09-01

    Full Text Available Background: Although Saccharomyces cerevisiae is the most frequently isolated species in wine fermentation, and the most studied species, other species and interspecific hybrids have greatly attracted the interest of researchers in this field in the last few years, given their potential to solve new winemaking industry challenges. S. cerevisiae x S. kudriavzevii hybrids exhibit good fermentative capabilities at low temperatures, and produce wines with smaller alcohol quantities and larger glycerol quantities, which can be very useful to solve challenges in the winemaking industry such as the necessity to enhance the aroma profile. Methods: In this study, we performed a transcriptomic study of S. cerevisiae x S. kudriavzevii hybrids in low temperature winemaking conditions. Results: The results revealed that the hybrids have acquired both fermentative abilities and cold adaptation abilities, attributed to S. cerevisiae and S. kudriavzevii parental species, respectively, showcasing their industrially relevant characteristics. For several key genes, we also studied the contribution to gene expression of each of the alleles of S. cerevisiae and S. kudriavzevii in the S. cerevisiae x S. kudriavzevii hybrids. From the results, it is not clear how important the differential expression of the specific parental alleles is to the phenotype of the hybrids. Conclusions: This study shows that the fermentative abilities of S. cerevisiae x S. kudriavzevii hybrids at low temperatures do not seem to result from differential expression of specific parental alleles of the key genes involved in this phenotype.

  11. Expression of an Aspergillus niger Phytase Gene (phyA) in Saccharomyces cerevisiae

    OpenAIRE

    Han, Yanming; Wilson, David B.; Lei, Xin gen

    1999-01-01

    Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals and reduces phosphorus pollution of animal waste. Our objectives were to express an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae and to determine the effects of glycosylation on the phytase’s activity and thermostability. A 1.4-kb DNA fragment containing the coding region of the phyA gene was inserted into the expression vector pYES2 and was expressed in S. cerevisiae as an act...

  12. Saccharomyces cerevisiae UE-ME3 is a good strain for isoproturon biorremediation?

    OpenAIRE

    Candeias, M; Alves-Pereira, I; Ferreira, R

    2010-01-01

    Isoproturon, an herbicide of pre- and pos-emergence of Autumn-Winter crops, persists occasionally in soil, groundwater and biological systems at levels above those established by European Directives. Saccharomyces cerevisiae UE-ME3 exposed in stationary phase to 50 and 100 mM isoproturon exhibit growth rates higher than control or exposed cells to 5 and 25 mM of this phenylurea. However, in S.cerevisiae UE-ME3 grown in the presence of 5 mM isoproturon, were observed a decrease of ...

  13. Saccharomyces cerevisiae show low levels of traversal across human endothelial barrier in vitro [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Roberto Pérez-Torrado

    2017-09-01

    Full Text Available Background:  Saccharomyces cerevisiae is generally considered safe, and is involved in the production of many types of foods and dietary supplements. However, some isolates, which are genetically related to strains used in brewing and baking, have shown virulent traits, being able to produce infections in humans, mainly in immunodeficient patients. This can lead to systemic infections in humans. Methods: In this work, we studied S. cerevisiae isolates in an in vitro human endothelial barrier model, comparing their behaviour with that of several strains of the related pathogens Candida glabrata and Candida albicans. Results: The results showed that this food related yeast is able to cross the endothelial barrier in vitro. However, in contrast to C. glabrata and C. albicans, S. cerevisiae showed very low levels of traversal. Conclusions: We conclude that using an in vitro human endothelial barrier model with S. cerevisiae can be useful to evaluate the safety of S. cerevisiae strains isolated from foods.

  14. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Madhavan, Anjali; Srivastava, Aradhana; Kondo, Akihiko; Bisaria, Virendra S

    2012-03-01

    Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.

  15. Engineered Production of Short-Chain Acyl-Coenzyme A Esters in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Krink-Koutsoubelis, Nicolas; Loechner, Anne C.; Lechner, Anna

    2018-01-01

    Short-chain acyl-coenzyme A esters serve as intermediate compounds in fatty acid biosynthesis, and the production of polyketides, biopolymers and other value-added chemicals. S. cerevisiae is a model organism that has been utilized for the biosynthesis of such biologically and economically valuable...... compounds. However, its limited repertoire of short-chain acyl-CoAs effectively prevents its application as a production host for a plethora of natural products. Therefore, we introduced biosynthetic metabolic pathways to five different acyl-CoA esters into S. cerevisiae. Our engineered strains provide......-CoA at 0.5 μM; and isovaleryl-CoA, n-butyryl-CoA, and n-hexanoyl-CoA at 6 μM each. The acyl-CoAs produced in this study are common building blocks of secondary metabolites and will enable the engineered production of a variety of natural products in S. cerevisiae. By providing this toolbox of acyl...

  16. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  17. Expression of an endoglucanase from Tribolium castaneum (TcEG1) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Shirley, Derek; Oppert, Cris; Reynolds, Todd B; Miracle, Bethany; Oppert, Brenda; Klingeman, William E; Jurat-Fuentes, Juan Luis

    2014-10-01

    Insects are a largely unexploited resource in prospecting for novel cellulolytic enzymes to improve the production of ethanol fuel from lignocellulosic biomass. The cost of lignocellulosic ethanol production is expected to decrease by the combination of cellulose degradation (saccharification) and fermentation of the resulting glucose to ethanol in a single process, catalyzed by the yeast Saccharomyces cerevisiae transformed to express efficient cellulases. While S. cerevisiae is an established heterologous expression system, there are no available data on the functional expression of insect cellulolytic enzymes for this species. To address this knowledge gap, S. cerevisiae was transformed to express the full-length cDNA encoding an endoglucanase from the red flour beetle, Tribolium castaneum (TcEG1), and evaluated the activity of the transgenic product (rTcEG1). Expression of the TcEG1 cDNA in S. cerevisiae was under control of the strong glyceraldehyde-3 phosphate dehydrogenase promoter. Cultured transformed yeast secreted rTcEG1 protein as a functional β-1,4-endoglucanase, which allowed transformants to survive on selective media containing cellulose as the only available carbon source. Evaluation of substrate specificity for secreted rTcEG1 demonstrated endoglucanase activity, although some activity was also detected against complex cellulose substrates. Potentially relevant to uses in biofuel production rTcEG1 activity increased with pH conditions, with the highest activity detected at pH 12. Our results demonstrate the potential for functional production of an insect cellulase in S. cerevisiae and confirm the stability of rTcEG1 activity in strong alkaline environments. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  18. Kinetics of phosphomevalonate kinase from Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    David E Garcia

    Full Text Available The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2 from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3 and purified on a Ni²⁺ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The K(M of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The V(max was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg²⁺ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH = 7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP.

  19. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ahlgren Simon

    2011-09-01

    Full Text Available Abstract Background The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP. Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases. Results We expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by S. cerevisiae. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of cbh1 and cbh2 genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel™ to ethanol by CBH-producing S. cerevisiae strains with the addition of beta-glucosidase. Conclusions Gene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome.

  20. Excision repair and mutagenesis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kilbey, Brian

    1987-01-01

    This and succeeding letters discuss the James and Kilbey (1977 and 1978) model for the initiation of u.v. mutagenesis in Saccharomyces cerevisiae and its application to include a number of chemical mutagens. The Baranowska et al (1987) results indicating the role of DNA replication, the differing mechanisms in Escherichia coli, are all discussed. (UK)

  1. Improvement of Lead Tolerance of Saccharomyces cerevisiae by Random Mutagenesis of Transcription Regulator SPT3.

    Science.gov (United States)

    Zhu, Liying; Gao, Shan; Zhang, Hongman; Huang, He; Jiang, Ling

    2018-01-01

    Bioremediation of heavy metal pollution with biomaterials such as bacteria and fungi usually suffer from limitations because of microbial sensitivity to high concentration of heavy metals. Herein, we adopted a novel random mutagenesis technique called RAISE to manipulate the transcription regulator SPT3 of Saccharomyces cerevisiae to improve cell lead tolerance. The best strain Mutant VI was selected from the random mutagenesis libraries on account of the growth performance, with higher specific growth rate than the control strain (0.068 vs. 0.040 h -1 ) at lead concentration as high as 1.8 g/L. Combined with the transcriptome analysis of S. cerevisiae, expressing the SPT3 protein was performed to make better sense of the global regulatory effects of SPT3. The data analysis revealed that 57 of S. cerevisiae genes were induced and 113 genes were suppressed, ranging from those for trehalose synthesis, carbon metabolism, and nucleotide synthesis to lead resistance. Especially, the accumulation of intracellular trehalose in S. cerevisiae under certain conditions of stress is considered important to lead resistance. The above results represented that SPT3 was acted as global transcription regulator in the exponential phase of strain and accordingly improved heavy metal tolerance in the heterologous host S. cerevisiae. The present study provides a route to complex phenotypes that are not readily accessible by traditional methods.

  2. Modelling of Ethanol Production from Red Beet Juice by Saccharomyces cerevisiae under Thermal and Acid Stress Conditions

    Directory of Open Access Journals (Sweden)

    Donaji Jiménez-Islas

    2014-01-01

    Full Text Available In this work the effects of pH and temperature on ethanol production from red beet juice by the strains Saccharomyces cerevisiae ITD00196 and S. cerevisiae ATCC 9763 are studied. Logistic, Pirt, and Luedeking-Piret equations were used to describe quantitatively the microbial growth, substrate consumption, and ethanol production, respectively. The two S. cerevisiae strains used in this study were able to produce ethanol with high yield and volumetric productivity under acid and thermal stress conditions. The equations used to model the fermentation kinetics fit very well with the experimental data, thus establishing that ethanol production was growth associated under the evaluated conditions. The yeast S. cerevisiae ITD00196 had the best fermentative capacity and could be considered as an interesting option to develop bioprocesses for ethanol production.

  3. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Vemuri, Goutham; Eiteman, M.A; McEwen, J.E

    2007-01-01

    effect is due to limited respiratory capacity or is caused by glucose-mediated repression of respiration. When respiration in S. cerevisiae was increased by introducing a heterologous alternative oxidase, we observed reduced aerobic ethanol formation. In contrast, increasing nonrespiratory NADH oxidation...... Crabtree effect.’’ The yeast Saccharomyces cerevisiae has served as an important model organism for studying the Crabtree effect. When subjected to increasing glycolytic fluxes under aerobic conditions, there is a threshold value of the glucose uptake rate at which the metabolism shifts from purely...... respiratory to mixed respiratory and fermentative. It is well known that glucose repression of respiratory pathways occurs at high glycolytic fluxes, resulting in a decrease in respiratory capacity. Despite many years of detailed studies on this subject, it is not known whether the onset of the Crabtree...

  4. Potential application of Saccharomyces cerevisiae strains for the ...

    African Journals Online (AJOL)

    This paper aimed at evaluating the fermentation behavior of selected Saccharomyces cerevisiae strains in banana pulp and they were compared with commercial yeast (baker's yeast) for subsequent production of distilled spirits. Five types of microorganisms were used: Four yeast strains obtained from accredited ...

  5. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.

    2003-01-01

    The metabolic network in the yeast Saccharomyces cerevisiae was reconstructed using currently available genomic, biochemical, and physiological information. The metabolic reactions were compartmentalized between the cytosol and the mitochondria, and transport steps between the compartments...

  6. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Jo, Jung-Hyun; Oh, Sun-Young; Lee, Hyeun-Soo; Park, Yong-Cheol; Seo, Jin-Ho

    2015-12-01

    Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Bacillus licheniformis for Chinese Maotai-flavor liquor making.

    Science.gov (United States)

    Meng, Xing; Wu, Qun; Wang, Li; Wang, Diqiang; Chen, Liangqiang; Xu, Yan

    2015-12-01

    Microbial interactions could impact the metabolic behavior of microbes involved in food fermentation, and therefore they are important for improving food quality. This study investigated the effect of Bacillus licheniformis, the dominant bacteria in the fermentation process of Chinese Maotai-flavor liquor, on the metabolic activity of Saccharomyces cerevisiae. Results indicated that S. cerevisiae inhibited the growth of B. licheniformis in all mixed culture systems and final viable cell count was lower than 20 cfu/mL. Although growth of S. cerevisiae was barely influenced by B. licheniformis, its metabolism was changed as initial inoculation ratio varied. The maximum ethanol productions were observed in S. cerevisiae and B. licheniformis at 10(6):10(7) and 10(6):10(8) ratios and have increased by 16.8 % compared with single culture of S. cerevisiae. According to flavor compounds, the culture ratio 10(6):10(6) showed the highest level of total concentrations of all different kinds of flavor compounds. Correlation analyses showed that 12 flavor compounds, including 4 fatty acids and their 2 corresponding esters, 1 terpene, and 5 aromatic compounds, that could only be produced by S. cerevisiae were significantly correlated with the initial inoculation amount of B. licheniformis. These metabolic changes in S. cerevisiae were not only a benefit for liquor aroma, but may also be related to its inhibition effect in mixed culture. This study could help to reveal the microbial interactions in Chinese liquor fermentation and provide guidance for optimal arrangement of mixed culture fermentation systems.

  8. Uranium removal from acidic aqueous solutions by Saccharomyces cerevisiae, Debaryomyces hansenii, Kluyveromyces marxianus and Candida colliculosa

    International Nuclear Information System (INIS)

    Sarri, S.; Misaelides, P.; Papanikolaou, M.; Zamboulis, D.

    2009-01-01

    The sorption of uranium from acidic aqueous solutions (pH 4.5, C init = 10 to 1000 mg U/L) by Saccharomyces cerevisiae, Debaryomyces hansenii, Kluyveromyces marxianus and Candida colliculosa was investigated using a batch technique. The U-sorption onto Saccharomyces cerevisiae and Debaryomyces hansenii followed a Langmuir, while that onto Kluyveromyces marxianus and Candida colliculosa a Freundlich isotherm. The results demonstrated that all investigated biomasses could effectively remove uranium from acidic aqueous solutions. From all sorbents, Saccharomyces cerevisiae appeared to be the most effective with a maximum sorption capacity of 127.7 mg U/g dry biomass. (author)

  9. Osmo-, thermo- and ethanol- tolerances of Saccharomyces cerevisiae S1

    Directory of Open Access Journals (Sweden)

    Sandrasegarampillai Balakumar

    2012-03-01

    Full Text Available Saccharomyces cerevisiae S1, which is a locally isolated and improved strain showed viability at 40, 45 and 50ºC and produced ethanol at 40, 43 and 45ºC. When the cells were given heat shock at 45ºC for 30min and grown at 40ºC, 100% viability was observed for 60h, and addition of 200gl-1 ethanol has led to complete cell death at 30h. Heat shock given at 45ºC (for 30min has improved the tolerance to temperature induced ethanol shock leading to 37% viability at 30h. when the cells were subjected to ethanol (200gl-1 for 30 min and osmotic shock (sorbitol 300gl-1, trehalose contents in the cells were increased. The heat shocked cells showed better viability in presence of added ethanol. Soy flour supplementation has improved the viability of S. cerevisiae S1 to 80% in presence of 100gl-1 added ethanol and to 60% in presence of 300gl-1 sorbitol. In presence of sorbitol (200gl-1 and ethanol (50gl-1 at 40ºC, 46% viability was retained by S. cerevisiae S1 at 48h and it was improved to 80% by soy flour supplementation.

  10. Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase.

    Science.gov (United States)

    Guo, Xiao; Niemi, Natalie M; Coon, Joshua J; Pagliarini, David J

    2017-07-14

    The pyruvate dehydrogenase complex (PDC) is the primary metabolic checkpoint connecting glycolysis and mitochondrial oxidative phosphorylation and is important for maintaining cellular and organismal glucose homeostasis. Phosphorylation of the PDC E1 subunit was identified as a key inhibitory modification in bovine tissue ∼50 years ago, and this regulatory process is now known to be conserved throughout evolution. Although Saccharomyces cerevisiae is a pervasive model organism for investigating cellular metabolism and its regulation by signaling processes, the phosphatase(s) responsible for activating the PDC in S. cerevisiae has not been conclusively defined. Here, using comparative mitochondrial phosphoproteomics, analyses of protein-protein interactions by affinity enrichment-mass spectrometry, and in vitro biochemistry, we define Ptc6p as the primary PDC phosphatase in S. cerevisiae Our analyses further suggest additional substrates for related S. cerevisiae phosphatases and describe the overall phosphoproteomic changes that accompany mitochondrial respiratory dysfunction. In summary, our quantitative proteomics and biochemical analyses have identified Ptc6p as the primary-and likely sole- S. cerevisiae PDC phosphatase, closing a key knowledge gap about the regulation of yeast mitochondrial metabolism. Our findings highlight the power of integrative omics and biochemical analyses for annotating the functions of poorly characterized signaling proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Improving the Performance of the Granulosis Virus of Codling Moth (Lepidoptera: Tortricidae) by Adding the Yeast Saccharomyces cerevisiae with Sugar.

    Science.gov (United States)

    Knight, Alan L; Basoalto, Esteban; Witzgall, Peter

    2015-04-01

    Studies were conducted with the codling moth granulosis virus (CpGV) to evaluate whether adding the yeast Saccharomyces cerevisiae Meyen ex E. C. Hansen with brown cane sugar could improve larval control of Cydia pomonella (L.). Larval mortalities in dipped-apple bioassays with S. cerevisiae or sugar alone were not significantly different from the water control. The addition of S. cerevisiae but not sugar with CpGV significantly increased larval mortality compared with CpGV alone. The combination of S. cerevisiae and sugar with CpGV significantly increased larval mortality compared with CpGV plus either additive alone. The addition of S. cerevisiae improved the efficacy of CpGV similarly to the use of the yeast Metschnikowia pulcherrima (isolated from field-collected larvae). The proportion of uninjured fruit in field trials was significantly increased with the addition of S. cerevisiae and sugar to CpGV compared with CpGV alone only in year 1, and from the controls in both years. In comparison, larval mortality was significantly increased in both years with the addition of S. cerevisiae and sugar with CpGV compared with CpGV alone or from the controls. The numbers of overwintering larvae on trees was significantly reduced from the control following a seasonal program of CpGV plus S. cerevisiae and sugar. The addition of a microencapsulated formulation of pear ester did not improve the performance of CpGV or CpGV plus S. cerevisiae and sugar. These data suggest that yeasts can enhance the effectiveness of the biological control agent CpGV, in managing and maintaining codling moth at low densities. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  12. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae.

    Science.gov (United States)

    Paramasivan, Kalaivani; Mutturi, Sarma

    2017-12-01

    Terpenes are natural products with a remarkable diversity in their chemical structures and they hold a significant market share commercially owing to their distinct applications. These potential molecules are usually derived from terrestrial plants, marine and microbial sources. In vitro production of terpenes using plant tissue culture and plant metabolic engineering, although receiving some success, the complexity in downstream processing because of the interference of phenolics and product commercialization due to regulations that are significant concerns. Industrial workhorses' viz., Escherichia coli and Saccharomyces cerevisiae have become microorganisms to produce non-native terpenes in order to address critical issues such as demand-supply imbalance, sustainability and commercial viability. S. cerevisiae enjoys several advantages for synthesizing non-native terpenes with the most significant being the compatibility for expressing cytochrome P450 enzymes from plant origin. Moreover, achievement of high titers such as 40 g/l of amorphadiene, a sesquiterpene, boosts commercial interest and encourages the researchers to envisage both molecular and process strategies for developing yeast cell factories to produce these compounds. This review contains a brief consideration of existing strategies to engineer S. cerevisiae toward the synthesis of terpene molecules. Some of the common targets for synthesis of terpenes in S. cerevisiae are as follows: overexpression of tHMG1, ERG20, upc2-1 in case of all classes of terpenes; repression of ERG9 by replacement of the native promoter with a repressive methionine promoter in case of mono-, di- and sesquiterpenes; overexpression of BTS1 in case of di- and tetraterpenes. Site-directed mutagenesis such as Upc2p (G888A) in case of all classes of terpenes, ERG20p (K197G) in case of monoterpenes, HMG2p (K6R) in case of mono-, di- and sesquiterpenes could be some generic targets. Efforts are made to consolidate various studies

  13. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley

    Directory of Open Access Journals (Sweden)

    Camila M.P.B.S. de Ponzzes-Gomes

    2014-06-01

    Full Text Available The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 x 10(5 cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production.

  14. Adsorption and Interfacial Electron Transfer of Saccharomyces Cerevisiae

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Boisen, Anja; Nielsen, Jens Ulrik

    2003-01-01

    We have studied the adsorption and electron-transfer dynamics of Saccharomyces cerevisiae (yeast) iso-l-cytochrome c adsorbed on Au(lll) electrodes in aqueous phosphate buffer media. This cytochrome possesses a thiol group dos e to the protein surface (Cysl02) suitable for linking the protein...

  15. Viabilidade celular de Saccharomyces cerevisiae cultivada em associação com bactérias contaminantes da fermentação alcoólica Cellular viability of Saccharomyces cerevisiae cultivated in association with contaminant bacteria of alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Thais de Paula Nobre

    2007-03-01

    Full Text Available O objetivo deste trabalho foi estudar a influência de bactérias dos gêneros Bacillus e Lactobacillus, bem como de seus produtos metabólicos, na redução da viabilidade celular de leveduras Saccharomyces cerevisiae. As bactérias Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum e Lactobacillus plantarum foram cultivadas em associação com a levedura S. cerevisiae (cepa Y-904 por 72 horas a 32 °C, sob agitação. A viabilidade celular, a taxa de brotamento e a população de células de S. cerevisiae e a acidez total, a acidez volátil e o pH dos meios de cultivos foram determinados às 0, 24, 48 e 72 horas do cultivo misto. As culturas de bactérias foram tratadas através do calor, de agente antimicrobiano e de irradiação. Os resultados mostraram que apenas os meios de cultivo mais acidificados, contaminados com as bactérias ativas L. fermentum e B. subtilis, provocaram redução na viabilidade celular de S. cerevisiae. Excetuando a bactéria B. subtilis tratada com radiação gama, as demais bactérias tratadas pelos diferentes processos (calor, irradiação e antimicrobiano não causaram diminuição da viabilidade celular e da população de S. cerevisiae, indicando que a presença isolada dos metabólitos celulares dessas bactérias não foi suficiente para reduzir a porcentagem de células vivas de S. cerevisiae.The aim of this project was to study the influence of the bacteria Bacillus and Lactobacillus, as well as their metabolic products to decrease the cellular viability of the yeast Saccharomyces cerevisiae. The bacteria Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum and Lactobacillus plantarum were cultivated in association with yeast S. cerevisiae (strain Y-904 for 72 hours at 32 ºC under agitation. The cellular viability, budding rate and population of S. Cerevisiae and the total acidity, volatile acidity and pH of culture medium were

  16. Division of labour in the yeast: Saccharomyces cerevisiae.

    Science.gov (United States)

    Wloch-Salamon, Dominika M; Fisher, Roberta M; Regenberg, Birgitte

    2017-10-01

    Division of labour between different specialized cell types is a central part of how we describe complexity in multicellular organisms. However, it is increasingly being recognized that division of labour also plays an important role in the lives of predominantly unicellular organisms. Saccharomyces cerevisiae displays several phenotypes that could be considered a division of labour, including quiescence, apoptosis and biofilm formation, but they have not been explicitly treated as such. We discuss each of these examples, using a definition of division of labour that involves phenotypic variation between cells within a population, cooperation between cells performing different tasks and maximization of the inclusive fitness of all cells involved. We then propose future research directions and possible experimental tests using S. cerevisiae as a model organism for understanding the genetic mechanisms and selective pressures that can lead to the evolution of the very first stages of a division of labour. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Energy-dependent effects of resveratrol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Madrigal-Perez, Luis Alberto; Canizal-Garcia, Melina; González-Hernández, Juan Carlos; Reynoso-Camacho, Rosalia; Nava, Gerardo M; Ramos-Gomez, Minerva

    2016-06-01

    The metabolic effects induced by resveratrol have been associated mainly with the consumption of high-calorie diets; however, its effects with standard or low-calorie diets remain unclear. To better understand the interactions between resveratrol and cellular energy levels, we used Saccharomyces cerevisiae as a model. Herein it is shown that resveratrol: (a) decreased cell viability in an energy-dependent manner; (b) lessening of cell viability occurred specifically when cells were under cellular respiration; and (c) inhibition of oxygen consumption in state 4 occurred at low and standard energy levels, whereas at high energy levels oxygen consumption was promoted. These findings indicate that the effects of resveratrol are dependent on the cellular energy status and linked to metabolic respiration. Importantly, our study also revealed that S. cerevisiae is a suitable and useful model to elucidate the molecular targets of resveratrol under different nutritional statuses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines.

    Science.gov (United States)

    Sun, Shu Yang; Gong, Han Sheng; Jiang, Xiao Man; Zhao, Yu Ping

    2014-12-01

    This study examined the effect of mixed fermentation of non-Saccharomyces (Torulaspora delbrueckii ZYMAFLORE Alpha(TD n. Sacch) and Metschnikowia pulcherrima JS22) and Saccharomyces cerevisiae yeasts (D254 and EC1118) on the production of cherry wines, in comparison with commonly used mono-culture. Results obtained during AF demonstrated that negligible inhibitory effect was observed in S. cerevisiae/Alpha pair, whereas a strong antagonistic effect was detected between MJS22 and S. cerevisiae strain, resulting in an early death of MJS22. For volatile components determined, S. cerevisiae/MJS22 couple was found to significantly boost the production of most detected compounds, more particularly in higher alcohols, esters, acids and terpenes; while the characteristic of S. cerevisiae/Alpha pair is an increase in fruity esters, higher alcohols and decrease in acid production. Sensory evaluation revealed that S. cerevisiae/MJS22 pair reinforced sweet, green and fatty notes to the cherry wines, and S. cerevisiae/Alpha trial enhanced the fruity odour and reduced green note. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [Mitochondria inheritance in yeast saccharomyces cerevisiae].

    Science.gov (United States)

    Fizikova, A Iu

    2011-01-01

    The review is devoted to the main mechanisms of mitochondria inheritance in yeast Saccharonmyces cerevisiae. The genetic mechanisms of functionally active mitochondria inheritance in eukaryotic cells is one of the most relevant in modem researches. A great number of genetic diseases are associated with mitochondria dysfunction. Plasticity of eukaryotic cell metabolism according to the environmental changes is ensured by adequate mitochondria functioning by means of ATP synthesis coordination, reactive oxygen species accumulation, apoptosis regulation and is an important factor of cell adaptation to stress. Mitochondria participation in important for cell vitality processes masters the presence of accurate mechanisms of mitochondria functions regulation according to environment fluctuations. The mechanisms of mitochondria division and distribution are highly conserved. Baker yeast S. cerevisiae is an ideal model object for mitochondria researches due to energetic metabolism lability, ability to switch over respiration to fermentation, and petite-positive phenotype. Correction of metabolism according to the environmental changes is necessary for cell vitality. The influence of respiratory, carbon, amino acid and phosphate metabolism on mitochondria functions was shown. As far as the mechanisms that stabilize functions of mitochondria and mtDNA are highly conserve, we can project yeast regularities on higher eukaryotes systems. This makes it possible to approximate understanding the etiology and pathogenesis of a great number of human diseases.

  20. Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae.

    Science.gov (United States)

    Milne, N; Luttik, M A H; Cueto Rojas, H F; Wahl, A; van Maris, A J A; Pronk, J T; Daran, J M

    2015-07-01

    In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential platform for production of nitrogen-containing chemicals, uptake and assimilation of ammonium requires 1 ATP per incorporated NH3. Urea assimilation by this yeast is more energy efficient but still requires 0.5 ATP per NH3 produced. To decrease ATP costs for nitrogen assimilation, the S. cerevisiae gene encoding ATP-dependent urease (DUR1,2) was replaced by a Schizosaccharomyces pombe gene encoding ATP-independent urease (ure2), along with its accessory genes ureD, ureF and ureG. Since S. pombe ure2 is a Ni(2+)-dependent enzyme and Saccharomyces cerevisiae does not express native Ni(2+)-dependent enzymes, the S. pombe high-affinity nickel-transporter gene (nic1) was also expressed. Expression of the S. pombe genes into dur1,2Δ S. cerevisiae yielded an in vitro ATP-independent urease activity of 0.44±0.01 µmol min(-1) mg protein(-1) and restored growth on urea as sole nitrogen source. Functional expression of the Nic1 transporter was essential for growth on urea at low Ni(2+) concentrations. The maximum specific growth rates of the engineered strain on urea and ammonium were lower than those of a DUR1,2 reference strain. In glucose-limited chemostat cultures with urea as nitrogen source, the engineered strain exhibited an increased release of ammonia and reduced nitrogen content of the biomass. Our results indicate a new strategy for improving yeast-based production of nitrogen-containing chemicals and demonstrate that Ni(2+)-dependent enzymes can be functionally expressed in S. cerevisiae. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. COCOA (Theobroma cacao) Polyphenol-Rich Extract Increases the Chronological Lifespan of Saccharomyces cerevisiae.

    Science.gov (United States)

    Baiges, I; Arola, L

    2016-01-01

    BACKGROUND: Saccharomyces cerevisiae is a model organism with conserved aging pathways. Yeast chronological lifespan experiments mimic the processes involved in human non-dividing tissues, such as the nervous system or skeletal muscle, and can speed up the search for biomolecules with potential anti-aging effects before proceeding to animal studies. OBJECTIVE: To test the effectiveness of a cocoa polyphenol-rich extract (CPE) in expanding the S. cerevisiae chronological lifespan in two conditions: in the stationary phase reached after glucose depletion and under severe caloric restriction. MEASUREMENTS: Using a high-throughput method, wild-type S. cerevisiae and its mitochondrial manganese-dependent superoxide dismutase null mutant (sod2Δ) were cultured in synthetic complete dextrose medium. After 2 days, 0, 5 and 20 mg/ml of CPE were added, and viability was measured throughout the stationary phase. The effects of the major components of CPE were also evaluated. To determine yeast lifespan under severe caloric restriction conditions, cultures were washed with water 24 h after the addition of 0 and 20 mg/ml of CPE, and viability was followed over time. RESULTS : CPE increased the chronological lifespan of S. cerevisiae during the stationary phase in a dose-dependent manner. A similar increase was also observed in (sod2Δ). None of the major CPE components (theobromine, caffeine, maltodextrin, (-)-epicatechin, (+)-catechin and procyanidin B2) was able to increase the yeast lifespan. CPE further increased the yeast lifespan under severe caloric restriction. CONCLUSION: CPE increases the chronological lifespan of S. cerevisiae through a SOD2-independent mechanism. The extract also extends yeast lifespan under severe caloric restriction conditions. The high-throughput assay used makes it possible to simply and rapidly test the efficacy of a large number of compounds on yeast aging, requiring only small amounts, and is thus a convenient screening assay to accelerate

  2. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Shuvashish; Mohanty, Rama Chandra [Department of Botany, Utkal University, Vanivihar, Bhubaneswar 751004, Orissa (India); Ray, Ramesh Chandra [Microbiology Laboratory, Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar 751019, Orissa (India)

    2010-07-15

    Mahula (Madhuca latifolia L.) flower is a suitable alternative cheaper carbohydrate source for production of bio-ethanol. Recent production of bio-ethanol by microbial fermentation as an alternative energy source has renewed research interest because of the increase in the fuel price. Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria) are two most widely used microorganisms for ethanol production. In this study, experiments were carried out to compare the potential of the yeast S. cerevisiae (CTCRI strain) with the bacterium Z. mobilis (MTCC 92) for ethanol fermentation from mahula flowers. The ethanol production after 96 h fermentation was 149 and 122.9 g kg{sup -1} flowers using free cells of S. cerevisiae and Z. mobilis, respectively. The S. cerevisiae strain showed 21.2% more final ethanol production in comparison to Z. mobilis. Ethanol yield (Yx/s), volumetric product productivity (Qp), sugar to ethanol conversion rate (%) and microbial biomass concentration (X) obtained by S. cerevisiae were found to be 5.2%, 21.1%, 5.27% and 134% higher than Z. mobilis, respectively after 96 h of fermentation. (author)

  3. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis

    International Nuclear Information System (INIS)

    Behera, Shuvashish; Mohanty, Rama Chandra; Ray, Ramesh Chandra

    2010-01-01

    Mahula (Madhuca latifolia L.) flower is a suitable alternative cheaper carbohydrate source for production of bio-ethanol. Recent production of bio-ethanol by microbial fermentation as an alternative energy source has renewed research interest because of the increase in the fuel price. Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria) are two most widely used microorganisms for ethanol production. In this study, experiments were carried out to compare the potential of the yeast S. cerevisiae (CTCRI strain) with the bacterium Z. mobilis (MTCC 92) for ethanol fermentation from mahula flowers. The ethanol production after 96 h fermentation was 149 and 122.9 g kg -1 flowers using free cells of S. cerevisiae and Z. mobilis, respectively. The S. cerevisiae strain showed 21.2% more final ethanol production in comparison to Z. mobilis. Ethanol yield (Yx/s), volumetric product productivity (Qp), sugar to ethanol conversion rate (%) and microbial biomass concentration (X) obtained by S. cerevisiae were found to be 5.2%, 21.1%, 5.27% and 134% higher than Z. mobilis, respectively after 96 h of fermentation. (author)

  4. Horizontal and vertical growth of S. cerevisiae metabolic network.

    KAUST Repository

    Grassi, Luigi

    2011-10-14

    BACKGROUND: The growth and development of a biological organism is reflected by its metabolic network, the evolution of which relies on the essential gene duplication mechanism. There are two current views about the evolution of metabolic networks. The retrograde model hypothesizes that a pathway evolves by recruiting novel enzymes in a direction opposite to the metabolic flow. The patchwork model is instead based on the assumption that the evolution is based on the exploitation of broad-specificity enzymes capable of catalysing a variety of metabolic reactions. RESULTS: We analysed a well-studied unicellular eukaryotic organism, S. cerevisiae, and studied the effect of the removal of paralogous gene products on its metabolic network. Our results, obtained using different paralog and network definitions, show that, after an initial period when gene duplication was indeed instrumental in expanding the metabolic space, the latter reached an equilibrium and subsequent gene duplications were used as a source of more specialized enzymes rather than as a source of novel reactions. We also show that the switch between the two evolutionary strategies in S. cerevisiae can be dated to about 350 million years ago. CONCLUSIONS: Our data, obtained through a novel analysis methodology, strongly supports the hypothesis that the patchwork model better explains the more recent evolution of the S. cerevisiae metabolic network. Interestingly, the effects of a patchwork strategy acting before the Euascomycete-Hemiascomycete divergence are still detectable today.

  5. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Steen, EricJ.; Chan, Rossana; Prasad, Nilu; Myers, Samuel; Petzold, Christopher; Redding, Alyssa; Ouellet, Mario; Keasling, JayD.

    2008-11-25

    BackgroundIncreasing energy costs and environmental concerns have motivated engineering microbes for the production of ?second generation? biofuels that have better properties than ethanol.Results& ConclusionsSaccharomyces cerevisiae was engineered with an n-butanol biosynthetic pathway, in which isozymes from a number of different organisms (S. cerevisiae, Escherichia coli, Clostridium beijerinckii, and Ralstonia eutropha) were substituted for the Clostridial enzymes and their effect on n-butanol production was compared. By choosing the appropriate isozymes, we were able to improve production of n-butanol ten-fold to 2.5 mg/L. The most productive strains harbored the C. beijerinckii 3-hydroxybutyryl-CoA dehydrogenase, which uses NADH as a co-factor, rather than the R. eutropha isozyme, which uses NADPH, and the acetoacetyl-CoA transferase from S. cerevisiae or E. coli rather than that from R. eutropha. Surprisingly, expression of the genes encoding the butyryl-CoA dehydrogenase from C. beijerinckii (bcd and etfAB) did not improve butanol production significantly as previously reported in E. coli. Using metabolite analysis, we were able to determine which steps in the n-butanol biosynthetic pathway were the most problematic and ripe for future improvement.

  6. Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation.

    Science.gov (United States)

    Kim, Il-Sup; Kim, Young-Saeng; Kim, Hyun; Jin, Ingnyol; Yoon, Ho-Sung

    2013-03-01

    Fuel ethanol production is far more costly to produce than fossil fuels. There are a number of approaches to cost-effective fuel ethanol production from biomass. We characterized stress response of thermotolerant Saccharomyces cerevisiae KNU5377 during glucose-based batch fermentation at high temperature (40°C). S. cerevisiae KNU5377 (KNU5377) transcription factors (Hsf1, Msn2/4, and Yap1), metabolic enzymes (hexokinase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, and alcohol dehydrogenase), antioxidant enzymes (thioredoxin 3, thioredoxin reductase, and porin), and molecular chaperones and its cofactors (Hsp104, Hsp82, Hsp60, Hsp42, Hsp30, Hsp26, Cpr1, Sti1, and Zpr1) are upregulated during fermentation, in comparison to S. cerevisiae S288C (S288C). Expression of glyceraldehyde-3-phosphate dehydrogenase increased significantly in KNU5377 cells. In addition, cellular hydroperoxide and protein oxidation, particularly lipid peroxidation of triosephosphate isomerase, was lower in KNU5377 than in S288C. Thus, KNU5377 activates various cell rescue proteins through transcription activators, improving tolerance and increasing alcohol yield by rapidly responding to fermentation stress through redox homeostasis and proteostasis.

  7. Ecological interactions among Saccharomyces cerevisiae strains: insight into the dominance phenomenon.

    Science.gov (United States)

    Pérez-Torrado, Roberto; Rantsiou, Kalliopi; Perrone, Benedeta; Navarro-Tapia, Elisabeth; Querol, Amparo; Cocolin, Luca

    2017-03-07

    This study investigates the behaviour of Saccharomyces cerevisiae strains, in order to obtain insight into the intraspecies competition taking place in mixed populations of this species. Two strains of S. cerevisiae, one dominant and one non-dominant, were labelled and mixed, and individual fermentations were set up to study the transcriptomes of the strains by means of RNA-seq. The results obtained suggest that cell-to-cell contact and aggregation, which are driven by the expression of genes that are associated with the cell surface, are indispensable conditions for the achievement of dominance. Observations on mixed aggregates, made up of cells of both strains, which were detected by means of flow cytometry, have confirmed the transcriptomic data. Furthermore, overexpression of the SSU1 gene, which encodes for a transporter that confers resistance to sulphites, provides an ecological advantage to the dominant strain. A mechanistic model is proposed that sheds light on the dominance phenomenon between different strains of the S. cerevisiae species. The collected data suggest that cell-to-cell contact, together with differential sulphite production and resistance is important in determining the dominance of one strain over another.

  8. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae

    Science.gov (United States)

    Morano, Kevin A.; Grant, Chris M.; Moye-Rowley, W. Scott

    2012-01-01

    A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters. PMID:22209905

  9. Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Pin-Rou; Kho, Stephanie Hui Chern; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-07-01

    The growth kinetics and fermentation performance of Williopsis saturnus and Saccharomyces cerevisiae at ratios of 10:1, 1:1 and 1:10 (W.:S.) were studied in papaya juice with initial 7-day fermentation by W.saturnus, followed by S. cerevisiae. The growth kinetics of W. saturnus were similar at all ratios, but its maximum cell count decreased as the proportion of S. cerevisiae was increased. Conversely, there was an early death of S. cerevisiae at the ratio of 10:1. Williopsis saturnus was the dominant yeast at 10:1 ratio that produced papaya wine with elevated concentrations of acetate esters. On the other hand, 1:1 and 1:10 ratios allowed the coexistence of both yeasts which enabled the flavour-enhancing potential of W.saturnus as well as the ethyl ester and alcohol-producing abilities of S. cerevisiae. In particular, 1:1 and 1:10 ratios resulted in production of more ethyl esters, alcohols and 2-phenylethyl acetate. However, the persistence of both yeasts at 1:1 and 1:10 ratios led to formation of high levels of acetic acid. The findings suggest that yeast ratio is a critical factor for sequential fermentation of papaya wine by W.saturnus and S. cerevisiae as a strategy to modulate papaya wine flavour. © 2012 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Purification of Arp2/3 complex from Saccharomyces cerevisiae

    Science.gov (United States)

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary Much of cellular control over actin dynamics comes through regulation of actin filament initiation. At the molecular level, this is accomplished through a collection of cellular protein machines, called actin nucleation factors, which position actin monomers to initiate a new actin filament. The Arp2/3 complex is a principal actin nucleation factor used throughout the eukaryotic family tree. The budding yeast Saccharomyces cerevisiae has proven to be not only an excellent genetic platform for the study of the Arp2/3 complex, but also an excellent source for the purification of endogenous Arp2/3 complex. Here we describe a protocol for the preparation of endogenous Arp2/3 complex from wild type Saccharomyces cerevisiae. This protocol produces material suitable for biochemical study, and yields milligram quantities of purified Arp2/3 complex. PMID:23868593

  11. The effect of medium structure complexity on the growth of Saccharomyces cerevisiae in gelatin-dextran systems.

    Science.gov (United States)

    Boons, Kathleen; Noriega, Estefanía; Verherstraeten, Niels; David, Charlotte C; Hofkens, Johan; Van Impe, Jan F

    2015-04-16

    As most food systems are (semi-)solid, the effect of food structure on bacterial growth has been widely acknowledged. However, studies on the growth dynamics of yeasts have neglected the effect of food structure. In this paper, the growth dynamics of the spoilage yeast Saccharomyces cerevisiae was investigated at 23.5 °C in broth, singular, homogeneous biopolymer systems and binary biopolymer systems with a heterogeneous microstructure. The biopolymers gelatin and dextran were used to introduce the different levels of structure. The metabolizing ability of gelatin and dextran by S. cerevisiae was examined. To study microbial behavior in the binary systems at the micro level, mixtures were imaged with confocal laser scanning microscopy (CLSM). Growth dynamics and microscopic images of S. cerevisiae were compared with those obtained for Escherichia coli in the same model system (Boons et al., 2014). Different phase-separated, heterogeneous microstructures were obtained by changing the amount of added gelatin and dextran. Regardless of the microstructure, S. cerevisiae was preferentially located in the dextran phase. Metabolizing ability-tests indicated that gelatin could be consumed by S. cerevisiae but in the presence of glucose, no change in gelatin concentration was observed. No indication of dextran metabolizing ability was observed. When supplementing broth with gelatin or dextran alone, an enhanced growth rate and maximum cell density were observed. This enhancement was further increased by adding a second biopolymer, introducing a heterogeneous microstructure and hence increasing the medium structure complexity. The results obtained indicate that food structure complexity plays a significant role in the growth dynamics of S. cerevisiae, an important food spoiler. Copyright © 2014. Published by Elsevier B.V.

  12. Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Ke; Zhang, Li-Jie; Fang, Ya-Hong; Jin, Xin-Na; Qi, Lei; Wu, Xue-Chang; Zheng, Dao-Qiong

    2016-03-01

    Genomic structural variation (GSV) is a ubiquitous phenomenon observed in the genomes of Saccharomyces cerevisiae strains with different genetic backgrounds; however, the physiological and phenotypic effects of GSV are not well understood. Here, we first revealed the genetic characteristics of a widely used industrial S. cerevisiae strain, ZTW1, by whole genome sequencing. ZTW1 was identified as an aneuploidy strain and a large-scale GSV was observed in the ZTW1 genome compared with the genome of a diploid strain YJS329. These GSV events led to copy number variations (CNVs) in many chromosomal segments as well as one whole chromosome in the ZTW1 genome. Changes in the DNA dosage of certain functional genes directly affected their expression levels and the resultant ZTW1 phenotypes. Moreover, CNVs of large chromosomal regions triggered an aneuploidy stress in ZTW1. This stress decreased the proliferation ability and tolerance of ZTW1 to various stresses, while aneuploidy response stress may also provide some benefits to the fermentation performance of the yeast, including increased fermentation rates and decreased byproduct generation. This work reveals genomic characters of the bioethanol S. cerevisiae strain ZTW1 and suggests that GSV is an important kind of mutation that changes the traits of industrial S. cerevisiae strains. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Organization of Replication of Ribosomal DNA in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Linskens, Maarten H.K.; Huberman, Joel A.

    1988-01-01

    Using recently developed replicon mapping techniques, we have analyzed the replication of the ribosomal DNA in Saccharomyces cerevisiae. The results show that (i) the functional origin of replication colocalizes with an autonomously replicating sequence element previously mapped to the

  14. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation.

    Science.gov (United States)

    Peng, Bingyin; Huang, Shuangcheng; Liu, Tingting; Geng, Anli

    2015-05-17

    Xylose isomerase (XI) catalyzes the conversion of xylose to xylulose, which is the key step for anaerobic ethanolic fermentation of xylose. Very few bacterial XIs can function actively in Saccharomyces cerevisiae. Here, we illustrate a group of XIs that would function for xylose fermentation in S. cerevisiae through phylogenetic analysis, recombinant yeast strain construction, and xylose fermentation. Phylogenetic analysis of deposited XI sequences showed that XI evolutionary relationship was highly consistent with the bacterial taxonomic orders and quite a few functional XIs in S. cerevisiae were clustered with XIs from mammal gut Bacteroidetes group. An XI from Bacteroides valgutus in this cluster was actively expressed in S. cerevisiae with an activity comparable to the fungal XI from Piromyces sp. Two XI genes were isolated from the environmental metagenome and they were clustered with XIs from environmental Bacteroidetes group. These two XIs could not be expressed in yeast with activity. With the XI from B. valgutus expressed in S. cerevisiae, background yeast strains were optimized by pentose metabolizing pathway enhancement and adaptive evolution in xylose medium. Afterwards, more XIs from the mammal gut Bacteroidetes group, including those from B. vulgatus, Tannerella sp. 6_1_58FAA_CT1, Paraprevotella xylaniphila and Alistipes sp. HGB5, were individually transformed into S. cerevisiae. The known functional XI from Orpinomyces sp. ukk1, a mammal gut fungus, was used as the control. All the resulting recombinant yeast strains were able to ferment xylose. The respiration-deficient strains harboring B. vulgatus and Alistipes sp. HGB5 XI genes respectively obtained specific xylose consumption rate of 0.662 and 0.704 g xylose gcdw(-1) h(-1), and ethanol specific productivity of 0.277 and 0.283 g ethanol gcdw(-1) h(-1), much comparable to those obtained by the control strain carrying Orpinomyces sp. ukk1 XI gene. This study demonstrated that XIs clustered in the

  15. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ho, Ping-Wei; Klein, Mathias; Futschik, Matthias; Nevoigt, Elke

    2018-05-01

    Glycerol offers several advantages as a substrate for biotechnological applications. An important step toward using the popular production host Saccharomyces cerevisiae for glycerol-based bioprocesses has been the fact that in recent studies commonly used S. cerevisiae strains were engineered to grow in synthetic medium containing glycerol as the sole carbon source. For metabolic engineering projects of S. cerevisiae growing on glycerol, characterized promoters are missing. In the current study, we used transcriptome analysis and a yECitrine-based fluorescence reporter assay to select and characterize 25 useful promoters. The promoters of the genes ALD4 and ADH2 showed 4.2-fold and 3-fold higher activities compared to the well-known strong TEF1 promoter. Moreover, the collection contains promoters with graded activities in synthetic glycerol medium and different degrees of glucose repression. To demonstrate the general applicability of the promoter collection, we successfully used a subset of the characterized promoters with graded activities in order to optimize growth on glycerol in an engineered derivative of CEN.PK, in which glycerol catabolism exclusively occurs via a non-native DHA pathway.

  16. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain

    NARCIS (Netherlands)

    Vos, T.; De la Torre Cortes, P.; Van Gulik, W.M.; Pronk, J.T.; Daran-Lapujade, P.A.S.

    2015-01-01

    Introduction: Saccharomyces cerevisiae has become a popular host for production of non-native compounds. The metabolic pathways involved generally require a net input of energy. To maximize the ATP yield on sugar in S. cerevisiae, industrial cultivation is typically performed in aerobic,

  17. Loss of lager specific genes and subtelomeric regions define two different Saccharomyces cerevisiae lineages for Saccharomyces pastorianus Group I and II strains.

    Science.gov (United States)

    Monerawela, Chandre; James, Tharappel C; Wolfe, Kenneth H; Bond, Ursula

    2015-03-01

    Lager yeasts, Saccharomyces pastorianus, are interspecies hybrids between S. cerevisiae and S. eubayanus and are classified into Group I and Group II clades. The genome of the Group II strain, Weihenstephan 34/70, contains eight so-called 'lager-specific' genes that are located in subtelomeric regions. We evaluated the origins of these genes through bioinformatic and PCR analyses of Saccharomyces genomes. We determined that four are of cerevisiae origin while four originate from S. eubayanus. The Group I yeasts contain all four S. eubayanus genes but individual strains contain only a subset of the cerevisiae genes. We identified S. cerevisiae strains that contain all four cerevisiae 'lager-specific' genes, and distinct patterns of loss of these genes in other strains. Analysis of the subtelomeric regions uncovered patterns of loss in different S. cerevisiae strains. We identify two classes of S. cerevisiae strains: ale yeasts (Foster O) and stout yeasts with patterns of 'lager-specific' genes and subtelomeric regions identical to Group I and II S. pastorianus yeasts, respectively. These findings lead us to propose that Group I and II S. pastorianus strains originate from separate hybridization events involving different S. cerevisiae lineages. Using the combined bioinformatic and PCR data, we describe a potential classification map for industrial yeasts. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  18. Effects of dietary L-threonine and Saccharomyces cerevisiae on ...

    African Journals Online (AJOL)

    threonine (0, 2.5, 5 and 7.5 g/kg) with or without Saccharomyces cerevisiae (SC) on performance, carcass characteristics, intestinal morphology and immune system of broiler chickens. A total of 360 1-d-old male broiler chicks were randomly ...

  19. Production of Saccharomyces cerevisiae biomass in papaya extract ...

    African Journals Online (AJOL)

    Extracts of papaya fruit were used as substrate for single cell protein (SCP) production using Saccharomyces cerevisiae. A 500 g of papaya fruit was extracted with different volumes of sterile distilled water. Extraction with 200 mL of sterile distilled water sustained highest cell growth. Biochemical analysis of dry biomass ...

  20. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering

    DEFF Research Database (Denmark)

    Sanchez, R.G.; Karhumaa, Kaisa; Fonseca, C.

    2010-01-01

    Background: Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced. Results: Evolutionary engineering was used...... to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial Saccharomyces cerevisiae strain carrying the heterologous genes for xylose and arabinose utilization pathways integrated in the genome. The evolved strain TMB3130 displayed an increased consumption rate...... of our knowledge, this is the first report that characterizes the molecular mechanisms for improved mixed-pentose utilization obtained by evolutionary engineering of a recombinant S. cerevisiae strain. Increased transport of pentoses and increased activities of xylose converting enzymes contributed...

  1. Behavior of Lactobacillus plantarum and Saccharomyces cerevisiae in fresh and thermally processed orange juice.

    Science.gov (United States)

    Alwazeer, Duried; Cachon, Remy; Divies, Charles

    2002-10-01

    Lactobacillus plantarum and Saccharomyces cerevisiae are acid-tolerant microorganisms that are able to spoil citrus juices before and after pasteurization. The growth of these microorganisms in orange juice with and without pasteurization was investigated. Two samples of orange juice were inoculated with ca. 10(5) CFU/ml of each microorganism. Others were inoculated with ca. 10(7) CFU/ml of each microorganism and then thermally treated. L. plantarum populations were reduced by 2.5 and 6 and 2 log10 CFU/ml, respectively. Samples of heated and nonheated juice were incubated at 15 degrees C for 20 days. Injured populations of L. plantarum decreased by ca. 2 log10 CFU/ml during the first 70 h of storage, but those of S. cerevisiae did not decrease. The length of the lag phase after pasteurization increased 6.2-fold for L. plantarum and 1.9-fold for S. cerevisiae, and generation times increased by 41 and 86%, respectively. The results of this study demonstrate the differences in the capabilities of intact and injured cells of spoilage microorganisms to spoil citrus juice and the different thermal resistance levels of cells. While L. plantarum was more resistant to heat treatment than S. cerevisiae was, growth recovery after pasteurization was faster for the latter microorganism.

  2. Expression of monellin in a food-grade delivery system in Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Jun; Yan, Da-zhong; Zhao, Sheng-jun

    2015-10-01

    Genetically modified (GM) foods have caused much controversy. Construction of a food-grade delivery system is a desirable technique with presumptive impact on industrial applications from the perspective of bio-safety. The aim of this study was to construct a food-grade delivery system for Saccharomyces cerevisiae and to study the expression of monellin from the berries of the West African forest plant Dioscoreophyllum cumminsii in this system. A food-grade system for S. cerevisiae was constructed based on ribosomal DNA (rDNA)-mediated homologous recombination to enable high-copy-number integration of the expression cassette inserted into the rDNA locus. A copper resistance gene (CUP1) was used as the selection marker for yeast transformation. Because variants of transformants containing different copy numbers at the CUP1 locus can be readily selected after growth in the presence of elevated copper levels, we suggest that this system would prove useful in the generation of tandemly iterated gene clusters. Using this food-grade system, a single-chain monellin gene was heterologously expressed. The yield of monellin reached a maximum of 675 mg L(-1) . This system harbors exclusively S. cerevisiae DNA with no antibiotic resistance genes, and it should therefore be appropriate for safe use in the food industry. Monellin was shown to be expressed in this food-grade delivery system. To our knowledge, this is the first report so far on expression of monellin in a food-grade expression system in S. cerevisiae. © 2014 Society of Chemical Industry.

  3. Transcriptome-Based Characterization of Interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in Lactose-Grown Chemostat Cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; De Hulster, E.; Almering, M.J.; Luttik, M.A.; Pronk, J.T.; Smid, E.J.; Bron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp.

  4. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; Hulster, de E.; Almering, M.J.; Luttik, M.A.H.; Pronk, J.T.; Smid, E.J.; Baron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp.

  5. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Boles Eckhard

    2006-04-01

    Full Text Available Abstract Background Fermentation of lignocellulosic biomass is an attractive alternative for the production of bioethanol. Traditionally, the yeast Saccharomyces cerevisiae is used in industrial ethanol fermentations. However, S. cerevisiae is naturally not able to ferment the pentose sugars D-xylose and L-arabinose, which are present in high amounts in lignocellulosic raw materials. Results We describe the engineering of laboratory and industrial S. cerevisiae strains to co-ferment the pentose sugars D-xylose and L-arabinose. Introduction of a fungal xylose and a bacterial arabinose pathway resulted in strains able to grow on both pentose sugars. Introduction of a xylose pathway into an arabinose-fermenting laboratory strain resulted in nearly complete conversion of arabinose into arabitol due to the L-arabinose reductase activity of the xylose reductase. The industrial strain displayed lower arabitol yield and increased ethanol yield from xylose and arabinose. Conclusion Our work demonstrates simultaneous co-utilization of xylose and arabinose in recombinant strains of S. cerevisiae. In addition, the co-utilization of arabinose together with xylose significantly reduced formation of the by-product xylitol, which contributed to improved ethanol production.

  6. Aspergillus oryzae–Saccharomyces cerevisiae Consortium Allows Bio-Hybrid Fuel Cell to Run on Complex Carbohydrates

    Science.gov (United States)

    Jahnke, Justin P.; Hoyt, Thomas; LeFors, Hannah M.; Sumner, James J.; Mackie, David M.

    2016-01-01

    Consortia of Aspergillus oryzae and Saccharomyces cerevisiae are examined for their abilities to turn complex carbohydrates into ethanol. To understand the interactions between microorganisms in consortia, Fourier-transform infrared spectroscopy is used to follow the concentrations of various metabolites such as sugars (e.g., glucose, maltose), longer chain carbohydrates, and ethanol to optimize consortia conditions for the production of ethanol. It is shown that with proper design A. oryzae can digest food waste simulants into soluble sugars that S. cerevisiae can ferment into ethanol. Depending on the substrate and conditions used, concentrations of 13% ethanol were achieved in 10 days. It is further shown that a direct alcohol fuel cell (FC) can be coupled with these A. oryzae-enabled S. cerevisiae fermentations using a reverse osmosis membrane. This “bio-hybrid FC” continually extracted ethanol from an ongoing consortium, enhancing ethanol production and allowing the bio-hybrid FC to run for at least one week. Obtained bio-hybrid FC currents were comparable to those from pure ethanol—water mixtures, using the same FC. The A. oryzae–S. cerevisiae consortium, coupled to a bio-hybrid FC, converted food waste simulants into electricity without any pre- or post-processing. PMID:27681904

  7. Improved ethanol production from whey Saccharomyces cerevisiae using permeabilized cells of Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Tomaska, M [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Kanuch, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Sturdik, E [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology

    1996-12-31

    Permeabilized cells of Kluyveromyces marxianus CCY eSY2 were tested as the source of lactase in the ethanol fermentation of concentrated deproteinized whey (65-70 g/l lactose) by Saccharomyces cerevisiae CCY 10-13-14. Rapid lactose hydrolysis by small amounts of permeabilized cells following the fermentation of released glucose and galactose by S. cerevisiae resulted in a twofold enhancement of the overall volumetric productivity (1.03 g/lxh), compared to the fermentation in which the lactose was directly fermented by K. marxianus. (orig.)

  8. Horizontal and vertical growth of S. cerevisiae metabolic network.

    KAUST Repository

    Grassi, Luigi; Tramontano, Anna

    2011-01-01

    of more specialized enzymes rather than as a source of novel reactions. We also show that the switch between the two evolutionary strategies in S. cerevisiae can be dated to about 350 million years ago. CONCLUSIONS: Our data, obtained through a novel

  9. Reducing the genetic complexity of glycolysis in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Solis Escalante, D.

    2015-01-01

    Glycolysis, a biochemical pathway that oxidizes glucose to pyruvate, is at the core of sugar metabolism in Saccharomyces cerevisiae (bakers’ yeast). Glycolysis is not only a catabolic route involved in energy conservation, but also provides building blocks for anabolism. From an applied perspective,

  10. Novel feeding strategies for Saccharomyces cerevisiae DS2155 ...

    African Journals Online (AJOL)

    The dual behavior of Saccharomyces cerevisiae on glucose feed as function of the dilution rate near the critical specific growth rate (ì=0.25) is a bottleneck in industrial production, hence the need for more efficient feeding strategies. In this work novel feeding strategies have been generated and evaluated. For each feeding ...

  11. Evaluation of Saccharomyces cerevisiae as an antiaflatoxicogenic agent in broiler feedstuffs.

    Science.gov (United States)

    Pizzolitto, R P; Armando, M R; Salvano, M A; Dalcero, A M; Rosa, C A

    2013-06-01

    Aflatoxins (AF) are the most important mycotoxins produced by toxigenic strains of various Aspergillus spp. Biological decontamination of mycotoxins using microorganisms is a well-known strategy for the management of mycotoxins in feeds. Saccharomyces cerevisiae strains have been reported to bind aflatoxin B1 (AFB1). The aim of this study was to evaluate the ability of S. cerevisiae CECT 1891 in counteracting the deleterious effects of AFB1 in broiler chicks. Experimental aflatoxicosis was induced in 6-d-old broilers by feeding them 1.2 mg of AFB1/kg of feed for 3 wk, and the yeast strain was administrated in feed (10(10) cells/kg), in the drinking water (5 × 10(9) cells/L), or a combination of both treatments. A total of 160 chicks were randomly divided into 8 treatments (4 repetitions per treatment). Growth performance was measured weekly from d 7 to 28, and serum biochemical parameters, weights, and histopathological examination of livers were determined at d 28. The AFB1 significantly decreased the BW gain, feed intake, and impaired feed conversion rate. Moreover, AFB1 treatment decreased serum protein concentration and increased liver damage. The addition of S. cerevisiae strain to drinking water, to diets contaminated with AFB1, showed a positive protection effect on the relative weight of the liver, histopathology, and biochemical parameters. Furthermore, dietary addition of the yeast strain to drinking water alleviated the negative effects of AFB1 on growth performance parameters. In conclusion, this study suggests that in feed contaminated with AFB1, the use of S. cerevisiae is an alternative method to reduce the adverse effects of aflatoxicosis. Thus, apart from its excellent nutritional value, yeast can also be used as a mycotoxin adsorbent.

  12. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    Science.gov (United States)

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae.

  13. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis.

    Science.gov (United States)

    Pericolini, Eva; Gabrielli, Elena; Ballet, Nathalie; Sabbatini, Samuele; Roselletti, Elena; Cayzeele Decherf, Amélie; Pélerin, Fanny; Luciano, Eugenio; Perito, Stefano; Jüsten, Peter; Vecchiarelli, Anna

    2017-01-02

    Vulvovaginal candidiasis is the most prevalent vaginal infection worldwide and Candida albicans is its major agent. Vulvovaginal candidiasis is characterized by disruption of the vaginal microbiota composition, as happens following large spectrum antibiotic usage. Recent studies support the effectiveness of oral and local probiotic treatment for prevention of recurrent vulvovaginal candidiasis. Saccharomyces cerevisiae is a safe yeast used as, or for, the production of ingredients for human nutrition and health. Here, we demonstrate that vaginal administration of probiotic Saccharomyces cerevisiae live yeast (GI) and, in part, inactivated whole yeast Saccharomyces cerevisiae (IY), used as post-challenge therapeutics, was able to positively influence the course of vaginal candidiasis by accelerating the clearance of the fungus. This effect was likely due to multiple interactions of Saccharomyces cerevisiae with Candida albicans. Both live and inactivated yeasts induced coaggregation of Candida and consequently inhibited its adherence to epithelial cells. However, only the probiotic yeast was able to suppress some major virulence factors of Candida albicans such as the ability to switch from yeast to mycelial form and the capacity to express several aspartyl proteases. The effectiveness of live yeast was higher than that of inactivated whole yeast suggesting that the synergy between mechanical effects and biological effects were dominant over purely mechanical effects. The protection of epithelial cells to Candida-induced damage was also observed. Overall, our data show for the first time that Saccharomyces cerevisiae-based ingredients, particularly the living cells, can exert beneficial therapeutic effects on a widespread vaginal mucosal infection.

  14. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Oud, B.; Flores, C.L.; Gancedo, C.; Zhang, X.; Trueheart, J.; Daran, J.M.; Pronk, J.T.; Van Maris, A.J.A.

    2012-01-01

    Background Pyruvate-decarboxylase negative (Pdc-) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards

  15. Rekayasa Glukosa Dari Tandan Kosong Kelapa Sawit Melalui Proses Fermentasi Dengan Saccharomyces cerevisiae Menjadi Bioetanol

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2013-06-01

    Full Text Available This research aims to study the performance of Saccharomyces cerevisiae in glucose engineering into bioethanol. Glucose comes from palm oil empty fruit bunches that had been pretreated by delignification and fermentation. Glucose solution result from hydrolysis for each treatment of 500 ml was fermented with Saccharomyces cerevisiae (2, 4, 6 and 8 g, fermentation time (4, 6, 8 and 10 days. Result of fermentation was distilled at 75°C ± 5°C for 60 minutes. Bioethanol produced were tested including: specific gravity by using picnometer and acidity was tested by volumetric methods. The analysis showed that the best bioethanol produced in this experiment, followed by laboratory tests obtained from the interaction between treatments for time of hydrolysis by Aspergillus niger for 6 days, with 4 grams of Saccharomyces cerevisiae fermentation for 6 days. Based on the test results of bioethanol obtained density 0.9873 g/cm3, percentage of bioethanol 9.2889% (v/v and acid number value 1.820 mg/L.ABSTRAKPenelitian ini bertujuan untuk mempelajarai kinerja Saccharomyces cerevisiae  merekayasa glukosa menjadi bioetanol. Glukosa berasal dari tandan kosong kelapa sawit yang telah dilakukan pretreatment dengan cara delignifikasi dan fermentasi. Larutan glukosa hasil hidrolisis untuk masing-masing perlakuan sebanyak 500 mL difermentasi dengan S. cerevisiae (2; 4; 6 dan 8 g, waktu fermentasi (4; 6; 8 dan 10 hari. Hasil fermentasi didestilasi pada suhu 75oC ± 5oC selama 60 menit. Bioetanol yang dihasilkan diuji yang meliputi : berat jenis dengan mengunakan piknometer dan keasaman diuji dengan metode volumetri. Hasil analisis menunjukkan bioetanol yang terbaik berdasarkan hasil percobaan yang dilanjutkan dengan uji laboratorium didapatkan dari interaksi antar perlakuan untuk waktu hidrolisis dengan Aspergilus niger selama 6 hari, fermentasi dengan 4 gram Saccharomyces cerevisiae selama 6 hari. Berdasarkan hasil uji bioetanol untuk berat jenis 0,9873 g/cm3

  16. Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bergman, Alexandra; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Phosphoketolases catalyze an energy-and redox-independent cleavage of certain sugar phosphates. Hereby, the two-carbon (C2) compound acetyl-phosphate is formed, which enzymatically can be converted into acetyl-CoA-a key precursor in central carbon metabolism. Saccharomyces cerevisiae does...... not demonstrate efficient phosphoketolase activity naturally. In this study, we aimed to compare and identify efficient heterologous phosphoketolase enzyme candidates that in yeast have the potential to reduce carbon loss compared to the native acetyl-CoA producing pathway by redirecting carbon flux directly from...... C5 and C6 sugars towards C2-synthesis. Nine phosphoketolase candidates were expressed in S. cerevisiae of which seven produced significant amounts of acetyl-phosphate after provision of sugar phosphate substrates in vitro. The candidates showed differing substrate specificities, and some...

  17. Terminal acidic shock inhibits sour beer bottle conditioning by Saccharomyces cerevisiae.

    Science.gov (United States)

    Rogers, Cody M; Veatch, Devon; Covey, Adam; Staton, Caleb; Bochman, Matthew L

    2016-08-01

    During beer fermentation, the brewer's yeast Saccharomyces cerevisiae experiences a variety of shifting growth conditions, culminating in a low-oxygen, low-nutrient, high-ethanol, acidic environment. In beers that are bottle conditioned (i.e., carbonated in the bottle by supplying yeast with a small amount of sugar to metabolize into CO2), the S. cerevisiae cells must overcome these stressors to perform the ultimate act in beer production. However, medium shock caused by any of these variables can slow, stall, or even kill the yeast, resulting in production delays and economic losses. Here, we describe a medium shock caused by high lactic acid levels in an American sour beer, which we refer to as "terminal acidic shock". Yeast exposed to this shock failed to bottle condition the beer, though they remained viable. The effects of low pH/high [lactic acid] conditions on the growth of six different brewing strains of S. cerevisiae were characterized, and we developed a method to adapt the yeast to growth in acidic beer, enabling proper bottle conditioning. Our findings will aid in the production of sour-style beers, a trending category in the American craft beer scene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains.

    Science.gov (United States)

    Kong, In Iok; Turner, Timothy Lee; Kim, Heejin; Kim, Soo Rin; Jin, Yong-Su

    2018-02-01

    Microorganisms have been studied and used extensively to produce value-added fuels and chemicals. Yeasts, specifically Saccharomyces cerevisiae, receive industrial attention because of their well-known ability to ferment glucose and produce ethanol. Thousands of natural or genetically modified S. cerevisiae have been found in industrial environments for various purposes. These industrial strains are isolated from industrial fermentation sites, and they are considered as potential host strains for superior fermentation processes. In many cases, industrial yeast strains have higher thermotolerance, increased resistances towards fermentation inhibitors and increased glucose fermentation rates under anaerobic conditions when compared with laboratory yeast strains. Despite the advantages of industrial strains, they are often not well characterized. Through screening and phenotypic characterization of commercially available industrial yeast strains, industrial fermentation processes requiring specific environmental conditions may be able to select an ideal starting yeast strain to be further engineered. Here, we have characterized and compared 21 industrial S. cerevisiae strains under multiple conditions, including their tolerance to varying pH conditions, resistance to fermentation inhibitors, sporulation efficiency and ability to ferment lignocellulosic sugars. These data may be useful for the selection of a parental strain for specific biotechnological applications of engineered yeast. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Mead features fermented by Saccharomyces cerevisiae (lalvin k1 ...

    African Journals Online (AJOL)

    Eduardo Morales

    Full Length Research Paper. Mead features fermented by Saccharomyces cerevisiae. (lalvin k1-1116). Eduardo Marin MORALES1*, Valmir Eduardo ALCARDE2 and Dejanira de Franceschi de. ANGELIS1. 1Department of Biochemistry and Microbiology, Institute of Biosciences, UNESP - Univ Estadual Paulista, Av. 24-A,.

  20. Genetic Basis for Saccharomyces cerevisiae Biofilm in Liquid Medium

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz; Bojsen, Rasmus Kenneth; Gro Rejkjær Sørensen, Laura

    2014-01-01

    than free-living cells. We investigated the genetic basis for yeast, Saccharomyces cerevisiae, biofilm on solid surfaces in liquid medium by screening a comprehensive deletion mutant collection in the S1278b background and found 71 genes that were essential for biofilm development. Quantitative...

  1. Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Dong Xiaoyu; Yuan Yulian; Tang Qian; Dou Shaohua; Di Lanbo; Zhang Xiuling

    2014-01-01

    In this study, Saccharomyces cerevisiae (S. cerevisiae) was exposed to dielectric barrier discharge plasma (DBD) to improve its ethanol production capacity during fermentation. Response surface methodology (RSM) was used to optimize the discharge-associated parameters of DBD for the purpose of maximizing the ethanol yield achieved by DBD-treated S. cerevisiae. According to single factor experiments, a mathematical model was established using Box-Behnken central composite experiment design, with plasma exposure time, power supply voltage, and exposed-sample volume as impact factors and ethanol yield as the response. This was followed by response surface analysis. Optimal experimental parameters for plasma discharge-induced enhancement in ethanol yield were plasma exposure time of 1 min, power voltage of 26 V, and an exposed sample volume of 9 mL. Under these conditions, the resulting yield of ethanol was 0.48 g/g, representing an increase of 33% over control. (plasma technology)

  2. Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains.

    Science.gov (United States)

    Zheng, Dao-Qiong; Jin, Xin-Na; Zhang, Ke; Fang, Ya-Hong; Wu, Xue-Chang

    2017-05-01

    The aim of this work was to develop a novel strategy for improving the vanillin tolerance and ethanol fermentation performances of Saccharomyces cerevisiae strains. Isogeneic diploid, triploid, and tetraploid S. cerevisiae strains were generated by genome duplication of haploid strain CEN.PK2-1C. Ploidy increments improved vanillin tolerance and diminished proliferation capability. Antimitotic drug methyl benzimidazol-2-ylcarbamate (MBC) was used to introduce chromosomal aberrations into the tetraploid S. cerevisiae strain. Interestingly, aneuploid mutants with DNA contents between triploid and tetraploid were more resistant to vanillin and showed faster ethanol fermentation rates than all euploid strains. The physiological characteristics of these mutants suggest that higher bioconversion capacities of vanillin and ergosterol contents might contribute to improved vanillin tolerance. This study demonstrates that genome duplication and MBC treatment is a powerful strategy to improve the vanillin tolerance of yeast strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.

    Science.gov (United States)

    Lee, Won-Heong; Jin, Yong-Su

    2017-09-28

    In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular β-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular β-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.

  4. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast

    NARCIS (Netherlands)

    A.J. van Maris; J.M. Geertman; A. Vermeulen; M.K. Groothuizen; A.A. Winkler; M.D. Piper; J.P. van Dijken; J.T. Pronk

    2004-01-01

    textabstractThe absence of alcoholic fermentation makes pyruvate decarboxylase-negative (Pdc(-)) strains of Saccharomyces cerevisiae an interesting platform for further metabolic engineering of central metabolism. However, Pdc(-) S. cerevisiae strains have two growth defects:

  5. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.

    Science.gov (United States)

    Chen, Yan; Xiao, Wenhai; Wang, Ying; Liu, Hong; Li, Xia; Yuan, Yingjin

    2016-06-21

    Microbial production of lycopene, a commercially and medically important compound, has received increasing concern in recent years. Saccharomyces cerevisiae is regarded as a safer host for lycopene production than Escherichia coli. However, to date, the lycopene yield (mg/g DCW) in S. cerevisiae was lower than that in E. coli and did not facilitate downstream extraction process, which might be attributed to the incompatibility between host cell and heterologous pathway. Therefore, to achieve lycopene overproduction in S. cerevisiae, both host cell and heterologous pathway should be delicately engineered. In this study, lycopene biosynthesis pathway was constructed by integration of CrtE, CrtB and CrtI in S. cerevisiae CEN.PK2. When YPL062W, a distant genetic locus, was deleted, little acetate was accumulated and approximately 100 % increase in cytosolic acetyl-CoA pool was achieved relative to that in parental strain. Through screening CrtE, CrtB and CrtI from diverse species, an optimal carotenogenic enzyme combination was obtained, and CrtI from Blakeslea trispora (BtCrtI) was found to have excellent performance on lycopene production as well as lycopene proportion in carotenoid. Then, the expression level of BtCrtI was fine-tuned and the effect of cell mating types was also evaluated. Finally, potential distant genetic targets (YJL064W, ROX1, and DOS2) were deleted and a stress-responsive transcription factor INO2 was also up-regulated. Through the above modifications between host cell and carotenogenic pathway, lycopene yield was increased by approximately 22-fold (from 2.43 to 54.63 mg/g DCW). Eventually, in fed-batch fermentation, lycopene production reached 55.56 mg/g DCW, which is the highest reported yield in yeasts. Saccharomyces cerevisiae was engineered to produce lycopene in this study. Through combining host engineering (distant genetic loci and cell mating types) with pathway engineering (enzyme screening and gene fine-tuning), lycopene yield was

  6. Engineering of aromatic amino acid metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Vuralhan, Z.

    2006-01-01

    Saccharomyces cerevisiae is a popular industrial microorganism. It has since long been used in bread, beer and wine making. More recently it is also being applied for heterologous protein production and as a target organism for metabolic engineering. The work presented in this thesis describes how

  7. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    2015-12-01

    Full Text Available Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established. Keywords: Metabolic engineering, Fatty acid biosynthesis, Fatty acid derivatives, Saccharomyces cerevisiae

  8. Increasing cocoa butter-like lipid production of Saccharomyces cerevisiae by expression of selected cocoa genes

    DEFF Research Database (Denmark)

    Wei, Yongjun; Gossing, Michael; Bergenholm, David

    2017-01-01

    for CB biosynthesis from the cocoa genome using a phylogenetic analysis approach. By expressing the selected cocoa genes in S. cerevisiae, we successfully increased total fatty acid production, TAG production and CBL production in some S. cerevisiae strains. The relative CBL content in three yeast...... higher level of CBL compared with the control strain. In summary, CBL production by S. cerevisiae were increased through expressing selected cocoa genes potentially involved in CB biosynthesis.......Cocoa butter (CB) extracted from cocoa beans mainly consists of three different kinds of triacylglycerols (TAGs), 1,3-dipalmitoyl-2-oleoyl-glycerol (POP, C16:0-C18:1-C16:0), 1-palmitoyl-3-stearoyl-2-oleoyl-glycerol(POS,C16:0C18:1-C18:0) and 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0-C18:1-C18...

  9. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Sonderegger, M.; Jeppsson, M.; Larsson, C.

    2004-01-01

    Lignocellulose hydrolysate is an abundant substrate for bioethanol production. The ideal microorganism for such a fermentation process should combine rapid and efficient conversion of the available carbon sources to ethanol with high tolerance to ethanol and to inhibitory components in the hydrol......Lignocellulose hydrolysate is an abundant substrate for bioethanol production. The ideal microorganism for such a fermentation process should combine rapid and efficient conversion of the available carbon sources to ethanol with high tolerance to ethanol and to inhibitory components...... in the hydrolysate. A particular biological problem are the pentoses, which are not naturally metabolized by the main industrial ethanol producer Saccharomyces cerevisiae. Several recombinant, mutated, and evolved xylose fermenting S. cerevisiae strains have been developed recently. We compare here the fermentation...

  10. Response of Saccharomyces cerevisiae to cadmium stress

    International Nuclear Information System (INIS)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C.; Rosa, Carlos Augusto

    2009-01-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K + and Na + ) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  11. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  12. Real time, in situ observation of the photocatalytic inactivation of Saccharomyces cerevisiae cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingtao [School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Xiaoxin [Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Qi, E-mail: qili@imr.ac.cn [Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shang, Jian Ku [Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-04-01

    An in situ microscopy technique was developed to observe in real time the photocatalytic inactivation process of Saccharomyces cerevisiae (S. cerevisiae) cells by palladium-modified nitrogen-doped titanium oxide (TiON/PdO) under visible light illumination. The technique was based on building a photocatalytic micro-reactor on the sample stage of a fluorescence/phase contrast microscopy capable of simultaneously providing the optical excitation to activate the photocatalyst in the micro-reactor and the illumination to acquire phase contrast images of the cells undergoing the photocatalytic inactivation process. Using TiON/PdO as an example, the technique revealed for the first time the vacuolar activities inside S. cerevisiae cells subjected to a visible light photocatalytic inactivation. The vacuoles responded to the photocatalytic attack by the first expansion of the vacuolar volume and then contraction, before the vacuole disappeared and the cell structure collapsed. Consistent with the aggregate behavior observed from the cell culture experiments, the transition in the vacuolar volume provided clear evidence that photocatalytic disinfection of S. cerevisiae cells started with an initiation period in which cells struggled to offset the photocatalytic damage and moved rapidly after the photocatalytic damage overwhelmed the defense mechanisms of the cells against oxidative attack. - Highlights: • Palladium-modified nitrogen-doped titanium oxidephotocatalyst (TiON/PdO) • Effective visible-light photocatalytic disinfection of yeast cells by TiON/PdO • Real time, in situ observation technique was developed for photocatalytic disinfection. • The fluorescence/phase contrast microscope with a photocatalytic micro-reactor • Yeast cell disinfection happened before the cell structure collapsed.

  13. Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae.

    Science.gov (United States)

    Oud, Bart; Guadalupe-Medina, Victor; Nijkamp, Jurgen F; de Ridder, Dick; Pronk, Jack T; van Maris, Antonius J A; Daran, Jean-Marc

    2013-11-05

    Laboratory evolution of the yeast Saccharomyces cerevisiae in bioreactor batch cultures yielded variants that grow as multicellular, fast-sedimenting clusters. Knowledge of the molecular basis of this phenomenon may contribute to the understanding of natural evolution of multicellularity and to manipulating cell sedimentation in laboratory and industrial applications of S. cerevisiae. Multicellular, fast-sedimenting lineages obtained from a haploid S. cerevisiae strain in two independent evolution experiments were analyzed by whole genome resequencing. The two evolved cell lines showed different frameshift mutations in a stretch of eight adenosines in ACE2, which encodes a transcriptional regulator involved in cell cycle control and mother-daughter cell separation. Introduction of the two ace2 mutant alleles into the haploid parental strain led to slow-sedimenting cell clusters that consisted of just a few cells, thus representing only a partial reconstruction of the evolved phenotype. In addition to single-nucleotide mutations, a whole-genome duplication event had occurred in both evolved multicellular strains. Construction of a diploid reference strain with two mutant ace2 alleles led to complete reconstruction of the multicellular-fast sedimenting phenotype. This study shows that whole-genome duplication and a frameshift mutation in ACE2 are sufficient to generate a fast-sedimenting, multicellular phenotype in S. cerevisiae. The nature of the ace2 mutations and their occurrence in two independent evolution experiments encompassing fewer than 500 generations of selective growth suggest that switching between unicellular and multicellular phenotypes may be relevant for competitiveness of S. cerevisiae in natural environments.

  14. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Jongedijk, E.J.; Cankar, K.; Ranzijn, J.; Krol, van der A.R.; Bouwmeester, H.J.; Beekwilder, M.J.

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a

  15. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes

    DEFF Research Database (Denmark)

    Albergaria, Helena; Arneborg, Nils

    2016-01-01

    Winemaking, brewing and baking are some of the oldest biotechnological processes. In all of them, alcoholic fermentation is the main biotransformation and Saccharomyces cerevisiae the primary microorganism. Although a wide variety of microbial species may participate in alcoholic fermentation and...

  16. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption

    DEFF Research Database (Denmark)

    Scalcinati, Gionata; Otero, José Manuel; Van Vleet, Jennifer R. H.

    2012-01-01

    Industrial biotechnology aims to develop robust microbial cell factories, such as Saccharomyces cerevisiae, to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose s...

  17. Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield

    NARCIS (Netherlands)

    Papapetridis, I.; Goudriaan, M.; De Keijzer, Nikita A.; van den Broek, M.A.; van Maris, A.J.A.; Pronk, J.T.

    2018-01-01

    Background: Reduction or elimination of by-product formation is of immediate economic relevance in fermentation processes for industrial bioethanol production with the yeast Saccharomyces cerevisiae. Anaerobic cultures of wild-type S. cerevisiae require formation of glycerol to maintain the

  18. The effects of Saccharomyces cerevisiae on the morphological and biomechanical characteristics of the tibiotarsus in broiler chickens

    Directory of Open Access Journals (Sweden)

    B. Suzer

    2017-12-01

    Full Text Available The aim of this study is to examine the effects of different levels of the feed supplement Saccharomyces cerevisiae, a yeast metabolite, on broiler tibiotarsus traits and to reduce leg problems by identifying the pathological changes in leg skeletal system. Thus, reducing leg disorders due to the skeletal system, the cause of significant economic losses in our country (Turkey, was investigated by the supplementation of Saccharomyces cerevisiae in broiler feed. In the study, 300 male day-old, Ross 308 broiler chicks were used. Experiment groups were designed as follows: control; 0.1 % Saccharomyces cerevisiae; 0.2 % Saccharomyces cerevisiae; 0.4 % Saccharomyces cerevisiae. The experimental diets were chemically analyzed according to the methods of the Association of Official Analytical Chemists. Twelve groups were obtained, including three replicates for each experimental group. Each replicated group was comprised of 25 chicks, and thus 75 chicks were placed in each experimental group. After 42 days, broiler chickens were slaughtered. Tibiotarsi were weighed with a digital scale, and the lengths were measured with a digital caliper after the drying process. Cortical areas were measured with the ImageJ Image Processing and Analysis Program. A UTEST Model-7014 tension and compression machine and a Maxtest software were used to determine the bone strength of the tibiotarsus. The severity of the tibial dyschondroplasia lesion was evaluated as 0, +1, +2 and +3. Crude ash, calcium and phosphorus analyses were performed to determine the inorganic matter of tibiotarsi. For radiographic evaluations of epiphyseal growth plates, tibiotarsi from the right legs were photographed in lateral and craniocaudal positions and examined. Statistical analyses were performed with the SPSS statistics program. It was observed that the use of Saccharomyces cerevisiae as a feed supplement led to an increase in the bone traits of broiler chickens. Optimum

  19. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome.

    Science.gov (United States)

    Wlodarski, Tomasz; Kutner, Jan; Towpik, Joanna; Knizewski, Lukasz; Rychlewski, Leszek; Kudlicki, Andrzej; Rowicka, Maga; Dziembowski, Andrzej; Ginalski, Krzysztof

    2011-01-01

    Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity.

  20. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome.

    Directory of Open Access Journals (Sweden)

    Tomasz Wlodarski

    Full Text Available Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity. Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity.

  1. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    OpenAIRE

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-01-01

    Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucro...

  2. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    Science.gov (United States)

    Hoang, Don; Kopp, Artyom; Chandler, James Angus

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker's yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host-microbe interactions can have profound effects on host biology, the results from D. melanogaster-S. cerevisiae laboratory experiments may not be fully representative of host-microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  3. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhao, Jianzhi; Bao, Xiaoming; Li, Chen; Shen, Yu; Hou, Jin

    2016-05-01

    Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae. We evaluated three geraniol synthases in S. cerevisiae, and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 (G) (ERG20 (K197G) ) and ERG20 (WW) (ERG20 (F96W-N127W) ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1, tHMG1, and UPC2-1. The results showed that overexpressing ERG20 (WW) and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.

  4. Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2016-03-01

    Bioprospecting is an effective way to find novel enzymes from strains with desirable phenotypes. Such bioprospecting has enabled organisms such as Saccharomyces cerevisiae to utilize nonnative pentose sugars. Yet, the efficiency of this pentose catabolism (especially for the case of arabinose) remains suboptimal. Thus, further pathway optimization or identification of novel, optimal pathways is needed. Previously, we identified a novel set of xylan catabolic pathway enzymes from a superior pentose-utilizing strain of Ustilago bevomyces. These enzymes were used to successfully engineer a xylan-utilizing S. cerevisiae through a blended approach of bioprospecting and evolutionary engineering. Here, we expanded this approach to xylose and arabinose catabolic pathway engineering and demonstrated that bioprospected xylose and arabinose catabolic pathways from U. bevomyces offer alternative choices for enabling efficient pentose catabolism in S. cerevisiae. By introducing a novel set of xylose catabolic genes from U. bevomyces, growth rates were improved up to 85 % over a set of traditional Scheffersomyces stipitis pathway genes. In addition, we suggested an alternative arabinose catabolic pathway which, after directed evolution and pathway engineering, enabled S. cerevisiae to grow on arabinose as a sole carbon source in minimal medium with growth rates upwards of 0.05 h(-1). This pathway represents the most efficient growth of yeast on pure arabinose minimal medium. These pathways provide great starting points for further strain development and demonstrate the utility of bioprospecting from U. bevomyces.

  5. Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions

    DEFF Research Database (Denmark)

    Branco, Patrícia; Francisco, Diana; Chambon, Christophe

    2014-01-01

    Saccharomyces cerevisiae plays a primordial role in alcoholic fermentation and has a vast worldwide application in the production of fuel-ethanol, food and beverages. The dominance of S. cerevisiae over other microbial species during alcoholic fermentations has been traditionally ascribed to its ...

  6. Improved Xylose Metabolism by a CYC8 Mutant of Saccharomyces cerevisiae.

    Science.gov (United States)

    Nijland, Jeroen G; Shin, Hyun Yong; Boender, Leonie G M; de Waal, Paul P; Klaassen, Paul; Driessen, Arnold J M

    2017-06-01

    Engineering Saccharomyces cerevisiae for the utilization of pentose sugars is an important goal for the production of second-generation bioethanol and biochemicals. However, S. cerevisiae lacks specific pentose transporters, and in the presence of glucose, pentoses enter the cell inefficiently via endogenous hexose transporters (HXTs). By means of in vivo engineering, we have developed a quadruple hexokinase deletion mutant of S. cerevisiae that evolved into a strain that efficiently utilizes d-xylose in the presence of high d-glucose concentrations. A genome sequence analysis revealed a mutation (Y353C) in the general corepressor CYC8 , or SSN6 , which was found to be responsible for the phenotype when introduced individually in the nonevolved strain. A transcriptome analysis revealed altered expression of 95 genes in total, including genes involved in (i) hexose transport, (ii) maltose metabolism, (iii) cell wall function (mannoprotein family), and (iv) unknown functions (seripauperin multigene family). Of the 18 known HXTs, genes for 9 were upregulated, especially the low or nonexpressed HXT10 , HXT13 , HXT15 , and HXT16 Mutant cells showed increased uptake rates of d-xylose in the presence of d-glucose, as well as elevated maximum rates of metabolism ( V max ) for both d-glucose and d-xylose transport. The data suggest that the increased expression of multiple hexose transporters renders d-xylose metabolism less sensitive to d-glucose inhibition due to an elevated transport rate of d-xylose into the cell. IMPORTANCE The yeast Saccharomyces cerevisiae is used for second-generation bioethanol formation. However, growth on xylose is limited by pentose transport through the endogenous hexose transporters (HXTs), as uptake is outcompeted by the preferred substrate, glucose. Mutant strains were obtained with improved growth characteristics on xylose in the presence of glucose, and the mutations mapped to the regulator Cyc8. The inactivation of Cyc8 caused increased

  7. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    Science.gov (United States)

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Evidence against a photoprotective component of photoreactivation in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    MacQuillan, A.M.; Green, G.; Perry, W.G.

    1981-01-01

    Photoreactivation-deficient (phr - ) mutants of Saccharomyces cerevisiae were shown to lack in vitro DNA-photolyase activity. A phr - mutant was then compared with a phr + strain for near-UV induced photoprotection from far-UV irradiation. Neither strain exhibited a photoprotective effect. (author)

  9. The Plasma Membrane of Saccharomyces cerevisiae : Structure, Function, and Biogenesis

    NARCIS (Netherlands)

    VANDERREST, ME; KAMMINGA, AH; NAKANO, A; ANRAKU, Y; POOLMAN, B; KONINGS, WN

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an

  10. Sensitivity to Lovastatin of Saccharomyces cerevisiae Strains Deleted for Pleiotropic Drug Resistance (PDR) Genes

    DEFF Research Database (Denmark)

    Formenti, Luca Riccardo; Kielland-Brandt, Morten

    2011-01-01

    The use of statins is well established in human therapy, and model organisms such as Saccharomyces cerevisiae are commonly used in studies of drug action at molecular and cellular levels. The investigation of the resistance mechanisms towards statins may suggest new approaches to improve therapy...... based on the use of statins. We investigated the susceptibility to lovastatin of S. cerevisiae strains deleted for PDR genes, responsible for exporting hydrophobic and amphi-philic drugs, such as lovastatin. Strains deleted for the genes tested, PDR1, PDR3, PDR5 and SNQ2, exhibited remarkably different...

  11. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Österlund, Tobias; Liu, Zihe

    2013-01-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular...... stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent...... the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high...

  12. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-09-26

    Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Firstly, a high efficient flavonol synthases (FLS) from Populus deltoides was introduced into the biosynthetic pathway of kaempferol. Secondly, a S. cerevisiae recombinant was constructed for de novo synthesis of kaempferol, which generated about 6.97 mg/L kaempferol from glucose. To further promote kaempferol production, the acetyl-CoA biosynthetic pathway was overexpressed and p-coumarate was supplied as substrate, which improved kaempferol titer by about 23 and 120%, respectively. Finally, a fed-batch process was developed for better kaempferol fermentation performance, and the production reached 66.29 mg/L in 40 h. The titer of kaempferol in our engineered yeast is 2.5 times of the highest reported titer. Our study provides a possible strategy to produce kaempferol using microbial cell factory.

  13. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing.

    Science.gov (United States)

    Hu, Nan; Yuan, Bo; Sun, Juan; Wang, Shi-An; Li, Fu-Li

    2012-09-01

    Thermotolerant inulin-utilizing yeast strains are desirable for ethanol production from Jerusalem artichoke tubers by consolidated bioprocessing (CBP). To obtain such strains, 21 naturally occurring yeast strains isolated by using an enrichment method and 65 previously isolated Saccharomyces cerevisiae strains were investigated in inulin utilization, extracellular inulinase activity, and ethanol fermentation from inulin and Jerusalem artichoke tuber flour at 40 °C. The strains Kluyveromyces marxianus PT-1 (CGMCC AS2.4515) and S. cerevisiae JZ1C (CGMCC AS2.3878) presented the highest extracellular inulinase activity and ethanol yield in this study. The highest ethanol concentration in Jerusalem artichoke tuber flour fermentation (200 g L(-1)) at 40 °C achieved by K. marxianus PT-1 and S. cerevisiae JZ1C was 73.6 and 65.2 g L(-1), which corresponded to the theoretical ethanol yield of 90.0 and 79.7 %, respectively. In the range of 30 to 40 °C, temperature did not have a significant effect on ethanol production for both strains. This study displayed the distinctive superiority of K. marxianus PT-1 and S. cerevisiae JZ1C in the thermotolerance and utilization of inulin-type oligosaccharides reserved in Jerusalem artichoke tubers. It is proposed that both K. marxianus and S. cerevisiae have considerable potential in ethanol production from Jerusalem artichoke tubers by a high temperature CBP.

  14. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Nan [Agricultural Univ., Qingdao, SD (China). College of Animal Science and Technology; Chinese Academy of Sciences, Qingdao, SD (China). Key Lab. of Biofuels; Yuan, Bo; Wang, Shi-An; Li, Fu-Li [Chinese Academy of Sciences, Qingdao, SD (China). Key Lab. of Biofuels; Sun, Juan [Agricultural Univ., Qingdao, SD (China). College of Animal Science and Technology

    2012-09-15

    Thermotolerant inulin-utilizing yeast strains are desirable for ethanol production from Jerusalem artichoke tubers by consolidated bioprocessing (CBP). To obtain such strains, 21 naturally occurring yeast strains isolated by using an enrichment method and 65 previously isolated Saccharomyces cerevisiae strains were investigated in inulin utilization, extracellular inulinase activity, and ethanol fermentation from inulin and Jerusalem artichoke tuber flour at 40 C. The strains Kluyveromyces marxianus PT-1 (CGMCC AS2.4515) and S. cerevisiae JZ1C (CGMCC AS2.3878) presented the highest extracellular inulinase activity and ethanol yield in this study. The highest ethanol concentration in Jerusalem artichoke tuber flour fermentation (200 g L{sup -1}) at 40 C achieved by K. marxianus PT-1 and S. cerevisiae JZ1C was 73.6 and 65.2 g L{sup -1}, which corresponded to the theoretical ethanol yield of 90.0 and 79.7 %, respectively. In the range of 30 to 40 C, temperature did not have a significant effect on ethanol production for both strains. This study displayed the distinctive superiority of K. marxianus PT-1 and S. cerevisiae JZ1C in the thermotolerance and utilization of inulin-type oligosaccharides reserved in Jerusalem artichoke tubers. It is proposed that both K. marxianus and S. cerevisiae have considerable potential in ethanol production from Jerusalem artichoke tubers by a high temperature CBP. (orig.)

  15. Identification and characterization of antifungal compounds using a Saccharomyces cerevisiae reporter bioassay.

    Directory of Open Access Journals (Sweden)

    Brad Tebbets

    Full Text Available New antifungal drugs are urgently needed due to the currently limited selection, the emergence of drug resistance, and the toxicity of several commonly used drugs. To identify drug leads, we screened small molecules using a Saccharomyces cerevisiae reporter bioassay in which S. cerevisiae heterologously expresses Hik1, a group III hybrid histidine kinase (HHK from Magnaporthe grisea. Group III HHKs are integral in fungal cell physiology, and highly conserved throughout this kingdom; they are absent in mammals, making them an attractive drug target. Our screen identified compounds 13 and 33, which showed robust activity against numerous fungal genera including Candida spp., Cryptococcus spp. and molds such as Aspergillus fumigatus and Rhizopus oryzae. Drug-resistant Candida albicans from patients were also highly susceptible to compounds 13 and 33. While the compounds do not act directly on HHKs, microarray analysis showed that compound 13 induced transcripts associated with oxidative stress, and compound 33, transcripts linked with heavy metal stress. Both compounds were highly active against C. albicans biofilm, in vitro and in vivo, and exerted synergy with fluconazole, which was inactive alone. Thus, we identified potent, broad-spectrum antifungal drug leads from a small molecule screen using a high-throughput, S. cerevisiae reporter bioassay.

  16. Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production.

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    Full Text Available The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production.

  17. Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae.

    Science.gov (United States)

    Elbing, Karin; Larsson, Christer; Bill, Roslyn M; Albers, Eva; Snoep, Jacky L; Boles, Eckhard; Hohmann, Stefan; Gustafsson, Lena

    2004-09-01

    The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.

  18. Protein expression of saccharomyces cerevisiae in response to uranium exposure

    International Nuclear Information System (INIS)

    Sakamoto, Fuminori; Nankawa, Takuya; Kozai, Naofumi; Ohnuki, Toshihiko; Fujii, Tsutomu; Iefuji, Haruyuki; Francis, A.J.

    2007-01-01

    Protein expression of Saccharomyces cerevisiae grown in the medium containing 238 U (VI) and 233 U (VI) was examined by two-dimensional gel electrophoresis. Saccharomyces cerevisiae of BY4743 was grown in yeast nitrogen base medium containing glucose and glycerol 2-phosphate and 238 U of 0, 2.0, and 5.0 x 10 -4 M or 233 U of 2.5 x 10 -6 M (radioactivity was higher by 350 times than 2.0 x 10 -4 M 238 U) and 5.0 x 10 -6 M for 112 h at 30 degC. The growth of Saccharomyces cerevisiae was monitored by measuring OD 600 at 112 h after the inoculation. Uranium concentrations in the media also were measured by radiometry using a liquid scintillation counter. The growths of the yeast grown in the above media were in the following order: control>2.5 x 10 -6 M 233 U>2.0 x 10 -4 M 238 U>5.0 x 10 -6 M 233 U>5.0 x 10 -4 M 238 U. This result indicated that not only radiological but also chemical effect of U reduced the growth of the yeast. The concentrations of U in the medium containing 238 U or 233 U decreased, suggesting U accumulation by the yeast cells. The 2-D gel electrophoresis analysis showed the appearance of several spots after exposure to 238 U or to 233 U but not in the control containing no uranium. These results show that the yeast cells exposed to U express several specific proteins. (author)

  19. Removal of Pyrimethanil and Fenhexamid from Saccharomyces cerevisiae Liquid Cultures

    Directory of Open Access Journals (Sweden)

    Etjen Bizaj

    2011-01-01

    Full Text Available The capacity for the removal of pyrimethanil and fenhexamid, two fungicides commonly used for the control of Botrytis cinerea in vineyards, has been evaluated during an alcoholic fermentation process in batch system. Commercial and wild strains of Saccharomyces cerevisiae were used. Batch fermentations were carried out in yeast extract-malt extract medium (YM with 18.0 % (by mass glucose, and the fungicides were added separately at three concentrations: 0.1, 1.0 and 10.0 mg/L. The removal capacity of yeast strains was also examined in stationary phase cultures of Saccharomyces cerevisiae. Stationary assays were performed with yeast biomass harvested from the stationary phase of an anaerobic fermentation process, with separate additions of 0.1, 1.0 and 10.0 mg/L of both fungicides. Removal studies with stationary phase cells were performed with viable and non-viable cells inactivated with sodium azide. This study clearly shows that both Saccharomyces cerevisiae strains were able to remove fenhexamid and pyrimethanil in stationary and fermentative assays. The removal potential is shown to be strain dependent in stationary but not in fermentative assays. However, the removal potential is dependent on the type of fungicide in both stationary and fermentative assays. In stationary phase cultures no significant difference in fungicide removal potential between viable and non-viable cells was observed, indicating that both pesticides were not degraded by metabolically active cells. However, the presence of both pesticides influenced fermentation kinetics and only pyrimethanil at 10.0 mg/L increased the production of volatile acidity of both strains.

  20. Bakery by-products based feeds borne-Saccharomyces cerevisiae strains with probiotic and antimycotoxin effects plus antibiotic resistance properties for use in animal production.

    Science.gov (United States)

    Poloni, Valeria; Salvato, Lauranne; Pereyra, Carina; Oliveira, Aguida; Rosa, Carlos; Cavaglieri, Lilia; Keller, Kelly Moura

    2017-09-01

    The aim of this study was to select S. cerevisiae strains able to exert probiotic and antimycotoxin effects plus antibiotics resistance properties for use in animal production. S. cerevisiae LL74 and S. cerevisiae LL83 were isolated from bakery by-products intended for use in animal feed and examined for phenotypic characteristics and nutritional profile. Resistance to antibiotic, tolerance to gastrointestinal conditions, autoaggregation and coaggregation assay, antagonism to animal pathogens and aflatoxin B 1 binding were studied. S. cerevisiae LL74 and S. cerevisiae LL83 showed resistance to all the antibiotics assayed (ampicillin, streptomycin, neomycin, norfloxacin, penicillin G, sulfonamide and trimethoprim). The analysis showed that exposure time to acid pH had a significant impact onto the viable cell counts onto both yeast strains. Presence of bile 0.5% increased significantly the growth of the both yeast strains. Moreover, they were able to tolerate the simulated gastrointestinal conditions assayed. In general, the coaggregation was positive whereas the autoaggregation capacity was not observed. Both strains were able to adsorb AFB 1 . In conclusion, selected S. cerevisiae LL74 and S. cerevisiae LL83 have potential application to be used as a biological method in animal feed as antibiotic therapy replacement in, reducing the adverse effects of AFB 1 and giving probiotic properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Dynamics of Storage Carbohydrates Metabolism in Saccharomyces cerevisiae

    OpenAIRE

    Suarez-Mendez, C.A.

    2015-01-01

    Production of chemicals via biotechnological routes are becoming rapidly an alternative to oil-based processes. Several microorganisms including yeast, bacteria, fungi and algae can transform feedstocks into high-value molecules at industrial scale. Improvement of the bioprocess performance is a key factor for making this technology economically feasible. Despite the vast knowledge on microbial metabolism, some gaps still remain open. In Saccharomyces cerevisiae, metabolism of storage carbohy...

  2. Genome-wide transcription survey on flavour production in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Schoondermark-Stolk, Sung A.; Jansen, Michael; Verkleij, Arie J.; Verrips, C. Theo; Euverink, Gert-Jan W.; Dijkhuizen, Lubbert; Boonstra, Johannes

    2006-01-01

    The yeast Saccharomyces cerevisiae is widely used as aroma producer in the preparation of fermented foods and beverages. During food fermentations, secondary metabolites like 3-methyl-1-butanol, 4-methyl-2-oxopentanoate, 3-methyl-2-oxobutanoate and 3-methylbutyrate emerge. These four compounds have

  3. Reconstitution of an efficient thymidine salvage pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Vernis, L.; Piskur, Jure; Diffley, J.F.X.

    2003-01-01

    The budding yeast Saccharomyces cerevisiae is unable to incorporate exogenous nucleosides into DNA. We have made a number of improvements to existing strategies to reconstitute an efficient thymidine salvage pathway in yeast. We have constructed strains that express both a nucleoside kinase as well...

  4. Study On Ethanol Production From Sugar Cane Molasses By Using Irradiated Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Botros, H.W.; Armed, A.S.; Farag, S.S.; Hassan, L.A.

    2012-01-01

    In commercial ethanol production procedures often use sugar cane molasses as a raw material due to- their abundance and low costs. The most employed microorganisms used for fermentation is Saccharomyces cerevisiae yeasts due to their ability to hydrolyze sucrose from sugar cane molasses into glucose and fructose; two easily assimilable hexoses. The aim of this study was to evaluate the effect of gamma irradiation on the activity of S. cerevisiae in the ethanol production yeast cells exposed to different doses of gamma rays (0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 KGy. The sugar cane substrate was optimized after maintaining deferent levels of sugar concentrations (12-21%), medium ph (4.0-5.5), incubation temperature (25-40 degree C) and rate of fermentation (24-168 h). The data showed that the rate of ethanol production reached its maximum by using the irradiated S. cerevisiae cells at 0.1 kGy dose at fermentation conditions as 15% sugar concentration, ph 4.5, incubation temperature 30 degree C, fermentation time 96 h at a fermentation medium volume 250 ml found in 500 ml Erlenmeyer flasks.

  5. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mathias Klein

    2016-12-01

    Full Text Available Glycerol is an abundant by-product during biodiesel production and additionally has several assets compared to sugars when used as a carbon source for growing microorganisms in the context of biotechnological applications. However, most strains of the platform production organism Saccharomyces cerevisiae grow poorly in synthetic glycerol medium. It has been hypothesized that the uptake of glycerol could be a major bottleneck for the utilization of glycerol in S. cerevisiae. This species exclusively relies on an active transport system for glycerol uptake. This work demonstrates that the expression of predicted glycerol facilitators (Fps1 homologues from superior glycerol-utilizing yeast species such as Pachysolen tannophilus, Komagataella pastoris, Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S. cerevisiae wild-type strain (CBS 6412-13A. The maximum specific growth rate increased from 0.13 up to 0.18 h−1 and a biomass yield coefficient of 0.56 gDW/gglycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based on baker's yeast. Keywords: Yeast, Saccharomyces cerevisiae, Glycerol, Transport, Glycerol facilitator, Fps1, Stl1

  6. On cycles in the transcription network of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Berman Piotr

    2008-01-01

    Full Text Available Abstract Background We investigate the cycles in the transcription network of Saccharomyces cerevisiae. Unlike a similar network of Escherichia coli, it contains many cycles. We characterize properties of these cycles and their place in the regulatory mechanism of the cell. Results Almost all cycles in the transcription network of Saccharomyces cerevisiae are contained in a single strongly connected component, which we call LSCC (L for "largest", except for a single cycle of two transcription factors. The fact that LSCC includes almost all cycles is well explained by the properties of a random graph with the same in- and out-degrees of the nodes. Among different physiological conditions, cell cycle has the most significant relationship with LSCC, as the set of 64 transcription interactions that are active in all phases of the cell cycle has overlap of 27 with the interactions of LSCC (of which there are 49. Conversely, if we remove the interactions that are active in all phases of the cell cycle (25% of interactions to transcription factors, the LSCC would have only three nodes and 5 edges, many fewer than expected. This subgraph of the transcription network consists mostly of interactions that are active only in the stress response subnetwork. We also characterize the role of LSCC in the topology of the network. We show that LSCC can be used to define a natural hierarchy in the network and that in every physiological subnetwork LSCC plays a pivotal role. Conclusion Apart from those well-defined conditions, the transcription network of Saccharomyces cerevisiae is devoid of cycles. It was observed that two conditions that were studied and that have no cycles of their own are exogenous: diauxic shift and DNA repair, while cell cycle and sporulation are endogenous. We claim that in a certain sense (slow recovery stress response is endogenous as well.

  7. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Kwak, Suryang; Kim, Soo Rin; Xu, Haiqing; Zhang, Guo-Chang; Lane, Stephan; Kim, Heejin; Jin, Yong-Su

    2017-11-01

    Saccharomyces cerevisiae has limited capabilities for producing fuels and chemicals derived from acetyl-CoA, such as isoprenoids, due to a rigid flux partition toward ethanol during glucose metabolism. Despite numerous efforts, xylose fermentation by engineered yeast harboring heterologous xylose metabolic pathways was not as efficient as glucose fermentation for producing ethanol. Therefore, we hypothesized that xylose metabolism by engineered yeast might be a better fit for producing non-ethanol metabolites. We indeed found that engineered S. cerevisiae on xylose showed higher expression levels of the enzymes involved in ethanol assimilation and cytosolic acetyl-CoA synthesis than on glucose. When genetic perturbations necessary for overproducing squalene and amorphadiene were introduced into engineered S. cerevisiae capable of fermenting xylose, we observed higher titers and yields of isoprenoids under xylose than glucose conditions. Specifically, co-overexpression of a truncated HMG1 (tHMG1) and ERG10 led to substantially higher squalene accumulation under xylose than glucose conditions. In contrast to glucose utilization producing massive amounts of ethanol regardless of aeration, xylose utilization allowed much less amounts of ethanol accumulation, indicating ethanol is simultaneously re-assimilated with xylose consumption and utilized for the biosynthesis of cytosolic acetyl-CoA. In addition, xylose utilization by engineered yeast with overexpression of tHMG1, ERG10, and ADS coding for amorphadiene synthase, and the down-regulation of ERG9 resulted in enhanced amorphadiene production as compared to glucose utilization. These results suggest that the problem of the rigid flux partition toward ethanol production in yeast during the production of isoprenoids and other acetyl-CoA derived chemicals can be bypassed by using xylose instead of glucose as a carbon source. Biotechnol. Bioeng. 2017;114: 2581-2591. © 2017 Wiley Periodicals, Inc. © 2017 Wiley

  8. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement.

    Science.gov (United States)

    Renault, Philippe; Coulon, Joana; de Revel, Gilles; Barbe, Jean-Christophe; Bely, Marina

    2015-08-17

    The aim of this work was to study ester formation and the aromatic impact of Torulaspora delbrueckii when used in association with Saccharomyces cerevisiae during the alcoholic fermentation of must. In order to evaluate the influence of the inoculation procedure, sequential and simultaneous mixed cultures were carried out and compared to pure cultures of T. delbrueckii and S. cerevisiae. Our results showed that mixed inoculations allowed the increase, in comparison to S. cerevisiae pure culture, of some esters specifically produced by T. delbrueckii and significantly correlated to the maximal T. delbrueckii population reached in mixed cultures. Thus, ethyl propanoate, ethyl isobutanoate and ethyl dihydrocinnamate were considered as activity markers of T. delbrueckii. On the other hand, isobutyl acetate and isoamyl acetate concentrations were systematically increased during mixed inoculations although not correlated with the development of either species but were rather due to positive interactions between these species. Favoring T. delbrueckii development when performing sequential inoculation enhanced the concentration of esters linked to T. delbrueckii activity. On the contrary, simultaneous inoculation restricted the growth of T. delbrueckii, limiting the production of its activity markers, but involved a very important production of numerous esters due to more important positive interactions between species. These results suggest that the ester concentrations enhancement via interactions during mixed modalities was due to S. cerevisiae production in response to the presence of T. delbrueckii. Finally, sensory analyses showed that mixed inoculations between T. delbrueckii and S. cerevisiae allowed to enhance the complexity and fruity notes of wine in comparison to S. cerevisiae pure culture. Furthermore, the higher levels of ethyl propanoate, ethyl isobutanoate, ethyl dihydrocinnamate and isobutyl acetate in mixed wines were found responsible for the increase of

  9. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zadorsky, S P; Sopova, Y V; Andreichuk, D Y; Startsev, V A; Medvedeva, V P; Inge-Vechtomov, S G

    2015-06-01

    The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts. Copyright © 2015 John Wiley & Sons, Ltd.

  10. The evolution of gene expression QTL in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    James Ronald

    2007-08-01

    Full Text Available Understanding the evolutionary forces that influence patterns of gene expression variation will provide insights into the mechanisms of evolutionary change and the molecular basis of phenotypic diversity. To date, studies of gene expression evolution have primarily been made by analyzing how gene expression levels vary within and between species. However, the fundamental unit of heritable variation in transcript abundance is the underlying regulatory allele, and as a result it is necessary to understand gene expression evolution at the level of DNA sequence variation. Here we describe the evolutionary forces shaping patterns of genetic variation for 1206 cis-regulatory QTL identified in a cross between two divergent strains of Saccharomyces cerevisiae. We demonstrate that purifying selection against mildly deleterious alleles is the dominant force governing cis-regulatory evolution in S. cerevisiae and estimate the strength of selection. We also find that essential genes and genes with larger codon bias are subject to slightly stronger cis-regulatory constraint and that positive selection has played a role in the evolution of major trans-acting QTL.

  11. Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kanchana R. Kildegaard

    2015-12-01

    Full Text Available Biomass, the most abundant carbon source on the planet, may in the future become the primary feedstock for production of fuels and chemicals, replacing fossil feedstocks. This will, however, require development of cell factories that can convert both C6 and C5 sugars present in lignocellulosic biomass into the products of interest. We engineered Saccharomyces cerevisiae for production of 3-hydroxypropionic acid (3HP, a potential building block for acrylates, from glucose and xylose. We introduced the 3HP biosynthetic pathways via malonyl-CoA or β-alanine intermediates into a xylose-consuming yeast. Using controlled fed-batch cultivation, we obtained 7.37±0.17 g 3HP L−1 in 120 hours with an overall yield of 29±1% Cmol 3HP Cmol−1 xylose. This study is the first demonstration of the potential of using S. cerevisiae for production of 3HP from the biomass sugar xylose. Keywords: Metabolic engineering, Biorefineries, 3-hydroxypropionic acid, Saccharomyces cerevisiae, Xylose utilization

  12. Increased ethanol production by deletion of HAP4 in recombinant xylose-assimilating Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsushika, Akinori; Hoshino, Tamotsu

    2015-12-01

    The Saccharomyces cerevisiae HAP4 gene encodes a transcription activator that plays a key role in controlling the expression of genes involved in mitochondrial respiration and reductive pathways. This work examines the effect of knockout of the HAP4 gene on aerobic ethanol production in a xylose-utilizing S. cerevisiae strain. A hap4-deleted recombinant yeast strain (B42-DHAP4) showed increased maximum concentration, production rate, and yield of ethanol compared with the reference strain MA-B42, irrespective of cultivation medium (glucose, xylose, or glucose/xylose mixtures). Notably, B42-DHAP4 was capable of producing ethanol from xylose as the sole carbon source under aerobic conditions, whereas no ethanol was produced by MA-B42. Moreover, the rate of ethanol production and ethanol yield (0.44 g/g) from the detoxified hydrolysate of wood chips was markedly improved in B42-DHAP4 compared to MA-B42. Thus, the results of this study support the view that deleting HAP4 in xylose-utilizing S. cerevisiae strains represents a useful strategy in ethanol production processes.

  13. Crystallization and preliminary X-ray diffraction analysis of motif N from Saccharomyces cerevisiae Dbf4

    International Nuclear Information System (INIS)

    Matthews, Lindsay A.; Duong, Andrew; Prasad, Ajai A.; Duncker, Bernard P.; Guarné, Alba

    2009-01-01

    To understand the role of the Cdc7–Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. The Cdc7–Dbf4 complex plays an instrumental role in the initiation of DNA replication and is a target of replication-checkpoint responses in Saccharomyces cerevisiae. Cdc7 is a conserved serine/threonine kinase whose activity depends on association with its regulatory subunit, Dbf4. A conserved sequence near the N-terminus of Dbf4 (motif N) is necessary for the interaction of Cdc7–Dbf4 with the checkpoint kinase Rad53. To understand the role of the Cdc7–Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. A complete native data set was collected at 100 K from crystals that diffracted X-rays to 2.75 Å resolution and structure determination is currently under way

  14. Air-liquid biofilm formation is dependent on ammonium depletion in a Saccharomyces cerevisiae flor strain.

    Science.gov (United States)

    Zara, Giacomo; Budroni, Marilena; Mannazzu, Ilaria; Zara, Severino

    2011-12-01

    Air-liquid biofilm formation appears to be an adaptive mechanism that promotes foraging of Saccharomyces cerevisiae flor strains in response to nutrient starvation. The FLO11 gene plays a central role in this phenotype as its expression allows yeast cells to rise to the liquid surface. Here, we investigated the role of ammonium depletion in air-liquid biofilm formation and FLO11 expression in a S. cerevisiae flor strain. The data obtained show that increasing ammonium concentrations from 0 to 450 m m reduce air-liquid biofilm in terms of biomass and velum formation and correlate with a reduction of FLO11 expression. Rapamycin inhibition of the TOR pathway and deletion of RAS2 gene significantly reduced biofilm formation and FLO11 expression. Taken together, these data suggest that ammonium depletion is a key factor in the induction of air-liquid biofilm formation and FLO11 expression in S. cerevisiae flor strains. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Science.gov (United States)

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene

  16. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Directory of Open Access Journals (Sweden)

    Milanovic Vesna

    2012-02-01

    Full Text Available Abstract Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1 and alcohol dehydrogenase (Adh1 were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation

  17. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol

    Science.gov (United States)

    A mixture of acetic acid, furfural and phenol (AFP), three representative lignocellulose derived inhibitors, significantly inhibited the growth and bioethanol production of Saccharomyces cerevisiae. In order to uncover mechanisms behind the enhanced tolerance of an inhibitor-tolerant S.cerevisiae s...

  18. Quality and Composition of Airén Wines Fermented by Sequential Inoculation of Lachancea thermotolerans and Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ángel Benito

    2016-01-01

    Full Text Available This study evaluates the influence of Lachancea thermotolerans on low-acidity Airén grape must from the south of Spain. For this purpose, combined fermentations with Lachancea thermotolerans and Saccharomyces cerevisiae were compared to a single fermentation by S. cerevisiae. Results of all developed analyses showed significant differences in several parameters including acidity, population growth kinetics, concentration of amino acids, volatile and non-volatile compounds, and sensorial parameters. The Airén wine quality increased mainly due to the acidification by L. thermotolerans. The acidification process caused a lactic acid increment of 3.18 g/L and a reduction of 0.22 in pH compared to the control fermentation, performed by S. cerevisiae.

  19. Bioaccumulation of uranium from waste water using different strains of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Tykva, R.; Novak, J.; Podracka, E.; Popa, K.

    2009-01-01

    Five different strains of Saccharomyces cerevisiae were tested for their abilities to accumulate uranium from waste water containing competitive ions. Samples of water passing out from a previous uranium mill were used. The strains tested possess different abilities to accumulate uranium. The kinetics of bioaccumulation, the leaching degree, the influence of cell density and their origin were investigated. Under the applied experimental conditions, more than a half of the total activity (uranium and the decay products) could be accumulated after 60 min contact time of 1 mL (S. cerevisiae) suspension and 5 mL of water. The other cations present in solution effectively competed for the uranium accumulation. 226 Ra and its decay products were completely retained using all tested strains. (authors)

  20. Toxicological effects of multi-walled carbon nanotubes on Saccharomyces cerevisiae: The uptake kinetics and mechanisms and the toxic responses

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Song; Zhu, Bin; Huang, Aiguo [College of Animal Science and Technology, Northwest A& F University, Yangling 712100 (China); Hu, Yang [College of Science, Northwest A& F University, Yangling 712100 (China); Wang, Gaoxue, E-mail: wanggaoxue@126.com [College of Animal Science and Technology, Northwest A& F University, Yangling 712100 (China); Ling, Fei, E-mail: feiling@nwsuaf.edu.cn [College of Animal Science and Technology, Northwest A& F University, Yangling 712100 (China)

    2016-11-15

    Highlights: • MWCNTs (<100 mg/L) were not toxic to S. cerevisiae. • MWCNTs were internalized in S. cerevisiae cells by three pathways. • The uptake kinetics and the subcellular distribution of MWCNTs in S. cerevisiae cells were shown. • S. cerevisiae cells were undergoing apoptosis by mitochondrial impairment pathway. - Abstract: Using Saccharomyces cerevisiae as an experimental model, the potential toxicological effects of oxidized multi-walled carbon nanotubes (MWCNTs) were investigated following exposure to 0–600 mg/L for 24 h. Results indicated that MWCNTs (>100 mg/L) had adverse effects on the cell proliferation. MWCNTs were clearly visible in lysosome, vacuole, endosome, mitochondria, multivesicular body and localization in the perinuclear region. The uptake kinetics data demonstrated that the maximum MWCNTs content (209.61 mg/g) was reached at 3 h, and a steady state was reached after 18 h. Based on the combined results of transmission electron microscope, endocytosis inhibition experiments and endocytosis-related genes (END3, END6, Sla2 and Rsp5) expression analysis, we elucidated MWCNTs uptake mechanism: (i) via a direct penetration of single MWCNTs; (ii) via endocytosis of single MWCNTs; and (iii) via endocytosis of MWCNTs aggregates. The percentage of apoptosis was significant increased at 600 mg/L. The decrease of mitochondrial transmembrane potential and the leakage of cytochrome c shown dose-dependent manners. Interestingly, there was no significant increase of reactive oxygen species (ROS). The apoptosis-related genes (SOD1, SOD2, Yca1, Nma111 and Nuc1) were significant changed. These results obtained in our study demonstrated that oxidized MWCNTs induce Saccharomyces cerevisiae apoptosis via mitochondrial impairment pathway.

  1. Properties of promoters cloned randomly from the Saccharomyces cerevisiae genome.

    Science.gov (United States)

    Santangelo, G M; Tornow, J; McLaughlin, C S; Moldave, K

    1988-01-01

    Promoters were isolated at random from the genome of Saccharomyces cerevisiae by using a plasmid that contains a divergently arrayed pair of promoterless reporter genes. A comprehensive library was constructed by inserting random (DNase I-generated) fragments into the intergenic region upstream from the reporter genes. Simple in vivo assays for either reporter gene product (alcohol dehydrogenase or beta-galactosidase) allowed the rapid identification of promoters from among these random fragments. Poly(dA-dT) homopolymer tracts were present in three of five randomly cloned promoters. With two exceptions, each RNA start site detected was 40 to 100 base pairs downstream from a TATA element. All of the randomly cloned promoters were capable of activating reporter gene transcription bidirectionally. Interestingly, one of the promoter fragments originated in a region of the S. cerevisiae rDNA spacer; regulated divergent transcription (presumably by RNA polymerase II) initiated in the same region. Images PMID:2847031

  2. Silver Uptake and Reuse of Biomass by Saccharomyces cerevisiae ...

    African Journals Online (AJOL)

    Studies were carried out on the recovery of bound silver and reuse of Chlorella emersonii and Saccharomyces cerevisiae biomass for further silver uptake after they were placed in contact with 20mg/l silver for 30 minutes to allow for maximum binding. It was found that 0.16M nitric acid gave the best recovery rates of silver.

  3. Hydrogen peroxide removal with magnetically responsive Saccharomyces cerevisiae cells

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Maděrová, Zdeňka; Šafaříková, Miroslava

    2008-01-01

    Roč. 56, - (2008), s. 7925-7928 ISSN 0021-8561 R&D Projects: GA MPO 2A-1TP1/094; GA MŠk OC 157 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetic alginate beads * catalase * magnetic separation * Saccharomyces cerevisiae cells * hydrogen peroxide Subject RIV: GM - Food Processing Impact factor: 2.562, year: 2008

  4. Kinetics of formation of induced mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chepurnoj, A.I.; Levkovich, N.V.; Mikhova-Tsenova, N.; Mel'nikova, L.A.

    1990-01-01

    UV and γ-radiation mutagenic effect an various strains of Saccharomyces cerevisiae was studied by analyzing formation kinetics of induced mutants at the period of postirradiation incubation. Mechanisms of induced reverse formation was suggested. The presented analysis is considered to be differential taking account of more subtle aspects of induced mutagenesis. 8 refs.; 10 figs.; 3 tabs

  5. Glucose repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kayikci, Ömur; Nielsen, Jens

    2015-09-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. © FEMS 2015.

  6. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jared W Wenger

    2010-05-01

    Full Text Available Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.

  7. Optimization of ordered plasmid assembly by gap repair in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Pedersen, Mette Louise; Krogh, Berit Olsen

    2012-01-01

    Combinatorial genetic libraries are powerful tools for diversifying and optimizing biomolecules. The process of library assembly is a major limiting factor for library complexity and quality. Gap repair by homologous recombination in Saccharomyces cerevisiae can facilitate in vivo assembly of DNA...

  8. The use of genetically modified Saccharomyces cerevisiae strains in the wine industry.

    Science.gov (United States)

    Schuller, Dorit; Casal, Margarida

    2005-08-01

    In recent decades, science and food technology have contributed at an accelerated rate to the introduction of new products to satisfy nutritional, socio-economic and quality requirements. With the emergence of modern molecular genetics, the industrial importance of Saccharomyces cerevisiae, is continuously extended. The demand for suitable genetically modified (GM) S. cerevisiae strains for the biofuel, bakery and beverage industries or for the production of biotechnological products (e.g. enzymes, pharmaceutical products) will continuously grow in the future. Numerous specialised S. cerevisiae wine strains were obtained in recent years, possessing a wide range of optimised or novel oenological properties, capable of satisfying the demanding nature of modern winemaking practise. The unlocking of transcriptome, proteome and metabolome complexities will contribute decisively to the knowledge about the genetic make-up of commercial yeast strains and will influence wine strain improvement via genetic engineering. The most relevant advances regarding the importance and implications of the use of GM yeast strains in the wine industry are discussed in this mini-review. In this work, various aspects are considered including the strategies used for the construction of strains with respect to current legislation requirements, the environmental risk evaluations concerning the deliberate release of genetically modified yeast strains, the methods for detection of recombinant DNA and protein that are currently under evaluation, and the reasons behind the critical public perception towards the application of such strains.

  9. Enhanced kefiran production by mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae.

    Science.gov (United States)

    Cheirsilp, Benjamas; Shimizu, Hiroshi; Shioya, Suteaki

    2003-01-09

    In a batch mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae, which could assimilate lactic acid, cell growth and kefiran production rates of L. kefiranofaciens significantly increased, compared with those in pure cultures. The kefiran production rate was 36 mg l(-1) h(-1) in the mixed culture under the anaerobic condition, which was greater than that in the pure culture (24 mg l(-1) h(-1)). Under the aerobic condition, a more intensive interaction between these two strains was observed and higher kefiran production rate (44 mg l(-1) h(-1)) was obtained compared with that under the anaerobic condition. Kefiran production was further enhanced by an addition of fresh medium in the fed-batch mixed culture. In the fed-batch mixed culture, a final kefiran concentration of 5.41 g l(-1) was achieved at 87 h, thereby attaining the highest productivity at 62 mg l(-1) h(-1). Simulation study considered the reduction of lactic acid in pure culture was performed to estimate the additional effect of coculture with S. cerevisiae. Slightly higher cell growth and kefiran production rates in the mixed culture than those expected from pure culture by simulation were observed. These results suggest that coculture of L. kefiranofaciens and S. cerevisiae not only reduces the lactic acid concentration by consumption but also stimulates cell growth and kefiran production of L. kefiranofaciens.

  10. Intracellular Signal Triggered by Cholera Toxin in Saccharomyces boulardii and Saccharomyces cerevisiae

    Science.gov (United States)

    Brandão, Rogelio L.; Castro, Ieso M.; Bambirra, Eduardo A.; Amaral, Sheila C.; Fietto, Luciano G.; Tropia, Maria José M.; Neves, Maria José; Dos Santos, Raquel G.; Gomes, Newton C. M.; Nicoli, Jacques R.

    1998-01-01

    As is the case for Saccharomyces boulardii, Saccharomyces cerevisiae W303 protects Fisher rats against cholera toxin (CT). The addition of glucose or dinitrophenol to cells of S. boulardii grown on a nonfermentable carbon source activated trehalase in a manner similar to that observed for S. cerevisiae. The addition of CT to the same cells also resulted in trehalase activation. Experiments performed separately on the A and B subunits of CT showed that both are necessary for activation. Similarly, the addition of CT but not of its separate subunits led to a cyclic AMP (cAMP) signal in both S. boulardii and S. cerevisiae. These data suggest that trehalase stimulation by CT probably occurred through the cAMP-mediated protein phosphorylation cascade. The requirement of CT subunit B for both the cAMP signal and trehalase activation indicates the presence of a specific receptor on the yeasts able to bind to the toxin, a situation similar to that observed for mammalian cells. This hypothesis was reinforced by experiments with 125I-labeled CT showing specific binding of the toxin to yeast cells. The adhesion of CT to a receptor on the yeast surface through the B subunit and internalization of the A subunit (necessary for the cAMP signal and trehalase activation) could be one more mechanism explaining protection against the toxin observed for rats treated with yeasts. PMID:9464394

  11. Expression of an Aspergillus niger Phytase Gene (phyA) in Saccharomyces cerevisiae

    Science.gov (United States)

    Han, Yanming; Wilson, David B.; Lei, Xin gen

    1999-01-01

    Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals and reduces phosphorus pollution of animal waste. Our objectives were to express an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae and to determine the effects of glycosylation on the phytase’s activity and thermostability. A 1.4-kb DNA fragment containing the coding region of the phyA gene was inserted into the expression vector pYES2 and was expressed in S. cerevisiae as an active, extracellular phytase. The yield of total extracellular phytase activity was affected by the signal peptide and the medium composition. The expressed phytase had two pH optima (2 to 2.5 and 5 to 5.5) and a temperature optimum between 55 and 60°C, and it cross-reacted with a rabbit polyclonal antibody against the wild-type enzyme. Due to the heavy glycosylation, the expressed phytase had a molecular size of approximately 120 kDa and appeared to be more thermostable than the commercial enzyme. Deglycosylation of the phytase resulted in losses of 9% of its activity and 40% of its thermostability. The recombinant phytase was effective in hydrolyzing phytate phosphorus from corn or soybean meal in vitro. In conclusion, the phyA gene was expressed as an active, extracellular phytase in S. cerevisiae, and its thermostability was affected by glycosylation. PMID:10223979

  12. Saccharomyces cerevisiae GTPase complex: Gtr1p-Gtr2p regulates cell-proliferation through Saccharomyces cerevisiae Ran-binding protein, Yrb2p

    International Nuclear Information System (INIS)

    Wang Yonggang; Nakashima, Nobutaka; Sekiguchi, Takeshi; Nishimoto, Takeharu

    2005-01-01

    A Gtr1p GTPase, the GDP mutant of which suppresses both temperature-sensitive mutants of Saccharomyces cerevisiae RanGEF/Prp20p and RanGAP/Rna1p, was presently found to interact with Yrb2p, the S. cerevisiae homologue of mammalian Ran-binding protein 3. Gtr1p bound the Ran-binding domain of Yrb2p. In contrast, Gtr2p, a partner of Gtr1p, did not bind Yrb2p, although it bound Gtr1p. A triple mutant: yrb2Δ gtr1Δ gtr2Δ was lethal, while a double mutant: gtr1Δ gtr2Δ survived well, indicating that Yrb2p protected cells from the killing effect of gtr1Δ gtr2Δ. Recombinant Gtr1p and Gtr2p were purified as a complex from Escherichia coli. The resulting Gtr1p-Gtr2p complex was comprised of an equal amount of Gtr1p and Gtr2p, which inhibited the Rna1p/Yrb2 dependent RanGAP activity. Thus, the Gtr1p-Gtr2p cycle was suggested to regulate the Ran cycle through Yrb2p

  13. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.

    Directory of Open Access Journals (Sweden)

    José Manuel Otero

    Full Text Available Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol, and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after added-value chemical for which there is no native pre-disposition for production and accmulation in S. cerevisiae. The genome-scale metabolic network reconstruction of S. cerevisiae enabled in silico gene deletion predictions using an evolutionary programming method to couple biomass and succinate production. Glycine and serine, both essential amino acids required for biomass formation, are formed from both glycolytic and TCA cycle intermediates. Succinate formation results from the isocitrate lyase catalyzed conversion of isocitrate, and from the α-keto-glutarate dehydrogenase catalyzed conversion of α-keto-glutarate. Succinate is subsequently depleted by the succinate dehydrogenase complex. The metabolic engineering strategy identified included deletion of the primary succinate consuming reaction, Sdh3p, and interruption of glycolysis derived serine by deletion of 3-phosphoglycerate dehydrogenase, Ser3p/Ser33p. Pursuing these targets, a multi-gene deletion strain was constructed, and directed evolution with selection used to identify a succinate producing mutant. Physiological characterization coupled with integrated data analysis of transcriptome data in the metabolically engineered strain were used to identify 2(nd-round metabolic engineering targets. The resulting strain represents a 30-fold improvement in succinate titer, and a 43-fold improvement in succinate yield on biomass, with only a 2.8-fold decrease in the specific growth rate compared to the reference strain. Intuitive genetic targets for either over-expression or interruption of succinate producing or consuming pathways, respectively, do not lead to increased succinate. Rather, we

  14. Recycling carbon dioxide during xylose fermentation by engineered Saccharomyces cerevisiae

    Science.gov (United States)

    In this study, we introduced the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and phosphoribulokinase (PRK) into an engineered S. cerevisiae (SR8) harboring the XR/XDH pathway and up-regulated PPP 10, to enable CO2 recycling through a synthetic rPPP during xylose fermentation (Fig. 1). ...

  15. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Fujita, Ken-Ichi; Tatsumi, Miki; Ogita, Akira; Kubo, Isao; Tanaka, Toshio

    2014-02-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum, and antimicrobial activity that is weaker than that of other antibiotics on the market. When combined with polygodial, nagilactone E, and n-dodecanol, anethole has been shown to possess significant synergistic antifungal activity against a budding yeast, Saccharomyces cerevisiae, and a human opportunistic pathogenic yeast, Candida albicans. However, the antifungal mechanism of anethole has not been completely determined. We found that anethole stimulated cell death of a human opportunistic pathogenic fungus, Aspergillus fumigatus, in addition to S. cerevisiae. The anethole-induced cell death was accompanied by reactive oxygen species production, metacaspase activation, and DNA fragmentation. Several mutants of S. cerevisiae, in which genes related to the apoptosis-initiating execution signals from mitochondria were deleted, were resistant to anethole. These results suggest that anethole-induced cell death could be explained by oxidative stress-dependent apoptosis via typical mitochondrial death cascades in fungi, including A. fumigatus and S. cerevisiae. © 2014 FEBS.

  16. Elimination of Glycerol Production in Anaerobic Cultures of a Saccharomyces cerevisiae Strain Engineered To Use Acetic Acid as an Electron Acceptor

    NARCIS (Netherlands)

    Medina, V.G.; Almering, M.J.H.; Van Maris, A.J.A.; Pronk, J.T.

    2009-01-01

    In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in

  17. H. guilliermondii impacts growth kinetics and metabolic activity of S. cerevisiae: the role of initial nitrogen concentration.

    Science.gov (United States)

    Lage, Patrícia; Barbosa, Catarina; Mateus, Beatriz; Vasconcelos, Isabel; Mendes-Faia, Arlete; Mendes-Ferreira, Ana

    2014-02-17

    Non-Saccharomyces yeasts include different species which comprise an ecologically and biochemically diverse group capable of altering fermentation dynamics and wine composition and flavour. In this study, single- and mixed-culture of Hanseniaspora guilliermondii and Saccharomyces cerevisiae were used to ferment natural grape-juice, under two nitrogen regimes. In single-culture the strain H. guilliermondii failed to complete total sugar breakdown even though the nitrogen available has not been a limiting factor of its growth or fermentative activity. In mixed-culture, that strain negatively interfered with the growth and fermentative performance of S. cerevisiae, resulting in lower fermentation rate and longer fermentation length, irrespective of the initial nitrogen concentration. The impact of co-inoculation on the volatile compounds profile was more evident in the wines obtained from DAP-supplemented musts, characterised by increased levels of ethyl and acetate esters, associated with fruity and floral character of wines. Moreover, the levels of fatty acids and sulphur compounds which are responsible for unpleasant odours that depreciate wine sensory quality were significantly lower. Accordingly, data obtained suggests that the strain H. guilliermondii has potential to be used as adjunct of S. cerevisiae in wine industry, although possible interactions with S. cerevisiae still need to be elucidated. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    OpenAIRE

    Strucko, Tomas; Eriksen, Jens Christian; Nielsen, J.; Mortensen, Uffe Hasbro

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of...

  19. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae

    OpenAIRE

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-01-01

    Background Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. Methods In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Results First...

  20. Hurdle technology applied to prickly pear beverages for inhibiting Saccharomyces cerevisiae and Escherichia coli.

    Science.gov (United States)

    García-García, R; Escobedo-Avellaneda, Z; Tejada-Ortigoza, V; Martín-Belloso, O; Valdez-Fragoso, A; Welti-Chanes, J

    2015-06-01

    The effect of pH reduction (from 6·30-6·45 to 4·22-4·46) and the addition of antimicrobial compounds (sodium benzoate and potassium sorbate) on the inhibition of Saccharomyces cerevisiae and Escherichia coli in prickly pear beverages formulated with the pulp and peel of Villanueva (V, Opuntia albicarpa) and Rojo Vigor (RV, Opuntia ficus-indica) varieties during 14 days of storage at 25°C, was evaluated. RV variety presented the highest microbial inhibition. By combining pH reduction and preservatives, reductions of 6·2-log10 and 2·3-log10 for E. coli and S. cerevisiae were achieved respectively. Due to the low reduction of S. cerevisiae, pulsed electric fields (PEF) (11-15 μs/25-50 Hz/27-36 kV cm(-1)) was applied as another preservation factor. The combination of preservatives, pH reduction and PEF at 13-15 μs/25-50 Hz for V variety, and 11 μs/50 Hz, 13-15 μs/25-50 Hz for RV, had a synergistic effect on S. cerevisiae inhibition, achieving at least 3·4-log10 of microbial reduction immediately after processing, and more than 5-log10 at fourth day of storage at 25°C maintained this reduction during 21 days of storage (P > 0·05). Hurdle technology using PEF in combination with other factors is adequate to maintain stable prickly pear beverages during 21 days/25°C. Significance and impact of the study: Prickly pear is a fruit with functional value, with high content of nutraceuticals and antioxidant activity. Functional beverages formulated with the pulp and peel of this fruit represent an alternative for its consumption. Escherichia coli and Saccharomyces cerevisiae are micro-organisms that typically affect fruit beverage quality and safety. The food industry is looking for processing technologies that maintain quality without compromising safety. Hurdle technology, including pulsed electric fields (PEF) could be an option to achieve this. The combination of PEF, pH reduction and preservatives is an alternative to obtain safe and minimally processed

  1. Isolation of beta-glucan from the cell wall of Saccharomyces cerevisiae.

    Science.gov (United States)

    Shokri, Hojjatollah; Asadi, Farzad; Khosravi, Ali Reza

    2008-03-20

    Beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae (S. cerevisiae), has been found to enhance immune functions. At present study, we developed an optimal procedure to extract and purify beta-glucan. At first, yeast cells were grown in sabouraud dextrose agar and then cultured in yeast extract-peptone-glucose (YPG) broth. After incubation, cells were harvested, washed and disrupted by means of sonication method. The obtained cell walls were used to prepare alkali-soluble beta-glucan (glucan-S1). In this regard, 2% sodium hydroxide (NaOH) and 3% acetic acid were used in alkaline-acid extraction, respectively. This preparation contained 2.4% protein. In the next step, DEAE sephacel chromatography was used to remove remaining proteins (glucan-S2). Subsequently this preparation was applied into concanavalin-A sepharose column to remove manann. Finally, beta-glucan free of mannoprotein complexes was prepared (glucan-S3).

  2. Evaluation of Brachypodium distachyon L-Tyrosine Decarboxylase Using L-Tyrosine Over-Producing Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Shuhei Noda

    Full Text Available To demonstrate that herbaceous biomass is a versatile gene resource, we focused on the model plant Brachypodium distachyon, and screened the B. distachyon for homologs of tyrosine decarboxylase (TDC, which is involved in the modification of aromatic compounds. A total of 5 candidate genes were identified in cDNA libraries of B. distachyon and were introduced into Saccharomyces cerevisiae to evaluate TDC expression and tyramine production. It is suggested that two TDCs encoded in the transcripts Bradi2g51120.1 and Bradi2g51170.1 have L-tyrosine decarboxylation activity. Bradi2g51170.1 was introduced into the L-tyrosine over-producing strain of S. cerevisiae that was constructed by the introduction of mutant genes that promote deregulated feedback inhibition. The amount of tyramine produced by the resulting transformant was 6.6-fold higher (approximately 200 mg/L than the control strain, indicating that B. distachyon TDC effectively converts L-tyrosine to tyramine. Our results suggest that B. distachyon possesses enzymes that are capable of modifying aromatic residues, and that S. cerevisiae is a suitable host for the production of L-tyrosine derivatives.

  3. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus

    Science.gov (United States)

    Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung

    2015-01-01

    Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains). PMID:26220934

  4. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures.

    Science.gov (United States)

    Mendes, Filipa; Sieuwerts, Sander; de Hulster, Erik; Almering, Marinka J H; Luttik, Marijke A H; Pronk, Jack T; Smid, Eddy J; Bron, Peter A; Daran-Lapujade, Pascale

    2013-10-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the cocultures, five mechanisms of interaction were identified. (i) Lb. delbrueckii subsp. bulgaricus hydrolyzes lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. delbrueckii subsp. bulgaricus, is excreted and provides a carbon source for yeast. (ii) In pure cultures, Lb. delbrueckii subsp. bulgaricus grows only in the presence of increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. (iii) Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacterium. (iv) A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. delbrueckii subsp. bulgaricus. (v) Transcriptome analysis of Lb. delbrueckii subsp. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipid metabolism, suggesting either a competition of the two microorganisms for fatty acids or a response to the ethanol produced by S. cerevisiae. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigate microbial interactions in mixed populations.

  5. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    Science.gov (United States)

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  6. Data on dynamic study of cytoophidia in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-09-01

    Full Text Available The data in this paper are related to the research article entitled “Filamentation of metabolic enzymes in Saccharomyces cerevisiae” Q.J. Shen et al. (2016 [1]. Cytoophidia are filamentous structures discovered in fruit flies (doi:10.1016/S1673-8527(0960046-1 J.L. Liu (2010 [2], bacteria (doi:10.1038/ncb2087 M. Ingerson-Mahar et al. (2010 [3], yeast (doi:10.1083/jcb.201003001; doi:10.1242/bio.20149613 C. Noree et al. (2010 and J. Zhang, L. Hulme, J.L. Liu (2014 [4,5] and human cells (doi:10.1371/journal.pone.0029690; doi:10.1016/j.jgg.2011.08.004 K. Chen et al. (2011 and W.C. Carcamo et al. (2011 ( [6,7]. However, there is little research on the motility of the cytoophidia. Here we selected cytoophidia formed by 6 filament-forming proteins in the budding yeast S. cerevisiae, and performed living-cell imaging of cells expressing the proteins fused with GFP. The dynamic features of the six types of cytoophidia were analyzed. In the data, both raw movies and analysed results of the dynamics of cytoophidia are presented. Keywords: Saccharomyces cerevisiae, CTP synthase, Cytoophidium, Metabolism, Filamentation

  7. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  8. Estudio de nuevas levaduras Killer "Saccharomyces cerevisiae" y "Torulaspora delbrueckii" para elaborar vinos tranquilos y espumosos

    OpenAIRE

    Velázquez Molinero, Rocío

    2016-01-01

    Se analizan dos nuevos tipos de levaduras vínicas killer de amplio espectro antifúngico: Sacharomyces cerevisiae Klus y Torulaspora delbrueckii Kbarr. Ambas matan a todos los tipos de levaduras S. cerevisiae conocidos, killer y sensibles, además de muchas otras especies de levaduras no-Saccharomyces. El receptor de la pared celular de las levaduras sensibles a ambas toxinas parece ser el beta-glucano. El fenotipo killer de estas levaduras está codificado en virus de dsRNA de tamaño mediano, M...

  9. Investigation of the effect of water exposed to nonequilibrium contact plasma onto saccharomyces cerevisiae yeast

    Directory of Open Access Journals (Sweden)

    S. Mykolenko

    2015-05-01

    Full Text Available Introduction. Additional treatment of water by nonequilibrium contact plasma allows improving consumer characteristics of bakery goods considerably. Determination of the effect of plasma-chemically activated water on morphological, cultural and physiological properties of Saccharomyces cerevisiae yeast is important from the technological point of view. Materials and Methods. Experimental investigations were carried out in the conditions of bacteriological laboratory by seeding the culture of yeasts of ТМ “Lvivski” and “Kryvorizki” on Sabouraud dense liquid nutrient media. The quantity of viable cells of microorganisms was determined by the method of Gould sector seeds. Morphology of the yeast was investigated by phase-contrast microscopy. Biotechnological properties of yeasts were determined on Giss media. Results. The paper establishes the effect of water exposed to nonequilibrium contact plasma on the sensitivity of Saccharomyces cerevisiae and shows absence of suppressive action of treated water with regard to cultural properties of microorganisms. The experiments prove that with the use of plasma-chemically activated water morphological characteristics and biochemical properties of bakery yeasts produced by Lviv and Kryvyi Rig yeast plants are preserved. Culturing of Saccharomyces cerevisiae yeast on the nutrient media prepared with the use of water exposed to nonequilibrium contact plasm resulted in 6,5–15 times’ increase in quantity of viable microorganisms compared with the control on the mains drinking water. Conclusions. Physiological properties of Saccharomyces cerevisiae yeast improved owing to use water exposed to nonequilibrium contact plasma. Results of investigations are recommended for using in yeast production and bread making.

  10. Metabolic alterations during ascosporogenesis of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Carvalho, Sandra; Nadkarni, G.B.

    1977-01-01

    Sporulation of S. cerevisiae has been shown to alter the profiles of enzymes involved in gluconeogenesis and glycolysis. The enhancement in the levels of total cellular carbohydrates could be correlated with the enhancement in fructose 1,6-diphosphatase and trehalose-phosphate synthetase. The latter activity could account for the 15-fold increase in trehalose levels in sporulating cells. Glucose-6-phosphatase, pyruvate kinase and phosphofructokinase showed continuous decline during ascosporogenesis. The relative incorporation of radioactivity from possible precursors of gluconeogenesis indicated that acetate-2- 14 C alone could contribute to carbohydrate synthesis. (author)

  11. Heterologous expression of a rice metallothionein isoform (OsMTI-1b in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance

    Directory of Open Access Journals (Sweden)

    Zahra Ansarypour

    Full Text Available Abstract Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b on the tolerance of Saccharomyces cerevisiae to Cd2+, H2O2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd2+ and accumulated more Cd2+ ions when they were grown in the medium containing CdCl2. In addition, the heterologous expression of GST-OsMTI-1b conferred H2O2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses.

  12. Exploring the Saccharomyces cerevisiae Volatile Metabolome: Indigenous versus Commercial Strains

    Science.gov (United States)

    Alves, Zélia; Melo, André; Figueiredo, Ana Raquel; Coimbra, Manuel A.; Gomes, Ana C.; Rocha, Sílvia M.

    2015-01-01

    Winemaking is a highly industrialized process and a number of commercial Saccharomyces cerevisiae strains are used around the world, neglecting the diversity of native yeast strains that are responsible for the production of wines peculiar flavours. The aim of this study was to in-depth establish the S. cerevisiae volatile metabolome and to assess inter-strains variability. To fulfill this objective, two indigenous strains (BT2652 and BT2453 isolated from spontaneous fermentation of grapes collected in Bairrada Appellation, Portugal) and two commercial strains (CSc1 and CSc2) S. cerevisiae were analysed using a methodology based on advanced multidimensional gas chromatography (HS-SPME/GC×GC-ToFMS) tandem with multivariate analysis. A total of 257 volatile metabolites were identified, distributed over the chemical families of acetals, acids, alcohols, aldehydes, ketones, terpenic compounds, esters, ethers, furan-type compounds, hydrocarbons, pyrans, pyrazines and S-compounds. Some of these families are related with metabolic pathways of amino acid, carbohydrate and fatty acid metabolism as well as mono and sesquiterpenic biosynthesis. Principal Component Analysis (PCA) was used with a dataset comprising all variables (257 volatile components), and a distinction was observed between commercial and indigenous strains, which suggests inter-strains variability. In a second step, a subset containing esters and terpenic compounds (C10 and C15), metabolites of particular relevance to wine aroma, was also analysed using PCA. The terpenic and ester profiles express the strains variability and their potential contribution to the wine aromas, specially the BT2453, which produced the higher terpenic content. This research contributes to understand the metabolic diversity of indigenous wine microflora versus commercial strains and achieved knowledge that may be further exploited to produce wines with peculiar aroma properties. PMID:26600152

  13. Repurposing the Saccharomyces cerevisiae peroxisome for compartmentalizing multi-enzyme pathways

    Energy Technology Data Exchange (ETDEWEB)

    DeLoache, William [Univ. of California, Berkeley, CA (United States); Russ, Zachary [Univ. of California, Berkeley, CA (United States); Samson, Jennifer [Univ. of California, Berkeley, CA (United States); Dueber, John [Univ. of California, Berkeley, CA (United States)

    2017-09-25

    The peroxisome of Saccharomyces cerevisiae was targeted for repurposing in order to create a synthetic organelle that provides a generalizable compartment for engineered metabolic pathways. Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk, improving pathway efficiency, and ultimately modifying the chemical environment to be distinct from that of the cytoplasm. We focused on the Saccharomyces cerevisiae peroxisome, as this organelle is not required for viability when grown on conventional media. We identified an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly importing non-native cargo proteins. Additionally, we performed the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay and characterized the size dependency of metabolite trafficking. Finally, we applied these new insights to compartmentalize a two-enzyme pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titer. This work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.

  14. Calorie restriction hysteretically primes aging Saccharomyces cerevisiae toward more effective oxidative metabolism.

    Directory of Open Access Journals (Sweden)

    Erich B Tahara

    Full Text Available Calorie restriction (CR is an intervention known to extend the lifespan of a wide variety of organisms. In S. cerevisiae, chronological lifespan is prolonged by decreasing glucose availability in the culture media, a model for CR. The mechanism has been proposed to involve an increase in the oxidative (versus fermentative metabolism of glucose. Here, we measured wild-type and respiratory incompetent (ρ(0 S. cerevisiae biomass formation, pH, oxygen and glucose consumption, and the evolution of ethanol, glycerol, acetate, pyruvate and succinate levels during the course of 28 days of chronological aging, aiming to identify metabolic changes responsible for the effects of CR. The concomitant and quantitative measurements allowed for calculations of conversion factors between different pairs of substrates and products, maximum specific substrate consumption and product formation rates and maximum specific growth rates. Interestingly, we found that the limitation of glucose availability in CR S. cerevisiae cultures hysteretically increases oxygen consumption rates many hours after the complete exhaustion of glucose from the media. Surprisingly, glucose-to-ethanol conversion and cellular growth supported by glucose were not quantitatively altered by CR. Instead, we found that CR primed the cells for earlier, faster and more efficient metabolism of respiratory substrates, especially ethanol. Since lifespan-enhancing effects of CR are absent in respiratory incompetent ρ(0 cells, we propose that the hysteretic effect of glucose limitation on oxidative metabolism is central toward chronological lifespan extension by CR in this yeast.

  15. Anti-Saccharomyces cerevisiae autoantibodies in autoimmune diseases: from bread baking to autoimmunity.

    Science.gov (United States)

    Rinaldi, Maurizio; Perricone, Roberto; Blank, Miri; Perricone, Carlo; Shoenfeld, Yehuda

    2013-10-01

    Saccharomyces cerevisiae is best known as the baker's and brewer's yeast, but its residual traces are also frequent excipients in some vaccines. Although anti-S. cerevisiae autoantibodies (ASCAs) are considered specific for Crohn's disease, a growing number of studies have detected high levels of ASCAs in patients affected with autoimmune diseases as compared with healthy controls, including antiphospholipid syndrome, systemic lupus erythematosus, type 1 diabetes mellitus, and rheumatoid arthritis. Commensal microorganisms such as Saccharomyces are required for nutrition, proper development of Peyer's aggregated lymphoid tissue, and tissue healing. However, even the commensal nonclassically pathogenic microbiota can trigger autoimmunity when fine regulation of immune tolerance does not work properly. For our purposes, the protein database of the National Center for Biotechnology Information (NCBI) was consulted, comparing Saccharomyces mannan to several molecules with a pathogenetic role in autoimmune diseases. Thanks to the NCBI bioinformation technology tool, several overlaps in molecular structures (50-100 %) were identified when yeast mannan, and the most common autoantigens were compared. The autoantigen U2 snRNP B″ was found to conserve a superfamily protein domain that shares 83 % of the S. cerevisiae mannan sequence. Furthermore, ASCAs may be present years before the diagnosis of some associated autoimmune diseases as they were retrospectively found in the preserved blood samples of soldiers who became affected by Crohn's disease years later. Our results strongly suggest that ASCAs' role in clinical practice should be better addressed in order to evaluate their predictive or prognostic relevance.

  16. The cellular response of Saccharomyces cerevisiae to multi-walled carbon nanotubes (MWCNTs

    Directory of Open Access Journals (Sweden)

    Chantelle L. Phillips

    2015-03-01

    Full Text Available Nanoparticles (NPs especially those of carbon nanotubes (CNTs have remarkable properties that are very desirable in various biological and biomedical applications. This has necessitated the rapid study of CNT toxicities, to augment their safe use, particularly, in yeast cells. The yeast cell; Saccharomyces cerevisiae is a widely used industrial and biological organism with very limited data regarding their cellular behaviour in NPs. The current study examines the cellular response of S. cerevisiae to MWCNTs. The CNTs were produced by the swirled floating catalytic chemical vapour deposition (SFCCVD method and covalently functionalised using 1,3-dipolar cycloaddition. The CNT properties such as size, surface area, quality and surface vibrations were characterized using TEM, SEM, BET, TGA and Raman spectroscopy, respectively. The cellular uptake was confirmed with a FITC functionalised MWCNTs using 1H NMR, SEM and TEM. The CNT concentrations of 2–40 μg/ml were used to determine the cellular response through cell growth phases and cell viability characteristics. The TEM and SEM analyses showed the production of MWCNTs with an average diameter of 53 ± 12 nm and a length of 2.5 ± 0.5 μm. The cellular uptake of FITC-MWCNTs showed 100% internalisation in the yeast cells. The growth curve responses to the MWCNT doses showed no significant differences at P > 0.05 on the growth rate and viability of the S. cerevisiae cells.

  17. Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kaushik Raj

    2018-06-01

    Full Text Available Adipic acid is an important industrial chemical used in the synthesis of nylon-6,6. The commercial synthesis of adipic acid uses petroleum-derived benzene and releases significant quantities of greenhouse gases. Biocatalytic production of adipic acid from renewable feedstocks could potentially reduce the environmental damage and eliminate the need for fossil fuel precursors. Recently, we have demonstrated the first enzymatic hydrogenation of muconic acid to adipic acid using microbial enoate reductases (ERs - complex iron-sulfur and flavin containing enzymes. In this work, we successfully expressed the Bacillus coagulans ER in a Saccharomyces cerevisiae strain producing muconic acid and developed a three-stage fermentation process enabling the synthesis of adipic acid from glucose. The ability to express active ERs and significant acid tolerance of S. cerevisiae highlight the applicability of the developed yeast strain for the biocatalytic production of adipic acid from renewable feedstocks. Keywords: Biosynthesis, Renewable resources, Yeast, Adipic acid, Synthetic biology

  18. Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices.

    Science.gov (United States)

    Liu, Yueqin; Zhang, Genli; Sun, Huan; Sun, Xiangying; Jiang, Nisi; Rasool, Aamir; Lin, Zhanglin; Li, Chun

    2014-10-01

    In this study, thermo-tolerant devices consisting of heat shock genes from thermophiles were designed and introduced into Saccharomyces cerevisiae for improving its thermo-tolerance. Among ten engineered thermo-tolerant yeasts, T.te-TTE2469, T.te-GroS2 and T.te-IbpA displayed over 25% increased cell density and 1.5-4-fold cell viability compared with the control. Physiological characteristics of thermo-tolerant strains revealed that better cell wall integrity, higher trehalose content and enhanced metabolic energy were preserved by thermo-tolerant devices. Engineered thermo-tolerant strain was used to investigate the impact of thermo-tolerant device on pathway efficiency by introducing β-amyrin synthesis pathway, showed 28.1% increased β-amyrin titer, 28-35°C broadened growth temperature range and 72h shortened fermentation period. The results indicated that implanting heat shock proteins from thermophiles to S. cerevisiae would be an efficient approach to improve its thermo-tolerance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sung-Haeng; Kodaki, Tsutomu; Park, Yong-Cheol; Seo, Jin-Ho

    2012-04-30

    Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XR(MUT)) and NAD⁺-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XR(MUT), XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XR(MUT) along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XR(MUT) and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6(MUT)) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6(MUT) resulted in 0.64 g l⁻¹ h⁻¹ xylose consumption rate, 0.25 g l⁻¹ h⁻¹ ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XR(MUT), XDH and XK only. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    Science.gov (United States)

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen

    2012-08-01

    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance

    Science.gov (United States)

    2013-01-01

    Background Hydrocarbon alkanes have been recently considered as important next-generation biofuels because microbial production of alkane biofuels was demonstrated. However, the toxicity of alkanes to microbial hosts can possibly be a bottleneck for high productivity of alkane biofuels. To tackle this toxicity issue, it is essential to understand molecular mechanisms of interactions between alkanes and microbial hosts, and to harness these mechanisms to develop microbial host strains with improved tolerance against alkanes. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels by exploiting cellular mechanisms underlying alkane response. Results To this end, we first confirmed that nonane (C9), decane (C10), and undecane (C11) were significantly toxic and accumulated in S. cerevisiae. Transcriptome analyses suggested that C9 and C10 induced a range of cellular mechanisms such as efflux pumps, membrane modification, radical detoxification, and energy supply. Since efflux pumps could possibly aid in alkane secretion, thereby reducing the cytotoxicity, we formed the hypothesis that those induced efflux pumps could contribute to alkane export and tolerance. In support of this hypothesis, we demonstrated the roles of the efflux pumps Snq2p and Pdr5p in reducing intracellular levels of C10 and C11, as well as enhancing tolerance levels against C10 and C11. This result provided the evidence that Snq2p and Pdr5p were associated with alkane export and tolerance in S. cerevisiae. Conclusions Here, we investigated the cellular mechanisms of S. cerevisiae response to alkane biofuels at a systems level through transcriptome analyses. Based on these mechanisms, we identified efflux pumps involved in alkane export and tolerance in S. cerevisiae. We believe that the results here provide valuable insights into designing microbial engineering strategies to improve cellular tolerance for

  2. Fermentación extractiva de melazas

    Directory of Open Access Journals (Sweden)

    Luis A. Caicedo

    1996-05-01

    Full Text Available Una cepa de Saccharomyces cerevisiae aislada de levadura Fleishman, fue adaptada para fermentar melaza en presencia de solventes como Kerosene, destilados de gasolina y n-Heptano, Fueron realizados ensayos iniciales para seleccionar el solvente, observándose que el Kerosene presenta menor efecto inhibitorio. La fermentación de la melaza fue realizada con mezclas de solvente y mostró en relaciones 1 a 1 y 4 a 1 respectivamente y concentraciones iniciales de azúcar equivalentes a 12 y 16 grados Brix. Se corroboro el efecto inhibitorio que ejerce el producto (etanol en fa fermentación, debido a que concentraciones altas de solvente producen mayor conversión del azúcar y por consiguiente mayor rendimiento. Para altas concentraciones de azúcar la conversión está limitada por la solubilidad del alcohol en el solvente. Comparando los coeficientes de distribución de la mezcla etanol-agua-kerosene con los obtenidos en la mezcla mosto fermentado kerosene, se pudo observar una mayor solubilidad del etanol en la fase orgánica de la última, debido probablemente a la presencia de sales en el medio.

  3. Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters

    Directory of Open Access Journals (Sweden)

    Boles Eckhard

    2011-10-01

    Full Text Available Abstract Background Hydrolysates of plant biomass used for the production of lignocellulosic biofuels typically contain sugar mixtures consisting mainly of D-glucose and D-xylose, and minor amounts of L-arabinose. The yeast Saccharomyces cerevisiae is the preferred microorganism for the fermentative production of ethanol but is not able to ferment pentose sugars. Although D-xylose and L-arabinose fermenting S. cerevisiae strains have been constructed recently, pentose uptake is still a limiting step in mixed sugar fermentations. Results Here we described the cloning and characterization of two sugar transporters, AraT from the yeast Scheffersomyces stipitis and Stp2 from the plant Arabidopsis thaliana, which mediate the uptake of L-arabinose but not of D-glucose into S. cerevisiae cells. A yeast strain lacking all of its endogenous hexose transporter genes and expressing a bacterial L-arabinose utilization pathway could no longer take up and grow with L-arabinose as the only carbon source. Expression of the heterologous transporters supported uptake and utilization of L-arabinose especially at low L-arabinose concentrations but did not, or only very weakly, support D-glucose uptake and utilization. In contrast, the S. cerevisiae D-galactose transporter, Gal2, mediated uptake of both L-arabinose and D-glucose, especially at high concentrations. Conclusions Using a newly developed screening system we have identified two heterologous sugar transporters from a yeast and a plant which can support uptake and utilization of L-arabinose in L-arabinose fermenting S. cerevisiae cells, especially at low L-arabinose concentrations.

  4. Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Tran, Anh-Minh; Nguyen, Thanh-Thao; Nguyen, Cong-Thuan; Huynh-Thi, Xuan-Mai; Nguyen, Cao-Tri; Trinh, Minh-Thuong; Tran, Linh-Thuoc; Cartwright, Stephanie P; Bill, Roslyn M; Tran-Van, Hieu

    2017-04-04

    Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) is a glycoprotein that has been approved by the FDA for the treatment of neutropenia and leukemia in combination with chemotherapies. Recombinant hGM-CSF is produced industrially using the baker's yeast, Saccharomyces cerevisiae, by large-scale fermentation. The methylotrophic yeast, Pichia pastoris, has emerged as an alternative host cell system due to its shorter and less immunogenic glycosylation pattern together with higher cell density growth and higher secreted protein yield than S. cerevisiae. In this study, we compared the pipeline from gene to recombinant protein in these two yeasts. Codon optimization in silico for both yeast species showed no difference in frequent codon usage. However, rhGM-CSF expressed from S. cerevisiae BY4742 showed a significant discrepancy in molecular weight from those of P. pastoris X33. Analysis showed purified rhGM-CSF species with molecular weights ranging from 30 to more than 60 kDa. Fed-batch fermentation over 72 h showed that rhGM-CSF was more highly secreted from P. pastoris than S. cerevisiae (285 and 64 mg total secreted protein/L, respectively). Ion exchange chromatography gave higher purity and recovery than hydrophobic interaction chromatography. Purified rhGM-CSF from P. pastoris was 327 times more potent than rhGM-CSF from S. cerevisiae in terms of proliferative stimulating capacity on the hGM-CSF-dependent cell line, TF-1. Our data support a view that the methylotrophic yeast P. pastoris is an effective recombinant host for heterologous rhGM-CSF production.

  5. Controle de doenças foliares e de flores e qualidade pós-colheita do morangueiro tratado com Saccharomyces cerevisiae Control of leaf and flower diseases and postharvest quality of strawberry plants treated with Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Alfredo de Gouvea

    2009-12-01

    Full Text Available O efeito de diferentes preparações de Saccharomyces cerevisiae foi avaliado sobre o desenvolvimento das doenças do morangueiro, como mancha-de-micosferela (Mycosphaerella fragariae, mancha-de-dendrofoma (Dendrophoma obscurans e flor-preta (Colletotrichum acutatum além da qualidade pós-colheita dos frutos. O trabalho foi realizado entre 2004 e 2005 na Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos. Os tratamentos consistiram de pulverizações semanais de cinco diferentes preparados a partir da levedura S. cerevisiae: suspensão com fermento biológico fresco comercial, suspensão de células de levedura, suspensão autoclavada de células, filtrado de cultura em meio líquido e Agro-MOS®, produto comercial formulado a partir da levedura, além da testemunha com água destilada e do tratamento controle com fungicidas. Nenhuma das preparações apresentou efeito contra a mancha-de-micosferela; preparações com a presença de células vivas e o produto Agro-MOS® apresentaram efeito contra mancha-de-dendrofoma; preparações com suspensão do produto comercial e filtrado de cultura líquida reduziram a incidência de flor-preta em flores e frutos. Preparações de S. cerevisiae com suspensão de células, suspensão autoclavada de células e filtrado de cultura líquida promoveram aumento na produtividade dos morangueiros que variou de 589,6 a 617,8 g planta-1. Preparações de S. cerevisiae, com presença de células vivas ou não, alteraram o metabolismo do morangueiro, aumentando a atividade das enzimas quitinase e glucanase, envolvidas na resistência sistêmica adquirida. Todos os tratamentos, com exceção do tratamento com suspensão autoclavada de células, reduziram a incidência de mofo-cinzento em pós-colheita de frutos.The effect of Saccharomyces cerevisiae was evaluated on the development of strawberry diseases and postharvest quality of fruits. The research was carried out in 2004 and 2005 in Paraná State

  6. Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, James [Univ. of California, Berkeley, CA (United States). California Institute of Quantitative Biosciences (QB3); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Dietzel, Kevin L. [Amyris, inc., Emeryville, CA (United States); Wichmann, Gale [Amyris, inc., Emeryville, CA (United States); Chan, Rossana [Univ. of California, Berkeley, CA (United States). California Institute of Quantitative Biosciences (QB3); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Antipov, Eugene [Amyris, inc., Emeryville, CA (United States); Moss, Nathan [Amyris, inc., Emeryville, CA (United States); Baidoo, Edward E. K. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Jackson, Peter [Amyris, inc., Emeryville, CA (United States); Gaucher, Sara P. [Amyris, inc., Emeryville, CA (United States); Gottlieb, Shayin [Amyris, inc., Emeryville, CA (United States); LaBarge, Jeremy [Amyris, inc., Emeryville, CA (United States); Mahatdejkul, Tina [Amyris, inc., Emeryville, CA (United States); Hawkins, Kristy M. [Amyris, inc., Emeryville, CA (United States); Muley, Sheela [Amyris, inc., Emeryville, CA (United States); Newman, Jack D. [Amyris, inc., Emeryville, CA (United States); Liu, Pinghua [Boston Univ., MA (United States). Dept. of Chemistry; Keasling, Jay D. [Univ. of California, Berkeley, CA (United States). California Institute of Quantitative Biosciences (QB3); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). Depts. of Chemical & Biomolecular Engineering and Bioengineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems & Engineering Div.; Technical Univ. of Denmark, Hoesholm (Denmark). Novo Nodisk Foundation Center for Biosustainability; Zhao, Lishan [Amyris, inc., Emeryville, CA (United States)

    2016-10-27

    Isoprenoids are made by all free-living organisms and range from essential metabolites like sterols and quinones to more complex compounds like pinene and rubber. They are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol. There are, however, several advantages to isoprenoid synthesis via the DXP pathway, such as a higher theoretical yield, and it has long been a goal to transplant the pathway into yeast. In this work, we investigate and address barriers to DXP pathway functionality in S. cerevisiae using a combination of synthetic biology, biochemistry and metabolomics. We report, for the first time, functional expression of the DXP pathway in S. cerevisiae. Under low aeration conditions, an engineered strain relying solely on the DXP pathway for isoprenoid biosynthesis achieved an endpoint biomass 80% of that of the same strain using the mevalonate pathway.

  7. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus.

    Science.gov (United States)

    Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung

    2015-07-27

    Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase.

    Science.gov (United States)

    Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A

    2014-05-15

    The production of ethyl alcohol by fermentation represents the largest scale application of Saccharomyces cerevisiae in industrial biotechnology. Increased worldwide demand for fuel bioethanol is anticipated over the next decade and will exceed 200 billion liters from further expansions. Our working hypothesis was that the drop in ATP level in S. cerevisiae cells during alcoholic fermentation should lead to an increase in ethanol production (yield and productivity) with a greater amount of the utilized glucose converted to ethanol. Our approach to achieve this goal is to decrease the intracellular ATP level via increasing the unspecific alkaline phosphatase activity. Intact and truncated versions of the S. cerevisiae PHO8 gene coding for vacuolar or cytosolic forms of alkaline phosphatase were fused with the alcohol dehydrogenase gene (ADH1) promoter. The constructed expression cassettes used for transformation vectors also contained the dominant selective marker kanMX4 and S. cerevisiae δ-sequence to facilitate multicopy integration to the genome. Laboratory and industrial ethanol producing strains BY4742 and AS400 overexpressing vacuolar form of alkaline phosphatase were characterized by a slightly lowered intracellular ATP level and biomass accumulation and by an increase in ethanol productivity (13% and 7%) when compared to the parental strains. The strains expressing truncated cytosolic form of alkaline phosphatase showed a prolonged lag-phase, reduced biomass accumulation and a strong defect in ethanol production. Overexpression of vacuolar alkaline phosphatase leads to an increased ethanol yield in S. cerevisiae.

  9. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect.

    Science.gov (United States)

    Kajihata, Shuichi; Matsuda, Fumio; Yoshimi, Mika; Hayakawa, Kenshi; Furusawa, Chikara; Kanda, Akihisa; Shimizu, Hiroshi

    2015-08-01

    Saccharomyces cerevisiae shows a Crabtree effect that produces ethanol in a high glucose concentration even under fully aerobic condition. For efficient production of cake yeast or compressed yeast for baking, ethanol by-production is not desired since glucose limited chemostat or fed-batch cultivations are performed to suppress the Crabtree effect. In this study, the (13)C-based metabolic flux analysis ((13)C-MFA) was performed for the S288C derived S. cerevisiae strain to characterize a metabolic state under the reduced Crabtree effect. S. cerevisiae cells were cultured at a low dilution rate (0.1 h(-1)) under the glucose-limited chemostat condition. The estimated metabolic flux distribution showed that the acetyl-CoA in mitochondria was mainly produced from pyruvate by pyruvate dehydrogenase (PDH) reaction and that the level of the metabolic flux through the pentose phosphate pathway was much higher than that of the Embden-Meyerhof-Parnas pathway, which contributes to high biomass yield at low dilution rate by supplying NADPH required for cell growth. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts.

    Science.gov (United States)

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].

  11. Heterologous expression of MlcE in Saccharomyces cerevisiae provides resistance to natural and semi-synthetic statins

    Directory of Open Access Journals (Sweden)

    Ana Ley

    2015-12-01

    Full Text Available Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the key enzyme in cholesterol biosynthesis. Their extensive use in treatment and prevention of cardiovascular diseases placed statins among the best selling drugs. Construction of Saccharomyces cerevisiae cell factory for the production of high concentrations of natural statins will require establishment of a non-destructive self-resistance mechanism to overcome the undesirable growth inhibition effects of statins. To establish active export of statins from yeast, and thereby detoxification, we integrated a putative efflux pump-encoding gene mlcE from the mevastatin-producing Penicillium citrinum into the S. cerevisiae genome. The resulting strain showed increased resistance to both natural statins (mevastatin and lovastatin and semi-synthetic statin (simvastatin when compared to the wild type strain. Expression of RFP-tagged mlcE showed that MlcE is localized to the yeast plasma and vacuolar membranes. We provide a possible engineering strategy for improvement of future yeast based production of natural and semi-synthetic statins. Keywords: Polyketide, Statins, Saccharomyces cerevisiae, Transport, Cell factory, Resistance

  12. Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    Science.gov (United States)

    Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M

    2006-01-01

    Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.

  13. Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation

    Directory of Open Access Journals (Sweden)

    Yun-Cheng Li

    Full Text Available ABSTRACT Lignocellulose-derived inhibitors have negative effects on the ethanol fermentation capacity of Saccharomyces cerevisiae. In this study, the effects of eight typical inhibitors, including weak acids, furans, and phenols, on glucose and xylose co-fermentation of the recombinant xylose-fermenting flocculating industrial S. cerevisiae strain NAPX37 were evaluated by batch fermentation. Inhibition on glucose fermentation, not that on xylose fermentation, correlated with delayed cell growth. The weak acids and the phenols showed additive effects. The effect of inhibitors on glucose fermentation was as follows (from strongest to weakest: vanillin > phenol > syringaldehyde > 5-HMF > furfural > levulinic acid > acetic acid > formic acid. The effect of inhibitors on xylose fermentation was as follows (from strongest to weakest: phenol > vanillin > syringaldehyde > furfural > 5-HMF > formic acid > levulinic acid > acetic acid. The NAPX37 strain showed substantial tolerance to typical inhibitors and showed good fermentation characteristics, when a medium with inhibitor cocktail or rape straw hydrolysate was used. This research provides important clues for inhibitors tolerance of recombinant industrial xylose-fermenting S. cerevisiae.

  14. Genetic Approaches to Study Meiosis and Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kassir, Yona; Stuart, David T

    2017-01-01

    The budding yeast Saccharomyces cerevisiae has a long history as a model organism for studies of meiosis and the cell cycle. The popularity of this yeast as a model is in large part due to the variety of genetic and cytological approaches that can be effectively performed with the cells. Cultures of the cells can be induced to synchronously progress through meiosis and sporulation allowing large-scale gene expression and biochemical studies to be performed. Additionally, the spore tetrads resulting from meiosis make it possible to characterize the haploid products of meiosis allowing investigation of meiotic recombination and chromosome segregation. Here we describe genetic methods for analysis progression of S. cerevisiae through meiosis and sporulation with an emphasis on strategies for the genetic analysis of regulators of meiosis-specific genes.

  15. Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth; Regenberg, Birgitte; Folkesson, Sven Anders

    2014-01-01

    Background : Biofilm-forming Candida species cause infections that can be difficult to eradicate, possibly because of antifungal drug tolerance mechanisms specific to biofilms. In spite of decades of research, the connection between biofilm and drug tolerance is not fully understood. Results : We...... used Saccharomyces cerevisiae as a model for drug susceptibility of yeast biofilms. Confocal laser scanning microscopy showed that S. cerevisiae and C. glabrata form similarly structured biofilms and that the viable cell numbers were significantly reduced by treatment of mature biofilms...... with amphotericin B but not voriconazole, flucytosine, or caspofungin. We showed that metabolic activity in yeast biofilm cells decreased with time, as visualized by FUN-1 staining, and mature, 48-hour biofilms contained cells with slow metabolism and limited growth. Time-kill studies showed that in exponentially...

  16. Estudio comparativo entre aislados clínicos y no clínicos de S. cerevisiae y su papel como patógeno emergente.

    OpenAIRE

    Llanos Frutos, Rosa de

    2007-01-01

    RESUMEN La levadura Saccharomyces cerevisiae es la especie más utilizada desde un punto de vista biotecnológico. En la industria agroalimentaria interviene en la elaboración de pan y bebidas alcohólicas como el vino y la cerveza, además se emplea como suplemento dietético y como agente probiótico bajo el nombre de S. cerevisiae var. boulardii. A pesar de sus propiedades beneficiosas, S. cerevisiae se considera actualmente una levadura patógena oportunista emergente de baja virulencia, capa...

  17. Engineering of Saccharomyces cerevisiae for Efficient Anaerobic Alcoholic Fermentation of L-Arabinose

    NARCIS (Netherlands)

    Wisselink, H.W.; Toirkens, M.J.; Del Rosario Franco Berriel, M.; Winkler, A.A.; Van Dijken, J.P.; Pronk, J.T.; Van Maris, A.J.A.

    2007-01-01

    For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as L-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the

  18. Prokaryotic diversity of the Saccharomyces cerevisiae Atx1p-mediated copper pathway.

    NARCIS (Netherlands)

    Bakel, H. van; Huynen, M.A.; Wijmenga, C.

    2004-01-01

    MOTIVATION: Several genes involved in the cellular import of copper and its subsequent incorporation into the high-affinity iron transport complex in Saccharomyces cerevisiae are known to be conserved between eukaryotes and prokaryotes. However, the degree to which these genes share their functional

  19. Immobilized Saccharomyces cerevisiae as a potential aflatoxin decontaminating agent in pistachio nuts

    Directory of Open Access Journals (Sweden)

    S. Rahaie

    2010-03-01

    Full Text Available In this study, we investigated the binding ability of Saccharomayces cerevisiae to aflatoxin in pistachio nuts. The obtained results indicate that S. cerevisiae has an aflatoxin surface binding ability of 40% and 70% (with initial aflatoxin concentrations of 10 and 20 ppb in the exponential phase. Acid treatments increase this ability to approximately 60% and 73% for the two concentrations of aflatoxin, respectively. Heat treatments also enhance surface binding to 55% and 75%, respectively. Binding appears to be a physical phenomenon that saturates within the first 2-3 hours of the process. The obtained results indicate that yeast immobilization for toxin reduction on aflatoxin-contaminated pistachios had no effect on qualitative characteristics, such as color, texture, and peroxide value. Yeast cells, viable or nonviable, are effective for aflatoxin binding, and this property could lead to a promising solution to aflatoxin contamination in high-risk foods.

  20. Oligoadenylate is present in the mitochondrial RNA of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Yuckenberg, P.D.; Phillips, S.L.

    1982-01-01

    The authors examined Saccharomyces cerevisiae mitochondrial RNA for polyadenylate. Using hybridization to [/sup 3/H]polyuridylate as the assay for adenylate sequences, they found adenylate-rich oligonucleotides approximately 8 residues long. Longer polyadenylate was not detected. Most of the adenylate-rich sequence is associated with the large mitochondrial rRNA. The remainder is associated with the 10-12S group of transcripts

  1. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Pan, Shuo; Jia, Bin; Liu, Hong; Wang, Zhen; Chai, Meng-Zhe; Ding, Ming-Zhu; Zhou, Xiao; Li, Xia; Li, Chun; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae . Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae . We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively   puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.

  2. Saccharomyces cerevisiae of palm wine-enhanced ethanol production by using mutagens

    International Nuclear Information System (INIS)

    Uma, V.; Polasa, H.

    1990-01-01

    The newly isolated Saccharomyces cerevisiae of palm wine produced enhanced amounts of ethanol when cells were UV-irradiated and treated with N-methyl-N-nitro-N-nitrosoguanidine. A further increase of ethanol was observed in yeast extract, peptone, dextrose medium fortified with yeast extract, skimmed milk and soya flour. (author). 9 refs

  3. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural

    OpenAIRE

    Jung, Young Hoon; Kim, Sooah; Yang, Jungwoo; Seo, Jin?Ho; Kim, Kyoung Heon

    2016-01-01

    Summary Furfural, one of the most common inhibitors in pre?treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on y...

  4. Radio protective effects of calcium channel blockers (Deltiazem) on survival of Saccharomyces cerevisiae cells irradiated with different doses of gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Alya, G; Shamma, M; Sharabi, N [Atomic Energy Commission, Damascus (Syrian Arab Republic), Dept. of Molecular Biology and Biotechnology

    2007-03-15

    Investigations of radioprotective effects of Deltiazem (as one of the commonly used calcium channel blockers, which is used in the treatment of acute and chronic angina and spasmo angina, in addition to the treatment of different types of essential hypertension) has been carried on Saccharomyces Cerevisiae cells. Cells cultures of the most famous yeast Saccharomyces Cerevisiae (bakers yeast) were irradiated with different doses of gamma rays. Results revealed that the necessary dose of gamma rays that leads to 10% of survived cellular population (D10 value) was about 256 Gy. This irradiation dose was used then in all irradiation experiments on culture of S. Cerevisiae cells in which different concentrations of Deltiazem (55, 110, 165 mg/Kg medium) were added before and after irradiation in order to study the radio protective effect of Deltiazem. Results showed that Deltiazem enhances survival percentage of irradiated S. Cerevisiae cultures in a concentration dependent manner. This study confirmed our previous works, which had demonstrated that Deltiazem protects lethally and supralethally irradiated rats, and enhances survival of pre-irradiated Deltiazem treated animals.(author)

  5. Radio protective effects of calcium channel blockers (Deltiazem) on survival of Saccharomyces cerevisiae cells irradiated with different doses of gamma rays

    International Nuclear Information System (INIS)

    Alya, G.; Shamma, M.; Sharabi, N.

    2007-03-01

    Investigations of radioprotective effects of Deltiazem (as one of the commonly used calcium channel blockers, which is used in the treatment of acute and chronic angina and spasmo angina, in addition to the treatment of different types of essential hypertension) has been carried on Saccharomyces Cerevisiae cells. Cells cultures of the most famous yeast Saccharomyces Cerevisiae (bakers yeast) were irradiated with different doses of gamma rays. Results revealed that the necessary dose of gamma rays that leads to 10% of survived cellular population (D10 value) was about 256 Gy. This irradiation dose was used then in all irradiation experiments on culture of S. Cerevisiae cells in which different concentrations of Deltiazem (55, 110, 165 mg/Kg medium) were added before and after irradiation in order to study the radio protective effect of Deltiazem. Results showed that Deltiazem enhances survival percentage of irradiated S. Cerevisiae cultures in a concentration dependent manner. This study confirmed our previous works, which had demonstrated that Deltiazem protects lethally and supralethally irradiated rats, and enhances survival of pre-irradiated Deltiazem treated animals.(author)

  6. Modelling response of glycolysis in S. cerevisiae cells harvested at diauxic shift.

    NARCIS (Netherlands)

    Albers, E.; Bakker, B.M.; Gustafsson, L.

    2002-01-01

    The response of glycolysis to exposure of glucose in non-growing S. cerevisiae cells from diauxic shift was monitored. The result was compared to a kinetic model of glycolysis with branches to glycogen, trehalose, glycerol, and succinate. Experimental data at steady-state concentrations of

  7. Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Milne, N.; Luttik, M.A.H.; Cueto Rojas, H.F.; Wahl, A.; Van Maris, A.J.A.; Pronk, J.T.; Daran, J.G.

    2015-01-01

    In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential

  8. Localization of nuclear retained mRNAs in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Thomsen, Rune; Libri, Domenico; Boulay, Jocelyne

    2003-01-01

    site of transcription, and known S. cerevisiae nuclear structures such as the nucleolus and the nucleolar body. Our results show that retained SSA4 RNA localizes to an area in close proximity to the SSA4 locus. On deletion of Rrp6p and release from the genomic locus, heat shock mRNAs produced...

  9. Ethanol from lignocellulose - Fermentation inhibitors, detoxification and genetic engineering of Saccharomyces cerevisiae for enhanced resistance

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Simona

    2000-07-01

    Ethanol can be produced from lignocellulose by first hydrolysing the material to sugars, and then fermenting the hydrolysate with the yeast Saccharomyces cerevisiae. Hydrolysis using dilute sulphuric acid has advantages over other methods, however, compounds which inhibit fermentation are generated during this kind of hydrolysis. The inhibitory effect of aliphatic acids, furans, and phenolic compounds was investigated. The generation of inhibitors during hydrolysis was studied using Norway spruce as raw material. It was concluded that the decrease in the fermentability coincided with increasing harshness of the hydrolysis conditions. The decrease in fermentability was not correlated solely to the content of aliphatic acids or furan derivatives. To increase the fermentability, detoxification is often employed. Twelve detoxification methods were compared with respect to the chemical composition of the hydrolysate and the fermentability after treatment. The most efficient detoxification methods were anion-exchange at pH 10.0, overliming and enzymatic detoxification with the phenol-oxidase laccase. Detailed analyses of ion exchange revealed that anion exchange and unspecific hydrophobic interactions greatly contributed to the detoxification effect, while cation exchange did not. The comparison of detoxification methods also showed that phenolic compounds are very important fermentation inhibitors, as their selective removal with laccase had a major positive effect on the fermentability. Selected compounds; aliphatic acids, furans and phenolic compounds, were characterised with respect to their inhibitory effect on ethanolic fermentation by S. cerevisiae. When aliphatic acids or furans were compared, the inhibitory effects were found to be in the same range, but the phenolic compounds displayed widely different inhibitory effects. The possibility of genetically engineering S. cerevisiae to achieve increased inhibitor resistance was explored by heterologous expression of

  10. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks

    DEFF Research Database (Denmark)

    d'Espaux, Leo; Ghosh, Amit; Runguphan, Weerawat

    2017-01-01

    to similar to 20% of the maximum theoretical yield from glucose, the highest titers and yields reported to date in S. cerevisiae. We further demonstrate high-level production from lignocellulosic feedstocks derived from ionic-liquid treated switchgrass and sorghum, reaching 0.7 g/L in shake flasks......Fatty alcohols in the C12-C18 range are used in personal care products, lubricants, and potentially biofuels. These compounds can be produced from the fatty acid pathway by a fatty acid reductase (FAR), yet yields from the preferred industrial host Saccharomyces cerevisiae remain under 2......% of the theoretical maximum from glucose. Here we improved titer and yield of fatty alcohols using an approach involving quantitative analysis of protein levels and metabolic flux, engineering enzyme level and localization, pull-push-block engineering of carbon flux, and cofactor balancing. We compared four...

  11. Yield improvement of heterologous peptides expressed in yps1-disrupted Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Egel-Mitani; Andersen; Diers; Hach; Thim; Hastrup; Vad

    2000-06-01

    Heterologous protein expression levels in Saccharomyces cerevisiae fermentations are highly dependent on the susceptibility to endogenous yeast proteases. Small peptides, such as glucagon and glucagon-like-peptides (GLP-1 and GLP-2), featuring an open structure are particularly accessible for proteolytic degradation during fermentation. Therefore, homogeneous products cannot be obtained. The most sensitive residues are found at basic amino acid residues in the peptide sequence. These heterologous peptides are degraded mainly by the YPS1-encoded aspartic protease, yapsin1, when produced in the yeast. In this article, distinct degradation products were analyzed by HPLC and mass spectrometry, and high yield of the heterologous peptide production has been achieved by the disruption of the YPS1 gene (previously called YAP3). By this technique, high yield continuous fermentation of glucagon in S. cerevisiae is now possible.

  12. Rad52 multimerization is important for its nuclear localization in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Plate, Iben; Albertsen, Line; Lisby, Michael

    2008-01-01

    Rad52 is essential for all homologous recombination and DNA double strand break repair events in Saccharomyces cerevisiae. This protein is multifunctional and contains several domains that allow it to interact with DNA as well as with different repair proteins. However, it has been unclear how Rad...

  13. Enhanced production of para-hydroxybenzoic acid by genetically engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Averesch, Nils J H; Prima, Alex; Krömer, Jens O

    2017-08-01

    Saccharomyces cerevisiae is a popular organism for metabolic engineering; however, studies aiming at over-production of bio-replacement precursors for the chemical industry often fail to overcome proof-of-concept stage. When intending to show real industrial attractiveness, the challenge is twofold: formation of the target compound must be increased, while minimizing the formation of side and by-products to maximize titer, rate and yield. To tackle these, the metabolism of the organism, as well as the parameters of the process, need to be optimized. Addressing both we show that S. cerevisiae is well-suited for over-production of aromatic compounds, which are valuable in chemical industry and are particularly useful in space technology. Specifically, a strain engineered to accumulate chorismate was optimized for formation of para-hydroxybenzoic acid. Then a fed-batch bioreactor process was developed, which delivered a final titer of 2.9 g/L, a maximum rate of 18.625 mg pHBA /(g CDW  × h) and carbon-yields of up to 3.1 mg pHBA /g glucose .

  14. Saccharomyces cerevisiae gene expression changes during rotating wall vessel suspension culture

    Science.gov (United States)

    Johanson, Kelly; Allen, Patricia L.; Lewis, Fawn; Cubano, Luis A.; Hyman, Linda E.; Hammond, Timothy G.

    2002-01-01

    This study utilizes Saccharomyces cerevisiae to study genetic responses to suspension culture. The suspension culture system used in this study is the high-aspect-ratio vessel, one type of the rotating wall vessel, that provides a high rate of gas exchange necessary for rapidly dividing cells. Cells were grown in the high-aspect-ratio vessel, and DNA microarray and metabolic analyses were used to determine the resulting changes in yeast gene expression. A significant number of genes were found to be up- or downregulated by at least twofold as a result of rotational growth. By using Gibbs promoter alignment, clusters of genes were examined for promoter elements mediating these genetic changes. Candidate binding motifs similar to the Rap1p binding site and the stress-responsive element were identified in the promoter regions of differentially regulated genes. This study shows that, as in higher order organisms, S. cerevisiae changes gene expression in response to rotational culture and also provides clues for investigations into the signaling pathways involved in gravitational response.

  15. Cellular viability of Saccharomyces cerevisiae cultivated in association with contaminates bacteria of alcoholic fermentation;Viabilidade celular de Saccharomyces cerevisiae cultivada em associacao com bacterias contaminantes da fermentacao alcoolica

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Thais de Paula

    2005-07-01

    The aim of this work was to study the influence of the bacteria Bacillus and Lactobacillus, as well as their metabolic products, in reduction of cellular viability of Saccharomyces cerevisiae, when in mixed culture of yeast and active and treated bacteria. Also was to evaluated an alternative medium (MCC) for the cultivation of bacteria and yeast, constituted of sugarcane juice diluted to 5 deg Brix and supplemented with yeast extract and peptone. The bacteria Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum and Lactobacillus plantarum were cultivated in association with yeast Saccharomyces cerevisiae (strain Y-904) for 72 h on 32 deg C, under agitation. The cellular viability, budding rate and population of S. cerevisiae, the total acidity, volatile acidity and pH of culture were determined from 0, 24, 48 e 72 h of mixed culture. Also were determined the initial and final of microorganism population across the pour plate method, in traditional culture medium (PCA for Bacillus, MRS-agar for Lactobacillus and YEPD-agar for yeast S. cerevisiae) and in medium constituted of sugarcane juice. The bacteria cultures were treated by heat sterilization (120 deg C for 20 minutes), antibacterial agent (Kamoran HJ in concentration 3,0 ppm) or irradiation (radiation gamma, with doses of 5,0 kGy for Lactobacillus and 15,0 kGy for Bacillus). The results of the present research showed that just the culture mediums more acids (with higher concentrations of total and volatile acidity, and smaller values of pH), contaminated with active bacteria L. fermentum and B. subtilis, caused reduction on yeast cellular viability. Except the bacteria B. subtilis treated with radiation, the others bacteria treated by different procedures (heat, radiation e antibacterial) did not cause reduction on yeast cellular viability and population, indicating that the isolated presence of the cellular metabolic of theses bacteria was not enough to reduce the

  16. Characterization of Fluorescent Proteins for Three- and Four-Color Live-Cell Imaging in S. cerevisiae.

    Science.gov (United States)

    Higuchi-Sanabria, Ryo; Garcia, Enrique J; Tomoiaga, Delia; Munteanu, Emilia L; Feinstein, Paul; Pon, Liza A

    2016-01-01

    Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging.

  17. Improvement of lactic acid production in Saccharomyces cerevisiae by a deletion of ssb1.

    Science.gov (United States)

    Lee, Jinsuk J; Crook, Nathan; Sun, Jie; Alper, Hal S

    2016-01-01

    Polylactic acid (PLA) is an important renewable polymer, but current processes for producing its precursor, lactic acid, suffer from process inefficiencies related to the use of bacterial hosts. Therefore, improving the capacity of Saccharomyces cerevisiae to produce lactic acid is a promising approach to improve industrial production of lactic acid. As one such improvement required, the lactic acid tolerance of yeast must be significantly increased. To enable improved tolerance, we employed an RNAi-mediated genome-wide expression knockdown approach as a means to rapidly identify potential genetic targets. In this approach, several gene knockdown targets were identified which confer increased acid tolerance to S. cerevisiae BY4741, of which knockdown of the ribosome-associated chaperone SSB1 conferred the highest increase (52%). This target was then transferred into a lactic acid-overproducing strain of S. cerevisiae CEN.PK in the form of a knockout and the resulting strain demonstrated up to 33% increased cell growth, 58% increased glucose consumption, and 60% increased L-lactic acid production. As SSB1 contains a close functional homolog SSB2 in yeast, this result was counterintuitive and may point to as-yet-undefined functional differences between SSB1 and SSB2 related to lactic acid production. The final strain produced over 50 g/L of lactic acid in under 60 h of fermentation.

  18. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Magnetically altered ethanol fermentation capacity of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Galonja-Corghill Tamara

    2009-01-01

    Full Text Available We studied the effect of static magnetic fields on ethanol production by yeast Saccharomyces cerevisiae 424A (LNH-ST using sugar cane molasses during the fermentation in an enclosed bioreactor. Two static NdFeB magnets were attached to a cylindrical tube reactor with their opposite poles (north to south, creating 150 mT magnetic field inside the reactor. Comparable differences emerged between the results of these two experimental conditions. We found ethanol productivity to be 15% higher in the samples exposed to 150 mT magnetic field.

  20. Production of ethanol from blackstrap molasses by saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Elahi, S.; Hashmi, Abu-S.; Akhtar, C.M.; Ilahi, A.; Rajoka, M.I.

    1991-01-01

    Blackstrap molasses was analyzed for its composition and its fermentation was brought about by the yeast S. cerevisiae at predetermined optimal environmental conditions such as pH, temperature, Sugar concentration, and incubation period. The results revealed that sugar concentration 17%, pH 4.5, temperature 30 C and incubation period of 72 hours were the optimal conditions for producing maximum (73 g/l) ethanol. Clearance of molasses by 20% single superphosphate enhanced ethanol production by only 0.2%. (author)

  1. mRNA decapping enzyme from ribosomes of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Stevens, A.

    1980-01-01

    By use of [ 3 H]methyl-5'-capped [ 14 C]mRNA from yeast as a substrate, a decapping enzyme activity has been detected in enzyme fractions derived from a high salt wash of ribosomes of Saccharomyces cerevisiae. The product of the decapping reaction is [ 3 H]m 7 GDP. That the enzyme is not a non-specific pyrophosphatase is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed

  2. Changes in the Treatment of Some Physico-Chemical Properties of Cassava Mill Effluents Using Saccharomyces cerevisiae.

    Science.gov (United States)

    Izah, Sylvester Chibueze; Bassey, Sunday Etim; Ohimain, Elijah Ige

    2017-10-16

    Cassava is majorly processed into gari by smallholders in Southern Nigeria. During processing, large volume of effluents are produced in the pressing stage of cassava tuber processing. The cassava mill effluents are discharged into the soil directly and it drain into nearby pits, surface water, and canals without treatment. Cassava mill effluents is known to alter the receiving soil and water characteristics and affects the biota in such environments, such as fishes (water), domestic animals, and vegetation (soil). This study investigated the potential of Saccharomyces cerevisiae to be used for the treatment of some physicochemical properties of cassava mill effluents. S. cerevisiae was isolated from palm wine and identified based on conventional microbiological techniques, viz. morphological, cultural, and physiological/biochemical characteristics. The S. cerevisiae was inoculated into sterile cassava mill effluents and incubated for 15 days. Triplicate samples were withdrawn from the setup after the fifth day of treatment. Portable equipment was used to analyze the in-situ parameters, viz. total dissolved solids (TDS), pH, dissolved oxygen (DO), conductivity, salinity, and turbidity. Anions (nitrate, sulphate, and phosphate) and chemical oxygen demand (COD) were analyzed using spectrophotometric and open reflux methods respectively. Results showed a decline of 37.62%, 22.96%, 29.63%, 20.49%, 21.44%, 1.70%, 53.48%, 68.00%, 100%, and 74.48% in pH, conductivity, DO, TDS, salinity, sulphate, nitrate, phosphate, and COD levels respectively, and elevation of 17.17% by turbidity. The study showed that S. cerevisiae could be used for the treatment of cassava mill effluents prior to being discharged into the environment so as to reduce the pollution or contamination and toxicity levels.

  3. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has

  4. Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains

    NARCIS (Netherlands)

    Baleiras Couto, M.M.; Eijsma, B.; Hofstra, H.; Huis in 't Veld, J.H.J.; Vossen, J.M.B.M. van der

    1996-01-01

    Discrimination of strains within the species Saccharomyces cerevisiae was demonstrated by the use of four different techniques to type 15 strains isolated from spoiled wine and beer. Random amplified polymorphic DNA with specific oligonucleotides and PCR fingerprinting with the microsatellite

  5. Pathways for Holliday Junction Processing during Homologous Recombination in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Ashton, Thomas M; Mankouri, Hocine W; Heidenblut, Anna

    2011-01-01

    The Saccharomyces cerevisiae Rmi1 protein is a component of the highly conserved Sgs1-Top3-Rmi1 complex. Deletion of SGS1, TOP3, or RMI1 is synthetically lethal when combined with the loss of the Mus81-Mms4 or Slx1-Slx4 endonucleases, which have been implicated in Holliday junction (HJ) resolutio...

  6. Effect of nagilactone E on cell morphology and glucan biosynthesis in budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Hayashi, Kengo; Yamaguchi, Yoshihiro; Ogita, Akira; Tanaka, Toshio; Kubo, Isao; Fujita, Ken-Ichi

    2018-05-14

    Nagilactones are norditerpene dilactones isolated from the root bark of Podocarpus nagi. Although nagilactone E has been reported to show antifungal activities, its activity is weaker than that of antifungals on the market. Nagilactone E enhances the antifungal activity of phenylpropanoids such as anethole and isosafrole against nonpathogenic Saccharomyces cerevisiae and pathogenic Candida albicans. However, the detailed mechanisms underlying the antifungal activity of nagilactone E itself have not yet been elucidated. Therefore, we investigated the antifungal mechanisms of nagilactone E using S. cerevisiae. Although nagilactone E induced lethality in vegetatively growing cells, it did not affect cell viability in non-growing cells. Nagilactone E-induced morphological changes in the cells, such as inhomogeneous thickness of the glucan layer and leakage of cytoplasm. Furthermore, a dose-dependent decrease in the amount of newly synthesized (1, 3)-β-glucan was detected in the membrane fractions of the yeast incubated with nagilactone E. These results suggest that nagilactone E exhibits an antifungal activity against S. cerevisiae by depending on cell wall fragility via the inhibition of (1, 3)-β-glucan biosynthesis. Additionally, we confirmed nagilactone E-induced morphological changes of a human pathogenic fungus Aspergillus fumigatus. Therefore, nagilactone E is a potential antifungal drug candidate with fewer adverse effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsuo, Ryo; Mizobuchi, Shogo; Nakashima, Maya; Miki, Kensuke; Ayusawa, Dai; Fujii, Michihiko

    2017-10-01

    Oxygen is essential for aerobic organisms but causes cytotoxicity probably through the generation of reactive oxygen species (ROS). In this study, we screened for the genes that regulate oxidative stress in the yeast Saccharomyces cerevisiae, and found that expression of CTH2/TIS11 caused an increased resistance to ROS. CTH2 is up-regulated upon iron starvation and functions to remodel metabolism to adapt to iron starvation. We showed here that increased resistance to ROS by CTH2 would likely be caused by the decreased ROS production due to the decreased activity of mitochondrial respiration, which observation is consistent with the fact that CTH2 down-regulates the mitochondrial respiratory proteins. We also found that expression of CTH1, a paralog of CTH2, also caused an increased resistance to ROS. This finding supported the above view, because mitochondrial respiratory proteins are the common targets of CTH1 and CTH2. We further showed that supplementation of iron in medium augmented the growth of S. cerevisiae under oxidative stress, and expression of CTH2 and supplementation of iron collectively enhanced its growth under oxidative stress. Since CTH2 is regulated by iron, these findings suggested that iron played crucial roles in the regulation of oxidative stress in S. cerevisiae.

  8. Comportamento celular e resposta antioxidante diferenciados de Saccharomyces cerevisiae e de Saccharomyces chevalieri ao metavanadato de amónio Different cellular behaviour and antioxidant response of Saccharomyces cerevisiae and Saccharomyces chevalieri growing in presence of ammonium metavanadate

    Directory of Open Access Journals (Sweden)

    R. Ferreira

    2007-01-01

    Full Text Available A fermentação do vinho é um processo microbiológico complexo que requere a presença de leveduras adaptadas a condições de stresse. No ambiente celular de organismos aeróbios ocorrem naturalmente espécies reactivas de oxigénio (ROS como subprodutos da respiração mitocondrial. A elevada reactividade destas espécies químicas pode gerar danos moleculares que, em alguns casos, levam à morte celular. Em condições fisiológicas normais ou como resposta ao stresse oxidativo, a célula pode desencadear respostas adaptativas que envolvem mecanismos antioxidantes como os enzimas glutationo redutase (GR; EC 1.6.4.2 e catalases T (CAT T; EC 1.11.1.6 e A (CAT A; EC 1.11.1.6. O vanádio, um metal pesado presente em alguns fitofármacos, pode também com portar-se como um gerador de ROS, alterando o estado redox intracelular e exercendo efeitos nocivos em leveduras expostas a quantidade excessiva deste elemento. O principal objectivo deste trabalho foi comparar o efeito do metavanadato de amónio (NH4VO3, um sal pentavalente de vanádio, na viabilidade celular e nas actividades enzimáticas GR, CAT T e CAT A das leveduras vínicas Saccharomyces cerevisiae UE-ME3 e Saccharomyces chevalieri UE-ME1. Os resultados obtidos mostram que S. chevalieri UE-ME1 revelou menor tolerância ao NH4VO3 do que S. cerevisiae UE-ME3, uma vez que culturas de S. chevalieri não sobreviveram para valores de concentração do sal de vanádio superiores a 7,5 mM enquanto que células de S. cerevisiae mantiveram-se viáveis em presença de metavanadato de amónio 75 mM. As actividades enzimáticas estudadas apresentaram em S. chevalieri valores muito inferiores aos que foram determinados em S. cerevisiae embora em ambas as espécies de levedura o NH4VO3 pareça comportarse como um indutor de stresse oxidativo ao provocar um decréscimo significativo da actividade GR (PThe fermentation of wine is a complex microbiological process which requires yeast adaptation to stress

  9. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha; Li, Lixin; Mahjoub, Ali; Alshareef, Sahar; Ali, Zahir; Piatek, Agnieszka Anna; Mahfouz, Magdy M.

    2015-01-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S.cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S.cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. © 2015 The Society for Biotechnology, Japan.

  10. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha

    2015-04-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S.cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S.cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. © 2015 The Society for Biotechnology, Japan.

  11. The effect of gamma irradiation on alcoholic fermentation of cassava by saccharomyces cerevisiae and kluyveromyces marxianus

    International Nuclear Information System (INIS)

    Lina, M.R.; Susiana

    1986-01-01

    A study to examine the influence of gamma irradiation (Co 60 ) on the production of alcohol from cassava by two yeast cultures, S. cerevisiae and a thermotolerant K. marxianus was carried out. Irradiation doses used were 0; 0.1; 0.3; 0.5 and 7 kGy. Two enzymes thermamyl and amyloglucosidase were used for liquifaction and saccharification, respectively. A part of the cassava substrate was enriched with NH 4 H 2 PO 4 as nitrogen source. Irradiated yeast suspension ( + - 10 8 cells/ml) was inoculated to the medium to a final concentration of 5% (v/v). Incubation period was 3 days at a temperature of 30 o C for S. cerevisiae and 37 o C for K. marxianus. Results showed that gamma irradiation had a significant effect on the number of both yeast colonies. It decreased the number of yeast colonies, but not the content of ethanol produced by its fermentation. The yeast still viable after irradiation probably had an increased activity. Adding nitrogen to S. cerevisiae caused a decrease in the content of ethanol, but no significant effect was found on the number of colonies of both yeasts as affected by added nitrogen. (author). 10 refs

  12. [High-level expression of heterologous protein based on increased copy number in Saccharomyces cerevisiae].

    Science.gov (United States)

    Zhang, Xinjie; He, Peng; Tao, Yong; Yang, Yi

    2013-11-04

    High-level expression system of heterologous protein mediated by internal ribosome entry site (IRES) in Saccharomyces cerevisiae was constructed, which could be used for other applications of S. cerevisiae in metabolic engineering. We constructed co-expression cassette (promoter-mCherry-TIF4631 IRES-URA3) containing promoters Pilv5, Padh2 and Ptdh3 and recombined the co-expression cassette into the genome of W303-1B-A. The URA3+ transformants were selected. By comparing the difference in the mean florescence value of mCherry in transformants, the effect of three promoters was detected in the co-expression cassette. The copy numbers of the interested genes in the genome were determined by Real-Time PCR. We analyzed genetic stability by continuous subculturing transformants in the absence of selection pressure. To verify the application of co-expression cassette, the ORF of mCherry was replaced by beta-galactosidase (LACZ) and xylose reductase (XYL1). The enzyme activities and production of beta-galactosidase and xylose reductase were detected. mCherry has been expressed in the highest-level in transformants with co-expression cassette containing Pilv5 promoter. The highest copy number of DNA fragment integrating in the genome was 47 in transformants containing Pilv5. The engineering strains showed good genetic stability. Xylose reductase was successfully expressed in the co-expression cassette containing Pilv5 promoter and TIF4631 IRES. The highest enzyme activity was 0. 209 U/mg crude protein in the transformants WIX-10. Beta-galactosidase was also expressed successfully. The transformants that had the highest enzyme activity was WIL-1 and the enzyme activity was 12.58 U/mg crude protein. The system mediated by Pilv5 promoter and TIF4631 IRES could express heterologous protein efficiently in S. cerevisiae. This study offered a new strategy for expression of heterologous protein in S. cerevisiae and provided sufficient experimental evidence for metabolic engineering

  13. Growth study of radio-mutant saccharomyce cerevisiae K 1,5 on irradiated molases media

    International Nuclear Information System (INIS)

    Siagian, E.G.; Lina, M.R.; Sisiana.

    1988-01-01

    The application of the radiopasteurization method for alcoholic fermentation of molases media have been studied which compared to heat pasteurization. The molases samples were obtained from sugar industry in Cirebon, Yogyakarta, and Lawang, used as a samples for gamma irradiation, doses of 3 kGy, 6 kGy and heat pasteurization 80 Celcius centigrade for 30 minutes, which compared to untreated molases. Innculum yeast was S. Cerevisiae K 1.5 which was resulted by irradiation mutation. The results showed that gamma irradiation dose of 3 kGy have pasteurization effect better than 6 kGy and heat pasteurization 80 Celcius centigrade, 30 minutes. Total cells count of microflora per gram samples (% survivors) on molasses media which has been heat pasteurized, decreased to be 70%, 10% for irradiated molasses 3 kGy; and 1% for molasses irradiated 6 kGy, but it did not have significant effect on the growth capacity of S. cerevisiae K 1.5 on that molasses media. Microflora isolated from molasses samples obtained from Cirebon, Yogyakarta, and Lawang, generally from Bacillus subtilis, Lactobacillus sp., Corynebacterium sp., and Rhizopus oligosporus, although was detected but not grows well on molasses media. The growth of S. cerevisiae K 1.5 on fermentation media suplemented with trace elements nitrogen and phosphor resulted difference on fermentation rate i.e.: in irradiated molasses 3 kGy and 6 kGy showed a higher rate, which compared to heat pasteurization and controle. In the environment condition study on molasses media shows the yeast S. cerevisiae K 1.5 have optimal growth at the pH 5.5, specific growth rate 0.3-0.5 per hour, the saturation constant 0.5 - 0.60 g/l, temperature 30 +/- 2 Celcius centigrade with sugar : nitrogen : phosphor ratio = 100 : 5 : 1. The nitrogen and phosphor sources are ammonium sulphate and sodium hidrogen phosphate respectively. (author). 6 refs, 2 figs, 2 tabs

  14. Identification and regulation of genes involved in anaerobic growth of Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Snoek, Isidora Sophia Ishtar

    2007-01-01

    Saccharomyces cerevisiae is one of the few yeast species that can grow equally well without molecular oxygen (anaerobic) as with this compound present (aerobic). This property has made it one of the most abundantly used yeasts in industry, since anaerobic incubation plays a major part in alcohol and

  15. Comparative studies on the fermentation performance of autochthonous Saccharomyces cerevisiae strains in Chinese light-fragrant liquor during solid-state or submerged fermentation.

    Science.gov (United States)

    Kong, Y; Wu, Q; Xu, Y

    2017-04-01

    To explore the metabolic characteristic of autochthonous Saccharomyces cerevisiae strains in Chinese light-fragrant liquor fermentation. Inter-delta amplification analysis was used to differentiate the S. cerevisiae strains at strain level. Twelve biotypes (I-XII) were identified among the 72 S. cerevisiae strains preselected. A comparison was conducted between solid-state fermentation (SSF) and submerged fermentation (SmF) with S. cerevisiae strains had different genotype, with a focus on the production of ethanol and the volatile compounds. The degree of ethanol ranged from 28·0 to 45·2 g l -1 in SmF and from 14·8 to 25·6 g kg -1 in SSF, and SSF was found to be more suitable for the production of ethanol with higher yield coefficient of all the S. cerevisiae strains. The metabolite profiles of each yeast strain showed obvious distinction in the two fermentations. The highest amounts of ethyl acetate in SmF and SSF were found in genotype VII (328·2 μg l -1 ) and genotype V (672 μg kg -1 ), respectively. In addition, the generation of some volatile compounds could be strictly related to the strain used. Compound β-damascenone was only detected in genotypes I, II, X and XII in the two fermentation processes. Furthermore, laboratory scale fermentations were clearly divided into SSF and SmF in hierarchical cluster analysis regardless of the inoculated yeast strains, indicating that the mode of fermentation was more important than the yeast strains inoculated. The autochthonous S. cerevisiae strains in Chinese light-fragrant liquor vary considerably in terms of their volatiles profiles during SSF and SmF. This work facilitates a better understanding of the fermentative mechanism in the SSF process for light-fragrant liquor production. © 2016 The Society for Applied Microbiology.

  16. Application of Local Adsorbant From Southeast Sulawesi Clay Immobilized Saccharomyces Cerevisiae Bread’s Yeast Biomass for Adsorption Of Mn(Ii) Metal Ion

    Science.gov (United States)

    R, Halimahtussaddiyah; Mashuni; Budiarni

    2017-05-01

    Southeast Sulawesi has a great stock of clay. It is probably to use as a source of adsorbent. The adsorbent capacity of clay can be largered with teratment using bread’s yeast as biomass. At this research, study of analysis adsorption of Mn(II) metal ion on clay immobilized Saccharomyces cerevisiae bread’s yeast biomass adsorbent has been conducted. The aims of this research were to determine the effects of contact time, pH and concentration of Mn(II) metal ion and to determine the adsorption capacity of clay immobilized S. cerevisiae biomass for adsorbtion of Mn(II) metal ion. Activated clay was synthesized by reaction of clay with KMnO4, H2SO4 and HCl. S. cerevisiae biomass was result by bread’s yeast mashed. Immobilization of S. cerevisiae biomass into clay was done by mixing of ratio of S. cerevisiae bread’s yeast biomass and clay equal to 1:3 (mass of biomassa : mass of clay). The adsorption capacity was determined by using Freundlich and Langmuir adsorption isoterms. The results of FTIR spectrums showed that the functional groups of clay immobilized S. cerevisiae biomass were Si-OH (wave number 1643 cm-1), Si-O-Si (wave number 1033 cm-1), N-H (wave number 2337 cm-1), O-H (wave number 3441cm-1), and C-H (wave number 2931 cm-1). The result of adsorption capacity from Mn(II) metal ion of contact time optimum 120 minutes, pH optimun at 7 and concentration optimum 50 mg/L were 1,816 mg/g; 0,509 mg/g and 2,624mg/g respectively. The adsorption capacity of Mn(II) metal ion with ratio 1:3 (biomass : clay) was 0,1045 mg/g. Type of isothermal adsorption followed the Freunlich adsorption.

  17. Effects of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds

    Directory of Open Access Journals (Sweden)

    Mona M.Y. Elghandour

    2014-04-01

    Full Text Available The objective of this study was to evaluate the effects of Saccharomyces cerevisiae on in vitro gas production (GP kinetics and degradability of corn stover, oat straw, sugarcane bagasse and sorghum straw. Feedstuffs were incubated with different doses of yeast [0, 4, 8 and 12 mg/g dry matter (DM] at direct addition or 72 h pre-incubation. Rumen GP was recorded at 2, 4, 6, 8, 10, 12, 14, 24, 30, 48, 54 and 72 h of incubation. After 72 h, rumen pH and methane were determined and contents were filtrated for DM, neutral (NDF and acid detergent fibre (ADF degradability. Fibrous species×method of application×yeast interactions occurred (P<0.001 for all measured ruminal GP parameters and degradability. The direct addition or 72 h pre-incubation of S. cerevisiae with corn stover improved (P<0.05 GP and methane and decreased (P<0.05 the lag time (L and NDF degradability (NDFD. The direct addition of S. cerevisiae to oat straw increased (P<0.05 rate of GP (c and decreased (P<0.05 asymptotic GP (b. However, 72 h pre-incubation increased (P<0.05 c with linearly decreased b, DM degradability (DMD and NDFD. Applying S. cerevisiae for 72 h pre-incubation decreased (P<0.001 methane emission. The direct addition or 72 h pre-incubation of S. cerevisiae to sorghum straw increased (P<0.05 b, c, L, DMD and NDFD. Overall, the effect of dose varied among different feedstuffs and different application methods. Results suggested that the direct addition of S. cerevisiae could support and improve ruminal fermentation of lowquality forages at 4 to 12 g/kg DM.

  18. A tetO Toolkit To Alter Expression of Genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cuperus, Josh T; Lo, Russell S; Shumaker, Lucia; Proctor, Julia; Fields, Stanley

    2015-07-17

    Strategies to optimize a metabolic pathway often involve building a large collection of strains, each containing different versions of sequences that regulate the expression of pathway genes. Here, we develop reagents and methods to carry out this process at high efficiency in the yeast Saccharomyces cerevisiae. We identify variants of the Escherichia coli tet operator (tetO) sequence that bind a TetR-VP16 activator with differential affinity and therefore result in different TetR-VP16 activator-driven expression. By recombining these variants upstream of the genes of a pathway, we generate unique combinations of expression levels. Here, we built a tetO toolkit, which includes the I-OnuI homing endonuclease to create double-strand breaks, which increases homologous recombination by 10(5); a plasmid carrying six variant tetO sequences flanked by I-OnuI sites, uncoupling transformation and recombination steps; an S. cerevisiae-optimized TetR-VP16 activator; and a vector to integrate constructs into the yeast genome. We introduce into the S. cerevisiae genome the three crt genes from Erwinia herbicola required for yeast to synthesize lycopene and carry out the recombination process to produce a population of cells with permutations of tetO variants regulating the three genes. We identify 0.7% of this population as making detectable lycopene, of which the vast majority have undergone recombination at all three crt genes. We estimate a rate of ∼20% recombination per targeted site, much higher than that obtained in other studies. Application of this toolkit to medically or industrially important end products could reduce the time and labor required to optimize the expression of a set of metabolic genes.

  19. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production.

    Science.gov (United States)

    Tristezza, Mariana; Tufariello, Maria; Capozzi, Vittorio; Spano, Giuseppe; Mita, Giovanni; Grieco, Francesco

    2016-01-01

    In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation) and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of non-Saccharomyces in

  20. Development of an attract-and-kill co-formulation containing Saccharomyces cerevisiae and neem extract attractive towards wireworms.

    Science.gov (United States)

    Humbert, Pascal; Vemmer, Marina; Mävers, Frauke; Schumann, Mario; Vidal, Stefan; Patel, Anant V

    2017-12-27

    Wireworms (Coleoptera: Elateridae) are major insect pests of worldwide relevance. Owing to the progressive phasing-out of chemical insecticides, there is great demand for innovative control options. This study reports on the development of an attract-and-kill co-formulation based on Ca-alginate beads, which release CO 2 and contain neem extract as a bioinsecticidal compound. The objectives of this study were to discover: (1) whether neem extract can be immobilized efficiently, (2) whether CO 2 -releasing Saccharomyces cerevisiae and neem extract are suitable for co-encapsulation, and (3) whether co-encapsulated neem extract affects the attractiveness of CO 2 -releasing beads towards wireworms. Neem extract was co-encapsulated together with S. cerevisiae, starch and amyloglucosidase with a high encapsulation efficiency of 98.6% (based on measurement of azadirachtin A as the main active ingredient). Even at enhanced concentrations, neem extract allowed growth of S. cerevisiae, and beads containing neem extract exhibited CO 2 -emission comparable with beads without neem extract. When applied to the soil, the beads established a CO 2 gradient of >15 cm. The co-formulation containing neem extract showed no repellent effects and was attractive for wireworms within the first 24 h after exposure. Co-encapsulation of S. cerevisiae and neem extract is a promising approach for the development of attract-and-kill formulations for the control of wireworms. This study offers new options for the application of neem extracts in soil. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural.

    Science.gov (United States)

    Jung, Young Hoon; Kim, Sooah; Yang, Jungwoo; Seo, Jin-Ho; Kim, Kyoung Heon

    2017-03-01

    Furfural, one of the most common inhibitors in pre-treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on yeasts and their metabolic response to continuous exposure to furfural. After 50 serial transfers of cultures in the presence of furfural, the evolved strains acquired the ability to stably manage its physiological status under the furfural stress. A total of 98 metabolites were identified, and their abundance profiles implied that yeast metabolism was globally regulated. Under the furfural stress, stress-protective molecules and cofactor-related mechanisms were mainly induced in the parental strain. However, during evolution under the furfural stress, S. cerevisiae underwent global metabolic allocations to quickly overcome the stress, particularly by maintaining higher levels of metabolites related to energy generation, cofactor regeneration and recovery from cellular damage. Mapping the mechanisms of furfural tolerance conferred by evolutionary engineering in the present study will be led to rational design of metabolically engineered yeasts. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Characterization of an MMS sensitive mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Martin, P.S.

    1979-01-01

    We have characterized a methyl methanesulfonate sensitive mutant of the yeast Saccharomyces cerevisiae in order to learn more about DNA repair and mutagenesis in this organism. The mutation, designated mms3-1, also confers sensitivity to ultraviolet light and to ethyl methanesulfonate in both haploids and homozygous diploids. Its effect on γ-ray sensitivity, however, is a function of the ploidy of the cell and its effect on induced mutation is a function of both the ploidy of the cell and the nature of the inducing agent. Our major findings are discussed. Our data indicate that: (1) Saccharomyces cerevisiae has an error prone pathway for the repair of uv damage controlled by the MMS3 gene product operating in and only in, and possibly induced by conditions present only in, a/α diploids; (2) in diploids, at least, there exists at least one step in the error prone repair of uv induced damage which is different from a step in the error prone repair of EMS induced damage; (3) a/α mms3-1/mms3-1 diploids may be defective in a step common to the repair of mutagenic lesions following uv irradiation and lethal lesions following γ irradiation; and (4) there are steps in the repair of MMS induced lethal damage that are different from steps in the repair of EMS induced lethal damage

  3. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    DEFF Research Database (Denmark)

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass...

  4. Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome.

    Directory of Open Access Journals (Sweden)

    Jonathan L Gordon

    2009-05-01

    Full Text Available Comparative genomics can be used to infer the history of genomic rearrangements that occurred during the evolution of a species. We used the principle of parsimony, applied to aligned synteny blocks from 11 yeast species, to infer the gene content and gene order that existed in the genome of an extinct ancestral yeast about 100 Mya, immediately before it underwent whole-genome duplication (WGD. The reconstructed ancestral genome contains 4,703 ordered loci on eight chromosomes. The reconstruction is complete except for the subtelomeric regions. We then inferred the series of rearrangement steps that led from this ancestor to the current Saccharomyces cerevisiae genome; relative to the ancestral genome we observe 73 inversions, 66 reciprocal translocations, and five translocations involving telomeres. Some fragile chromosomal sites were reused as evolutionary breakpoints multiple times. We identified 124 genes that have been gained by S. cerevisiae in the time since the WGD, including one that is derived from a hAT family transposon, and 88 ancestral loci at which S. cerevisiae did not retain either of the gene copies that were formed by WGD. Sites of gene gain and evolutionary breakpoints both tend to be associated with tRNA genes and, to a lesser extent, with origins of replication. Many of the gained genes in S. cerevisiae have functions associated with ethanol production, growth in hypoxic environments, or the uptake of alternative nutrient sources.

  5. YKL071W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of glycolaldehyde and furfural derived from lignocellulose.

    Science.gov (United States)

    Wang, Hanyu; Ouyang, Yidan; Zhou, Chang; Xiao, Difan; Guo, Yaping; Wu, Lan; Li, Xi; Gu, Yunfu; Xiang, Quanju; Zhao, Ke; Yu, Xiumei; Zou, Likou; Ma, Menggen

    2017-12-01

    Aldehydes generated as by-products during the pretreatment of lignocellulose are the key inhibitors to Saccharomyces cerevisiae, which is considered as the most promising microorganism for industrial production of biofuel, xylitol as well as other special chemicals from lignocellulose. S. cerevisiae has the inherent ability to in situ detoxify aldehydes to corresponding alcohols by multiple aldehyde reductases. Herein, we report that an uncharacterized open reading frame YKL071W from S. cerevisiae encodes a novel "classical" short-chain dehydrogenase/reductase (SDR) protein with NADH-dependent enzymatic activities for reduction of furfural (FF), glycolaldehyde (GA), formaldehyde (FA), and benzaldehyde (BZA). This enzyme showed much better specific activities for reduction of GA and FF than FA and BZA, and displayed much higher Km and Kcat/Km but lower Vmax and Kcat for reduction of GA than FF. For this enzyme, the optimum pH was 5.5 and 6.0 for reduction of GA and FF, and the optimum temperature was 30 °C for reduction of GA and FF. Both pH and temperature affected stability of this enzyme in a similar trend for reduction of GA and FF. Cu 2+ , Zn 2+ , Ni 2+ , and Fe 3+ had severe inhibition effects on enzyme activities of Ykl071wp for reduction of GA and FF. Transcription of YKL071W in S. cerevisiae was significantly upregulated under GA and FF stress conditions, and its transcription is most probably regulated by transcription factor genes of YAP1, CAD1, PDR3, and STB5. This research provides guidelines to identify more uncharacterized genes with reductase activities for detoxification of aldehydes derived from lignocellulose in S. cerevisiae.

  6. Effects of Six Commercial Saccharomyces cerevisiae Strains on Phenolic Attributes, Antioxidant Activity, and Aroma of Kiwifruit (Actinidia deliciosa cv.) Wine

    Science.gov (United States)

    Li, Xingchen; Cao, Lin; Li, Shaohua; Wang, Ranran; Jiang, Zijing; Che, Zhenming; Lin, Hongbin

    2017-01-01

    “Hayward” kiwifruit (Actinidia deliciosa cv.), widely planted all around the world, were fermented with six different commercial Saccharomyces cerevisiae strains (BM4×4, RA17, RC212, WLP77, JH-2, and CR476) to reveal their influence on the phenolic profiles, antioxidant activity, and aromatic components. Significant differences in the levels of caffeic acid, protocatechuate, and soluble solid content were found among wines with the six fermented strains. Wines fermented with RC212 strain exhibited the highest total phenolic acids as well as DPPH radical scavenging ability and also had the strongest ability to produce volatile esters. Wines made with S. cerevisiae BM 4×4 had the highest content of volatile acids, while the highest alcohol content was presented in CR476 wines. Scoring spots of wines with these strains were separated in different quadrants on the components of phenolics and aromas by principal component analyses. Kiwifruit wines made with S. cerevisiae RC212 were characterized by a rich fruity flavor, while CR476 strain and WLP77 strain produced floral flavors and green aromas, respectively. Altogether, the results indicated that the use of S. cerevisiae RC212 was the most suitable for the fermentation of kiwifruit wine with desirable characteristics. PMID:28251154

  7. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries.

    Science.gov (United States)

    Hong, Kuk-Ki; Nielsen, Jens

    2012-08-01

    Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast.

  8. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.

    Science.gov (United States)

    Duina, Andrea A; Miller, Mary E; Keeney, Jill B

    2014-05-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.

  9. Dynamic study of yeast species and Saccharomyces cerevisiae strains during the spontaneous fermentations of Muscat blanc in Jingyang, China.

    Science.gov (United States)

    Wang, Chunxiao; Liu, Yanlin

    2013-04-01

    The evolution of yeast species and Saccharomyces cerevisiae genotypes during spontaneous fermentations of Muscat blanc planted in 1957 in Jingyang region of China was followed in this study. Using a combination of colony morphology on Wallerstein Nutrient (WLN) medium, sequence analysis of the 26S rDNA D1/D2 domain and 5.8S-ITS-RFLP analysis, a total of 686 isolates were identified at the species level. The six species identified were S. cerevisiae, Hanseniaspora uvarum, Hanseniaspora opuntiae, Issatchenkia terricola, Pichia kudriavzevii (Issatchenkia orientalis) and Trichosporon coremiiforme. This is the first report of T. coremiiforme as an inhabitant of grape must. Three new colony morphologies on WLN medium and one new 5.8S-ITS-RFLP profile are described. Species of non-Saccharomyces, predominantly H. opuntiae, were found in early stages of fermentation. Subsequently, S. cerevisiae prevailed followed by large numbers of P. kudriavzevii that dominated at the end of fermentations. Six native genotypes of S. cerevisiae were determined by interdelta sequence analysis. Genotypes III and IV were predominant. As a first step in exploring untapped yeast resources of the region, this study is important for monitoring the yeast ecology in native fermentations and screening indigenous yeasts that will produce wines with regional characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.

    Directory of Open Access Journals (Sweden)

    Lucas S Parreiras

    Full Text Available The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX-pretreated corn stover hydrolysate (ACSH. We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.

  11. Predicción a escala genómica de Componentes de Saccharomyces cerevisiae mediante Análisis de Balance de Flujos

    Directory of Open Access Journals (Sweden)

    César Augusto Vargas García

    2012-01-01

    Full Text Available Título en ingles: Prediction of genome scale  of Saccharomyces cerevisiae by flux balance analysis Resumen: El microorganismo Saccharomyces cerevisiae cuenta con gran número de modelos biológicos conocidos como reconstrucciones, las cuales pueden ser a escala genómica. De estas reconstrucciones a escala genómica provienen los modelos matemáticos, también llamados modelos estequiométricos. Una de las técnicas más usadas para estudiar estos modelos es el Análisis de Balance de Flujos (FBA. El proposito del FBA es predecir el crecimiento del microorganismo bajo estudio, y la producción y consumo de componentes como el etanol, CO2 glicerol, sucinato, acetato y piruvato. Para determinar si las predicciones obtenidas mediante FBA son únicas se utiliza la técnica de Análisis de Variabilidad Flujos (FVA. El presente trabajo muestra los resultados de aplicar el FBA a la reconstrucción reciente del microorganismo S. cerevisiae, la denominada iMM904 y los compara con un conjunto de datos experimentales presente en la literatura. Este trabajo también estudia la existencia de múltiples predicciones FBA utilizando la técnica FVA. Los resultados ilustran que es posible predecir el crecimiento del microorganimo S. cerevisiae, con errores entre el 11% y 28%;  la producción de CO2, con errores entre el 0.3% y 4.5% y la producción de etanol, con errores entre el 11% y 13%. Palabras clave: analisis de balance de flujos, reconstrucción a escala genómica, iMM904, S. cerevisiae. Abstract: Several biological models, named reconstructions, are used for the study of the S. cerevisiae microorganism. The reconstructions can be genomic scaled. Mathematical models are generated from the reconstructions and they are called stoichiometric models. The flux balance analysis (FBA is one of the tools used for the analysis of these models. The FBA attempts to predict the evolution of the microorganism and the consumption and production of components like

  12. Production, purification and characterization of recombinant human antithrombin III by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maheswara Reddy Mallu

    2016-07-01

    Conclusions: The simple, cost-effective and economically viable nature of the process used in the present study for the production of rhAT will be highly beneficial for the healthcare sector. This may also be used to produce other value-added therapeutic recombinant proteins expressed in S. cerevisiae, with greater effectiveness and ease.

  13. Intracellular pH distribution as a cell health indicator in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Aabo, Thomas; Glückstad, Jesper; Siegumfeldt, Henrik

    2011-01-01

    .d.(pHint)) to describe the internal pH distributions. The cellular pH distributional response to external stress such as heat has not previously been determined. In this study, the intracellular pH (pHi) and the s.d.(pHint) of Saccharomyces cerevisiae cells exposed to supralethal temperatures were measured using...

  14. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7.

    Science.gov (United States)

    Qiu, Zilong; Jiang, Rongrong

    2017-01-01

    Classical strain engineering methods often have limitations in altering multigenetic cellular phenotypes. Here we try to improve Saccharomyces cerevisiae ethanol tolerance and productivity by reprogramming its transcription profile through rewiring its key transcription component RNA polymerase II (RNAP II), which plays a central role in synthesizing mRNAs. This is the first report on using directed evolution method to engineer RNAP II to alter S. cerevisiae strain phenotypes. Error-prone PCR was employed to engineer the subunit Rpb7 of RNAP II to improve yeast ethanol tolerance and production. Based on previous studies and the presumption that improved ethanol resistance would lead to enhanced ethanol production, we first isolated variant M1 with much improved resistance towards 8 and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response, etc. This is the first study to demonstrate the possibility of engineering eukaryotic RNAP to alter global transcription profile and improve strain phenotypes. Targeting subunit Rpb7 of RNAP II was able to bring differential expression in hundreds of genes in S. cerevisiae , which finally led to improvement in yeast ethanol tolerance and production.

  15. β-Galactomannan and Saccharomyces cerevisiae var. boulardii modulate the immune response against Salmonella enterica serovar Typhimurium in porcine intestinal epithelial and dendritic cells.

    Science.gov (United States)

    Badia, Roger; Brufau, M Teresa; Guerrero-Zamora, Ana Maria; Lizardo, Rosil; Dobrescu, Irina; Martin-Venegas, Raquel; Ferrer, Ruth; Salmon, Henri; Martínez, Paz; Brufau, Joaquim

    2012-03-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed β-galactomannan (βGM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and βGM inhibited the association of Salmonella with IECs in vitro. Our data indicated that βGM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, βGM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: βGM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-α, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of βGM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-α, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of βGM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated.

  16. Secretory production of cell wall components by Saccharomyces cerevisiae protoplasts in static liquid culture.

    Science.gov (United States)

    Aoyagi, Hideki; Ishizaka, Mikiko; Tanaka, Hideo

    2012-04-01

    When protoplasts of Saccharomyces cerevisiae T7 and IFO 0309 are cultured in a static liquid culture at 2.5 × 10(6) protoplasts/ml, cell wall regeneration does not occur and cell wall components (CWC) are released into the culture broth. By using a specialized fluorometer, the concentrations of CWC could be measured on the basis of the fluorescence intensity of the CWC after staining with Fluostain I. The inoculum concentration, pH, and osmotic pressure of the medium were important factors for the production of CWC in culture. Under optimal culture conditions, S. cerevisiae T7 protoplasts produced 0.91 mg/ml CWC after 24 h. The CWC induced the tumor necrosis factor-α production about 1.3 times higher than that of the commercially available β-1,3/1,6-glucan from baker's yeast cells.

  17. Amperometric Biosensor for Monitoring Respiration Activity of Saccharomyces cerevisiae in the Presence of Cobalt and Zinc

    Directory of Open Access Journals (Sweden)

    Miroslav Mikšaj

    2002-01-01

    Full Text Available For efficient control of heavy metal concentrations electrochemical methods, such as polarography and related techniques, are applied. Their advantages are simplicity, short analysis time and small quantities of samples needed. The presence of some heavy metals, such as zinc and cobalt, accelerates the growth of yeast. For the measurements of concentration changes, amperometric biosensor containing yeast Saccharomyces cerevisiae was used. The influence of zinc and cobalt on respiratory activity of the yeast Saccharomyces cerevisiae was estimated by measuring oxygen in the solution that was earlier enriched with cobalt or zinc. Measurements were performed using modified Clark’s oxygen electrode and the investigated concentrations of cobalt and zinc were up to 100 mg/L.

  18. Identification of a 450-bp region of human papillomavirus type 1 that promotes episomal replication in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chattopadhyay, Anasuya; Schmidt, Martin C.; Khan, Saleem A.

    2005-01-01

    Human papillomaviruses (HPVs) replicate as nuclear plasmids in infected cells. Since the DNA replication machinery is generally conserved between humans and Saccharomyces cerevisiae, we studied whether HPV-1 DNA can replicate in yeast. Plasmids containing a selectable marker (with or without a yeast centromere) and either the full-length HPV-1 genome or various regions of the viral long control region (LCR) and the 3' end of the L1 gene were introduced into S. cerevisiae and their ability to replicate episomally was investigated. Our results show that HPV-1 sequences promote episomal replication of plasmids although the yeast centromere is required for plasmid retention. We have mapped the autonomously replicating sequence activity of HPV-1 DNA to a 450 base-pair sequence (HPV-1 nt 6783-7232) that includes 293 nucleotides from the 5' region of the viral LCR and 157 nucleotides from the 3' end of the L1 gene. The HPV-1 ARS does not include the binding sites for the viral E1 and E2 proteins, and these proteins are dispensable for replication in S. cerevisiae

  19. CK2 activity is modulated by growth rate in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Tripodi, Farida; Cirulli, Claudia; Reghellin, Veronica; Marin, Oriano; Brambilla, Luca; Schiappelli, Maria Patrizia; Porro, Danilo; Vanoni, Marco; Alberghina, Lilia; Coccetti, Paola

    2010-01-01

    Research highlights: → CK2 subunits are nuclear both in glucose and in ethanol growing yeast cells. → CK2 activity is modulated in S. cerevisiae. → CK2 activity is higher in conditions supporting higher growth rates. → V max is higher in faster growing cells, while K m is not affected. -- Abstract: CK2 is a highly conserved protein kinase controlling different cellular processes. It shows a higher activity in proliferating mammalian cells, in various types of cancer cell lines and tumors. The findings presented herein provide the first evidence of an in vivo modulation of CK2 activity, dependent on growth rate, in Saccharomyces cerevisiae. In fact, CK2 activity, assayed on nuclear extracts, is shown to increase in exponential growing batch cultures at faster growth rate, while localization of catalytic and regulatory subunits is not nutritionally modulated. Differences in intracellular CK2 activity of glucose- and ethanol-grown cells appear to depend on both increase in molecule number and k cat . Also in chemostat cultures nuclear CK2 activity is higher in faster growing cells providing the first unequivocal demonstration that growth rate itself can affect CK2 activity in a eukaryotic organism.

  20. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS.

    Science.gov (United States)

    Kuznetsova, Ekaterina; Nocek, Boguslaw; Brown, Greg; Makarova, Kira S; Flick, Robert; Wolf, Yuri I; Khusnutdinova, Anna; Evdokimova, Elena; Jin, Ke; Tan, Kemin; Hanson, Andrew D; Hasnain, Ghulam; Zallot, Rémi; de Crécy-Lagard, Valérie; Babu, Mohan; Savchenko, Alexei; Joachimiak, Andrzej; Edwards, Aled M; Koonin, Eugene V; Yakunin, Alexander F

    2015-07-24

    The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. The fermentative activity and morphological specialitys of yeast Saccharomyces cerevisiae Y-503 at cultivation in aerobic and anaerobic conditions

    Directory of Open Access Journals (Sweden)

    S. Ts. Kotenko

    2010-01-01

    Full Text Available The influence of aerobic and anaerobic conditions of cultivation on structure of cells and enzymes` activity of yeast S. cerevisiae Y-503 is researched. The results of experiment have shown that nutrient medium containing geothermal water in aerobic conditions of cultivation improves biotechnological properties of yeast important for manufacturing bread, and anaerobic activates the enzymes participating in synthesis of ethanol. Strain S. cerevisiae Y-503 can successfully be used both in baking, and in the spirit industries

  2. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

    DEFF Research Database (Denmark)

    Li, M; Phylip, L H; Lees, W E

    2000-01-01

    Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2...

  3. Modulation of the acute phase response in feedlot steers supplemented with Saccharomyces cerevisiae

    Science.gov (United States)

    This study was designed to determine the effect of supplementing feedlot steers with Saccharomyces cerevisiae CNCM I-1079 (SC) on the acute phase response to a lipopolysaccharide (LPS) challenge. Steers (n = 18; 266 ± 4 kilograms body weight) were separated into three treatment groups (n = 6/treatm...

  4. Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Al-Saryi, Nadal A.; Al-Hejjaj, Murtakab Y.; van Roermund, Carlo W. T.; Hulmes, Georgia E.; Ekal, Lakhan; Payton, Chantell; Wanders, Ronald J. A.; Hettema, Ewald H.

    2017-01-01

    In Saccharomyces cerevisiae, peroxisomes are the sole site of fatty acid beta-oxidation. During this process, NAD(+) is reduced to NADH. When cells are grown on oleate medium, peroxisomal NADH is reoxidised to NAD(+) by malate dehydrogenase (Mdh3p) and reduction equivalents are transferred to the

  5. pH-Dependent Uptake of Fumaric Acid in Saccharomyces cerevisiae under Anaerobic Conditions

    NARCIS (Netherlands)

    Jamalzadeh, E.; Verheijen, P.J.; Heijnen, J.J.; Van Gulik, W.M.

    2011-01-01

    Microbial production of C4 dicarboxylic acids from renewable resources has gained renewed interest. The yeast Saccharomyces cerevisiae is known as a robust microorganism and is able to grow at low pH, which makes it a suitable candidate for biological production of organic acids. However, a

  6. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Lages, Nuno; Oldiges, M.

    2009-01-01

    to induce widespread changes in metabolism. We present a detailed analysis of the impact of perturbations in redox cofactors in the cytosol or mitochondria on glucose and energy metabolism in Saccharomyces cerevisiae to aid metabolic engineering decisions that involve cofactor engineering. We enhanced NADH...... oxidation by introducing NADH oxidase or alternative oxidase, its ATP-mediated conversion to NADPH using NADH kinase as well as the interconversion of NADH and NADPH independent of ATP by the soluble, non-proton-translocating bacterial transhydrogenase. Decreasing cytosolic NADH level lowered glycerol...

  7. Construction of a novel kind of expression plasmid by homologous recombination in Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xiangling

    2005-01-01

    [1]Brunelli, J. P., Pall, M. L., A series of yeast vectors for expression of cDNAs and other DNA sequences, Yeast, 1993, 9: 1299―1308.[2]Sikorski, R. S., Hieter, P., A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, 1989, 122: 19―27.[3]Bonneaud, N., Ozier-Kalogerogoulos, O., Li, G. et al., A family of low and high copy replicative, integrative and single-stranded S. cerevisiae /E. coli shuttle vector, Yeast, 1991, 7: 609―615.[4]Huo, K. K., Yu, L. L., Chen, X. J., Li, Y. Y., A stable vector for high-level expression and secretion of human interferon alpha A in yeast, Science in China, Ser. B, 1993, 36(5): 557―567.[5]Zhou, Z. X., Yuan, H. Y., He, W. et al., Expression of the modified HBsAg gene SA-28 directed by a constitutive promoter, Journal of Fudan university (Natural Science), 2000, 39(3): 264―268.[6]Paques, F., Haber, J. E., Multiple pathways of recombination induces by double-strand breaks in Saccharomyces cerevisiae, Microbiology and Molecular Biology Reviews, 1999, 63(2): 349―404.[7]Martin, K., Damage-induced recombination in the yeast Saccharomyces cerevisiae, Mutation Research, 2000, 451: 91―105.[8]Alira, S., Tomoko, O., Homologous recombination and the roles of double-strand breaks, TIBS, 1995, 20: 387―391.[9]Patrick, S., Kelly, M. T., Stephen, V. K., Recombination factor of Saccharomyces cerevisiae, Mutation Research, 2000, 451: 257―275.[10]Manivasakam, P., Weber, S. C., McElver, J., Schiestl, R. H., Micro-homology mediated PCR targeting in Saccharomyces cerevisiae, Nucleic Acids Res., 1995, 23(14): 2799―2800.[11]Baudin, A., Lacroute, F., Cullin, C., A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae, Nucleic Acids Res., 1993, 21(14): 3329―3330.[12]Hua, S. B., Qiu, M., Chan, E., Zhu, L., Luo, Y., Minimum length of sequence homology required for in vivo cloning by homolo-gous recombination in yeast, Plasmid, 1997, 38

  8. Molecular cloning and expression in Saccharomyces cerevisiae and Neurospora crassa of the invertase gene from Neurospora crassa.

    Science.gov (United States)

    Carú, M; Cifuentes, V; Pincheira, G; Jiménez, A

    1989-10-01

    A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.

  9. Evaluation of Saccharomyces cerevisiae GAS1 with respect to its involvement in tolerance to low pH and salt stress.

    Science.gov (United States)

    Matsushika, Akinori; Suzuki, Toshihiro; Goshima, Tetsuya; Hoshino, Tamotsu

    2017-08-01

    We previously showed that overexpression of IoGAS1, which was isolated from the multiple stress-tolerant yeast Issatchenkia orientalis, endows Saccharomyces cerevisiae cells with the ability to grow and ferment under acidic and high-salt conditions. The deduced amino acid sequence of the IoGAS1 gene product exhibits 60% identity with the S. cerevisiae Gas1 protein, a glycosylphosphatidylinositol-anchored protein essential for maintaining cell wall integrity. However, the functional roles of ScGAS1 in stress tolerance and pH regulation remain unclear. In the present study, we characterized ScGAS1 regarding its roles in tolerance to low pH and high salt concentrations. Transcriptional analysis indicated that, as for the IoGAS1 gene, ScGAS1 expression was pH dependent, with maximum expression at pH 3.0; the presence of salt increased endogenous expression of both GAS1 genes at almost all pH levels. These results suggested that ScGAS1, like IoGAS1, is involved in a novel acid- and salt-stress adaptation mechanism in S. cerevisiae. Overexpression of ScGAS1 in S. cerevisiae improved growth and ethanol production from glucose under acid stress without added salt, although the stress tolerance of the ScGAS1-overexpressing strain was inferior to that of the IoGAS1-overexpressing strain. However, overexpression of ScGAS1 did not result in increased tolerance of S. cerevisiae to combined acid and salt stress, even though ScGAS1 appears to be a salt-responsive gene. Thus, ScGAS1 is directly implicated in tolerance to low pH but does not confer salinity tolerance, supporting the view that ScGAS1 and IoGAS1 have overlapping yet distinct roles in stress tolerance in yeast. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. The oenological potential of Hanseniaspora uvarum in simultaneous and sequential co-fermentation with Saccharomyces cerevisiae for the industrial wine production

    Directory of Open Access Journals (Sweden)

    Mariana eTristezza

    2016-05-01

    Full Text Available In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of

  11. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wang, Meng; Li, Sijin; Zhao, Huimin

    2016-01-01

    The development of high-throughput phenotyping tools is lagging far behind the rapid advances of genotype generation methods. To bridge this gap, we report a new strategy for design, construction, and fine-tuning of intracellular-metabolite-sensing/regulation gene circuits by repurposing bacterial transcription factors and eukaryotic promoters. As proof of concept, we systematically investigated the design and engineering of bacterial repressor-based xylose-sensing/regulation gene circuits in Saccharomyces cerevisiae. We demonstrated that numerous properties, such as induction ratio and dose-response curve, can be fine-tuned at three different nodes, including repressor expression level, operator position, and operator sequence. By applying these gene circuits, we developed a cell sorting based, rapid and robust high-throughput screening method for xylose transporter engineering and obtained a sugar transporter HXT14 mutant with 6.5-fold improvement in xylose transportation capacity. This strategy should be generally applicable and highly useful for evolutionary engineering of proteins, pathways, and genomes in S. cerevisiae. © 2015 Wiley Periodicals, Inc.

  12. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Wenning, Leonie; Yu, Tao; David, Florian

    2017-01-01

    used WEs are mainly isolated from Simmondsia chinensis (jojoba), but the high extraction costs and limited harvest areas constrain their use. The use of FARs in combination with different WSs to achieve a synthesis of jojoba-like WEs in bacteria and yeast has been reported previously, but the products...... were restricted to C28-C36 WEs. These rather short WEs make up only a very small percentage of the total WEs in natural jojoba oil. The synthesis of longer chain WEs (up to C44) in Saccharomyces cerevisiae has so far only been achieved after substrate feeding. Here we identified new routes......, respectively, after 48h. Moreover, we enabled the synthesis of jojoba-like WEs up to a chain length of C42, catalyzed by a combination of Maqu_2220 together with the WS from S. chinensis (SciWS) and the S. cerevisiae elongase Elo2p, with a maximum yield of 12.24±3.35mg/g CDW after 48h....

  13. Production and Purification of the Native Saccharomyces cerevisiae Hsp12 in Escherichia coli.

    Science.gov (United States)

    Léger, Antoine; Hocquellet, Agnès; Dieryck, Wilfrid; Moine, Virginie; Marchal, Axel; Marullo, Philippe; Josseaume, Annabelle; Cabanne, Charlotte

    2017-09-20

    Hsp12 is a small heat shock protein produced in many organisms, including the yeast Saccharomyces cerevisiae. It has been described as an indicator of yeast stress rate and has also been linked to the sweetness sensation of wine. To obtain a sufficient amount of protein, we produced and purified Hsp12 without tag in Escherichia coli. A simple fast two-step process was developed using a microplate approach and a design of experiments. A capture step on an anion-exchange salt-tolerant resin was followed by size exclusion chromatography for polishing, leading to a purity of 97%. Thereafter, specific anti-Hsp12 antibodies were obtained by rabbit immunization. An ELISA was developed to quantify Hsp12 in various strains of Saccharomyces cerevisiae. The antibodies showed high specificity and allowed the quantitation of Hsp12 in the yeast. The quantities of Hsp12 measured in the strains differed in direct proportion to the level of expression found in previous studies.

  14. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning.

    Science.gov (United States)

    Latimer, Luke N; Dueber, John E

    2017-06-01

    A common challenge in metabolic engineering is rapidly identifying rate-controlling enzymes in heterologous pathways for subsequent production improvement. We demonstrate a workflow to address this challenge and apply it to improving xylose utilization in Saccharomyces cerevisiae. For eight reactions required for conversion of xylose to ethanol, we screened enzymes for functional expression in S. cerevisiae, followed by a combinatorial expression analysis to achieve pathway flux balancing and identification of limiting enzymatic activities. In the next round of strain engineering, we increased the copy number of these limiting enzymes and again tested the eight-enzyme combinatorial expression library in this new background. This workflow yielded a strain that has a ∼70% increase in biomass yield and ∼240% increase in xylose utilization. Finally, we chromosomally integrated the expression library. This library enriched for strains with multiple integrations of the pathway, which likely were the result of tandem integrations mediated by promoter homology. Biotechnol. Bioeng. 2017;114: 1301-1309. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Acetate metabolism of Saccharomyces cerevisiae at different temperatures during lychee wine fermentation

    Directory of Open Access Journals (Sweden)

    Yu-hui Shang

    2016-05-01

    Full Text Available The yeast (Saccharomyces cerevisiae strain 2137 involved in lychee wine production was used to investigate acetate metabolism at different temperatures during lychee wine fermentation. Fermentation tests were conducted using lychee juice supplemented with acetic acid. The ability of yeast cells to metabolize acetic acid was stronger at 20 °C than at 25 °C or 30 °C. The addition of acetic acid suppressed the yeast cell growth at the tested temperatures. The viability was higher and the reactive oxygen species concentration was lower at 20 °C than at 30 °C; this result indicated that acid stress adaptation protects S. cerevisiae from acetic-acid-mediated programmed cell death. The acetic acid enhanced the thermal death of yeast at high temperatures. The fermentation temperature modified the metabolism of the yeasts and the activity of related enzymes during deacidification, because less acetaldehyde, less glycerol, more ethanol, more succinic acid and more malic acid were produced, with higher level of acetyl–CoA synthetase and isocitrate lyase activity, at 20 °C.

  16. The ability to use nitrate confers advantage to Dekkera bruxellensis over S. cerevisiae and can explain its adaptation to industrial fermentation processes.

    Science.gov (United States)

    de Barros Pita, Will; Leite, Fernanda Cristina Bezerra; de Souza Liberal, Anna Theresa; Simões, Diogo Ardaillon; de Morais, Marcos Antonio

    2011-06-01

    The yeast Dekkera bruxellensis has been regarded as a contamination problem in industrial ethanol production because it can replace the originally inoculated Saccharomyces cerevisiae strains. The present study deals with the influence of nitrate on the relative competitiveness of D. bruxellensis and S. cerevisiae in sugar cane ethanol fermentations. The industrial strain D. bruxellensis GDB 248 showed higher growth rates than S. cerevisiae JP1 strain in mixed ammonia/nitrate media, and nitrate assimilation genes were only slightly repressed by ammonia. These characteristics rendered D. bruxellensis cells with an ability to overcome S. cerevisiae populations in both synthetic medium and in sugar cane juice. The results were corroborated by data from industrial fermentations that showed a correlation between high nitrate concentrations and high D. bruxellensis cell counts. Moreover, the presence of nitrate increased fermentation efficiency of D. bruxellensis cells in anaerobic conditions, which may explain the maintenance of ethanol production in the presence of D. bruxellensis in industrial processes. The presence of high levels of nitrate in sugar cane juice may be due to its inefficient conversion by plant metabolism in certain soil types and could explain the periodical episodes of D. bruxellensis colonization of Brazilian ethanol plants.

  17. Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production

    Directory of Open Access Journals (Sweden)

    Shi Shuobo

    2012-02-01

    Full Text Available Abstract Background Wax ester synthases (WSs can synthesize wax esters from alcohols and fatty acyl coenzyme A thioesters. The knowledge of the preferred substrates for each WS allows the use of yeast cells for the production of wax esters that are high-value materials and can be used in a variety of industrial applications. The products of WSs include fatty acid ethyl esters, which can be directly used as biodiesel. Results Here, heterologous WSs derived from five different organisms were successfully expressed and evaluated for their substrate preference in Saccharomyces cerevisiae. We investigated the potential of the different WSs for biodiesel (that is, fatty acid ethyl esters production in S. cerevisiae. All investigated WSs, from Acinetobacter baylyi ADP1, Marinobacter hydrocarbonoclasticus DSM 8798, Rhodococcus opacus PD630, Mus musculus C57BL/6 and Psychrobacter arcticus 273-4, have different substrate specificities, but they can all lead to the formation of biodiesel. The best biodiesel producing strain was found to be the one expressing WS from M. hydrocarbonoclasticus DSM 8798 that resulted in a biodiesel titer of 6.3 mg/L. To further enhance biodiesel production, acetyl coenzyme A carboxylase was up-regulated, which resulted in a 30% increase in biodiesel production. Conclusions Five WSs from different species were functionally expressed and their substrate preference characterized in S. cerevisiae, thus constructing cell factories for the production of specific kinds of wax ester. WS from M. hydrocarbonoclasticus showed the highest preference for ethanol compared to the other WSs, and could permit the engineered S. cerevisiae to produce biodiesel.

  18. Inhibition of autophagy contributes to the toxicity of cadmium telluride quantum dots in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fan J

    2016-07-01

    Full Text Available Junpeng Fan,1–4 Ming Shao,1–4 Lu Lai,3–5 Yi Liu,3–5 Zhixiong Xie1–4,6 1College of Life Sciences, Wuhan University, 2Hubei Provincial Cooperative Innovation Center of Industrial Fermentation,3State Key Laboratory of Virology, 4Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE, 5College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 6School of Life Science and Technology, Hubei Engineering University, Xiaogan, People’s Republic of China Abstract: Cadmium telluride quantum dots (CdTe QDs are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator, combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells. Keywords: CdTe quantum dots, Saccharomyces cerevisiae, toxicity, autophagy

  19. Levels of acid-soluble polyphosphate in growing cultures of Saccharomyces cerevisiae.

    OpenAIRE

    Solimene, R; Guerrini, A M; Donini, P

    1980-01-01

    Short-chain acid-soluble polyphosphates were extracted from growing cultures of Saccharomyces cerevisiae, and the changes in the levels of these compounds were determined. The production of acid-soluble polyphosphates correlated with the mitochondrial activities since it occurred in two bursts in respiration-competent yeast cells and in only one burst in respiration-deficient yeast cells. The possible role of these compounds is discussed.

  20. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Science.gov (United States)

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  1. Assay for adhesion and agar invasion in S. cerevisiae.

    Science.gov (United States)

    Guldal, Cemile G; Broach, James

    2006-11-08

    Yeasts are found in natural biofilms, where many microorganisms colonize surfaces. In artificial environments, such as surfaces of man-made objects, biofilms can reduce industrial productivity, destroy structures, and threaten human life. 1-3 On the other hand, harnessing the power of biofilms can help clean the environment and generate sustainable energy. 4-8 The ability of S. cerevisiae to colonize surfaces and participate in complex biofilms was mostly ignored until the rediscovery of the differentiation programs triggered by various signaling pathways and environmental cues in this organism. 9, 10 The continuing interest in using S. cerevisiae as a model organism to understand the interaction and convergence of signaling pathways, such as the Ras-PKA, Kss1 MAPK, and Hog1 osmolarity pathways, quickly placed S. cerevisiae in the junction of biofilm biology and signal transduction research. 11-20 To this end, differentiation of yeast cells into long, adhesive, pseudohyphal filaments became a convenient readout for the activation of signal transduction pathways upon various environmental changes. However, filamentation is a complex collection of phenotypes, which makes assaying for it as if it were a simple phenotype misleading. In the past decade, several assays were successfully adopted from bacterial biofilm studies to yeast research, such as MAT formation assays to measure colony spread on soft agar and crystal violet staining to quantitatively measure cell-surface adherence. 12, 21 However, there has been some confusion in assays developed to qualitatively assess the adhesive and invasive phenotypes of yeast in agar. Here, we present a simple and reliable method for assessing the adhesive and invasive quality of yeast strains with easy-to-understand steps to isolate the adhesion assessment from invasion assessment. Our method, adopted from previous studies, 10, 16 involves growing cells in liquid media and plating on differential nutrient conditions for growth

  2. Application of bifunctional Saccharomyces cerevisiae to remove lead(II) and cadmium(II) in aqueous solution

    International Nuclear Information System (INIS)

    Zhang Yunsong; Liu Weiguo; Zhang Li; Wang Meng; Zhao Maojun

    2011-01-01

    A magnetic adsorbent, EDTAD-functionalized Saccharomyces cerevisiae, has been synthesized to behave as an adsorbent for heavy metal ions by adjusting the pH value of the aqueous solution to make carboxyl and amino groups protonic or non-protonic. The bifunctional Saccharomyces cerevisiae (EMS) were used to remove lead(II) and cadmium(II) in solution in a batch system. The results showed that the adsorption capacity of the EMS for the heavy metal ions increased with increasing solution pH, and the maximum adsorption capacity (88.16 mg/g for Pb 2+ , 40.72 mg/g for Cd 2+ ) at 10 deg. C was found to occur at pH 5.5 and 6.0, respectively. The adsorption process followed the Langmuir isotherm model. The regeneration experiments revealed that the EMS could be successfully reused.

  3. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis

    Czech Academy of Sciences Publication Activity Database

    Laun, P.; Pichová, Alena; Madeo, F.; Fuchs, J.; Ellinger, A.; Kohlwein, S.; Dawes, I.; Fröhlich, K. U.; Breitenbach, M.

    2001-01-01

    Roč. 39, č. 5 (2001), s. 1166-1173 ISSN 0950-382X R&D Projects: GA ČR GA204/97/0541 Institutional research plan: CEZ:AV0Z5020903 Keywords : Saccharomyces cerevisiae * genetic changes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.398, year: 2001

  4. Growth rate-regulated expression of the hexose transporter HXT5 in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Verwaal, René

    2003-01-01

    Glucose, which is the most preferred carbon source for the yeast Saccharomyces cerevisiae, is transported across the plasma membrane into cells by hexose transporter (Hxt) proteins. The Hxt proteins are encoded by a multigene family consisting of 20 members. It was shown previously that HXT1-4 and

  5. Mitochondrial genomic dysfunction causes dephosphorylation of Sch9 in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kawai, Shigeyuki; Urban, Jörg; Piccolis, Manuele; Panchaud, Nicolas; De Virgilio, Claudio; Loewith, Robbie

    2011-10-01

    TORC1-dependent phosphorylation of Saccharomyces cerevisiae Sch9 was dramatically reduced upon exposure to a protonophore or in respiration-incompetent ρ(0) cells but not in respiration-incompetent pet mutants, providing important insight into the molecular mechanisms governing interorganellar signaling in general and retrograde signaling in particular.

  6. Effect of initial ph on growth characteristics and fermentation properties of Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Xingyan; Jia, Bo; Sun, Xiangyu; Ai, Jingya; Wang, Lihua; Wang, Cheng; Zhao, Fang; Zhan, Jicheng; Huang, Weidong

    2015-04-01

    As the core microorganism of wine making, Saccharomyces cerevisiae encounter low pH stress at the beginning of fermentation. Effect of initial pH (4.50, 3.00, 2.75, 2.50) on growth and fermentation performance of 3 S. cerevisiae strains Freddo, BH8, Nº.7303, different tolerance at low pH, chosen from 12 strains, was studied. The values of yeast growth (OD600 , colony forming units, cell dry weight), fermentation efficiency (accumulated mass loss, change of total sugar concentration), and fermentation products (ethanol, glycerol, acetic acid, and l-succinic acid) at different pH stress were measured. The results showed that the initial pH of must was a vital factor influencing yeast growth and alcoholic fermentation. Among the 3 strains, strain Freddo and BH8 were more tolerant than Nº.7303, so they were affected slighter than the latter. Among the 4 pH values, all the 3 strains showed adaptation even at pH 2.50; pH 2.75 and 2.50 had more vital effect on yeast growth and fermentation products in contrast with pH 4.50 and 3.00. In general, low initial pH showed the properties of prolonging yeast lag phase, affecting accumulated mass loss, changing the consumption rate of total sugar, increasing final content of acetic acid and glycerol, and decreasing final content of ethanol and l- succinic acid, except some special cases. Based on this study, the effect of low pH on wine products would be better understood and the tolerance mechanism of low pH of S. cerevisiae could be better explored in future. © 2015 Institute of Food Technologists®

  7. Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase.

    Science.gov (United States)

    Moreno, Antonio D; Ibarra, David; Ballesteros, Ignacio; González, Alberto; Ballesteros, Mercedes

    2013-05-01

    In this study, the thermotolerant yeast Kluyveromyces marxianus CECT 10875 was compared to the industrial strain Saccharomyces cerevisiae Ethanol Red for lignocellulosic ethanol production. For it, whole slurry from steam-exploded wheat straw was used as raw material, and two process configurations, simultaneous saccharification and fermentation (SSF) and presaccharification and simultaneous saccharification and fermentation (PSSF), were evaluated. Compared to S. cerevisiae, which was able to produce ethanol in both process configurations, K. marxianus was inhibited, and neither growth nor ethanol production occurred during the processes. However, laccase treatment of the whole slurry removed specifically lignin phenols from the overall inhibitory compounds present in the slurry and triggered the fermentation by K. marxianus, attaining final ethanol concentrations and yields comparable to those obtained by S. cerevisiae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Isolation of glutathione-deficient mutants of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kistler, M.; Eckardt, F.; Summer, K.-H.

    1986-01-01

    Glutathione-deficient (gsh - ) mutants of the yeast Saccharomyces cerevisiae were isolated after UV treatment using MNNG as selective agent. For genetic and biochemical characterization 5 mutant strains were chosen which exhibited considerably decreased residual GSH contents varying from 2 to 6% of the wild-type levels. All 5 isolates showed a 2:2 segregation of the gsh - :GSH + phenotypes alluding to a monogenic recessive mutation. Complementation analysis indicates that all gsh - mutants belong to one complementation group. (Auth.)

  9. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    OpenAIRE

    Popov Stevan D.; Dodić Siniša N.; Mastilović Jasna S.; Dodić Jelena M.; Popov-Raljić Jovanka V.

    2005-01-01

    The waste brewer's yeast S. cerevisiae (activated and non-activated) was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positive...

  10. Saccharomyces cerevisiae strains tor second-generation ethanol production : from academie exploration to industrial implementation

    NARCIS (Netherlands)

    Jansen, Mickel L.A.; Bracher, J.M.; Papapetridis, I.; Verhoeven, M.D.; de Bruijn, J.A.; de Waal, P.; van Maris, A.J.A.; Klaassen, P; Pronk, J.T.

    2017-01-01

    The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these

  11. How Saccharomyces cerevisiae copes with toxic metals and metalloids.

    Science.gov (United States)

    Wysocki, Robert; Tamás, Markus J

    2010-11-01

    Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.

  12. Enrichment of Circular Code Motifs in the Genes of the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Christian J. Michel

    2017-12-01

    Full Text Available A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses. This set X has an interesting mathematical property, since X is a maximal C 3 self-complementary trinucleotide circular code. Furthermore, any motif obtained from this circular code X has the capacity to retrieve, maintain and synchronize the original (reading frame. Since 1996, the theory of circular codes in genes has mainly been developed by analysing the properties of the 20 trinucleotides of X , using combinatorics and statistical approaches. For the first time, we test this theory by analysing the X motifs, i.e., motifs from the circular code X , in the complete genome of the yeast Saccharomyces cerevisiae. Several properties of X motifs are identified by basic statistics (at the frequency level, and evaluated by comparison to R motifs, i.e., random motifs generated from 30 different random codes R . We first show that the frequency of X motifs is significantly greater than that of R motifs in the genome of S. cerevisiae. We then verify that no significant difference is observed between the frequencies of X and R motifs in the non-coding regions of S. cerevisiae, but that the occurrence number of X motifs is significantly higher than R motifs in the genes (protein-coding regions. This property is true for all cardinalities of X motifs (from 4 to 20 and for all 16 chromosomes. We further investigate the distribution of X motifs in the three frames of S. cerevisiae genes and show that they occur more frequently in the reading frame, regardless of their cardinality or their length. Finally, the ratio of X genes, i.e., genes with at least one X motif, to non- X genes, in the set of verified genes is significantly different to that observed in the set of putative or dubious genes with no experimental evidence. These results, taken together

  13. Enrichment of Circular Code Motifs in the Genes of the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Michel, Christian J; Ngoune, Viviane Nguefack; Poch, Olivier; Ripp, Raymond; Thompson, Julie D

    2017-12-03

    A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses. This set X has an interesting mathematical property, since X is a maximal C3 self-complementary trinucleotide circular code. Furthermore, any motif obtained from this circular code X has the capacity to retrieve, maintain and synchronize the original (reading) frame. Since 1996, the theory of circular codes in genes has mainly been developed by analysing the properties of the 20 trinucleotides of X, using combinatorics and statistical approaches. For the first time, we test this theory by analysing the X motifs, i.e., motifs from the circular code X, in the complete genome of the yeast Saccharomyces cerevisiae . Several properties of X motifs are identified by basic statistics (at the frequency level), and evaluated by comparison to R motifs, i.e., random motifs generated from 30 different random codes R. We first show that the frequency of X motifs is significantly greater than that of R motifs in the genome of S. cerevisiae . We then verify that no significant difference is observed between the frequencies of X and R motifs in the non-coding regions of S. cerevisiae , but that the occurrence number of X motifs is significantly higher than R motifs in the genes (protein-coding regions). This property is true for all cardinalities of X motifs (from 4 to 20) and for all 16 chromosomes. We further investigate the distribution of X motifs in the three frames of S. cerevisiae genes and show that they occur more frequently in the reading frame, regardless of their cardinality or their length. Finally, the ratio of X genes, i.e., genes with at least one X motif, to non-X genes, in the set of verified genes is significantly different to that observed in the set of putative or dubious genes with no experimental evidence. These results, taken together, represent the first

  14. High-frequency transformation of a methylotrophic yeast, Candida boidinii, with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sakai, Y; Goh, T K; Tani, Y

    1993-06-01

    We have developed a transformation system which uses autonomous replicating plasmids for a methylotrophic yeast, Candida boidinii. Two autonomous replication sequences, CARS1 and CARS2, were newly cloned from the genome of C. boidinii. Plasmids having both a CARS fragment and the C. boidinii URA3 gene transformed C. boidinii ura3 cells to Ura+ phenotype at frequencies of up to 10(4) CFU/micrograms of DNA. From Southern blot analysis, CARS plasmids seemed to exist in polymeric forms as well as in monomeric forms in C. boidinii cells. The C. boidinii URA3 gene was overexpressed in C. boidinii on these CARS vectors. CARS1 and CARS2 were found to function as an autonomous replicating element in Saccharomyces cerevisiae as well. Different portions of the CARS1 sequence were needed for autonomous replicating activity in C. boidinii and S. cerevisiae. C. boidinii could also be transformed with vectors harboring a CARS fragment and the S. cerevisiae URA3 gene.

  15. Effect of sequential inoculation (Torulaspora delbrueckii/Saccharomyces cerevisiae in the first fermentation on the foam properties of sparkling wine (Cava

    Directory of Open Access Journals (Sweden)

    Medina-Trujillo Laura

    2016-01-01

    Full Text Available In a previous study we reported that sequential inoculation of Torulaspora delbrueckii and Saccharomyces cerevisiae during the first fermentation increased the protein concentration and improved the foaming properties of a base wine. Since effervescence and foam of sparkling wines are key quality factors, the interest of this practice for sparkling wine industry is obvious. In this paper we study whether the foaming properties of the sparkling wines produced from the base wines obtained by sequential inoculation with T. delbrueckii and S. cerevisiae remains better than those of their controls produced from base wines fermented only with S. cerevisiae. The obtained results confirmed that sequential inoculation in the production of the base wine originated sparkling wines with significantly higher maximum heights of foam than conventional inoculation, probably because autolysis of the T. delbrueckii cells in the base wine released higher amounts of proteins, especially of the low molecular weight fraction.

  16. Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae.

    Science.gov (United States)

    Zara, Severino; Gross, Michael K; Zara, Giacomo; Budroni, Marilena; Bakalinsky, Alan T

    2010-06-01

    Flor strains of Saccharomyces cerevisiae form a biofilm on the surface of wine at the end of fermentation, when sugar is depleted and growth on ethanol becomes dependent on oxygen. Here, we report greater biofilm formation on glycerol and ethyl acetate and inconsistent formation on succinic, lactic, and acetic acids.

  17. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bisquert, Ricardo; Muñiz-Calvo, Sara; Guillamón, José M

    2018-01-01

    Melatonin (Mel) is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel's ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H 2 O 2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm). Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments.

  18. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ricardo Bisquert

    2018-02-01

    Full Text Available Melatonin (Mel is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel’s ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H2O2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm. Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments.

  19. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae

    Science.gov (United States)

    Bisquert, Ricardo; Muñiz-Calvo, Sara; Guillamón, José M.

    2018-01-01

    Melatonin (Mel) is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel’s ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H2O2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm). Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments. PMID:29541065

  20. The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis.

    Science.gov (United States)

    Schuller, Dorit; Casal, Margarida

    2007-02-01

    From the analysis of six polymorphic microsatellite loci performed in 361 Saccharomyces cerevisiae isolates, 93 alleles were identified, 52 of them being described for the first time. All these isolates have a distinct mtDNA RFLP pattern. They are derived from a pool of 1620 isolates obtained from spontaneous fermentations of grapes collected in three vineyards of the Vinho Verde Region in Portugal, during the 2001-2003 harvest seasons. For all loci analyzed, observed heterozygosity was 3-4 times lower than the expected value supposing a Hardy-Weinberg equilibrium (random mating and no evolutionary mechanisms acting), indicating a clonal structure and strong populational substructuring. Genetic differences among S. cerevisiae populations were apparent mainly from gradations in allele frequencies rather than from distinctive "diagnostic" genotypes, and the accumulation of small allele-frequency differences across six loci allowed the identification of population structures. Genetic differentiation in the same vineyard in consecutive years was of the same order of magnitude as the differences verified among the different vineyards. Correlation of genetic differentiation with the distance between sampling points within a vineyard suggested a pattern of isolation-by-distance, where genetic divergence in a vineyard increased with size. The continuous use of commercial yeasts has a limited influence on the autochthonous fermentative yeast population collected from grapes and may just slightly change populational structures of strains isolated from sites very close to the winery where they have been used. The present work is the first large-scale approach using microsatellite typing allowing a very fine resolution of indigenous S. cerevisiae populations isolated from vineyards.

  1. Impact of different spray-drying conditions on the viability of wine Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Aponte, Maria; Troianiello, Gabriele Danilo; Di Capua, Marika; Romano, Raffaele; Blaiotta, Giuseppe

    2016-01-01

    Spray-drying (SD) is widely considered a suitable method to preserve microorganisms, but data regarding yeasts are still scanty. In this study, the effect of growing media, process variables and carriers over viability of a wild wine Saccharomyces (S.) cerevisiae LM52 was evaluated. For biomass production, the strain was grown (batch and fed-batch fermentation) in a synthetic, as well as in a beet sugar molasses based-medium. Drying of cells resuspended in several combinations of soluble starch and maltose was performed at different inlet and outlet temperatures. Under the best conditions-suspension in soluble starch plus maltose couplet to inlet and outlet temperatures of 110 and 55 °C, respectively-the loss of viability of S. cerevisiae LM52 was 0.8 ± 0.1 and 0.5 ± 0.2 Log c.f.u. g(-1) for synthetic and molasses-based medium, respectively. Similar results were obtained when S. cerevisiae strains Zymoflore F15 and EC1118, isolated from commercial active dry yeast (ADY), were tested. Moreover, powders retained a high vitality and showed good fermentation performances up to 6 month of storage, at both 4 and -20 °C. Finally, fermentation performances of different kinds of dried formulates (SD and ADY) compared with fresh cultures did not show significant differences. The procedure proposed allowed a small-scale production of yeast in continuous operation with relatively simple equipment, and may thus represent a rapid response-on-demand for the production of autochthonous yeasts for local wine-making.

  2. Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Skrekas, Christos; Nielsen, Jens

    2018-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) technology has greatly accelerated the field of strain engineering. However, insufficient efforts have been made toward developing robust multiplexing tools in Saccharomyces cerevisiae. Here, we exploit the RNA processing capacity...

  3. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose.

    Science.gov (United States)

    Liu, Jing-Jing; Zhang, Guo-Chang; Oh, Eun Joong; Pathanibul, Panchalee; Turner, Timothy L; Jin, Yong-Su

    2016-09-20

    Lactose is an inevitable byproduct of the dairy industry. In addition to cheese manufacturing, the growing Greek yogurt industry generates excess acid whey, which contains lactose. Therefore, rapid and efficient conversion of lactose to fuels and chemicals would be useful for recycling the otherwise harmful acid whey. Saccharomyces cerevisiae, a popular metabolic engineering host, cannot natively utilize lactose. However, we discovered that an engineered S. cerevisiae strain (EJ2) capable of fermenting cellobiose can also ferment lactose. This finding suggests that a cellobiose transporter (CDT-1) can transport lactose and a β-glucosidase (GH1-1) can hydrolyze lactose by acting as a β-galactosidase. While the lactose fermentation by the EJ2 strain was much slower than the cellobiose fermentation, a faster lactose-fermenting strain (EJ2e8) was obtained through serial subcultures on lactose. The EJ2e8 strain fermented lactose with a consumption rate of 2.16g/Lh. The improved lactose fermentation by the EJ2e8 strain was due to the increased copy number of cdt-1 and gh1-1 genes. Looking ahead, the EJ2e8 strain could be exploited for the production of other non-ethanol fuels and chemicals from lactose through further metabolic engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  5. Hydrodynamic cavitation: characterization of a novel design with energy considerations for the inactivation of Saccharomyces cerevisiae in apple juice.

    Science.gov (United States)

    Milly, P J; Toledo, R T; Kerr, W L; Armstead, D

    2008-08-01

    A Shockwave Power Reactor consisting of an annulus with a rotating pock-marked inner cylinder was used to induce hydrodynamic cavitation in calcium-fortified apple juice flowing in the annular space. Lethality on Saccharomyces cerevisiae was assessed at processing temperatures of 65 and 76.7 degrees C. Details of the novel equipment design were presented and energy consumption was compared to conventional and pulsed electric fields processing technologies. The mean log cycle reduction of S. cerevisiae was 6.27 CFU/mL and all treatments resulted in nonrecoverable viable cells. Induced lethality from hydrodynamic cavitation on S. cerevisiae exceeded the predicted values based on experimentally determined thermal resistance. Rotation of 3000 and 3600 rpm at flow rates greater than 1.0 L/min raised product temperature from 20 to 65.6 or 76.7 degrees C, respectively, and energy input was less than 220 kJ/kg. Conversion efficiency from electrical to thermal was 55% to 84%. Hydrodynamic cavitation enhanced lethality of spoilage microorganisms in minimally processed juices and reduced energy usage.

  6. Radioimmunoassay for yeast killer toxin from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Siddiqui, F.A.; Bussey, H.

    1981-01-01

    A radioimmunoassay was developed for the K1 killer toxin from strain T158C/S14a of Saccharomyces cerevisiae. Iodine 125-labelled toxin was made to a specific activity of 100 μCi/mg of protein. Antibody to purified toxin was prepared in rabbits using toxin cross-linked to itself. These antibodies, partially purified by 50 percent ammonium sulfate precipitation and Sepharose CL-6B column chromatography, produced one precipitation band with killer toxin and bound 125 I-labelled toxin in a radioimmunoassay. The antibody preparation also bound with the toxins from another K1 killer, A364A, and three chromosomal superkiller mutants derived from it. (auth)

  7. Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Kuloyo, Olukayode O; du Preez, James C; García-Aparicio, Maria del Prado; Kilian, Stephanus G; Steyn, Laurinda; Görgens, Johann

    2014-12-01

    The feasibility of ethanol production using an enzymatic hydrolysate of pretreated cladodes of Opuntia ficus-indica (prickly pear cactus) as carbohydrate feedstock was investigated, including a comprehensive chemical analysis of the cladode biomass and the effects of limited aeration on the fermentation profiles and sugar utilization. The low xylose and negligible mannose content of the cladode biomass used in this study suggested that the hemicellulose structure of the O. ficus-indica cladode was atypical of hardwood or softwood hemicelluloses. Separate hydrolysis and fermentation and simultaneous saccharification and fermentation procedures using Kluyveromyces marxianus and Saccharomyces cerevisiae at 40 and 35 °C, respectively, gave similar ethanol yields under non-aerated conditions. In oxygen-limited cultures K. marxianus exhibited almost double the ethanol productivity compared to non-aerated cultures, although after sugar depletion utilization of the produced ethanol was evident. Ethanol concentrations of up to 19.5 and 20.6 g l(-1) were obtained with K. marxianus and S. cerevisiae, respectively, representing 66 and 70 % of the theoretical yield on total sugars in the hydrolysate. Because of the low xylan content of the cladode biomass, a yeast capable of xylose fermentation might not be a prerequisite for ethanol production. K. marxianus, therefore, has potential as an alternative to S. cerevisiae for bioethanol production. However, the relatively low concentration of fermentable sugars in the O. ficus-indica cladode hydrolysate presents a technical constraint for commercial exploitation.

  8. Photoreactivity in Saccharomyces cerevisiae cells after irradiation with 25 MeV electrons

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Seleva, N.G.; Myasnik, M.N.; Kabakova, N.M.

    1986-01-01

    Significant photoreactivation was noted in radio- and UV-sensitive rad-mutants of Saccharomyces cerevisiae cells exposed to 25 MeV electrons. In order to make the photoreactivable damage be manifest anoxic conditions of irradiation should be chosen as optimal ones. It was shown that the low oxygen effect was partially associated with the photoreactivable damage involved in the lethal effect of ionizing radiation

  9. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Knuf, Christoph; Förster, Jochen

    2015-01-01

    a less leaky Cu2+-inducible promoter based on CUP1. The basal expression level of the new promoter was approx. 61% below the wild-type CUP1 promoter, thus expanding the absolute range of Cu2+-based gene control. The stability of 3vGFP towards direct-repeat recombination was assayed in S. cerevisiae......Green fluorescent proteins (GFPs) are widely used for visualization of proteins to track localization and expression dynamics. However, phenotypically important processes can operate at too low expression levels for routine detection, i.e. be overshadowed by autofluorescence noise. While GFP...... functions well in translational fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-out by direct-repeat recombination. We increased GFP fluorescence by translationally fusing three different...

  10. The effect of Saccharomyces cerevisiae on the stability of the herbicide glyphosate during bread leavening.

    Science.gov (United States)

    Low, F L; Shaw, I C; Gerrard, J A

    2005-01-01

    To investigate the ability of baker's yeast (Saccharomyces cerevisiae) to degrade the herbicide glyphosate during the fermentation cycle of the breadmaking process. Aqueous glyphosate was added to bread ingredients and kneaded by commercially available breadmaking equipment into dough cultures. Cultures were incubated in the breadmaker throughout the fermentation cycle. The recovery of glyphosate levels following fermentation was determined, thus allowing an estimation of glyphosate degradation by yeast. It was shown, for the first time, that S. cerevisiae plays a role in metabolizing glyphosate during the fermentation stages of breadmaking. Approximately 21% was degraded within 1 h. As a result of projected increases in the glyphosate use on wheat and the role of bread as a dietary staple, this may contribute to more informed decisions being made relating to the use of glyphosate on glyphosate-resistant wheat, from a public health/regulatory perspective.

  11. Application of bifunctional Saccharomyces cerevisiae to remove lead(II) and cadmium(II) in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yunsong [Department of Chemistry, College of Life and Science, Sichuan Agricultural University, Yaan 625014 (China); Liu Weiguo [Agronomy College, Sichuan Agricultural University, Wenjiang 611130 (China); Zhang Li; Wang Meng [Department of Chemistry, College of Life and Science, Sichuan Agricultural University, Yaan 625014 (China); Zhao Maojun, E-mail: yaanyunsong@yahoo.com.cn [Department of Chemistry, College of Life and Science, Sichuan Agricultural University, Yaan 625014 (China)

    2011-09-15

    A magnetic adsorbent, EDTAD-functionalized Saccharomyces cerevisiae, has been synthesized to behave as an adsorbent for heavy metal ions by adjusting the pH value of the aqueous solution to make carboxyl and amino groups protonic or non-protonic. The bifunctional Saccharomyces cerevisiae (EMS) were used to remove lead(II) and cadmium(II) in solution in a batch system. The results showed that the adsorption capacity of the EMS for the heavy metal ions increased with increasing solution pH, and the maximum adsorption capacity (88.16 mg/g for Pb{sup 2+}, 40.72 mg/g for Cd{sup 2+}) at 10 deg. C was found to occur at pH 5.5 and 6.0, respectively. The adsorption process followed the Langmuir isotherm model. The regeneration experiments revealed that the EMS could be successfully reused.

  12. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Directory of Open Access Journals (Sweden)

    Jennifer R Bellon

    Full Text Available Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade, has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  13. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    Science.gov (United States)

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  14. Saccharomyces cerevisiae-based probiotic as novel anti-fungal and anti-inflammatory agent for therapy of vaginal candidiasis.

    Science.gov (United States)

    Gabrielli, E; Pericolini, E; Ballet, N; Roselletti, E; Sabbatini, S; Mosci, P; Decherf, A Cayzeele; Pélerin, F; Perito, S; Jüsten, P; Vecchiarelli, A

    2018-02-27

    Previously we demonstrated that the treatment with live Saccharomyces cerevisiae exerts beneficial therapeutic effects against vaginal candidiasis. Here, we address potential mechanisms particularly examining the probiotic capacity to modulate both fungus and host-related factors. We show that the S. cerevisiae-based probiotic markedly affects the expression of virulence traits of Candida albicans such as aspartyl proteinases (SAPs) as well as hyphae-associated proteins Hwp1 and Ece1 in the vaginal cavity. On the host side, the probiotic suppression of the influx of neutrophils caused by the fungus into the vaginas of the mice is likely related to: (1) lower production of interleukin-8; and (2) inhibition of SAPs expression. However, these neutrophils displayed reactive oxygen species hyperproduction and increased killing activity as compared to the neutrophils of placebo-treated mice. There was no evidence of any cytotoxic effect by the probiotic, either when used in vivo on vaginal epithelial cell and organ architecture, or in in vitro in human vaginal epithelium. Inactivated yeast cells did not affect any of the factors above. In summary, the data suggest that the beneficial effect exerted by this S. cerevisiae-based probiotic is the result of its interference with the expression of fungus virulence factors coupled with the modulation of the inflammatory response of the host.

  15. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2012-02-01

    The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.

  16. Expression of a codon-optimized β-glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose.

    Science.gov (United States)

    Ríos-Fránquez, Francisco Javier; González-Bautista, Enrique; Ponce-Noyola, Teresa; Ramos-Valdivia, Ana Carmela; Poggi-Varaldo, Héctor Mario; García-Mena, Jaime; Martinez, Alfredo

    2017-05-01

    Bioethanol is one of the main biofuels produced from the fermentation of saccharified agricultural waste; however, this technology needs to be optimized for profitability. Because the commonly used ethanologenic yeast strains are unable to assimilate cellobiose, several efforts have been made to express cellulose hydrolytic enzymes in these yeasts to produce ethanol from lignocellulose. The C. flavigenabglA gene encoding β-glucosidase catalytic subunit was optimized for preferential codon usage in S. cerevisiae. The optimized gene, cloned into the episomal vector pRGP-1, was expressed, which led to the secretion of an active β-glucosidase in transformants of the S. cerevisiae diploid strain 2-24D. The volumetric and specific extracellular enzymatic activities using pNPG as substrate were 155 IU L -1 and 222 IU g -1 , respectively, as detected in the supernatant of the cultures of the S. cerevisiae RP2-BGL transformant strain growing in cellobiose (20 g L -1 ) as the sole carbon source for 48 h. Ethanol production was 5 g L -1 after 96 h of culture, which represented a yield of 0.41 g g -1 of substrate consumed (12 g L -1 ), equivalent to 76% of the theoretical yield. The S. cerevisiae RP2-BGL strain expressed the β-glucosidase extracellularly and produced ethanol from cellobiose, which makes this microorganism suitable for application in ethanol production processes with saccharified lignocellulose.

  17. A glycolytic metabolon in Saccharomyces cerevisiae is stabilized by F-actin.

    Science.gov (United States)

    Araiza-Olivera, Daniela; Chiquete-Felix, Natalia; Rosas-Lemus, Mónica; Sampedro, José G; Peña, Antonio; Mujica, Adela; Uribe-Carvajal, Salvador

    2013-08-01

    In the Saccharomyces cerevisiae glycolytic pathway, 11 enzymes catalyze the stepwise conversion of glucose to two molecules of ethanol plus two CO₂ molecules. In the highly crowded cytoplasm, this pathway would be very inefficient if it were dependent on substrate/enzyme diffusion. Therefore, the existence of a multi-enzymatic glycolytic complex has been suggested. This complex probably uses the cytoskeleton to stabilize the interaction of the various enzymes. Here, the role of filamentous actin (F-actin) in stabilization of a putative glycolytic metabolon is reported. Experiments were performed in isolated enzyme/actin mixtures, cytoplasmic extracts and permeabilized yeast cells. Polymerization of actin was promoted using phalloidin or inhibited using cytochalasin D or latrunculin. The polymeric filamentous F-actin, but not the monomeric globular G-actin, stabilized both the interaction of isolated glycolytic pathway enzyme mixtures and the whole fermentation pathway, leading to higher fermentation activity. The associated complexes were resistant against inhibition as a result of viscosity (promoted by the disaccharide trehalose) or inactivation (using specific enzyme antibodies). In S. cerevisiae, a glycolytic metabolon appear to assemble in association with F-actin. In this complex, fermentation activity is enhanced and enzymes are partially protected against inhibition by trehalose or by antibodies. © 2013 FEBS.

  18. Lipid Raft-Based Membrane Compartmentation of a Plant Transport Protein Expressed in Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Grossmann, Q.; Opekarová, Miroslava; Nováková, L.; Stolz, J.; Tanner, W.

    2006-01-01

    Roč. 5, č. 6 (2006), s. 945-953 ISSN 1535-9778 R&D Projects: GA MŠk LC545 Institutional research plan: CEZ:AV0Z50200510 Keywords : saccharomyces cerevisiae * plant transport protein * hup1 Subject RIV: EE - Microbiology, Virology Impact factor: 3.707, year: 2006

  19. Fed-batch coculture of Lactobacillus kefiranofaciens with Saccharomyces cerevisiae for effective production of kefiran.

    Science.gov (United States)

    Tada, Shiori; Katakura, Yoshio; Ninomiya, Kazuaki; Shioya, Suteaki

    2007-06-01

    In a batch coculture of kefiran-producing lactic acid bacteria Lactobacillus kefiranofaciens and lactate-assimilating yeast Saccharomyces cerevisiae, lactate accumulation in the medium was observed, which inhibited kefiran production. To enhance kefiran productivity by preventing lactate accumulation, we conducted lactose-feeding batch operation with feedforward/feedback control during the coculture, so that the lactate production rate of L. kefiranofaciens was balanced with the lactate consumption rate of S. cerevisiae. The lactate concentration was maintained at less than 6 g l(-1) throughout the fed-batch coculture using a 5 l jar fermentor, although the concentration reached 33 g l(-1) in the batch coculture. Kefiran production was increased to 6.3 g in 102 h in the fed-batch coculture, whereas 4.5 g kefiran was produced in 97 h in the batch coculture. The kefiran yield on lactose basis was increased up to 0.033 g g(-1) in the fed-batch coculture, whereas that in the batch coculture was 0.027 g g(-1).

  20. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation

    Science.gov (United States)

    Jansen, Mickel L. A.; Bracher, Jasmine M.; Papapetridis, Ioannis; Verhoeven, Maarten D.; de Bruijn, Hans; de Waal, Paul P.; van Maris, Antonius J. A.; Klaassen, Paul

    2017-01-01

    Abstract The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions. PMID:28899031

  1. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wenning, Leonie; Yu, Tao; David, Florian; Nielsen, Jens; Siewers, Verena

    2017-05-01

    Wax esters (WEs) are neutral lipids and can be used for a broad range of commercial applications, including personal care products, lubricants, or coatings. They are synthesized by enzymatic reactions catalyzed by a fatty acyl reductase (FAR) and a wax ester synthase (WS). At present, commercially used WEs are mainly isolated from Simmondsia chinensis (jojoba), but the high extraction costs and limited harvest areas constrain their use. The use of FARs in combination with different WSs to achieve a synthesis of jojoba-like WEs in bacteria and yeast has been reported previously, but the products were restricted to C28-C36 WEs. These rather short WEs make up only a very small percentage of the total WEs in natural jojoba oil. The synthesis of longer chain WEs (up to C44) in Saccharomyces cerevisiae has so far only been achieved after substrate feeding. Here we identified new routes for producing very long-chain fatty alcohols (VLCFOHs) up to a chain length of C22 by heterologous expression of a FAR derived from Apis mellifera (AmFAR1) or Marinobacter aquaeolei VT8 (Maqu_2220) in S. cerevisiae and achieved maximum yields of 3.22 ± 0.36 mg/g cell dry weight (CDW) and 7.84 ± 3.09 mg/g CDW, respectively, after 48 h. Moreover, we enabled the synthesis of jojoba-like WEs up to a chain length of C42, catalyzed by a combination of Maqu_2220 together with the WS from S. chinensis (SciWS) and the S. cerevisiae elongase Elo2p, with a maximum yield of 12.24 ± 3.35 mg/g CDW after 48 h. Biotechnol. Bioeng. 2017;114: 1025-1035. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Benchmark data for identifying N6-methyladenosine sites in the Saccharomyces cerevisiae genome

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-12-01

    Full Text Available This data article contains the benchmark dataset for training and testing iRNA-Methyl, a web-server predictor for identifying N6-methyladenosine sites in RNA (Chen et al., 2015 [15]. It can also be used to develop other predictors for identifying N6-methyladenosine sites in the Saccharomyces cerevisiae genome.

  3. Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Novák, Jan; Strašák, Luděk; Fojt, Lukáš; Slaninová, I.; Vetterl, Vladimír

    2007-01-01

    Roč. 70, č. 1 (2007), s. 115-121 ISSN 1567-5394 R&D Projects: GA AV ČR(CZ) IAA4004404; GA AV ČR(CZ) IBS5004107 Institutional research plan: CEZ:AV0Z50040702 Keywords : low-frequency electromagnetic field * yeast * Saccharomyces cerevisiae Subject RIV: BO - Biophysics Impact factor: 2.992, year: 2007

  4. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Silljé, H H; Paalman, J W; ter Schure, E G; Olsthoorn, S Q; Verkleij, A J; Boonstra, Johannes; Verrips, C T

    Trehalose and glycogen accumulate in Saccharomyces cerevisiae when growth conditions deteriorate. It has been suggested that aside from functioning as storage factors and stress protectants, these carbohydrates may be required for cell cycle progression at low growth rates under carbon limitation.

  5. Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Naesby, Michael; Mortensen, Uffe Hasbro

    2013-01-01

    production in easily fermentable and genetically engineerable organisms, such as Saccharomyces cerevisiae and Escherichia coli are desirable. Rubrofusarin is an orange polyketide pigment that is a common intermediate in many different fungal biosynthetic pathways. RESULTS: In this study, we established...

  6. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production.

    Science.gov (United States)

    Zheng, Daoqiong; Zhang, Ke; Gao, Kehui; Liu, Zewei; Zhang, Xing; Li, Ou; Sun, Jianguo; Zhang, Xiaoyang; Du, Fengguang; Sun, Peiyong; Qu, Aimin; Wu, Xuechang

    2013-01-01

    The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  7. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY production.

    Directory of Open Access Journals (Sweden)

    Daoqiong Zheng

    Full Text Available The application of active dry yeast (ADY in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  8. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Soy bean seed-coat, potential renewable raw-material for alcohol production

    Directory of Open Access Journals (Sweden)

    Kailash Chandra Srivastava

    1984-11-01

    Full Text Available The seed coat was shaken for different periods of time, from 12 hr to 96 hr in sterile distilled water pre-adjusted to pH 8. The contents of the flask filtered and pH adjusted to 4.6. Next the solution was heated for 20 min at 90° C in a water bath, filtered and media prepared from the filtrate. These media were inoculated with 10% volume of a strain of Saccharomyces Cerevisiae. The suspension shaken on a rotary shaker at 250 rpm and 30°C ± 1°C for 48 hr after which the culture filtrate was distilled and the amount of alcohol measured according to the alcoholometry tables of the U.S. Pharmacopeias. Thus up to 1.3% of alcohol could be obtained.Neste trabalho são apresentados os resultados sobre obtenção de álcool a partir de casca de soja. A casca foi agitada por diferentes períodos de tempo de 12h a 96h em água destilada esterilizada, pré-ajustada para pH 8. Os conteúdos do frasco foram filtrados, o pH ajustado para 4,6; os conteúdos cozidos, esfriados e filtrados. Os filtrados com ou sem suplementação com extrato de levedura, peptona e glicose em conjunto ou separadamente foram usados como mosto para fermentação por S. cerevisiae. As suspensões foram agitadas a 250 rpm e 30° C ± l°C48h, e após este período, a quantidade de álcool calcula­da de acordo com a tabela alcoolométrica da Farmacopia dos Estados Unidos, foi de até 1.3%.

  10. Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kirby, James; Dietzel, Kevin L.; Wichmann, Gale

    2016-01-01

    Isoprenoids are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP......) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol. There are, however, several advantages to isoprenoid synthesis via the DXP...... time, functional expression of the DXP pathway in S. cerevisiae. Under low aeration conditions, an engineered strain relying solely on the DXP pathway for isoprenoid biosynthesis achieved an endpoint biomass 80% of that of the same strain using the mevalonate pathway....

  11. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione.

    OpenAIRE

    Jamieson, D J

    1992-01-01

    Treatment of Saccharomyces cerevisiae cells with low concentrations of either hydrogen peroxide or menadione (a superoxide-generating agent) induces adaptive responses which protect cells from the lethal effects of subsequent challenge with higher concentrations of these oxidants. Pretreatment with menadione is protective against cell killing by hydrogen peroxide; however, pretreatment with hydrogen peroxide is unable to protect cells from subsequent challenge with menadione. This suggests th...

  12. Analysis of the secondary compounds produced by Saccharomyces cerevisiae and wild yeast strains during the production of "cachaça" Análise dos componentes secundários produzidos por Saccharomyces cerevisiae e leveduras selvagens durante a produção de cachaça

    Directory of Open Access Journals (Sweden)

    Maria Cecília Fachine Dato

    2005-03-01

    Full Text Available The aim of this study is to compare the composition of "cachaças" produced in 10 fermentation cycles by Saccharomyces cerevisiae (Sc and wild yeast strains [Pichia silvicola (Ps, Pichia anomala 1 (Pa1, Pichia anomala 2 (Pa2 and Dekkera bruxelensis (Db], isolated from distilleries in Jaboticabal - SP, Brazil. The secondary components of the heart fraction were determined by gas chromatography. The levels of secondary components were influenced by the wine pH, which varied among yeast strains. S. cerevisiae showed slightly more secondary components, whereas wild strains produced more higher alcohols. Wild yeast strains were shown to be adequate for the production of a high quality "cachaça".O presente trabalho visou estabelecer uma comparação entre composição de cachaças produzidas por Saccharomyces cerevisiae (Sc e estirpes de leveduras selvagens [Pichia silvicola (Ps, Pichia anomala 1 (Pa1, Pichia anomala 2 (Pa2 e Dekkera bruxelensis (Db], isoladas em destilarias da região de Jaboticabal-SP. Os componentes secundários da fração denominada coração foram determinados por cromatografia gasosa. Os níveis dos componentes secundários foram influenciados pelo pH dos respectivos vinhos, os quais dependem da estirpe de levedura empregada no processo fermentativo. A Saccharomyces cerevisiae apresentou valores ligeiramente superiores de componentes secundários, enquanto as estirpes selvagens produziram maiores teores de álcoois superiores. As estirpes selvagens de leveduras mostraram-se adequadas para obtenção de uma cachaça de boa qualidade.

  13. Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Nijland, Jeroen G; Shin, Hyun Yong; de Waal, Paul P; Klaassen, Paul; Driessen, Arnold J M

    AIMS: Optimizing D-xylose transport in Saccharomyces cerevisiae is essential for efficient bioethanol production from cellulosic materials. We have used a gene shuffling approach of hexose (Hxt) transporters in order to increase the affinity for D-xylose. METHODS AND RESULTS: Various libraries were

  14. Growth inhibition of S. cerevisiae, B. subtilis, and E. coli by lignocellulosic and fermentation products

    NARCIS (Netherlands)

    Carvalho Pereira, Joana P.C.; Verheijen, P.J.T.; Straathof, Adrie J.J.

    2016-01-01

    This paper describes the effect of several inhibiting components on three potential hosts for the bio-based production of methyl propionate, namely, wild-type Escherichia coli and Bacillus subtilis, and evolved Saccharomyces cerevisiae IMS0351. The inhibition by the lignocellulose-derived

  15. Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae.

    Science.gov (United States)

    Konte, Tilen; Terpitz, Ulrich; Plemenitaš, Ana

    2016-01-01

    The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.

  16. Quality and Composition of Red Wine Fermented with Schizosaccharomyces pombe as Sole Fermentative Yeast, and in Mixed and Sequential Fermentations with Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Felipe Palomero

    2014-01-01

    Full Text Available This work examines the physiology of Schizosaccharomyces pombe (represented by strain 938 in the production of red wine, as the sole fermentative yeast, and in mixed and sequential fermentations with Saccharomyces cerevisiae 796. For further comparison, fermentations in which Saccharomyces cerevisiae was the sole fermentative yeast were also performed; in these fermentations a commercial lactic acid bacterium was used to perform malolactic fermentation once alcoholic fermentation was complete (unlike S. cerevisiae, the Sc. pombe performs maloalcoholic fermentation and therefore removes malic acid without such help. Relative density, acetic, malic and pyruvic acid concentrations, primary amino nitrogen and urea concentrations, and pH of the musts were measured over the entire fermentation period. In all fermentations in which Sc. pombe 938 was involved, nearly all the malic acid was consumed from an initial concentration of 5.5 g/L, and moderate acetic acid concentrations below 0.4 g/L were formed. The urea content of these wines was notably lower, showing a tenfold reduction when compared with those that were made with S. cerevisiae 796 alone. The sensorial properties of the different final wines varied widely. The wines fermented with Sc. pombe 938 had maximum aroma intensity and quality, and they were preferred by the tasters.

  17. Cellular viability of Saccharomyces cerevisiae cultivated in association with contaminates bacteria of alcoholic fermentation

    International Nuclear Information System (INIS)

    Nobre, Thais de Paula

    2005-01-01

    The aim of this work was to study the influence of the bacteria Bacillus and Lactobacillus, as well as their metabolic products, in reduction of cellular viability of Saccharomyces cerevisiae, when in mixed culture of yeast and active and treated bacteria. Also was to evaluated an alternative medium (MCC) for the cultivation of bacteria and yeast, constituted of sugarcane juice diluted to 5 deg Brix and supplemented with yeast extract and peptone. The bacteria Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum and Lactobacillus plantarum were cultivated in association with yeast Saccharomyces cerevisiae (strain Y-904) for 72 h on 32 deg C, under agitation. The cellular viability, budding rate and population of S. cerevisiae, the total acidity, volatile acidity and pH of culture were determined from 0, 24, 48 e 72 h of mixed culture. Also were determined the initial and final of microorganism population across the pour plate method, in traditional culture medium (PCA for Bacillus, MRS-agar for Lactobacillus and YEPD-agar for yeast S. cerevisiae) and in medium constituted of sugarcane juice. The bacteria cultures were treated by heat sterilization (120 deg C for 20 minutes), antibacterial agent (Kamoran HJ in concentration 3,0 ppm) or irradiation (radiation gamma, with doses of 5,0 kGy for Lactobacillus and 15,0 kGy for Bacillus). The results of the present research showed that just the culture mediums more acids (with higher concentrations of total and volatile acidity, and smaller values of pH), contaminated with active bacteria L. fermentum and B. subtilis, caused reduction on yeast cellular viability. Except the bacteria B. subtilis treated with radiation, the others bacteria treated by different procedures (heat, radiation e antibacterial) did not cause reduction on yeast cellular viability and population, indicating that the isolated presence of the cellular metabolic of theses bacteria was not enough to reduce the

  18. Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production.

    Science.gov (United States)

    Favaro, Lorenzo; Basaglia, Marina; Trento, Alberto; Van Rensburg, Eugéne; García-Aparicio, Maria; Van Zyl, Willem H; Casella, Sergio

    2013-11-29

    Robust yeasts with high inhibitor, temperature, and osmotic tolerance remain a crucial requirement for the sustainable production of lignocellulosic bioethanol. These stress factors are known to severely hinder culture growth and fermentation performance. Grape marc was selected as an extreme environment to search for innately robust yeasts because of its limited nutrients, exposure to solar radiation, temperature fluctuations, weak acid and ethanol content. Forty newly isolated Saccharomyces cerevisiae strains gave high ethanol yields at 40°C when inoculated in minimal media at high sugar concentrations of up to 200 g/l glucose. In addition, the isolates displayed distinct inhibitor tolerance in defined broth supplemented with increasing levels of single inhibitors or with a cocktail containing several inhibitory compounds. Both the fermentation ability and inhibitor resistance of these strains were greater than those of established industrial and commercial S. cerevisiae yeasts used as control strains in this study. Liquor from steam-pretreated sugarcane bagasse was used as a key selective condition during the isolation of robust yeasts for industrial ethanol production, thus simulating the industrial environment. The isolate Fm17 produced the highest ethanol concentration (43.4 g/l) from the hydrolysate, despite relatively high concentrations of weak acids, furans, and phenolics. This strain also exhibited a significantly greater conversion rate of inhibitory furaldehydes compared with the reference strain S. cerevisiae 27P. To our knowledge, this is the first report describing a strain of S. cerevisiae able to produce an ethanol yield equal to 89% of theoretical maximum yield in the presence of high concentrations of inhibitors from sugarcane bagasse. This study showed that yeasts with high tolerance to multiple stress factors can be obtained from unconventional ecological niches. Grape marc appeared to be an unexplored and promising substrate for the

  19. Xylitol production by genetically modified industrial strain of Saccharomyces cerevisiae using glycerol as co-substrate.

    Science.gov (United States)

    Kogje, Anushree B; Ghosalkar, Anand

    2017-06-01

    Xylitol is commercially used in chewing gum and dental care products as a low calorie sweetener having medicinal properties. Industrial yeast strain of S. cerevisiae was genetically modified to overexpress an endogenous aldose reductase gene GRE3 and a xylose transporter gene SUT1 for the production of xylitol. The recombinant strain (XP-RTK) carried the expression cassettes of both the genes and the G418 resistance marker cassette KanMX integrated into the genome of S. cerevisiae. Short segments from the 5' and 3' delta regions of the Ty1 retrotransposons were used as homology regions for integration of the cassettes. Xylitol production by the industrial recombinant strain was evaluated using hemicellulosic hydrolysate of the corn cob with glucose as the cosubstrate. The recombinant strain XP-RTK showed significantly higher xylitol productivity (212 mg L -1  h -1 ) over the control strain XP (81 mg L -1  h -1 ). Glucose was successfully replaced by glycerol as a co-substrate for xylitol production by S. cerevisiae. Strain XP-RTK showed the highest xylitol productivity of 318.6 mg L -1  h -1 and titre of 47 g L -1 of xylitol at 12 g L -1 initial DCW using glycerol as cosubstrate. The amount of glycerol consumed per amount of xylitol produced (0.47 mol mol -1 ) was significantly lower than glucose (23.7 mol mol -1 ). Fermentation strategies such as cell recycle and use of the industrial nitrogen sources were demonstrated using hemicellulosic hydrolysate for xylitol production.

  20. Genomic and transcriptomic analysis of aroma synthesis in two hybrids between Saccharomyces cerevisiae and S. kudriavzevii in winemaking conditions.

    Science.gov (United States)

    Gamero, Amparo; Belloch, Carmela; Querol, Amparo

    2015-09-04

    Aroma is one of the most important attributes defining wine quality in which yeasts play a crucial role, synthesizing aromatic compounds or releasing odourless conjugates. A present-day trend in winemaking consists of lowering fermentation temperature to achieve higher aroma production and retention. S. cerevisiae × S. kudriavzevii hybrids seem to have inherited beneficial traits from their parental species, like fermenting efficiently at low temperature or producing higher amounts of certain aromatic compounds. In this study, allelic composition and gene expression of the genes related to aroma synthesis in two genetically and phenotypically different S. cerevisiae × S. kudriavzevii hybrids, Lalvin W27 and VIN7, were compared and related to aroma production in microvinifications at 12 and 28 °C. In addition, the contribution of the allele coming from each parental to the overall expression was explored by RT-PCR. The results indicated large differences in allele composition, gene expression and the contribution of each parental to the overall expression at the fermentation temperatures tested. Results obtained by RT-PCR showed that in ARO1 and ATF2 genes the S. kudriavzevii allele was more expressed than that of S. cerevisiae particularly at 12 °C. This study revealed high differences regarding allele composition and gene expression in two S. cerevisiae × S. kudriavzevii hybrids, which may have led to different aroma profiles in winemaking conditions. The contribution of the alleles coming from each parental to the overall expression has proved to differently influence aroma synthesis. Besides, the quantitative contribution to the overall gene expression of the alleles coming from one parental strain or the other was clearly determined by the fermentation temperature for some genes.