WorldWideScience

Sample records for cerebellar granule neurons

  1. File list: Unc.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  2. File list: His.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  3. File list: His.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  4. File list: His.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  5. File list: Unc.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  6. File list: Unc.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  7. File list: His.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  8. File list: Pol.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  9. File list: Pol.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  10. File list: Pol.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  11. File list: Oth.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  12. File list: Oth.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  13. File list: Oth.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  14. File list: Oth.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  15. File list: DNS.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  16. File list: ALL.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  17. File list: ALL.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  18. File list: DNS.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  19. File list: ALL.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685878,SRX685882,SRX685877,SRX685880,SRX685883 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  20. File list: ALL.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  1. File list: DNS.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  2. File list: InP.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  3. File list: InP.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  4. File list: NoD.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  5. File list: InP.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  6. File list: NoD.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  7. File list: NoD.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  8. File list: InP.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  9. A low-density culture method of cerebellar granule neurons with paracrine support applicable for the study of neuronal morphogenesis.

    Science.gov (United States)

    Kubota, Kenta; Seno, Takeshi; Konishi, Yoshiyuki

    2013-11-20

    Cerebellar granule neuronal cultures have been used to study the molecular mechanisms underlying neuronal functions, including neuronal morphogenesis. However, a limitation of this system is the difficulty to analyze isolated neurons because these are required to be maintained at a high density. Therefore, in the present study, we aimed to develop a simple and cost-effective method for culturing low-density cerebellar granule neurons. Cerebellar granule cells at two different densities (low- and high-density) were co-cultivated in order for the low-density culture to be supported by the paracrine signals from the high-density culture. This method enabled morphology analysis of isolated cerebellar granule neurons without astrocytic feeder cultures or supplements such as B27. Using this method, we investigated the function of a polarity factor. Studies using hippocampal neurons suggested that glycogen synthase kinase-3 (GSK-3) is an essential regulator of neuronal polarity, and inhibition of GSK-3 results in the formation of multiple axons. Pharmacological inhibitors for GSK-3 (6-bromoindirubin-3'-oxime and lithium chloride) did not cause the formation of multiple axons of cerebellar granule neurons but significantly reduced their length. Consistent results were obtained by introducing kinase-dead form of GSK-3 beta (K85A). These results indicated that GSK-3 is not directly involved in the control of neuronal polarity in cerebellar granule neurons. Overall, this study provides a simple method for culturing low-density cerebellar granule neurons and insights in to the neuronal-type dependent function of GSK-3 in neuronal morphogenesis. © 2013 Elsevier B.V. All rights reserved.

  10. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    Science.gov (United States)

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.

  11. Different Molecular Mechanisms Mediate Direct or Glia-Dependent Prion Protein Fragment 90-231 Neurotoxic Effects in Cerebellar Granule Neurons.

    Science.gov (United States)

    Thellung, Stefano; Gatta, Elena; Pellistri, Francesca; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Robello, Mauro; Florio, Tullio

    2017-10-01

    Glia over-stimulation associates with amyloid deposition contributing to the progression of central nervous system neurodegenerative disorders. Here we analyze the molecular mechanisms mediating microglia-dependent neurotoxicity induced by prion protein (PrP)90-231, an amyloidogenic polypeptide corresponding to the protease-resistant portion of the pathological prion protein scrapie (PrP Sc ). PrP90-231 neurotoxicity is enhanced by the presence of microglia within neuronal culture, and associated to a rapid neuronal [Ca ++ ] i increase. Indeed, while in "pure" cerebellar granule neuron cultures, PrP90-231 causes a delayed intracellular Ca ++ entry mediated by the activation of NMDA receptors; when neuron and glia are co-cultured, a transient increase of [Ca ++ ] i occurs within seconds after treatment in both granule neurons and glial cells, then followed by a delayed and sustained [Ca ++ ] i raise, associated with the induction of the expression of inducible nitric oxide synthase and phagocytic NADPH oxidase. [Ca ++ ] i fast increase in neurons is dependent on the activation of multiple pathways since it is not only inhibited by the blockade of voltage-gated channel activity and NMDA receptors but also prevented by the inhibition of nitric oxide and PGE 2 release from glial cells. Thus, Ca ++ homeostasis alteration, directly induced by PrP90-231 in cerebellar granule cells, requires the activation of NMDA receptors, but is greatly enhanced by soluble molecules released by activated glia. In glia-enriched cerebellar granule cultures, the activation of inducible nitric oxide (iNOS) and NADPH oxidase represents the main mechanism of toxicity since their pharmacological inhibition prevented PrP90-231 neurotoxicity, whereas NMDA blockade by D(-)-2-amino-5-phosphonopentanoic acid is ineffective; conversely, in pure cerebellar granule cultures, NMDA blockade but not iNOS inhibition strongly reduced PrP90-231 neurotoxicity. These data indicate that amyloidogenic peptides

  12. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    International Nuclear Information System (INIS)

    Schousboe, A.; Frandsen, A.; Drejer, J.

    1989-01-01

    Evoked release of [ 3 H]-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and [3H]-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP

  13. The histone demethylase Kdm6b regulates a mature gene expression program in differentiating cerebellar granule neurons.

    Science.gov (United States)

    Wijayatunge, Ranjula; Liu, Fang; Shpargel, Karl B; Wayne, Nicole J; Chan, Urann; Boua, Jane-Valeriane; Magnuson, Terry; West, Anne E

    2018-03-01

    The histone H3 lysine 27 (H3K27) demethylase Kdm6b (Jmjd3) can promote cellular differentiation, however its physiological functions in neurons remain to be fully determined. We studied the expression and function of Kdm6b in differentiating granule neurons of the developing postnatal mouse cerebellum. At postnatal day 7, Kdm6b is expressed throughout the layers of the developing cerebellar cortex, but its expression is upregulated in newborn cerebellar granule neurons (CGNs). Atoh1-Cre mediated conditional knockout of Kdm6b in CGN precursors either alone or in combination with Kdm6a did not disturb the gross morphological development of the cerebellum. Furthermore, RNAi-mediated knockdown of Kdm6b in cultured CGN precursors did not alter the induced expression of early neuronal marker genes upon cell cycle exit. By contrast, knockdown of Kdm6b significantly impaired the induction of a mature neuronal gene expression program, which includes gene products required for functional synapse maturation. Loss of Kdm6b also impaired the ability of Brain-Derived Neurotrophic Factor (BDNF) to induce expression of Grin2c and Tiam1 in maturing CGNs. Taken together, these data reveal a previously unknown role for Kdm6b in the postmitotic stages of CGN maturation and suggest that Kdm6b may work, at least in part, by a transcriptional mechanism that promotes gene sensitivity to regulation by BDNF. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    Directory of Open Access Journals (Sweden)

    Xinhua Zhou

    2015-01-01

    Full Text Available Edaravone (EDA is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA- induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities.

  15. Properties of bilateral spinocerebellar activation of cerebellar cortical neurons

    Directory of Open Access Journals (Sweden)

    Pontus eGeborek

    2014-10-01

    Full Text Available We aimed to explore the cerebellar cortical inputs from two spinocerebellar pathways, the spinal border cell-component of the ventral spinocerebellar tract (SBC-VSCT and the dorsal spinocerebellar tract (DSCT, respectively, in the sublobule C1 of the cerebellar posterior lobe. The two pathways were activated by electrical stimulation of the contralateral lateral funiculus (coLF and the ipsilateral LF (iLF at lower thoracic levels. Most granule cells in sublobule C1 did not respond at all but part of the granule cell population displayed high-intensity responses to either coLF or iLF stimulation. As a rule, Golgi cells and Purkinje cell simple spikes responded to input from both LFs, although Golgi cells could be more selective. In addition, a small population of granule cells responded to input from both the coLF and the iLF. However, in these cases, similarities in the temporal topography and magnitude of the responses suggested that the same axons were stimulated from the two LFs, i.e. that the axons of individual spinocerebellar neurons could be present in both funiculi. This was also confirmed for a population of spinal neurons located within known locations of SBC-VSCT neurons and dorsal horn DSCT neurons. We conclude that bilateral spinocerebellar responses can occur in cerebellar granule cells, but the VSCT and DSCT systems that provide the input can also be organized bilaterally. The implications for the traditional functional separation of VSCT and DSCT systems and the issue whether granule cells primarily integrate functionally similar information or not are discussed.

  16. Mutant PrP Suppresses Glutamatergic Neurotransmission in Cerebellar Granule Neurons by Impairing Membrane Delivery of VGCC α2δ-1 Subunit

    Science.gov (United States)

    Senatore, Assunta; Colleoni, Simona; Verderio, Claudia; Restelli, Elena; Morini, Raffaella; Condliffe, Steven B.; Bertani, Ilaria; Mantovani, Susanna; Canovi, Mara; Micotti, Edoardo; Forloni, Gianluigi; Dolphin, Annette C.; Matteoli, Michela; Gobbi, Marco; Chiesa, Roberto

    2012-01-01

    Summary How mutant prion protein (PrP) leads to neurological dysfunction in genetic prion diseases is unknown. Tg(PG14) mice synthesize a misfolded mutant PrP which is partially retained in the neuronal endoplasmic reticulum (ER). As these mice age, they develop ataxia and massive degeneration of cerebellar granule neurons (CGNs). Here, we report that motor behavioral deficits in Tg(PG14) mice emerge before neurodegeneration and are associated with defective glutamate exocytosis from granule neurons due to impaired calcium dynamics. We found that mutant PrP interacts with the voltage-gated calcium channel α2δ-1 subunit, which promotes the anterograde trafficking of the channel. Owing to ER retention of mutant PrP, α2δ-1 accumulates intracellularly, impairing delivery of the channel complex to the cell surface. Thus, mutant PrP disrupts cerebellar glutamatergic neurotransmission by reducing the number of functional channels in CGNs. These results link intracellular PrP retention to synaptic dysfunction, indicating new modalities of neurotoxicity and potential therapeutic strategies. PMID:22542184

  17. Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity.

    Science.gov (United States)

    Gilmer, Jesse I; Person, Abigail L

    2017-12-13

    Combinatorial expansion by the cerebellar granule cell layer (GCL) is fundamental to theories of cerebellar contributions to motor control and learning. Granule cells (GrCs) sample approximately four mossy fiber inputs and are thought to form a combinatorial code useful for pattern separation and learning. We constructed a spatially realistic model of the cerebellar GCL and examined how GCL architecture contributes to GrC combinatorial diversity. We found that GrC combinatorial diversity saturates quickly as mossy fiber input diversity increases, and that this saturation is in part a consequence of short dendrites, which limit access to diverse inputs and favor dense sampling of local inputs. This local sampling also produced GrCs that were combinatorially redundant, even when input diversity was extremely high. In addition, we found that mossy fiber clustering, which is a common anatomical pattern, also led to increased redundancy of GrC input combinations. We related this redundancy to hypothesized roles of temporal expansion of GrC information encoding in service of learned timing, and we show that GCL architecture produces GrC populations that support both temporal and combinatorial expansion. Finally, we used novel anatomical measurements from mice of either sex to inform modeling of sparse and filopodia-bearing mossy fibers, finding that these circuit features uniquely contribute to enhancing GrC diversification and redundancy. Our results complement information theoretic studies of granule layer structure and provide insight into the contributions of granule layer anatomical features to afferent mixing. SIGNIFICANCE STATEMENT Cerebellar granule cells are among the simplest neurons, with tiny somata and, on average, just four dendrites. These characteristics, along with their dense organization, inspired influential theoretical work on the granule cell layer as a combinatorial expander, where each granule cell represents a unique combination of inputs

  18. Talpid3-binding centrosomal protein Cep120 is required for centriole duplication and proliferation of cerebellar granule neuron progenitors.

    Directory of Open Access Journals (Sweden)

    Chuanqing Wu

    Full Text Available Granule neuron progenitors (GNPs are the most abundant neuronal type in the cerebellum. GNP proliferation and thus cerebellar development require Sonic hedgehog (Shh secreted from Purkinje cells. Shh signaling occurs in primary cilia originating from the mother centriole. Centrioles replicate only once during a typical cell cycle and are responsible for mitotic spindle assembly and organization. Recent studies have linked cilia function to cerebellar morphogenesis, but the role of centriole duplication in cerebellar development is not known. Here we show that centrosomal protein Cep120 is asymmetrically localized to the daughter centriole through its interaction with Talpid3 (Ta3, another centrosomal protein. Cep120 null mutant mice die in early gestation with abnormal heart looping. Inactivation of Cep120 in the central nervous system leads to both hydrocephalus, due to the loss of cilia on ependymal cells, and severe cerebellar hypoplasia, due to the failed proliferation of GNPs. The mutant GNPs lack Hedgehog pathway activity. Cell biological studies show that the loss of Cep120 results in failed centriole duplication and consequently ciliogenesis, which together underlie Cep120 mutant cerebellar hypoplasia. Thus, our study for the first time links a centrosomal protein necessary for centriole duplication to cerebellar morphogenesis.

  19. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons.

    Science.gov (United States)

    Trivedi, Niraj; Ramahi, Joseph S; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A; Solecki, David J

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. We show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. We propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.

  20. Simulating spinal border cells and cerebellar granule cells under locomotion--a case study of spinocerebellar information processing.

    Directory of Open Access Journals (Sweden)

    Anton Spanne

    Full Text Available The spinocerebellar systems are essential for the brain in the performance of coordinated movements, but our knowledge about the spinocerebellar interactions is very limited. Recently, several crucial pieces of information have been acquired for the spinal border cell (SBC component of the ventral spinocerebellar tract (VSCT, as well as the effects of SBC mossy fiber activation in granule cells of the cerebellar cortex. SBCs receive monosynaptic input from the reticulospinal tract (RST, which is an important driving system under locomotion, and disynaptic inhibition from Ib muscle afferents. The patterns of activity of RST neurons and Ib afferents under locomotion are known. The activity of VSCT neurons under fictive locomotion, i.e. without sensory feedback, is also known, but there is little information on how these neurons behave under actual locomotion and for cerebellar granule cells receiving SBC input this is completely unknown. But the available information makes it possible to simulate the interactions between the spinal and cerebellar neuronal circuitries with a relatively large set of biological constraints. Using a model of the various neuronal elements and the network they compose, we simulated the modulation of the SBCs and their target granule cells under locomotion and hence generated testable predictions of their general pattern of modulation under this condition. This particular system offers a unique opportunity to simulate these interactions with a limited number of assumptions, which helps making the model biologically plausible. Similar principles of information processing may be expected to apply to all spinocerebellar systems.

  1. Spontaneous calcium waves in granule cells in cerebellar slice cultures

    DEFF Research Database (Denmark)

    Apuschkin, Mia; Ougaard, Maria; Rekling, Jens C

    2013-01-01

    Multiple regions in the CNS display propagating correlated activity during embryonic and postnatal development. This activity can be recorded as waves of increased calcium concentrations in spiking neurons or glia cells, and have been suggested to be involved in patterning, axonal guidance and es......, that the propagating wave activity is carried through the tissue by axonal collaterals formed by neighboring granule cells, and further suggest that the correlated activity may be related to processes that ensure correct postnatal wiring of the cerebellar circuits....

  2. LXR agonist rescued the deficit in the proliferation of the cerebellar granule cells induced by dexamethasone

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Xuting; Zhong, Hongyu; Li, Fen; Cai, Yulong; Li, Xin; Wang, Lian; Fan, Xiaotang, E-mail: fanxiaotang2005@163.com

    2016-09-02

    Dexamethasone (DEX) exposure during early postnatal life produces permanent neuromotor and intellectual deficits and stunts cerebellar growth. The liver X receptor (LXR) plays important roles in CNS development. However, the effects of LXR on the DEX-mediated impairment of cerebellar development remain undetermined. Thus, mice were pretreated with LXR agonist TO901317 (TO) and were later exposed to DEX to evaluate its protective effects on DEX-mediated deficit during cerebellar development. The results showed that an acute exposure of DEX on postnatal day 7 resulted in a significant impairment in cerebellar development and decreased the proliferation of granule neuron precursors in the external granule layer of cerebellum. This effect was attenuated by pretreatment with TO. We further found that the decrease in the proliferation caused by DEX occurred via up-regulation of glucocorticoid receptor and p27kip1, which could be partially prevented by LXR agonist pretreatment. Overall, our results suggest that LXR agonist pretreatment could protect against DEX-induced deficits in cerebellar development in postnatal mice and may thus be perspective recruited to counteract such GC side effects.

  3. LXR agonist rescued the deficit in the proliferation of the cerebellar granule cells induced by dexamethasone

    International Nuclear Information System (INIS)

    Bian, Xuting; Zhong, Hongyu; Li, Fen; Cai, Yulong; Li, Xin; Wang, Lian; Fan, Xiaotang

    2016-01-01

    Dexamethasone (DEX) exposure during early postnatal life produces permanent neuromotor and intellectual deficits and stunts cerebellar growth. The liver X receptor (LXR) plays important roles in CNS development. However, the effects of LXR on the DEX-mediated impairment of cerebellar development remain undetermined. Thus, mice were pretreated with LXR agonist TO901317 (TO) and were later exposed to DEX to evaluate its protective effects on DEX-mediated deficit during cerebellar development. The results showed that an acute exposure of DEX on postnatal day 7 resulted in a significant impairment in cerebellar development and decreased the proliferation of granule neuron precursors in the external granule layer of cerebellum. This effect was attenuated by pretreatment with TO. We further found that the decrease in the proliferation caused by DEX occurred via up-regulation of glucocorticoid receptor and p27kip1, which could be partially prevented by LXR agonist pretreatment. Overall, our results suggest that LXR agonist pretreatment could protect against DEX-induced deficits in cerebellar development in postnatal mice and may thus be perspective recruited to counteract such GC side effects.

  4. Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates

    Directory of Open Access Journals (Sweden)

    Bob eJacobs

    2014-04-01

    Full Text Available Although the basic morphological characteristics of neurons in the cerebellar cortex have been documented in several species, virtually nothing is known about the quantitative morphological characteristics of these neurons across different taxa. To that end, the present study investigated cerebellar neuronal morphology among eight different, large-brained mammalian species comprising a broad phylogenetic range: afrotherians (African elephant, Florida manatee, carnivores (Siberian tiger, clouded leopard, cetartiodactyls (humpback whale, giraffe and primates (human, common chimpanzee. Specifically, several neuron types (e.g., stellate, basket, Lugaro, Golgi, and granule neurons; N = 317 of the cerebellar cortex were stained with a modified rapid Golgi technique and quantified on a computer-assisted microscopy system. There was a 64-fold variation in brain mass across species in our sample (from clouded leopard to the elephant and a 103-fold variation in cerebellar volume. Most dendritic measures tended to increase with cerebellar volume. The cerebellar cortex in these species exhibited the trilaminate pattern common to all mammals. Morphologically, neuron types in the cerebellar cortex were generally consistent with those described in primates (Fox et al., 1967 and rodents (Palay and Chan-Palay, 1974, although there was substantial quantitative variation across species. In particular, Lugaro neurons in the elephant appeared to be disproportionately larger than those in other species. To explore potential quantitative differences in dendritic measures across species, MARSplines analyses were used to evaluate whether species could be differentiated from each other based on dendritic characteristics alone. Results of these analyses indicated that there were significant differences among all species in dendritic measures.

  5. Comparative sensitivity of rat cerebellar neurons to dysregulation of divalent cation homeostasis and cytotoxicity caused by methylmercury

    International Nuclear Information System (INIS)

    Edwards, Joshua R.; Marty, M. Sue; Atchison, William D.

    2005-01-01

    The objective of the present study was to determine the relative effectiveness of methylmercury (MeHg) to alter divalent cation homeostasis and cause cell death in MeHg-resistant cerebellar Purkinje and MeHg-sensitive granule neurons. Application of 0.5-5 μM MeHg to Purkinje and granule cells grown in culture caused a concentration- and time-dependent biphasic increase in fura-2 fluorescence. At 0.5 and 1 μM MeHg, the elevations of fura-2 fluorescence induced by MeHg were biphasic in both cell types, but significantly delayed in Purkinje as compared to granule cells. Application of the heavy-metal chelator, TPEN, to Purkinje cells caused a precipitous decline in a proportion of the fura-2 fluorescence signal, indicating that MeHg causes release of Ca 2+ and non-Ca 2+ divalent cations. Purkinje cells were also more resistant than granule cells to the neurotoxic effects of MeHg. At 24.5 h after-application of 5 μM MeHg, 97.7% of Purkinje cells were viable. At 3 μM MeHg there was no detectable loss of Purkinje cell viability. In contrast, only 40.6% of cerebellar granule cells were alive 24.5 h after application of 3 μM MeHg. In conclusion, Purkinje neurons in primary cultures appear to be more resistant to MeHg-induced dysregulation of divalent cation homeostasis and subsequent cell death when compared to cerebellar granule cells. There is a significant component of non-Ca 2+ divalent cation released by MeHg in Purkinje neurons

  6. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms. Association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Kjaerulff, Karen M; Pedersen, Hans C

    2002-01-01

    BTB/POZ (broad complex tramtrack bric-a-brac/poxvirus and zinc finger) zinc finger factors are a class of nuclear DNA-binding proteins involved in development, chromatin remodeling, and cancer. However, BTB/POZ domain zinc finger factors linked to development of the mammalian cerebral cortex......, cerebellum, and macroglia have not been described previously. We report here the isolation and characterization of two novel nuclear BTB/POZ domain zinc finger isoforms, designated HOF(L) and HOF(S), that are specifically expressed in early hippocampal neurons, cerebellar granule cells, and gliogenic...

  7. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1988-01-01

    N-methyl-D-aspartate (NMDA) supplementation of cerebellar cultures enriched in granule neurones (about 90%) prevented the extensive cell loss which occurs when cultivation takes place, in serum containing media, in the presence of 'low' K+ (5-15 mM). Estimation of tetanus toxin receptors and N-CA...

  8. Acute ethanol exposure inhibits silencing of cerebellar Golgi cell firing induced by granule cell axon input

    Directory of Open Access Journals (Sweden)

    Paolo eBotta

    2014-02-01

    Full Text Available Golgi cells (GoCs are specialized interneurons that provide inhibitory input to granule cells in the cerebellar cortex. GoCs are pacemaker neurons that spontaneously fire action potentials, triggering spontaneous inhibitory postsynaptic currents in granule cells and also contributing to the generation tonic GABAA receptor-mediated currents in granule cells. In turn, granule cell axons provide feedback glutamatergic input to GoCs. It has been shown that high frequency stimulation of granule cell axons induces a transient pause in GoC firing in a type 2-metabotropic glutamate receptor (mGluR2-dependent manner. Here, we investigated the effect ethanol on the pause of GoC firing induced by high frequency stimulation of granule cell axons. GoC electrophysiological recordings were performed in parasagittal cerebellar vermis slices from postnatal day 23 to 26 rats. Loose-patch cell-attached recordings revealed that ethanol (40 mM reversibly decreases the pause duration. An antagonist of mGluR2 reduced the pause duration but did not affect the effect of ethanol. Whole-cell voltage-clamp recordings showed that currents evoked by an mGluR2 agonist were not significantly affected by ethanol. Perforated-patch experiments in which hyperpolarizing and depolarizing currents were injected into GoCs demonstrated that there is an inverse relationship between spontaneous firing and pause duration. Slight inhibition of the Na+/K+ pump mimicked the effect of ethanol on pause duration. In conclusion, ethanol reduces the granule cell axon-mediated feedback mechanism by reducing the input responsiveness of GoCs. This would result in a transient increase of GABAA receptor-mediated inhibition of granule cells, limiting information flow at the input stage of the cerebellar cortex.

  9. Glucose deprivation stimulates Cu(2+) toxicity in cultured cerebellar granule neurons and Cu(2+)-dependent zinc release.

    Science.gov (United States)

    Isaev, Nickolay K; Genrikhs, Elisaveta E; Aleksandrova, Olga P; Zelenova, Elena A; Stelmashook, Elena V

    2016-05-27

    Copper chloride (0.01mM, 2h) did not have significant influence on the survival of cerebellar granule neurons (CGNs) incubated in balanced salt solution. However, CuCl2 caused severe neuronal damage by glucose deprivation (GD). The glutamate NMDA-receptors blocker MK-801 partially and antioxidant N-acetyl-l-cysteine (NAC) or Zn(2+) chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) almost entirely protected CGNs from this toxic effect. Measurements of intracellular calcium ions using Fluo-4 AM, or zinc ions with FluoZin-3 AM demonstrated that 1 h-exposure to GD induced intensive increase of Fluo-4 but not FluoZin-3 fluorescence in neurons. The supplementation of solution with CuCl2 caused an increase of FluoZin-3, Fluo-4 and CellROX Green (reactive oxygen species probe) fluorescence by GD. The stimulation of Fluo-4 but not FluoZin-3 fluorescence by copper could be prevented partially by MK-801 and as well as CellROX Green fluorescence by NAC at GD. This data imply that during GD copper ions induce intense displacement zinc ions from intracellular stores, in addition free radical production, glutamate release and Ca(2+) overload of CGNs, that causes death of neurons as a result. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Oligodendrocyte ablation affects the coordinated interaction between granule and Purkinje neurons during cerebellum development

    International Nuclear Information System (INIS)

    Collin, Ludovic; Doretto, Sandrine; Malerba, Monica; Ruat, Martial; Borrelli, Emiliana

    2007-01-01

    Oligodendrocytes (OLs) are the glial cells of the central nervous system (CNS) classically known to be devoted to the formation of myelin sheaths around most axons of the vertebrate brain. We have addressed the role of these cells during cerebellar development, by ablating OLs in vivo. Previous analyses had indicated that OL ablation during the first six postnatal days results into a striking cerebellar phenotype, whose major features are a strong reduction of granule neurons and aberrant Purkinje cells development. These two cell types are highly interconnected during cerebellar development through the production of molecules that help their proliferation, differentiation and maintenance. In this article, we present data showing that OL ablation has major effects on the physiology of Purkinje (PC) and granule cells (GC). In particular, OL ablation results into a reduction of sonic hedgehog (Shh), Brain Derived Neurotrophic Factor (BDNF), and Reelin (Rln) expression. These results indicate that absence of OLs profoundly alters the normal cerebellar developmental program

  11. Developmental expression and differentiation-related neuron-specific splicing of metastasis suppressor 1 (Mtss1 in normal and transformed cerebellar cells

    Directory of Open Access Journals (Sweden)

    Baader Stephan L

    2007-10-01

    Full Text Available Abstract Background Mtss1 encodes an actin-binding protein, dysregulated in a variety of tumors, that interacts with sonic hedgehog/Gli signaling in epidermal cells. Given the prime importance of this pathway for cerebellar development and tumorigenesis, we assessed expression of Mtss1 in the developing murine cerebellum and human medulloblastoma specimens. Results During development, Mtss1 is transiently expressed in granule cells, from the time point they cease to proliferate to their synaptic integration. It is also expressed by granule cell precursor-derived medulloblastomas. In the adult CNS, Mtss1 is found exclusively in cerebellar Purkinje cells. Neuronal differentiation is accompanied by a switch in Mtss1 splicing. Whereas immature granule cells express a Mtss1 variant observed also in peripheral tissues and comprising exon 12, this exon is replaced by a CNS-specific exon, 12a, in more mature granule cells and in adult Purkinje cells. Bioinformatic analysis of Mtss1 suggests that differential exon usage may affect interaction with Fyn and Src, two tyrosine kinases previously recognized as critical for cerebellar cell migration and histogenesis. Further, this approach led to the identification of two evolutionary conserved nuclear localization sequences. These overlap with the actin filament binding site of Mtss1, and one also harbors a potential PKA and PKC phosphorylation site. Conclusion Both the pattern of expression and splicing of Mtss1 is developmentally regulated in the murine cerebellum. These findings are discussed with a view on the potential role of Mtss1 for cytoskeletal dynamics in developing and mature cerebellar neurons.

  12. Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor.

    Science.gov (United States)

    Zanin, Juan Pablo; Abercrombie, Elizabeth; Friedman, Wilma J

    2016-07-19

    Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.

  13. Sigma-1 receptor enhances neurite elongation of cerebellar granule neurons via TrkB signaling.

    Science.gov (United States)

    Kimura, Yuriko; Fujita, Yuki; Shibata, Kumi; Mori, Megumi; Yamashita, Toshihide

    2013-01-01

    Sigma-1 receptor (Sig-1R) is an integral membrane protein predominantly expressed in the endoplasmic reticulum. Sig-1R demonstrates a high affinity to various synthetic compounds including well-known psychotherapeutic drugs in the central nervous system (CNS). For that, it is considered as an alternative target for psychotherapeutic drugs. On the cellular level, when Sig-1R is activated, it is known to play a role in neuroprotection and neurite elongation. These effects are suggested to be mediated by its ligand-operated molecular chaperone activity, and/or upregulation of various Ca(2+) signaling. In addition, recent studies show that Sig-1R activation induces neurite outgrowth via neurotrophin signaling. Here, we tested the hypothesis that Sig-1R activation promotes neurite elongation through activation of tropomyosin receptor kinase (Trk), a family of neurotrophin receptors. We found that 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE-084), a selective Sig-1R agonist, significantly promoted neurite outgrowth, and K252a, a Trk inhibitor, attenuated Sig-1R-mediated neurite elongation in cerebellar granule neurons (CGNs). Moreover, we revealed that Sig-1R interacts with TrkB, and PRE-084 treatment enhances phosphorylation of Y515, but not Y706. Thus, our results indicate that Sig-1R activation promotes neurite outgrowth in CGNs through Y515 phosphorylation of TrkB.

  14. N-acetyl-l-cysteine and Mn2+ attenuate Cd2+-induced disturbance of the intracellular free calcium homeostasis in cultured cerebellar granule neurons.

    Science.gov (United States)

    Isaev, Nickolay K; Avilkina, Svetlana; Golyshev, Sergey A; Genrikhs, Elisaveta E; Alexandrova, Olga P; Kapkaeva, Marina R; Stelmashook, Elena V

    2018-01-15

    Cadmium is a highly toxic heavy metal that is capable of accumulating in the body via direct exposure or through the alimentary and respiratory tract, leading to neurodegeneration. In this article, we show that the application of CdCl 2 (0.001-0.005mM) for 48h induced high dose-dependent death rate of cultured cerebellar granule neurons (CGNs). Unlike Trolox or vitamin E, antioxidant N-acetyl-l-cysteine (NAC, 1mM) and Mn 2+ (0.0025-0.005mM) significantly protected CGNs from this toxic effect. Using Fluo-4 AM, measurements of intracellular calcium ions demonstrated that 24h-exposure to Cd 2+ induced intensive increase of Fluo-4 fluorescence in neurons accompanied by mitochondria swelling. These data imply that the cadmium-induced Ca 2+ increase is an important element in the death of neurons due to toxic effect of cadmium and the mechanism of protective action of manganese and NAC is mediated by the prevention of increase in calcium levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Inhibition of glycogen synthase kinase-3 reduces extension of the axonal leading process by destabilizing microtubules in cerebellar granule neurons.

    Science.gov (United States)

    Inami, Yoshihiro; Omura, Mitsuru; Kubota, Kenta; Konishi, Yoshiyuki

    2018-07-01

    Recent studies have uncovered various molecules that play key roles in neuronal morphogenesis. Nevertheless, the mechanisms underlying the neuron-type-dependent regulation of morphogenesis remain unknown. We have previously reported that inhibition of glycogen synthase kinase-3 (GSK3) markedly reduced axonal length of cerebellar granule neurons (CGNs) in a neuron-type-dependent manner. In the present study, we investigated the mechanisms by which the growth of CGN axons was severely suppressed upon GSK3 inhibition. Using time-lapse imaging of cultured CGNs at early morphogenesis, we found that extension of the leading process was severely inhibited by the pharmacological inhibition of GSK3. The rate of somal migration was also reduced with a GSK3 inhibitor in dissociated culture as well as in microexplant culture. In addition, CGNs ectopically expressed with a catalytically inactive mutant of GSK3 exhibited a migration defect in vivo. In axonal leading processes of CGNs, detyrosination and acetylation of α-tubulin, which are known to correlate with microtubule stability, were decreased by GSK3 inhibition. A photoconversion analysis found that inhibition of GSK3 increases the turnover of microtubules. Furthermore, in the presence of paclitaxel, a microtubule-stabilizing reagent, inhibition of GSK3 recovered the axonal leading process extension that was reduced by paclitaxel. Our results suggest that GSK3 supports the extension of axonal processes by stabilizing microtubules, contrary to its function in other neuron-types, lending mechanical insight into neuron-type-dependent morphological regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. BNN27, a 17-Spiroepoxy Steroid Derivative, Interacts With and Activates p75 Neurotrophin Receptor, Rescuing Cerebellar Granule Neurons from Apoptosis.

    Science.gov (United States)

    Pediaditakis, Iosif; Kourgiantaki, Alexandra; Prousis, Kyriakos C; Potamitis, Constantinos; Xanthopoulos, Kleanthis P; Zervou, Maria; Calogeropoulou, Theodora; Charalampopoulos, Ioannis; Gravanis, Achille

    2016-01-01

    Neurotrophin receptors mediate a plethora of signals affecting neuronal survival. The p75 pan-neurotrophin receptor controls neuronal cell fate after its selective activation by immature and mature isoforms of all neurotrophins. It also exerts pleiotropic effects interacting with a variety of ligands in different neuronal or non-neuronal cells. In the present study, we explored the biophysical and functional interactions of a blood-brain-barrier (BBB) permeable, C17-spiroepoxy steroid derivative, BNN27, with p75 NTR receptor. BNN27 was recently shown to bind to NGF high-affinity receptor, TrkA. We now tested the p75 NTR -mediated effects of BNN27 in mouse Cerebellar Granule Neurons (CGNs), expressing p75 NTR , but not TrkA receptors. Our findings show that BNN27 physically interacts with p75 NTR receptors in specific amino-residues of its extracellular domain, inducing the recruitment of p75 NTR receptor to its effector protein RIP2 and the simultaneous release of RhoGDI in primary neuronal cells. Activation of the p75 NTR receptor by BNN27 reverses serum deprivation-induced apoptosis of CGNs resulting in the decrease of the phosphorylation of pro-apoptotic JNK kinase and of the cleavage of Caspase-3, effects completely abolished in CGNs, isolated from p75 NTR null mice. In conclusion, BNN27 represents a lead molecule for the development of novel p75 NTR ligands, controlling specific p75 NTR -mediated signaling of neuronal cell fate, with potential applications in therapeutics of neurodegenerative diseases and brain trauma.

  17. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Yubin Wang

    2016-06-01

    Full Text Available A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1, which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  18. Effects of pentylenetetrazole and glutamate on metabolism of [U-(13)C]glucose in cultured cerebellar granule neurons.

    Science.gov (United States)

    Eloqayli, Haytham; Qu, Hong; Unsgård, Geirmund; Sletvold, Olav; Hadidi, Hakam; Sonnewald, Ursula

    2002-02-01

    This study was performed to analyze the effects of glutamate and the epileptogenic agent pentylenetetrazole (PTZ) on neuronal glucose metabolism. Cerebellar granule neurons were incubated for 2 h in medium containing 3 mM [U-(13)C]glucose, with and without 0.25 mM glutamate and/or 10 mM PTZ. In the presence of PTZ, decreased glucose consumption with unchanged lactate release was observed, indicating decreased glucose oxidation. PTZ also slowed down tricarboxylic acid (TCA) cycle activity as evidenced by the decreased amounts of labeled aspartate and [1,2-(13)C]glutamate. When glutamate was present, glucose consumption was also decreased. However, the amount of glutamate, derived from [U-(13)C]glucose via the first turn of the TCA cycle, was increased. The decreased amount of [1,2-(13)C]glutamate, derived from the second turn in the TCA cycle, and increased amount of aspartate indicated the dilution of label due to the entrance of unlabeled glutamate into TCA cycle. In the presence of glutamate plus PTZ, the effect of PTZ was enhanced by glutamate. Labeled alanine was detected only in the presence of glutamate plus PTZ, which indicated that oxaloacetate was a better amino acid acceptor than pyruvate. Furthermore, there was also evidence for intracellular compartmentation of oxaloacetate metabolism. Glutamate and PTZ caused similar metabolic changes, however, via different mechanisms. Glutamate substituted for glucose as energy substrate in the TCA cycle, whereas, PTZ appeared to decrease mitochondrial activity.

  19. Neuroprotection comparison of chlorogenic acid and its metabolites against mechanistically distinct cell death-inducing agents in cultured cerebellar granule neurons.

    Science.gov (United States)

    Taram, Faten; Winter, Aimee N; Linseman, Daniel A

    2016-10-01

    While the number of patients diagnosed with neurodegenerative disorders like Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease is increasing, there are currently no effective treatments that significantly limit the neuronal cell death underlying these diseases. Chlorogenic acid (CGA), a polyphenolic compound found in high concentration in coffee, is known to possess antioxidant and free radical scavenging activity. In this study, we investigated the neuroprotective effects of CGA and its major metabolites in primary cultures of rat cerebellar granule neurons. We show that CGA and caffeic acid displayed a dramatic protective effect against the nitric oxide donor, sodium nitroprusside. In marked contrast, ferulic acid and quinic acid had no protective effect against this nitrosative stress. While CGA and quinic acid had no protective effect against glutamate-induced cell death, caffeic acid and ferulic acid significantly protected neurons from excitotoxicity. Finally, caffeic acid was the only compound to display significant protective activity against hydrogen peroxide, proteasome inhibition, caspase-dependent intrinsic apoptosis, and endoplasmic reticulum stress. These results indicate that caffeic acid displays a much broader profile of neuroprotection against a diverse range of stressors than its parent polyphenol, CGA, or the other major metabolites, ferulic acid and quinic acid. We conclude that caffeic acid is a promising candidate for testing in pre-clinical models of neurodegeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sonic Hedgehog Signaling Drives Mitochondrial Fragmentation by Suppressing Mitofusins in Cerebellar Granule Neuron Precursors and Medulloblastoma.

    Science.gov (United States)

    Malhotra, Anshu; Dey, Abhinav; Prasad, Niyathi; Kenney, Anna Marie

    2016-01-01

    Sonic hedgehog (Shh) signaling is closely coupled with bioenergetics of medulloblastoma, the most common malignant pediatric brain tumor. Shh-associated medulloblastoma arises from cerebellar granule neuron precursors (CGNP), a neural progenitor whose developmental expansion requires signaling by Shh, a ligand secreted by the neighboring Purkinje neurons. Previous observations show that Shh signaling inhibits fatty acid oxidation although driving increased fatty acid synthesis. Proliferating CGNPs and mouse Shh medulloblastomas feature high levels of glycolytic enzymes in vivo and in vitro. Because both of these metabolic processes are closely linked to mitochondrial bioenergetics, the role of Shh signaling in mitochondrial biogenesis was investigated. This report uncovers a surprising decrease in mitochondrial membrane potential (MMP) and overall ATP production in CGNPs exposed to Shh, consistent with increased glycolysis resulting in high intracellular acidity, leading to mitochondrial fragmentation. Ultrastructural examination of mitochondria revealed a spherical shape in Shh-treated cells, in contrast to the elongated appearance in vehicle-treated postmitotic cells. Expression of mitofusin 1 and 2 was reduced in these cells, although their ectopic expression restored the MMP to the nonproliferating state and the morphology to a fused, interconnected state. Mouse Shh medulloblastoma cells featured drastically impaired mitochondrial morphology, restoration of which by ectopic mitofusin expression was also associated with a decrease in the expression of Cyclin D2 protein, a marker for proliferation. This report exposes a novel role for Shh in regulating mitochondrial dynamics and rescue of the metabolic profile of tumor cells to that of nontransformed, nonproliferating cells and represents a potential avenue for development of medulloblastoma therapeutics. ©2015 American Association for Cancer Research.

  1. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Jørgensen, Ole Steen; Hack, N

    1988-01-01

    Our previous studies on the survival-promoting influence of elevated concentrations of extracellular K+ ([K+]e) on cultured cerebellar granule cells led to the proposal that depolarization in vitro mimics the effect of the earliest afferent inputs received by the granule cells in vivo. This, in t...

  2. Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2003-01-01

    Release of preloaded [3H]D-aspartate in response to depolarization induced by N-methyl-D-aspartate (NMDA) or the endogenous agonist glutamate was characterized using cultured glutamatergic cerebellar granule neurons. Release from the vesicular and the cytoplasmic glutamate pools, respectively, wa...

  3. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  4. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-01-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it. PMID:26630202

  5. Cerebellar defects in a mouse model of juvenile neuronal ceroid lipofuscinosis.

    Science.gov (United States)

    Weimer, Jill M; Benedict, Jared W; Getty, Amanda L; Pontikis, Charlie C; Lim, Ming J; Cooper, Jonathan D; Pearce, David A

    2009-04-17

    Juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, is a neurodegenerative disease resulting from a mutation in CLN3, which presents clinically with visual deterioration, seizures, motor impairments, cognitive decline, hallucinations, loss of circadian rhythm, and premature death in the late-twenties to early-thirties. Using a Cln3 null (Cln3(-/-)) mouse, we report here several deficits in the cerebellum in the absence of Cln3, including cell loss and early onset motor deficits. Surprisingly, early onset glial activation and selective neuronal loss within the mature fastigial pathway of the deep cerebellar nuclei (DCN), a region critical for balance and coordination, are seen in many regions of the Cln3(-/-) cerebellum. Additionally, there is a loss of Purkinje cells (PC) in regions of robust Bergmann glia activation in Cln3(-/-) mice and human JNCL post-mortem cerebellum. Moreover, the Cln3(-/-) cerebellum had a mis-regulation in granule cell proliferation and maintenance of PC dendritic arborization and spine density. Overall, this study defines a novel multi-faceted, early-onset cerebellar disruption in the Cln3 null brain, including glial activation, cell loss, and aberrant cell proliferation and differentiation. These early alterations in the maturation of the cerebellum could underlie some of the motor deficits and pathological changes seen in JNCL patients.

  6. Does cerebellar neuronal integrity relate to cognitive ability?

    International Nuclear Information System (INIS)

    Rae, C.; Lee, M.; Dixon, R.M.; Blamire, A.; Thompson, C.; Styles, P.; Radda, G.K.; University of Sydney, NSW; Karmiloff-Smith, A.; Grant, J.

    1998-01-01

    Full text: Magnetic resonance spectroscopy (MRS) allows the non-invasive measurement of metabolite levels in the brain. One of these is N-acetylaspartate (NA), a molecule found solely in neurones, synthesised there by mitochondria. This compound can be considered as a marker of 1) neuronal density and 2) neuronal mitochondria function. We recently completed a joint MRS and neuropsychological investigation of Williams-Beuren syndrome (WBS), a rare (1/20,000) autosomal dominant disorder caused by a deletion which includes the elastin locus and LIM-kinase. The syndrome has an associated behavioural and cognitive profile which includes hyperactivity, hyperacusis and excessive sociability. Spatial skills are severely affected, while verbal skills are left relatively intact Our investigation showed loss of NA from the cerebellum in WBS compared with normal controls, with the subject population as a whole displaying a continuum of cerebellar NA concentration. Ability at cognitive tests, including the Weschler IQ scale and various verbal and spatial tests, was shown to correlate significantly and positively with the concentration of NA in the cerebellum. This finding can be interpreted in one of two ways: 1. Our sampling of cerebellar metabolite levels represents a 'global' sampling of total brain neuronal density and, as such, is independent of cerebellar integrity. 2. Cerebellar neuronal integrity is associated with performance at cognitive tests. If the latter interpretation is shown to be the case, it will have important implications for our current understanding of cerebellar function. Copyright (1998) Australian Neuroscience Society

  7. Anatomical evidence for direct fiber projections from the cerebellar nucleus interpositus to rubrospinal neurons. A quantitative EM study in the rat combining anterograde and retrograde intra-axonal tracing methods

    International Nuclear Information System (INIS)

    Dekker, J.J.

    1981-01-01

    A quantitative electron microscopic (EM) study combining the anterograde intra-axonal transport of radioactive amino acids and the retrograde intra-axonal transport of the enzyme horseradish peroxidase (HRP) was performed in the magnocellular red nucleus of the rat to obtain anatomical evidence as to whether there is a direct projection from the cerebellar nucleus interpositus to the cells in the red nucleus that give rise to the rubrospinal tract. Large asymmetrical synaptic terminals were radioactively labeled in the magnocellular red nucleus following injections of [ 3 H]leucine into the cerebellar nucleus interpositus. In these same animals, the postsynaptic target neurons were labeled with HRP granules after injection of this substance in the rubrospinal tract. A quantitative analysis showed that more than 85% of the large and giant neurons in the magnocellular red nucleus were labeled with HRP granules and also received synaptic contacts from radioactively-labeled terminals. Thus, it can be concluded that in the rat, afferents from the cerebellar nucleus interpositus establish asymmetrical synaptic contacts with large and giant rubrospinal neurons, thus confirming and extending the previous physiological evidence of such direct monosynaptic connections. (Auth.)

  8. Weaver mutant mouse cerebellar granule cells respond normally to chronic depolarization

    DEFF Research Database (Denmark)

    Bjerregaard, Annette; Mogensen, Helle Smidt; Hack, N

    1997-01-01

    We studied the effects of chronic K(+)-induced membrane depolarization and treatment with N-methyl-D-aspartate (NMDA) on cerebellar granule cells (CGCs) from weaver mutant mice and non-weaver litter-mates. The weaver mutation is a Gly-to-Ser substitution in a conserved region of the Girk2 G prote...

  9. Dynamic properties of sensory stimulation evoked responses in mouse cerebellar granule cell layer and molecular layer.

    Science.gov (United States)

    Bing, Yan-Hua; Zhang, Guang-Jian; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-01-12

    Sensory information coming from climbing fiber and mossy fiber-granule cell pathways, generates motor-related outputs according to internal rules of integration and computation in the cerebellar cortex. However, the dynamic properties of sensory information processing in mouse cerebellar cortex are less understood. Here, we studied the dynamic properties of sensory stimulation-evoked responses in the cerebellar granule cell layer (GCL) and molecular layer (ML) by electrophysiological recordings method. Our data showed that air-puff stimulation (5-10 ms in duration) of the ipsilateral whisker pad evoked single-peak responses in the GCL and ML; whereas a duration of stimulation ≥30 ms in GCL and ≥60 ms in ML, evoked double-peak responses that corresponded with stimulation-on and -off responses via mossy fiber pathway. The highest frequency of stimulation train for evoking GCL responses was 33 Hz. In contrast, the highest frequency of stimulation train for evoking ML responses was 4 Hz. These results indicate that the cerebellar granule cells transfer the high-fidelity sensory information from mossy fibers, which is cut-off by molecular layer interneurons (MLIs). Our results suggest that the MLIs network acts as a low-pass filter during the processing of high-frequency sensory information. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Methylmercury disrupts the balance between phosphorylated and non-phosphorylated cofilin in primary cultures of mice cerebellar granule cells A proteomic study

    International Nuclear Information System (INIS)

    Vendrell, Iolanda; Carrascal, Montserrat; Campos, Francisco; Abian, Joaquin; Sunol, Cristina

    2010-01-01

    Methylmercury is an environmental contaminant that is particularly toxic to the developing central nervous system; cerebellar granule neurons are especially vulnerable. Here, primary cultures of cerebellar granule cells (CGCs) were continuously exposed to methylmercury for up to 16 days in vitro (div). LC50 values were 508 ± 199, 345 ± 47, and 243 ± 45 nM after exposure for 6, 11, and 16 div, respectively. Proteins from cultured mouse CGCs were separated by 2DE. Seventy-one protein spots were identified by MALDI-TOF PMF and MALDI-TOF/TOF sequencing. Prolonged exposure to a subcytotoxic concentration of methylmercury significantly increased non-phosphorylated cofilin both in cell protein extracts (1.4-fold; p < 0.01) and in mitochondrial-enriched fractions (1.7-fold; p < 0.01). The decrease in P-cofilin induced by methylmercury was concentration-dependent and occurred after different exposure times. The percentage of P-cofilin relative to total cofilin significantly decreased to 49 ± 13% vs. control cells after exposure to 300 nM methylmercury for 5 div. The balance between the phosphorylated and non-phosphorylated form of cofilin regulates actin dynamics and facilitates actin filament turnover. Filamentous actin dynamics and reorganization are responsible of neuron shape change, migration, polarity formation, regulation of synaptic structures and function, and cell apoptosis. An alteration of the complex regulation of the cofilin phosphorylation/dephosphorylation pathway could be envisaged as an underlying mechanism compatible with reported signs of methylmercury-induced neurotoxicity.

  11. P2X7, NMDA and BDNF receptors converge on GSK3 phosphorylation and cooperate to promote survival in cerebellar granule neurons.

    Science.gov (United States)

    Ortega, Felipe; Pérez-Sen, Raquel; Morente, Verónica; Delicado, Esmerilda G; Miras-Portugal, Maria Teresa

    2010-05-01

    Glycogen synthase kinase-3 (GSK3) is a key player in the regulation of neuronal survival. Herein, we report evidence of an interaction between P2X7 receptors with NMDA and BDNF receptors at the level of GSK3 signalling and neuroprotection. The activation of these receptors in granule neurons led to a sustained pattern of GSK3 phosphorylation that was mainly PKC-dependent. BDNF was the most potent at inducing GSK3 phosphorylation, which was also dependent on PI3K. The P2X7 agonist, BzATP, exhibited additive effects with both NMDA and BDNF to rescue granule neurons from cell death induced by PI3K inhibition. This survival effect was mediated by the PKC-dependent GSK3 pathway. In addition, ERK1/2 proteins were also involved in BDNF protective effect. These results show the function of ATP in amplifying neuroprotective actions of glutamate and neurotrophins, and support the role of GSK3 as an important convergence point for these survival promoting factors in granule neurons.

  12. N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1989-01-01

    The survival of cerebellar granule cells in culture is promoted by chronic exposure to N-methyl-D-aspartate (NMDA). The effect is due to the stimulation of 'conventional' NMDA receptor-ionophore complex: it is concentration dependent, voltage dependent and blocked by the selective antagonists D-2...

  13. The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells.

    Science.gov (United States)

    Zou, Xiaohan; He, Yuwei; Qiao, Jinping; Zhang, Chunlei; Cao, Zhengyu

    2016-01-01

    The scorpion Buthus martensii Karsch has been used in Traditional Chinese Medicine to treat neuronal diseases such as neuropathic pain, paralysis and epilepsy for thousands of years. Studies have demonstrated that scorpion venom is the primary active component. Although scorpion venom can effectively attenuate pain in the clinic, it also produces neurotoxic response. In this study, toxicity guided purification led to identify a mammalian toxin termed BmK NT1 comprising of 65 amino acid residues and an amidated C-terminus, a mature peptide encoded by the nucleotide sequence (GenBank No. AF464898). In contract to the recombinant product of the same nucleotide sequence, BmK AGAP, which displayed analgesic and anti-tumor effect, intravenous injection (i.v.) of BmK NT1 produced acute toxicity in mice with an LD50 value of 1.36 mg/kg. In primary cultured cerebellar granule cells, BmK NT1 produced a concentration-dependent cell death with an IC50 value of 0.65 μM (0.41-1.03 μM, 95% Confidence Intervals, 95% CI) which was abolished by TTX, a voltage-gated sodium channel (VGSC) blocker. We also demonstrated that BmK NT1 produced modest sodium influx in cerebellar granule cell cultures with an EC50 value of 2.19 μM (0.76-6.40 μM, 95% CI), an effect similar to VGSC agonist, veratridine. The sodium influx response was abolished by TTX suggesting that BmK NT1-induced sodium influx is solely through activation of VGSC. Considered these data together, we demonstrated that BmK NT1 activated VGSC and produced neurotoxicity in cerebellar granule cell cultures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Neuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study

    Science.gov (United States)

    Salavati, Parvin; Ramezani, Mina; Monsef-Esfahani, Hamid R; Hajiagha, Reza; Parsa, Maliheh; Tavajohi, Shoreh; Ostad, Seyed Nasser

    2013-01-01

    Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss (Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pups Cerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were prepared and cultured. The experiments were performed after 8 days in culture. The plant was collected from the northeastern part (Ruin region) of Iran and air-dried at room temperature. The total extract was prepared with maceration of prepared powder in ethanol 80% for three times. Sequential extracts were obtained using dried and powdered aerial parts with increasingly polar solvents: petroleum ether, chloroform, ethyl acetate and methanol 80% solution. Cultured cells were exposed to 125 μM of glutamate for 12 h following a 24 h of incubation with test fractions at concentration of 10 mcg/mL. Morphological assay was performed using invert light microscope after fixation and staining with haematoxylin. Neuronal viability was measured using MTT assay. Statistical analysis was done using SPSS software. One way analysis of variance (ANOVA) was performed by Tukey post-hoc test. Values were considered statistically significant when p-value ≤ 0.05. Results of this study showed a significant neuroprotective activity of high polarity methanolic fraction of aerial parts of Scrophularia striata against glutamate-induced neurotoxicity in a dosedependent manner. Treatment with 10 mcg/mL of the fractions showed the best result. PMID:24250613

  15. Cultured neurons as model systems for biochemical and pharmacological studies on receptors for neurotransmitter amino acids

    DEFF Research Database (Denmark)

    Schousboe, A; Drejer, J; Hansen, Gert Helge

    1985-01-01

    By the use of primary cultures of neurons consisting of cerebral cortex interneurons or cerebellar granule cells it is possible to study biochemical and pharmacological aspects of receptors for GABA and glutamate. Cerebellar granule cells have been shown to express both high- and low-affinity GAB...

  16. Poly (ADP-ribose polymerase plays an important role in intermittent hypoxia-induced cell death in rat cerebellar granule cells

    Directory of Open Access Journals (Sweden)

    Chiu Sheng-Chun

    2012-03-01

    Full Text Available Abstract Background Episodic cessation of airflow during sleep in patients with sleep apnea syndrome results in intermittent hypoxia (IH. Our aim was to investigate the effects of IH on cerebellar granule cells and to identify the mechanism of IH-induced cell death. Methods Cerebellar granule cells were freshly prepared from neonatal Sprague-Dawley rats. IH was created by culturing the cerebellar granule cells in the incubators with oscillating O2 concentration at 20% and 5% every 30 min for 1-4 days. The results of this study are based on image analysis using a confocal microscope and associated software. Cellular oxidative stress increased with increase in IH. In addition, the occurrence of cell death (apoptosis and necrosis increased as the duration of IH increased, but decreased in the presence of an iron chelator (phenanthroline or poly (ADP-ribose polymerase (PARP inhibitors [3-aminobenzamide (3-AB and DPQ]. The fluorescence of caspase-3 remained the same regardless of the duration of IH, and Western blots did not detect activation of caspase-3. However, IH increased the ratio of apoptosis-inducing factor (AIF translocation to the nucleus, while PARP inhibitors (3-AB reduced this ratio. Results According to our findings, IH increased oxidative stress and subsequently leading to cell death. This effect was at least partially mediated by PARP activation, resulting in ATP depletion, calpain activation leading to AIF translocation to the nucleus. Conclusions We suggest that IH induces cell death in rat primary cerebellar granule cells by stimulating oxidative stress PARP-mediated calpain and AIF activation.

  17. Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons.

    Science.gov (United States)

    Yamada, Mayumi; Seto, Yusuke; Taya, Shinichiro; Owa, Tomoo; Inoue, Yukiko U; Inoue, Takayoshi; Kawaguchi, Yoshiya; Nabeshima, Yo-Ichi; Hoshino, Mikio

    2014-04-02

    In the cerebellum, the bHLH transcription factors Ptf1a and Atoh1 are expressed in distinct neuroepithelial regions, the ventricular zone (VZ) and the rhombic lip (RL), and are required for producing GABAergic and glutamatergic neurons, respectively. However, it is unclear whether Ptf1a or Atoh1 is sufficient for specifying GABAergic or glutamatergic neuronal fates. To test this, we generated two novel knock-in mouse lines, Ptf1a(Atoh1) and Atoh1(Ptf1a), that are designed to express Atoh1 and Ptf1a ectopically in the VZ and RL, respectively. In Ptf1a(Atoh1) embryos, ectopically Atoh1-expressing VZ cells produced glutamatergic neurons, including granule cells and deep cerebellar nuclei neurons. Correspondingly, in Atoh1(Ptf1a) animals, ectopically Ptf1a-expressing RL cells produced GABAergic populations, such as Purkinje cells and GABAergic interneurons. Consistent results were also obtained from in utero electroporation of Ptf1a or Atoh1 into embryonic cerebella, suggesting that Ptf1a and Atoh1 are essential and sufficient for GABAergic versus glutamatergic specification in the neuroepithelium. Furthermore, birthdating analyses with BrdU in the knock-in mice or with electroporation studies showed that ectopically produced fate-changed neuronal types were generated at temporal schedules closely simulating those of the wild-type RL and VZ, suggesting that the VZ and RL share common temporal information. Observations of knock-in brains as well as electroporated brains revealed that Ptf1a and Atoh1 mutually negatively regulate their expression, probably contributing to formation of non-overlapping neuroepithelial domains. These findings suggest that Ptf1a and Atoh1 specify spatial identities of cerebellar neuron progenitors in the neuroepithelium, leading to appropriate production of GABAergic and glutamatergic neurons, respectively.

  18. The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms

    Directory of Open Access Journals (Sweden)

    Ketty eLeto

    2012-02-01

    Full Text Available The variety of neuronal phenotypes that populate the cerebellum derives from progenitors that proliferate in two germinal neuroepithelia: the ventricular zone generates GABAergic neurons, whereas the rhombic lip is the origin of glutamatergic types. Progenitors of the ventricular zone produce GABAergic projection neurons (Purkinje cells and nucleo-olivary neurons at the onset of cerebellar neurogenesis. Later on, however, these progenitors migrate into the prospective white matter, where they continue to divide up to postnatal development and generate different categories of inhibitory interneurons, according to precise spatio-temporal schedules. Projection neurons derive from discrete progenitor pools located in distinct microdomains of the ventricular zone, whereas interneurons originate from a single population of precursors, distinguished by the expression of the transcription factor Pax-2. Heterotopic/heterochronic transplantation experiments indicate that interneuron progenitors maintain full developmental potentialities up to the end of cerebellar development and acquire mature phenotypes under the influence of environmental cues present in the prospective white matter. Furthermore, the final fate choice occurs in postmitotic cells, rather than dividing progenitors. Extracerebellar cells grafted to the postnatal cerebellum are not responsive to local neurogenic cues and fail to adopt clear cerebellar identities. On the other hand, cerebellar cells grafted to extracerebellar regions retain typical phenotypes of cerebellar GABAergic interneurons, but acquire specific traits under the influence of local cues. These findings indicate that interneuron progenitors are multipotent and sensitive to spatio-temporally patterned environmental signals that regulate the genesis of different categories of interneurons, in precise quantities and at defined times and places.

  19. Hydroxyurea Treatment and Development of the Rat Cerebellum: Effects on the Neurogenetic Profiles and Settled Patterns of Purkinje Cells and Deep Cerebellar Nuclei Neurons.

    Science.gov (United States)

    Martí, Joaquín; Santa-Cruz, M C; Serra, Roger; Hervás, José P

    2016-11-01

    The current paper analyzes the development of the male and female rat cerebellum exposed to hydroxyurea (HU) (300 or 600 mg/kg) as embryo and collected at postnatal day 90. Our study reveals that the administration of this drug compromises neither the cytoarchitecture of the cerebellar cortex nor deep nuclei (DCN). However, in comparison with the saline group, we observed that several cerebellar parameters were lower in the HU injected groups. These parameters included area of the cerebellum, cerebellar cortex length, molecular layer area, Purkinje cell number, granule cell counts, internal granular layer, white matter and cerebellar nuclei areas, and number of deep cerebellar nuclei neurons. These features were larger in the rats injected with saline, smaller in those exposed to 300 mg/kg of HU and smallest in the group receiving 600 mg/kg of this agent. No sex differences in the effect of the HU were observed. In addition, we infer the neurogenetic timetables and the neurogenetic gradients of PCs and DCN neurons in rats exposed to either saline or HU as embryos. For this purpose, 5-bromo-2'-deoxyuridine was injected into pregnant rats previously administered with saline or HU. This thymidine analog was administered following a progressively delayed cumulative labeling method. The data presented here show that systematic differences exist in the pattern of neurogenesis and in the spatial location of cerebellar neurons between rats injected with saline or HU. No sex differences in the effect of the HU were observed. These findings have implications for the administration of this compound to women in gestation as the effects of HU on the development of the cerebellum might persist throughout their offsprings' life.

  20. Updates to a 13C metabolic flux analysis model for evaluating energy metabolism in cultured cerebellar granule neurons from neonatal rats.

    Science.gov (United States)

    Jekabsons, Mika B; Gebril, Hoda M; Wang, Yan-Hong; Avula, Bharathi; Khan, Ikhlas A

    2017-10-01

    A hexose phosphate recycling model previously developed to infer fluxes through the major glucose consuming pathways in cultured cerebellar granule neurons (CGNs) from neonatal rats metabolizing [1,2- 13 C 2 ]glucose was revised by considering reverse flux through the non-oxidative pentose phosphate pathway (PPP) and symmetrical succinate oxidation within the tricarboxylic acid (TCA) cycle. The model adjusts three flux ratios to effect 13 C distribution in the hexose, pentose, and triose phosphate pools, and in TCA cycle malate to minimize the error between predicted and measured 13 C labeling in exported lactate (i.e., unlabeled, single-, double-, and triple-labeled; M, M1, M2, and M3, respectively). Inclusion of reverse non-oxidative PPP flux substantially increased the number of calculations but ultimately had relatively minor effects on the labeling of glycolytic metabolites. From the error-minimized solution in which the predicted M-M3 lactate differed by 0.49% from that measured by liquid chromatography-triple quadrupole mass spectrometry, the neurons exhibited negligible forward non-oxidative PPP flux. Thus, no glucose was used by the pentose cycle despite explicit consideration of hexose phosphate recycling. Mitochondria consumed only 16% of glucose while 45% was exported as lactate by aerobic glycolysis. The remaining 39% of glucose was shunted to pentose phosphates presumably for de novo nucleotide synthesis, but the proportion metabolized through the oxidative PPP vs. the reverse non-oxidative PPP could not be determined. The lactate exported as M1 (2.5%) and M3 (1.2%) was attributed to malic enzyme, which was responsible for 7.8% of pyruvate production (vs. 92.2% by glycolysis). The updated model is more broadly applicable to different cell types by considering bi-directional flux through the non-oxidative PPP. Its application to cultured neurons utilizing glucose as the sole exogenous substrate has demonstrated substantial oxygen-independent glucose

  1. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  2. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.

    Science.gov (United States)

    Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio

    2015-01-01

    The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  3. Curcumin Pretreatment Induces Nrf2 and an Antioxidant Response and Prevents Hemin-Induced Toxicity in Primary Cultures of Cerebellar Granule Neurons of Rats

    Directory of Open Access Journals (Sweden)

    Susana González-Reyes

    2013-01-01

    Full Text Available Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30 μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1 expression and by 5.6–14.3-fold glutathione (GSH levels. Moreover, 15 μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS production, by 94% the reduction of GSH/glutathione disulfide (GSSG ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24 h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2-like 2 (Nrf2 translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death.

  4. Curcumin Pretreatment Induces Nrf2 and an Antioxidant Response and Prevents Hemin-Induced Toxicity in Primary Cultures of Cerebellar Granule Neurons of Rats

    Science.gov (United States)

    González-Reyes, Susana; Guzmán-Beltrán, Silvia; Medina-Campos, Omar Noel; Pedraza-Chaverri, José

    2013-01-01

    Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs) of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30 μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1) expression and by 5.6–14.3-fold glutathione (GSH) levels. Moreover, 15 μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS) production, by 94% the reduction of GSH/glutathione disulfide (GSSG) ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24 h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2)-like 2 (Nrf2) translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death. PMID:24454990

  5. Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned.

    Science.gov (United States)

    Knogler, Laura D; Markov, Daniil A; Dragomir, Elena I; Štih, Vilim; Portugues, Ruben

    2017-05-08

    A fundamental question in neurobiology is how animals integrate external sensory information from their environment with self-generated motor and sensory signals in order to guide motor behavior and adaptation. The cerebellum is a vertebrate hindbrain region where all of these signals converge and that has been implicated in the acquisition, coordination, and calibration of motor activity. Theories of cerebellar function postulate that granule cells encode a variety of sensorimotor signals in the cerebellar input layer. These models suggest that representations should be high-dimensional, sparse, and temporally patterned. However, in vivo physiological recordings addressing these points have been limited and in particular have been unable to measure the spatiotemporal dynamics of population-wide activity. In this study, we use both calcium imaging and electrophysiology in the awake larval zebrafish to investigate how cerebellar granule cells encode three types of sensory stimuli as well as stimulus-evoked motor behaviors. We find that a large fraction of all granule cells are active in response to these stimuli, such that representations are not sparse at the population level. We find instead that most responses belong to only one of a small number of distinct activity profiles, which are temporally homogeneous and anatomically clustered. We furthermore identify granule cells that are active during swimming behaviors and others that are multimodal for sensory and motor variables. When we pharmacologically change the threshold of a stimulus-evoked behavior, we observe correlated changes in these representations. Finally, electrophysiological data show no evidence for temporal patterning in the coding of different stimulus durations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Role of astrocytes in depolarization-coupled release of glutamate in cerebellar cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2004-01-01

    Release of preloaded D-[3H]aspartate in response to depolarization induced by high potassium, N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) or the endogenous agonist glutamate was studied using cultured glutamatergic cerebellar granule neurons, cerebell...

  7. The survival of cultured mouse cerebellar granule cells is not dependent on elevated potassium-ion concentration

    DEFF Research Database (Denmark)

    Mogensen, Helle Smidt; Hack, N; Balázs, R

    1994-01-01

    The effects of K(+)-induced membrane depolarization were studied on the survival and biochemical parameters in mouse and rat cerebellar granule cells grown in micro-well cultures. Cell numbers were determined by estimating DNA content using the Hoechst 33258 fluorochrome binding assay. DNA from d...

  8. Inhibitors of the alpha-ketoglutarate dehydrogenase complex alter [1-13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons.

    Science.gov (United States)

    Santos, Sónia Sá; Gibson, Gary E; Cooper, Arthur J L; Denton, Travis T; Thompson, Charles M; Bunik, Victoria I; Alves, Paula M; Sonnewald, Ursula

    2006-02-15

    Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), an important component of the tricarboxylic acid (TCA) cycle, occurs in several neurological diseases. The effect of specific KGDHC inhibitors [phosphonoethyl ester of succinyl phosphonate (PESP) and the carboxy ethyl ester of succinyl phosphonate (CESP)] on [1-13C]glucose and [U-13C]glutamate metabolism in intact cerebellar granule neurons was investigated. Both inhibitors decreased formation of [4-13C]glutamate from [1-13C]glucose, a reduction in label in glutamate derived from [1-13C]glucose/[U-13C]glutamate through a second turn of the TCA cycle and a decline in the amounts of gamma-aminobutyric acid (GABA), aspartate, and alanine. PESP decreased formation of [U-13C]aspartate and total glutathione, whereas CESP decreased concentrations of valine and leucine. The findings are consistent with decreased KGDHC activity; increased alpha-ketoglutarate formation; increased transamination of alpha-ketoglutarate with valine, leucine, and GABA; and new equilibrium position of the aspartate aminotransferase reaction. Overall, the findings also suggest that some carbon derived from alpha-ketoglutarate may bypass the block in the TCA cycle at KGDHC by means of the GABA shunt and/or conversion of valine to succinate. The results suggest the potential of succinyl phosphonate esters for modeling the biochemical and pathophysiological consequences of reduced KGDHC activity in brain diseases.

  9. Cellular and Axonal Diversity in Molecular Layer Heterotopia of the Rat Cerebellar Vermis

    Directory of Open Access Journals (Sweden)

    Sarah E. Van Dine

    2013-01-01

    Full Text Available Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.

  10. Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABA(A) receptor δ subunit in cerebellar granule neurons and delays motor development in rats.

    Science.gov (United States)

    Diaz, Marvin R; Vollmer, Cyndel C; Zamudio-Bulcock, Paula A; Vollmer, William; Blomquist, Samantha L; Morton, Russell A; Everett, Julie C; Zurek, Agnieszka A; Yu, Jieying; Orser, Beverley A; Valenzuela, C Fernando

    2014-04-01

    Exposure to ethanol (EtOH) during fetal development can lead to long-lasting alterations, including deficits in fine motor skills and motor learning. Studies suggest that these are, in part, a consequence of cerebellar damage. Cerebellar granule neurons (CGNs) are the gateway of information into the cerebellar cortex. Functionally, CGNs are heavily regulated by phasic and tonic GABAergic inhibition from Golgi cell interneurons; however, the effect of EtOH exposure on the development of GABAergic transmission in immature CGNs has not been investigated. To model EtOH exposure during the 3rd trimester-equivalent of human pregnancy, neonatal pups were exposed intermittently to high levels of vaporized EtOH from postnatal day (P) 2 to P12. This exposure gradually increased pup serum EtOH concentrations (SECs) to ∼60 mM (∼0.28 g/dl) during the 4 h of exposure. EtOH levels gradually decreased to baseline 8 h after the end of exposure. Surprisingly, basal tonic and phasic GABAergic currents in CGNs were not significantly affected by postnatal alcohol exposure (PAE). However, PAE increased δ subunit expression at P28 as detected by immunohistochemical and western blot analyses. Also, electrophysiological studies with an agonist that is highly selective for δ-containing GABA(A) receptors, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP), showed an increase in THIP-induced tonic current. Behavioral studies of PAE rats did not reveal any deficits in motor coordination, except for a delay in the acquisition of the mid-air righting reflex that was apparent at P15 to P18. These findings demonstrate that repeated intermittent exposure to high levels of EtOH during the equivalent of the last trimester of human pregnancy has significant but relatively subtle effects on motor coordination and GABAergic transmission in CGNs in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Embryonic cerebellar neurons accumulate [3H-gamma-aminobutyric acid: visualization of developing gamma-aminobutyric acid-utilizing neurons in vitro and in vivo

    International Nuclear Information System (INIS)

    Hatten, M.E.; Francois, A.M.; Napolitano, E.; Roffler-Tarlov, S.

    1984-01-01

    gamma-Aminobutyric acid (GABA) is the proposed neurotransmitter for four types of cerebellar neurons-Purkinje, Golgi, basket, and stellate neurons. With this investigation we have begun studies to establish when these neurons acquire their neurotransmitter ''identification''. Autoradiographic studies of both cultured embryonic (embryonic day 13) cerebellar cells and of intact embryonic cerebellum (embryonic day 13) were conducted with tritiated GABA. Two to 5% of the embryonic cerebellar cells accumulated [ 3 H]GABA in vitro. By morphological and immunocytochemical criteria, labeled cells were large neurons with either a thick, apical process, a multipolar shape, or were bipolar with longer processes. The identification of cells which accumulated [ 3 H]GABA as neuronal precursors was supported by the differential sensitivity to drugs that preferentially inhibit accumulation of [ 3 H]GABA by neurons and glia. The results of the in vitro experiments were confirmed and extended with in vivo experiments. When intact cerebellar tissue was removed at embryonic day 13, stripped of meninges and choroid plexus, exposed to low concentrations of [ 3 H]GABA, and processed for light microscopic autoradiography, heavily labeled cells were seen in the middle of the cerebellar anlage. Labeled cells were not seen in the ventricular zone of proliferating neuroblasts lining the fourth ventricle or in the external granular layer emerging at the lateral aspect of the pial surface. The accumulation of [ 3 H]GABA by these cells also showed the pharmacological characteristics of uptake by neurons. This study shows that among migrating, immature forms of the larger neurons of the embryonic cerebellum, there is a select group which accumulates [ 3 H]GABA and other classes of cells which do not. These results indicate very early acquisition of transmitter expression by cerebellar neurons, far in advance of their final positioning and establishment of synapses

  12. Mice deficient in carbonic anhydrase type 8 exhibit motor dysfunctions and abnormal calcium dynamics in the somatic region of cerebellar granule cells.

    Science.gov (United States)

    Lamont, Matthew G; Weber, John T

    2015-06-01

    The waddles (wdl) mouse is characterized by a namesake "side-to-side" waddling gait due to a homozygous mutation of the Car8 gene. This mutation results in non-functional copies of the protein carbonic anhydrase type 8. Rota-rod testing was conducted to characterize the wdl mutations' effect on motor output. Results indicated that younger homozygotes outperformed their older cohorts, an effect not seen in previous studies. Heterozygotes, which were thought to be free of motor impairment, displayed motor learning deficiencies when compared with wild type performance. Acute cerebellar slices were then utilized for fluorescent calcium imaging experiments, which revealed significant alterations in cerebellar granule cell somatic calcium signaling when exposed to glutamate. The contribution of GABAergic signaling to these alterations was also verified using bath application of bicuculline. Changes in somatic calcium signals were found to be applicable to an in vivo scenario by comparing group responses to electrical stimulation of afferent mossy fiber projections. Finally, intracellular calcium store function was also found to be altered by the wdl mutation when slices were treated with thapsigargin. These findings, taken together with previous work on the wdl mouse, indicate a widespread disruption in cerebellar circuitry hampering proper neuronal communication. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    International Nuclear Information System (INIS)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-01-01

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1 + or nestin + stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU + cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU + cells, very few are mash1 + or nestin + stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1 + microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition

  14. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

    Directory of Open Access Journals (Sweden)

    Egidio eD‘Angelo

    2013-05-01

    Full Text Available The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through double feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of the neuron. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and extension of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research.

  15. MicroRNAs Promote Granule Cell Expansion in the Cerebellum Through Gli2.

    Science.gov (United States)

    Constantin, Lena; Wainwright, Brandon J

    2015-12-01

    MicroRNAs (miRNAs) are important regulators of cerebellar function and homeostasis. Their deregulation results in cerebellar neuronal degeneration and spinocerebellar ataxia type 1 and contributes to medulloblastoma. Canonical miRNA processing involves Dicer, which cleaves precursor miRNAs into mature double-stranded RNA duplexes. In order to address the role of miRNAs in cerebellar granule cell precursor development, loxP-flanked exons of Dicer1 were conditionally inactivated using the granule cell precursor-specific Atoh1-Cre recombinase. A reduction of 87% in Dicer1 transcript was achieved in this conditional Dicer knockdown model. Although knockdown resulted in normal survival, mice had disruptions to the cortical layering of the anterior cerebellum, which resulted from the premature differentiation of granule cell precursors in this region during neonatal development. This defect manifested as a thinner external granular layer with ectopic mature granule cells, and a depleted internal granular layer. We found that expression of the activator components of the Hedgehog-Patched pathway, the Gli family of transcription factors, was perturbed in conditional Dicer knockdown mice. We propose that loss of Gli2 mRNA mediated the anterior-restricted defect in conditional Dicer knockdown mice and, as proof of principle, were able to show that miR-106b positively regulated Gli2 mRNA expression. These findings confirm the importance of miRNAs as positive mediators of Hedgehog-Patched signalling during granule cell precursor development.

  16. BarTeL, a Genetically Versatile, Bioluminescent and Granule Neuron Precursor-Targeted Mouse Model for Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Gregory M Shackleford

    Full Text Available Medulloblastomas are the most common malignant pediatric brain tumor and have been divided into four major molecular subgroups. Animal models that mimic the principal molecular aberrations of these subgroups will be important tools for preclinical studies and allow greater understanding of medulloblastoma biology. We report a new transgenic model of medulloblastoma that possesses a unique combination of desirable characteristics including, among others, the ability to incorporate multiple and variable genes of choice and to produce bioluminescent tumors from a limited number of somatic cells within a normal cellular environment. This model, termed BarTeL, utilizes a Barhl1 homeobox gene promoter to target expression of a bicistronic transgene encoding both the avian retroviral receptor TVA and an eGFP-Luciferase fusion protein to neonatal cerebellar granule neuron precursor (cGNP cells, which are cells of origin for the sonic hedgehog (SHH subgroup of human medulloblastomas. The Barhl1 promoter-driven transgene is expressed strongly in mammalian cGNPs and weakly or not at all in mature granule neurons. We efficiently induced bioluminescent medulloblastomas expressing eGFP-luciferase in BarTeL mice by infection of a limited number of somatic cGNPs with avian retroviral vectors encoding the active N-terminal fragment of SHH and a stabilized MYCN mutant. Detection and quantification of the increasing bioluminescence of growing tumors in young BarTeL mice was facilitated by the declining bioluminescence of their uninfected maturing cGNPs. Inclusion of eGFP in the transgene allowed enriched sorting of cGNPs from neonatal cerebella. Use of a single bicistronic avian vector simultaneously expressing both Shh and Mycn oncogenes increased the medulloblastoma incidence and aggressiveness compared to mixed virus infections. Bioluminescent tumors could also be produced by ex vivo transduction of neonatal BarTeL cerebellar cells by avian retroviruses and

  17. Human iPSC-Derived Cerebellar Neurons from a Patient with Ataxia-Telangiectasia Reveal Disrupted Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Sam P. Nayler

    2017-10-01

    Full Text Available Ataxia-telangiectasia (A-T is a rare genetic disorder caused by loss of function of the ataxia-telangiectasia-mutated kinase and is characterized by a predisposition to cancer, pulmonary disease, immune deficiency and progressive degeneration of the cerebellum. As animal models do not faithfully recapitulate the neurological aspects, it remains unclear whether cerebellar degeneration is a neurodevelopmental or neurodegenerative phenotype. To address the necessity for a human model, we first assessed a previously published protocol for the ability to generate cerebellar neuronal cells, finding it gave rise to a population of precursors highly enriched for markers of the early hindbrain such as EN1 and GBX2, and later more mature cerebellar markers including PTF1α, MATH1, HOXB4, ZIC3, PAX6, and TUJ1. RNA sequencing was used to classify differentiated cerebellar neurons generated from integration-free A-T and control induced pluripotent stem cells. Comparison of RNA sequencing data with datasets from the Allen Brain Atlas reveals in vitro-derived cerebellar neurons are transcriptionally similar to discrete regions of the human cerebellum, and most closely resemble the cerebellum at 22 weeks post-conception. We show that patient-derived cerebellar neurons exhibit disrupted gene regulatory networks associated with synaptic vesicle dynamics and oxidative stress, offering the first molecular insights into early cerebellar pathogenesis of ataxia-telangiectasia.

  18. Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning

    Science.gov (United States)

    Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.

    1995-12-01

    The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.

  19. Coordinated scaling of cortical and cerebellar numbers of neurons

    Directory of Open Access Journals (Sweden)

    Suzana Herculano-Houzel

    2010-03-01

    Full Text Available While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species – an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of 4 different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora, Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble.

  20. Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons.

    Science.gov (United States)

    Khaliq, Zayd M; Raman, Indira M

    2005-01-12

    In cerebellar Purkinje neurons, the reliability of propagation of high-frequency simple spikes and spikelets of complex spikes is likely to regulate inhibition of Purkinje target neurons. To test the extent to which a one-to-one correspondence exists between somatic and axonal spikes, we made dual somatic and axonal recordings from Purkinje neurons in mouse cerebellar slices. Somatic action potentials were recorded with a whole-cell pipette, and the corresponding axonal signals were recorded extracellularly with a loose-patch pipette. Propagation of spontaneous and evoked simple spikes was highly reliable. At somatic firing rates of approximately 200 spikes/sec, 375 Hz during somatic hyperpolarizations that silenced spontaneous firing to approximately 150 Hz during spontaneous activity. The probability of propagation of individual spikelets could be described quantitatively as a saturating function of spikelet amplitude, rate of rise, or preceding interspike interval. The results suggest that ion channels of Purkinje axons are adapted to produce extremely short refractory periods and that brief bursts of forward-propagating action potentials generated by complex spikes may contribute transiently to inhibition of postsynaptic neurons.

  1. The organization of plasticity in the cerebellar cortex: from synapses to control.

    Science.gov (United States)

    D'Angelo, Egidio

    2014-01-01

    The cerebellum is thought to play a critical role in procedural learning, but the relationship between this function and the underlying cellular and synaptic mechanisms remains largely speculative. At present, at least nine forms of long-term synaptic and nonsynaptic plasticity (some of which are bidirectional) have been reported in the cerebellar cortex and deep cerebellar nuclei. These include long-term potentiation (LTP) and long-term depression at the mossy fiber-granule cell synapse, at the synapses formed by parallel fibers, climbing fibers, and molecular layer interneurons on Purkinje cells, and at the synapses formed by mossy fibers and Purkinje cells on deep cerebellar nuclear cells, as well as LTP of intrinsic excitability in granule cells, Purkinje cells, and deep cerebellar nuclear cells. It is suggested that the complex properties of cerebellar learning would emerge from the distribution of plasticity in the network and from its dynamic remodeling during the different phases of learning. Intrinsic and extrinsic factors may hold the key to explain how the different forms of plasticity cooperate to select specific transmission channels and to regulate the signal-to-noise ratio through the cerebellar cortex. These factors include regulation of neuronal excitation by local inhibitory networks, engagement of specific molecular mechanisms by spike bursts and theta-frequency oscillations, and gating by external neuromodulators. Therefore, a new and more complex view of cerebellar plasticity is emerging with respect to that predicted by the original "Motor Learning Theory," opening issues that will require experimental and computational testing. © 2014 Elsevier B.V. All rights reserved.

  2. In vitro study of uptake and synthesis of creatine and its precursors by cerebellar granule cells and astrocytes suggests some hypotheses on the physiopathology of the inherited disorders of creatine metabolism

    Directory of Open Access Journals (Sweden)

    Carducci Claudia

    2012-04-01

    Full Text Available Abstract Background The discovery of the inherited disorders of creatine (Cr synthesis and transport in the last few years disclosed the importance of blood Cr supply for the normal functioning of the brain. These putatively rare diseases share a common pathogenetic mechanism (the depletion of brain Cr and similar phenotypes characterized by mental retardation, language disturbances, seizures and movement disorders. In the effort to improve our knowledge on the mechanisms regulating Cr pool inside the nervous tissue, Cr transport and synthesis and related gene transcripts were explored in primary cultures of rat cerebellar granule cells and astrocytes. Methods Cr uptake and synthesis were explored in vitro by incubating monotypic primary cultures of rat type I astrocytes and cerebellar granule cells with: a D3-Creatine (D3Cr and D3Cr plus β-guanidinopropionate (GPA, an inhibitor of Cr transporter, and b labelled precursors of Guanidinoacetate (GAA and Cr (Arginine, Arg; Glycine, Gly. Intracellular D3Cr and labelled GAA and Cr were assessed by ESI-MS/MS. Creatine transporter (CT1, L-arginine:glycine amidinotransferase (AGAT, and S-adenosylmethionine:guanidinoacetate N-methyltransferase (GAMT gene expression was assessed in the same cells by real time PCR. Results D3Cr signal was extremely high in cells incubated with this isotope (labelled/unlabelled Cr ratio reached about 10 and 122, respectively in cerebellar granule cells and astrocytes and was reduced by GPA. Labelled Arg and Gly were taken up by the cells and incorporated in GAA, whose concentration paralleled that of these precursors both in the extracellular medium and inside the cells (astrocytes. In contrast, the increase of labelled Cr was relatively much more limited since labelled Cr after precursors' supplementation did not exceed 2,7% (cerebellar granule cells and 21% (astrocytes of unlabelled Cr. Finally, AGAT, GAMT and SLC6A8 were expressed in both kind of cells. Conclusions Our

  3. A possible role of the non-GAT1 GABA transporters in transfer of GABA from GABAergic to glutamatergic neurons in mouse cerebellar neuronal cultures

    DEFF Research Database (Denmark)

    Suñol, C; Babot, Z; Cristòfol, R

    2010-01-01

    Cultures of dissociated cerebellum from 7-day-old mice were used to investigate the mechanism involved in synthesis and cellular redistribution of GABA in these cultures consisting primarily of glutamatergic granule neurons and a smaller population of GABAergic Golgi and stellate neurons......3 transporters. Only a small population of cells were immuno-stained for GAD while many cells exhibited VGlut-1 like immuno-reactivity which, however, never co-localized with GAD positive neurons. This likely reflects the small number of GABAergic neurons compared to the glutamatergic granule......M concentrations (95%). Essentially all neurons showed GABA like immunostaining albeit with differences in intensity. The results indicate that GABA which is synthesized in a small population of GAD-positive neurons is redistributed to essentially all neurons including the glutamatergic granule cells. GAT1...

  4. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    Science.gov (United States)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  5. Selective stimulation of excitatory amino acid receptor subtypes and the survival of cerebellar granule cells in culture: effect of kainic acid

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1990-01-01

    Our previous studies showed that the survival of cerebellar granule cells in culture is promoted by treatment with N-methyl-D-aspartate. Here we report on the influence of another glutamate analogue, kainic acid, which, in contrast to N-methyl-D-aspartate, is believed to stimulate transmitter rec...

  6. Integrity of Cerebellar Fastigial Nucleus Intrinsic Neurons Is Critical for the Global Ischemic Preconditioning

    Directory of Open Access Journals (Sweden)

    Eugene V. Golanov

    2017-09-01

    Full Text Available Excitation of intrinsic neurons of cerebellar fastigial nucleus (FN renders brain tolerant to local and global ischemia. This effect reaches a maximum 72 h after the stimulation and lasts over 10 days. Comparable neuroprotection is observed following sublethal global brain ischemia, a phenomenon known as preconditioning. We hypothesized that FN may participate in the mechanisms of ischemic preconditioning as a part of the intrinsic neuroprotective mechanism. To explore potential significance of FN neurons in brain ischemic tolerance we lesioned intrinsic FN neurons with excitotoxin ibotenic acid five days before exposure to 20 min four-vessel occlusion (4-VO global ischemia while analyzing neuronal damage in Cornu Ammoni area 1 (CA1 hippocampal area one week later. In FN-lesioned animals, loss of CA1 cells was higher by 22% compared to control (phosphate buffered saline (PBS-injected animals. Moreover, lesion of FN neurons increased morbidity following global ischemia by 50%. Ablation of FN neurons also reversed salvaging effects of five-minute ischemic preconditioning on CA1 neurons and morbidity, while ablation of cerebellar dentate nucleus neurons did not change effect of ischemic preconditioning. We conclude that FN is an important part of intrinsic neuroprotective system, which participates in ischemic preconditioning and may participate in naturally occurring neuroprotection, such as “diving response”.

  7. gamma-Aminobutyric acid- and benzodiazepine-induced modulation of [35S]-t-butylbicyclophosphorothionate binding to cerebellar granule cells

    International Nuclear Information System (INIS)

    Gallo, V.; Wise, B.C.; Vaccarino, F.; Guidotti, A.

    1985-01-01

    t-Butylbicyclophosphorothionate (TBPS) is a bicyclophosphate derivative with potent picrotoxin-like convulsant activity that binds with high affinity and specificity to a Cl- channel-modulatory site of the gamma-aminobutyric acid (GABA)/benzodiazepine receptor complex. Using intact cerebellar granule cells maintained in primary culture, the authors have studied the modifications induced by GABA and diazepam on the ion channel-modulatory binding site labeled by [ 35 S]TBPS. At 25 degrees C, and in a modified Locke solution, the [ 35 S]TBPS specific binding, determined by displacing the radioligand with an excess (10(-4) M) of picrotoxin, was approximately 70% of the total radioactivity bound to the cells. [ 35 S]TBPS specific binding was saturable with a Kd of approximately 100 nM, a Bmax of approximately 440 fmol/mg of protein, and a Hill coefficient of 1.18. Neither cerebellar astrocytes maintained in culture for 2 weeks nor a neuroblastoma cell line (NB-2A) exhibited any specific [ 35 S]TBPS binding. Muscimol (0.3 to 5 microM) enhanced and bicuculline (0.1 to 5 microM) inhibited [ 35 S]TBPS specific binding to intact cerebellar granule cells. The effect of muscimol and bicuculline on [ 35 S]TBPS binding was noncompetitive. Muscimol (0.1 to 5 microM) reversed bicuculline inhibition in a dose-dependent fashion but failed to reverse picrotoxin-induced inhibition. [ 35 S]TBPS binding was also modulated by benzodiazepine receptor ligands. The binding was increased by diazepam and decreased by 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylic acid methylester. Muscimol (0.05 microM) failed to reverse bicuculline inhibition in the absence of diazepam, but it became effective in the presence of 0.1 to 1 microM diazepam

  8. Gamma-radiation produces abnormal Bergmann fibers and ectopic granule cells in mouse cerebellar cortex

    International Nuclear Information System (INIS)

    Inouye, Minoru; Hayasaka, Shizu; Funahashi, Atsushi; Yamamura, Hideki

    1992-01-01

    Morphological changes in Bergmann glial fibers in the developing cerebellar cortex produced by exposure to gamma-rays were investigated in association with ectopic granule cells. Six-day-old mice that had been exposed to 3 Gy of gamma-radiation were killed 6 hours after exposure or at 7 through 30 days of age. Their cerebella were examined histologically and immunohistochemically for glial fibrillary acidic protein in Bergmann fibers. Extensive cell death took place in the external granular layer (EGL) of the cerebellum from 6 through 24 hours after exposure. This led to the thinning of the EGL and a decrease in the number of migrating cells in the molecular layer. The number of Bergmann cells was not decreased, but the fibers in the molecular layer were distorted; whereas, in the control these fibers were straight and perpendicular to the pial surface. The EGL began to recover 2 days after exposure, and abnormally oriented migrating cells were seen. At 17 days of age, some cell clustering was observed in the molecular layer of the irradiated cerebellum. Distortion of the Bergmann fibers was marked in regions where ectopic granule cells appeared at 30 days of age. These findings suggest that the distortion of Bergmann fibers leads to the production of ectopic granule cells after exposure to gamma-radiation. (author)

  9. Endothelin-1 stimulates the release of preloaded [3H]D-aspartate from cultured cerebellar granule cells

    International Nuclear Information System (INIS)

    Lin, W.W.; Lee, C.Y.; Chuang, D.M.

    1990-01-01

    We have recently reported that endothelin-1 (ET) induces phosphoinositide hydrolysis in primary cultures of rat cerebellar granule cells. Here we found that ET in a dose-dependent manner (1-30 nM) stimulated the release of preloaded [ 3 H]D-aspartate from granule cells. The ET-induced aspartate release was completely blocked in the absence of extracellular Ca 2+ , but was unaffected by 1 mM Co 2+ or 1 microM dihydropyridine derivatives (nisoldipine and nimodipine). At higher concentration (10 microM) of nisoldipine and nimodipine, the release was partially inhibited. Short-term pretreatment of cells with phorbol 12,13-dibutyrate (PDBu) potentiated the ET-induced aspartate release, while long-term pretreatment with PDBu attenuated the release. Long-term exposure of cells to pertussis toxin (PTX), on the other hand, potentiated the ET-induced effects. Our results suggest that ET has a neuromodulatory function in the central nervous system

  10. DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Yang Yan

    2010-12-01

    Full Text Available Abstract Background Although the cerebellum is considered to be predominantly involved in fine motor control, emerging evidence documents its participation in language, impulsive behavior and higher cognitive functions. While the specific connections of the cerebellar deep nuclei (CDN that are responsible for these functions are still being worked out, their deficiency has been termed "cerebellar cognitive affective syndrome" - a syndrome that bears a striking similarity to many of the symptoms of Alzheimer's disease (AD. Using ectopic cell cycle events and DNA damage markers as indexes of cellular distress, we have explored the neuropathological involvement of the CDN in human AD. Results We examined the human cerebellar dentate nucleus in 22 AD cases and 19 controls for the presence of neuronal cell cycle events and DNA damage using immunohistochemistry and fluorescence in situ hybridization. Both techniques revealed several instances of highly significant correlations. By contrast, neither amyloid plaque nor neurofibrillary tangle pathology was detected in this region, consistent with previous reports of human cerebellar pathology. Five cases of early stage AD were examined and while cell cycle and DNA damage markers were well advanced in the hippocampus of all five, few indicators of either cell cycle events (1 case or a DNA damage response (1 case were found in CDN. This implies that CDN neurons are most likely affected later in the course of AD. Clinical-pathological correlations revealed that cases with moderate to high levels of cell cycle activity in their CDN are highly likely to show deficits in unorthodox cerebellar functions including speech, language and motor planning. Conclusion Our results reveal that the CDN neurons are under cellular stress in AD and suggest that some of the non-motor symptoms found in patients with AD may be partly cerebellar in origin.

  11. Metabolism of Mannose in Cultured Primary Rat Neurons.

    Science.gov (United States)

    Rastedt, Wiebke; Blumrich, Eva-Maria; Dringen, Ralf

    2017-08-01

    Glucose is the main peripheral substrate for energy production in the brain. However, as other hexoses are present in blood and cerebrospinal fluid, we have investigated whether neurons have the potential to metabolize, in addition to glucose, also the hexoses mannose, fructose or galactose. Incubation of primary cerebellar granule neurons in the absence of glucose caused severe cell toxicity within 24 h, which could not be prevented by application of galactose or fructose, while the cells remained viable during incubation in the presence of either mannose or glucose. In addition, cultured neurons produced substantial and almost identical amounts of lactate after exposure to either glucose or mannose, while lactate production was low in the presence of fructose and hardly detectable during incubations without hexoses or with galactose as carbon source. Determination of the K M values of hexokinase in lysates of cultured neurons for the hexoses revealed values in the micromolar range for mannose (32 ± 2 µM) and glucose (59 ± 10 µM) and in the millimolar range for fructose (4.4 ± 2.3 mM), demonstrating that mannose is efficiently phosphorylated by neuronal hexokinase. Finally, cultured neurons contained reasonable specific activity of the enzyme phosphomannose isomerase, which is required for isomerization of the hexokinase product mannose-6-phosphate into the glycolysis intermediate fructose-6-phosphate. These data demonstrate that cultured cerebellar granule neurons have the potential and express the required enzymes to efficiently metabolize mannose, while galactose and fructose serve at best poorly as extracellular carbon sources for neurons.

  12. Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells

    International Nuclear Information System (INIS)

    Jimenez, Andres; Jorda, Elvira G.; Verdaguer, Ester; Pubill, David; Sureda, Francesc X.; Canudas, Anna M.; Escubedo, Elena; Camarasa, Jordi; Camins, Antoni; Pallas, Merce

    2004-01-01

    The neurotoxic action of the abuse drugs methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) on cerebellar granule neurones (CGNs) culture was examined. Treatment for 48 h with METH or MDMA (1-5 mM) induced a higher decrease in viability than 24 h treatment. z.VAD.fmk (100 μM) but not MK-801 nor NBQX recovered control viability values. In both cases, cell death was characterised as apoptotic rather than necrotic by morphology cell observation. Apoptosis measured by flow cytometry indicated an increase in the hypodiploid population after 48 h treatment with METH and MDMA. Apoptosis was reverted by the presence of z.VAD.fmk (100 μM) but not by 10 μM MK-801 or NBQX. Similar results were obtained by analysing nuclear chromatine condensation. These results ruled out excitotoxic participation in amphetamine derivative-induced neurotoxicity in CGNs. Participation of radical oxygen species (ROS) was evaluated using α-tocopherol (1-15 μM) and cytometric studies. The co-treatment with 4 mM METH or MDMA for 48 h partially reverted neurotoxic action and apoptotic features, indicating ROS implication in CGNs death by amphetamine derivatives. Alteration of mitochondrial function induced cytochrome C (Cyt C) release after 48-h treatment with METH and MDMA (4 mM). There was also indication of caspase-3-like activation, measured by immunoanalysis and biochemically. Finally, neurodegenerative action caused by amphetamine derivatives may be prevented by using caspase inhibitors

  13. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  14. Casein Kinase 1δ Is an APC/CCdh1 Substrate that Regulates Cerebellar Granule Cell Neurogenesis

    Directory of Open Access Journals (Sweden)

    Clara Penas

    2015-04-01

    Full Text Available Although casein kinase 1δ (CK1δ is at the center of multiple signaling pathways, its role in the expansion of CNS progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In contrast, CK1δ overexpression increases GCP proliferation. Thus, CK1δ appears to regulate GCP neurogenesis. CK1δ is targeted for proteolysis via the anaphase-promoting complex/cyclosome (APC/CCdh1 ubiquitin ligase, and conditional deletion of the APC/CCdh1 activator Cdh1 in cerebellar GCPs results in higher levels of CK1δ. APC/CCdh1 also downregulates CK1δ during cell-cycle exit. Therefore, we conclude that APC/CCdh1 controls CK1δ levels to balance proliferation and cell-cycle exit in the developing CNS. Similar studies in medulloblastoma cells showed that CK1δ holds promise as a therapeutic target.

  15. Endothelin-1 stimulates the release of preloaded ( sup 3 H)D-aspartate from cultured cerebellar granule cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.W.; Lee, C.Y.; Chuang, D.M. (NIMH Neuroscience Center, Washington, DC (USA))

    1990-03-16

    We have recently reported that endothelin-1 (ET) induces phosphoinositide hydrolysis in primary cultures of rat cerebellar granule cells. Here we found that ET in a dose-dependent manner (1-30 nM) stimulated the release of preloaded ({sup 3}H)D-aspartate from granule cells. The ET-induced aspartate release was completely blocked in the absence of extracellular Ca{sup 2+}, but was unaffected by 1 mM Co{sup 2+} or 1 microM dihydropyridine derivatives (nisoldipine and nimodipine). At higher concentration (10 microM) of nisoldipine and nimodipine, the release was partially inhibited. Short-term pretreatment of cells with phorbol 12,13-dibutyrate (PDBu) potentiated the ET-induced aspartate release, while long-term pretreatment with PDBu attenuated the release. Long-term exposure of cells to pertussis toxin (PTX), on the other hand, potentiated the ET-induced effects. Our results suggest that ET has a neuromodulatory function in the central nervous system.

  16. Organization of spinocerebellar projection map in three types of agranular cerebellum: Purkinje cells vs. granule cells as organizer element

    International Nuclear Information System (INIS)

    Arsenio Nunes, M.L.; Sotelo, C.; Wehrle, R.

    1988-01-01

    The organization of the spinocerebellar projection was analysed by the anterograde axonal WGA-HRP (horseradish peroxidase-wheat germ agglutinin conjugate) tracing method in three different types of agranular cerebellar cortex either induced experimentally by X-irradiation or occurring spontaneously in weaver (wv/wv) and staggerer (sg/sg) mutant mice. The results of this study show that in the X-irradiated rat and weaver mouse, in both of which the granule cells are directly affected and die early in development, the spinal axons reproduce, with few differences, the normal spinocerebellar pattern. Conversely, in staggerer mouse, in which the Purkinje cells are intrinsically affected and granule neurons do not seem to be primarily perturbed by the staggerer gene action, the spinocerebellar organization is severely modified. These findings appear somewhat paradoxical because if granule cells, the synaptic targets of mossy spinocerebellar fibers, were necessary for the organization of spinocerebellar projection, the staggerer cerebellum would exhibit a much more normal projectional map than the weaver and the X-irradiated cerebella. It is, therefore, obvious that granule cells, and even specific synaptogenesis, are not essential for the establishment of the normal spinocerebellar topography. On the other hand, the fact that the Purkinje cells are primarily affected in the unique agranular cortex in which the spinocerebellar organization is severely modified suggests that these neurons could be the main element in the organization of the spinocerebellar projection map. This hypothesis is discussed in correlation with already-reported findings on the zonation of the cerebellar cortex by biochemically different clusters of Purkinje cells

  17. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.

    Science.gov (United States)

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections).

  18. Cell Signaling and Neurotoxicity: 3H-Arachidonic acid release (Phospholipase A2) in cerebellar granule neurons

    Science.gov (United States)

    Cell signaling is a complex process which controls basic cellular activities and coordinates actions to maintain normal cellular homeostasis. Alterations in signaling processes have been associated with neurological diseases such as Alzheimer's and cerebellar ataxia, as well as, ...

  19. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    International Nuclear Information System (INIS)

    Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako; Takeyoshi, Masahiro; Imatanaka, Nobuya; Itahashi, Megu; Murakami, Tomoaki; Shibutani, Makoto

    2014-01-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc + neurons at 1000 ppm and Fos + neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues decreased

  20. Endothelium in brain: Receptors, mitogenesis, and biosynthesis in glial cells

    International Nuclear Information System (INIS)

    MacCumber, M.W.; Ross, C.A.; Snyder, S.H.

    1990-01-01

    The authors have explored the cellular loci of endothelin (ET) actions and formation in the brain, using cerebellar mutant mice was well as primary and continuous cell cultures. A glial role is favored by several observations: (1) mutant mice lacking neuronal Purkinje cells display normal ET receptor binding and enhanced stimulation by ET of inositolphospholipid turnover; (ii) in weaver mice lacking neuronal granule cells, ET stimulation of inositolphospholipid turnover is not significantly diminished; (iii) C 6 glioma cells and primary cultures of cerebellar astroglia exhibit substantial ET receptor binding and ET-induced stimulation of inositolphospholipid turnover; (iv) ET promotes mitogenesis of C 6 glioma cells and primary cerebellar astroglia; and (v) primary cultures of cerebellar astroglia contain ET mRNA. ET also appears to have a neuronal role, since it stimulates inositolphospholipid turnover in primary cultures of cerebellar granule cells, and ET binding declines in granule cell-deficient mice. Thus, ET can be produced by glia and act upon both glia and neurons in a paracrine fashion

  1. STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron

    NARCIS (Netherlands)

    J. Luthman (Johannes); F.E. Hoebeek (Freek); R. Maex (Reinoud); N. Davey (Neil); R. Adams (Rod); C.I. de Zeeuw (Chris); V. Steuber (Volker)

    2011-01-01

    textabstractNeurons in the cerebellar nuclei (CN) receive inhibitory inputs from Purkinje cells in the cerebellar cortex and provide the major output from the cerebellum, but their computational function is not well understood. It has recently been shown that the spike activity of Purkinje cells is

  2. Demonstration of extensive GABA synthesis in the small population of GAD positive neurons in cerebellar cultures by the use of pharmacological tools

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Kortner, Trond M; Qu, Hong

    2006-01-01

    by labeling from [U-(13)C]glutamine added on day 7. Altogether the findings show continuous GABA synthesis and degradation throughout the culture period in the cerebellar neurons. At 10 microM AOAA, GABA synthesis from [U-(13)C]glutamine was not affected, indicating that transaminases are not involved in GABA...... that GABA synthesis is taking place via GAD in a subpopulation of the cerebellar neurons, throughout the culture period....

  3. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control

    Directory of Open Access Journals (Sweden)

    Ruben Dario Pinzon Morales

    2015-05-01

    Full Text Available The cerebellar granule cells (GCs have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to textcolor{red}{support} motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF, an unstable two-wheel balancing robot (2 DOFs, and a simulation model of a quadcopter (6 DOFs. Results showed that adequate control was maintained with a relatively small number of GCs ($<$ 200 in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs. It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights. Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections.

  4. The prion protein constitutively controls neuronal store-operated Ca2+ entry through Fyn kinase

    Directory of Open Access Journals (Sweden)

    Agnese eDe Mario

    2015-10-01

    Full Text Available The prion protein (PrPC is a cell surface glycoprotein mainly expressed in neurons, whose misfolded isoforms generate the prion responsible for incurable neurodegenerative disorders. Whereas PrPC involvement in prion propagation is well established, PrPC physiological function is still enigmatic despite suggestions that it could act in cell signal transduction by modulating phosphorylation cascades and Ca2+ homeostasis. Because PrPC binds neurotoxic protein aggregates with high-affinity, it has also been proposed that PrPC acts as receptor for amyloid-β (Aβ oligomers associated with Alzheimer’s disease (AD, and that PrPC-Aβ binding mediates AD-related synaptic dysfunctions following activation of the tyrosine kinase Fyn.Here, use of gene-encoded Ca2+ probes targeting different cell domains in primary cerebellar granule neurons expressing, or not, PrPC allowed us to investigate whether PrPC regulates store-operated Ca2+ entry (SOCE and the implication of Fyn in this control. Our findings show that PrPC attenuates SOCE, and Ca2+ accumulation in the cytosol and mitochondria, by constitutively restraining Fyn activation and tyrosine phosphorylation of STIM1, a key molecular component of SOCE. This data establishes the existence of a PrPC-Fyn-SOCE triad in neurons.We also demonstrate that treating cerebellar granule and cortical neurons with soluble Aβ(1-42 oligomers abrogates the control of PrPC over Fyn and SOCE, suggesting a PrPC-dependent mechanism for Aβ-induced neuronal Ca2+ dyshomeostasis.

  5. Differential 3’ processing of specific transcripts expands regulatory and protein diversity across neuronal cell types

    Science.gov (United States)

    Jereb, Saša; Hwang, Hun-Way; Van Otterloo, Eric; Govek, Eve-Ellen; Fak, John J; Yuan, Yuan; Hatten, Mary E

    2018-01-01

    Alternative polyadenylation (APA) regulates mRNA translation, stability, and protein localization. However, it is unclear to what extent APA regulates these processes uniquely in specific cell types. Using a new technique, cTag-PAPERCLIP, we discovered significant differences in APA between the principal types of mouse cerebellar neurons, the Purkinje and granule cells, as well as between proliferating and differentiated granule cells. Transcripts that differed in APA in these comparisons were enriched in key neuronal functions and many differed in coding sequence in addition to 3’UTR length. We characterize Memo1, a transcript that shifted from expressing a short 3’UTR isoform to a longer one during granule cell differentiation. We show that Memo1 regulates granule cell precursor proliferation and that its long 3’UTR isoform is targeted by miR-124, contributing to its downregulation during development. Our findings provide insight into roles for APA in specific cell types and establish a platform for further functional studies. PMID:29578408

  6. Dendrites of cerebellar granule cells correctly recognize their target axons for synaptogenesis in vitro.

    Science.gov (United States)

    Ito, Shoko; Takeichi, Masatoshi

    2009-08-04

    Neural circuits are generated by precisely ordered synaptic connections among neurons, and this process is thought to rely on the ability of neurons to recognize specific partners. However, it is also known that neurons promiscuously form synapses with nonspecific partners, in particular when cultured in vitro, causing controversies about neural recognition mechanisms. Here we reexamined whether neurons can or cannot select particular partners in vitro. In the cerebellum, granule cell (GC) dendrites form synaptic connections specifically with mossy fibers, but not with climbing fibers. We cocultured GC neurons with pontine or inferior olivary axons, the major sources for mossy and climbing fibers, respectively, as well as with hippocampal axons as a control. The GC neurons formed synapses with pontine axons predominantly at the distal ends of their dendrites, reproducing the characteristic morphology of their synapses observed in vivo, whereas they failed to do so when combined with other axons. In the latter case, synaptic proteins could accumulate between axons and dendrites, but these synapses were randomly distributed throughout the contact sites, and also their synaptic vesicle recycling was anomalous. These observations suggest that GC dendrites can select their authentic partners for synaptogenesis even in vitro, forming the synapses with a GC-specific nature only with them.

  7. Somato-synaptic variation of GABA(A) receptors in cultured murine cerebellar granule cells: investigation of the role of the alpha6 subunit.

    Science.gov (United States)

    Mellor, J R; Wisden, W; Randall, A D

    2000-07-10

    Electrophysiological investigation of cultured cerebellar murine granule cells revealed differences between the GABA(A) receptors at inhibitory synapses and those on the cell body. Specifically, mIPSCs decayed more rapidly than cell body receptors deactivated, the mean single channel conductance at the synapse (32 pS) was greater than that at cell body (21 pS) and only cell body receptors were sensitive to Zn(2+) (150 microM), which depressed response amplitude by 82+/-5% and almost doubled the rate of channel deactivation. The GABA(A) receptor alpha6 subunit is selectively expressed in cerebellar granule cells. Although concentrated at synapses, it is also found on extrasynaptic membranes. Using a mouse line (Deltaalpha6lacZ) lacking this subunit, we investigated its role in the somato-synaptic differences in GABA(A) receptor function. All differences between cell body and synaptic GABA(A) receptors observed in wild-type (WT) granule cells persisted in Deltaalpha6lacZ cells, thus demonstrating that they are not specifically due to the cellular distribution of the alpha6 subunit. However, mIPSCs from WT and Deltaalpha6lacZ cells differed in both their kinetics (faster decay in WT cells) and underlying single channel conductance (32 pS WT, 25 pS Deltaalpha6lacZ). This provides good evidence for a functional contribution of the alpha6 subunit to postsynaptic GABA(A) receptors in these cells. Despite this, deactivation kinetics of mIPSCs in WT and Deltaalpha6lacZ granule cells exhibited similar benzodiazepene (BDZ) sensitivity. This suggests that the enhanced BDZ-induced ataxia seen in Deltaalpha6lacZ mice may reflect physiological activity at extrasynaptic receptors which, unlike those at synapses, display differential BDZ-sensitivity in WT and Deltaalpha6lacZ granule cells (Jones, A.M., Korpi, E.R., McKernan, R.M., Nusser, Z., Pelz, R., Makela, R., Mellor, J.R., Pollard, S., Bahn, S., Stephenson, F.A., Randall, A.D., Sieghart, W., Somogyi, P., Smith, A.J.H., Wisden

  8. CXCL12-mediated feedback from granule neurons regulates generation and positioning of new neurons in the dentate gyrus.

    Science.gov (United States)

    Abe, Philipp; Wüst, Hannah M; Arnold, Sebastian J; van de Pavert, Serge A; Stumm, Ralf

    2018-03-14

    Adult hippocampal neurogenesis is implicated in learning and memory processing. It is tightly controlled at several levels including progenitor proliferation as well as migration, differentiation and integration of new neurons. Hippocampal progenitors and immature neurons reside in the subgranular zone (SGZ) and are equipped with the CXCL12-receptor CXCR4 which contributes to defining the SGZ as neurogenic niche. The atypical CXCL12-receptor CXCR7 functions primarily by sequestering extracellular CXCL12 but whether CXCR7 is involved in adult neurogenesis has not been assessed. We report that granule neurons (GN) upregulate CXCL12 and CXCR7 during dentate gyrus maturation in the second postnatal week. To test whether GN-derived CXCL12 regulates neurogenesis and if neuronal CXCR7 receptors influence this process, we conditionally deleted Cxcl12 and Cxcr7 from the granule cell layer. Cxcl12 deletion resulted in lower numbers, increased dispersion and abnormal dendritic growth of immature GN and reduced neurogenesis. Cxcr7 ablation caused an increase in progenitor proliferation and progenitor numbers and reduced dispersion of immature GN. Thus, we provide a new mechanism where CXCL12-signals from GN prevent dispersion and support maturation of newborn GN. CXCR7 receptors of GN modulate the CXCL12-mediated feedback from GN to the neurogenic niche. © 2018 Wiley Periodicals, Inc.

  9. Study of ATM Phosphorylation by Cdk5 in Neuronal Cells.

    Science.gov (United States)

    She, Hua; Mao, Zixu

    2017-01-01

    The phosphatidylinositol-3-kinase-like kinase ATM (ataxia-telangiectasia mutated) plays a central role in coordinating the DNA damage responses including cell cycle checkpoint control, DNA repair, and apoptosis. Mutations of ATM cause a spectrum of defects ranging from neurodegeneration to cancer predisposition. We previously showed that Cdk5 (cyclin-dependent kinase 5) is activated by DNA damage and directly phosphorylates ATM at serine 794 in postmitotic neurons. Phosphorylation at serine 794 precedes and is required for ATM autophosphorylation at serine 1981, and activates ATM kinase activity. Cdk5-ATM pathway plays a crucial role in DNA damage-induced neuronal injury. This chapter describes protocols used in analyzing ATM phosphorylation by Cdk5 in CGNs (cerebellar granule neurons) and its effects on neuronal survival.

  10. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    Energy Technology Data Exchange (ETDEWEB)

    Akane, Hirotoshi [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Shiraki, Ayako [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Takeyoshi, Masahiro; Imatanaka, Nobuya [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Itahashi, Megu [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Murakami, Tomoaki [Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2014-09-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc{sup +} neurons at 1000 ppm and Fos{sup +} neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues

  11. Cerebellar Degeneration

    Science.gov (United States)

    ... FARA) National Ataxia Foundation (NAF) National Multiple Sclerosis Society See all related organizations Publications Degeneración cerebelosa Order NINDS Publications Definition Cerebellar degeneration is a process in which neurons ( ...

  12. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis

    Science.gov (United States)

    Sun, Xin-zhi; Liao, Ying; Li, Wei; Guo, Li-mei

    2017-01-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects. PMID:28761429

  13. Adiponectin regulates contextual fear extinction and intrinsic excitability of dentate gyrus granule neurons through AdipoR2 receptors.

    Science.gov (United States)

    Zhang, D; Wang, X; Wang, B; Garza, J C; Fang, X; Wang, J; Scherer, P E; Brenner, R; Zhang, W; Lu, X-Y

    2017-07-01

    Post-traumatic stress disorder (PTSD) is characterized by exaggerated fear expression and impaired fear extinction. The underlying molecular and cellular mechanisms of PTSD are largely unknown. The current pharmacological and non-pharmacological treatments for PTSD are either ineffective or temporary with high relapse rates. Here we report that adiponectin-deficient mice exhibited normal contextual fear conditioning but displayed slower extinction learning. Infusions of adiponectin into the dentate gyrus (DG) of the hippocampus in fear-conditioned mice facilitated extinction of contextual fear. Whole-cell patch-clamp recordings in brain slices revealed that intrinsic excitability of DG granule neurons was enhanced by adiponectin deficiency and suppressed after treatment with the adiponectin mimetic AdipoRon, which were associated with increased input resistance and hyperpolarized resting membrane potential, respectively. Moreover, deletion of AdipoR2, but not AdipoR1 in the DG, resulted in augmented fear expression and reduced extinction, accompanied by intrinsic hyperexcitability of DG granule neurons. Adiponectin and AdipoRon failed to induce facilitation of fear extinction and elicit inhibition of intrinsic excitability of DG neurons in AdipoR2 knockout mice. These results indicated that adiponectin action via AdipoR2 was both necessary and sufficient for extinction of contextual fear and intrinsic excitability of DG granule neurons, implying that enhancing or dampening DG neuronal excitability may cause resistance to or facilitation of extinction. Therefore, our findings provide a functional link between adiponectin/AdipoR2 activation, DG neuronal excitability and contextual fear extinction, and suggest that targeting adiponectin/AdipoR2 may be used to strengthen extinction-based exposure therapies for PTSD.

  14. From the Cover: Selective Enhancement of Domoic Acid Toxicity in Primary Cultures of Cerebellar Granule Cells by Lowering Extracellular Na+ Concentration.

    Science.gov (United States)

    Pérez-Gómez, Anabel; Cabrera-García, David; Warm, Davide; Marini, Ann M; Salas Puig, Javier; Fernández-Sánchez, Maria Teresa; Novelli, Antonello

    2018-01-01

    Domoic acid (DOM) is an excitatory amino acid analog of kainic acid (KA) that acts through glutamic acid (GLU) receptors, inducing a fast and potent neurotoxic response. Here, we present evidence for an enhancement of excitotoxicity following exposure of cultured cerebellar granule cells to DOM in the presence of lower than physiological Na+ concentrations. The concentration of DOM that reduced by 50% neuronal survival was approximately 3 µM in Na+-free conditions and 16 µM in presence of a physiological concentration of extracellular Na+. The enhanced neurotoxic effect of DOM was fully prevented by AMPA/KA receptor antagonist, while N-methyl-D-aspartate-receptor-mediated neurotoxicity did not seem to be involved, as the absence of extracellular Na+ failed to potentiate GLU excitotoxicity under the same experimental conditions. Lowering of extracellular Na+ concentration to 60 mM eliminated extracellular recording of spontaneous electrophysiological activity from cultured neurons grown on a multi electrode array and prevented DOM stimulation of the electrical activity. Although changes in the extracellular Na+ concentration did not alter the magnitude of the rapid increase in intracellular Ca2+ levels associated to DOM exposure, they did change significantly the contribution of voltage-sensitive calcium channels (VScaCs) and the recovery time to baseline. The prevention of Ca2+ influx via VSCaCs by nifedipine failed to prevent DOM toxicity at any extracellular Na+ concentration, while the reduction of extracellular Ca2+ concentration ameliorated DOM toxicity only in the absence of extracellular Na+, enhancing it in physiological conditions. Our data suggest a crucial role for extracellular Na+ concentration in determining excitotoxicity by DOM. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Na+/K+-ATPase inhibition partially mimics the ethanol-induced increase of the Golgi cell-dependent component of the tonic GABAergic current in rat cerebellar granule cells.

    Directory of Open Access Journals (Sweden)

    Marvin R Diaz

    Full Text Available Cerebellar granule cells (CGNs are one of many neurons that express phasic and tonic GABAergic conductances. Although it is well established that Golgi cells (GoCs mediate phasic GABAergic currents in CGNs, their role in mediating tonic currents in CGNs (CGN-I(tonic is controversial. Earlier studies suggested that GoCs mediate a component of CGN-I(tonic that is present only in preparations from immature rodents. However, more recent studies have detected a GoC-dependent component of CGN-I(tonic in preparations of mature rodents. In addition, acute exposure to ethanol was shown to potentiate the GoC component of CGN-I(tonic and to induce a parallel increase in spontaneous inhibitory postsynaptic current frequency at CGNs. Here, we tested the hypothesis that these effects of ethanol on GABAergic transmission in CGNs are mediated by inhibition of the Na(+/K(+-ATPase. We used whole-cell patch-clamp electrophysiology techniques in cerebellar slices of male rats (postnatal day 23-30. Under these conditions, we reliably detected a GoC-dependent component of CGN-I(tonic that could be blocked with tetrodotoxin. Further analysis revealed a positive correlation between basal sIPSC frequency and the magnitude of the GoC-dependent component of CGN-I(tonic. Inhibition of the Na(+/K(+-ATPase with a submaximal concentration of ouabain partially mimicked the ethanol-induced potentiation of both phasic and tonic GABAergic currents in CGNs. Modeling studies suggest that selective inhibition of the Na(+/K(+-ATPase in GoCs can, in part, explain these effects of ethanol. These findings establish a novel mechanism of action of ethanol on GABAergic transmission in the central nervous system.

  16. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  17. Rac1 regulates neuronal polarization through the WAVE complex

    DEFF Research Database (Denmark)

    Tahirovic, Sabina; Hellal, Farida; Neukirchen, Dorothee

    2010-01-01

    the physiological function of Rac1 in neuronal development, we have generated a conditional knock-out mouse, in which Rac1 is ablated in the whole brain. Rac1-deficient cerebellar granule neurons, which do not express other Rac isoforms, showed impaired neuronal migration and axon formation both in vivo...... and in vitro. In addition, Rac1 ablation disrupts lamellipodia formation in growth cones. The analysis of Rac1 effectors revealed the absence of the Wiskott-Aldrich syndrome protein (WASP) family verprolin-homologous protein (WAVE) complex from the plasma membrane of knock-out growth cones. Loss of WAVE...... function inhibited axon growth, whereas overexpression of a membrane-tethered WAVE mutant partially rescued axon growth in Rac1-knock-out neurons. In addition, pharmacological inhibition of the WAVE complex effector Arp2/3 also reduced axon growth. We propose that Rac1 recruits the WAVE complex...

  18. Questioning the cerebellar doctrine.

    Science.gov (United States)

    Galliano, Elisa; De Zeeuw, Chris I

    2014-01-01

    The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells are the only cortical neuron receiving and integrating inputs from climbing fiber and mossy-parallel fiber pathways, and plastic modification at the parallel fiber synapses onto Purkinje cells constitutes the substrate of motor learning. Yet, because of recent technical advances and new angles of investigation, all pillars of the cerebellar doctrine now face regular re-examination. In this review, after summarizing the classic concepts and recent disputes, we attempt to synthesize an integrated view and propose a revisited version of the cerebellar doctrine. © 2014 Elsevier B.V. All rights reserved.

  19. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma.

    Science.gov (United States)

    Di Pietro, Chiara; Marazziti, Daniela; La Sala, Gina; Abbaszadeh, Zeinab; Golini, Elisabetta; Matteoni, Rafaele; Tocchini-Valentini, Glauco P

    2017-01-01

    Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.

  20. Gene expression as a sensitive endpoint to evaluate cell differentiation and maturation of the developing central nervous system in primary cultures of rat cerebellar granule cells (CGCs) exposed to pesticides

    International Nuclear Information System (INIS)

    Hogberg, Helena T.; Kinsner-Ovaskainen, Agnieszka; Hartung, Thomas; Coecke, Sandra; Bal-Price, Anna K.

    2009-01-01

    The major advantage of primary neuronal cultures for developmental neurotoxicity (DNT) testing is their ability to replicate the crucial stages of neurodevelopment. In our studies using primary culture of cerebellar granule cells (CGCs) we have evaluated whether the gene expression relevant to the most critical developmental processes such as neuronal differentiation (NF-68 and NF-200) and functional maturation (NMDA and GABA A receptors), proliferation and differentiation of astrocytes (GFAP and S100β) as well as the presence of neural precursor cells (nestin and Sox10) could be used as an endpoint for in vitro DNT. The expression of these genes was assessed after exposure to various pesticides (paraquat parathion, dichlorvos, pentachlorophenol and cycloheximide) that could induce developmental neurotoxicity through different mechanisms. All studied pesticides significantly modified the expression of selected genes, related to the different stages of neuronal and/or glial cell development and maturation. The most significant changes were observed after exposure to paraquat and parathion (i.e. down-regulation of mRNA expression of NF-68 and NF-200, NMDA and GABA A receptors). Similarly, dichlorvos affected mainly neurons (decreased mRNA expression of NF-68 and GABA A receptors) whereas cycloheximide had an effect on neurons and astrocytes, as significant decreases in the mRNA expression of both neurofilaments (NF-68 and NF-200) and the astrocyte marker (S100β) were observed. Our results suggest that toxicity induced by pesticides that target multiple pathways of neurodevelopment can be identified by studying expression of genes that are involved in different stages of cell development and maturation, and that gene expression could be used as a sensitive endpoint for initial screening to identify the compounds with the potential to cause developmental neurotoxicity

  1. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1.

    Directory of Open Access Journals (Sweden)

    Devon M Fitzgerald

    Full Text Available The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs, and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7 rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10(-12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.

  2. Parallel expression of synaptophysin and evoked neurotransmitter release during development of cultured neurons

    DEFF Research Database (Denmark)

    Ehrhart-Bornstein, M; Treiman, M; Hansen, Gert Helge

    1991-01-01

    Primary cultures of GABAergic cerebral cortex neurons and glutamatergic cerebellar granule cells were used to study the expression of synaptophysin, a synaptic vesicle marker protein, along with the ability of each cell type to release neurotransmitter upon stimulation. The synaptophysin expression...... by quantitative immunoblotting and light microscope immunocytochemistry, respectively. In both cell types, a close parallelism was found between the temporal pattern of development in synaptophysin expression and neurotransmitter release. This temporal pattern differed between the two types of neurons....... The cerebral cortex neurons showed a biphasic time course of increase in synaptophysin content, paralleled by a biphasic pattern of development in their ability to release [3H]GABA in response to depolarization by glutamate or elevated K+ concentrations. In contrast, a monophasic, approximately linear increase...

  3. Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Sickmann, Helle M; Schousboe, Arne

    2004-01-01

    The glutamate-glutamine cycle describes the neuronal release of glutamate into the synaptic cleft, astrocytic uptake, and conversion into glutamine, followed by release for use as a neuronal glutamate precursor. This only explains the fate of the carbon atoms, however, and not that of the ammonia....... Recently, a role for alanine has been proposed in transfer of ammonia between glutamatergic neurons and astrocytes, denoted the lactate-alanine shuttle (Waagepetersen et al. [ 2000] J. Neurochem. 75:471-479). The role of alanine in this context has been studied further using cerebellar neuronal cultures...... and corresponding neuronal-astrocytic cocultures. A superfusion paradigm was used to induce repetitively vesicular glutamate release by N-methyl-D-aspartate (NMDA) in the neurons, allowing the relative activity dependency of the lactate-alanine shuttle to be assessed. [(15)N]Alanine (0.2 mM), [2-(15)N]/[5-(15)N...

  4. Survival of adult neurons lacking cholesterol synthesis in vivo.

    Science.gov (United States)

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-02

    Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  5. Survival of adult neurons lacking cholesterol synthesis in vivo

    Directory of Open Access Journals (Sweden)

    Möbius Wiebke

    2007-01-01

    Full Text Available Abstract Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1, which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  6. Critical periods during the in situ repair of radiation-induced DNA damage in rat cerebellar neurons and 9L brain tumor cells

    International Nuclear Information System (INIS)

    Wierowski, J.V.; Thomas, R.R.; Ritter, P.; Wheeler, K.T.

    1982-01-01

    The consequences of delivering a second 1250-rad dose at various times during and after the repair of DNA damage produced by an initial 1250-rad dose were assessed in intracerebral 9L tumor cells and rat cerebellar neurons by measuring the sedimentation properties of their DNA through alkaline sucrose gradients in zonal rotors with slow gradient reorienting capabilities.In cerebellar neurons, separating the two doses by 15 min resulted in an accumulation of DNA damage as expressed by an increase in the amount of DNA sedimenting >250 S over that obtained from unirradiated controls. Although not statistically different from unirradiated controls, a slight increase in the amount of fast-sedimenting neuronal DNA also occurred when a 1-hr interval between the two doses was investigated. At intervals of 2 hr or more, no such increase in fast-sedimenting neuronal DNA was observed. None of the periods between doses resulted in an accumulation of DNA damage in intracerebral 9L tumor cells. The accumulation of this type of DNA damage in neurons but not in tumor cells suggests that avoidance of a critical period in neuronal DNA repair may someday be an important concept in the design of brain tumor therapy schedules

  7. Onset of Tlx-3 expression in the chick cerebellar cortex correlates with the morphological development of fissures and delineates a posterior transverse boundary.

    Science.gov (United States)

    Logan, Cairine; Millar, Cassie; Bharadia, Vinay; Rouleau, Katherine

    2002-06-24

    Recent studies have shown that the mammalian cerebellar cortex can be subdivided into a reproducible array of zones and stripes. In particular, discontinuous patterns of gene expression together with mutational analysis suggest that there are at least four distinct transverse zones along the rostrocaudal axis in mouse: the anterior zone (lobules I-V), the central zone (lobules VI and VII), the posterior zone (lobules VIII and IX), and the nodular zone (lobule X). Here we show that the divergent homeobox-containing transcription factor, Tlx- 3 (also known as Hox11L2 or Rnx) is transiently expressed in external granule cells in a distinct transverse domain of the developing chick cerebellar cortex. Expression is first detected at Hamburger and Hamilton (HH) stage 35. Interestingly, Tlx-3 mRNA expression is initially confined to, and coincident with, the morphological development of fissures. Slightly later, at HH stage 38, expression extends throughout the developing external granular layer (EGL) of lobules I-IXab. Notably, no Tlx-3 expression was detected in lobules IXc and X at any developmental time point examined. Expression is noticeably stronger in nonproliferating cells located in the deep layer of the EGL. Tlx-3 expression is downregulated as granule cells migrate inward to form the internal granule layer and is undetectable shortly after birth. These results suggest that Tlx-3 is expressed as granule cells become postmitotic and suggest that Tlx-3 may play a role in the differentiation of distinct neuronal populations in the cerebellum. Copyright 2002 Wiley-Liss, Inc.

  8. GDF15 regulates Kv2.1-mediated outward K+ current through the Akt/mTOR signalling pathway in rat cerebellar granule cells.

    Science.gov (United States)

    Wang, Chang-Ying; Huang, An-Qi; Zhou, Meng-Hua; Mei, Yan-Ai

    2014-05-15

    GDF15 (growth/differentiation factor 15), a novel member of the TGFβ (transforming growth factor β) superfamily, plays critical roles in the central and peripheral nervous systems, but the signal transduction pathways and receptor subtypes involved are not well understood. In the present paper, we report that GDF15 specifically increases the IK (delayed-rectifier outward K+ current) in rat CGNs (cerebellar granule neurons) in time- and concentration-dependent manners. The GDF15-induced amplification of the IK is mediated by the increased expression and reduced lysosome-dependent degradation of the Kv2.1 protein, the main α-subunit of the IK channel. Exposure of CGNs to GDF15 markedly induced the phosphorylation of ERK (extracellular-signal-regulated kinase), Akt and mTOR (mammalian target of rapamycin), but the GDF15-induced IK densities and increased expression of Kv2.1 were attenuated only by Akt and mTOR, and not ERK, inhibitors. Pharmacological inhibition of the Src-mediated phosphorylation of TGFβR2 (TGFβ receptor 2), not TGFβR1, abrogated the effect of GDF15 on IK amplification and Kv2.1 induction. Immunoprecipitation assays showed that GDF15 increased the tyrosine phosphorylation of TGFβRII in the CGN lysate. The results of the present study reveal a novel regulation of Kv2.1 by GDF15 mediated through the TGFβRII-activated Akt/mTOR pathway, which is a previously uncharacterized Smad-independent mechanism of GDF15 signalling.

  9. A comparative study of the effect of ciguatoxins on voltage-dependent Na+ and K+ channels in cerebellar neurons.

    Science.gov (United States)

    Pérez, Sheila; Vale, Carmen; Alonso, Eva; Alfonso, Carmen; Rodríguez, Paula; Otero, Paz; Alfonso, Amparo; Vale, Paulo; Hirama, Masahiro; Vieytes, Mercedes R; Botana, Luis M

    2011-04-18

    Ciguatera is a global disease caused by the consumption of certain warm-water fish (ciguateric fish) that have accumulated orally effective levels of sodium channel activator toxins (ciguatoxins) through the marine food chain. The effect of ciguatoxin standards and contaminated ciguatoxin samples was evaluated by electrophysiological recordings in cultured cerebellar neurons. The toxins affected both voltage-gated sodium (Nav) and potassium channels (Kv) although with different potencies. CTX 3C was the most active toxin blocking the peak inward sodium currents, followed by P-CTX 1B and 51-OH CTX 3C. In contrast, P-CTX 1B was more effective in blocking potassium currents. The analysis of six different samples of contaminated fish, in which a ciguatoxin analogue of mass 1040.6, not identical with the standard 51-OH CTX 3C, was the most prevalent compound, indicated an additive effect of the different ciguatoxins present in the samples. The results presented here constitute the first comparison of the potencies of three different purified ciguatoxins on sodium and potassium channels in the same neuronal preparation and indicate that electrophysiological recordings from cultured cerebellar neurons may provide a valuable tool to detect and quantify ciguatoxins in the very low nanomolar range.

  10. Toxic agents causing cerebellar ataxias.

    Science.gov (United States)

    Manto, Mario

    2012-01-01

    The cerebellum is particularly vulnerable to intoxication and poisoning, especially so the cerebellar cortex and Purkinje neurons. In humans, the most common cause of a toxic lesion to the cerebellar circuitry is alcohol related, but the cerebellum is also a main target of drug exposure (such as anticonvulsants, antineoplastics, lithium salts, calcineurin inhibitors), drug abuse and addiction (such as cocaine, heroin, phencyclidine), and environmental toxins (such as mercury, lead, manganese, toluene/benzene derivatives). Although data for the prevalence and incidence of cerebellar lesions related to intoxication and poisoning are still unknown in many cases, clinicians should keep in mind the list of agents that may cause cerebellar deficits, since toxin-induced cerebellar ataxias are not rare in daily practice. Moreover, the patient's status may require immediate therapies when the intoxication is life-threatening. 2012 Elsevier B.V. All rights reserved.

  11. Alkylation induced cerebellar degeneration dependent on Aag and Parp1 does not occur via previously established cell death mechanisms.

    Directory of Open Access Journals (Sweden)

    Carrie M Margulies

    Full Text Available Alkylating agents are ubiquitous in our internal and external environments, causing DNA damage that contributes to mutations and cell death that can result in aging, tissue degeneration and cancer. Repair of methylated DNA bases occurs primarily through the base excision repair (BER pathway, a multi-enzyme pathway initiated by the alkyladenine DNA glycosylase (Aag, also known as Mpg. Previous work demonstrated that mice treated with the alkylating agent methyl methanesulfonate (MMS undergo cerebellar degeneration in an Aag-dependent manner, whereby increased BER initiation by Aag causes increased tissue damage that is dependent on activation of poly (ADP-ribose polymerase 1 (Parp1. Here, we dissect the molecular mechanism of cerebellar granule neuron (CGN sensitivity to MMS using primary ex vivo neuronal cultures. We first established a high-throughput fluorescent imaging method to assess primary neuron sensitivity to treatment with DNA damaging agents. Next, we verified that the alkylation sensitivity of CGNs is an intrinsic phenotype that accurately recapitulates the in vivo dependency of alkylation-induced CGN cell death on Aag and Parp1 activity. Finally, we show that MMS-induced CGN toxicity is independent of all the cellular events that have previously been associated with Parp-mediated toxicity, including mitochondrial depolarization, AIF translocation, calcium fluxes, and NAD+ consumption. We therefore believe that further investigation is needed to adequately describe all varieties of Parp-mediated cell death.

  12. Alkylation induced cerebellar degeneration dependent on Aag and Parp1 does not occur via previously established cell death mechanisms.

    Science.gov (United States)

    Margulies, Carrie M; Chaim, Isaac Alexander; Mazumder, Aprotim; Criscione, June; Samson, Leona D

    2017-01-01

    Alkylating agents are ubiquitous in our internal and external environments, causing DNA damage that contributes to mutations and cell death that can result in aging, tissue degeneration and cancer. Repair of methylated DNA bases occurs primarily through the base excision repair (BER) pathway, a multi-enzyme pathway initiated by the alkyladenine DNA glycosylase (Aag, also known as Mpg). Previous work demonstrated that mice treated with the alkylating agent methyl methanesulfonate (MMS) undergo cerebellar degeneration in an Aag-dependent manner, whereby increased BER initiation by Aag causes increased tissue damage that is dependent on activation of poly (ADP-ribose) polymerase 1 (Parp1). Here, we dissect the molecular mechanism of cerebellar granule neuron (CGN) sensitivity to MMS using primary ex vivo neuronal cultures. We first established a high-throughput fluorescent imaging method to assess primary neuron sensitivity to treatment with DNA damaging agents. Next, we verified that the alkylation sensitivity of CGNs is an intrinsic phenotype that accurately recapitulates the in vivo dependency of alkylation-induced CGN cell death on Aag and Parp1 activity. Finally, we show that MMS-induced CGN toxicity is independent of all the cellular events that have previously been associated with Parp-mediated toxicity, including mitochondrial depolarization, AIF translocation, calcium fluxes, and NAD+ consumption. We therefore believe that further investigation is needed to adequately describe all varieties of Parp-mediated cell death.

  13. Synchronization in primate cerebellar granule cell layer local field potentials: Basic anisotropy and dynamic changes during active expectancy

    Directory of Open Access Journals (Sweden)

    Richard Courtemanche

    2009-07-01

    Full Text Available The cerebellar cortex is remarkable for its organizational regularity, out of which task-related neural networks should emerge. So, in Purkinje cells, both complex and simple spike network patterns are evident in sensorimotor behavior. However, task-related patterns of activity in the granule cell layer (GCL have been less studied. We recorded local field potential (LFP activity simultaneously in pairs of GCL sites in monkeys performing an active expectancy (lever-press task, in passive expectancy, and at rest. LFP sites were selected when they showed strong 10-25 Hz oscillations; pair orientation was in stereotaxic sagittal and coronal (mainly, and diagonal. As shown previously, LFP oscillations at each site were modulated during the lever-press task. Synchronization across LFP pairs showed an evident basic anisotropy at rest: sagittal pairs of LFPs were better synchronized (more than double the cross-correlation coefficients than coronal pairs, and more than diagonal pairs. On the other hand, this basic anisotropy was modifiable: during the active expectancy condition, where sagittal and coronal orientations were tested, synchronization of LFP pairs would increase just preceding movement, most notably for the coronal pairs. This lateral extension of synchronization was not observed in passive expectancy. The basic pattern of synchronization at rest, favoring sagittal synchrony, thus seemed to adapt in a dynamic fashion, potentially extending laterally to include more cerebellar cortex elements. This dynamic anisotropy in LFP synchronization could underlie GCL network organization in the context of sensorimotor tasks.

  14. Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells

    Science.gov (United States)

    Huckleberry, Kylie A.; Kane, Gary A.; Mathis, Rita J.; Cook, Sarah G.; Clutton, Jonathan E.; Drew, Michael R.

    2015-01-01

    Thousands of neurons are born each day in the dentate gyrus (DG), but many of these cells die before reaching maturity. Both death and survival of adult-born neurons are regulated by neuronal activity in the DG. The immediate-early gene (IEG) zif268 appears to be an important mediator of these effects, as its expression can be induced by neural activity and knockout of zif268 impairs survival of adult-born neurons (Richardson et al., 1992; Veyrac et al., 2013). Despite the apparent importance of zif268 for adult neurogenesis, its behavior-induced expression has not been fully characterized in adult-born neurons. Here we characterize behavior-evoked expression of zif268 in mature and newborn dentate granule cells (DGCs). We first quantified zif268 expression in doublecortin-positive (DCX+) immature neurons and in the general granule cell population after brief exposure to a novel environment (NE). In the general granule cell population, zif268 expression peaked 1 h after NE exposure and returned to baseline by 8 h post-exposure. However, in the DCX+ cells, zif268 expression was suppressed relative to home cage for at least 8 h post-exposure. We next asked whether suppression of zif268 in DCX+ immature cells occurs in other behavioral paradigms that recruit the hippocampus. Exposure to Morris water maze (MWM) training, an enriched environment, or a NE caused approximately equal suppression of zif268 expression in DCX+ cells and approximately equal activation of zif268 expression among the general granule cell population. The same behavioral procedures activated zif268 expression in 6-week-old BrdU-labeled adult-born neurons, indicating that zif268 suppression is specific to immature neurons. Finally, we asked whether zif268 suppression varied as a function of age within the DCX+ population, which ranges in age from 0 to approximately 4 weeks. NE exposure had no significant effect on zif268 expression in 2- or 4-week-old BrdU-labeled neurons, but it significantly

  15. Synaptic glutamate spillover increases NMDA receptor reliability at the cerebellar glomerulus

    OpenAIRE

    Mitchell, Cassie S.; Lee, Robert H.

    2011-01-01

    Glutamate spillover in the mossy fiber to granule cell cerebellar glomeruli has been hypothesized to increase neurotransmission reliability. In this study, we evaluate this hypothesis using an experimentally-based quantitative model of glutamate spillover on the N-methyl-d-aspartate receptors (NMDA-Rs) at the cerebellar glomerulus. The transient and steady-state responses of NMDA-Rs were examined over a physiological range of firing rates. Examined cases included direct glutamate release acti...

  16. Origin, lineage and function of cerebellar glia.

    Science.gov (United States)

    Buffo, Annalisa; Rossi, Ferdinando

    2013-10-01

    The glial cells of the cerebellum, and particularly astrocytes and oligodendrocytes, are characterized by a remarkable phenotypic variety, in which highly peculiar morphological features are associated with specific functional features, unique among the glial cells of the entire CNS. Here, we provide a critical report about the present knowledge of the development of cerebellar glia, including lineage relationships between cerebellar neurons, astrocytes and oligodendrocytes, the origins and the genesis of the repertoire of glial types, and the processes underlying their acquisition of mature morphological and functional traits. In parallel, we describe and discuss some fundamental roles played by specific categories of glial cells during cerebellar development. In particular, we propose that Bergmann glia exerts a crucial scaffolding activity that, together with the organizing function of Purkinje cells, is necessary to achieve the normal pattern of foliation and layering of the cerebellar cortex. Moreover, we discuss some of the functional tasks of cerebellar astrocytes and oligodendrocytes that are distinctive of cerebellar glia throughout the CNS. Notably, we report about the regulation of synaptic signalling in the molecular and granular layer mediated by Bergmann glia and parenchymal astrocytes, and the functional interaction between oligodendrocyte precursor cells and neurons. On the whole, this review provides an extensive overview of the available literature and some novel insights about the origin and differentiation of the variety of cerebellar glial cells and their function in the developing and mature cerebellum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Structural alterations of the DNA in cerebellar neurons after whole-brain irradiation

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Winstein, R.E.; Kaufman, K.; Ritter, P.

    1981-01-01

    Male Sprague-Dawley rats weighing 260 to 280 g were whole-brain-irradiated with x-ray doses of 433, 867, 1083, 1300, 1516, and 1713 rad. Over the next 2.25 years rats were killed at various times, and the state of the DNA in their cerebellar neurons was examined by sedimentation through alkaline sucrose gradients in reorienting zonal rotors. The data were analyzed as the percentage of the sedimenting DNA with sedimentation coefficients greater than 300 S, an arbitrarily selected category of no defined molecular significance. The general pattern at all doses consisted first of a slow return to the unirradiated DNA state that was relatively dose dependent. This was followed by an increase in the amount of DNA sedimenting >300 S; both the extent and time course of this increase appeared to be dose dependent. Finally, the DNA degraded at a relatively dose independent rate. There was little change in the neuronal DNA from unirradiated rats during this study. The data suggest that increases in the amount of fast-sedimenting DNA observed 30 to 80 weeks after low to moderate doses of whole-brain irradiation represent a type of DNA damage rather than repair and that this damage ultimately results in degradation of the neuronal DNA and death of the rat

  18. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats.

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    Full Text Available Acetamiprid (ACE and imidacloprid (IMI belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs. Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development.Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment-including proliferation, migration, differentiation, and morphological and functional maturation-can be observed in vitro. Using these cultures, an excitatory Ca(2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca(2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca(2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine.This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects on mammalian nAChRs at concentrations greater than 1 µM. Therefore, the

  19. Peptides modeled after the alpha-domain of metallothionein induce neurite outgrowth and promote survival of cerebellar granule neurons

    DEFF Research Database (Denmark)

    Asmussen, Johanne Wirenfeldt; Ambjørn, Malene; Bock, Elisabeth

    2009-01-01

    amino acids, as potent stimulators of neuronal differentiation and survival of primary neurons. In addition, we show that a peptide derived from the N-terminus of the MT beta-domain, EmtinBn, promotes neuronal survival. The neuritogenic and survival promoting effects of EmtinAc, similar to MT and Emtin...

  20. Activation of sodium channels by α-scorpion toxin, BmK NT1, produced neurotoxicity in cerebellar granule cells: an association with intracellular Ca2+ overloading.

    Science.gov (United States)

    He, Yuwei; Zou, Xiaohan; Li, Xichun; Chen, Juan; Jin, Liang; Zhang, Fan; Yu, Boyang; Cao, Zhengyu

    2017-02-01

    Voltage-gated sodium channels (VGSCs) are responsible for the action potential generation in excitable cells including neurons and involved in many physiological and pathological processes. Scorpion toxins are invaluable tools to explore the structure and function of ion channels. BmK NT1, a scorpion toxin from Buthus martensii Karsch, stimulates sodium influx in cerebellar granule cells (CGCs). In this study, we characterized the mode of action of BmK NT1 on the VGSCs and explored the cellular response in CGC cultures. BmK NT1 delayed the fast inactivation of VGSCs, increased the Na + currents, and shifted the steady-state activation and inactivation to more hyperpolarized membrane potential, which was similar to the mode of action of α-scorpion toxins. BmK NT1 stimulated neuron death (EC 50  = 0.68 µM) and produced massive intracellular Ca 2+ overloading (EC 50  = 0.98 µM). TTX abrogated these responses, suggesting that both responses were subsequent to the activation of VGSCs. The Ca 2+ response of BmK NT1 was primary through extracellular Ca 2+ influx since reducing the extracellular Ca 2+ concentration suppressed the Ca 2+ response. Further pharmacological evaluation demonstrated that BmK NT1-induced Ca 2+ influx and neurotoxicity were partially blocked either by MK-801, an NMDA receptor blocker, or by KB-R7943, an inhibitor of Na + /Ca 2+ exchangers. Nifedipine, an L-type Ca 2+ channel inhibitor, slightly suppressed both Ca 2+ response and neurotoxicity. A combination of these three inhibitors abrogated both responses. Considered together, these data ambiguously demonstrated that activation of VGSCs by an α-scorpion toxin was sufficient to produce neurotoxicity which was associated with intracellular Ca 2+ overloading through both NMDA receptor- and Na + /Ca 2+ exchanger-mediated Ca 2+ influx.

  1. Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Immerdal, Lissi; Niels-Christiansen, Lise-Lotte W

    2005-01-01

    The microdomain localization of the GABA(A) receptor in rat cerebellar granule cells was studied by subcellular fractionation and fluorescence- and immunogold electron microscopy. The receptor resided in lipid rafts, prepared at 37 degrees C by extraction with the nonionic detergent Brij 98......, but the raft fraction, defined by the marker ganglioside GM(1) in the floating fractions following density gradient centrifugation, was heterogeneous in density and protein composition. Thus, another major raft-associated membrane protein, the Na(+), K(+)-ATPase, was found in discrete rafts of lower density......, reflecting clustering of the two proteins in separate membrane microdomains. Both proteins were observed in patchy "hot spots" at the cell surface as well as in isolated lipid rafts. Their insolubility in Brij 98 was only marginally affected by methyl-beta-cyclodextrin. In contrast, both the GABA(A) receptor...

  2. Neurodevelopmental malformations of the cerebellar vermis in genetically engineered rats

    Science.gov (United States)

    The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformati...

  3. Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Seung Joon Lee

    Full Text Available Medulloblastoma, the most common pediatric brain tumor, is thought to arise from deregulated proliferation of cerebellar granule precursor (CGP cells. Sonic hedgehog (Shh is the primary mitogen that regulates proliferation of CGP cells during the early stages of postnatal cerebellum development. Aberrant activation of Shh signaling during this time has been associated with hyperplasia of CGP cells and eventually may lead to the development of medulloblastoma. The molecular targets of Shh signaling involved in medulloblastoma formation are still not well-understood. Here, we show that Shh regulates sustained activation of histone deacetylases (HDACs and that this activity is required for continued proliferation of CGP cells. Suppression of HDAC activity not only blocked the Shh-induced CGP proliferation in primary cell cultures, but also ameliorated aberrant CGP proliferation at the external germinal layer (EGL in a medulloblastoma mouse model. Increased levels of mRNA and protein of several HDAC family members were found in medulloblastoma compared to wild type cerebellum suggesting that HDAC activity is required for the survival/progression of tumor cells. The identification of a role of HDACs in the early steps of medulloblastoma formation suggests there may be a therapeutic potential for HDAC inhibitors in this disease.

  4. Primate Cerebellar Granule Cells Exhibit a Tonic GABAAR Conductance that is not Affected by Alcohol: A Possible Cellular Substrate of the Low Level of Response Phenotype.

    Directory of Open Access Journals (Sweden)

    Claudia eMohr

    2013-11-01

    Full Text Available In many rodent brain regions, alcohol increases vesicular release of GABA, resulting in an increase in the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs and the magnitude of tonic GABAA receptor (GABAAR currents. A neglected issue in translating the rodent literature to humans is the possibility that phylogenetic differences alter the actions of alcohol. To address this issue we made voltage-clamp recordings from granule cells (GCs in cerebellar slices from the non-human primate, Macaca fascicularis. We found that similar to Sprague Dawley rats (SDRs, non-human primate (NHP GCs exhibit a tonic conductance generated by 6 subunit containing GABAARs, as evidenced by its blockade by the broad spectrum GABAAR antagonist, GABAzine (10M, inhibition by 6 selective antagonist, furosemide (100M, and enhancement by THDOC (10-20nM and THIP (500nM. In contrast to SDR GCs, in most NHP GCs (~60%, application of EtOH (25-105mM did not increase sIPSC frequency or the tonic GABAAR current. In a minority of cells (~40%, EtOH did increase sIPSC frequency and the tonic current. The relative lack of response to EtOH was associated with reduced expression of neuronal nitric oxide synthase (nNOS, which we recently reported mediates EtOH-induced enhancement of vesicular GABA release in rats. The EtOH-induced increase in tonic GABAAR current was significantly smaller in NHPs than in SDRs, presumably due to less GABA release, because there were no obvious differences in the density of GABAARs or GABA transporters between SDR and NHP GCs. Thus, EtOH does not directly modulate 6 subunit GABAARs in NHPs. Instead, EtOH enhanced GABAergic transmission is mediated by enhanced GABA release. Further, SDR GC responses to alcohol are only representative of a subpopulation of NHP GCs. This suggests that the impact of EtOH on NHP cerebellar physiology will be reduced compared to SDRs, and will likely have different computational and behavioral

  5. Dicer Is Required for Normal Cerebellar Development and to Restrain Medulloblastoma Formation.

    Directory of Open Access Journals (Sweden)

    Frederique Zindy

    Full Text Available Dicer, a ribonuclease III enzyme, is required for the maturation of microRNAs. To assess its role in cerebellar and medulloblastoma development, we genetically deleted Dicer in Nestin-positive neural progenitors and in mice lacking one copy for the Sonic Hedgehog receptor, Patched 1. We found that conditional loss of Dicer in mouse neural progenitors induced massive Trp53-independent apoptosis in all proliferative zones of the brain and decreased proliferation of cerebellar granule progenitors at embryonic day 15.5 leading to abnormal cerebellar development and perinatal lethality. Loss of one copy of Dicer significantly accelerated the formation of mouse medulloblastoma of the Sonic Hedgehog subgroup in Patched1-heterozygous mice. We conclude that Dicer is required for proper cerebellar development, and to restrain medulloblastoma formation.

  6. New supervised learning theory applied to cerebellar modeling for suppression of variability of saccade end points.

    Science.gov (United States)

    Fujita, Masahiko

    2013-06-01

    A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.

  7. ATM-Dependent Phosphorylation of MEF2D Promotes Neuronal Survival after DNA Damage

    Science.gov (United States)

    Chan, Shing Fai; Sances, Sam; Brill, Laurence M.; Okamoto, Shu-ichi; Zaidi, Rameez; McKercher, Scott R.; Akhtar, Mohd W.; Nakanishi, Nobuki

    2014-01-01

    Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM–MEF2D pathway may contribute to neurodegeneration in AT. PMID:24672010

  8. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor.

    Science.gov (United States)

    Olmos, G; DeGregorio-Rocasolano, N; Paz Regalado, M; Gasull, T; Assumpció Boronat, M; Trullas, R; Villarroel, A; Lerma, J; García-Sevilla, J A

    1999-07-01

    This study was designed to assess the potential neuroprotective effect of several imidazol(ine) drugs and agmatine on glutamate-induced necrosis and on apoptosis induced by low extracellular K+ in cultured cerebellar granule cells. Exposure (30 min) of energy deprived cells to L-glutamate (1-100 microM) caused a concentration-dependent neurotoxicity, as determined 24 h later by a decrease in the ability of the cells to metabolize 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) into a reduced formazan product. L-glutamate-induced neurotoxicity (EC50=5 microM) was blocked by the specific NMDA receptor antagonist MK-801 (dizocilpine). Imidazol(ine) drugs and agmatine fully prevented neurotoxicity induced by 20 microM (EC100) L-glutamate with the rank order (EC50 in microM): antazoline (13)>cirazoline (44)>LSL 61122 [2-styryl-2-imidazoline] (54)>LSL 60101 [2-(2-benzofuranyl) imidazole] (75)>idazoxan (90)>LSL 60129 [2-(1,4-benzodioxan-6-yl)-4,5-dihydroimidazole](101)>RX82 1002 (2-methoxy idazoxan) (106)>agmatine (196). No neuroprotective effect of these drugs was observed in a model of apoptotic neuronal cell death (reduction of extracellular K+) which does not involve stimulation of NMDA receptors. Imidazol(ine) drugs and agmatine fully inhibited [3H]-(+)-MK-801 binding to the phencyclidine site of NMDA receptors in rat brain. The profile of drug potency protecting against L-glutamate neurotoxicity correlated well (r=0.90) with the potency of the same compounds competing against [3H]-(+)-MK-801 binding. In HEK-293 cells transfected to express the NR1-1a and NR2C subunits of the NMDA receptor, antazoline and agmatine produced a voltage- and concentration-dependent block of glutamate-induced currents. Analysis of the voltage dependence of the block was consistent with the presence of a binding site for antazoline located within the NMDA channel pore with an IC50 of 10-12 microM at 0 mV. It is concluded that imidazol(ine) drugs and agmatine are

  9. Valine but not leucine or isoleucine supports neurotransmitter glutamate synthesis during synaptic activity in cultured cerebellar neurons

    DEFF Research Database (Denmark)

    Bak, Lasse Kristoffer; Johansen, Maja L.; Schousboe, Arne

    2012-01-01

    Synthesis of neuronal glutamate from a-ketoglutarate for neurotransmission necessitates an amino group nitrogen donor; however, it is not clear which amino acid(s) serves this role. Thus, the ability of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine, to act as amino...... group nitrogen donors for synthesis of vesicular neurotransmitter glutamate was investigated in cultured mouse cerebellar (primarily glutamatergic) neurons. The cultures were superfused in the presence of (15) N-labeled BCAAs, and synaptic activity was induced by pulses of N-methyl-D-aspartate (300 µ......]valine was able to maintain the amount of vesicular glutamate during synaptic activity. This indicates that, among the BCAAs, only valine supports the increased need for synthesis of vesicular glutamate. © 2012 Wiley Periodicals, Inc....

  10. [Degenerative cerebellar diseases and differential diagnoses].

    Science.gov (United States)

    Reith, W; Roumia, S; Dietrich, P

    2016-11-01

    Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions.

  11. Neurobasal media facilitates increased specificity of siRNA-mediated knockdown in primary cerebellar cultures

    DEFF Research Database (Denmark)

    Gustafsson, Julie Ry; Katsioudi, Georgia; Issazadeh-Navikas, Shohreh

    2016-01-01

    be effectively grown in Neurobasal™ media. NEW METHOD: We tested the efficiency of siRNA from the Accell range from Dharmacon™ when delivered in Neurobasal™ media in contrast to the recommended Accell Delivery media provided by the manufacturer. RESULTS: We observed a more specific knockdown of target...... in Neurobasal™ media, than in Accell Delivery media when using cerebellar granule neurons. Transfection efficiency and cell viability was comparable between the two media. COMPARISON WITH EXISTING METHODS: Delivery of siRNA in Neurobasal™ media facilitates increased specificity of the knockdown compared...... to delivery in Accell Delivery media. The off-target effect observed in Accell Delivery media was not a secondary biological response to downregulation of target, but rather a mixture of specific and non-specific off-target effects. CONCLUSIONS: Specific knockdown of target can be achieved in primary...

  12. Role of the miR-17∼92 cluster family in cerebellar and medulloblastoma development

    Directory of Open Access Journals (Sweden)

    Frederique Zindy

    2014-06-01

    Full Text Available The miR-17∼92 cluster family is composed of three members encoding microRNAs that share seed sequences. To assess their role in cerebellar and medulloblastoma (MB development, we deleted the miR-17∼92 cluster family in Nestin-positive neural progenitors and in mice heterozygous for the Sonic Hedgehog (SHH receptor Patched 1 (Ptch1+/−. We show that mice in which we conditionally deleted the miR-17∼92 cluster (miR-17∼92floxed/floxed; Nestin-Cre+ alone or together with the complete loss of the miR-106b∼25 cluster (miR-106b∼25−/− were born alive but with small brains and reduced cerebellar foliation. Remarkably, deletion of the miR-17∼92 cluster abolished the development of SHH-MB in Ptch1+/− mice. Using an orthotopic transplant approach, we showed that granule neuron precursors (GNPs purified from the cerebella of postnatal day 7 (P7 Ptch1+/−; miR-106b∼25−/− mice and overexpressing Mycn induced MBs in the cortices of naïve recipient mice. In contrast, GNPs purified from the cerebella of P7 Ptch1+/−; miR-17∼92floxed/floxed; Nestin-Cre+ animals and overexpressing Mycn failed to induce tumors in recipient animals. Taken together, our findings demonstrate that the miR-17∼92 cluster is dispensable for cerebellar development, but required for SHH-MB development.

  13. Thalamic physiology of intentional essential tremor is more like cerebellar tremor than postural essential tremor

    OpenAIRE

    Zakaria, R; Lenz, FA; Hua, S; Avin, BH; Liu, CC; Mari, Z

    2013-01-01

    The neuronal physiological correlates of clinical heterogeneity in human essential tremor are unknown. We now test the hypothesis that thalamic neuronal and EMG activities during intention essential tremor are similar to those of the intention tremor which is characteristic of cerebellar lesions. Thalamic neuronal firing was studied in a cerebellar relay nucleus (ventral intermediate, Vim) and in a pallidal relay nucleus (ventral oral posterior, Vop) during stereotactic surgery for the treatm...

  14. Energy metabolism of synaptosomes from different neuronal systems of rat cerebellum during aging: a functional proteomic characterization.

    Science.gov (United States)

    Ferrari, Federica; Gorini, Antonella; Villa, Roberto Federico

    2015-01-01

    Functional proteomics was used to characterize age-related changes in energy metabolism of different neuronal pathways within the cerebellar cortex of Wistar rats aged 2, 6, 12, 18, and 24 months. The "large" synaptosomes, derived from the glutamatergic mossy fibre endings which make synaptic contact with the granule cells of the granular layer, and the "small" synaptosomes, derived from the pre-synaptic terminals of granule cells making synaptic contact with the dendrites of Purkinje cells, were isolated by a combined differential/gradient centrifugation technique. Because most brain disorders are associated with bioenergetic changes, the maximum rate (Vmax) of selected enzymes of glycolysis, Krebs' cycle, glutamate and amino acids metabolism, and acetylcholine catabolism were evaluated. The results show that "large" and "small" synaptosomes possess specific and independent metabolic features. This study represents a reliable model to study in vivo (1) the physiopathological molecular mechanisms of some brain diseases dependent on energy metabolism, (2) the responsiveness to noxious stimuli, and (3) the effects of drugs, discriminating their action sites at subcellular level on specific neuronal pathways.

  15. Degenerative cerebellar diseases and differential diagnoses

    International Nuclear Information System (INIS)

    Reith, W.; Roumia, S.; Dietrich, P.

    2016-01-01

    Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions. (orig.) [de

  16. Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

    Science.gov (United States)

    McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki

    2013-01-09

    Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

  17. Distributed Cerebellar Motor Learning; a Spike-Timing-Dependent Plasticity Model

    Directory of Open Access Journals (Sweden)

    Niceto Rafael Luque

    2016-03-01

    Full Text Available Deep cerebellar nuclei neurons receive both inhibitory (GABAergic synaptic currents from Purkinje cells (within the cerebellar cortex and excitatory (glutamatergic synaptic currents from mossy fibres. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP located at different cerebellar sites (parallel fibres to Purkinje cells, mossy fibres to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibres to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP and inhibitory (i-STDP mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibres to Purkinje cells synapses and then transferred to mossy fibres to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation towards optimising its working range.

  18. [3H]GABA uptake as a marker for cell type in primary cultures of cerebellum and olfactory bulb

    International Nuclear Information System (INIS)

    Currie, D.N.; Dutton, G.R.

    1980-01-01

    Uptake of [ 3 H]GABA into cell cultures of rat cerebellum and olfactory bulb was studied by autoradiography, using β-alanine and aminocyclohexane carboxylic acid to distinguish neuronal-specific and glial-specific uptake. Neurons and astrocytes were also labelled by tetanus toxin and anti-GFAP respectively. This combination of markers allowed identification and quantification of several cell types. Cerebellar cultures were found to contain 77% granule neurons, 7.5% inhibitory neurons (probably stellate and basket cells) and 15% astrocytes. Olfactory bulb cultures were over 50% in small neurons which accumulated GABA, the olfactory bulb granule neuron being GABAergic in vivo. (Auth.)

  19. Blood harmane is correlated with cerebellar metabolism in essential tremor: a pilot study.

    Science.gov (United States)

    Louis, Elan D; Zheng, Wei; Mao, Xiangling; Shungu, Dikoma C

    2007-08-07

    On proton magnetic resonance spectroscopic imaging ((1)H MRSI), there is a decrease in cerebellar N-acetylaspartate/total creatine (NAA/tCr) in essential tremor (ET), signifying cerebellar neuronal dysfunction or degeneration. Harmane, which is present in the human diet, is a potent tremor-producing neurotoxin. Blood harmane concentrations seem to be elevated in ET. To assess in patients with ET whether blood harmane concentration is correlated with cerebellar NAA/tCR, a neuroimaging measure of neuronal dysfunction or degeneration. Twelve patients with ET underwent (1)H MRSI. The major neuroanatomic structure of interest was the cerebellar cortex. Secondary regions were the central cerebellar white matter, cerebellar vermis, thalamus, and basal ganglia. Blood concentrations of harmane and another neurotoxin, lead, were also assessed. Mean +/- SD cerebellar NAA/tCR was 1.52 +/- 0.41. In a linear regression model that adjusted for age and gender, log blood harmane concentration was a predictor of cerebellar NAA/tCR (beta = -0.41, p = 0.009); every 1 g(-10)/mL unit increase in log blood harmane concentration was associated with a 0.41 unit decrease in cerebellar NAA/tCR. The association between blood harmane concentration and brain NAA/tCR only occurred in the cerebellar cortex; it was not observed in secondary brain regions of interest. Furthermore, the association was specific to harmane and not another neurotoxin, lead. This study provides additional support for the emerging link between harmane, a neurotoxin, and ET. Further studies are warranted to address whether cerebellar harmane concentrations are associated with cerebellar pathology in postmortem studies of the ET brain.

  20. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies.

    Science.gov (United States)

    Geminiani, Alice; Casellato, Claudia; Antonietti, Alberto; D'Angelo, Egidio; Pedrocchi, Alessandra

    2018-06-01

    The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.

  1. Axonal transport of TDP-43 mRNA granules in neurons is impaired by ALS-causing mutations

    Science.gov (United States)

    Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S. W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan; Shaw, Christopher E.; Eggan, Kevin C.; Maniatis, Tom; Taylor, J. Paul

    2014-01-01

    Summary The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. Here we show that TDP-43 forms cytoplasmic mRNP granules that undergo bidirectional, microtubule-dependent transport in neurons in vitro and in vivo and facilitate delivery of target mRNA to distal neuronal compartments. TDP-43 mutations impair this mRNA transport function in vivo and in vitro, including in stem cell-derived motor neurons from ALS patients bearing any one of three different TDP-43 ALS-causing mutations. Thus, TDP43 mutations that cause ALS lead to partial loss of a novel cytoplasmic function of TDP-43. PMID:24507191

  2. Activity-Dependent Plasticity of Spike Pauses in Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Giorgio Grasselli

    2016-03-01

    Full Text Available The plasticity of intrinsic excitability has been described in several types of neurons, but the significance of non-synaptic mechanisms in brain plasticity and learning remains elusive. Cerebellar Purkinje cells are inhibitory neurons that spontaneously fire action potentials at high frequencies and regulate activity in their target cells in the cerebellar nuclei by generating a characteristic spike burst-pause sequence upon synaptic activation. Using patch-clamp recordings from mouse Purkinje cells, we find that depolarization-triggered intrinsic plasticity enhances spike firing and shortens the duration of spike pauses. Pause plasticity is absent from mice lacking SK2-type potassium channels (SK2−/− mice and in occlusion experiments using the SK channel blocker apamin, while apamin wash-in mimics pause reduction. Our findings demonstrate that spike pauses can be regulated through an activity-dependent, exclusively non-synaptic, SK2 channel-dependent mechanism and suggest that pause plasticity—by altering the Purkinje cell output—may be crucial to cerebellar information storage and learning.

  3. Inverse Stochastic Resonance in Cerebellar Purkinje Cells.

    Directory of Open Access Journals (Sweden)

    Anatoly Buchin

    2016-08-01

    Full Text Available Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR. While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing.

  4. Denervation-induced homeostatic dendritic plasticity in morphological granule cell models

    Directory of Open Access Journals (Sweden)

    Hermann Cuntz

    2014-03-01

    Full Text Available Neuronal death and subsequent denervation of target areas are major consequences of several neurological conditions such asischemia or neurodegeneration (Alzheimer's disease. The denervation-induced axonal loss results in reorganization of the dendritic tree of denervated neurons. The dendritic reorganization has been previously studied using entorhinal cortex lesion (ECL. ECL leads to shortening and loss of dendritic segments in the denervated outer molecular layer of the dentate gyrus. However, the functional importance of these long-term dendritic alterations is not yet understood and their impact on neuronal electrical properties remains unclear. Here we analyzed what happens to the electrotonic structure and excitability of dentate granule cells after lesion-induced alterations of their dendritic morphology, assuming all other parameters remain equal. We performed comparative electrotonic analysis in anatomically and biophysically realistic compartmental models of 3D-reconstructed healthy and denervated granule cells. Using the method of morphological modeling based on optimization principles minimizing the amount of wiring and maximizing synaptic democracy, we built artificial granule cells which replicate morphological features of their real counterparts. Our results show that somatofugal and somatopetal voltage attenuation in the passive cable model are strongly reduced in denervated granule cells. In line with these predictions, the attenuation both of simulated backpropagating action potentials and forward propagating EPSPs was significantly reduced in dendrites of denervated neurons. Intriguingly, the enhancement of action potential backpropagation occurred specifically in the denervated dendritic layers. Furthermore, simulations of synaptic f-I curves revealed a homeostatic increase of excitability in denervated granule cells. In summary, our morphological and compartmental modeling indicates that unless modified by changes of

  5. Timing tasks synchronize cerebellar and frontal ramping activity and theta oscillations: Implications for cerebellar stimulation in diseases of impaired cognition

    Directory of Open Access Journals (Sweden)

    Krystal Lynn Parker

    2016-01-01

    Full Text Available Timing is a fundamental and highly conserved mammalian capability yet the underlying neural mechanisms are widely debated. Ramping activity of single neurons that gradually increase or decrease activity to encode the passage of time, has been speculated to predict a behaviorally relevant temporal event. Cue-evoked low-frequency activity has also been implicated in temporal processing. Ramping activity and low-frequency oscillations occur throughout the brain and could indicate a network-based approach to timing. Temporal processing requires cognitive mechanisms of working memory, attention, and reasoning which are dysfunctional in neuropsychiatric disease. Therefore, timing tasks could be used to probe cognition in animals with disease phenotypes. The medial frontal cortex and cerebellum are involved in cognition. Cerebellar stimulation has been shown to influence medial frontal activity and improve cognition in schizophrenia. However, the mechanism underlying the efficacy of cerebellar stimulation is unknown. Here we discuss how timing tasks can be used to probe cerebellar interactions with the frontal cortex and the therapeutic potential of cerebellar stimulation. The goal of this theory and hypothesis manuscript is threefold. First, we will summarize evidence indicating that in addition to motor learning, timing tasks involve cognitive processes that are present within both the cerebellum and medial frontal cortex. Second, we propose methodologies to investigate the connections between these areas in patients with Parkinson’s disease, autism, and schizophrenia. We hypothesis that cerebellar transcranial stimulation may rescue medial frontal ramping activity, theta oscillations, and timing abnormalities, thereby restoring executive function in diseases of impaired cognition. These hypotheses could inspire the use of timing tasks as biomarkers for neuronal and cognitive abnormalities in neuropsychiatric disease and promote the therapeutic

  6. Alzheimer's Proteins, Oxidative Stress, and Mitochondrial Dysfunction Interplay in a Neuronal Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Antonella Bobba

    2010-01-01

    Full Text Available In this paper, we discuss the interplay between beta-amyloid (A peptide, Tau fragments, oxidative stress, and mitochondria in the neuronal model of cerebellar granule neurons (CGNs in which the molecular events reminiscent of AD are activated. The identification of the death route and the cause/effect relationships between the events leading to death could be helpful to manage the progression of apoptosis in neurodegeneration and to define antiapoptotic treatments acting on precocious steps of the death process. Mitochondrial dysfunction is among the earliest events linked to AD and might play a causative role in disease onset and progression. Recent studies on CGNs have shown that adenine nucleotide translocator (ANT impairment, due to interaction with toxic N-ter Tau fragment, contributes in a significant manner to bioenergetic failure and mitochondrial dysfunction. These findings open a window for new therapeutic strategies aimed at preserving and/or improving mitochondrial function.

  7. Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.

    Science.gov (United States)

    Wetmore, Daniel Z; Mukamel, Eran A; Schnitzer, Mark J

    2008-10-01

    A basic question for theories of learning and memory is whether neuronal plasticity suffices to guide proper memory recall. Alternatively, information processing that is additional to readout of stored memories might occur during recall. We formulate a "lock-and-key" hypothesis regarding cerebellum-dependent motor memory in which successful learning shapes neural activity to match a temporal filter that prevents expression of stored but inappropriate motor responses. Thus, neuronal plasticity by itself is necessary but not sufficient to modify motor behavior. We explored this idea through computational studies of two cerebellar behaviors and examined whether deep cerebellar and vestibular nuclei neurons can filter signals from Purkinje cells that would otherwise drive inappropriate motor responses. In eyeblink conditioning, reflex acquisition requires the conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 ms. In our biophysical models of cerebellar nuclei neurons this requirement arises through the phenomenon of postinhibitory rebound depolarization and matches longstanding behavioral data on conditioned reflex timing and reliability. Although CS-US intervals100 ms. This bound reflects the minimum time for deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may underlie analogous dependence of adaptation magnitude on the timing of visual and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel kinetics to recall performance and yield specific predictions of how perturbations to rebound depolarization affect motor expression.

  8. Lithium protects ethanol-induced neuronal apoptosis

    International Nuclear Information System (INIS)

    Zhong Jin; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-01-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3β, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3β (ser9). In addition, the selective GSK-3β inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits

  9. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development.

    Directory of Open Access Journals (Sweden)

    Kate Kosmac

    2013-03-01

    Full Text Available Infection of the developing fetus with human cytomegalovirus (HCMV is a major cause of central nervous system disease in infants and children; however, mechanism(s of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV.

  10. Characterization of muscarinic receptor subtypes in primary cultures of cerebellar granule cells using specific muscarinic receptor antagonists

    International Nuclear Information System (INIS)

    McLeskey, S.W.

    1989-01-01

    In cerebellar granule cell cultures, two muscarinic receptor mediated responses were observed: inhibition of adenylate cyclase (M-AC) and stimulation of phosphoinositide hydrolysis (M-PI). These responses were antagonized by three purported specific muscarinic antagonists: pirenzipine and (-)QNX (specific for M-PI) and methoctramine (specific for M-AC). However, the specificity for the three antagonists in blocking these responses is not comparable to the specificity observed in binding studies on these cells or to that quoted in the literature. Two peaks of molecular sizes were found in these cells corresponding to the two molecular sizes of muscarinic receptive proteins reported in the literature. Muscarinic receptive proteins were alkylated with 3 H-propylbenzilylcholine mustard followed by sodium dodecylsulfate polyacrylamide gel electrophoresis. Pirenzipine and (-)QNX were able to block alkylation of the high molecular size peak, which corresponds to the receptive protein m 3 reported in the literature. Methoctramine was able to block alkylation of a portion of the lower molecular size peak, possibly corresponding to the m 2 and/or m 4 receptive proteins reported in the literature. Studies attempting to show the presence of receptor reserve for either of the two biochemical responses present in these cells by alkylation of the receptive protein with nonradiolabeled propylbenzilylcholine mustard (PBCM) were confounded by specificity of this agent for the lower molecular weight peak of muscarinic receptive protein. Thus the muscarinic receptive proteins coupled to M-AC were alkylated preferentially over the ones coupled to M-PI

  11. Cerebellar transcranial direct current stimulation modulates verbal working memory.

    Science.gov (United States)

    Boehringer, Andreas; Macher, Katja; Dukart, Juergen; Villringer, Arno; Pleger, Burkhard

    2013-07-01

    Neuroimaging studies show cerebellar activations in a wide range of cognitive tasks and patients with cerebellar lesions often present cognitive deficits suggesting a cerebellar role in higher-order cognition. We used cathodal transcranial direct current stimulation (tDCS), known to inhibit neuronal excitability, over the cerebellum to investigate if cathodal tDCS impairs verbal working memory, an important higher-order cognitive faculty. We tested verbal working memory as measured by forward and backward digit spans in 40 healthy young participants before and after applying cathodal tDCS (2 mA, stimulation duration 25 min) to the right cerebellum using a randomized, sham-controlled, double-blind, cross-over design. In addition, we tested the effect of cerebellar tDCS on word reading, finger tapping and a visually cued sensorimotor task. In line with lower digit spans in patients with cerebellar lesions, cerebellar tDCS reduced forward digit spans and blocked the practice dependent increase in backward digit spans. No effects of tDCS on word reading, finger tapping or the visually cued sensorimotor task were found. Our results support the view that the cerebellum contributes to verbal working memory as measured by forward and backward digit spans. Moreover, the induction of reversible "virtual cerebellar lesions" in healthy individuals by means of tDCS may improve our understanding of the mechanistic basis of verbal working memory deficits in patients with cerebellar lesions. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Reduced contralateral hemispheric flow measured by SPECT in cerebellar lesions

    International Nuclear Information System (INIS)

    Soenmezoglu, K.; Sperling, B.; Lassen, N.A.; Henriksen, T.; Tfelt-Hansen, P.

    1993-01-01

    Four patients with clinical signs of cerebellar stroke were studied twice by SPECT using 99m Tc-HMPAO as a tracer for cerebral blood flow (CBF). When first scanned 6 to 22 days after onset, all had a region of very low CBF in the symptomatic cerebellar hemisphere, and a mild to moderate CBF reduction (average 10%) in contralateral hemispheric cortex. In all four cases clinical signs of unilateral cerebellar dysfunction were still present when rescanned 1 to 4 months later and the relative CBF decrease in the contralateral cortex of the forebrain also remained. The basal ganglia contralateral to the cerebellar lesion CBF showed variable alterations. A relative CBF decrease was seen in upper part of basal ganglia in all four cases, but it was not a constant phenomenon. A relative CBF increase in both early and late SPECT scans was seen at low levels of neostriatum in two cases. The remote CBF changes in cerebellar stroke seen in the forebrain are probably caused by reduced or abolished cerebellar output. The term ''Crossed Cerebral Diaschisis'' may be used to describe these CBF changes that would appear to reflect both decreased and increased neuronal activity. (au)

  13. Pharmacologically Counteracting a Phenotypic Difference in Cerebellar GABAA Receptor Response to Alcohol Prevents Excessive Alcohol Consumption in a High Alcohol-Consuming Rodent Genotype.

    Science.gov (United States)

    Kaplan, Josh Steven; Nipper, Michelle A; Richardson, Ben D; Jensen, Jeremiah; Helms, Melinda; Finn, Deborah Ann; Rossi, David James

    2016-08-31

    Cerebellar granule cell GABAA receptor responses to alcohol vary as a function of alcohol consumption phenotype, representing a potential neural mechanism for genetic predilection for alcohol abuse (Kaplan et al., 2013; Mohr et al., 2013). However, there are numerous molecular targets of alcohol in the cerebellum, and it is not known how they interact to affect cerebellar processing during consumption of socially relevant amounts of alcohol. Importantly, direct evidence for a causative role of the cerebellum in alcohol consumption phenotype is lacking. Here we determined that concentrations of alcohol that would be achieved in the blood after consumption of 1-2 standard units (9 mm) suppresses transmission through the cerebellar cortex in low, but not high, alcohol consuming rodent genotypes (DBA/2J and C57BL/6J mice, respectively). This genotype-selective suppression is mediated exclusively by enhancement of granule cell GABAA receptor currents, which only occurs in DBA/2J mice. Simulating the DBA/2J cellular phenotype in C57BL/6J mice by infusing the GABAA receptor agonist, 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol hydrochloride, into cerebellar lobules IV-VI, in vivo, significantly reduced their alcohol consumption and blood alcohol concentrations achieved. 4,5,6,7-Tetrahydroisoxazolo-[5,4-c]pyridine-3-ol hydrochloride infusions also significantly decreased sucrose consumption, but they did not affect consumption of water or general locomotion. Thus, genetic differences in cerebellar response to alcohol contributes to alcohol consumption phenotype, and targeting the cerebellar GABAA receptor system may be a clinically viable therapeutic strategy for reducing excessive alcohol consumption. Alcohol abuse is a leading cause of preventable death and illness; and although alcohol use disorders are 50%-60% genetically determined, the cellular and molecular mechanisms of such genetic influences are largely unknown. Here we demonstrate that genetic differences in

  14. Microglia in Glia-Neuron Co-cultures Exhibit Robust Phagocytic Activity Without Concomitant Inflammation or Cytotoxicity.

    Science.gov (United States)

    Adams, Alexandra C; Kyle, Michele; Beaman-Hall, Carol M; Monaco, Edward A; Cullen, Matthew; Vallano, Mary Lou

    2015-10-01

    A simple method to co-culture granule neurons and glia from a single brain region is described, and microglia activation profiles are assessed in response to naturally occurring neuronal apoptosis, excitotoxin-induced neuronal death, and lipopolysaccharide (LPS) addition. Using neonatal rat cerebellar cortex as a tissue source, glial proliferation is regulated by omission or addition of the mitotic inhibitor cytosine arabinoside (AraC). After 7-8 days in vitro, microglia in AraC(-) cultures are abundant and activated based on their amoeboid morphology, expressions of ED1 and Iba1, and ability to phagocytose polystyrene beads and the majority of neurons undergoing spontaneous apoptosis. Microglia and phagocytic activities are sparse in AraC(+) cultures. Following exposure to excitotoxic kainate concentrations, microglia in AraC(-) cultures phagocytose most dead neurons within 24 h without exacerbating neuronal loss or mounting a strong or sustained inflammatory response. LPS addition induces a robust inflammatory response, based on microglial expressions of TNF-α, COX-2 and iNOS proteins, and mRNAs, whereas these markers are essentially undetectable in control cultures. Thus, the functional effector state of microglia is primed for phagocytosis but not inflammation or cytotoxicity even after kainate exposure that triggers death in the majority of neurons. This model should prove useful in studying the progressive activation states of microglia and factors that promote their conversion to inflammatory and cytotoxic phenotypes.

  15. Sensory Coding by Cerebellar Mossy Fibres through Inhibition-Driven Phase Resetting and Synchronisation

    Science.gov (United States)

    Holtzman, Tahl; Jörntell, Henrik

    2011-01-01

    Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex. PMID:22046297

  16. Sensory coding by cerebellar mossy fibres through inhibition-driven phase resetting and synchronisation.

    Directory of Open Access Journals (Sweden)

    Tahl Holtzman

    Full Text Available Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex.

  17. Trajectory Analysis Unveils Reelin's Role in the Directed Migration of Granule Cells in the Dentate Gyrus.

    Science.gov (United States)

    Wang, Shaobo; Brunne, Bianka; Zhao, Shanting; Chai, Xuejun; Li, Jiawei; Lau, Jeremie; Failla, Antonio Virgilio; Zobiak, Bernd; Sibbe, Mirjam; Westbrook, Gary L; Lutz, David; Frotscher, Michael

    2018-01-03

    Reelin controls neuronal migration and layer formation. Previous studies in reeler mice deficient in Reelin focused on the result of the developmental process in fixed tissue sections. It has remained unclear whether Reelin affects the migratory process, migration directionality, or migrating neurons guided by the radial glial scaffold. Moreover, Reelin has been regarded as an attractive signal because newly generated neurons migrate toward the Reelin-containing marginal zone. Conversely, Reelin might be a stop signal because migrating neurons in reeler , but not in wild-type mice, invade the marginal zone. Here, we monitored the migration of newly generated proopiomelanocortin-EGFP -expressing dentate granule cells in slice cultures from reeler , reeler -like mutants and wild-type mice of either sex using real-time microscopy. We discovered that not the actual migratory process and migratory speed, but migration directionality of the granule cells is controlled by Reelin. While wild-type granule cells migrated toward the marginal zone of the dentate gyrus, neurons in cultures from reeler and reeler -like mutants migrated randomly in all directions as revealed by vector analyses of migratory trajectories. Moreover, live imaging of granule cells in reeler slices cocultured to wild-type dentate gyrus showed that the reeler neurons changed their directions and migrated toward the Reelin-containing marginal zone of the wild-type culture, thus forming a compact granule cell layer. In contrast, directed migration was not observed when Reelin was ubiquitously present in the medium of reeler slices. These results indicate that topographically administered Reelin controls the formation of a granule cell layer. SIGNIFICANCE STATEMENT Neuronal migration and the various factors controlling its onset, speed, directionality, and arrest are poorly understood. Slice cultures offer a unique model to study the migration of individual neurons in an almost natural environment. In the

  18. Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer.

    Directory of Open Access Journals (Sweden)

    Takeru Honda

    2011-07-01

    Full Text Available Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg²⁺ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg²⁺ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state. In contrast, for lower Mg²⁺ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state. It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input.

  19. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  20. Secretin Modulates the Postnatal Development of Mouse Cerebellar Cortex Via PKA- and ERK-dependent Pathways

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-11-01

    Full Text Available Postnatal development of the cerebellum is critical for its intact function such as motor coordination and has been implicated in the pathogenesis of psychiatric disorders. We previously reported that deprivation of secretin (SCT from cerebellar Purkinje neurons impaired motor coordination and motor learning function, while leaving the potential role of SCT in cerebellar development to be determined. SCT and its receptor (SCTR were constitutively expressed in the postnatal cerebellum in a temporal and cell-specific manner. Using a SCT knockout mouse model, we provided direct evidence showing altered developmental patterns of Purkinje cells (PCs and granular cells (GCs. SCT deprivation reduced the PC density, impaired the PC dendritic formation, induced accelerated GC migration and potentiated cerebellar apoptosis. Furthermore, our results indicated the involvement of protein kinase A (PKA and extracellular signal regulated kinase (ERK signaling pathways in SCT-mediated protective effects against neuronal apoptosis. Results of this study illustrated a novel function of SCT in the postnatal development of cerebellum, emphasizing the necessary role of SCT in cerebellar-related functions.

  1. Leading tip drives soma translocation via forward F-actin flow during neuronal migration.

    Science.gov (United States)

    He, Min; Zhang, Zheng-hong; Guan, Chen-bing; Xia, Di; Yuan, Xiao-bing

    2010-08-11

    Neuronal migration involves coordinated extension of the leading process and translocation of the soma, but the relative contribution of different subcellular regions, including the leading process and cell rear, in driving soma translocation remains unclear. By local manipulation of cytoskeletal components in restricted regions of cultured neurons, we examined the molecular machinery underlying the generation of traction force for soma translocation during neuronal migration. In actively migrating cerebellar granule cells in culture, a growth cone (GC)-like structure at the leading tip exhibits high dynamics, and severing the tip or disrupting its dynamics suppressed soma translocation within minutes. Soma translocation was also suppressed by local disruption of F-actin along the leading process but not at the soma, whereas disrupting microtubules along the leading process or at the soma accelerated soma translocation. Fluorescent speckle microscopy using GFP-alpha-actinin showed that a forward F-actin flow along the leading process correlated with and was required for soma translocation, and such F-actin flow depended on myosin II activity. In migrating neurons, myosin II activity was high at the leading tip but low at the soma, and increasing or decreasing this front-to-rear difference accelerated or impeded soma advance. Thus, the tip of the leading process actively pulls the soma forward during neuronal migration through a myosin II-dependent forward F-actin flow along the leading process.

  2. Age-related changes of structures in cerebellar cortex of cat

    Indian Academy of Sciences (India)

    Madhu

    ness of the cerebellar cortex as well as loss of neurons, and hypertrophy and ... Purkinje cells. (PCs) in old cats showed much fewer NF-IR dendrites than those in young adults. ... diminution in motor control and motor learning) underlying.

  3. Effect of chondroitin sulfate proteoglycans on neuronal cell adhesion, spreading and neurite growth in culture

    Directory of Open Access Journals (Sweden)

    Jingyu Jin

    2018-01-01

    Full Text Available As one major component of extracellular matrix (ECM in the central nervous system, chondroitin sulfate proteoglycans (CSPGs have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite outgrowth in vitro using different types of neurons, the mechanism by which CSPGs inhibit axonal growth remains poorly understood. Using cerebellar granule neuron (CGN culture, in this study, we evaluated the effects of different concentrations of both immobilized and soluble CSPGs on neuronal growth, including cell adhesion, spreading and neurite growth. Neurite length decreased while CSPGs concentration arised, meanwhile, a decrease in cell density accompanied by an increase in cell aggregates formation was observed. Soluble CSPGs also showed an inhibition on neurite outgrowth, but it required a higher concentration to induce cell aggregates formation than coated CSPGs. We also found that growth cone size was significantly reduced on CSPGs and neuronal cell spreading was restrained by CSPGs, attributing to an inhibition on lamellipodial extension. The effect of CSPGs on neuron adhesion was further evidenced by interference reflection microscopy (IRM which directly demonstrated that both CGNs and cerebral cortical neurons were more loosely adherent to a CSPG substrate. These data demonstrate that CSPGs have an effect on cell adhesion and spreading in addition to neurite outgrowth.

  4. Information processing in the hemisphere of the cerebellar cortex for control of wrist movement

    Science.gov (United States)

    Tomatsu, Saeka; Ishikawa, Takahiro; Tsunoda, Yoshiaki; Lee, Jongho; Hoffman, Donna S.

    2015-01-01

    A region of cerebellar lobules V and VI makes strong loop connections with the primary motor (M1) and premotor (PM) cortical areas and is assumed to play essential roles in limb motor control. To examine its functional role, we compared the activities of its input, intermediate, and output elements, i.e., mossy fibers (MFs), Golgi cells (GoCs), and Purkinje cells (PCs), in three monkeys performing wrist movements in two different forearm postures. The results revealed distinct steps of information processing. First, MF activities displayed temporal and directional properties that were remarkably similar to those of M1/PM neurons, suggesting that MFs relay near copies of outputs from these motor areas. Second, all GoCs had a stereotyped pattern of activity independent of movement direction or forearm posture. Instead, GoC activity resembled an average of all MF activities. Therefore, inhibitory GoCs appear to provide a filtering function that passes only prominently modulated MF inputs to granule cells. Third, PCs displayed highly complex spatiotemporal patterns of activity, with coordinate frames distinct from those of MF inputs and directional tuning that changed abruptly before movement onset. The complexity of PC activities may reflect rapidly changing properties of the peripheral motor apparatus during movement. Overall, the cerebellar cortex appears to transform a representation of outputs from M1/PM into different movement representations in a posture-dependent manner and could work as part of a forward model that predicts the state of the peripheral motor apparatus. PMID:26467515

  5. Signalling properties of identified deep cerebellar nuclear neurons related to eye and head movements in the alert cat.

    Science.gov (United States)

    Gruart, A; Delgado-García, J M

    1994-07-01

    1. The spike activity of deep cerebellar nuclear neurons was recorded in the alert cat during spontaneous and during vestibularly and visually induced eye movements. 2. Neurons were classified according to their location in the nuclei, their antidromic activation from projection sites, their sensitivity to eye position and velocity during spontaneous eye movements, and their responses to vestibular and optokinetic stimuli. 3. Type I EPV (eye position and velocity) neurons were located mainly in the posterior part of the fastigial nucleus and activated antidromically almost exclusively from the medial longitudinal fasciculus close to the oculomotor complex. These neurons, reported here for the first time, increased their firing rate during saccades and eye fixations towards the contralateral hemifield. Their position sensitivity to eye fixations in the horizontal plane was 5.3 +/- 2.6 spikes s-1 deg-1 (mean +/- S.D.). Eye velocity sensitivity during horizontal saccades was 0.71 +/- 0.52 spikes s-1 deg-1 s-1. Variability of their firing rate during a given eye fixation was higher than that shown by abducens motoneurons. 4. Type I EPV neurons increased their firing rate during ipsilateral head rotations at 0.5 Hz with a mean phase lead over eye position of 95.3 +/- 9.5 deg. They were also activated by contralateral optokinetic stimulation at 30 deg s-1. Their sensitivity to eye position and velocity in the horizontal plane during vestibular and optokinetic stimuli yielded values similar to those obtained for spontaneous eye movements. 5. Type II neurons were located in both fastigial and dentate nuclei and were activated antidromically from the restiform body, the medial longitudinal fasciculus close to the oculomotor complex, the red nucleus and the pontine nuclei. Type II neurons were not related to spontaneous eye movements. These neurons increased their firing rate in response to contralateral head rotation and during ipsilateral optokinetic stimulation, and

  6. Expression of BARHL1 in medulloblastoma is associated with prolonged survival in mice and humans

    NARCIS (Netherlands)

    Pöschl, J.; Lorenz, A.; Hartmann, W.; von Bueren, A. O.; Kool, M.; Li, S.; Peraud, A.; Tonn, J.-C.; Herms, J.; Xiang, M.; Rutkowski, S.; Kretzschmar, H. A.; Schüller, U.

    2011-01-01

    Medulloblastoma is the most common malignant brain tumor in childhood, and development of targeted therapies is highly desired. Although the molecular mechanisms of malignant transformation are not fully understood, it is known that medulloblastomas may arise from cerebellar granule neuron

  7. Cerebellar nuclei neurons show only small excitatory responses to optogenetic olivary stimulation in transgenic mice: in vivo and in vitro studies

    Directory of Open Access Journals (Sweden)

    Huo eLu

    2016-03-01

    Full Text Available To study the olivary input to the cerebellar nuclei (CN we used optogenetic stimulation in transgenic mice expressing channelrhodopsin-2 (ChR2 in olivary neurons. We obtained in vivo extracellular Purkinje cell (PC and CN recordings in anesthetized mice while stimulating the contralateral inferior olive (IO with a blue laser (single pulse, 10 - 50 ms duration. Peri-stimulus histograms were constructed to show the spike rate changes after optical stimulation. Among 29 CN neurons recorded, 15 showed a decrease in spike rate of variable strength and duration, and only 1 showed a transient spiking response. These results suggest that direct olivary input to CN neurons is usually overridden by stronger Purkinje cell inhibition triggered by climbing fiber responses. To further investigate the direct input from the climbing fiber collaterals we also conducted whole cell recordings in brain slices, where we used local stimulation with blue light. Due to the expression of ChR2 in Purkinje cell axons as well as the IO in our transgenic line, strong inhibitory responses could be readily triggered with optical stimulation (13 of 15 neurons. After blocking this inhibition with GABAzine, only in 5 of 13 CN neurons weak excitatory responses were revealed. Therefore our in vitro results support the in vivo findings that the excitatory input to CN neurons from climbing fiber collaterals in adult mice is masked by the inhibition under normal conditions.

  8. Cerebellar anatomy as applied to cerebellar microsurgical resections

    Directory of Open Access Journals (Sweden)

    Alejandro Ramos

    2012-06-01

    Full Text Available OBJECTIVE: To define the anatomy of dentate nucleus and cerebellar peduncles, demonstrating the surgical application of anatomic landmarks in cerebellar resections. METHODS: Twenty cerebellar hemispheres were studied. RESULTS: The majority of dentate nucleus and cerebellar peduncles had demonstrated constant relationship to other cerebellar structures, which provided landmarks for surgical approaching. The lateral border is separated from the midline by 19.5 mm in both hemispheres. The posterior border of the cortex is separated 23.3 mm from the posterior segment of the dentate nucleus; the lateral one is separated 26 mm from the lateral border of the nucleus; and the posterior segment of the dentate nucleus is separated 25.4 mm from the posterolateral angle formed by the junction of lateral and posterior borders of cerebellar hemisphere. CONCLUSIONS: Microsurgical anatomy has provided important landmarks that could be applied to cerebellar surgical resections.

  9. Effect of gabazine on sensory stimulation train evoked response in mouse cerebellar Purkinje cells.

    Science.gov (United States)

    Bing, Yan-Hua; Jin, Wen-Zhe; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-02-01

    Cerebellar Purkinje cells (PCs) respond to sensory stimulation via climbing fiber and mossy fiber-granule cell pathways, and generate motor-related outputs according to internal rules of integration and computation. However, the dynamic properties of sensory information processed by PC in mouse cerebellar cortex are currently unclear. In the present study, we examined the effects of the gamma-aminobutyric acid receptor A (GABA(A)) antagonist, gabazine, on the stimulation train on the simple spike firing of PCs by electrophysiological recordings method. Our data showed that the output of cerebellar PCs could be significantly affected by all pulses of the low-frequency (0.25 -2 Hz) sensory stimulation train, but only by the 1st and 2nd pulses of the high-frequency (≥ 4 Hz) sensory stimulation train. In the presence of gabazine (20 μM), each pulse of 1 Hz facial stimulation evoked simple spike firing in the PCs, but only the 1st and 2nd pulses of 4 Hz stimulation induced an increase in simple spike firing of the PCs. These results indicated that GABAA receptor-mediated inhibition did not significantly affect the frequency properties of sensory stimulation evoked responses in the mouse cerebellar PCs.

  10. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  11. Disturbed Glucose Metabolism in Rat Neurons Exposed to Cerebrospinal Fluid Obtained from Multiple Sclerosis Subjects

    Directory of Open Access Journals (Sweden)

    Deepali Mathur

    2017-12-01

    Full Text Available Axonal damage is widely accepted as a major cause of permanent functional disability in Multiple Sclerosis (MS. In relapsing-remitting MS, there is a possibility of remyelination by myelin producing cells and restoration of neurological function. The purpose of this study was to delineate the pathophysiological mechanisms underpinning axonal injury through hitherto unknown factors present in cerebrospinal fluid (CSF that may regulate axonal damage, remyelinate the axon and make functional recovery possible. We employed primary cultures of rat unmyelinated cerebellar granule neurons and treated them with CSF obtained from MS and Neuromyelitis optica (NMO patients. We performed microarray gene expression profiling to study changes in gene expression in treated neurons as compared to controls. Additionally, we determined the influence of gene-gene interaction upon the whole metabolic network in our experimental conditions using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING program. Our findings revealed the downregulated expression of genes involved in glucose metabolism in MS-derived CSF-treated neurons and upregulated expression of genes in NMO-derived CSF-treated neurons. We conclude that factors in the CSF of these patients caused a perturbation in metabolic gene(s expression and suggest that MS appears to be linked with metabolic deformity.

  12. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  13. Colchicine induced intraneuronal free zinc accumulation and dentate granule cell degeneration.

    Science.gov (United States)

    Choi, Bo Young; Lee, Bo Eun; Kim, Jin Hee; Kim, Hyun Jung; Sohn, Min; Song, Hong Ki; Chung, Tae Nyoung; Suh, Sang Won

    2014-08-01

    Colchicine has been discovered to inhibit many inflammatory processes such as gout, familial Mediterranean fever, pericarditis and Behcet disease. Other than these beneficial anti-inflammatory effects, colchicine blocks microtubule-assisted axonal transport, which results in the selective loss of dentate granule cells of the hippocampus. The mechanism of the colchicine-induced dentate granule cell death and depletion of mossy fiber terminals still remains unclear. In the present study, we hypothesized that colchicine-induced dentate granule cell death may be caused by accumulation of labile intracellular zinc. 10 μg kg(-1) of colchicine was injected into the adult rat hippocampus and then brain sections were evaluated at 1 day or 1 week later. Neuronal cell death was evaluated by H&E staining or Fluoro-Jade B. Zinc accumulation and vesicular zinc were detected by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ) staining. To test whether an extracellular zinc chelator can prevent this process, CaEDTA was injected into the hippocampus over a 5 min period with colchicine. To test whether other microtubule toxins also produce similar effects as colchicine, vincristine was injected into the hippocampus. The present study found that colchicine injection induced intracellular zinc accumulation in the dentate granule cells and depleted vesicular zinc from mossy fiber terminals. Injection of a zinc chelator, CaEDTA, did not block the zinc accumulation and neuronal death. Vincristine also produced intracellular zinc accumulation and neuronal death. These results suggest that colchicine-induced dentate granule cell death is caused by blocking axonal zinc flow and accumulation of intracellular labile zinc.

  14. Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices.

    Science.gov (United States)

    Jakoby, Patrick; Schmidt, Elke; Ruminot, Iván; Gutiérrez, Robin; Barros, L Felipe; Deitmer, Joachim W

    2014-01-01

    Glucose is the most important energy substrate for the brain, and its cellular distribution is a subject of great current interest. We have employed fluorescent glucose probes, the 2-deoxy-D-glucose derivates 6- and 2-([N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose) (2-NBDG), to measure transport and metabolism of glucose in acute slices of mouse hippocampus and cerebellum. In the hippocampus, 6-NBDG, which is not metabolized and hence indicates glucose transport, was taken up faster in astrocyte-rich layers (Stratum radiatum [S.r.], Stratum oriens [S.o.]) than in pyramidal cells. Metabolizable 2-NBDG showed larger signals in S.r. and S.o. than in Stratum pyramidale, suggesting faster glucose utilization rate in the astrocyte versus the neuronal compartment. Similarly, we found higher uptake and temperature-sensitive metabolism of 2-NBDG in Bergmann glia when compared with adjacent Purkinje neurons of cerebellar slices. A comparison between 6-NBDG transport and glucose transport in cultured cells using a fluorescence resonance energy transfer nanosensor showed that relative to glucose, 6-NBDG is transported better by neurons than by astrocytes. These results indicate that the preferential transport and metabolism of glucose by glial cells versus neurons proposed for the hippocampus and cerebellum by ourselves (in vitro) and for the barrel cortex by Chuquet et al. (in vivo) is more pronounced than anticipated.

  15. Reduced neuronal size and mTOR pathway activity in the Mecp2 A140V Rett syndrome mouse model [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sampathkumar Rangasamy

    2016-09-01

    Full Text Available Rett syndrome (RTT is a neurodevelopmental disorder caused by mutation in the X-linked MECP2 gene, encoding methyl-CpG-binding protein 2. We have created a mouse model (Mecp2 A140V “knock-in” mutant expressing the recurrent human MECP2 A140V mutation linked to an X-linked mental retardation/Rett syndrome phenotype. Morphological analyses focused on quantifying soma and nucleus size were performed on primary hippocampus and cerebellum granule neuron (CGN cultures from mutant (Mecp2A140V/y and wild type (Mecp2+/y male mice. Cultured hippocampus and cerebellar granule neurons from mutant animals were significantly smaller than neurons from wild type animals. We also examined soma size in hippocampus neurons from individual female transgenic mice that express both a mutant  (maternal allele and a wild type Mecp2 gene linked to an eGFP transgene (paternal allele. In cultures from such doubly heterozygous female mice, the size of neurons expressing the mutant (A140V allele also showed a significant reduction compared to neurons expressing wild type MeCP2, supporting a cell-autonomous role for MeCP2 in neuronal development. IGF-1 (insulin growth factor-1 treatment of neuronal cells from Mecp2 mutant mice rescued the soma size phenotype. We also found that Mecp2  mutation leads to down-regulation of the mTOR signaling pathway, known to be involved in neuronal size regulation. Our results suggest that i reduced neuronal size is an important in vitro cellular phenotype of Mecp2 mutation in mice, and ii MeCP2 might play a critical role in the maintenance of neuronal structure by modulation of the mTOR pathway. The definition of a quantifiable cellular phenotype supports using neuronal size as a biomarker in the development of a high-throughput, in vitro assay to screen for compounds that rescue small neuronal phenotype (“phenotypic assay”.

  16. Loss of γ-tubulin, GCP-WD/NEDD1 and CDK5RAP2 from the Centrosome of Neurons in Developing Mouse Cerebral and Cerebellar Cortex

    International Nuclear Information System (INIS)

    Yonezawa, Satoshi; Shigematsu, Momoko; Hirata, Kazuto; Hayashi, Kensuke

    2015-01-01

    It has been recently reported that the centrosome of neurons does not have microtubule nucleating activity. Microtubule nucleation requires γ-tubulin as well as its recruiting proteins, GCP-WD/NEDD1 and CDK5RAP2 that anchor γ-tubulin to the centrosome. Change in the localization of these proteins during in vivo development of brain, however, has not been well examined. In this study we investigate the localization of γ-tubulin, GCP-WD and CDK5RAP2 in developing cerebral and cerebellar cortex with immunofluorescence. We found that γ-tubulin and its recruiting proteins were localized at centrosomes of immature neurons, while they were lost at centrosomes in mature neurons. This indicated that the loss of microtubule nucleating activity at the centrosome of neurons is due to the loss of γ-tubulin-recruiting proteins from the centrosome. RT-PCR analysis revealed that these proteins are still expressed after birth, suggesting that they have a role in microtubule generation in cell body and dendrites of mature neurons. Microtubule regrowth experiments on cultured mature neurons showed that microtubules are nucleated not at the centrosome but within dendrites. These data indicated the translocation of microtubule-organizing activity from the centrosome to dendrites during maturation of neurons, which would explain the mixed polarity of microtubules in dendrites

  17. Effects of Ethanol on the Cerebellum: Advances and Prospects.

    Science.gov (United States)

    Luo, Jia

    2015-08-01

    Alcohol abuse causes cerebellar dysfunction and cerebellar ataxia is a common feature in alcoholics. Alcohol exposure during development also impacts the cerebellum. Children with fetal alcohol spectrum disorder (FASD) show many symptoms associated specifically with cerebellar deficits. However, the cellular and molecular mechanisms are unclear. This special issue discusses the most recent advances in the study of mechanisms underlying alcoholinduced cerebellar deficits. The alteration in GABAA receptor-dependent neurotransmission is a potential mechanism for ethanol-induced cerebellar dysfunction. Recent advances indicate ethanol-induced increases in GABA release are not only in Purkinje cells (PCs), but also in molecular layer interneurons and granule cells. Ethanol is shown to disrupt the molecular events at the mossy fiber - granule cell - Golgi cell (MGG) synaptic site and granule cell parallel fibers - PCs (GPP) synaptic site, which may be responsible for ethanol-induced cerebellar ataxia. Aging and ethanol may affect the smooth endoplasmic reticulum (SER) of PC dendrites and cause dendritic regression. Ethanol withdrawal causes mitochondrial damage and aberrant gene modifications in the cerebellum. The interaction between these events may result in neuronal degeneration, thereby contributing to motoric deficit. Ethanol activates doublestranded RNA (dsRNA)-activated protein kinase (PKR) and PKR activation is involved ethanolinduced neuroinflammation and neurotoxicity in the developing cerebellum. Ethanol alters the development of cerebellar circuitry following the loss of PCs, which could result in modifications of the structure and function of other brain regions that receive cerebellar inputs. Lastly, choline, an essential nutrient is evaluated for its potential protection against ethanol-induced cerebellar damages. Choline is shown to ameliorate ethanol-induced cerebellar dysfunction when given before ethanol exposure.

  18. N-acetylgalactosamine positive perineuronal nets in the saccade-related-part of the cerebellar fastigial nucleus do not maintain saccade gain.

    Directory of Open Access Journals (Sweden)

    Adrienne Mueller

    Full Text Available Perineuronal nets (PNNs accumulate around neurons near the end of developmental critical periods. PNNs are structures of the extracellular matrix which surround synaptic contacts and contain chondroitin sulfate proteoglycans. Previous studies suggest that the chondroitin sulfate chains of PNNs inhibit synaptic plasticity and thereby help end critical periods. PNNs surround a high proportion of neurons in the cerebellar nuclei. These PNNs form during approximately the same time that movements achieve normal accuracy. It is possible that PNNs in the cerebellar nuclei inhibit plasticity to maintain the synaptic organization that produces those accurate movements. We tested whether or not PNNs in a saccade-related part of the cerebellar nuclei maintain accurate saccade size by digesting a part of them in an adult monkey performing a task that changes saccade size (long term saccade adaptation. We use the enzyme Chondroitinase ABC to digest the glycosaminoglycan side chains of proteoglycans present in the majority of PNNs. We show that this manipulation does not result in faster, larger, or more persistent adaptation. Our result indicates that intact perineuronal nets around saccade-related neurons in the cerebellar nuclei are not important for maintaining long-term saccade gain.

  19. Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Wu Kong-Yan

    2010-06-01

    Full Text Available Abstract Background During cerebellar development, Purkinje cells (PCs form the most elaborate dendritic trees among neurons in the brain, but the mechanism regulating PC arborization remains largely unknown. Geranylgeranyltransferase I (GGT is a prenyltransferase that is responsible for lipid modification of several signaling proteins, such as Rho family small GTPase Rac1, which has been shown to be involved in neuronal morphogenesis. Here we show that GGT plays an important role in dendritic development of PCs. Results We found that GGT was abundantly expressed in the developing rat cerebellum, in particular molecular layer (ML, the region enriched with PC dendrites. Inhibition or down-regulation of GGT using small interference RNA (siRNA inhibited dendritic development of PCs. In contrast, up-regulation of GGT promoted dendritic arborization of PCs. Furthermore, neuronal depolarization induced by high K+ or treatment with brain-derived neurotrophic factor (BDNF promoted membrane association of Rac1 and dendritic development of PCs in cultured cerebellar slices. The effect of BDNF or high K+ was inhibited by inhibition or down-regulation of GGT. Conclusion Our results indicate that GGT plays an important role in Purkinje cell development, and suggest a novel role of GGT in neuronal morphogenesis in vivo.

  20. Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells

    Directory of Open Access Journals (Sweden)

    Kylie A. Huckleberry

    2015-08-01

    Full Text Available Thousands of neurons are born each day in the dentate gyrus (DG, but many of these cells die before reaching maturity. Both death and survival of adult-born neurons are regulated by neuronal activity in DG. The immediate-early gene (IEG zif268 is an important mediator of these effects, as its expression is induced by neural activity and knockout of zif268 impairs survival of adult-born neurons (Veyrac et al., 2013. Despite the apparent importance of zif268 for adult neurogenesis, its behavior-induced expression has not been fully characterized in adult-born neurons. Here we characterize behavior-evoked expression of zif268 in mature and newborn dentate granule cells (DGCs. In the general granule cell population, zif268 expression peaked 1 hour after novel environment exposure and returned to baseline by 8 hours post-exposure. However, in the doublecortin-positive (DCX+ immature neurons, zif268 expression was suppressed relative to home cage for at least 8 hours post-exposure. We next determined that exposure to water maze training, an enriched environment, or a novel environment caused approximately equal suppression of zif268 expression in DCX+ cells and approximately equal activation of zif268 in the general DGC population and in 6-week-old adult-born neurons. Finally, we asked whether zif268 suppression varied as a function of age within the DCX+ population, which ranges in age from 0 to approximately 4 weeks. Novel environment exposure had no significant effect on zif268 expression in 2- or 4-week-old BrdU-labeled neurons, but it significantly suppressed zif268 expression in 3-week-old neurons. In summary, behavioral experience transiently activated expression of zif268 in mature DGCs but caused a more long-lasting suppression of zif268 expression in immature, adult-born DGCs. We hypothesize that zif268 suppression inhibits memory-related synaptic plasticity in immature DGCs or mediates learning-induced apoptosis of immature adult

  1. Clinical characteristics of patients with cerebellar ataxia associated with anti-GAD antibodies

    Directory of Open Access Journals (Sweden)

    Tiago Silva Aguiar

    Full Text Available ABSTRACT The enzyme glutamic acid decarboxylase (GAD, present in GABAergic neurons and in pancreatic beta cells, catalyzes the conversion of gamma-aminobutyric acid (GABA. The cerebellum is highly susceptible to immune-mediated mechanisms, with the potentially treatable autoimmune cerebellar ataxia associated with the GAD antibody (CA-GAD-ab being a rare, albeit increasingly detected condition. Few cases of CA-GAD-ab have been described. Methods This retrospective and descriptive study evaluated the clinical characteristics and outcomes of patients with CA-GAD-ab. Result Three patients with cerebellar ataxia, high GAD-ab titers and autoimmune endocrine disease were identified. Patients 1 and 2 had classic stiff person syndrome and insidious-onset cerebellar ataxia, while Patient 3 had pure cerebellar ataxia with subacute onset. Patients received intravenous immunoglobulin therapy with no response in Patients 1 and 3 and partial recovery in Patient 2. Conclusion CA-GAD-ab is rare and its clinical presentation may hamper diagnosis. Clinicians should be able to recognize this potentially treatable autoimmune cerebellar ataxia.

  2. Age-related changes of structures in cerebellar cortex of cat

    Indian Academy of Sciences (India)

    We studied the structures of the cerebellar cortex of young adult and old cats for age-related changes, which were statistically analysed. Nissl staining was used to visualize the cortical neurons. The immunohistochemical method was used to display glial fibrillary acidic protein (GFAP)-immunoreactive (IR) astrocytes and ...

  3. Direct and indirect spino-cerebellar pathways: shared ideas but different functions in motor control

    Directory of Open Access Journals (Sweden)

    Juan eJiang

    2015-07-01

    Full Text Available The impressive precision of mammalian limb movements relies on internal feedback pathways that convey information about ongoing motor output to cerebellar circuits. The spino-cerebellar tracts (SCT in the cervical, thoracic and lumbar spinal cord have long been considered canonical neural substrates for the conveyance of internal feedback signals. Here we consider the distinct features of an indirect spino-cerebellar route, via the brainstem lateral reticular nucleus (LRN, and the implications of this pre-cerebellar ‘detour’ for the execution and evolution of limb motor control. Both direct and indirect spino-cerebellar pathways signal spinal interneuronal activity to the cerebellum during movements, but evidence suggests that direct SCT neurons are mainly modulated by rhythmic activity, whereas the LRN also receives information from systems active during postural adjustment, reaching and grasping. Thus, while direct and indirect spino-cerebellar circuits can both be regarded as internal copy pathways, it seems likely that the direct system is principally dedicated to rhythmic motor acts like locomotion, while the indirect system also provides a means of pre-cerebellar integration relevant to the execution and coordination of de

  4. Probing α4βδ GABAA Receptor Heterogeneity

    DEFF Research Database (Denmark)

    Hoestgaard-Jensen, Kirsten; Dalby, Nils Ole; Krall, Jacob

    2014-01-01

    in cerebellar granule cells. In contrast, the compound did not elicit significant currents in dentate gyrus granule cells or in striatal medium spiny neurons (MSNs), indicating predominant expression of extrasynaptic α4β2δ receptors in these cells. Interestingly, Thio-THIP evoked differential degrees...... recorded from dentate gyrus granule cells, most likely by targeting perisynaptic α4βδ receptors expressed at distal dendrites of these cells. Being the first published ligand capable of discriminating between β2- and β3-containing receptor subtypes, Thio-THIP could be a valuable tool in explorations...

  5. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy

    DEFF Research Database (Denmark)

    Winkelmann, Juliane; Lin, Ling; Schormair, Barbara

    2012-01-01

    to HDAC2. It is also highly expressed in immune cells and required for the differentiation of CD4+ into T regulatory cells. Mutations in exon 20 of this gene were recently reported to cause hereditary sensory neuropathy with dementia and hearing loss (HSAN1). Our mutations are all located in exon 21......Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN) is characterized by late onset (30-40 years old) cerebellar ataxia, sensory neuronal deafness, narcolepsy-cataplexy and dementia. We performed exome sequencing in five individuals from three ADCA-DN kindreds and identified DNMT...

  6. Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes

    Science.gov (United States)

    Urbano, Francisco J.; Simpson, John I.; Llinás, Rodolfo R.

    2006-01-01

    The electrophysiological properties of rat inferior olive (IO) neurons in the dorsal cap of Kooy (DCK) and the adjacent ventrolateral outgrowth (VLO) were compared with those of IO neurons in the principal olive (PO). Whereas DCK/VLO neurons are involved in eye movement control via their climbing fiber projection to the cerebellar flocculus, PO neurons control limb and digit movements via their climbing fiber projection to the lateral cerebellar hemisphere. In vitro patch recordings from DCK/VLO neurons revealed that low threshold calcium currents, Ih currents, and subthreshold oscillations are lacking in this subset of IO neurons. The recordings of activity in DCK neurons obtained by using voltage-sensitive dye imaging showed that activity is not limited to a single neuron, but rather that clusters of DCK neurons can be active in unison. These electrophysiological results show that the DCK/VLO neurons have unique properties that set them apart from the neurons in the PO nucleus. This finding indicates that motor control, from the perspective of the olivocerebellar system, is fundamentally different for the oculomotor and the somatomotor systems. PMID:17050678

  7. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress

    International Nuclear Information System (INIS)

    Kaur, Parvinder; Aschner, Michael; Syversen, Tore

    2007-01-01

    Certain discrete areas of the CNS exhibit enhanced sensitivity towards MeHg. To determine whether GSH is responsible for this particular sensitivity, we investigated its role in MeHg-induced oxidative insult in primary neuronal and astroglial cell cultures of both cerebellar and cortical origins. For this purpose, ROS and GSH were measured with the fluorescent indicators, CMH 2 DCFDA and MCB. Cell associated-MeHg was measured with 14 C-radiolabeled MeHg. The intracellular GSH content was modified by pretreatment with NAC or DEM. For each of the dependent variables (ROS, GSH, and MTT), there was an overall significant effect of cellular origin, MeHg and pretreatment in all the cell cultures. A trend towards significant interaction between origin x MeHg x pretreatment was observed only for the dependent variable, ROS (astrocytes p = 0.056; neurons p = 0.000). For GSH, a significant interaction between origin x MeHg was observed only in astrocytes (p = 0.030). The cerebellar cell cultures were more vulnerable (astrocytes mean = 223.77; neurons mean = 138.06) to ROS than the cortical cell cultures (astrocytes mean = 125.18; neurons mean 107.91) for each of the tested treatments. The cell associated-MeHg increased when treated with DEM, and the cerebellar cultures varied significantly from the cortical cultures. Non-significant interactions between origin x MeHg x pretreatment for GSH did not explain the significant interactions responsible for the increased amount of ROS produced in these cultures. In summary, although GSH modulation influences MeHg-induced toxicity, the difference in the content of GSH in cortical and cerebellar cultures fails to account for the increased ROS production in cerebellar cultures. Hence, different approaches for the future studies regarding the mechanisms behind selectivity of MeHg have been discussed

  8. Unexpected neuronal protection of SU5416 against 1-Methyl-4-phenylpyridinium ion-induced toxicity via inhibiting neuronal nitric oxide synthase.

    Directory of Open Access Journals (Sweden)

    Wei Cui

    Full Text Available SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2 for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP(+-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP(+-increased intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by MPP(+. Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC(50 value of 22.7 µM. In addition, knock-down of nNOS expression using short hairpin RNA (shRNA abolished the neuroprotective effects of SU5416 against MPP(+-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity. In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity.

  9. Hydroxylated polychlorinated biphenyls increase reactive oxygen species formation and induce cell death in cultured cerebellar granule cells

    International Nuclear Information System (INIS)

    Dreiem, Anne; Rykken, Sidsel; Lehmler, Hans-Joachim; Robertson, Larry W.; Fonnum, Frode

    2009-01-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants that bioaccumulate in the body, however, they can be metabolized to more water-soluble products. Although they are more readily excreted than the parent compounds, some of the metabolites are still hydrophobic and may be more available to target tissues, such as the brain. They can also cross the placenta and reach a developing foetus. Much less is known about the toxicity of PCB metabolites than about the parent compounds. In the present study, we have investigated the effects of eight hydroxylated (OH) PCB congeners (2'-OH PCB 3, 4-OH PCB 14, 4-OH PCB 34, 4'-OH PCB 35, 4-OH PCB 36, 4'-OH PCB 36, 4-OH PCB 39, and 4'-OH PCB 68) on reactive oxygen species (ROS) formation and cell viability in rat cerebellar granule cells. We found that, similar to their parent compounds, OH-PCBs are potent ROS inducers with potency 4-OH PCB 14 < 4-OH PCB 36 < 4-OH PCB 34 < 4'-OH PCB 36 < 4'-OH PCB 68 < 4-OH PCB 39 < 4'-OH PCB 35. 4-OH PCB 36 was the most potent cell death inducer, and caused apoptotic or necrotic morphology depending on concentration. Inhibition of ERK1/2 kinase with U0126 reduced both cell death and ROS formation, suggesting that ERK1/2 activation is involved in OH-PCB toxicity. The results indicate that the hydroxylation of PCBs may not constitute a detoxification reaction. Since OH-PCBs like their parent compounds are retained in the body and may be more widely distributed to sensitive tissues, it is important that not only the levels of the parent compounds but also the levels of their metabolites are taken into account during risk assessment of PCBs and related compounds.

  10. Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Ohira, Koji

    2010-09-01

    Full Text Available Abstract New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO, whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2'-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation.

  11. Altered cerebellar development in nuclear receptor TAK1/ TR4 null mice is associated with deficits in GLAST(+) glia, alterations in social behavior, motor learning, startle reactivity, and microglia.

    Science.gov (United States)

    Kim, Yong-Sik; Harry, G Jean; Kang, Hong Soon; Goulding, David; Wine, Rob N; Kissling, Grace E; Liao, Grace; Jetten, Anton M

    2010-09-01

    Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.

  12. Cerebellar atrophy is frequently associated with non-paraneoplastic sensory neuronopathy

    Directory of Open Access Journals (Sweden)

    Alfredo Damasceno

    2011-08-01

    Full Text Available Sensory neuronopathies (SN are peripheral nervous system disorders associated with degeneration of dorsal root ganglion neurons. Despite the evidence of a defective proprioceptive sensory input in SN,the prominent gait and truncal ataxia raises the question of a concomitant involvement of the cerebellum. OBJECTIVE: To evaluate cerebellar atrophy in SN. METHOD: We analyzed MRI-based volumetry of anterior lobe (paleocerebellum and total cerebellum in patients with non-paraneoplastic chronic SN and compared to age- and gender-matched controls. RESULTS: Cerebellum and anterior lobe MRI volumetry were performed in 20 patients and nine controls. Mean anterior lobe and cerebellar volume were not statistically different. Three patients (15%, however, had an abnormal anterior lobe and cerebellar volume index (values outside 2.5 standard deviations. One of them also had a specific atrophy of the anterior lobe. All these patients had infectious or dysimmune associated SN. CONCLUSION: Cerebellar atrophy is infrequently associated with SN, but can be found in some patients with SN related to infectious or immune mediated conditions. It can be more prominent in the anterior lobe and may contribute to the ataxia seen in these patients.

  13. Localization of high affinity [3H]glycine transport sites in the cerebellar cortex

    International Nuclear Information System (INIS)

    Wilkin, G.P.; Csillag, A.; Balazs, R.; Kingsbury, A.E.; Wilson, J.E.; Johnson, A.L.

    1981-01-01

    A study was made of [ 3 H ]glycine uptake sites in a preparation greatly enriched in large pieces of the cerebellar glomeruli (glomerulus particles) and in morphologically well preserved slices of rat cerebellum. Electron microscopic autoradiography revealed that of the neurones in the cerebellar cortex only Golgi cells transported [ 3 H]glycine at the low concentration used. Glial cells also took up [ 3 H]glycine but to a lesser extent than the Golgi neurons. It was also confirmed that under comparable conditions Golgi cells transport [ 3 H]GABA. Kinetic studies utilizing the Golgi axon terminal-containing glomerulus particles showed that glycine is a weak non-competitive inhibitor of [ 3 H]GABA uptake (Ksub(i) over 600 μM vs the Ksub(t) of about 20 μM) and that GABA is an even weaker inhibitor of [ 3 H]glycine uptake. (Auth.)

  14. Cell-type-specific expression of NFIX in the developing and adult cerebellum.

    Science.gov (United States)

    Fraser, James; Essebier, Alexandra; Gronostajski, Richard M; Boden, Mikael; Wainwright, Brandon J; Harvey, Tracey J; Piper, Michael

    2017-07-01

    Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.

  15. Statistical characteristics of climbing fiber spikes necessary for efficient cerebellar learning.

    Science.gov (United States)

    Kuroda, S; Yamamoto, K; Miyamoto, H; Doya, K; Kawat, M

    2001-03-01

    Mean firing rates (MFRs), with analogue values, have thus far been used as information carriers of neurons in most brain theories of learning. However, the neurons transmit the signal by spikes, which are discrete events. The climbing fibers (CFs), which are known to be essential for cerebellar motor learning, fire at the ultra-low firing rates (around 1 Hz), and it is not yet understood theoretically how high-frequency information can be conveyed and how learning of smooth and fast movements can be achieved. Here we address whether cerebellar learning can be achieved by CF spikes instead of conventional MFR in an eye movement task, such as the ocular following response (OFR), and an arm movement task. There are two major afferents into cerebellar Purkinje cells: parallel fiber (PF) and CF, and the synaptic weights between PFs and Purkinje cells have been shown to be modulated by the stimulation of both types of fiber. The modulation of the synaptic weights is regulated by the cerebellar synaptic plasticity. In this study we simulated cerebellar learning using CF signals as spikes instead of conventional MFR. To generate the spikes we used the following four spike generation models: (1) a Poisson model in which the spike interval probability follows a Poisson distribution, (2) a gamma model in which the spike interval probability follows the gamma distribution, (3) a max model in which a spike is generated when a synaptic input reaches maximum, and (4) a threshold model in which a spike is generated when the input crosses a certain small threshold. We found that, in an OFR task with a constant visual velocity, learning was successful with stochastic models, such as Poisson and gamma models, but not in the deterministic models, such as max and threshold models. In an OFR with a stepwise velocity change and an arm movement task, learning could be achieved only in the Poisson model. In addition, for efficient cerebellar learning, the distribution of CF spike

  16. Cerebellar tDCS does not enhance performance in an implicit categorization learning task

    NARCIS (Netherlands)

    M.C. Verhage (Claire); E. Avila (Eric); M.A. Frens (Maarten); O. Donchin (Opher); J.N. van der Geest (Jos)

    2017-01-01

    textabstractBackground: Transcranial Direct Current Stimulation (tDCS) is a form of non-invasive electrical stimulation that changes neuronal excitability in a polarity and site-specific manner. In cognitive tasks related to prefrontal and cerebellar learning, cortical tDCS arguably facilitates

  17. Dioxin modulates expression of receptor for activated C kinase (RACK-1) in developing neurons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.H.; Kim, S.Y.; Lee, H.G.; Kim, M.Y.; Lee, J.H.; Chae, W.G. [Catholic Univ. of Daegu, Dept. of Pharmacology/Toxicology, Daegu (Korea)

    2004-09-15

    TCDD is sensitive to the central nerve system of the developing brain. The TCDD-induced neurodevelopmental deficits include the cognitive disability and motor dysfunction. While TCDD may lead to neurodevelopmental and neurobehavioral deficit, it is not known which molecular substances are intracellular targets for TCDD. Since TCDD accumulates in brain and the brain contains the Ah receptor, it is possible that TCDD may act at the target site such as cerebellum, which is responsible for cognitive abilities and motor function. A recent in vitro studies using cerebellar granule cells demonstrated a translocation of PKC-{alpha} and {epsilon} following the TCDD or PCB exposure. One of the most pivotal second messenger molecules involved in neuronal function and development is protein kinase C (PKC). PKC signaling pathways have been implicated as an important factor in learning and memory processes. PKC signaling events are optimized by the adaptor proteins, which organize PKCs near their selective substrates and away from others. RACK-1(receptor for activated C-kinase) is one of adaptor proteins that anchor the activated PKC at the site of translocation 6. RACKs bind PKC only in the presence of PKC activators. RACKs are 30- and 36-kDa proteins located in cytoskeletal compartment and play a key role in PKC activation and in membrane amchoring. Since different PKC isoforms translocate to distinct subcellular sites on activation, it is suggested that isoform-specific RACK may be present. Activation of certain PKC isoforms (PKC-a and {beta}II) is preferentially associated with RACK-1. While TCDD modulates PKC signaling pathway, role of RACK-1 on TCDD-mediated signaling pathway is not known. To identify the intracellular target for TCDD and understand a mechanism of signaling pathway in the developing brain, the present study attempted to analyze effects of RACK-1 in the cerebellar granule cells following TCDD exposure.

  18. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.

    Science.gov (United States)

    Antonietti, Alberto; Casellato, Claudia; D'Angelo, Egidio; Pedrocchi, Alessandra

    The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the

  19. Cerebellar Shaping of Motor Cortical Firing Is Correlated with Timing of Motor Actions

    Directory of Open Access Journals (Sweden)

    Abdulraheem Nashef

    2018-05-01

    Full Text Available Summary: In higher mammals, motor timing is considered to be dictated by cerebellar control of motor cortical activity, relayed through the cerebellar-thalamo-cortical (CTC system. Nonetheless, the way cerebellar information is integrated with motor cortical commands and affects their temporal properties remains unclear. To address this issue, we activated the CTC system in primates and found that it efficiently recruits motor cortical cells; however, the cortical response was dominated by prolonged inhibition that imposed a directional activation across the motor cortex. During task performance, cortical cells that integrated CTC information fired synchronous bursts at movement onset. These cells expressed a stronger correlation with reaction time than non-CTC cells. Thus, the excitation-inhibition interplay triggered by the CTC system facilitates transient recruitment of a cortical subnetwork at movement onset. The CTC system may shape neural firing to produce the required profile to initiate movements and thus plays a pivotal role in timing motor actions. : Nashef et al. identified a motor cortical subnetwork recruited by cerebellar volley that was transiently synchronized at movement onset. Cerebellar control of cortical firing was dominated by inhibition that shaped task-related firing of neurons and may dictate motor timing. Keywords: motor control, primates, cerebellar-thalamo-cortical, synchrony, noise correlation, reaction time

  20. 3D Culture for Self-Formation of the Cerebellum from Human Pluripotent Stem Cells Through Induction of the Isthmic Organizer.

    Science.gov (United States)

    Muguruma, Keiko

    2017-01-01

    Pluripotent stem cells (PSCs) possess self-organizing abilities in 3D culture. This property has been demonstrated in recent studies, including the generation of various neuroectodermal and endodermal tissues. For example, PSCs are able to differentiate into specific type of neural tissues, such as the neocortex and the optic cup, in response to local positional information brought about by signals during embryogenesis. In contrast, the generation of cerebellar tissue from PSCs requires a secondary induction by a signaling center, called the isthmic organizer, which first appears in the cell aggregate in 3D culture. Such developmental complexity of cerebellum has hampered establishment of effective differentiation culture system from PSCs, thus far.We recently reported that cerebellar neurons are generated from human PSCs (hPSCs). In this chapter, we describe an efficient protocol for differentiation of 3D cerebellar neuroepithelium from hPSCs. We also describe the protocols for further differentiation into specific neurons in the cerebellar cortex, such as Purkinje cells and the granule cells.

  1. Quantitative histologic study on confusion of the cerebellar cortex architecture in perinatally irradiated mice

    International Nuclear Information System (INIS)

    Sasaki, S.

    1986-01-01

    This study was designed to know dose-response relationship and age-dependence for two types of confusion of the cerebellar cortex architecture. The first is inhibition of the laminar-pattern development, and the second is persistent remaining of granule cells in the molecular and Purkinje layer which implies disturbance of cell migration. Male B6C3F 1 mice were used. Animals were irradiated at day 0 to 6 of the postnatal age or day 17 of the prenatal age with doses ranging from 50 to 700 rad of γ-rays, and killed at 60 days of age. Confusion of architecture was analysed using microscopic photographs. Development of the laminar-pattern was inhibited by irradiation with 100 rad or higher doses at day 0 to 3. There was a distinct regional difference in inhibition of the laminar-pattern development. Remaining of granule cells was detected after irradiation with 50 or higher doses at day 0 or 2. Irradiation at day 1 to 4 was most effective to disturb cell migration, though ectopic granule cells were detected in all irradiated groups. (orig.)

  2. First direct electron microscopic visualization of a tight spatial coupling between GABAA-receptors and voltage-sensitive calcium channels

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A

    1992-01-01

    Using cerebellar granule neurons in culture it was demonstrated that exposure of the cells to the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) leads to an increase in the number of voltage-gated calcium channels as revealed by quantitative preembedding indirect imm...

  3. A cerebellar neuroprosthetic system: computational architecture and in vivo experiments

    Directory of Open Access Journals (Sweden)

    Ivan eHerreros Alonso

    2014-05-01

    Full Text Available Emulating the input-output functions performed by a brain structure opens the possibility for developing neuro-prosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model's inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuro-prosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step towards replacing lost functions of the central nervous system via neuro-prosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuro-prosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step towards the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term

  4. A Cerebellar Neuroprosthetic System: Computational Architecture and in vivo Test

    Energy Technology Data Exchange (ETDEWEB)

    Herreros, Ivan; Giovannucci, Andrea [Synthetic Perceptive, Emotive and Cognitive Systems group (SPECS), Universitat Pompeu Fabra, Barcelona (Spain); Taub, Aryeh H.; Hogri, Roni; Magal, Ari [Psychobiology Research Unit, Tel Aviv University, Tel Aviv (Israel); Bamford, Sim [Physics Laboratory, Istituto Superiore di Sanità, Rome (Italy); Prueckl, Robert [Guger Technologies OG, Graz (Austria); Verschure, Paul F. M. J., E-mail: paul.verschure@upf.edu [Synthetic Perceptive, Emotive and Cognitive Systems group (SPECS), Universitat Pompeu Fabra, Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats, Barcelona (Spain)

    2014-05-21

    Emulating the input–output functions performed by a brain structure opens the possibility for developing neuroprosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention, and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model’s inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuroprosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step toward replacing lost functions of the central nervous system via neuroprosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuroprosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step toward the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term, humans.

  5. A Cerebellar Neuroprosthetic System: Computational Architecture and in vivo Test

    International Nuclear Information System (INIS)

    Herreros, Ivan; Giovannucci, Andrea; Taub, Aryeh H.; Hogri, Roni; Magal, Ari; Bamford, Sim; Prueckl, Robert; Verschure, Paul F. M. J.

    2014-01-01

    Emulating the input–output functions performed by a brain structure opens the possibility for developing neuroprosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention, and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model’s inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuroprosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step toward replacing lost functions of the central nervous system via neuroprosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuroprosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step toward the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term, humans.

  6. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    Science.gov (United States)

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  7. Indirubin-3-Oxime Prevents H2O2-Induced Neuronal Apoptosis via Concurrently Inhibiting GSK3β and the ERK Pathway.

    Science.gov (United States)

    Yu, Jie; Zheng, Jiacheng; Lin, Jiajia; Jin, Linlu; Yu, Rui; Mak, Shinghung; Hu, Shengquan; Sun, Hongya; Wu, Xiang; Zhang, Zaijun; Lee, Mingyuen; Tsim, Wahkeung; Su, Wei; Zhou, Wenhua; Cui, Wei; Han, Yifan; Wang, Qinwen

    2017-05-01

    Oxidative stress-induced neuronal apoptosis plays an important role in many neurodegenerative disorders. In this study, we have shown that indirubin-3-oxime, a derivative of indirubin originally designed for leukemia therapy, could prevent hydrogen peroxide (H 2 O 2 )-induced apoptosis in both SH-SY5Y cells and primary cerebellar granule neurons. H 2 O 2 exposure led to the increased activities of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) in SH-SY5Y cells. Indirubin-3-oxime treatment significantly reversed the altered activity of both the PI3-K/Akt/GSK3β cascade and the ERK pathway induced by H 2 O 2 . In addition, both GSK3β and mitogen-activated protein kinase inhibitors significantly prevented H 2 O 2 -induced neuronal apoptosis. Moreover, specific inhibitors of the phosphoinositide 3-kinase (PI3-K) abolished the neuroprotective effects of indirubin-3-oxime against H 2 O 2 -induced neuronal apoptosis. These results strongly suggest that indirubin-3-oxime prevents H 2 O 2 -induced apoptosis via concurrent inhibiting GSK3β and the ERK pathway in SH-SY5Y cells, providing support for the use of indirubin-3-oxime to treat neurodegenerative disorders caused or exacerbated by oxidative stress.

  8. Optogenetic Modulation and Multi-Electrode Analysis of Cerebellar Networks In Vivo

    Science.gov (United States)

    Kruse, Wolfgang; Krause, Martin; Aarse, Janna; Mark, Melanie D.; Manahan-Vaughan, Denise; Herlitze, Stefan

    2014-01-01

    The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice. PMID:25144735

  9. Optogenetic modulation and multi-electrode analysis of cerebellar networks in vivo.

    Directory of Open Access Journals (Sweden)

    Wolfgang Kruse

    Full Text Available The firing patterns of cerebellar Purkinje cells (PCs, as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs, climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2 expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice.

  10. The Sodium-Potassium Pump Controls the Intrinsic Firing of the Cerebellar Purkinje Neuron

    Science.gov (United States)

    Forrest, Michael D.; Wall, Mark J.; Press, Daniel A.; Feng, Jianfeng

    2012-01-01

    In vitro, cerebellar Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal pattern. The trimodal pattern consists of tonic spiking, bursting, and quiescence. The bimodal pattern consists of tonic spiking and quiescence. It is unclear how these firing patterns are generated and what determines which firing pattern is selected. We have constructed a realistic biophysical Purkinje cell model that can replicate these patterns. In this model, Na+/K+ pump activity sets the Purkinje cell's operating mode. From rat cerebellar slices we present Purkinje whole cell recordings in the presence of ouabain, which irreversibly blocks the Na+/K+ pump. The model can replicate these recordings. We propose that Na+/K+ pump activity controls the intrinsic firing mode of cerbellar Purkinje cells. PMID:23284664

  11. [Cerebellar cognitive affective syndrome secondary to a cerebellar tumour].

    Science.gov (United States)

    Domínguez-Carral, J; Carreras-Sáez, I; García-Peñas, J J; Fournier-Del Castillo, C; Villalobos-Reales, J

    2015-01-01

    Cerebellar cognitive affective syndrome is characterized by disturbances of executive function, impaired spatial cognition, linguistic difficulties, and personality change. The case of an 11 year old boy is presented, with behavior problems, learning difficulties and social interaction problems. In the physical examination he had poor visual contact, immature behavior, reduced expressive language and global motor disability with gait dyspraxia, with no defined cerebellar motor signs. In the neuropsychological evaluation he has a full scale overall intellectual quotient of 84, with signs of cerebellar cognitive affective syndrome. A tumour affecting inferior cerebellar vermis was observed in the magnetic resonance imaging, which had not significantly grown during 5 years of follow up. The cerebellum participates in controlling cognitive and affective functions. Cerebellar pathology must be considered in the differential diagnosis of children with cognitive or learning disorder with associated behavioral and emotional components. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  12. Nos2 inactivation promotes the development of medulloblastoma in Ptch1(+/- mice by deregulation of Gap43-dependent granule cell precursor migration.

    Directory of Open Access Journals (Sweden)

    Daniel Haag

    Full Text Available Medulloblastoma is the most common malignant brain tumor in children. A subset of medulloblastoma originates from granule cell precursors (GCPs of the developing cerebellum and demonstrates aberrant hedgehog signaling, typically due to inactivating mutations in the receptor PTCH1, a pathomechanism recapitulated in Ptch1(+/- mice. As nitric oxide may regulate GCP proliferation and differentiation, we crossed Ptch1(+/- mice with mice lacking inducible nitric oxide synthase (Nos2 to investigate a possible influence on tumorigenesis. We observed a two-fold higher medulloblastoma rate in Ptch1(+/- Nos2(-/- mice compared to Ptch1(+/- Nos2(+/+ mice. To identify the molecular mechanisms underlying this finding, we performed gene expression profiling of medulloblastomas from both genotypes, as well as normal cerebellar tissue samples of different developmental stages and genotypes. Downregulation of hedgehog target genes was observed in postnatal cerebellum from Ptch1(+/+ Nos2(-/- mice but not from Ptch1(+/- Nos2(-/- mice. The most consistent effect of Nos2 deficiency was downregulation of growth-associated protein 43 (Gap43. Functional studies in neuronal progenitor cells demonstrated nitric oxide dependence of Gap43 expression and impaired migration upon Gap43 knock-down. Both effects were confirmed in situ by immunofluorescence analyses on tissue sections of the developing cerebellum. Finally, the number of proliferating GCPs at the cerebellar periphery was decreased in Ptch1(+/+ Nos2(-/- mice but increased in Ptch1(+/- Nos2(-/ (- mice relative to Ptch1(+/- Nos2(+/+ mice. Taken together, these results indicate that Nos2 deficiency promotes medulloblastoma development in Ptch1(+/- mice through retention of proliferating GCPs in the external granular layer due to reduced Gap43 expression. This study illustrates a new role of nitric oxide signaling in cerebellar development and demonstrates that the localization of pre-neoplastic cells during

  13. Levels of glutamate, aspartate, GABA, and taurine in different regions of the cerebellum after x-irradiation-induced neuronal loss

    International Nuclear Information System (INIS)

    Rea, M.A.; McBride, W.J.; Rohde, B.H.

    1981-01-01

    The levels of glutamate (Glu), aspartate (Asp), gamma-amino-n-butyric acid (GABA), and taurine (Tau) were determined in the cortex, molecular layer, and deep nuclei of cerebella of adult rats exposed to X-irradiation at 12-15 days following birth (to prevent the acquisition of late-forming granule cells; 12-15x group) and 8-15 days following birth (to prevent the acquisition of granule and stellate cells; 8-15x group). Also, the levels of the four amino acids were measured in the crude synaptosomal fraction (P2) isolated from the whole cerebella of the control, 12-15x, and 8-15x groups. The level of Glu was significantly decreased by (1) 6-20% in the cerebellar cortex; (2) 15-20% in the molecular layer; and (3) 25-50% in the P2 fraction of the X-irradiated groups relative to control values. The content of Glu in the deep nuclei was not changed by X-irradiation treatment. Regional levels of Asp were unchanged by X-irradiation, while its level in P2 decreased by 15-30% after treatment. The levels of GABA and Tau in the molecular layer, deep nuclei, or P2 were not changed in the experimental groups. However, there was a 15% increase in the levels of GABA and Tau in the cerebellar cortex of the 8-15x group relative to control values. The data support the proposed role of glutamate as the excitatory transmitter released from the cerebellar granule cells but are inconclusive regarding a transmitter role for either Tau or GABA from cerebellar stellate cells

  14. The Subcellular Dynamics of the Gs-Linked Receptor GPR3 Contribute to the Local Activation of PKA in Cerebellar Granular Neurons.

    Science.gov (United States)

    Miyagi, Tatsuhiro; Tanaka, Shigeru; Hide, Izumi; Shirafuji, Toshihiko; Sakai, Norio

    2016-01-01

    G-protein-coupled receptor (GPR) 3 is a member of the GPR family that constitutively activates adenylate cyclase. We have reported that the expression of GPR3 in cerebellar granular neurons (CGNs) contributes to neurite outgrowth and modulates neuronal proliferation and survival. To further identify its role, we have analyzed the precise distribution and local functions of GPR3 in neurons. The fluorescently tagged GPR3 protein was distributed in the plasma membrane, the Golgi body, and the endosomes. In addition, we have revealed that the plasma membrane expression of GPR3 functionally up-regulated the levels of PKA, as measured by a PKA FRET indicator. Next, we asked if the PKA activity was modulated by the expression of GPR3 in CGNs. PKA activity was highly modulated at the neurite tips compared to the soma. In addition, the PKA activity at the neurite tips was up-regulated when GPR3 was transfected into the cells. However, local PKA activity was decreased when endogenous GPR3 was suppressed by a GPR3 siRNA. Finally, we determined the local dynamics of GPR3 in CGNs using time-lapse analysis. Surprisingly, the fluorescent GPR3 puncta were transported along the neurite in both directions over time. In addition, the anterograde movements of the GPR3 puncta in the neurite were significantly inhibited by actin or microtubule polymerization inhibitors and were also disturbed by the Myosin II inhibitor blebbistatin. Moreover, the PKA activity at the tips of the neurites was decreased when blebbistatin was administered. These results suggested that GPR3 was transported along the neurite and contributed to the local activation of PKA in CGN development. The local dynamics of GPR3 in CGNs may affect local neuronal functions, including neuronal differentiation and maturation.

  15. β-Catenin is critical for cerebellar foliation and lamination.

    Directory of Open Access Journals (Sweden)

    Jing Wen

    Full Text Available The cerebellum has a conserved foliation pattern and a well-organized layered structure. The process of foliation and lamination begins around birth. β-catenin is a downstream molecule of Wnt signaling pathway, which plays a critical role in tissue organization. Lack of β-catenin at early embryonic stages leads to either prenatal or neonatal death, therefore it has been difficult to resolve its role in cerebellar foliation and lamination. Here we used GFAP-Cre to ablate β-catenin in neuronal cells of the cerebellum after embryonic day 12.5, and found an unexpected role of β-catenin in determination of the foliation pattern. In the mutant mice, the positions of fissure formation were changed, and the meninges were improperly incorporated into fissures. At later stages, some lobules were formed by Purkinje cells remaining in deep regions of the cerebellum and the laminar structure was dramatically altered. Our results suggest that β-catenin is critical for cerebellar foliation and lamination. We also found a non cell-autonomous role of β-catenin in some developmental properties of major cerebellar cell types during specific stages.

  16. In vivo calcium imaging from dentate granule cells with wide-field fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Yuichiro Hayashi

    Full Text Available A combination of genetically-encoded calcium indicators and micro-optics has enabled monitoring of large-scale dynamics of neuronal activity from behaving animals. In these studies, wide-field microscopy is often used to visualize neural activity. However, this method lacks optical sectioning capability, and therefore its axial resolution is generally poor. At present, it is unclear whether wide-field microscopy can visualize activity of densely packed small neurons at cellular resolution. To examine the applicability of wide-field microscopy for small-sized neurons, we recorded calcium activity of dentate granule cells having a small soma diameter of approximately 10 micrometers. Using a combination of high numerical aperture (0.8 objective lens and independent component analysis-based image segmentation technique, activity of putative single granule cell activity was separated from wide-field calcium imaging data. The result encourages wider application of wide-field microscopy in in vivo neurophysiology.

  17. Protein Biomarkers Associated With Growth And Synaptogenesis In a cell culture model of neuronal development

    Science.gov (United States)

    Cerebellar granule cells (CGC) provide a homogenous population of cells which can be used as an in vitro model for studying the cellular processes involved in the normal development of the CNS. They may also be useful for hazard identification as in vitro screens fo...

  18. Corticosterone Facilitates Fluoxetine-Induced Neuronal Plasticity in the Hippocampus

    Science.gov (United States)

    Kobayashi, Katsunori; Ikeda, Yumiko; Asada, Minoru; Inagaki, Hirofumi; Kawada, Tomoyuki; Suzuki, Hidenori

    2013-01-01

    The hippocampal dentate gyrus has been implicated in a neuronal basis of antidepressant action. We have recently shown a distinct form of neuronal plasticity induced by the serotonergic antidepressant fluoxetine, that is, a reversal of maturation of the dentate granule cells in adult mice. This “dematuration” is induced in a large population of dentate neurons and maintained for at least one month after withdrawal of fluoxetine, suggesting long-lasting strong influence of dematuration on brain functioning. However, reliable induction of dematuration required doses of fluoxetine higher than suggested optimal doses for mice (10 to 18 mg/kg/day), which casts doubt on the clinical relevance of this effect. Since our previous studies were performed in naive mice, in the present study, we reexamined effects of fluoxetine using mice treated with chronic corticosterone that model neuroendocrine pathophysiology associated with depression. In corticosterone-treated mice, fluoxetine at 10 mg/kg/day downregulated expression of mature granule cell markers and attenuated strong frequency facilitation at the synapse formed by the granule cell axon mossy fiber, suggesting the induction of granule cell dematuration. In addition, fluoxetine caused marked enhancement of dopaminergic modulation at the mossy fiber synapse. In vehicle-treated mice, however, fluoxetine at this dose had no significant effects. The plasma level of fluoxetine was comparable to that in patients taking chronic fluoxetine, and corticosterone did not affect it. These results indicate that corticosterone facilitates fluoxetine-induced plastic changes in the dentate granule cells. Our finding may provide insight into neuronal mechanisms underlying enhanced responsiveness to antidepressant medication in certain pathological conditions. PMID:23675498

  19. Stars and Stripes in the Cerebellar Cortex: A Voltage Sensitive Dye Study

    Science.gov (United States)

    Rokni, Dan; Llinas, Rodolfo; Yarom, Yosef

    2007-01-01

    The lattice-like structure of the cerebellar cortex and its anatomical organization in two perpendicular axes provided the foundations for many theories of cerebellar function. However, the functional organization does not always match the anatomical organization. Thus direct measurement of the functional organization is central to our understanding of cerebellar processing. Here we use voltage sensitive dye imaging in the isolated cerebellar preparation to characterize the spatio-temporal organization of the climbing and mossy fiber (MF) inputs to the cerebellar cortex. Spatial and temporal parameters were used to develop reliable criteria to distinguish climbing fiber (CF) responses from MF responses. CF activation excited postsynaptic neurons along a parasagittal cortical band. These responses were composed of slow (∼25 ms), monophasic depolarizing signals. Neither the duration nor the spatial distribution of CF responses were affected by inhibition. Activation of MF generated responses that were organized in radial patches, and were composed of a fast (∼5 ms) depolarizing phase followed by a prolonged (∼100 ms) negative wave. Application of a GABAA blocker eliminated the hyperpolarizing phase and prolonged the depolarizing phase, but did not affect the spatial distribution of the response, thus suggesting that it is not the inhibitory system that is responsible for the inability of the MF input to generate beams of activity that propagate along the parallel fiber system. PMID:18958242

  20. Stars and stripes in the cerebellar cortex: a voltage sensitive dye study

    Directory of Open Access Journals (Sweden)

    Dan Rokni

    2007-08-01

    Full Text Available The lattice-like structure of the cerebellar cortex and its anatomical organization in two perpendicular axes provided the foundations for many theories of cerebellar function. However, the functional organization does not always match the anatomical organization. Thus direct measurement of the functional organization is central to our understanding of cerebellar processing. Here we use voltage sensitive dye imaging in the isolated cerebellar preparation to characterize the spatio-temporal organization of the climbing and mossy fiber (MF inputs to the cerebellar cortex. Spatial and temporal parameters were used to develop reliable criteria to distinguish climbing fiber (CF responses from MF responses. CF activation excited postsynaptic neurons along a parasagittal cortical band. These responses were composed of slow (~25 ms, monophasic depolarizing signals. Neither the duration nor the spatial distribution of CF responses were affected by inhibition. Activation of MF generated responses that were organized in radial patches, and were composed of a fast (~5 ms depolarizing phase followed by a prolonged (~100 ms negative wave. Application of a GABAA blocker eliminated the hyperpolarizing phase and prolonged the depolarizing phase, but did not affect the spatial distribution of the response, thus suggesting that it is not the inhibitory system that is responsible for the inability of the MF input to generate beams of activity that propagate along the parallel fiber system.

  1. Overexpression of Lin28b in Neural Stem Cells is Insufficient for Brain Tumor Formation, but Induces Pathological Lobulation of the Developing Cerebellum.

    Science.gov (United States)

    Wefers, Annika K; Lindner, Sven; Schulte, Johannes H; Schüller, Ulrich

    2017-02-01

    LIN28B is a homologue of the RNA-binding protein LIN28A and regulates gene expression during development and carcinogenesis. It is strongly upregulated in a variety of brain tumors, such as medulloblastoma, embryonal tumor with multilayered rosettes (ETMR), atypical teratoid/rhabdoid tumor (AT/RT), or glioblastoma, but the effect of an in vivo overexpression of LIN28B on the developing central nervous system is unknown. We generated transgenic mice that either overexpressed Lin28b in Math1-positive cerebellar granule neuron precursors or in a broad range of Nestin-positive neural precursors. Sections of the cerebellar vermis from adult Math1-Cre::lsl-Lin28b mice had an additional subfissure in lobule IV. Vermes from p0 and p7 Nestin-Cre::lsl-Lin28b mice appeared normal, but we found a pronounced vermal hypersublobulation at p15 and p21 in these mice. Also, the external granule cell layer (EGL) was thicker at p15 than in controls, contained more proliferating cells, and persisted up to p21. Consistently, some Pax6- and NeuN-positive cells were present in the EGL of Nestin-Cre::lsl-Lin28b mice even at p21, and we detected more NeuN-positive granule neuron precursors in the molecular layer (ML) as compared to control. Finally, we found some residual Pax2-positive precursors of inhibitory interneurons in the ML of Nestin-Cre::lsl-Lin28b mice at p21, which have already disappeared in controls. We conclude that while overexpression of LIN28B in Nestin-positive cells does not lead to tumor formation, it results in a protracted development of granule cells and inhibitory interneurons and leads to a hypersublobulation of the cerebellar vermis.

  2. Cerebellar neurodegeneration in the absence of microRNAs

    Science.gov (United States)

    Schaefer, Anne; O'Carroll, Dónal; Tan, Chan Lek; Hillman, Dean; Sugimori, Mutsuyuki; Llinas, Rodolfo; Greengard, Paul

    2007-01-01

    Genome-encoded microRNAs (miRNAs) are potent regulators of gene expression. The significance of miRNAs in various biological processes has been suggested by studies showing an important role of these small RNAs in regulation of cell differentiation. However, the role of miRNAs in regulation of differentiated cell physiology is not well established. Mature neurons express a large number of distinct miRNAs, but the role of miRNAs in postmitotic neurons has not been examined. Here, we provide evidence for an essential role of miRNAs in survival of differentiated neurons. We show that conditional Purkinje cell–specific ablation of the key miRNA-generating enzyme Dicer leads to Purkinje cell death. Deficiency in Dicer is associated with progressive loss of miRNAs, followed by cerebellar degeneration and development of ataxia. The progressive neurodegeneration in the absence of Dicer raises the possibility of an involvement of miRNAs in neurodegenerative disorders. PMID:17606634

  3. High Plasticity of New Granule Cells in the Aging Hippocampus

    Directory of Open Access Journals (Sweden)

    Mariela F. Trinchero

    2017-10-01

    Full Text Available Summary: During aging, the brain undergoes changes that impair cognitive capacity and circuit plasticity, including a marked decrease in production of adult-born hippocampal neurons. It is unclear whether development and integration of those new neurons are also affected by age. Here, we show that adult-born granule cells (GCs in aging mice are scarce and exhibit slow development, but they display a remarkable potential for structural plasticity. Retrovirally labeled 3-week-old GCs in middle-aged mice were small, underdeveloped, and disconnected. Neuronal development and integration were accelerated by voluntary exercise or environmental enrichment. Similar effects were observed via knockdown of Lrig1, an endogenous negative modulator of neurotrophin receptors. Consistently, blocking neurotrophin signaling by Lrig1 overexpression abolished the positive effects of exercise. These results demonstrate an unparalleled degree of plasticity in the aging brain mediated by neurotrophins, whereby new GCs remain immature until becoming rapidly recruited to the network by activity. : Trinchero et al. show that development of new granule cells born in the adult hippocampus is strongly influenced by age. In the aging hippocampus, new neurons remain immature for prolonged intervals, yet voluntary exercise triggers their rapid growth and functional synaptogenesis. This extensive structural remodeling is mediated by neurotrophins. Keywords: adult neurogenesis, dentate gyrus, functional integration, neurotrophins, synaptogenesis, exercise

  4. Effect of neurotrophin-3 precursor on glutamate-induced calcium homeostasis deregulation in rat cerebellum granule cells.

    Science.gov (United States)

    Safina, Dina R; Surin, Alexander M; Pinelis, Vsevolod G; Kostrov, Sergey V

    2015-12-01

    Neurotrophin-3 (NT-3) belongs to the family of highly conserved dimeric growth factors that controls the differentiation and activity of various neuronal populations. Mammals contain both the mature (NT-3) and the precursor (pro-NT-3) forms of neurotrophin. Members of the neurotrophin family are involved in the regulation of calcium homeostasis in neurons; however, the role of NT-3 and pro-NT-3 in this process remains unclear. The current study explores the effects of NT-3 and pro-NT-3 on disturbed calcium homeostasis and decline of mitochondrial potential induced by a neurotoxic concentration of glutamate (Glu; 100 µM) in the primary culture of rat cerebellar granule cells. In this Glu excitotoxicity model, mature NT-3 had no effect on the induced changes in Ca²⁺ homeostasis. In contrast, pro-NT-3 decreased the period of delayed calcium deregulation (DCD) and concurrent strong mitochondrial depolarization. According to the amplitude of the increase in the intracellular free Ca²⁺ concentration ([Ca²⁺]i ) and Fura-2 fluorescence quenching by Mn²⁺ within the first 20 sec of exposure to Glu, pro-NT-3 had no effect on the initial rate of Ca²⁺ entry into neurons. During the lag period preceding DCD, the mean amplitude of [Ca²⁺]i rise was 1.2-fold greater in the presence of pro-NT-3 than in the presence of Glu alone (1.67 ±  0.07 and 1.39 ± 0.04, respectively, P < 0.05). The Glu-induced changes in Са²⁺ homeostasis in the presence of pro-NT-3 likely are due to the decreased rate of Са²⁺ removal from the cytosol during the DCD latency period. © 2015 Wiley Periodicals, Inc.

  5. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons.

    Science.gov (United States)

    Tanner, Geoffrey R; Lutas, Andrew; Martínez-François, Juan Ramón; Yellen, Gary

    2011-06-08

    ATP-sensitive potassium channels (K(ATP) channels) are important sensors of cellular metabolic state that link metabolism and excitability in neuroendocrine cells, but their role in nonglucosensing central neurons is less well understood. To examine a possible role for K(ATP) channels in modulating excitability in hippocampal circuits, we recorded the activity of single K(ATP) channels in cell-attached patches of granule cells in the mouse dentate gyrus during bursts of action potentials generated by antidromic stimulation of the mossy fibers. Ensemble averages of the open probability (p(open)) of single K(ATP) channels over repeated trials of stimulated spike activity showed a transient increase in p(open) in response to action potential firing. Channel currents were identified as K(ATP) channels through blockade with glibenclamide and by comparison with recordings from Kir6.2 knock-out mice. The transient elevation in K(ATP) p(open) may arise from submembrane ATP depletion by the Na(+)-K(+) ATPase, as the pump blocker strophanthidin reduced the magnitude of the elevation. Both the steady-state and stimulus-elevated p(open) of the recorded channels were higher in the presence of the ketone body R-β-hydroxybutyrate, consistent with earlier findings that ketone bodies can affect K(ATP) activity. Using perforated-patch recording, we also found that K(ATP) channels contribute to the slow afterhyperpolarization following an evoked burst of action potentials. We propose that activity-dependent opening of K(ATP) channels may help granule cells act as a seizure gate in the hippocampus and that ketone-body-mediated augmentation of the activity-dependent opening could in part explain the effect of the ketogenic diet in reducing epileptic seizures.

  6. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    Science.gov (United States)

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.

  7. Cell type-specific neuroprotective activity of untranslocated prion protein.

    Directory of Open Access Journals (Sweden)

    Elena Restelli

    2010-10-01

    Full Text Available A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP. However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions.Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells.These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.

  8. Serglycin proteoglycan is not implicated in localizing exocrine pancreas enzymes to zymogen granules

    DEFF Research Database (Denmark)

    Niemann, Carsten U; Cowland, Jack B; Ralfkiaer, Elisabeth

    2009-01-01

    Storage and release of proteins from granules forms the basis of cellular functions as diverse as cell mediated cytotoxicity, neuronal communication, activation of muscle fibres, and release of hormones or digestive enzymes from endocrine and exocrine glands, such as the pancreas. Serglycin...... is the major intracellular proteoglycan of haematopoietic cells. Serglycin is important for localization of proteins in granules of different haematopoietic cell types. Previous reports have indicated a role for serglycin in granule formation and localization of zymogens in granules of the exocrine pancreas...... in rat. We here present data showing that serglycin is not present at the protein level in human or murine pancreas. Furthermore, the amount and localization of three exocrine pancreas zymogens (amylase, trypsinogen, and carboxypeptidase A) is not affected by the absence of serglycin in a serglycin knock...

  9. Temporal Sequence of Autolysis in the Cerebellar Cortex of the Mouse.

    Science.gov (United States)

    Finnie, J W; Blumbergs, P C; Manavis, J

    2016-05-01

    This study examined the temporal sequence of post-mortem changes in the cerebellar cortical granular and Purkinje cell layers of mice kept at a constant ambient temperature for up to 4 weeks. Nuclei of granule cell microneurons became pyknotic early after death, increasing progressively until, by 7 days, widespread nuclear lysis resulted in marked cellular depletion of the granular layer. Purkinje cells were relatively unaltered until about 96 h post mortem, at which time there was shrinkage and multivacuolation of the amphophilic cytoplasm, nuclear hyperchromasia and, sometimes, a perinuclear clear space. By 7 days, Purkinje cells had hypereosinophilic cytoplasm and frequent nuclear pyknosis. By 2 weeks after death, Purkinje cells showed homogenization, the cytoplasm being uniformly eosinophilic, progressing to a 'ghost-like' appearance in which the cytoplasm had pale eosinophilic staining with indistinct cell boundaries, and nuclei often absent. The results of this study could assist in differentiating post-mortem autolysis from ante-mortem lesions in the cerebellar cortex and determining the post-mortem interval. Moreover, this information could be useful when interpreting brain lesions in valuable mice found dead unexpectedly during the course of biomedical experiments. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  10. Ondine's Curse in a Patient with Unilateral Medullary and Bilateral Cerebellar Infarctions

    Directory of Open Access Journals (Sweden)

    Hui-Tzu Ho

    2005-11-01

    Full Text Available Central sleep apnea (CSA, also known as Ondine's curse (OC, is a phenomenon characterized by episodes of repeated apnea during sleep due to disorders of the central nervous system. We report a patient with CSA/OC due to right dorsolateral medullary and bilateral cerebellar infarctions that occurred in the clinical setting of right vertebral artery stenosis. Polysomnography (PSG showed repeated episodes of absence of nasal cannula flow accompanying cessation of thoracic and abdominal respiratory movements and a decline in blood oxygen saturation. The duration of apnea was as long as 12 seconds. Brain magnetic resonance (MR images showed acute infarctions involving the right dorsolateral medulla, bilateral cerebellar vermis and paramedian cerebellar hemispheres. MR angiography showed nonvisualization of the right vertebral artery. Transcranial Doppler sonography showed a high resistance flow profile in the right vertebral artery and normal flow patterns in the basilar artery and left vertebral artery. These findings suggest that the medullary and bilateral cerebellar infarcts were caused by stenosis/pseudo-occlusion of the right vertebral artery. Reduced respiratory afferent inputs to the dorsal respiratory group of medullary neurons, the nucleus tractus solitarius and reduced “automatic” components of the respiratory drive may play a role in the development of CSA/OC.

  11. Regularity, variability and bi-stability in the activity of cerebellar purkinje cells.

    Science.gov (United States)

    Rokni, Dan; Tal, Zohar; Byk, Hananel; Yarom, Yosef

    2009-01-01

    Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state), and a quiescent hyperpolarized state (down state). A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  12. Regularity, variabilty and bi-stability in the activity of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Dan Rokni

    2009-11-01

    Full Text Available Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state, and a quiescent hyperpolarized state (down state. A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in-vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  13. Modulation of ASIC channels in rat cerebellar purkinje neurons by ischaemia-related signals

    Science.gov (United States)

    Allen, Nicola J; Attwell, David

    2002-01-01

    Acid-sensing ion channels (ASICs), activated by a decrease of extracellular pH, are found in neurons throughout the nervous system. They have an amino acid sequence similar to that of ion channels activated by membrane stretch, and have been implicated in touch sensation. Here we characterize the pH-dependent activation of ASICs in cerebellar Purkinje cells and investigate how they are modulated by factors released in ischaemia. Lowering the external pH from 7.4 activated an inward current at −66 mV, carried largely by Na+ ions, which was half-maximal for a step to pH 6.4 and was blocked by amiloride and gadolinium. The H+-gated current desensitized within a few seconds, but approximately 30% of cells showed a sustained inward current (11% of the peak current) in response to the maintained presence of pH 6 solution. The peak H+-evoked current was potentiated by membrane stretch (which occurs in ischaemia when [K+]o rises) and by arachidonic acid (which is released when [Ca2+]i rises in ischaemia). Arachidonic acid increased to 77% the fraction of cells showing a sustained current evoked by acid pH. The ASIC currents were also potentiated by lactate (which is released when metabolism becomes anaerobic in ischaemia) and by FMRFamide (which may mimic the action of related mammalian RFamide transmitters). These data reinforce suggestions of a mechanosensory aspect to ASIC channel function, and show that the activation of ASICs reflects the integration of multiple signals which are present during ischaemia. PMID:12205186

  14. Questioning the cerebellar doctrine

    NARCIS (Netherlands)

    Galliano, Elisa; De Zeeuw, Chris I

    2014-01-01

    The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells

  15. Evaluation of the neuronal apoptotic pathways involved in cytoskeletal disruption-induced apoptosis.

    Science.gov (United States)

    Jordà, Elvira G; Verdaguer, Ester; Jimenez, Andrés; Arriba, S Garcia de; Allgaier, Clemens; Pallàs, Mercè; Camins, Antoni

    2005-08-01

    The cytoskeleton is critical to neuronal functioning and survival. Cytoskeletal alterations are involved in several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. We studied the possible pathways involved in colchicine-induced apoptosis in cerebellar granule neurons (CGNs). Although colchicine evoked an increase in caspase-3, caspase-6 and caspase-9 activation, selective caspase inhibitors did not attenuate apoptosis. Inhibitors of other cysteine proteases such as PD150606 (a calpain-specific inhibitor), Z-Phe-Ala fluoromethyl ketone (a cathepsins-inhibitors) and N(alpha)-p-tosyl-l-lysine chloromethyl ketone (serine-proteases inhibitor) also had no effect on cell death/apoptosis induced by colchicine. However, BAPTA-AM 10 microM (intracellular calcium chelator) prevented apoptosis mediated by cytoskeletal alteration. These data indicate that calcium modulates colchicine-induced apoptosis in CGNs. PARP-1 inhibitors did not prevent apoptosis mediated by colchicine. Finally, colchicine-induced apoptosis in CGNs was attenuated by kenpaullone, a cdk5 inhibitor. Kenpaullone and indirubin also prevented cdk5/p25 activation mediated by colchicine. These findings indicate that cytoskeletal alteration can compromise cdk5 activation, regulating p25 formation and suggest that cdk5 inhibitors attenuate apoptosis mediated by cytoskeletal alteration. The present data indicate the potential therapeutic value of drugs that prevent the formation of p25 for the treatment of neurodegenerative disorders.

  16. Changes in the cerebellar and cerebro-cerebellar circuit in type 2 diabetes.

    Science.gov (United States)

    Fang, Peng; An, Jie; Tan, Xin; Zeng, Ling-Li; Shen, Hui; Qiu, Shijun; Hu, Dewen

    2017-04-01

    Currently, 422 million adults suffer from diabetes worldwide, leading to tremendous disabilities and a great burden to families and society. Functional and structural MRIs have demonstrated that patients with type 2 diabetes mellitus (T2DM) exhibit abnormalities in brain regions in the cerebral cortex. However, the changes of cerebellar anatomical connections in diabetic patients remains unclear. In the current study, diffusion tensor imaging deterministic tractography and statistical analysis were employed to investigate abnormal cerebellar anatomical connections in diabetic patients. This is the first study to investigate the altered cerebellar anatomical connectivity in T2DM patients. Decreased anatomical connections were found in the cerebellar and cerebro-cerebellar circuits of T2DM patients, providing valuable new insights into the potential neuro-pathophysiology of diabetes-related motor and cognitive deficits. Copyright © 2017. Published by Elsevier Inc.

  17. Morphological and behavioral markers of environmentally induced retardation of brain development: an animal model

    International Nuclear Information System (INIS)

    Altman, J.

    1987-01-01

    In most neurotoxicological studies morphological assessment focuses on pathological effects, like degenerative changes in neuronal perikarya, axonopathy, demyelination, and glial and endothelial cell reactions. Similarly, the assessment of physiological and behavioral effects center on evident neurological symptoms, like EEG and EMG abnormalities, resting and intention tremor, abnormal gait, and abnormal reflexes. This paper reviews briefly another central nervous system target of harmful environmental agents, which results in behavioral abnormalities without any qualitatively evident neuropathology. This is called microneuronal hypoplasia, a retardation of brain development characterized by a quantitative reduction in the normal population of late-generated, short-axoned neurons in specific brain regions. Correlated descriptive and experimental neurogenetic studies in the rat have established that all the cerebellar granule cells and a very high proportion of hippocampal granule cells are produced postnatally, and that focal, low-dose X-irradiation either of the cerebellum or of the hippocampus after birth selectively interferes with the acquisition of the full complement of granule cells (microneuronal hypoplasia). Subsequent behavioral investigations showed that cerebellar microneuronal hypoplasia results in profound hyperactivity without motor abnormalities, while hippocampal microneuronal hypoplasia results in hyperactivity, as well as attentional and learning deficits. There is much indirect clinical evidence that various harmful environmental agents affecting the pregnant mother and/or the infant lead to such childhood disorders as hyperactivity and attentional and learning disorders. 109 references

  18. Expression pattern of neuronal intermediate filament α-internexin in anterior pituitary gland and related tumors.

    Science.gov (United States)

    Schult, D; Hölsken, A; Buchfelder, M; Schlaffer, S-M; Siegel, S; Kreitschmann-Andermahr, I; Fahlbusch, R; Buslei, R

    2015-08-01

    α-Internexin (INA) is a class IV neuronal intermediate filament protein that maintains the morphogenesis of neurons. It is expressed in developing neuroblasts and represents the major component of the cytoskeleton in cerebellar granule cells of adult central nervous system tissue. Data concerning INA expression in the human frontal pituitary lobe and related adenomas (PA) is missing. Using immunohistochemistry we examined the distribution pattern of INA in a large cohort of 152 PA, 11 atypical PA, 4 pituitary carcinomas and 20 normal pituitaries (overall n = 187). Quantity of INA protein expression was semi-quantitatively evaluated and grouped into five categories (0 = 0%; 1 = >0-5%; 2 = >5-35%; 3 = >35-80%; 4 = >80% of cells). Cellular staining intensity of INA appeared significantly higher in gonadotropinomas (Go, n = 62), null cell adenomas (NC, n = 7) and thyrotropinomas (TSHomas, n = 7) compared to the other tumor subtypes (p ≤ 0.001). Furthermore, Go and NC showed a peculiar pseudorosette-like staining pattern surrounding blood vessels in 85.5% (59/69) of cases. Interestingly, areas exhibiting homogenous INA staining were often associated with oncocytic cell changes and decreased immunohistochemically detectable hormone expression. Only 8.5% (8/94) of other PA showed a comparable INA distribution (p ≤ 0.001). Go, NC as well as TSHomas exhibit high levels of intracellular INA protein indicating neuronal transdifferentiation. A possible impact on pathogenesis and endocrine activity needs further investigation.

  19. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    International Nuclear Information System (INIS)

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U.; Paulsen, Ragnhild E.

    2011-01-01

    Highlights: → NGFI-B and RXR translocate out of the nucleus after glutamate treatment. → Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. → Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXRα were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXRα, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  20. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Directory of Open Access Journals (Sweden)

    Claudia Casellato

    Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  1. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Science.gov (United States)

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  2. Fucoxanthin prevents H2O2-induced neuronal apoptosis via concurrently activating the PI3-K/Akt cascade and inhibiting the ERK pathway.

    Science.gov (United States)

    Yu, Jie; Lin, Jia-Jia; Yu, Rui; He, Shan; Wang, Qin-Wen; Cui, Wei; Zhang, Jin-Rong

    2017-01-01

    Background : As a natural carotenoid abundant in chloroplasts of edible brown algae, fucoxanthin possesses various health benefits, including anti-oxidative activity in particular. Objective : In the present study, we studied whether fucoxanthin protected against hydrogen peroxide (H 2 O 2 )-induced neuronal apoptosis. Design : The neuroprotective effects of fucoxanthin on H 2 O 2 -induced toxicity were studied in both SH-SY5Y cells and primary cerebellar granule neurons. Results : Fucoxanthin significantly protected against H 2 O 2 -induced neuronal apoptosis and intracellular reactive oxygen species. H 2 O 2 treatment led to the reduced activity of phosphoinositide 3-kinase (PI3-K)/Akt cascade and the increased activity of extracellular signal-regulated kinase (ERK) pathway in SH-SY5Y cells. Moreover, fucoxanthin significantly restored the altered activities of PI3-K/Akt and ERK pathways induced by H 2 O 2 . Both specific inhibitors of glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase kinase (MEK) significantly protected against H 2 O 2 -induced neuronal death. Furthermore, the neuroprotective effects of fucoxanthin against H 2 O 2 -induced neuronal death were abolished by specific PI3-K inhibitors. Conclusions : Our data strongly revealed that fucoxanthin protected against H 2 O 2 -induced neurotoxicity via concurrently activating the PI3-K/Akt cascade and inhibiting the ERK pathway, providing support for the use of fucoxanthin to treat neurodegenerative disorders induced by oxidative stress.

  3. Malignant Cerebellar Edema Subsequent to Accidental Prescription Opioid Intoxication in Children

    Directory of Open Access Journals (Sweden)

    Daniel Duran

    2017-07-01

    Full Text Available We present two recent cases of toddlers who developed malignant cerebellar edema subsequent to accidental ingestion of prescription opioids. Both children presented acute neurological decline, hydrocephalus, and tonsillar herniation requiring emergent ventricular drain placement, suboccipital craniectomy, and partial cerebellectomy. Together with several other reports, these cases suggest the existence of an uncommon yet severe syndrome of acute opioid-induced malignant cerebellar edema. We hypothesize that the condition results from a combination of primary opioid receptor-mediated changes in neuronal metabolism that are exacerbated by secondary hypoxic insult. If recognized promptly, this syndrome can be treated with emergent neurosurgical intervention with good clinical outcomes. These cases also illustrate the unintended consequences and innocent victims of the spiraling prescription opioid epidemic, which will likely increase in prevalence. Recognition of this syndrome by clinicians is thus critical.

  4. BACE1 Deficiency Causes Abnormal Neuronal Clustering in the Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Hailong Hou

    2017-07-01

    Full Text Available BACE1 is validated as Alzheimer's β-secretase and a therapeutic target for Alzheimer's disease. In examining BACE1-null mice, we discovered that BACE1 deficiency develops abnormal clusters of immature neurons, forming doublecortin-positive neuroblasts, in the developing dentate gyrus, mainly in the subpial zone (SPZ. Such clusters were rarely observed in wild-type SPZ and not reported in other mouse models. To understand their origins and fates, we examined how neuroblasts in BACE1-null SPZ mature and migrate during early postnatal development. We show that such neuroblasts are destined to form Prox1-positive granule cells in the dentate granule cell layer, and mainly mature to form excitatory neurons, but not inhibitory neurons. Mechanistically, higher levels of reelin potentially contribute to abnormal neurogenesis and timely migration in BACE1-null SPZ. Altogether, we demonstrate that BACE1 is a critical regulator in forming the dentate granule cell layer through timely maturation and migration of SPZ neuroblasts.

  5. Degenerative cerebellar diseases and differential diagnoses; Degenerative Kleinhirnerkrankungen und Differenzialdiagnosen

    Energy Technology Data Exchange (ETDEWEB)

    Reith, W.; Roumia, S.; Dietrich, P. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2016-11-15

    Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions. (orig.) [German] Klinisch imponieren Kleinhirnsyndrome durch Ataxie, Dysarthrie, Dysmetrie, Intentionstremor und Augenbewegungsstoerungen. Neben der Anamnese und klinischen Untersuchung ist die Bildgebung v. a. wichtig um andere Erkrankungen wie Hydrozephalus und Multiinfarktdemenz von degenerativen Kleinhirnerkrankungen zu differenzieren. Zu den degenerativen Erkrankungen mit Kleinhirnbeteiligung gehoeren der Morbus Parkinson, die Multisystematrophie sowie weitere Erkrankungen einschliesslich der spinozerebellaeren Ataxien. Neben der MRT sind auch nuklearmedizinische Untersuchungen zur Differenzierung hilfreich. Axiale Fluid-attenuated-inversion-recovery(FLAIR)- und T2-gewichtete Sequenzen koennen mitunter eine Signalsteigerung im Pons als Ausdruck einer Degeneration der pontinen Neuronen und transversalen Bahnen im Brueckenfuss zeigen. Die Bildgebung ist aber v. a. notwendig, um andere Erkrankungen wie Normaldruckhydrozephalus

  6. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    Directory of Open Access Journals (Sweden)

    William eLennon

    2014-12-01

    Full Text Available While the anatomy of the cerebellar microcircuit is well studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs form with the molecular layer interneurons (MLIs – the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1 spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2 adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

  7. Cerebro-Cerebellar Functional Connectivity is Associated with Cerebellar Excitation-Inhibition Balance in Autism Spectrum Disorder.

    Science.gov (United States)

    Hegarty, John P; Weber, Dylan J; Cirstea, Carmen M; Beversdorf, David Q

    2018-05-23

    Atypical functional connectivity (FC) and an imbalance of excitation-to-inhibition (E/I) have been previously reported in cerebro-cerebellar circuits in autism spectrum disorder (ASD). The current investigation used resting state fMRI and proton magnetic resonance spectroscopy ( 1 H-MRS) to examine the relationships between E/I (glutamate + glutamine/GABA) and FC of the dorsolateral prefrontal cortex and posterolateral cerebellar hemisphere from 14 adolescents/adults with ASD and 12 age/sex/IQ-matched controls. In this pilot sample, cerebro-cerebellar FC was positively associated with cerebellar E/I and listening comprehension abilities in individuals with ASD but not controls. Additionally, a subgroup of individuals with ASD and low FC (n = 5) exhibited reduced E/I and impaired listening comprehension. Thus, altered functional coherence of cerebro-cerebellar circuits in ASD may be related with a cerebellar E/I imbalance.

  8. Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus.

    Science.gov (United States)

    Schoenfeld, Timothy J; Rada, Pedro; Pieruzzini, Pedro R; Hsueh, Brian; Gould, Elizabeth

    2013-05-01

    Physical exercise is known to reduce anxiety. The ventral hippocampus has been linked to anxiety regulation but the effects of running on this subregion of the hippocampus have been incompletely explored. Here, we investigated the effects of cold water stress on the hippocampus of sedentary and runner mice and found that while stress increases expression of the protein products of the immediate early genes c-fos and arc in new and mature granule neurons in sedentary mice, it has no such effect in runners. We further showed that running enhances local inhibitory mechanisms in the hippocampus, including increases in stress-induced activation of hippocampal interneurons, expression of vesicular GABA transporter (vGAT), and extracellular GABA release during cold water swim stress. Finally, blocking GABAA receptors in the ventral hippocampus, but not the dorsal hippocampus, with the antagonist bicuculline, reverses the anxiolytic effect of running. Together, these results suggest that running improves anxiety regulation by engaging local inhibitory mechanisms in the ventral hippocampus.

  9. Cerebellar nicotinic cholinergic receptors are intrinsic to the cerebellum: implications for diverse functional roles.

    Science.gov (United States)

    Turner, Jill R; Ortinski, Pavel I; Sherrard, Rachel M; Kellar, Kenneth J

    2011-12-01

    Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum.

  10. Age-related changes of monoaminooxidases in rat cerebellar cortex

    Directory of Open Access Journals (Sweden)

    FM Tranquilli Leali

    2009-06-01

    Full Text Available Age-related changes of the monoaminoxidases, evaluated by enzymatic staining, quantitative analysis of images, biochemical assay and statistical analysis of data were studied in cerebellar cortex of young (3-month-old and aged (26- month-old male Sprague-Dawley rats. The enzymatic staining shows the presence of monoamino-oxidases within the molecular and granular layers as well as within the Purkinje neurons of the cerebellum of young and aged animals. In molecular layer, and in Purkinje neurons the levels of monoaminooxidases were strongly increased in old rats. The granular layer showed, on the contrary, an age-dependent loss of enzymatic staining. These morphological findings were confirmed by biochemical results. The possibility that age-related changes in monoaminooxidase levels may be due to impaired energy production mechanisms and/or represent the consequence of reduced energetic needs is discussed.

  11. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus

    Directory of Open Access Journals (Sweden)

    Aloysius Y.T. Low

    2018-02-01

    Full Text Available The deep cerebellar nuclei (DCN represent output channels of the cerebellum, and they transmit integrated sensorimotor signals to modulate limb movements. But the functional relevance of identifiable neuronal subpopulations within the DCN remains unclear. Here, we examine a genetically tractable population of neurons in the mouse interposed anterior nucleus (IntA. We show that these neurons represent a subset of glutamatergic neurons in the IntA and constitute a specific element of an internal feedback circuit within the cerebellar cortex and cerebello-thalamo-cortical pathway associated with limb control. Ablation and optogenetic stimulation of these neurons disrupt efficacy of skilled reach and locomotor movement and reveal that they control positioning and timing of the forelimb and hindlimb. Together, our findings uncover the function of a distinct neuronal subpopulation in the deep cerebellum and delineate the anatomical substrates and kinematic parameters through which it modulates precision of discrete and rhythmic limb movements.

  12. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus.

    Science.gov (United States)

    Low, Aloysius Y T; Thanawalla, Ayesha R; Yip, Alaric K K; Kim, Jinsook; Wong, Kelly L L; Tantra, Martesa; Augustine, George J; Chen, Albert I

    2018-02-27

    The deep cerebellar nuclei (DCN) represent output channels of the cerebellum, and they transmit integrated sensorimotor signals to modulate limb movements. But the functional relevance of identifiable neuronal subpopulations within the DCN remains unclear. Here, we examine a genetically tractable population of neurons in the mouse interposed anterior nucleus (IntA). We show that these neurons represent a subset of glutamatergic neurons in the IntA and constitute a specific element of an internal feedback circuit within the cerebellar cortex and cerebello-thalamo-cortical pathway associated with limb control. Ablation and optogenetic stimulation of these neurons disrupt efficacy of skilled reach and locomotor movement and reveal that they control positioning and timing of the forelimb and hindlimb. Together, our findings uncover the function of a distinct neuronal subpopulation in the deep cerebellum and delineate the anatomical substrates and kinematic parameters through which it modulates precision of discrete and rhythmic limb movements. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Ablation of BRaf impairs neuronal differentiation in the postnatal hippocampus and cerebellum.

    Directory of Open Access Journals (Sweden)

    Verena Pfeiffer

    Full Text Available This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12 but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.

  14. Impaired Cerebellar Maturation, Growth Restriction, and Circulating Insulin-Like Growth Factor 1 in Preterm Rabbit Pups

    Science.gov (United States)

    Sveinsdóttir, Kristbjörg; Länsberg, John-Kalle; Sveinsdóttir, Snjólaug; Garwicz, Martin; Ohlsson, Lennart; Hellström, Ann; Smith, Lois; Gram, Magnus; Ley, David

    2018-01-01

    Cerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown. The aim of this study was to evaluate the effect of preterm birth on postnatal growth, circulating IGF-1, and cerebellar maturation in a preterm rabbit pup model. Preterm rabbit pups (PT) were delivered by cesarean section at day 29 of gestation, cared for in closed incubators with humidified air, and gavage fed with formula. Control term pups (T) delivered by spontaneous vaginal delivery at day 32 of gestation were housed and fed by their lactating doe. In vivo perfusion-fixation for immunohistochemical evaluation of cerebellar proliferation, cell maturation, and apoptosis was performed at repeated time points in PT and T pups. Results show that the mean weight of the pups and circulating IGF-1 protein levels were lower in the PT group at all time points (p staining at P0 (p = 0.003), P2 (p = 0.004), and P5 (p = 0.04) in the PT group compared to in the T group. Staining for sonic hedgehog was positive in neuronal EGL progenitors and Purkinje cells at early time points but was restricted to a well-defined Purkinje cell monolayer at later time points. Preterm birth in rabbit pups is associated with lower circulating levels of IGF-1, decreased postnatal growth, and decreased cerebellar EGL proliferation and Purkinje cell maturation. The preterm rabbit pup model exhibits important characteristics of human preterm birth, and may thus be suitable for the evaluation of interventions aiming to modify growth and cerebellar development in the preterm population. PMID:28972955

  15. Synaptic pathology in the cerebellar dentate nucleus in chronic multiple sclerosis.

    Science.gov (United States)

    Albert, Monika; Barrantes-Freer, Alonso; Lohrberg, Melanie; Antel, Jack P; Prineas, John W; Palkovits, Miklós; Wolff, Joachim R; Brück, Wolfgang; Stadelmann, Christine

    2017-11-01

    In multiple sclerosis, cerebellar symptoms are associated with clinical impairment and an increased likelihood of progressive course. Cortical atrophy and synaptic dysfunction play a prominent role in cerebellar pathology and although the dentate nucleus is a predilection site for lesion development, structural synaptic changes in this region remain largely unexplored. Moreover, the mechanisms leading to synaptic dysfunction have not yet been investigated at an ultrastructural level in multiple sclerosis. Here, we report on synaptic changes of dentate nuclei in post-mortem cerebella of 16 multiple sclerosis patients and eight controls at the histological level as well as an electron microscopy evaluation of afferent synapses of the cerebellar dentate and pontine nuclei of one multiple sclerosis patient and one control. We found a significant reduction of afferent dentate synapses in multiple sclerosis, irrespective of the presence of demyelination, and a close relationship between glial processes and dentate synapses. Ultrastructurally, we show autophagosomes containing degradation products of synaptic vesicles within dendrites, residual bodies within intact-appearing axons and free postsynaptic densities opposed to astrocytic appendages. Our study demonstrates loss of dentate afferent synapses and provides, for the first time, ultrastructural evidence pointing towards neuron-autonomous and neuroglia-mediated mechanisms of synaptic degradation in chronic multiple sclerosis. © 2016 International Society of Neuropathology.

  16. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress

    Science.gov (United States)

    Gould, Elizabeth; Tanapat, Patima; McEwen, Bruce S.; Flügge, Gabriele; Fuchs, Eberhard

    1998-01-01

    Although granule cells continue to be added to the dentate gyrus of adult rats and tree shrews, this phenomenon has not been demonstrated in the dentate gyrus of adult primates. To determine whether neurons are produced in the dentate gyrus of adult primates, adult marmoset monkeys (Callithrix jacchus) were injected with BrdU and perfused 2 hr or 3 weeks later. BrdU is a thymidine analog that is incorporated into proliferating cells during S phase. A substantial number of cells in the dentate gyrus of adult monkeys incorporated BrdU and ≈80% of these cells had morphological characteristics of granule neurons and expressed a neuronal marker by the 3-week time point. Previous studies suggest that the proliferation of granule cell precursors in the adult dentate gyrus can be inhibited by stress in rats and tree shrews. To test whether an aversive experience has a similar effect on cell proliferation in the primate brain, adult marmoset monkeys were exposed to a resident-intruder model of stress. After 1 hr in this condition, the intruder monkeys were injected with BrdU and perfused 2 hr later. The number of proliferating cells in the dentate gyrus of the intruder monkeys was compared with that of unstressed control monkeys. We found that a single exposure to this stressful experience resulted in a significant reduction in the number of these proliferating cells. Our results suggest that neurons are produced in the dentate gyrus of adult monkeys and that the rate of precursor cell proliferation can be affected by a stressful experience. PMID:9501234

  17. Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations.

    Science.gov (United States)

    Schneider, Calvin J; Cuntz, Hermann; Soltesz, Ivan

    2014-10-01

    Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.

  18. Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis

    Directory of Open Access Journals (Sweden)

    Aleksandra Somogyi

    2018-02-01

    Full Text Available Juvenile neuronal ceroid lipofuscinosis (JNCL is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase, which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis.

  19. Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis

    Science.gov (United States)

    Somogyi, Aleksandra; Petcherski, Anton; Beckert, Benedikt; Huebecker, Mylene; Priestman, David A.; Banning, Antje; Cotman, Susan L.; Platt, Frances M.; Ruonala, Mika O.

    2018-01-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice) for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase), which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis. PMID:29470438

  20. DNA Repair Modulates The Vulnerability of The Developing Brain to Alkylating Agents

    Science.gov (United States)

    Kisby, G.E.; Olivas, A.; Park, T.; Churchwell, M.; Doerge, D.; Samson, L. D.; Gerson, S.L.; Turker, M.S.

    2009-01-01

    Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag-/-) or O6-methylguanine methyltransferase (Mgmt-/-), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt-/- neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag-/- neurons were for the most part significantly less sensitive than wild type or Mgmt-/- neurons to MAM and HN2. Aag-/- neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt-/- mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM treated Aag-/- or MGMT overexpressing (MgmtTg+) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in MgmtTg+ mice treated with HN2. Collectively, these in vitro

  1. Cerebellar abiotrophy in a miniature schnauzer

    OpenAIRE

    Berry, Michelle L.; Blas-Machado, Uriel

    2003-01-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  2. Cerebellar abiotrophy in a miniature schnauzer.

    Science.gov (United States)

    Berry, Michelle L; Blas-Machado, Uriel

    2003-08-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  3. Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity.

    Directory of Open Access Journals (Sweden)

    Jason A Pfister

    Full Text Available BACKGROUND: Growing evidence suggests that sirtuins, a family of seven distinct NAD-dependent enzymes, are involved in the regulation of neuronal survival. Indeed, SIRT1 has been reported to protect against neuronal death, while SIRT2 promotes neurodegeneration. The effect of SIRTs 3-7 on the regulation of neuronal survival, if any, has yet to be reported. METHODOLOGY AND PRINCIPAL FINDINGS: We examined the effect of expressing each of the seven SIRT proteins in healthy cerebellar granule neurons (CGNs or in neurons induced to die by low potassium (LK treatment. We report that SIRT1 protects neurons from LK-induced apoptosis, while SIRT2, SIRT3 and SIRT6 induce apoptosis in otherwise healthy neurons. SIRT5 is generally localized to both the nucleus and cytoplasm of CGNs and exerts a protective effect. In a subset of neurons, however, SIRT5 localizes to the mitochondria and in this case it promotes neuronal death. Interestingly, the protective effect of SIRT1 in neurons is not reduced by treatments with nicotinamide or sirtinol, two pharmacological inhibitors of SIRT1. Neuroprotection was also observed with two separate mutant forms of SIRT1, H363Y and H355A, both of which lack deacetylase activity. Furthermore, LK-induced neuronal death was not prevented by resveratrol, a pharmacological activator of SIRT1, at concentrations at which it activates SIRT1. We extended our analysis to HT-22 neuroblastoma cells which can be induced to die by homocysteic acid treatment. While the effects of most of the SIRT proteins were similar to that observed in CGNs, SIRT6 was modestly protective against homocysteic acid toxicity in HT-22 cells. SIRT5 was generally localized in the mitochondria of HT-22 cells and was apoptotic. CONCLUSIONS/SIGNIFICANCE: Overall, our study makes three contributions - (a it represents the first analysis of SIRT3-7 in the regulation of neuronal survival, (b it shows that neuroprotection by SIRT1 can be mediated by a novel, non

  4. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder.

    Science.gov (United States)

    Rogers, Tiffany D; Dickson, Price E; McKimm, Eric; Heck, Detlef H; Goldowitz, Dan; Blaha, Charles D; Mittleman, Guy

    2013-08-01

    Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.

  5. Mechanism of the formation of hollow spherical granules using a high shear granulator.

    Science.gov (United States)

    Asada, Takumi; Nishikawa, Mitsunori; Ochiai, Yasushi; Noguchi, Shuji; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-05-30

    Recently, we have developed a novel granulation technology to manufacture hollow spherical granules (HSGs) for controlled-release formulations; however, the mechanism of the granulation is still unclear. The aim of this study is to determine the mechanism of the formation of the HSGs using a high shear granulator. Samples of granulated material were collected at various times during granulation and were investigated using scanning electron microscope and X-ray computed tomography. It was observed that the granulation proceeded by drug layering to the polymer, followed by formation of a hollow in the granule. In addition, it was also found that generation of a crack in the adhered drug layer and air flow into the granules might be involved in forming the hollow in the structure. Observation of the granulation of formulations with different types of drugs and polymers indicated that negative pressure in the granules occurred and the granules caved in when the hollow was formed. The hollow-forming speed and the shell density of the hollow granules depended on the particular drug and polymer. Taken together, the granulation mechanism of HSGs was determined and this information will be valuable for HSGs technology development. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Forced swimming sabotages the morphological and synaptic maturation of newborn granule neurons and triggers a unique pro-inflammatory milieu in the hippocampus.

    Science.gov (United States)

    Llorens-Martín, María; Jurado-Arjona, Jerónimo; Bolós, Marta; Pallas-Bazarra, Noemí; Ávila, Jesús

    2016-03-01

    Recent experimental data suggest that mood disorders are related to inflammatory phenomena and have led to the "inflammatory hypothesis of depression". Given that the hippocampus is one of the most affected areas in these disorders, we used a model of acute stress (the Porsolt test) to evaluate the consequences of forced swimming on two crucial events related to the pathophysiology of major depression: the functional maturation of newborn granule neurons; and the hippocampal inflammatory milieu. Using PSD95:GFP-expressing retroviruses, we found that forced swimming selectively alters the dendritic morphology of newborn neurons and impairs their connectivity by reducing the number and volume of their postsynaptic densities. In addition, acute stress triggered a series of morphological changes in microglial cells, together with an increase in microglial CD68 expression, thus suggesting the functional and morphological activation of this cell population. Furthermore, we observed an intriguing change in the hippocampal inflammatory milieu in response to forced swimming. Importantly, the levels of several molecules affected by acute stress (such as Interleukin-6 and eotaxin) have been described to also be altered in patients with depression and other mood disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Clinicopathological features of cerebellar lipidized medulloblastoma: a case report and review of literatures

    Directory of Open Access Journals (Sweden)

    LIU Li-yan

    2012-06-01

    Full Text Available Objective To explore the clinicopathological features of cerebellar lipidized medulloblastoma. Methods The clinical manifestations, neuroimaging, histopathological and immunohistochemical features were analysed in one case of lipidized medulloblastoma in the cerebellar vermis. Related literatures were reviewed. Results A 26-year-old man presented with intermittent headache,accompanied by dizziness, nausea and vomiting. The magnetic resonance imaging (MRI demonstrated a mass located the cerebellar vermis convex to the fourth ventricle. The tumor with well-demarcated boundary was homogeneous hypointense on T1 weighted and heterogeneous hyperintense on T2 weighted images, and enhanced brilliantly and homogenously on contrast. The patient subsequently underwent gross total mass resection. Microscopically,there was diffuse infiltration by high cellularity of tumor cells. The cytoplasm were thin eosinophilic to amphophilic. The neoplastic cells showed round to oval hyperchromatic nuclei with a delicately stippled chromatin and occasional conspicuous nucleoli and numerous mitotic figures were also present. Thin-wall vascular proliferation was detected. Lipid-laden cells were focally distributed in tumor tissue. On immunohistochemical examination, the neoplasm was reactive for CD56 and synaptophysin (Syn, focally positive for neurofilament protein (NF, weakly positive for oligodendrocyte lineage transcription factor 2 (Olig-2, and negtive for nestin, neuronal nuclei (NeuN, S-100 protein (S-100, glial fibrillary acidic protein (GFAP and epithelial membrane antigen (EMA. TP53 protein was over expressed in 10% of tumor cells. Ki-67 antigen labeling index were about 40% . Conclusion Cerebellar lipidized medulloblastoma is rare. Neuroimaging showed space occupying lesion in cerebellar vermis. Histologically, the tumor cells were consisted of monotonous, round cells with focal accumulations of lipidized cells. The differential diagnosis include

  8. Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation

    DEFF Research Database (Denmark)

    Kumar, Ashish; Alakarjula, Maija; Vanhoorne, Valérie

    2016-01-01

    Twin-screw granulation is a promising wet granulation technique for the continuous manufacturing of pharmaceutical solid dosage forms. A twin screw granulator displays a short residence time. Thus, the solid-liquid mixing must be achieved quickly by appropriate arrangement of transport and kneading...

  9. Hypertensive cerebellar hemorrhage and cerebellar hemorrhage caused by cryptic angioma

    International Nuclear Information System (INIS)

    Yoshida, Shinichi; Sano, Keiji; Kwak, Suyong; Saito, Isamu.

    1981-01-01

    A series of 44 patients with hypertensive cerebellar hemorrhage and nine patients with cerebellar hemorrhage caused by small angiomas is described. Hypertensive hemorrhage occurred most frequently in the patients in their seventies, whereas the onset of angioma-caused hemorrhage was often seen below the age of 40. Clinical syndromes of cerebellar hemorrhages can be categorized into three basic types: the vertigo syndrome, cerebellar dysfunction syndrome and brain stem compression syndrome. Patients with small (>= 2 cm in diameter in CT scans) and medium-sized (2 cm = 3 cm) hematomas deteriorated into unresponsive conditions and developed signs of brain stem compression. Surgical mortality was 32% in the hypertensive group, while it was 0% in the angioma group. Mortality as well as morbidity in both groups was strongly influenced by the preoperative status of consciousness. Our results suggest that substantial improvement could be obtained in the overall outcome of this disease by emergency craniectomy and removal of hematomas in all patients with large hematomas regardless of the levels of consciousness and regardless of the causes of bleeding. Furthermore, when clinical information and CT findings are suggestive of a ''cryptic'' angioma as the causative lesion, posterior fossa surgery may be indicated to extirpate the lesion, even if the hematoma is small. (author)

  10. Cerebro-cerebellar circuits in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Anila M. D'Mello

    2015-11-01

    Full Text Available The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. In contrast, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.

  11. Cerebro-cerebellar circuits in autism spectrum disorder.

    Science.gov (United States)

    D'Mello, Anila M; Stoodley, Catherine J

    2015-01-01

    The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.

  12. Cerebellar Roles in Self-Timing for Sub- and Supra-Second Intervals.

    Science.gov (United States)

    Ohmae, Shogo; Kunimatsu, Jun; Tanaka, Masaki

    2017-03-29

    Previous studies suggest that the cerebellum and basal ganglia are involved in sub-second and supra-second timing, respectively. To test this hypothesis at the cellular level, we examined the activity of single neurons in the cerebellar dentate nucleus in monkeys performing the oculomotor version of the self-timing task. Animals were trained to report the passage of time of 400, 600, 1200, or 2400 ms following a visual cue by making self-initiated memory-guided saccades. We found a sizeable preparatory neuronal activity before self-timed saccades across delay intervals, while the time course of activity correlated with the trial-by-trial variation of saccade latency in different ways depending on the length of the delay intervals. For the shorter delay intervals, the ramping up of neuronal firing rate started just after the visual cue and the rate of rise of neuronal activity correlated with saccade timing. In contrast, for the longest delay (2400 ms), the preparatory activity started late during the delay period, and its onset time correlated with self-timed saccade latency. Because electrical microstimulation applied to the recording sites during saccade preparation advanced self-timed but not reactive saccades, regardless of their directions, the signals in the cerebellum may have a causal role in self-timing. We suggest that the cerebellum may regulate timing in both sub-second and supra-second ranges, although its relative contribution might be greater for sub-second than for supra-second time intervals. SIGNIFICANCE STATEMENT How we decide the timing of self-initiated movement is a fundamental question. According to the prevailing hypothesis, the cerebellum plays a role in monitoring sub-second timing, whereas the basal ganglia are important for supra-second timing. To verify this, we explored neuronal signals in the monkey cerebellum while animals reported the passage of time in the range 400-2400 ms by making eye movements. Contrary to our expectations, we

  13. Low and high dietary folic acid levels perturb postnatal cerebellar morphology in growing rats.

    Science.gov (United States)

    Partearroyo, Teresa; Pérez-Miguelsanz, Juliana; Peña-Melián, Ángel; Maestro-de-Las-Casas, Carmen; Úbeda, Natalia; Varela-Moreiras, Gregorio

    2016-06-01

    The brain is particularly sensitive to folate metabolic disturbances, because methyl groups are critical for brain functions. This study aimed to investigate the effects of different dietary levels of folic acid (FA) on postnatal cerebellar morphology, including the architecture and organisation of the various layers. A total of forty male OFA rats (a Sprague-Dawley strain), 5 weeks old, were classified into the following four dietary groups: FA deficient (0 mg/kg FA); FA supplemented (8 mg/kg FA); FA supra-supplemented (40 mg/kg FA); and control (2 mg/kg FA) (all n 10 per group). Rats were fed ad libitum for 30 d. The cerebellum was quickly removed and processed for histological and immunohistochemical analysis. Slides were immunostained for glial fibrillary acidic protein (to label Bergmann glia), calbindin (to label Purkinje cells) and NeuN (to label post-mitotic neurons). Microscopic analysis revealed two types of defect: partial disappearance of fissures and/or neuronal ectopia, primarily in supra-supplemented animals (incidence of 80 %, P≤0·01), but also in deficient and supplemented groups (incidence of 40 %, P≤0·05), compared with control animals. The primary fissure was predominantly affected, sometimes accompanied by defects in the secondary fissure. Our findings show that growing rats fed an FA-modified diet, including both deficient and supplemented diets, have an increased risk of disturbances in cerebellar corticogenesis. Defects caused by these diets may have functional consequences in later life. The present study is the first to demonstrate that cerebellar morphological defects can arise from deficient, as well as high, FA levels in the diet.

  14. Early x-irradiation of rats. Part 2. Effect of granule cells and their dendrodendritic synapses in the olfactory bulb

    Energy Technology Data Exchange (ETDEWEB)

    Halasz, N

    1987-01-01

    Low, repeated doses of X-rays from a Co/sup 60/ source were used to impair the development of the granule cells and their dendritic terminals in the olfactory bulb, and the resulting effect was studied under light and electron microscopes at 9 days of age. Irradiation of rats from embryonic day 18 (in utero) to postnatal day 5 resulted, among others, in maldevelopment of the (internal) granule cell and external plexiform layers. This was accompanied by a decrease in the number and the density of the granule cells, and the remaining granule cells contained less ribosomes, regardless of their position within the layer. This implies that both supposed subtypes of granule cells were effected. In the external plexiform layer, a reduced number of mature dendrodendritic synapses and signs of harmed granule gemmules were observed. The results suggest that intrauterinal plus postnatal irradiation with low, repeated doses of X-rays may be an effective tool impairing the development of prenatally forming neurons.

  15. Cerebellar Hypoplasia and Dysmorphia in Neurofibromatosis Type 1.

    Science.gov (United States)

    Toelle, Sandra P; Poretti, Andrea; Weber, Peter; Seute, Tatjana; Bromberg, Jacoline E C; Scheer, Ianina; Boltshauser, Eugen

    2015-12-01

    Unidentified bright objects (UBO) and tumors are well-known cerebellar abnormalities in neurofibromatosis type 1 (NF1). Literature reports on malformative cerebellar anomalies in neurofibromatosis type 1 (NF1), however, are scant. We retrospectively studied the clinical and neuroimaging findings of 5 patients with NF1 (4 females, age 6 to 29 years at last follow-up) and cerebellar anomalies. Cerebellar symptoms on neurological examination were mild or even not evident whereas learning disabilities were more or less pronounced in four patients. Two patients had cerebellar hypoplasia (diffusely enlarged cerebellar interfoliar spaces) and three cerebellar dysmorphias involving mainly one cerebellar hemisphere. In NF1, malformative cerebellar anomalies are rare (estimated prevalence of about 1%), but most likely underestimated and easily overlooked, because physicians tend to focus on more prevalent, obvious, and well-known findings such as optic pathway gliomas, other tumors, and UBO. This kind of cerebellar anomaly in NF1 has most likely a malformative origin, but the exact pathogenesis is unknown. The individual clinical significance is difficult to determine. We suggest that cerebellar anomalies should be systematically evaluated in neuroimaging studies of NF1 patients.

  16. Sub-Lethal Dose of Shiga toxin 2 from Enterohemorrhagic Escherichia coli Affects Balance and Cerebellar Cythoarquitecture.

    Directory of Open Access Journals (Sweden)

    Luciana eD’Alessio

    2016-02-01

    Full Text Available Shiga toxin producing Escherichia coli may damage the central nervous system before or concomitantly to manifested hemolytic uremic syndrome symptoms. The cerebellum is frequently damaged during this syndrome, however the deleterious effects of Shiga toxin 2 has never been integrally reported by ultrastructural, physiological and behavioral means. The aim of this study was to determine the cerebellar compromise after intravenous administration of a sub-lethal dose of Shiga toxin 2 by measuring the cerebellar blood brain barrier permeability, behavioral task of cerebellar functionality (inclined plane test, and ultrastructural analysis (transmission electron microscope. Intravenous administration of vehicle (control group, sub-lethal dose of 0.5 ηg and 1 ηg of Stx2 per mouse were tested for behavioral and ultrastructural studies. A set of three independent experiments were performed for each study (n=6. Blood–Brain Barrier resulted damaged and consequently its permeability was significantly increased. Lower scores obtained in the inclined plane task denoted poor cerebellar functionality in comparison to their controls. The most significant lower score was obtained after 5 days of 1ηg of toxin administration. Transmission electron microscope micrographs from the Stx2-treated groups showed neurons with a progressive neurodegenerative condition in a dose dependent manner. As sub-lethal intravenous Shiga toxin 2 altered the blood brain barrier permeability in the cerebellum the toxin penetrated the cerebellar parenchyma and produced cell damaged with significant functional implications in the test balance.

  17. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency

    International Nuclear Information System (INIS)

    Giordano, Gennaro; Afsharinejad, Zhara; Guizzetti, Marina; Vitalone, Annabella; Kavanagh, Terrance J.; Costa, Lucio G.

    2007-01-01

    Over the past several years evidence has been accumulating from in vivo animal studies, observations in humans, and in vitro studies, that organophosphorus (OP) insecticides may induce oxidative stress. Such effects may contribute to some of the toxic manifestations of OPs, particularly upon chronic or developmental exposures. The aim of this study was to investigate the role of oxidative stress in the neurotoxicity of two commonly used OPs, chlorpyrifos (CPF) and diazinon (DZ), their oxygen analogs (CPO and DZO), and their 'inactive' metabolites (TCP and IMP), in neuronal cells from a genetic model of glutathione deficiency. Cerebellar granule neurons from wild type mice (Gclm +/+) and mice lacking the modifier subunit of glutamate cysteine ligase (Gclm -/-), the first and limiting step in the synthesis of glutathione (GSH), were utilized. The latter display very low levels of GSH and are more susceptible to the toxicity of agents that increase oxidative stress. CPO and DZO were the most cytotoxic compounds, followed by CPF and DZ, while TCP and IMP displayed lower toxicity. Toxicity was significantly higher (10- to 25-fold) in neurons from Gclm (-/-) mice, and was antagonized by various antioxidants. Depletion of GSH from Gclm (+/+) neurons significantly increased their sensitivity to OP toxicity. OPs increased intracellular levels of reactive oxygen species and lipid peroxidation and in both cases the effects were greater in neurons from Gclm (-/-) mice. OPs did not alter intracellular levels of GSH, but significantly increased those of oxidized glutathione (GSSG). Cytotoxicity was not antagonized by cholinergic antagonists, but was decreased by the calcium chelator BAPTA-AM. These studies indicate that cytotoxicity of OPs involves generation of reactive oxygen species and is modulated by intracellular GSH, and suggest that it may involve disturbances in intracellular homeostasis of calcium

  18. Essential Function of Dicer in Resolving DNA Damage in the Rapidly Dividing Cells of the Developing and Malignant Cerebellum

    Directory of Open Access Journals (Sweden)

    Vijay Swahari

    2016-01-01

    Full Text Available Maintenance of genomic integrity is critical during neurodevelopment, particularly in rapidly dividing cerebellar granule neuronal precursors that experience constitutive replication-associated DNA damage. As Dicer was recently recognized to have an unexpected function in the DNA damage response, we examined whether Dicer was important for preserving genomic integrity in the developing brain. We report that deletion of Dicer in the developing mouse cerebellum resulted in the accumulation of DNA damage leading to cerebellar progenitor degeneration, which was rescued with p53 deficiency; deletion of DGCR8 also resulted in similar DNA damage and cerebellar degeneration. Dicer deficiency also resulted in DNA damage and death in other rapidly dividing cells including embryonic stem cells and the malignant cerebellar progenitors in a mouse model of medulloblastoma. Together, these results identify an essential function of Dicer in resolving the spontaneous DNA damage that occurs during the rapid proliferation of developmental progenitors and malignant cells.

  19. Cerebellar mutism--report of four cases.

    Science.gov (United States)

    Ozimek, A; Richter, S; Hein-Kropp, C; Schoch, B; Gorissen, B; Kaiser, O; Gizewski, E; Ziegler, W; Timmann, D

    2004-08-01

    The aim of the present study was to investigate the manifestations of mutism after surgery in children with cerebellar tumors. Speech impairment following cerebellar mutism in children was investigated based on standardized acoustic speech parameters and perceptual criteria. Mutistic and non-mutistic children after cerebellar surgery as well as orthopedic controls were tested pre-and postoperatively. Speech impairment was compared with the localization of cerebellar lesions (i. e. affected lobules and nuclei). Whereas both control groups showed no abnormalities in speech and behavior, the mutistic group could be divided into children with dysarthria in post mutistic phase and children with mainly behavioral disturbances. In the mutistic children involvement of dentate and fastigial nuclei tended to be more frequent and extended than in the nonmutistic cerebellar children. Cerebellar mutism is a complex phenomenon of at least two types. Dysarthric symptoms during resolution of mutism support the anarthria hypothesis, while mainly behavioral changes suggest an explanation independent from speech motor control.

  20. Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum.

    Science.gov (United States)

    Kidwell, Chelsea U; Su, Chen-Ying; Hibi, Masahiko; Moens, Cecilia B

    2018-06-01

    A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Complex partial seizures: cerebellar metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Theodore, W.H.; Fishbein, D.; Deitz, M.; Baldwin, P.

    1987-07-01

    We used positron emission tomography (PET) with (/sup 18/F)2-deoxyglucose to study cerebellar glucose metabolism (LCMRglu) and the effect of phenytoin (PHT) in 42 patients with complex partial seizures (CPS), and 12 normal controls. Mean +/- SD patient LCMRglu was 6.9 +/- 1.8 mg glucose/100 g/min (left = right), significantly lower than control values of 8.5 +/- 1.8 (left, p less than 0.006), and 8.3 +/- 1.6 (right, p less than 0.02). Only four patients had cerebellar atrophy on CT/MRI; cerebellar LCMRglu in these was 5.5 +/- 1.5 (p = 0.054 vs. total patient sample). Patients with unilateral temporal hypometabolism or EEG foci did not have lateralized cerebellar hypometabolism. Patients receiving phenytoin (PHT) at the time of scan and patients with less than 5 years total PHT exposure had lower LCMRglu, but the differences were not significant. There were weak inverse correlations between PHT level and cerebellar LCMRglu in patients receiving PHT (r = -0.36; 0.05 less than p less than 0.1), as well as between length of illness and LCMRglu (r = -0.22; 0.05 less than p less than 0.1). Patients with complex partial seizures have cerebellar hypometabolism that is bilateral and due only in part to the effect of PHT.

  2. Early natural stimulation through environmental enrichment accelerates neuronal development in the mouse dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Na Liu

    Full Text Available The dentate gyrus is the primary afferent into the hippocampal formation, with important functions in learning and memory. Granule cells, the principle neuronal type in the dentate gyrus, are mostly formed postnatally, in a process that continues into adulthood. External stimuli, including environmental enrichment, voluntary exercise and learning, have been shown to significantly accelerate the generation and maturation of dentate granule cells in adult rodents. Whether, and to what extent, such environmental stimuli regulate the development and maturation of dentate granule cells during early postnatal development is largely unknown. Furthermore, whether natural stimuli affect the synaptic properties of granule cells had been investigated neither in newborn neurons of the adult nor during early development. To examine the effect of natural sensory stimulation on the dentate gyrus, we reared newborn mice in an enriched environment (EE. Using immunohistochemistry, we showed that dentate granule cells from EE-reared mice exhibited earlier morphological maturation, manifested as faster peaking of doublecortin expression and elevated expression of mature neuronal markers (including NeuN, calbindin and MAP2 at the end of the second postnatal week. Also at the end of the second postnatal week, we found increased density of dendritic spines across the entire dentate gyrus, together with elevated levels of postsynaptic scaffold (post-synaptic density 95 and receptor proteins (GluR2 and GABA(ARγ2 of excitatory and inhibitory synapses. Furthermore, dentate granule cells of P14 EE-reared mice had lower input resistances and increased glutamatergic and GABAergic synaptic inputs. Together, our results demonstrate that EE-rearing promotes morphological and electrophysiological maturation of dentate granule cells, underscoring the importance of natural environmental stimulation on development of the dentate gyrus.

  3. Coupling internal cerebellar models enhances online adaptation and supports offline consolidation in sensorimotor tasks.

    Science.gov (United States)

    Passot, Jean-Baptiste; Luque, Niceto R; Arleo, Angelo

    2013-01-01

    The cerebellum is thought to mediate sensorimotor adaptation through the acquisition of internal models of the body-environment interaction. These representations can be of two types, identified as forward and inverse models. The first predicts the sensory consequences of actions, while the second provides the correct commands to achieve desired state transitions. In this paper, we propose a composite architecture consisting of multiple cerebellar internal models to account for the adaptation performance of humans during sensorimotor learning. The proposed model takes inspiration from the cerebellar microcomplex circuit, and employs spiking neurons to process information. We investigate the intrinsic properties of the cerebellar circuitry subserving efficient adaptation properties, and we assess the complementary contributions of internal representations by simulating our model in a procedural adaptation task. Our simulation results suggest that the coupling of internal models enhances learning performance significantly (compared with independent forward and inverse models), and it allows for the reproduction of human adaptation capabilities. Furthermore, we provide a computational explanation for the performance improvement observed after one night of sleep in a wide range of sensorimotor tasks. We predict that internal model coupling is a necessary condition for the offline consolidation of procedural memories.

  4. Coupling internal cerebellar models enhances online adaptation and supports offline consolidation in sensorimotor tasks

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste ePassot

    2013-07-01

    Full Text Available The cerebellum is thought to mediate sensorimotor adaptation through the acquisition of internal models of the body–environment interaction. These representations can be of two types, identified as forward and inverse models. The first predicts the sensory consequences of actions, while the second provides the correct commands to achieve desired state transitions. In this paper, we propose a composite architecture consisting of multiple cerebellar internal models to account for the adaptation performance of humans during sensorimotor learning. The proposed model takes inspiration from the cerebellar microcomplex circuit, and employs spiking neurons to process information. We investigate the intrinsic properties of the cerebellar circuitry subserving efficient adaptation properties, and we assess the complementary contributions of internal representations by simulating our model in a procedural adaptation task. Our simulation results suggest that the coupling of internal models enhances learning performance significantly (compared with independent forward and inverse models, and it allows for the reproduction of human adaptation capabilities. Furthermore, we provide a computational explanation for the performance improvement observed after one night of sleep in a wide range of sensorimotor tasks. We predict that internal model coupling is a necessary condition for the offline consolidation of procedural memories.

  5. The Cerebellar-Cerebral Microstructure Is Disrupted at Multiple Sites in Very Preterm Infants with Cerebellar Haemorrhage.

    Science.gov (United States)

    Neubauer, Vera; Djurdjevic, Tanja; Griesmaier, Elke; Biermayr, Marlene; Gizewski, Elke Ruth; Kiechl-Kohlendorfer, Ursula

    2018-01-01

    Recent advances in magnetic resonance imaging (MRI) techniques have prompted reconsideration of the anatomical correlates of adverse outcomes in preterm infants. The importance of the contribution made by the cerebellum is now increasingly appreciated. The effect of cerebellar haemorrhage (CBH) on the microstructure of the cerebellar-cerebral circuit is largely unexplored. To investigate the effect of CBH on the microstructure of cerebellar-cerebral connections in preterm infants aged microstructure (fractional anisotropy [FA] and apparent diffusion coefficient) were quantified in 5 vulnerable regions (the centrum semiovale, posterior limb of the internal capsule, corpus callosum, and superior and middle cerebellar peduncles). Group differences between infants with CBH and infants without CBH were assessed. There were 267 infants included in the study. Infants with CBH (isolated and combined) had significantly lower FA values in all regions investigated. Infants with isolated CBH showed lower FA in the middle and superior cerebellar peduncles and in the posterior limb of the internal capsule. This study provides evidence that CBH causes alterations in localised and remote WM pathways in the developing brain. The disruption of the cerebellar-cerebral microstructure at multiple sites adds further support for the concept of developmental diaschisis, which is propagated as an explanation for the consequences of early cerebellar injury on cognitive and affective domains. © 2017 S. Karger AG, Basel.

  6. Granule size control and targeting in pulsed spray fluid bed granulation.

    Science.gov (United States)

    Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko

    2009-07-30

    The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.

  7. [Memory transfer in cerebellar motor learning].

    Science.gov (United States)

    Nagao, Soichi

    2012-01-01

    Most of our motor skills are acquired through learning. Experiments of gain adaptation of ocular reflexes have consistently suggested that the memory of adaptation is initially formed in the cerebellar cortex, and is transferred to the cerebellar (vestibular) nuclei for consolidation to long-term memory after repetitions of training. We have recently developed a new system to evaluate the motor learning in human subjects using prism adaptation of hand reaching movement, by referring to the prism adaptation of dart throwing of Martin et al. (1996). In our system, the subject views the small target presented in the touch-panel screen, and touches it with his/her finger without direct visual feedback. After 15-30 trials of touching wearing prisms, an adaptation occurs in healthy subjects: they became able to touch the target correctly. Meanwhile, such an adaptation was impaired in patients of cerebellar disease. We have proposed a model of human prism adaptation that the memory of adaptation is initially encoded in the cerebellar cortex, and is later transferred to the cerebellar nuclei after repetitions of training. The memory in the cerebellar cortex may be formed and extinguished independently of the memory maintained in the cerebellar nuclei, and these two memories work cooperatively.

  8. Thyroid hormone modulates the extracellular matrix organization and expression in cerebellar astrocyte: effects on astrocyte adhesion.

    Science.gov (United States)

    Trentin, Andréa Gonçalves; De Aguiar, Cláudia Beatriz Nedel Mendes; Garcez, Ricardo Castilho; Alvarez-Silva, Marcio

    2003-06-01

    The effects of thyroid hormone (T(3)) on extracellular matrix (ECM) expression and organization in cerebellar astrocytes were studied. Control astrocytes exhibit laminin immunostaining distributed in a punctate configuration and fibronectin concentrated in focal points at the cell surface. These cells attach to the substratum by membrane points, as shown by scanning microscopy, possibly by focal points stained to fibronectin. In contrast, after T(3) treatment, laminin assumes a fibrillary pattern and fibronectin becomes organized in filaments homogeneously distributed on the cell surface; the cells acquire a very flat and spread morphology. T(3) treatment also modulates astrocyte adhesion. In addition, increased expression of both laminin and fibronectin was detected by Western blot. These alterations in fibronectin and/or laminin production and organization may be involved in the flat and spread morphology and in altered adhesion. We observed that fibroblast growth factor-2 (FGF(2)) added to cultures had similar effects to those described to T(3). Neutralizing antibodies against FGF(2) reversed T(3) effects on fibronectin and laminin distribution. We also observed that cerebellar neurons co-cultured on T(3)-treated astrocytes had an increase in the number of cells and presented longer neurites. Thus, we propose a novel mechanism of the effect of thyroid hormone on cerebellar development mediated by astrocytes: T(3) may induce astrocyte secretion of growth factors, mainly FGF(2), that autocrinally stimulate astrocyte proliferation, reorganization in ECM proteins, and alterations in cell spreading and adhesion. These effects may indirectly influence neuronal development. Copyright 2003 Wiley-Liss, Inc.

  9. Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats.

    Science.gov (United States)

    Bueno-Nava, Antonio; Gonzalez-Pina, Rigoberto; Alfaro-Rodriguez, Alfonso; Nekrassov-Protasova, Vladimir; Durand-Rivera, Alfredo; Montes, Sergio; Ayala-Guerrero, Fructuoso

    2010-10-01

    The sensorimotor cortex and the cerebellum are interconnected by the corticopontocerebellar (CPC) pathway and by neuronal groups such as the serotonergic system. Our aims were to determine the levels of cerebellar serotonin (5-HT) and lipid peroxidation (LP) after cortical iron injection and to analyze the motor function produced by the injury. Rats were divided into the following three groups: control, injured and recovering. Motor function was evaluated using the beam-walking test as an assessment of overall locomotor function and the footprint test as an assessment of gait. We also determined the levels of 5-HT and LP two and twenty days post-lesion. We found an increase in cerebellar 5-HT and a concomitant increase in LP in the pons and cerebellum of injured rats, which correlated with their motor deficits. Recovering rats showed normal 5-HT and LP levels. The increase of 5-HT in injured rats could be a result of serotonergic axonal injury after cortical iron injection. The LP and motor deficits could be due to impairments in neuronal connectivity affecting the corticospinal and CPC tracts and dysmetric stride could be indicative of an ataxic gait that involves the cerebellum.

  10. Crossed cerebellar diaschisis. A positron emission tomography study with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose

    International Nuclear Information System (INIS)

    Kajimoto, Katsufumi; Oku, Naohiko; Kimura, Yasuyuki

    2007-01-01

    Crossed cerebellar diaschisis (CCD) is defined as a depression of blood flow and oxidative metabolism of glucose in the cerebellum contralateral to a supratentorial brain lesion, as detected with positron emission tomography (PET) and single photon emission computed tomography. We examined whether L-[methyl- 11 C]methionine (MET) uptake is affected in CCD. In 12 patients with a unilateral supratentorial brain tumor, we evaluated the uptake of 2-deoxy-2-[ 18 F]fluoro-D-glucose (FDG) and MET in the cerebellar hemispheres by means of PET. Asymmetry index (AI) was defined as a difference in the average count between the ipsilateral and contralateral cerebellar hemispheres divided by the average count in both cerebellar hemispheres. Patients with AI of FDG PET more than 0.1 and those with AI equal to 0.1 or less than 0.1 were classified as CCD-positive and CCD-negative, respectively. Six patients were CCD-positive and others were CCD-negative in the FDG PET study. Between CCD-positive and CCD-negative patients, mean AI of MET was not significantly different (0.017±0.023 and 0.014±0.039, respectively). Different from glucose metabolism, cerebellar MET uptake was not affected in CCD. The present study may indicate that cerebellar MET uptake is independent of suppression of cerebellar neuronal activity. (author)

  11. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons.

    Science.gov (United States)

    Weber, Thomas; Namikawa, Kazuhiko; Winter, Barbara; Müller-Brown, Karina; Kühn, Ralf; Wurst, Wolfgang; Köster, Reinhard W

    2016-11-15

    The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTAC TM ) further expands the repertoire of genetic tools for conditional interrogation of cellular functions. © 2016. Published by The Company of Biologists Ltd.

  12. Regularities of formation of granules at granulation of powdered materials in drum devices

    International Nuclear Information System (INIS)

    Kelbaliyev, G.I; Samedli, V.M.

    2008-01-01

    Full text:Granulation of powdered materials in the presence of binding agent is widely used in the most multi-tankage productions of chemical, food, pharmaceutical, metallurgical and agrarian technology. Granulation of powdered materials with participation of liquid phase is carried out in screw, disk, plase-shaped and drum devices and also in devices with mixers. In all cases a formation and growth of granules takes place owing to wetting of separate particles of powder leading to agglomeration and coagulation of particles in their contact with each other. It is apparent that in early stage of granule formation a growth and formation of granules takes place owing to adherence of small particles and agglomerates to larger granules. The content of liquid phase owing to which are appeared adhesive, capillary and surface forces, keeping particles on surface of granule exerts an essential influence on process of granule formation. Besides composition of mixture, its moisture and physical-chemical properties of initial components a mixing frequency degree of filling and angle of inclination of the device, ratio of liquid and hard phases which defines finally qualitative characteristics of the process exert an essential influence on formation of granules as a result of agglomeration of particles of powder. Powder lamination on granule surface is as consequence of its consolidation whereas as a result of consolidation and compression, a binding agent containing in pores squeezed out to a surface, which increases a possibility and probability of further sticking of dry particles of powder. In all cases the further growth and completeness of form of granule is determined by distribution of concentration of binding agent in volume of granule, i.e. moisture content or moisture of granule surface

  13. Amylolytic hydrolysis of native starch granules affected by granule surface area.

    Science.gov (United States)

    Kim, J C; Kong, B W; Kim, M J; Lee, S H

    2008-11-01

    Initial stage of hydrolysis of native starch granules with various amylolytic enzymes, alpha-amylase from Bacillus subtilis, glucoamylase I (GA-I) and II (GA-II) from Aspergillus niger, and beta-amylase from sweet potato showed that the reaction was apparently affected by a specific surface area of the starch granules. The ratios of the reciprocal of initial velocity of each amylolytic hydrolysis for native potato and maize starch to that for rice with the amylolytic enzymes were nearly equivalent to the ratio of surface area per mass of the 2 starch granules to that of rice, that is, 6.94 and 2.25, respectively. Thus, the reciprocal of initial velocity of each enzymatic hydrolysis as expressed in a Lineweaver-Burk plot was a linear function of the reciprocal of surface area for each starch granule. As a result, it is concluded that amylolytic hydrolysis of native starch granules is governed by the specific surface area, not by the mass concentration, of each granule.

  14. Status epilepticus increases mature granule cells in the molecular layer of the dentate gyrus in rats★

    Science.gov (United States)

    Liang, Zhaoliang; Gao, Fei; Wang, Fajun; Wang, Xiaochen; Song, Xinyu; Liu, Kejing; Zhan, Ren-Zhi

    2013-01-01

    Enhanced neurogenesis in the dentate gyrus of the hippocampus following seizure activity, especially status epilepticus, is associated with ectopic residence and aberrant integration of newborn granule cells. Hilar ectopic granule cells may be detrimental to the stability of dentate circuitry by means of their electrophysiological properties and synaptic connectivity. We hypothesized that status epilepticus also increases ectopic granule cells in the molecular layer. Status epilepticus was induced in male Sprague-Dawley rats by intraperitoneal injection of pilocarpine. Immunostaining showed that many doublecortin-positive cells were present in the molecular layer and the hilus 7 days after the induction of status epilepticus. At least 10 weeks after status epilepticus, the estimated number of cells positive for both prospero homeobox protein 1 and neuron-specific nuclear protein in the hilus was significantly increased. A similar trend was also found in the molecular layer. These findings indicate that status epilepticus can increase the numbers of mature and ectopic newborn granule cells in the molecular layer. PMID:25206705

  15. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats

    Directory of Open Access Journals (Sweden)

    Fernando B. R. da Silva

    2018-05-01

    Full Text Available Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures’ morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF, pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

  16. Temporal integration and 1/f power scaling in a circuit model of cerebellar interneurons.

    Science.gov (United States)

    Maex, Reinoud; Gutkin, Boris

    2017-07-01

    Inhibitory interneurons interconnected via electrical and chemical (GABA A receptor) synapses form extensive circuits in several brain regions. They are thought to be involved in timing and synchronization through fast feedforward control of principal neurons. Theoretical studies have shown, however, that whereas self-inhibition does indeed reduce response duration, lateral inhibition, in contrast, may generate slow response components through a process of gradual disinhibition. Here we simulated a circuit of interneurons (stellate and basket cells) of the molecular layer of the cerebellar cortex and observed circuit time constants that could rise, depending on parameter values, to >1 s. The integration time scaled both with the strength of inhibition, vanishing completely when inhibition was blocked, and with the average connection distance, which determined the balance between lateral and self-inhibition. Electrical synapses could further enhance the integration time by limiting heterogeneity among the interneurons and by introducing a slow capacitive current. The model can explain several observations, such as the slow time course of OFF-beam inhibition, the phase lag of interneurons during vestibular rotation, or the phase lead of Purkinje cells. Interestingly, the interneuron spike trains displayed power that scaled approximately as 1/ f at low frequencies. In conclusion, stellate and basket cells in cerebellar cortex, and interneuron circuits in general, may not only provide fast inhibition to principal cells but also act as temporal integrators that build a very short-term memory. NEW & NOTEWORTHY The most common function attributed to inhibitory interneurons is feedforward control of principal neurons. In many brain regions, however, the interneurons are densely interconnected via both chemical and electrical synapses but the function of this coupling is largely unknown. Based on large-scale simulations of an interneuron circuit of cerebellar cortex, we

  17. Dipeptide Piracetam Analogue Noopept Improves Viability of Hippocampal HT-22 Neurons in the Glutamate Toxicity Model.

    Science.gov (United States)

    Antipova, T A; Nikolaev, S V; Ostrovskaya, P U; Gudasheva, T A; Seredenin, S B

    2016-05-01

    Effect of noopept (N-phenylacetyl-prolylglycine ethyl ester) on viability of neurons exposed to neurotoxic action of glutamic acid (5 mM) was studied in vitro in immortalized mouse hippocampal HT-22 neurons. Noopept added to the medium before or after glutamic acid improved neuronal survival in a concentration range of 10-11-10-5 M. Comparison of the effective noopept concentrations determined in previous studies on cultured cortical and cerebellar neurons showed that hippocampal neurons are more sensitive to the protective effect of noopept.

  18. Excess influx of Zn(2+) into dentate granule cells affects object recognition memory via attenuated LTP.

    Science.gov (United States)

    Suzuki, Miki; Fujise, Yuki; Tsuchiya, Yuka; Tamano, Haruna; Takeda, Atsushi

    2015-08-01

    The influx of extracellular Zn(2+) into dentate granule cells is nonessential for dentate gyrus long-term potentiation (LTP) and the physiological significance of extracellular Zn(2+) dynamics is unknown in the dentate gyrus. Excess increase in extracellular Zn(2+) in the hippocampal CA1, which is induced with excitation of zincergic neurons, induces memory deficit via excess influx of Zn(2+) into CA1 pyramidal cells. In the present study, it was examined whether extracellular Zn(2+) induces object recognition memory deficit via excess influx of Zn(2+) into dentate granule cells. KCl (100 mM, 2 µl) was locally injected into the dentate gyrus. The increase in intracellular Zn(2+) in dentate granule cells induced with high K(+) was blocked by co-injection of CaEDTA and CNQX, an extracellular Zn(2+) chelator and an AMPA receptor antagonist, respectively, suggesting that high K(+) increases the influx of Zn(2+) into dentate granule cells via AMPA receptor activation. Dentate gyrus LTP induction was attenuated 1 h after KCl injection into the dentate gyrus and also attenuated when KCl was injected 5 min after the induction. Memory deficit was induced when training of object recognition test was performed 1 h after KCl injection into the dentate gyrus and also induced when KCl was injected 5 min after the training. High K(+)-induced impairments of LTP and memory were rescued by co-injection of CaEDTA. These results indicate that excess influx of Zn(2+) into dentate granule cells via AMPA receptor activation affects object recognition memory via attenuated LTP induction. Even in the dentate gyrus where is scarcely innervated by zincergic neurons, it is likely that extracellular Zn(2+) homeostasis is strictly regulated for cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex.

    Science.gov (United States)

    Crook, J; Hendrickson, A; Robinson, F R

    2006-09-15

    Previous work demonstrates that the cerebellum uses glycine as a fast inhibitory neurotransmitter [Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res 66(1):211-221; Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450(1-2):342-353; Dieudonne S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441-1445; Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057; Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498; Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2):123-141]. In the rat cerebellum glycine is not released by itself but is released together with GABA by Lugaro cells onto Golgi cells [Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057] and by Golgi cells onto unipolar brush and granule cells [Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498]. Here we report, from immunolabeling evidence in Macaca cerebellum, that interneurons in the granular cell layer are glycine+ at a density

  20. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction

    Science.gov (United States)

    Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  1. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction.

    Science.gov (United States)

    Abulnaga, S Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M; Onyike, Chiadi U; Ying, Sarah H; Prince, Jerry L

    2016-02-27

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  2. The bihemispheric posterior inferior cerebellar artery

    International Nuclear Information System (INIS)

    Cullen, Sean P.; Ozanne, Augustin; Alvarez, Hortensia; Lasjaunias, Pierre

    2005-01-01

    Rarely, a solitary posterior inferior cerebellar artery (PICA) will supply both cerebellar hemispheres. We report four cases of this variant. We present a retrospective review of clinical information and imaging of patients undergoing angiography at our institution to identify patients with a bihemispheric PICA. There were four patients: three males and one female. One patient presented with a ruptured arteriovenous malformation, and one with a ruptured aneurysm. Two patients had normal angiograms. The bihemispheric PICA was an incidental finding in all cases. The bihemispheric vessel arose from the dominant left vertebral artery, and the contralateral posterior inferior cerebellar artery was absent or hypoplastic. In all cases, contralateral cerebellar supply arose from a continuation of the ipsilateral PICA distal to the choroidal point and which crossed the midline dorsal to the vermis. We conclude that the PICA may supply both cerebellar hemispheres. This rare anatomic variant should be considered when evaluating patients with posterior fossa neurovascular disease. (orig.)

  3. Massive cerebellar infarction: a neurosurgical approach

    Directory of Open Access Journals (Sweden)

    Salazar Luis Rafael Moscote

    2015-12-01

    Full Text Available Cerebellar infarction is a challenge for the neurosurgeon. The rapid recognition will crucial to avoid devastating consequences. The massive cerebellar infarction has pseudotumoral behavior, should affect at least one third of the volume of the cerebellum. The irrigation of the cerebellum presents anatomical diversity, favoring the appearance of atypical infarcts. The neurosurgical management is critical for massive cerebellar infarction. We present a review of the literature.

  4. Cerebellar transcranial static magnetic field stimulation transiently reduces cerebellar brain inhibition.

    Science.gov (United States)

    Matsugi, Akiyoshi; Okada, Y

    The aim of this study was to investigate whether transcranial static magnetic field stimulation (tSMS) delivered using a compact cylindrical NdFeB magnet over the cerebellum modulates the excitability of the cerebellum and contralateral primary motor cortex, as measured using cerebellar brain inhibition (CBI), motor evoked potentials (MEPs), and resting motor threshold (rMT). These parameters were measured before tSMS or sham stimulation and immediately, 5 minutes and 10 minutes after stimulation. There were no significant changes in CBI, MEPs or rMT over time in the sham stimulation condition, and no changes in MEPs or rMT in the tSMS condition. However, CBI was significantly decreased immediately after tSMS as compared to that before and 5 minutes after tSMS. Our results suggest that tSMS delivered to the cerebellar hemisphere transiently reduces cerebellar inhibitory output but does not affect the excitability of the contralateral motor cortex.

  5. THE STUDY OF THE KINETIC OF NATURAL ZEOLITE GRANULES GROWTH AT DIFFERENT WAYS OF GRANULATION

    Directory of Open Access Journals (Sweden)

    Rybachuk VD

    2016-12-01

    Full Text Available Introduction. Active substances and excipients used in the manufacture of medicines in tablet form, in most cases, have poor technological properties. This fact determines the need for prior granulation of mass before compression. Granulators of various sizes and designs, running on different modes, made the formation, growth and consolidation of the powder particles that lead to obtain pellets of different shapes and sizes. From the literature it is known that granulation leads to two forms of granules: isodiametric and nonisodiametric. The first group of particles forms has globular shape with a smooth surface and the proportion in which the length, thickness and height are about the same. They are usually made by fluidized bed granulation, spray drying, pelletizing and granulation in dragee pan. Granules of nonisodiametric form in which length is several times the width and height are made mostly by extrusion and compacting. The geometrical parameters of obtained granules are affected by the properties of raw materials, the granulation modes, type and amount of added humidifier and so on. The shape and size of granules, from a technological point of view, are the key factors that contribute, except organoleptic characteristics of the product, its technological properties such as particle size distribution, bulk volume, the ability of the material to shrinkage, porosity, fluidity, mechanical strength and so on. Properly selected for specific conditions granulation method is able to provide the finished product with the specified technological parameters depending on the needs. The aim of this work was to study the effect of granulation method and its conditions on the kinetics of growth of the natural zeolite granules and some quality characteristics of obtained granules. Material & methods. As objects of study served the natural zeolite pellets produced using 3%, 5%, 7% and 10% potato starch paste and solution of polyvinylpyrrolidone (PVP

  6. Somatostatin receptors in rat hippocampus: localization to intrinsic neurons

    International Nuclear Information System (INIS)

    Palacios, J.M.; Reubi, J.C.; Maurer, R.

    1986-01-01

    The effect of neurotoxic chemical and electrolytical lesions on somatostatin (SS) receptor binding in the septo-hippocampal afferents, pyramidal and granule cells of the rat hippocampus was examined by autoradiography using the stable SS analogue 125 I-204-090 as radioligand. Electrolytical lesions of the septum did not result in modification of SS binding in the hippocampus. In contrast, both granule cell lesion with colchicine and pyramidal or pyramidal and granule cell lesions with increasing kainic acid doses did result in a specific decrease of binding in the dentate gyrus and hippocampus (CA 1 and CA 3 ). These results suggest that SS receptors in the hippocampus are probably associated with elements from intrinsic neurons. (Author)

  7. Altered expression of genes involved in GABAergic transmission and neuromodulation of granule cell activity in the cerebellum of schizophrenia patients.

    Science.gov (United States)

    Bullock, W Michael; Cardon, Karen; Bustillo, Juan; Roberts, Rosalinda C; Perrone-Bizzozero, Nora I

    2008-12-01

    Deficits in gamma-aminobutyric acid (GABA) signaling have been described in the prefrontal cortex, limbic system, and cerebellum in individuals with schizophrenia. The purpose of the present study was to further investigate cerebellar gene expression alterations as they relate to decreases in GABAergic transmission by examining the expression of GABAergic markers, N-methyl-d-aspartic-acid (NMDA) receptor subunits, and cerebellum neuromodulators in individuals with schizophrenia. Subjects were postmortem men with a diagnosis of schizophrenia (N=13) and a postmortem interval-matched non-psychiatric male comparison group (N=13). The authors utilized real-time-quantitative polymerase chain reaction (PCR) to measure mRNA levels of the following GABAergic markers: glutamic acid decarboxylase (GAD) 65 and 67; GABA plasma membrane transporter-1 (GAT-1); GABA type A (GABA(A)) receptor subunits alpha(6), beta(3), and delta; and parvalbumin. In addition, real-time-quantitative PCR was utilized to assess mRNA levels of the NMDA receptor (NR) subunits NR1, NR2-A, NR2-B, NR2-C, and NR2-D as well as the cerebellar neuromodulators glutamate receptor (GluR)-6, kainate-preferring glutamate receptor subunit-2 (KA2), metabotropic glutamate receptor (mGluR)-2 and mGluR3, and neuronal nitric oxide synthase. Measurements for mRNA levels were determined using lateral cerebellar hemisphere tissue from both schizophrenia and comparison subjects. Schizophrenia subjects showed significant decreases in mRNA levels of GAD(67), GAD(65), GAT-1, mGluR2, and neuronal nitric oxide synthase. Increases in GABA(A)-alpha(6 )and GABA(A)-delta as well as GluR6 and KA2 were also observed. Medication effects on the expression of the same genes were examined in rats treated with either haloperidol (Sprague-Dawley rats [N=16]) or clozapine (Long-Evans rats [N=20]). Both haloperidol and clozapine increased the levels of GAD(67) in the cerebellum and altered the expression of other cerebellar mRNAs. These

  8. Sleep disorders in cerebellar ataxias

    Directory of Open Access Journals (Sweden)

    José L. Pedroso

    2011-04-01

    Full Text Available Cerebellar ataxias comprise a wide range of etiologies leading to central nervous system-related motor and non-motor symptoms. Recently, a large body of evidence has demonstrated a high frequency of non-motor manifestations in cerebellar ataxias, specially in autosomal dominant spinocerebellar ataxias (SCA. Among these non-motor dysfunctions, sleep disorders have been recognized, although still under or even misdiagnosed. In this review, we highlight the main sleep disorders related to cerebellar ataxias focusing on REM sleep behavior disorder (RBD, restless legs syndrome (RLS, periodic limb movement in sleep (PLMS, excessive daytime sleepiness (EDS, insomnia and sleep apnea.

  9. Distribution of binder in granules produced by means of twin screw granulation

    DEFF Research Database (Denmark)

    Fonteyne, Margot; Fussell, Andrew Luke; Vercruysse, Jurgen

    2014-01-01

    According to the quality by design principle processes may not remain black-boxes and full process understanding is required. The granule size distribution of granules produced via twin screw granulation is often found to be bimodal. The aim of this study was to gain a better understanding...

  10. Infantile onset progressive cerebellar atrophy and anterior horn cell degeneration--a late onset variant of PCH-1?

    Science.gov (United States)

    Lev, Dorit; Michelson-Kerman, Marina; Vinkler, Chana; Blumkin, Lubov; Shalev, Stavit A; Lerman-Sagie, Tally

    2008-03-01

    Despite major recent advances in our understanding of developmental cerebellar disorders, classification and delineation of these disorders remains difficult. The term pontocerebellar hypoplasia is used when there is a structural defect, originating in utero of both pons and cerebellar hemispheres. The term olivopontocerebellar atrophy is used when the disorder starts later in life and the process is a primary degeneration of cerebellar neurons. Pontocerebellar hypoplasia type 1 is associated with spinal anterior horn cell degeneration, congenital contractures, microcephaly, polyhydramnion and respiratory insufficiency leading to early death. However, anterior horn cell degeneration has also been described in cases with later onset pontocerebellar atrophy and recently the spectrum has even been further extended to include the association of anterior horn cell degeneration and cerebellar atrophy without pontine involvement. We describe two siblings from a consanguineous Moslem Arabic family who presented with progressive degeneration of both the cerebellum and the anterior horn cells. The patients presented after 1 year of age with a slow neurodegenerative course that included both cognitive and motor functions. There is considerable phenotypic variability; the sister shows a much milder course. Both children are still alive at 6 and 9 years. The sister could still crawl and speak two word sentences at the age of 3 years while the brother was bedridden and only uttered guttural sounds at the same age. Our cases further extend the phenotype of the cerebellar syndromes with anterior horn cell involvement to include a childhood onset and protracted course and further prove that this neurodegenerative disorder may start in utero or later in life.

  11. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    2015-01-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar

  12. The paradox of high shear granulation : the formation of non-homogeneous granules

    NARCIS (Netherlands)

    Dries, Kaspar van den

    2004-01-01

    Wet granulation is a process used for the particle size enlargement of primary powders. The mixing of a liquid with the powder glues the primary particles together, which results in the formation of the granules. The mixing action can be performed in many ways, like tumbling (drum granulation),

  13. Interactive effects involving different classes of excitatory amino acid receptors and the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1990-01-01

    Differentiating granule cells develop survival requirements in culture which can be met by treatment with high K+ or N-methyl-D-aspartate (NMDA) and, according to our recent findings, also with low concentrations of kainic acid (KA, 50 microM). We have now attempted to elucidate the mechanism(s) ...

  14. The effect of piracetam on ataxia: clinical observations in a group of autosomal dominant cerebellar ataxia patients.

    Science.gov (United States)

    Ince Gunal, D; Agan, K; Afsar, N; Borucu, D; Us, O

    2008-04-01

    Autosomal dominant cerebellar ataxias are clinically and genetically heterogeneous neurodegenerative disorders. There is no known treatment to prevent neuronal cell death in these disorders. Current treatment is purely symptomatic; ataxia is one of the most disabling symptoms and represents the main therapeutic challenge. A previous case report suggesting benefit from administration of high dose piracetam inspired the present study of the efficacy of this agent in patients with cerebellar ataxia. Piracetam is a low molecular weight derivative of gamma-aminobutyric acid. Although little is known of its mode of action, its efficacy has been documented in a wide range of clinical indications, such as cognitive disorders, dementia, vertigo and dyslexia, as well as cortical myoclonus. The present report investigated the role of high dose piracetam in patients with cerebellar ataxia. Eight patients with autosomal dominant cerebellar ataxia were given intravenous piracetam 60 g/day by a structured protocol for 14 days. The baseline and end-of-the study evaluations were based on the International Cooperative Ataxia Rating Scale. Statistical analysis demonstrated a significant improvement in the patients' total score (P = 0.018) and a subscale analysis showed statistical significance for only the posture and gait disturbances item (P = 0.018). This study is providing good clinical observation in favour of high dose piracetam infusion to reduce the disability of the patients by improving their gait ataxia.

  15. High vulnerability of the developing brain to ionizing radiation

    International Nuclear Information System (INIS)

    Inouye, Minoru

    1991-01-01

    The developing mammalian brain is highly susceptible to environmental teratogenic insults, because of its long-lasting sensitive period extending from the beginning of embryonic organogenesis to the postnatal infantile period, the great vulnerability of undifferentiated neural cells to wide range of environmental agents including ionizing radiation, and the lack of further reproductive capacity of neurons. Disturbances in the production of neurons, and their migration to the cerebral and cerebellar cortices, give rise to malformations of the brain, such as an absent corpus callosum, disorganized cortical architecture, abnormal fissuring of the cerebral and cerebellar hemispheres, heterotopic cortical gray matter, ectopic cerebellar granule cells, microcephaly, etc. The critical developmental stage for the induction of histogenetic disorders of the cerebral cortex in humans is 8 weeks of pregnancy and following some weeks. This corresponds to day 13 of pregnancy for mice and day 15 for rats, i.e., the ventricular cells of fetal telencephalon are most susceptible to radiation-induced cell death in this stage of development. The lowest doses of X- and gamma-radiations which induce detectable biological effects in rats and mice are around 0.02 Gy in increasing acute cell death. Reduced brain weight and abnormal dendritic arborization are induced by 0.25 Gy and more. Histological abnormalities are produced by 0.5 Gy and more, and microcephaly and cerebellar malformations are by 1 Gy and more. (author)

  16. Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis.

    Science.gov (United States)

    Kielar, Catherine; Maddox, Lucy; Bible, Ellen; Pontikis, Charlie C; Macauley, Shannon L; Griffey, Megan A; Wong, Michael; Sands, Mark S; Cooper, Jonathan D

    2007-01-01

    Infantile neuronal ceroid lipofuscinosis (INCL) is caused by deficiency of the lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1). We have investigated the onset and progression of pathological changes in Ppt1 deficient mice (Ppt1-/-) and the development of their seizure phenotype. Surprisingly, cortical atrophy and neuron loss occurred only late in disease progression but were preceded by localized astrocytosis within individual thalamic nuclei and the progressive loss of thalamic neurons that relay different sensory modalities to the cortex. This thalamic neuron loss occurred first within the visual system and only subsequently in auditory and somatosensory relay nuclei or the inhibitory reticular thalamic nucleus. The loss of granule neurons and GABAergic interneurons followed in each corresponding cortical region, before the onset of seizure activity. These findings provide novel evidence for successive neuron loss within the thalamus and cortex in Ppt1-/- mice, revealing the thalamus as an important early focus of INCL pathogenesis.

  17. The life cycle of platelet granules.

    Science.gov (United States)

    Sharda, Anish; Flaumenhaft, Robert

    2018-01-01

    Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types-dense granules, α-granules, and lysosomes-although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the trans -Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.

  18. Characterization of the 1H-cyclopentapyrimidine-2,4(1H,3H)-dione derivative (S)-CPW399 as a novel, potent, and subtype-selective AMPA receptor full agonist with partial desensitization properties

    DEFF Research Database (Denmark)

    Campiani, G; Morelli, E; Nacci, V

    2001-01-01

    (S)-CPW399 (2b) is a novel, potent, and subtype-selective AMPA receptor full agonist that, unlike (S)-willardiine and related compounds, in mouse cerebellar granule cells, stimulated an increase in [Ca(2+)](i), and induced neuronal cell death in a time- and concentration-dependent manner. Compound...... 2b appears to be a weakly desensitizing, full agonist at AMPA receptors and therefore represents a new pharmacological tool to investigate the role of AMPA receptors in excitotoxicity and their molecular mechanisms of desensitization....

  19. COUP-TFI mitotically regulates production and migration of dentate granule cells and modulates hippocampal Cxcr4 expression.

    Science.gov (United States)

    Parisot, Joséphine; Flore, Gemma; Bertacchi, Michele; Studer, Michèle

    2017-06-01

    Development of the dentate gyrus (DG), the primary gateway for hippocampal inputs, spans embryonic and postnatal stages, and involves complex morphogenetic events. We have previously identified the nuclear receptor COUP-TFI as a novel transcriptional regulator in the postnatal organization and function of the hippocampus. Here, we dissect its role in DG morphogenesis by inactivating it in either granule cell progenitors or granule neurons. Loss of COUP-TFI function in progenitors leads to decreased granule cell proliferative activity, precocious differentiation and increased apoptosis, resulting in a severe DG growth defect in adult mice. COUP-TFI-deficient cells express high levels of the chemokine receptor Cxcr4 and migrate abnormally, forming heterotopic clusters of differentiated granule cells along their paths. Conversely, high COUP-TFI expression levels downregulate Cxcr4 expression, whereas increased Cxcr4 expression in wild-type hippocampal cells affects cell migration. Finally, loss of COUP-TFI in postmitotic cells leads to only minor and transient abnormalities, and to normal Cxcr4 expression. Together, our results indicate that COUP-TFI is required predominantly in DG progenitors for modulating expression of the Cxcr4 receptor during granule cell neurogenesis and migration. © 2017. Published by The Company of Biologists Ltd.

  20. Etiology, Localization and Prognosis in Cerebellar Infarctions

    Directory of Open Access Journals (Sweden)

    Yavuz Yücel

    2006-01-01

    Full Text Available Cerebrovasculer disease are the most frequent disease of the brain. Cerebellar infarct remains % 1.5-4.2 of these diseases. Etiological factors, lesion localization, symptoms and findings and relationship with prognosis of our patients with cerebellar infarct were investigated in our study. For this purpose, 32 patients were evaluated who were admitted to the Dicle University Medical School Department of Neurology in 1995-2001 hospitalized with the diagnosis of clinically and radiological confirmed cerebellar infarction.All of patients in the study group, 21 (%65.6 were male and 11 (%34.3 female. Age of overall patients ranged between 40 and 75 years with a mean of 57.8±10.2 years. Atherothrombotic infarct was the most frequent reason at the etiologic clinical classification. The most frequently found localization was the posterior inferior cerebellar artery infarct (%50. The leading two risk factors were hypertension (%78.1 and cigarette smoking (%50. The most common sign and symptoms were vertigo (%93.7, vomiting (%75, headache (%68.7 and cerebellar dysfunction findings (%50. The mean duration of hospitalization was 16.3±7.6 days. Overall mortality rate was found to be % 6.2. Finally, the most remarkable risk factors at cerebellar infarct patients are hypertension and atherosclerosis at etiology. We are considering that, controlling of these factors will reduce the appearance frequency of cerebellar infarcts.

  1. Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.

    Science.gov (United States)

    Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M

    1998-03-01

    The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.

  2. Neuroprotective Effect of Carnosine on Primary Culture of Rat Cerebellar Cells under Oxidative Stress.

    Science.gov (United States)

    Lopachev, A V; Lopacheva, O M; Abaimov, D A; Koroleva, O V; Vladychenskaya, E A; Erukhimovich, A A; Fedorova, T N

    2016-05-01

    Dipeptide carnosine (β-alanyl-L-histidine) is a natural antioxidant, but its protective effect under oxidative stress induced by neurotoxins is studied insufficiently. In this work, we show the neuroprotective effect of carnosine in primary cultures of rat cerebellar cells under oxidative stress induced by 1 mM 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), which directly generates free radicals both in the medium and in the cells, and 20 nM rotenone, which increases the amount of intracellular reactive oxygen species (ROS). In both models, adding 2 mM carnosine to the incubation medium decreased cell death calculated using fluorescence microscopy and enhanced cell viability estimated by the MTT assay. The antioxidant effect of carnosine inside cultured cells was demonstrated using the fluorescence probe dichlorofluorescein. Carnosine reduced by half the increase in the number of ROS in neurons induced by 20 nM rotenone. Using iron-induced chemiluminescence, we showed that preincubation of primary neuronal cultures with 2 mM carnosine prevents the decrease in endogenous antioxidant potential of cells induced by 1 mM AAPH and 20 nM rotenone. Using liquid chromatography-mass spectrometry, we showed that a 10-min incubation of neuronal cultures with 2 mM carnosine leads to a 14.5-fold increase in carnosine content in cell lysates. Thus, carnosine is able to penetrate neurons and exerts an antioxidant effect. Western blot analysis revealed the presence of the peptide transporter PEPT2 in rat cerebellar cells, which suggests the possibility of carnosine transport into the cells. At the same time, Western blot analysis showed no carnosine-induced changes in the level of apoptosis regulating proteins of the Bcl-2 family and in the phosphorylation of MAP kinases, which suggests that carnosine could have minimal or no side effects on proliferation and apoptosis control systems in normal cells.

  3. Analyzing dendritic growth in a population of immature neurons in the adult dentate gyrus using laminar quantification of disjointed dendrites

    Directory of Open Access Journals (Sweden)

    Shira eRosenzweig

    2011-03-01

    Full Text Available In the dentate gyrus of the hippocampus, new granule neurons are continuously produced throughout adult life. A prerequisite for the successful synaptic integration of these neurons is the sprouting and extension of dendrites into the molecular layer of the dentate gyrus. Thus, studies aimed at investigating the developmental stages of adult neurogenesis often use dendritic growth as an important indicator of neuronal health and maturity. Based on the known topography of the dentate gyrus, characterized by distinct laminar arrangement of granule neurons and their extensions, we have developed a new method for analysis of dendritic growth in immature adult-born granule neurons. The method is comprised of laminar quantification of cell bodies, primary, secondary and tertiary dendrites separately and independently from each other. In contrast to most existing methods, laminar quantification of dendrites does not require the use of exogenous markers and does not involve arbitrary selection of individual neurons. The new method relies on immonuhistochemical detection of endogenous markers such as doublecortin to perform a comprehensive analysis of a sub-population of immature neurons. Disjointed, orphan dendrites that often appear in the thin histological sections are taken into account. Using several experimental groups of rats and mice, we demonstrate here the suitable techniques for quantifying neurons and dendrites, and explain how the ratios between the quantified values can be used in a comparative analysis to indicate variations in dendritic growth and complexity.

  4. Dyslexic Children Show Atypical Cerebellar Activation and Cerebro-Cerebellar Functional Connectivity in Orthographic and Phonological Processing.

    Science.gov (United States)

    Feng, Xiaoxia; Li, Le; Zhang, Manli; Yang, Xiujie; Tian, Mengyu; Xie, Weiyi; Lu, Yao; Liu, Li; Bélanger, Nathalie N; Meng, Xiangzhi; Ding, Guosheng

    2017-04-01

    Previous neuroimaging studies have found atypical cerebellar activation in individuals with dyslexia in either motor-related tasks or language tasks. However, studies investigating atypical cerebellar activation in individuals with dyslexia have mostly used tasks tapping phonological processing. A question that is yet unanswered is whether the cerebellum in individuals with dyslexia functions properly during orthographic processing of words, as growing evidence shows that the cerebellum is also involved in visual and spatial processing. Here, we investigated cerebellar activation and cerebro-cerebellar functional connectivity during word processing in dyslexic readers and typically developing readers using tasks that tap orthographic and phonological codes. In children with dyslexia, we observed an abnormally higher engagement of the bilateral cerebellum for the orthographic task, which was negatively correlated with literacy measures. The greater the reading impairment was for young dyslexic readers, the stronger the cerebellar activation was. This suggests a compensatory role of the cerebellum in reading for children with dyslexia. In addition, a tendency for higher cerebellar activation in dyslexic readers was found in the phonological task. Moreover, the functional connectivity was stronger for dyslexic readers relative to typically developing readers between the lobule VI of the right cerebellum and the left fusiform gyrus during the orthographic task and between the lobule VI of the left cerebellum and the left supramarginal gyrus during the phonological task. This pattern of results suggests that the cerebellum compensates for reading impairment through the connections with specific brain regions responsible for the ongoing reading task. These findings enhance our understanding of the cerebellum's involvement in reading and reading impairment.

  5. Cerebellar cortical infarct cavities and vertebral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Cocker, Laurens J.L. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Kliniek Sint-Jan Radiologie, Brussels (Belgium); Compter, A.; Kappelle, L.J.; Worp, H.B. van der [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Luijten, P.R.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-09-15

    Cerebellar cortical infarct cavities are a newly recognised entity associated with atherothromboembolic cerebrovascular disease and worse physical functioning. We aimed to investigate the relationship of cerebellar cortical infarct cavities with symptomatic vertebrobasilar ischaemia and with vascular risk factors. We evaluated the MR images of 46 patients with a recent vertebrobasilar TIA or stroke and a symptomatic vertebral artery stenosis ≥50 % from the Vertebral Artery Stenting Trial (VAST) for the presence of cerebellar cortical infarct cavities ≤1.5 cm. At inclusion in VAST, data were obtained on age, sex, history of vertebrobasilar TIA or stroke, and vascular risk factors. Adjusted risk ratios were calculated with Poisson regression analyses for the relation between cerebellar cortical infarct cavities and vascular risk factors. Sixteen out of 46 (35 %) patients showed cerebellar cortical infarct cavities on the initial MRI, and only one of these 16 patients was known with a previous vertebrobasilar TIA or stroke. In patients with symptomatic vertebrobasilar ischaemia, risk factor profiles of patients with cerebellar cortical infarct cavities were not different from patients without these cavities. Cerebellar cortical infarct cavities are seen on MRI in as much as one third of patients with recently symptomatic vertebral artery stenosis. Since patients usually have no prior history of vertebrobasilar TIA or stroke, cerebellar cortical infarct cavities should be added to the spectrum of common incidental brain infarcts visible on routine MRI. (orig.)

  6. Potent homocysteine-induced ERK phosphorylation in cultured neurons depends on self-sensitization via system Xc-

    International Nuclear Information System (INIS)

    Gu Li; Hu Xiaoling; Xue Zhanxia; Yang Jun; Wan Lishu; Ren Yan; Hertz, Leif; Peng Liang

    2010-01-01

    Homocysteine is increased during pathological conditions, endangering vascular and cognitive functions, and elevated homocysteine during pregnancy may be correlated with an increased incidence of schizophrenia in the offspring. This study showed that millimolar homocysteine concentrations in saline medium cause phosphorylation of extracellular-signal regulated kinases 1 and 2 (ERK 1/2 ) in cerebellar granule neurons, inhibitable by metabotropic but not ionotropic glutamate receptor antagonists. These findings are analogous to observations by , that similar concentrations cause neuronal death. However, these concentrations are much higher than those occurring clinically during hyperhomocysteinemia. It is therefore important that a ∼ 10-fold increase in potency occurred in the presence of the glutamate precursor glutamine, when ERK 1/2 phosphorylation became inhibitable by NMDA or non-NMDA antagonists and dependent upon epidermal growth factor (EGF) receptor transactivation. However, glutamate release to the medium was reduced, suggesting that reversal of the cystine/glutamate antiporter, system X c - could be involved in potentiation of the response by causing a localized release of initially accumulated homocysteine. In agreement with this hypothesis further enhancement of ERK 1/2 phosphorylation occurred in the additional presence of cystine. Pharmacological inhibition of system X c - prevented the effect of micromolar homocysteine concentrations, and U0126-mediated inhibition of ERK 1/2 phosphorylation enhanced homocysteine-induced death. In conclusion, homocysteine interacts with system X c - like quisqualate (Venkatraman et al. 1994), by 'self-sensitization' with initial accumulation and subsequent release in exchange with cystine and/or glutamate, establishing high local homocysteine concentrations, which activate adjacent ionotropic glutamate receptors and cause neurotoxicity.

  7. Electroconvulsive stimulation results in long-term survival of newly generated hippocampal neurons in rats

    DEFF Research Database (Denmark)

    Olesen, Mikkel Vestergaard; Wörtwein, Gitta; Folke, Jonas

    2017-01-01

    Electroconvulsive stimulation (ECS) is one of the strongest stimulators of hippocampal neurogenesis in rodents that represents a plausible mechanism for the efficacy of electroconvulsive therapy (ECT) in major depressive disorder. Using design-based stereological cell counting, we recently...... in neurogenesis facilitates the behavioral outcome of the forced swim test (FST), an animal model of depression. The results showed that ECS in conjunction with CRS stimulates hippocampal neurogenesis, and that a significant quantity of the newly formed hippocampal neurons survives up to 12 months. The new Brd......U-positive neurons showed time-dependent attrition of ∼40% from day 1 to 3 months, with no further decline between 3 and 12 months. ECS did not affect the number of pre-existing dentate granule neurons or the volume of the dentate granule cell layer, suggesting no damaging effect of the treatment. Finally, we found...

  8. The vestibulo- and preposito-cerebellar cholinergic neurons of a ChAT-tdTomato transgenic rat exhibit heterogeneous firing properties and the expression of various neurotransmitter receptors.

    Science.gov (United States)

    Zhang, Yue; Kaneko, Ryosuke; Yanagawa, Yuchio; Saito, Yasuhiko

    2014-04-01

    Cerebellar function is regulated by cholinergic mossy fiber inputs that are primarily derived from the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN). In contrast to the growing evidence surrounding cholinergic transmission and its functional significance in the cerebellum, the intrinsic and synaptic properties of cholinergic projection neurons (ChPNs) have not been clarified. In this study, we generated choline acetyltransferase (ChAT)-tdTomato transgenic rats, which specifically express the fluorescent protein tdTomato in cholinergic neurons, and used them to investigate the response properties of ChPNs identified via retrograde labeling using whole-cell recordings in brainstem slices. In response to current pulses, ChPNs exhibited two afterhyperpolarisation (AHP) profiles and three firing patterns; the predominant AHP and firing properties differed between the MVN and PHN. Morphologically, the ChPNs were separated into two types based on their soma size and dendritic extensions. Analyses of the firing responses to time-varying sinusoidal current stimuli revealed that ChPNs exhibited different firing modes depending on the input frequencies. The maximum frequencies in which each firing mode was observed were different between the neurons that exhibited distinct firing patterns. Analyses of the current responses to the application of neurotransmitter receptor agonists revealed that the ChPNs expressed (i) AMPA- and NMDA-type glutamate receptors, (ii) GABAA and glycine receptors, and (iii) muscarinic and nicotinic acetylcholine receptors. The current responses mediated by these receptors of MVN ChPNs were not different from those of PHN ChPNs. These findings suggest that ChPNs receive various synaptic inputs and encode those inputs appropriately across different frequencies. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. A natural form of learning can increase and decrease the survival of new neurons in the dentate gyrus.

    Science.gov (United States)

    Olariu, Ana; Cleaver, Kathryn M; Shore, Lauren E; Brewer, Michelle D; Cameron, Heather A

    2005-01-01

    Granule cells born in the adult dentate gyrus undergo a 4-week developmental period characterized by high susceptibility to cell death. Two forms of hippocampus-dependent learning have been shown to rescue many of the new neurons during this critical period. Here, we show that a natural form of associative learning, social transmission of food preference (STFP), can either increase or decrease the survival of young granule cells in adult rats. Increased numbers of pyknotic as well as phospho-Akt-expressing BrdU-labeled cells were seen 1 day after STFP training, indicating that training rapidly induces both cell death and active suppression of cell death in different subsets. A single day of training for STFP increased the survival of 8-day-old BrdU-labeled cells when examined 1 week later. In contrast, 2 days of training decreased the survival of BrdU-labeled cells and the density of immature neurons, identified with crmp-4. This change from increased to decreased survival could not be accounted for by the ages of the cells. Instead, we propose that training may initially increase young granule cell survival, then, if continued, cause them to die. This complex regulation of cell death could potentially serve to maintain granule cells that are actively involved in memory consolidation, while rapidly using and discarding young granule cells whose training is complete to make space for new naïve neurons. Published 2005 Wiley-Liss, Inc.

  10. A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice.

    Science.gov (United States)

    Clopath, Claudia; Badura, Aleksandra; De Zeeuw, Chris I; Brunel, Nicolas

    2014-05-21

    Mechanisms of cerebellar motor learning are still poorly understood. The standard Marr-Albus-Ito theory posits that learning involves plasticity at the parallel fiber to Purkinje cell synapses under control of the climbing fiber input, which provides an error signal as in classical supervised learning paradigms. However, a growing body of evidence challenges this theory, in that additional sites of plasticity appear to contribute to motor adaptation. Here, we consider phase-reversal training of the vestibulo-ocular reflex (VOR), a simple form of motor learning for which a large body of experimental data is available in wild-type and mutant mice, in which the excitability of granule cells or inhibition of Purkinje cells was affected in a cell-specific fashion. We present novel electrophysiological recordings of Purkinje cell activity measured in naive wild-type mice subjected to this VOR adaptation task. We then introduce a minimal model that consists of learning at the parallel fibers to Purkinje cells with the help of the climbing fibers. Although the minimal model reproduces the behavior of the wild-type animals and is analytically tractable, it fails at reproducing the behavior of mutant mice and the electrophysiology data. Therefore, we build a detailed model involving plasticity at the parallel fibers to Purkinje cells' synapse guided by climbing fibers, feedforward inhibition of Purkinje cells, and plasticity at the mossy fiber to vestibular nuclei neuron synapse. The detailed model reproduces both the behavioral and electrophysiological data of both the wild-type and mutant mice and allows for experimentally testable predictions. Copyright © 2014 the authors 0270-6474/14/347203-13$15.00/0.

  11. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum.

    Science.gov (United States)

    Hibi, Masahiko; Matsuda, Koji; Takeuchi, Miki; Shimizu, Takashi; Murakami, Yasunori

    2017-05-01

    The cerebellum is derived from the dorsal part of the anterior-most hindbrain. The vertebrate cerebellum contains glutamatergic granule cells (GCs) and gamma-aminobutyric acid (GABA)ergic Purkinje cells (PCs). These cerebellar neurons are generated from neuronal progenitors or neural stem cells by mechanisms that are conserved among vertebrates. However, vertebrate cerebella are widely diverse with respect to their gross morphology and neural circuits. The cerebellum of cyclostomes, the basal vertebrates, has a negligible structure. Cartilaginous fishes have a cerebellum containing GCs, PCs, and deep cerebellar nuclei (DCNs), which include projection neurons. Ray-finned fish lack DCNs but have projection neurons termed eurydendroid cells (ECs) in the vicinity of the PCs. Among ray-finned fishes, the cerebellum of teleost zebrafish has a simple lobular structure, whereas that of weakly electric mormyrid fish is large and foliated. Amniotes, which include mammals, independently evolved a large, foliated cerebellum, which contains massive numbers of GCs and has functional connections with the dorsal telencephalon (neocortex). Recent studies of cyclostomes and cartilaginous fish suggest that the genetic program for cerebellum development was already encoded in the genome of ancestral vertebrates. In this review, we discuss how alterations of the genetic and cellular programs generated diversity of the cerebellum during evolution. © 2017 Japanese Society of Developmental Biologists.

  12. HERC 1 ubiquitin ligase mutation affects neocortical, CA3 hippocampal and spinal cord projection neurons. An ultrastructural study

    Directory of Open Access Journals (Sweden)

    Rocío eRuiz

    2016-04-01

    Full Text Available The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and, hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity.

  13. CEREBELLUM: LINKS BETWEEN DEVELOPMENT, DEVELOPMENTAL DISORDERS AND MOTOR LEARNING

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2012-01-01

    Full Text Available The study of the links and interactions between development and motor learning has noticeable implications for the understanding and management of neurodevelopmental disorders. This is particularly relevant for the cerebellum which is critical for sensorimotor learning. The olivocerebellar pathway is a key pathway contributing to learning of motor skills. Its developmental maturation and remodelling are being unravelled. Advances in genetics have led to major improvements in our appraisal of the genes involved in cerebellar development, especially studies in mutant mice. Cerebellar neurogenesis is compartmentalized in relationship with neurotransmitter fate. The Engrailed-2 gene is a major actor of the specification of cerebellar cell types and late embryogenic morphogenesis. Math1, expressed by the rhombic lip (RL, is required for the genesis of glutamatergic neurons. Mutants deficient for the transcription factor Ptf1a display a lack of Purkinje cells and gabaergic interneurons. Rora gene contributes to the developmental signalling between granule cells and Purkinje neurons. The expression profile of SHH (Sonic hedgehog in postnatal stages determines the final size/shape of the cerebellum. Genes affecting the development impact upon the physiological properties of the cerebellar circuits. For instance, receptors are developmentally regulated and their action interferes directly with developmental processes. Another field of research which is expanding relates to very preterm neonates. They are at risk for cerebellar lesions, which may themselves impair the developmental events. Very preterm neonates often show sensori-motor deficits, highlighting another major link between impaired development and learning deficiencies. Pathways playing a critical role in cerebellar development are likely to become therapeutical targets for several neurodevelopmental disorders.

  14. Propidium iodide (PI) stains Nissl bodies and may serve as a quick marker for total neuronal cell count.

    Science.gov (United States)

    Niu, Junfei; Li, Chunman; Wu, Haihui; Feng, Xianling; Su, Qingning; Li, Shihe; Zhang, Lihong; Yew, David Tai Wai; Cho, Eric Yu Pang; Sha, Ou

    2015-03-01

    Propidium iodide (PI) reacts with both DNA and RNA and is a commonly used fluorescent reagent for nucleic acid staining. The aim of the study was to compare the cellular staining patterns of PI with that of Nissl staining in rat nervous tissues and to report a modified staining method that selectively labels Nissl bodies in neurons. Cryosections and paraffin sections of different tissues of normal Sprague-Dawley rats, including trigeminal ganglia, dorsal root ganglia, spinal cord, liver, and small intestine, were stained by either PI or the hematoxylin and eosin method. Some sections were treated with RNase or DNase before the above staining, and some were double stained with PI and a Nissl stain. The sections were observed by light, fluorescence or confocal microscopy. Results showed strong PI signals detected as patterns of granules in the neuronal cytoplasm of all nervous tissues, whereas the staining of neuronal nuclei was weaker. In contrast, nuclei of neuroglial cells were strongly stained by PI, while the cytoplasm was not obviously stained. Pretreatment of the neural tissue with RNase abolished the PI signals. Furthermore, the PI positive granules in neuronal cytoplasm co-localized with Nissl bodies stained by the fluorescent Nissl stain. When the tissue was pretreated with DNase, PI only stained the cytoplasmic granules of neurons, but not that of glial cells. Our results show that PI stains Nissl bodies and may serve as an economical and convenient neuron marker for neuronal cell counting when specific neural markers such as antibodies are not readily available. Copyright © 2015. Published by Elsevier GmbH.

  15. Cerebellar involvement in metabolic disorders: a pattern-recognition approach

    International Nuclear Information System (INIS)

    Steinlin, M.; Boltshauser, E.; Blaser, S.

    1998-01-01

    Inborn errors of metabolism can affect the cerebellum during development, maturation and later during life. We have established criteria for pattern recognition of cerebellar abnormalities in metabolic disorders. The abnormalities can be divided into four major groups: cerebellar hypoplasia (CH), hyperplasia, cerebellar atrophy (CA), cerebellar white matter abnormalities (WMA) or swelling, and involvement of the dentate nuclei (DN) or cerebellar cortex. CH can be an isolated typical finding, as in adenylsuccinase deficiency, but is also occasionally seen in many other disorders. Differentiation from CH and CA is often difficult, as in carbohydrate deficient glycoprotein syndrome or 2-l-hydroxyglutaric acidaemia. In cases of atrophy the relationship of cerebellar to cerebral atrophy is important. WMA may be diffuse or patchy, frequently predominantly around the DN. Severe swelling of white matter is present during metabolic crisis in maple syrup urine disease. The DN can be affected by metabolite deposition, necrosis, calcification or demyelination. Involvement of cerebellar cortex is seen in infantile neuroaxonal dystrophy. Changes in DN and cerebellar cortex are rather typical and therefore most helpful; additional features should be sought as they are useful in narrowing down the differential diagnosis. (orig.)

  16. Humor and laughter in patients with cerebellar degeneration.

    Science.gov (United States)

    Frank, B; Propson, B; Göricke, S; Jacobi, H; Wild, B; Timmann, D

    2012-06-01

    Humor is a complex behavior which includes cognitive, affective and motor responses. Based on observations of affective changes in patients with cerebellar lesions, the cerebellum may support cerebral and brainstem areas involved in understanding and appreciation of humorous stimuli and expression of laughter. The aim of the present study was to examine if humor appreciation, perception of humorous stimuli, and the succeeding facial reaction differ between patients with cerebellar degeneration and healthy controls. Twenty-three adults with pure cerebellar degeneration were compared with 23 age-, gender-, and education-matched healthy control subjects. No significant difference in humor appreciation and perception of humorous stimuli could be found between groups using the 3 Witz-Dimensionen Test, a validated test asking for funniness and aversiveness of jokes and cartoons. Furthermore, while observing jokes, humorous cartoons, and video sketches, facial expressions of subjects were videotaped and afterwards analysed using the Facial Action Coding System. Using depression as a covariate, the number, and to a lesser degree, the duration of facial expressions during laughter were reduced in cerebellar patients compared to healthy controls. In sum, appreciation of humor appears to be largely preserved in patients with chronic cerebellar degeneration. Cerebellar circuits may contribute to the expression of laughter. Findings add to the literature that non-motor disorders in patients with chronic cerebellar disease are generally mild, but do not exclude that more marked disorders may show up in acute cerebellar disease and/or in more specific tests of humor appreciation.

  17. Chondroitin-4-sulfation negatively regulates axonal guidance and growth

    Science.gov (United States)

    Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.

    2008-01-01

    Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934

  18. CT and MR imaging of acute cerebellar ataxia

    International Nuclear Information System (INIS)

    Shoji, H.; Hirai, S.; Ishikawa, K.; Aramaki, M.; Sato, Y.; Abe, T.; Kojima, K.

    1991-01-01

    An adult female showed mild cerebellar ataxia and CSF pleocytosis following an acute infection of the upper respiratory tract, and was diagnosed as having acute cerebellar ataxia (ACA). CT and MR appearances in the acute stage revealed moderate swelling of the cerebellum and bilaterally increased signal intensity in the cerebellar cortex. (orig.)

  19. Bilateral Cerebellar Cortical Dysplasia without Other Malformations: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Seok; Ahn Kook Jin; Kim, Jee Young; Lee, Sun Jin; Park, Jeong Mi [Catholic University Yeouido St. Mary' s Hospital, College of Medicine, Seoul (Korea, Republic of)

    2010-06-15

    Recent advances in MRI have revealed congenital brain malformations and subtle developmental abnormalities of the cerebral and cerebellar cortical architecture. Typical cerebellar cortical dysplasia as a newly categorized cerebellar malformation, has been seen in patients with Fukuyama congenital muscular dystrophy. Cerebellar cortical dysplasia occurs at the embryonic stage and is often observed in healthy newborns. It is also incidentally and initially detected in adults without symptoms. To the best of our knowledge, cerebellar dysplasia without any related disorders is very rare. We describe the MRI findings in one patient with disorganized foliation of both cerebellar hemispheres without a related disorder or syndrome

  20. Lack of connexin43-mediated Bergmann glial gap junctional coupling does not affect cerebellar long-term depression, motor coordination, or eyeblink conditioning

    Directory of Open Access Journals (Sweden)

    Mika Tanaka

    2008-04-01

    Full Text Available Bergmann glial cells are specialized astrocytes in the cerebellum. In the mature cerebellar molecular layer, Bergmann glial processes are closely associated with Purkinje cells, enclosing Purkinje cell dendritic synapses with a glial sheath. There is intensive gap junctional coupling between Bergmann glial processes, but their significance in cerebellar functions is not known. Connexin43 (Cx43, a major component of astrocytic gap junction channels, is abundantly expressed in Bergmann glial cells. To examine the role of Cx43-mediated gap junctions between Bergmann glial cells in cerebellar functions, we generated Cx43 conditional knockout mice with the S100b-Cre transgenic line (Cx43fl/fl:S100b-Cre, which exhibited a significant loss of Cx43 in the Bergmann glial cells and astrocytes in the cerebellum with a postnatal onset. The Cx43fl/fl:S100b-Cre mice had normal cerebellar architecture. Although gap junctional coupling between the Bergmann glial cells measured by spreading of microinjected Lucifer yellow was virtually abolished in Cx43fl/fl:S100b-Cre mice, electrophysiologic analysis revealed that cerebellar long-term depression could be induced and maintained normally in thier cerebellar slices. In addition, at the behavioral level, Cx43fl/fl:S100b-Cre mice had normal motor coordination in the rotarod task and normal conditioned eyelid response. Our findings suggest that Cx43-mediated gap junctional coupling between Bergmann glial cells is not necessary for the neuron-glia interactions required for cerebellum-dependent motor coordination and motor learning.

  1. Cerebro-cerebellar connectivity is increased in primary lateral sclerosis.

    Science.gov (United States)

    Meoded, Avner; Morrissette, Arthur E; Katipally, Rohan; Schanz, Olivia; Gotts, Stephen J; Floeter, Mary Kay

    2015-01-01

    Increased functional connectivity in resting state networks was found in several studies of patients with motor neuron disorders, although diffusion tensor imaging studies consistently show loss of white matter integrity. To understand the relationship between structural connectivity and functional connectivity, we examined the structural connections between regions with altered functional connectivity in patients with primary lateral sclerosis (PLS), a long-lived motor neuron disease. Connectivity matrices were constructed from resting state fMRI in 16 PLS patients to identify areas of differing connectivity between patients and healthy controls. Probabilistic fiber tracking was used to examine structural connections between regions of differing connectivity. PLS patients had 12 regions with increased functional connectivity compared to controls, with a predominance of cerebro-cerebellar connections. Increased functional connectivity was strongest between the cerebellum and cortical motor areas and between the cerebellum and frontal and temporal cortex. Fiber tracking detected no difference in connections between regions with increased functional connectivity. We conclude that functional connectivity changes are not strongly based in structural connectivity. Increased functional connectivity may be caused by common inputs, or by reduced selectivity of cortical activation, which could result from loss of intracortical inhibition when cortical afferents are intact.

  2. Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain.

    Science.gov (United States)

    Choe, Katrina Y; Sanchez, Carlos F; Harris, Neil G; Otis, Thomas S; Mathews, Paul J

    2018-06-01

    Complex animal behavior is produced by dynamic interactions between discrete regions of the brain. As such, defining functional connections between brain regions is critical in gaining a full understanding of how the brain generates behavior. Evidence suggests that discrete regions of the cerebellar cortex functionally project to the forebrain, mediating long-range communication potentially important in motor and non-motor behaviors. However, the connectivity map remains largely incomplete owing to the challenge of driving both reliable and selective output from the cerebellar cortex, as well as the need for methods to detect region specific activation across the entire forebrain. Here we utilize a paired optogenetic and fMRI (ofMRI) approach to elucidate the downstream forebrain regions modulated by activating a region of the cerebellum that induces stereotypical, ipsilateral forelimb movements. We demonstrate with ofMRI, that activating this forelimb motor region of the cerebellar cortex results in functional activation of a variety of forebrain and midbrain areas of the brain, including the hippocampus and primary motor, retrosplenial and anterior cingulate cortices. We further validate these findings using optogenetic stimulation paired with multi-electrode array recordings and post-hoc staining for molecular markers of activated neurons (i.e. c-Fos). Together, these findings demonstrate that a single discrete region of the cerebellar cortex is capable of influencing motor output and the activity of a number of downstream forebrain as well as midbrain regions thought to be involved in different aspects of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Cerebellar medulloblastoma presenting with skeletal metastasis

    Directory of Open Access Journals (Sweden)

    Barai Sukanta

    2004-04-01

    Full Text Available Medulloblastomas are highly malignant brain tumours, but only rarely produce skeletal metastases. No case of medulloblastoma has been documented to have produced skeletal metastases prior to craniotomy or shunt surgery. A 21-year-old male presented with pain in the hip and lower back with difficulty in walking of 3 months′ duration. Signs of cerebellar dysfunction were present hence a diagnosis of cerebellar neoplasm or skeletal tuberculosis with cerebellar abscess formation was considered. MRI of brain revealed a lesion in the cerebellum suggestive of medulloblastoma. Bone scan revealed multiple sites of skeletal metastases excluding the lumbar vertebrae. MRI of lumbar spine and hip revealed metastases to all lumbar vertebrae and both hips. Computed tomography-guided biopsy was obtained from the L3 vertebra, which revealed metastatic deposits from medulloblastoma. Cerebrospinal fluid cytology showed the presence of medulloblastoma cells. A final diagnosis of cerebellar medulloblastoma with skeletal metastases was made. He underwent craniotomy and histopathology confirmed medulloblastoma.

  4. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de; Zanetti, María Natalia [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Fukuda, Mitsunori [Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Fissore, Rafael A. [Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003 (United States); Mayorga, Luis S. [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Michaut, Marcela A., E-mail: mmichaut@gmail.com [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (Argentina)

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a marker of

  5. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor.

    Science.gov (United States)

    Buijink, A W G; Broersma, M; van der Stouwe, A M M; van Wingen, G A; Groot, P F C; Speelman, J D; Maurits, N M; van Rootselaar, A F

    2015-04-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar output in essential tremor during rhythmic finger tapping employing functional MRI. Thirty-one propranolol-sensitive essential tremor patients with upper limb tremor and 29 healthy controls were measured. T2*-weighted EPI sequences were acquired. The task consisted of alternating rest and finger tapping blocks. A whole-brain and region-of-interest analysis was performed, the latter focusing on the cerebellar cortex, dentate nucleus and inferior olive nucleus. Activations were also related to tremor severity. In patients, dentate activation correlated positively with tremor severity as measured by the tremor rating scale part A. Patients had reduced activation in widespread cerebellar cortical regions, and additionally in the inferior olive nucleus, and parietal and frontal cortex, compared to controls. The increase in dentate activation with tremor severity supports involvement of the dentate nucleus in essential tremor. Cortical and cerebellar changes during a motor timing task in essential tremor might point to widespread changes in cerebellar output in essential tremor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Postmortem study of stable carbon isotope ratios in human cerebellar DNA: preliminary results

    International Nuclear Information System (INIS)

    Slatkin, D.N.; Irsa, A.P.; Friedman, L.

    1978-01-01

    It is observed that 13 C/ 12 C ratios in tissue specimens removed postmortem in the United States and Canada are significantly different from corresponding ratios in European specimens. On the basis of this information, measurements of carbon isotope ratios in DNA isolated from cerebella of native-born and European-born North Americans are in progress with the goal of estimating the average lifetime rate of DNA turnover in human neurons. Preliminary results from twenty postmortem examinations are consistent with the hypothesis that a significant proportion of human cerebellar DNA is renewed during the lifetime of an individual

  7. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    Introduction: Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of

  8. Expression of the GABA(A) receptor alpha6 subunit in cultured cerebellar granule cells is developmentally regulated by activation of GABA(A) receptors

    DEFF Research Database (Denmark)

    Carlson, B X; Belhage, B; Hansen, Gert Helge

    1997-01-01

    Da (alpha6 subunit) radioactive peaks in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In contrast, THIP-treated granule cells at 8 DIV demonstrated a small but significant decrease from control cultures in the photoincorporation of [3H]Ro15-4513 in the 51-kDa peak; however...... that the major effect of THIP was to increase alpha6 subunit clustering on granule cell bodies as well as neurites, 15-fold and sixfold, respectively. Using in situ hybridization, a small THIP-induced increase in alpha6 mRNA was detected at 4 DIV; however, no effect was apparent at 8 DIV. These data suggest...

  9. Moringa oleifera phytochemicals protect the brain against experimental nicotine-induced neurobehavioral disturbances and cerebellar degeneration.

    Science.gov (United States)

    Omotoso, Gabriel Olaiya; Gbadamosi, Ismail Temitayo; Olajide, Olayemi Joseph; Dada-Habeeb, Shakirat Opeyemi; Arogundade, Tolulope Timothy; Yawson, Emmanuel Olusola

    2018-03-01

    Nicotine is a neuro-stimulant that has been implicated in the pathophysiology of many brain diseases. The need to prevent or alleviate the resulting dysfunction is therefore paramount, which has also given way to the use of medicinal plants in the management of brain conditions. This study was designed to determine the histomorphological and neurobehavioural changes in the cerebellum of Wistar rats following nicotine insult and how such injuries respond to Moringa intervention. Twenty-four adult male Wistar rats were divided into 4 groups. Group A and B were orally treated with normal saline and Moringa oleifera respectively for twenty-eight days; Group C was treated with nicotine while group D was treated orally with Moringa oleifera and intraperitoneally with nicotine for twenty-eight days. Animals were subjected to the open field test on the last day of treatment. 24 h after last day treatment, the animals were anesthetized and perfusion fixation was carried out. The cerebellum was excised and post-fixed in 4% paraformaldehyde and thereafter put through routine histological procedures. Results revealed cytoarchitectural distortion and extreme chromatolysis in neuronal cells of the cerebellar cortical layers in the nicotine-treated group. The Purkinje cells of the cerebellum of animals in this group were degenerated. There were also reduced locomotor activities in the group. Moringa was able to prevent the chromatolysis, distortion of the cerebellar cortical cells and neurobehavioural deficit. Our result suggests that Moringa oleifera could prevent nicotine-induced cerebellar injury in Wistar rats, with the possibility of ameliorating the clinical features presented in associated cerebellar pathology. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Computed tomography in alcoholic cerebellar atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Haubek, A; Lee, K [Hvidovre Hospital Copenhagen (Denmark). Dept. of Radiology; Municipal Hospital, Copenhagen (Denmark). Dept. of Neurology)

    1979-01-01

    This is a controlled CT evaluation of the infratentorial region in 41 male alcoholics under age 35. Criteria for the presence of atrophy are outlined. Twelve patients had cerebellar atrophy. Vermian atrophy was present in all. Atrophy of the cerebellar hemispheres was demonstrated in eight patients as well. The results are statistically significant when compared to an age-matched group of 40 non-alcoholic males among whom two cases of vermian atrophy were found. There were clinical signs of alcoholic cerebellar atrophy in one patient only. The disparity between the clinical and the radiological data are discussed with reference to previous pneumoencephalographic findings. (orig.) 891 AJ/orig. 892 MKO.

  11. Acute Cerebellar Ataxia Induced by Nivolumab

    Science.gov (United States)

    Kawamura, Reina; Nagata, Eiichiro; Mukai, Masako; Ohnuki, Yoichi; Matsuzaki, Tomohiko; Ohiwa, Kana; Nakagawa, Tomoki; Kohno, Mitsutomo; Masuda, Ryota; Iwazaki, Masayuki; Takizawa, Shunya

    2017-01-01

    A 54-year-old woman with adenocarcinoma of the lung and lymph node metastasis experienced nystagmus and cerebellar ataxia 2 weeks after initiating nivolumab therapy. An evaluation for several autoimmune-related antibodies and paraneoplastic syndrome yielded negative results. We eventually diagnosed the patient with nivolumab-induced acute cerebellar ataxia, after excluding other potential conditions. Her ataxic gait and nystagmus resolved shortly after intravenous steroid pulse therapy followed by the administration of decreasing doses of oral steroids. Nivolumab, an immune checkpoint inhibitor, is known to induce various neurological adverse events. However, this is the first report of acute cerebellar ataxia associated with nivolumab treatment. PMID:29249765

  12. Falls and cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    I. V. Damulin

    2015-01-01

    Full Text Available The paper considers the main causes of falls. Whatever their cause is, falls may lead to severe maladjustment in everyday life. In nearly 1 out of 10 cases, they are accompanied by severe injuries, including fractures (most commonly those of the proximal femur and humerus, hands, pelvic bones, and vertebrae, subdural hematoma, and severe soft tissue and head injuries. This process is emphasized to be multifactorial. Particular emphasis is laid on the involvement of the cerebellum and its associations, which may be accompanied by falls. This is clinically manifested mainly by gait disorders. Walking is a result of an interaction of three related functions (locomotion, maintenance of balance and adaptive reactions. In addition to synergies related to locomotion and balance maintenance, standing at rest and walking are influenced bythe following factors: postural and environmental information (proprioceptive, vestibular, and visual, the capacity to interpret and integrate this information, the ability of the musculoskeletal system to make movements, and the capability to optimally modulate these movements in view of the specific situation and the ability to choose and adapt synergy in terms of external factors and the capacities and purposes of an individual. The clinical signs of damage to the cerebellum and its associations are considered in detail. These structures are emphasized to be involved not only in movements, but also in cognitive functions. The major symptoms that permit cerebellar dysfunction to be diagnosed are given. Symptoms in cerebellar injuries are generally most pronounced when suddenly changing the direction of movements or attempting to start walking immediately after a dramatic rise. The magnitude of ataxia also increases in a patient who tries to decrease the step size. Falling tendencies or bending to one side (in other symptoms characteristic of cerebellar diseases suggest injury of the corresponding

  13. Effects of x-irradiation induced loss of cerebellar granule cells on the synaptosomal levels and the high affinity uptake of amino acids

    International Nuclear Information System (INIS)

    Rohde, B.H.; Rea, M.A.; Simon, J.R.; McBride, W.J.

    1979-01-01

    Crude synaptosomal (P 2 ) preparations were obtained from the cerebella of rats in which the granule cell population had been selectively reduced by X-irradiation treatment and from the cerebella of control animals. In the P 2 fraction form control cerebella, the level of glutamate was greater than any other of the 5 amino acids measured and was 2-fold higher than taurine. The content of taurine, GABA, glycine, and alanine were not changed by the X-irradiation treatment. The uptake of 1.0 micrometers-L-[ 3 H]glutamate and L-[ 3 H]aspartate was reduced approx 20% by X-irradiation treatment, whereas the uptake of 1.0 micrometers-[ 3 H]GABA and [ 3 H]taurine was unchanged. In a second study, the uptake of L-[ 3 H]glutamate, L-[ 3 H]aspartate and [ 3 H]GABA was measured using P 2 fractions obtained from the cerebella of rats in which the population of granule, stellate and basket cells had been reduced by X-irradiation treatment. The uptake of 1.0 micrometers-L-[ 3 H]glutamate, L-[ 3 H]aspartate and [ 3 H]GABA was significantly (P < 0.05) reduced to 57.68 and 59% respectively, of control values. The data are discussed in terms of glutamate being the excitatory neurotransmitter released from granule cells and GABA being the inhibitory neurotransmitter released from basket cells. (author)

  14. Metabolic anatomy of paraneoplastic cerebellar degeneration

    International Nuclear Information System (INIS)

    Anderson, N.E.; Posner, J.B.; Sidtis, J.J.; Moeller, J.R.; Strother, S.C.; Dhawan, V.; Rottenberg, D.A.

    1988-01-01

    Eleven patients with acquired cerebellar degeneration (10 of whom had paraneoplastic cerebellar degeneration [PCD]) were evaluated using neuropsychological tests and 18 F-fluorodeoxyglucose/positron emission tomography to (1) quantify motor, cognitive, and metabolic abnormalities; (2) determine if characteristic alterations in the regional cerebral metabolic rate for glucose (rCMRGlc) are associated with PCD; and (3) correlate behavioral and metabolic measures of disease severity. Eighteen volunteer subjects served as normal controls. Although some PCD neuropsychological test scores were abnormal, these results could not, in general, be dissociated from the effects of dysarthria and ataxia. rCMRGlc was reduced in patients with PCD (versus normal control subjects) in all regions except the brainstem. Analysis of patient and control rCMRGlc data using a mathematical model of regional metabolic interactions revealed two metabolic pattern descriptors, SSF1 and SSF2, which distinguished patients with PCD from normal control subjects; SSF2, which described a metabolic coupling between cerebellum, cuneus, and posterior temporal, lateral frontal, and paracentral cortex, correlated with quantitative indices of cerebellar dysfunction. Our inability to document substantial intellectual impairment in 7 of 10 patients with PCD contrasts with the 50% incidence of dementia in PCD reported by previous investigators. Widespread reductions in PCD rCMRGlc may result from the loss of cerebellar efferents to thalamus and forebrain structures, a reverse cerebellar diaschisis

  15. PLC-dependent intracellular Ca2+ release was associated with C6-ceramide-induced inhibition of Na+ current in rat granule cells.

    Science.gov (United States)

    Liu, Zheng; Fei, Xiao-Wei; Fang, Yan-Jia; Shi, Wen-Jie; Zhang, Yu-Qiu; Mei, Yan-Ai

    2008-09-01

    In this report, the effects of C(6)-ceramide on the voltage-gated inward Na(+) currents (I(Na)), two types of main K(+) current [outward rectifier delayed K(+) current (I(K)) and outward transient K(+) current (I(A))], and cell death in cultured rat cerebellar granule cells were investigated. At concentrations of 0.01-100 microM, ceramide produced a dose-dependent and reversible inhibition of I(Na) without alteration of the steady-state activation and inactivation properties. Treatment with C(2)-ceramide caused a similar inhibitory effect on I(Na). However, dihydro-C(6)-ceramide failed to modulate I(Na). The effect of C(6)-ceramide on I(Na) was abolished by intracellular infusion of the Ca(2+)-chelating agent, 1,2-bis (2-aminophenoxy) ethane-N, N, N9, N9-tetraacetic acid, but was mimicked by application of caffeine. Blocking the release of Ca(2+) from the sarcoplasmic reticulum with ryanodine receptor blocker induced a gradual increase in I(Na) amplitude and eliminated the effect of ceramide on I(Na). In contrast, the blocker of the inositol 1,4,5-trisphosphate-sensitive Ca(2+) receptor did not affect the action of C(6)-ceramide. Intracellular application of GTPgammaS also induced a gradual decrease in I(Na) amplitude, while GDPbetaS eliminated the effect of C(6)-ceramide on I(Na). Furthermore, the C(6)-ceramide effect on I(Na) was abolished after application of the phospholipase C (PLC) blockers and was greatly reduced by the calmodulin inhibitors. Fluorescence staining showed that C(6)-ceramide decreased cell viability and blocking I(Na) by tetrodotoxin did not mimic the effect of C(6)-ceramide, and inhibiting intracellular Ca(2+) release by dantrolene could not decrease the C(6)-ceramide-induced cell death. We therefore suggest that increased PLC-dependent Ca(2+) release through the ryanodine-sensitive Ca(2+) receptor may be responsible for the C(6)-ceramide-induced inhibition of I(Na), which does not seem to be associated with C(6)-ceramide-induced granule

  16. Morphological study of the solar granulation. Pt. 2

    International Nuclear Information System (INIS)

    Kawaguchi, I.

    1980-01-01

    A time sequence of granulation images of 46 min long has allowed us to make a detailed study of the evolution of granules in an area of approximately 17 x 17 on the solar surface; It is found that the granules evolve by repeated fragmentation into smaller granules or merging with adjacent ones and that there are few granules which appear in the intergranular lanes as new granules (Table III). The statistical nature of granules is as follows: (1) A family of granules is defined as a group of granules produced from a single granule by fragmentation or merging. The lifetime is estimated for single granules and for families of granules. The lifetime shows a close correlation with the maximum size of a single granule or with that of the largest granule belonging to a family (Figures 5 and 7). (2) The smaller the size, the more probably a granule will disappear without further fragmentation or merging. The granule whose size is larger than 2 will certainly split or merge as the next evolutional step (Table IV.). (orig.)

  17. Neonatal irradiation: neurotoxicity and modulation of pharmacological response; Irradiacion prenatal: neurotoxicidad y modulacion farmacologica de la respuesta

    Energy Technology Data Exchange (ETDEWEB)

    Zieher, Luis M; Guelman, Laura R [Bueno Aires Univ. (Argentina). Facultad de Medicina

    2001-07-01

    Neuronal loss may be responsible of many acute and chronic diseases. For this reason, is very important to understand the mechanisms that contribute to neuronal cell death in order to develop pharmacological strategies for the treatment of these disorders. Developing CNS is very sensitive to ionizing radiations. In particular, irradiation of immature cerebellum induce motor (impaired gait), morphological (disarrangement of cytoarchitecture) and biochemical (increase in noradrenaline levels) alterations, mainly related to cerebellar granule cell death induced by reactive oxygen species (ROS) generated after radiation exposure. Cellular changes triggered by ROS include increased intracellular Ca{sup 2+} levels, activation of NMDA glutamatergic receptors and apoptosis. With an excitatory neurotransmitter as glutamate and a multifacetic ion as calcium, their regulation in synapses and cytoplasm, respectively, is very vulnerable. Moreover, the highly aerobic condition of neuronal metabolism determines that an oxidative injury lead to ROS accumulation. The neuro protection therapy attempts to interfere with these few processes by using antioxidants, metal chelators, calcium antagonists or glutamatergic antagonists. In the protocol used in our laboratory, neonatal rats were irradiated with 5 Gy gamma radiations in their cephalic ends, and pre or post-treated with selected putative neuro protective agents. After 30-90 days, motor, morphological and biochemical parameters were measured and compared with irradiated and sham-irradiated (control) animals. Drugs as GM1 ganglioside or amifostine were able to restore abnormal parameters. Cerebellar granule cell irradiated 'in vitro' were treated with neuro protective agents prior or after irradiation. Cell viability and several biochemical parameters were analysed after 48 hours. GM1 ganglioside and amifostine were effective in preventing cell death and increase in ROS induced by ionizing radiation exposure. (author)

  18. Neonatal irradiation: neurotoxicity and modulation of pharmacological response

    International Nuclear Information System (INIS)

    Zieher, Luis M.; Guelman, Laura R.

    2001-01-01

    Neuronal loss may be responsible of many acute and chronic diseases. For this reason, is very important to understand the mechanisms that contribute to neuronal cell death in order to develop pharmacological strategies for the treatment of these disorders. Developing CNS is very sensitive to ionizing radiations. In particular, irradiation of immature cerebellum induce motor (impaired gait), morphological (disarrangement of cytoarchitecture) and biochemical (increase in noradrenaline levels) alterations, mainly related to cerebellar granule cell death induced by reactive oxygen species (ROS) generated after radiation exposure. Cellular changes triggered by ROS include increased intracellular Ca 2+ levels, activation of NMDA glutamatergic receptors and apoptosis. With an excitatory neurotransmitter as glutamate and a multifacetic ion as calcium, their regulation in synapses and cytoplasm, respectively, is very vulnerable. Moreover, the highly aerobic condition of neuronal metabolism determines that an oxidative injury lead to ROS accumulation. The neuro protection therapy attempts to interfere with these few processes by using antioxidants, metal chelators, calcium antagonists or glutamatergic antagonists. In the protocol used in our laboratory, neonatal rats were irradiated with 5 Gy gamma radiations in their cephalic ends, and pre or post-treated with selected putative neuro protective agents. After 30-90 days, motor, morphological and biochemical parameters were measured and compared with irradiated and sham-irradiated (control) animals. Drugs as GM1 ganglioside or amifostine were able to restore abnormal parameters. Cerebellar granule cell irradiated 'in vitro' were treated with neuro protective agents prior or after irradiation. Cell viability and several biochemical parameters were analysed after 48 hours. GM1 ganglioside and amifostine were effective in preventing cell death and increase in ROS induced by ionizing radiation exposure. (author)

  19. Studying cerebellar circuits by remote control of selected neuronal types with GABA-A receptors

    Directory of Open Access Journals (Sweden)

    William Wisden

    2009-12-01

    Full Text Available Although GABA-A receptor-mediated inhibition of cerebellar Purkinje cells by molecular layer interneurons (MLIs has been studied intensely on the cellular level, it has remained unclear how this inhibition regulates cerebellum-dependent behaviour. We have implemented two complementary approaches to investigate the function of the MLI-Purkinje cell synapse on the behavioral level. In the first approach we permanently disrupted inhibitory fast synaptic transmission at the synapse by genetically removing the postsynaptic GABA-A receptors from Purkinje cells (PC-Δγ2 mice. We found that chronic disruption of the MLI-Purkinje cell synapse strongly impaired cerebellar learning of the vestibular occular reflex (VOR, presumably by disrupting the temporal patterns of Purkinje cell activity. However, in PC-Δγ2 mice the baseline VOR reflex was only mildly affected; indeed PC-Δγ2 mice showed no ataxia or gait abnormalities suggesting that MLI control of Purkinje cell activity is either not involved in ongoing motor tasks or that the system has found a way to compensate for its loss. To investigate the latter possibility we have developed an alternative genetic technique; we made the MLI-Purkinje cell synapse selectively sensitive to rapid manipulation with the GABAA receptor modulator zolpidem (PC-γ2-swap mice. Minutes after intraperitoneal zolpidem injection, these PC-γ2-swap mice developed severe motor abnormalities, revealing a substantial contribution of the MLI-Purkinje cell synapse to real time motor control. The cell-type selective permanent knockout of synaptic GABAergic input, and the fast reversible modulation of GABAergic input at the same synapse illustrate how pursuing both strategies gives a fuller view.

  20. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  1. Using a million cell simulation of the cerebellum: network scaling and task generality.

    Science.gov (United States)

    Li, Wen-Ke; Hausknecht, Matthew J; Stone, Peter; Mauk, Michael D

    2013-11-01

    Several factors combine to make it feasible to build computer simulations of the cerebellum and to test them in biologically realistic ways. These simulations can be used to help understand the computational contributions of various cerebellar components, including the relevance of the enormous number of neurons in the granule cell layer. In previous work we have used a simulation containing 12000 granule cells to develop new predictions and to account for various aspects of eyelid conditioning, a form of motor learning mediated by the cerebellum. Here we demonstrate the feasibility of scaling up this simulation to over one million granule cells using parallel graphics processing unit (GPU) technology. We observe that this increase in number of granule cells requires only twice the execution time of the smaller simulation on the GPU. We demonstrate that this simulation, like its smaller predecessor, can emulate certain basic features of conditioned eyelid responses, with a slight improvement in performance in one measure. We also use this simulation to examine the generality of the computation properties that we have derived from studying eyelid conditioning. We demonstrate that this scaled up simulation can learn a high level of performance in a classic machine learning task, the cart-pole balancing task. These results suggest that this parallel GPU technology can be used to build very large-scale simulations whose connectivity ratios match those of the real cerebellum and that these simulations can be used guide future studies on cerebellar mediated tasks and on machine learning problems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Inflammation-induced reversible switch of the neuron-specific enolase promoter from Purkinje neurons to Bergmann glia.

    Science.gov (United States)

    Sawada, Yusuke; Konno, Ayumu; Nagaoka, Jun; Hirai, Hirokazu

    2016-06-13

    Neuron-specific enolase (NSE) is a glycolytic isoenzyme found in mature neurons and cells of neuronal origin. Injecting adeno-associated virus serotype 9 (AAV9) vectors carrying the NSE promoter into the cerebellar cortex is likely to cause the specific transduction of neuronal cells, such as Purkinje cells (PCs) and interneurons, but not Bergmann glia (BG). However, we found BG-predominant transduction without PC transduction along a traumatic needle tract for viral injection. The enhancement of neuroinflammation by the co-application of lipopolysaccharide (LPS) with AAV9 significantly expanded the BG-predominant area concurrently with the potentiated microglial activation. The BG-predominant transduction was gradually replaced by the PC-predominant transduction as the neuroinflammation dissipated. Experiments using glioma cell cultures revealed significant activation of the NSE promoter due to glucose deprivation, suggesting that intracellularly stored glycogen is metabolized through the glycolytic pathway for energy. Activation of the glycolytic enzyme promoter in BG concurrently with inactivation in PC may have pathophysiological significance for the production of lactate in activated BG and the utilization of lactate, which is provided by the BG-PC lactate shuttle, as a primary energy resource in injured PCs.

  3. Interferon-γ increases neuronal death in response to amyloid-β1-42

    Directory of Open Access Journals (Sweden)

    Williams Alun

    2006-03-01

    Full Text Available Abstract Background Alzheimer's disease is a neurodegenerative disorder characterized by a progressive cognitive impairment, the consequence of neuronal dysfunction and ultimately the death of neurons. The amyloid hypothesis proposes that neuronal damage results from the accumulation of insoluble, hydrophobic, fibrillar peptides such as amyloid-β1-42. These peptides activate enzymes resulting in a cascade of second messengers including prostaglandins and platelet-activating factor. Apoptosis of neurons is thought to follow as a consequence of the uncontrolled release of second messengers. Biochemical, histopathological and genetic studies suggest that pro-inflammatory cytokines play a role in neurodegeneration during Alzheimer's disease. In the current study we examined the effects of interferon (IFN-γ, tumour necrosis factor (TNFα, interleukin (IL-1β and IL-6 on neurons. Methods Primary murine cortical or cerebellar neurons, or human SH-SY5Y neuroblastoma cells, were grown in vitro. Neurons were treated with cytokines prior to incubation with different neuronal insults. Cell survival, caspase-3 activity (a measure of apoptosis and prostaglandin production were measured. Immunoblots were used to determine the effects of cytokines on the levels of cytoplasmic phospholipase A2 or phospholipase C γ-1. Results While none of the cytokines tested were directly neurotoxic, pre-treatment with IFN-γ sensitised neurons to the toxic effects of amyloid-β1-42 or HuPrP82-146 (a neurotoxic peptide found in prion diseases. The effects of IFN-γ were seen on cortical and cerebellar neurons, and on SH-SY5Y neuroblastoma cells. However, pre-treatment with IFN-γ did not affect the sensitivity to neurons treated with staurosporine or hydrogen peroxide. Pre-treatment with IFN-γ increased the levels of cytoplasmic phospholipase A2 in SH-SY5Y cells and increased prostaglandin E2 production in response to amyloid-β1-42. Conclusion Treatment of neuronal cells

  4. Investigation of Physicochemical Drug Properties to Prepare Fine Globular Granules Composed of Only Drug Substance in Fluidized Bed Rotor Granulation.

    Science.gov (United States)

    Mise, Ryohei; Iwao, Yasunori; Kimura, Shin-Ichiro; Osugi, Yukiko; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The effect of some drug properties (wettability and particle size distribution) on granule properties (mean particle size, particle size distribution, sphericity, and granule strength) were investigated in a high (>97%) drug-loading formulation using fluidized bed rotor granulation. Three drugs: acetaminophen (APAP); ibuprofen (IBU); and ethenzamide (ETZ) were used as model drugs based on their differences in wettability and particle size distribution. Granules with mean particle sizes of 100-200 µm and a narrow particle size distribution (PSD) could be prepared regardless of the drug used. IBU and ETZ granules showed a higher sphericity than APAP granules, while APAP and ETZ granules exhibited higher granule strength than IBU. The relationship between drug and granule properties suggested that the wettability and the PSD of the drugs were critical parameters affecting sphericity and granule strength, respectively. Furthermore, the dissolution profiles of granules prepared with poorly water-soluble drugs (IBU and ETZ) showed a rapid release (80% release in 20 min) because of the improved wettability with granulation. The present study demonstrated for the first time that fluidized bed rotor granulation can prepare high drug-loaded (>97%) globular granules with a mean particle size of less than 200 µm and the relationship between physicochemical drug properties and the properties of the granules obtained could be readily determined, indicating the potential for further application of this methodology to various drugs.

  5. Factors associated with the misdiagnosis of cerebellar infarction.

    Science.gov (United States)

    Masuda, Yoko; Tei, Hideaki; Shimizu, Satoru; Uchiyama, Shinichiro

    2013-10-01

    Cerebellar infarction is easily misdiagnosed or underdiagnosed. In this study, we investigated factors leading to misdiagnosis of cerebellar infarction in patients with acute ischemic stroke. Data on neurological and radiological findings from 114 consecutive patients with acute cerebellar infarction were analyzed. We investigated factors associated with misdiagnosis from the data on clinical findings. Thirty-two (28%) patients were misdiagnosed on admission. Misdiagnosis was significantly more frequent in patients below 60 years of age and in patients with vertebral artery dissection, and significantly less frequent in patients with dysarthria. It tended to be more frequent in patients with the medial branch of posterior inferior cerebellar artery territory infarction, and infrequent in patients with the medial branch of the superior cerebellar artery territory infarction. Thirty out of 32 (94%) misdiagnosed patients were seen by physicians that were not neurologists at the first visit. Twenty-four of 32 (75%) misdiagnosed patients were screened only by brain CT. However, patients were not checked by brain MRI or follow-up CT until their conditions worsened. Patients below 60 years of age and patients with vertebral artery dissection are more likely to have a cerebellar infarction misdiagnosed by physicians other than neurologists. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  6. Cerebellar arteriovenous malformations in children

    International Nuclear Information System (INIS)

    Griffiths, P.D.; Humphreys, R.P.

    1998-01-01

    We review the presentation, imaging findings and outcome in 18 children with cerebellar arteriovenous malformations (AVM). This group is of particular interest because of the reported poor outcome despite modern imaging and neurosurgical techniques. All children had CT and 15 underwent catheter angiography at presentation. Several of the children in the latter part of the study had MRI. Of the 18 children, 17 presented with a ruptured AVM producing intracranial haemorrhage. The remaining child presented with temporal lobe epilepsy and was shown to have temporal, vermian and cerebellar hemisphere AVM. This child had other stigmata of Osler-Weber-Rendu syndrome. Three other children had pre-existing abnormalities of possible relevance. One had a vascular malformation of the cheek and mandible, one a documented chromosomal abnormality and another a midline cleft upper lip and palate. Six of the 17 children with a ruptured cerebellar AVM died within 7 days of the ictus. Vascular pathology other than an AVM was found in 10 of the 14 children with a ruptured cerebellar AVM who had angiography: 4 intranidal aneurysms, 5 venous aneurysms and 2 cases of venous outflow obstruction (one child having both an aneurysm and obstruction). The severity of clinical presentation was directly related to the size of the acute haematoma, which was a reasonable predictor of outcome. (orig.)

  7. Cerebellar arteriovenous malformations in children

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, P.D. [Sheffield Univ. (United Kingdom). Acad. Dept. of Radiol.; Blaser, S.; Armstrong, D.; Chuang, S.; Harwood-Nash, D. [Division of Neuroradiology, The Hospital for Sick Children and University of Toronto, Toronto (Canada); Humphreys, R.P. [Division of Neurosurgery, The Hospital for Sick Children and University of Toronto, Toronto (Canada)

    1998-05-01

    We review the presentation, imaging findings and outcome in 18 children with cerebellar arteriovenous malformations (AVM). This group is of particular interest because of the reported poor outcome despite modern imaging and neurosurgical techniques. All children had CT and 15 underwent catheter angiography at presentation. Several of the children in the latter part of the study had MRI. Of the 18 children, 17 presented with a ruptured AVM producing intracranial haemorrhage. The remaining child presented with temporal lobe epilepsy and was shown to have temporal, vermian and cerebellar hemisphere AVM. This child had other stigmata of Osler-Weber-Rendu syndrome. Three other children had pre-existing abnormalities of possible relevance. One had a vascular malformation of the cheek and mandible, one a documented chromosomal abnormality and another a midline cleft upper lip and palate. Six of the 17 children with a ruptured cerebellar AVM died within 7 days of the ictus. Vascular pathology other than an AVM was found in 10 of the 14 children with a ruptured cerebellar AVM who had angiography: 4 intranidal aneurysms, 5 venous aneurysms and 2 cases of venous outflow obstruction (one child having both an aneurysm and obstruction). The severity of clinical presentation was directly related to the size of the acute haematoma, which was a reasonable predictor of outcome. (orig.) With 4 figs., 4 tabs., 23 refs.

  8. Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Sebastian Jessberger

    2008-11-01

    Full Text Available Newborn granule cells become functionally integrated into the synaptic circuitry of the adult dentate gyrus after a morphological and electrophysiological maturation process. The molecular mechanisms by which immature neurons and the neurites extending from them find their appropriate position and target area remain largely unknown. Here we show that single-cell-specific knockdown of cyclin-dependent kinase 5 (cdk5 activity in newborn cells using a retrovirus-based strategy leads to aberrant growth of dendritic processes, which is associated with an altered migration pattern of newborn cells. Even though spine formation and maturation are reduced in cdk5-deficient cells, aberrant dendrites form ectopic synapses onto hilar neurons. These observations identify cdk5 to be critically involved in the maturation and dendrite extension of newborn neurons in the course of adult neurogenesis. The data presented here also suggest a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation.

  9. Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas.

    Science.gov (United States)

    Palesi, Fulvia; De Rinaldis, Andrea; Castellazzi, Gloria; Calamante, Fernando; Muhlert, Nils; Chard, Declan; Tournier, J Donald; Magenes, Giovanni; D'Angelo, Egidio; Gandini Wheeler-Kingshott, Claudia A M

    2017-10-09

    Cerebellar involvement in cognition, as well as in sensorimotor control, is increasingly recognized and is thought to depend on connections with the cerebral cortex. Anatomical investigations in animals and post-mortem humans have established that cerebro-cerebellar connections are contralateral to each other and include the cerebello-thalamo-cortical (CTC) and cortico-ponto-cerebellar (CPC) pathways. CTC and CPC characterization in humans in vivo is still challenging. Here advanced tractography was combined with quantitative indices to compare CPC to CTC pathways in healthy subjects. Differently to previous studies, our findings reveal that cerebellar cognitive areas are reached by the largest proportion of the reconstructed CPC, supporting the hypothesis that a CTC-CPC loop provides a substrate for cerebro-cerebellar communication during cognitive processing. Amongst the cerebral areas identified using in vivo tractography, in addition to the cerebral motor cortex, major portions of CPC streamlines leave the prefrontal and temporal cortices. These findings are useful since provide MRI-based indications of possible subtending connectivity and, if confirmed, they are going to be a milestone for instructing computational models of brain function. These results, together with further multi-modal investigations, are warranted to provide important cues on how the cerebro-cerebellar loops operate and on how pathologies involving cerebro-cerebellar connectivity are generated.

  10. Cellular Functions of the Autism Risk Factor PTCHD1 in Mice.

    Science.gov (United States)

    Tora, David; Gomez, Andrea M; Michaud, Jean-Francois; Yam, Patricia T; Charron, Frédéric; Scheiffele, Peter

    2017-12-06

    The gene patched domain containing 1 ( PTCHD1 ) is mutated in patients with autism spectrum disorders and intellectual disabilities and has been hypothesized to contribute to Sonic hedgehog (Shh) signaling and synapse formation. We identify a panel of Ptchd1-interacting proteins that include postsynaptic density proteins and the retromer complex, revealing a link to critical regulators of dendritic and postsynaptic trafficking. Ptchd1 knock-out (KO) male mice exhibit cognitive alterations, including defects in a novel object recognition task. To test whether Ptchd1 is required for Shh-dependent signaling, we examined two Shh-dependent cell populations that express high levels of Ptchd1 mRNA: cerebellar granule cell precursors and dentate granule cells in the hippocampus. We found that proliferation of these neuronal precursors was not altered significantly in Ptchd1 KO male mice. We used whole-cell electrophysiology and anatomical methods to assess synaptic function in Ptchd1-deficient dentate granule cells. In the absence of Ptchd1, we observed profound disruption in excitatory/inhibitory balance despite normal dendritic spine density on dentate granule cells. These findings support a critical role of the Ptchd1 protein in the dentate gyrus, but indicate that it is not required for structural synapse formation in dentate granule cells or for Shh-dependent neuronal precursor proliferation. SIGNIFICANCE STATEMENT The mechanisms underlying neuronal and cellular alterations resulting from patched domain containing 1 ( Ptchd1 ) gene mutations are unknown. The results from this study support an association with dendritic trafficking complexes of Ptchd1. Loss-of-function experiments do not support a role in sonic hedgehog-dependent signaling, but reveal a disruption of synaptic transmission in the mouse dentate gyrus. The findings will help to guide ongoing efforts to understand the etiology of neurodevelopmental disorders arising from Ptchd1 deficiency. Copyright

  11. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.

    Science.gov (United States)

    Ng, H B Tommy; Kao, K-L Cathy; Chan, Y C; Chew, Effie; Chuang, K H; Chen, S H Annabel

    2016-05-15

    Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Breakage and drying behaviour of granules in a continuous fluid bed dryer: Influence of process parameters and wet granule transfer.

    Science.gov (United States)

    De Leersnyder, F; Vanhoorne, V; Bekaert, H; Vercruysse, J; Ghijs, M; Bostijn, N; Verstraeten, M; Cappuyns, P; Van Assche, I; Vander Heyden, Y; Ziemons, E; Remon, J P; Nopens, I; Vervaet, C; De Beer, T

    2018-03-30

    Although twin screw granulation has already been widely studied in recent years, only few studies addressed the subsequent continuous drying which is required after wet granulation and still suffers from a lack of detailed understanding. The latter is important for optimisation and control and, hence, a cost-effective practical implementation. Therefore, the aim of the current study is to increase understanding of the drying kinetics and the breakage and attrition phenomena during fluid bed drying after continuous twin screw granulation. Experiments were performed on a continuous manufacturing line consisting of a twin-screw granulator, a six-segmented fluid bed dryer, a mill, a lubricant blender and a tablet press. Granulation parameters were fixed in order to only examine the effect of drying parameters (filling time, drying time, air flow, drying air temperature) on the size distribution and moisture content of granules (both of the entire granulate and of size fractions). The wet granules were transferred either gravimetrically or pneumatically from the granulator exit to the fluid bed dryer. After a certain drying time, the moisture content reached an equilibrium. This drying time was found to depend on the applied airflow, drying air temperature and filling time. The moisture content of the granules decreased with an increasing drying time, airflow and drying temperature. Although smaller granules dried faster, the multimodal particle size distribution of the granules did not compromise uniform drying of the granules when the target moisture content was achieved. Extensive breakage of granules was observed during drying. Especially wet granules were prone to breakage and attrition during pneumatic transport, either in the wet transfer line or in the dry transfer line. Breakage and attrition of granules during transport and drying should be anticipated early on during process and formulation development by performing integrated experiments on the granulator

  13. Cerebellar giant cell glioblastoma multiforme in an adult

    Directory of Open Access Journals (Sweden)

    Sudhansu Sekhar Mishra

    2014-01-01

    Full Text Available Cerebellar glioblastoma multiforme (GBM is a rare tumor that accounts for only 1% of all cases of GBM and its giant cell variant is even much rarely encountered in adults. A case of cerebellar giant cell GBM managed at our institution reporting its clinical presentation, radiological and histological findings, and treatment instituted is described. In conjunction, a literature review, including particular issues, clinical data, advances in imaging studies, pathological characteristics, treatment options, and the behavior of such malignant tumor is presented. It is very important for the neurosurgeon to make the differential diagnosis between the cerebellar GBM, and other diseases such as metastasis, anaplastic astrocytomas, and cerebellar infarct because their treatment modalities, prognosis, and outcome are different.

  14. Synaptic responses evoked by tactile stimuli in Purkinje cells in mouse cerebellar cortex Crus II in vivo.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Chu

    Full Text Available Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice.Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0, the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs in the somata of PCs. Application of SR95531, a specific GABA(A receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation.These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.

  15. Aberrant cerebellar connectivity in bipolar disorder with psychosis.

    Science.gov (United States)

    Shinn, Ann K; Roh, Youkyung S; Ravichandran, Caitlin T; Baker, Justin T; Öngür, Dost; Cohen, Bruce M

    2017-07-01

    The cerebellum, which modulates affect and cognition in addition to motor functions, may contribute substantially to the pathophysiology of mood and psychotic disorders, such as bipolar disorder. A growing literature points to cerebellar abnormalities in bipolar disorder. However, no studies have investigated the topographic representations of resting state cerebellar networks in bipolar disorder, specifically their functional connectivity to cerebral cortical networks. Using a well-defined cerebral cortical parcellation scheme as functional connectivity seeds, we compared ten cerebellar resting state networks in 49 patients with bipolar disorder and a lifetime history of psychotic features and 55 healthy control participants matched for age, sex, and image signal-to-noise ratio. Patients with psychotic bipolar disorder showed reduced cerebro-cerebellar functional connectivity in somatomotor A, ventral attention, salience, and frontoparietal control A and B networks relative to healthy control participants. These findings were not significantly correlated with current symptoms. Patients with psychotic bipolar disorder showed evidence of cerebro-cerebellar dysconnectivity in selective networks. These disease-related changes were substantial and not explained by medication exposure or substance use. Therefore, they may be mechanistically relevant to the underlying susceptibility to mood dysregulation and psychosis. Cerebellar mechanisms deserve further exploration in psychiatric conditions, and this study's findings may have value in guiding future studies on pathophysiology and treatment of mood and psychotic disorders, in particular.

  16. Cerebellar mutism: review of the literature

    DEFF Research Database (Denmark)

    Gudrunardottir, Thora; Sehested, Astrid; Juhler, Marianne

    2011-01-01

    Cerebellar mutism is a common complication of posterior fossa surgery in children. This article reviews current status with respect to incidence, anatomical substrate, pathophysiology, risk factors, surgical considerations, treatment options, prognosis and prevention.......Cerebellar mutism is a common complication of posterior fossa surgery in children. This article reviews current status with respect to incidence, anatomical substrate, pathophysiology, risk factors, surgical considerations, treatment options, prognosis and prevention....

  17. Acute Cerebellar Ataxia Induced by Nivolumab

    OpenAIRE

    Kawamura, Reina; Nagata, Eiichiro; Mukai, Masako; Ohnuki, Yoichi; Matsuzaki, Tomohiko; Ohiwa, Kana; Nakagawa, Tomoki; Kohno, Mitsutomo; Masuda, Ryota; Iwazaki, Masayuki; Takizawa, Shunya

    2017-01-01

    A 54-year-old woman with adenocarcinoma of the lung and lymph node metastasis experienced nystagmus and cerebellar ataxia 2 weeks after initiating nivolumab therapy. An evaluation for several autoimmune-related antibodies and paraneoplastic syndrome yielded negative results. We eventually diagnosed the patient with nivolumab-induced acute cerebellar ataxia, after excluding other potential conditions. Her ataxic gait and nystagmus resolved shortly after intravenous steroid pulse therapy follow...

  18. Disorganized foliation of unilateral cerebellar hemisphere as cerebellar cortical dysplasia in patients with recurrent seizures: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hye Jin [Dept. of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2013-09-15

    We present a rare case of abnormal foliation for one cerebellar hemisphere on MR imaging, showing vertically-oriented folia. Foliation of contralateral cerebellar hemisphere and other structures in the posterior fossa were normal, and the patient has no neurologic deficits. This rare and unique abnormality is considered a kind of developmental error of the cerebellum.

  19. Twin screw wet granulation: Binder delivery.

    Science.gov (United States)

    Saleh, Mohammed F; Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2015-06-20

    The effects of three ways of binder delivery into the twin screw granulator (TSG) on the residence time, torque, properties of granules (size, shape, strength) and binder distribution were studied. The binder distribution was visualised through the transparent barrel using high speed imaging as well as quantified using offline technique. Furthermore, the effect of binder delivery and the change of screw configuration (conveying elements only and conveying elements with kneading elements) on the surface velocity of granules across the screw channel were investigated using particle image velocimetry (PIV). The binder was delivered in three ways; all solid binder incorporated with powder mixture, 50% of solid binder mixed with powder mixture and 50% mixed with water, all the solid binder dissolved in water. Incorporation of all solid binder with powder mixture resulted in the relatively longer residence time and higher torque, narrower granule size distribution, more spherical granules, weaker big-sized granules, stronger small-sized granules and better binder distribution compared to that in other two ways. The surface velocity of granules showed variation from one screw to another as a result of uneven liquid distribution as well as shown a reduction while introducing the kneading elements into the screw configuration. Copyright © 2015. Published by Elsevier B.V.

  20. Functional circuits of new neurons in the dentate gyrus

    Directory of Open Access Journals (Sweden)

    Carmen eVivar

    2013-02-01

    Full Text Available The hippocampus is crucial for memory formation. New neurons are added throughout life to the hippocampal dentate gyrus (DG, a brain area considered important for differential storage of similar experiences and contexts. To better understand the functional contribution of adult neurogenesis to pattern separation processes, we recently used a novel synapse specific trans-neuronal tracing approach to identify the (sub cortical inputs to new dentate granule cells. It was observed that newly born neurons receive sequential innervation from structures important for memory function. Initially, septal-hippocampal cells provide input to new neurons, followed after about one month by perirhinal and lateral entorhinal cortex. These cortical areas are deemed relevant to encoding of novel environmental information and may enable pattern separation. Here, we review the developmental time-course and proposed functional relevance of new neurons, within the context of their unique neural circuitry.  

  1. Anomalous cerebellar anatomy in Chinese children with dyslexia

    Directory of Open Access Journals (Sweden)

    Ying-Hui eYang

    2016-03-01

    Full Text Available The cerebellar deficit hypothesis for developmental dyslexia (DD claims that cerebellar dysfunction causes the failures in the acquisition of visuomotor skills and automatic reading and writing skills. In people with dyslexia in the alphabetic languages, the abnormal activation and structure of the right or bilateral cerebellar lobes have been identified. Using a typical implicit motor learning task, however, one neuroimaging study demonstrated the left cerebellar dysfunction in Chinese children with dyslexia. In the present study, using voxel-based morphometry, we found decreased gray matter volume in the left cerebellum in Chinese children with dyslexia relative to age-matched controls. The positive correlation between reading performance and regional gray matter volume suggests that the abnormal structure in the left cerebellum is responsible for reading disability in Chinese children with dyslexia.

  2. Network-targeted cerebellar transcranial magnetic stimulation improves attentional control

    Science.gov (United States)

    Esterman, Michael; Thai, Michelle; Okabe, Hidefusa; DeGutis, Joseph; Saad, Elyana; Laganiere, Simon E.; Halko, Mark A.

    2018-01-01

    Developing non-invasive brain stimulation interventions to improve attentional control is extremely relevant to a variety of neurologic and psychiatric populations, yet few studies have identified reliable biomarkers that can be readily modified to improve attentional control. One potential biomarker of attention is functional connectivity in the core cortical network supporting attention - the dorsal attention network (DAN). We used a network-targeted cerebellar transcranial magnetic stimulation (TMS) procedure, intended to enhance cortical functional connectivity in the DAN. Specifically, in healthy young adults we administered intermittent theta burst TMS (iTBS) to the midline cerebellar node of the DAN and, as a control, the right cerebellar node of the default mode network (DMN). These cerebellar targets were localized using individual resting-state fMRI scans. Participants completed assessments of both sustained (gradual onset continuous performance task, gradCPT) and transient attentional control (attentional blink) immediately before and after stimulation, in two sessions (cerebellar DAN and DMN). Following cerebellar DAN stimulation, participants had significantly fewer attentional lapses (lower commission error rates) on the gradCPT. In contrast, stimulation to the cerebellar DMN did not affect gradCPT performance. Further, in the DAN condition, individuals with worse baseline gradCPT performance showed the greatest enhancement in gradCPT performance. These results suggest that temporarily increasing functional connectivity in the DAN via network-targeted cerebellar stimulation can enhance sustained attention, particularly in those with poor baseline performance. With regard to transient attention, TMS stimulation improved attentional blink performance across both stimulation sites, suggesting increasing functional connectivity in both networks can enhance this aspect of attention. These findings have important implications for intervention applications

  3. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai; Wang, Yunjie; Xu, Yazhou; Ran, Siqi [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Huang, Zhangjian [Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009 (China); Li, Ping [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Li, Jia [National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203 (China); Zhang, Luyong [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Saavedra, Juan M. [Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057 (United States); Liao, Hong, E-mail: liaohong56@hotmail.com [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Pang, Tao, E-mail: tpang@cpu.edu.cn [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057 (United States)

    2015-12-01

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in vitro.

  4. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction

    International Nuclear Information System (INIS)

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai; Wang, Yunjie; Xu, Yazhou; Ran, Siqi; Huang, Zhangjian; Li, Ping; Li, Jia; Zhang, Luyong; Saavedra, Juan M.; Liao, Hong; Pang, Tao

    2015-01-01

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in vitro.

  5. Back to front: cerebellar connections and interactions with the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Thomas C Watson

    2014-02-01

    Full Text Available Although recent neuroanatomical evidence has demonstrated closed-loop connectivity between prefrontal cortex and the cerebellum, the physiology of cerebello-cerebral circuits and the extent to which cerebellar output modulates neuronal activity in neocortex during behavior remain relatively unexplored. We show that electrical stimulation of the contralateral cerebellar fastigial nucleus (FN in awake, behaving rats evokes distinct local field potential (LFP responses (onset latency ~13 ms in the prelimbic (PrL subdivision of the medial prefrontal cortex. Trains of FN stimulation evoke heterogeneous patterns of response in putative pyramidal cells in frontal and prefrontal regions in both urethane-anaesthetized and awake, behaving rats. However, the majority of cells showed decreased firing rates during stimulation and subsequent rebound increases; more than 90% of cells showed significant changes in response. Simultaneous recording of on-going LFP activity from FN and PrL while rats were at rest or actively exploring an open field arena revealed significant network coherence restricted to the theta frequency range (5-10 Hz. Granger causality analysis indicated that this coherence was significantly directed from cerebellum to PrL during active locomotion. Our results demonstrate the presence of a cerebello-prefrontal pathway in rat and reveal behaviorally dependent coordinated network activity between the two structures, which could facilitate transfer of sensorimotor information into ongoing neocortical processing during goal directed behaviors.

  6. Recent Advances in Cerebellar Ischemic Stroke Syndromes Causing Vertigo and Hearing Loss.

    Science.gov (United States)

    Kim, Hyun-Ah; Yi, Hyon-Ah; Lee, Hyung

    2016-12-01

    Cerebellar ischemic stroke is one of the common causes of vascular vertigo. It usually accompanies other neurological symptoms or signs, but a small infarct in the cerebellum can present with vertigo without other localizing symptoms. Approximately 11 % of the patients with isolated cerebellar infarction simulated acute peripheral vestibulopathy, and most patients had an infarct in the territory of the medial branch of the posterior inferior cerebellar artery (PICA). A head impulse test can differentiate acute isolated vertigo associated with PICA territory cerebellar infarction from more benign disorders involving the inner ear. Acute hearing loss (AHL) of a vascular cause is mostly associated with cerebellar infarction in the territory of the anterior inferior cerebellar artery (AICA), but PICA territory cerebellar infarction rarely causes AHL. To date, at least eight subgroups of AICA territory infarction have been identified according to the pattern of neurotological presentations, among which the most common pattern of audiovestibular dysfunction is the combined loss of auditory and vestibular functions. Sometimes acute isolated audiovestibular loss can be the initial symptom of impending posterior circulation ischemic stroke (particularly within the territory of the AICA). Audiovestibular loss from cerebellar infarction has a good long-term outcome than previously thought. Approximately half of patients with superior cerebellar artery territory (SCA) cerebellar infarction experienced true vertigo, suggesting that the vertigo and nystagmus in the SCA territory cerebellar infarctions are more common than previously thought. In this article, recent findings on clinical features of vertigo and hearing loss from cerebellar ischemic stroke syndrome are summarized.

  7. APPLICATION OF GRANULATION TECHNOLOGY IN VARIOUS INDUSTRIES

    Directory of Open Access Journals (Sweden)

    B. V. YEGOROV

    2017-10-01

    Full Text Available Science and practice proved the high efficiency of granulated mixed fodders. This article presents an overview of granulation technologies for various industries. This article discusses the application of granulation technologies in various industries. The processes of granulation are mass technological processes currently used in a wide range of industries: feed industry, food industry, pharmaceutical industry, fertilizer production, polyethylene, metal production, mining, etc. A wide range of different materials are granulated, including chemicals, iron ore, mixed fodder, and much more. Granulation is a process of pressing or shaping a material in the form of granulesGranulation is widely used in the production of pigments, dyes, synthetic detergents, catalysts, plastics, soot, chemical reagents, etc. The use of granular raw materials in the metallurgical industry helps not only to mechanize processes, but also to increase their intensity by increasing the contact surface of interacting media. Granular fertilizers retain their properties for a long time. In the mining industry, granulation processes are used at the stage of preparation and enrichment of raw materials and release of the finished product.  Particular attention is paid to the feed industry. Granulation allows to ensure stable homogeneity, to improve sanitary and hygienic parameters, to increase nutritional value, to increase the storage period, improve the physical properties. However, despite all the advantages, the existing granulation production lines have a relatively high productivity and, at the same time, a high energy intensity. In this regard, this article proposes a technology for improving the granulation of mixed fodders. According to a preliminary literary review, It should be concluded that improving the technology of the granulation process for feed production is a topical issue in the feed industry today. The development of technology for improving the

  8. Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging.

    Science.gov (United States)

    Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas

    2014-04-01

    Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. Copyright © 2013 Elsevier B.V. All

  9. Learning of Sensory Sequences in Cerebellar Patients

    Science.gov (United States)

    Frings, Markus; Boenisch, Raoul; Gerwig, Marcus; Diener, Hans-Christoph; Timmann, Dagmar

    2004-01-01

    A possible role of the cerebellum in detecting and recognizing event sequences has been proposed. The present study sought to determine whether patients with cerebellar lesions are impaired in the acquisition and discrimination of sequences of sensory stimuli of different modalities. A group of 26 cerebellar patients and 26 controls matched for…

  10. Magnetic resonance imaging of neuronal ceroid lipofuscinosis in a border collie.

    Science.gov (United States)

    Koie, Hiroshi; Shibuya, Hisashi; Sato, Tsuneo; Sato, Akane; Nawa, Koji; Nawa, Yuko; Kitagawa, Masato; Sakai, Manabu; Takahashi, Tomoko; Yamaya, Yoshiki; Yamato, Osamu; Watari, Toshihiro; Tokuriki, Mikihiko

    2004-11-01

    A castrated male border collie 23 months of age weighing 19.4 kg was referred to the Animal Medical Center of Nihon University with complaints of visual disturbance and behavioral abnormality, hyperacusis and morbid fear. The MRI examination revealed the slight dilated cerebral sulci and cerebellar fissures and left ventricular enlargement. This is the first report of MRI findings of canine neuronal ceroid lipofuscinosis.

  11. The clinical impact of cerebellar grey matter pathology in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Alfredo Damasceno

    Full Text Available BACKGROUND: The cerebellum is an important site for cortical demyelination in multiple sclerosis, but the functional significance of this finding is not fully understood. OBJECTIVE: To evaluate the clinical and cognitive impact of cerebellar grey-matter pathology in multiple sclerosis patients. METHODS: Forty-two relapsing-remitting multiple sclerosis patients and 30 controls underwent clinical assessment including the Multiple Sclerosis Functional Composite, Expanded Disability Status Scale (EDSS and cerebellar functional system (FS score, and cognitive evaluation, including the Paced Auditory Serial Addition Test (PASAT and the Symbol-Digit Modalities Test (SDMT. Magnetic resonance imaging was performed with a 3T scanner and variables of interest were: brain white-matter and cortical lesion load, cerebellar intracortical and leukocortical lesion volumes, and brain cortical and cerebellar white-matter and grey-matter volumes. RESULTS: After multivariate analysis high burden of cerebellar intracortical lesions was the only predictor for the EDSS (p<0.001, cerebellar FS (p = 0.002, arm function (p = 0.049, and for leg function (p<0.001. Patients with high burden of cerebellar leukocortical lesions had lower PASAT scores (p = 0.013, while patients with greater volumes of cerebellar intracortical lesions had worse SDMT scores (p = 0.015. CONCLUSIONS: Cerebellar grey-matter pathology is widely present and contributes to clinical dysfunction in relapsing-remitting multiple sclerosis patients, independently of brain grey-matter damage.

  12. Microvascular anatomy of the cerebellar parafloccular perforating space.

    Science.gov (United States)

    Sosa, Pablo; Dujovny, Manuel; Onyekachi, Ibe; Sockwell, Noressia; Cremaschi, Fabián; Savastano, Luis E

    2016-02-01

    The cerebellopontine angle is a common site for tumor growth and vascular pathologies requiring surgical manipulations that jeopardize cranial nerve integrity and cerebellar and brainstem perfusion. To date, a detailed study of vessels perforating the cisternal surface of the middle cerebellar peduncle-namely, the paraflocculus or parafloccular perforating space-has yet to be published. In this report, the perforating vessels of the anterior inferior cerebellar artery (AICA) in the parafloccular space, or on the cisternal surface of the middle cerebellar peduncle, are described to elucidate their relevance pertaining to microsurgery and the different pathologies that occur at the cerebellopontine angle. Fourteen cadaveric cerebellopontine cisterns (CPCs) were studied. Anatomical dissections and analysis of the perforating arteries of the AICA and posterior inferior cerebellar artery at the parafloccular space were recorded using direct visualization by surgical microscope, optical histology, and scanning electron microscope. A comprehensive review of the English-language and Spanish-language literature was also performed, and findings related to anatomy, histology, physiology, neurology, neuroradiology, microsurgery, and endovascular surgery pertaining to the cerebellar flocculus or parafloccular spaces are summarized. A total of 298 perforating arteries were found in the dissected specimens, with a minimum of 15 to a maximum of 26 vessels per parafloccular perforating space. The average outer diameter of the cisternal portion of the perforating arteries was 0.11 ± 0.042 mm (mean ± SD) and the average length was 2.84 ± 1.2 mm. Detailed schematics and the surgical anatomy of the perforating vessels at the CPC and their clinical relevance are reported. The parafloccular space is a key entry point for many perforating vessels toward the middle cerebellar peduncle and lateral brainstem, and it must be respected and protected during surgical approaches to the

  13. Cascade reactor: granule fabrication processes

    International Nuclear Information System (INIS)

    Erlandson, O.D.; Winkler, E.O.; Maya, I.; Pitts, J.H.

    1985-01-01

    A key feature of Cascade is the granular blanket. Of the many blanket material options open to Cascade, fabrication of Li 2 O granules was felt to offer the greatest challenge. The authors explored available methods for initial Li 2 O granule fabrication. They identified three cost-effective processes for fabricating Li 2 O granules: the VSM drop-melt furnace process, which is based on melting and spheroidizing irregularly shaped Li 2 O feed granules; the LiOH process, which spheroidizes liquefied LiOH and uses GA Technologies' sphere-forming procedures; and the Li 2 CO 3 sol-gel process, used for making spherical fuel particles for the high-temperature gas-cooled reactor (HTGR). Each process is described below

  14. Comparative effects of PBDEs and PCBs on intracellular signaling in rat cerebellar granule neurons

    Science.gov (United States)

    Polybrominated diphenyl ethers (PBDEs) are synthetic chemicals that do not occur in nature and are structurally similar to polychlorinated biphenyls (PCBs; Figure I) and several chlorinated pesticides. They are comprised of two phenyl rings linked by oxygen and are resistant to p...

  15. Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study

    Directory of Open Access Journals (Sweden)

    Jesus A Garrido

    2013-05-01

    Full Text Available The way long-term synaptic plasticity regulates neuronal spike patterns is not completely understood. This issue is especially relevant for the cerebellum, which is endowed with several forms of long-term synaptic plasticity and has been predicted to operate as a timing and a learning machine. Here we have used a computational model to simulate the impact of multiple distributed synaptic weights in the cerebellar granular layer network. In response to mossy fiber bursts, synaptic weights at multiple connections played a crucial role to regulate spike number and positioning in granule cells. The weight at mossy fiber to granule cell synapses regulated the delay of the first spike and the weight at mossy fiber and parallel fiber to Golgi cell synapses regulated the duration of the time-window during which the first-spike could be emitted. Moreover, the weights of synapses controlling Golgi cell activation regulated the intensity of granule cell inhibition and therefore the number of spikes that could be emitted. First spike timing was regulated with millisecond precision and the number of spikes ranged from 0 to 3. Interestingly, different combinations of synaptic weights optimized either first-spike timing precision or spike number, efficiently controlling transmission and filtering properties. These results predict that distributed synaptic plasticity regulates the emission of quasi-digital spike patterns on the millisecond time scale and allows the cerebellar granular layer to flexibly control burst transmission along the mossy fiber pathway.

  16. Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules

    DEFF Research Database (Denmark)

    Bacher, Charlotte; Olsen, P.M.; Bertelsen, P.

    2008-01-01

    The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10...... size fractions between 0 and 2000 µm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate......, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential....

  17. Signaling from the secretory granule to the nucleus: Uhmk1 and PAM.

    Science.gov (United States)

    Francone, Victor P; Ifrim, Marius F; Rajagopal, Chitra; Leddy, Christopher J; Wang, Yanping; Carson, John H; Mains, Richard E; Eipper, Betty A

    2010-08-01

    Neurons and endocrine cells package peptides in secretory granules (large dense-core vesicles) for storage and stimulated release. Studies of peptidylglycine alpha-amidating monooxygenase (PAM), an essential secretory granule membrane enzyme, revealed a pathway that can relay information from secretory granules to the nucleus, resulting in alterations in gene expression. The cytosolic domain (CD) of PAM, a type 1 membrane enzyme essential for the production of amidated peptides, is basally phosphorylated by U2AF homology motif kinase 1 (Uhmk1) and other Ser/Thr kinases. Proopiomelanocortin processing in AtT-20 corticotrope tumor cells was increased when Uhmk1 expression was reduced. Uhmk1 was concentrated in the nucleus, but cycled rapidly between nucleus and cytosol. Endoproteolytic cleavage of PAM releases a soluble CD fragment that localizes to the nucleus. Localization of PAM-CD to the nucleus was decreased when PAM-CD with phosphomimetic mutations was examined and when active Uhmk1 was simultaneously overexpressed. Membrane-tethering Uhmk1 did not eliminate its ability to exclude PAM-CD from the nucleus, suggesting that cytosolic Uhmk1 could cause this response. Microarray analysis demonstrated the ability of PAM to increase expression of a small subset of genes, including aquaporin 1 (Aqp1) in AtT-20 cells. Aqp1 mRNA levels were higher in wild-type mice than in mice heterozygous for PAM, indicating that a similar relationship occurs in vivo. Expression of PAM-CD also increased Aqp1 levels whereas expression of Uhmk1 diminished Aqp1 expression. The outlines of a pathway that ties secretory granule metabolism to the transcriptome are thus apparent.

  18. New evidence for the cerebellar involvement in personality traits

    Directory of Open Access Journals (Sweden)

    Eleonora ePicerni

    2013-10-01

    Full Text Available Following the recognition of its role in sensory-motor coordination and learning, the cerebellum has been involved in cognitive, emotional and even personality domains. This study investigated the relationships between cerebellar macro- and micro-structural variations and temperamental traits measured by Temperament and Character Inventory (TCI. High resolution T1-weighted and Diffusion Tensor Images of 100 healthy subjects aged 18-59 years were acquired by 3 Tesla Magnetic Resonance scanner. In multiple regression analyses, cerebellar Gray Matter (GM or White Matter (WM volumes, GM Mean Diffusivity (MD, and WM Fractional Anisotropy (FA were used as dependent variables, TCI scores as regressors, gender, age, and education years as covariates. Novelty Seeking scores were associated positively with the cerebellar GM volumes and FA, and negatively with MD. No significant association between Harm Avoidance, Reward Dependence or Persistence scores and cerebellar structural measures was found. The present data put toward a cerebellar involvement in the management of novelty.

  19. Fragile X protein mitigates TDP-43 toxicity by remodeling RNA granules and restoring translation.

    Science.gov (United States)

    Coyne, Alyssa N; Yamada, Shizuka B; Siddegowda, Bhavani Bagevalu; Estes, Patricia S; Zaepfel, Benjamin L; Johannesmeyer, Jeffrey S; Lockwood, Donovan B; Pham, Linh T; Hart, Michael P; Cassel, Joel A; Freibaum, Brian; Boehringer, Ashley V; Taylor, J Paul; Reitz, Allen B; Gitler, Aaron D; Zarnescu, Daniela C

    2015-12-15

    RNA dysregulation is a newly recognized disease mechanism in amyotrophic lateral sclerosis (ALS). Here we identify Drosophila fragile X mental retardation protein (dFMRP) as a robust genetic modifier of TDP-43-dependent toxicity in a Drosophila model of ALS. We find that dFMRP overexpression (dFMRP OE) mitigates TDP-43 dependent locomotor defects and reduced lifespan in Drosophila. TDP-43 and FMRP form a complex in flies and human cells. In motor neurons, TDP-43 expression increases the association of dFMRP with stress granules and colocalizes with polyA binding protein in a variant-dependent manner. Furthermore, dFMRP dosage modulates TDP-43 solubility and molecular mobility with overexpression of dFMRP resulting in a significant reduction of TDP-43 in the aggregate fraction. Polysome fractionation experiments indicate that dFMRP OE also relieves the translation inhibition of futsch mRNA, a TDP-43 target mRNA, which regulates neuromuscular synapse architecture. Restoration of futsch translation by dFMRP OE mitigates Futsch-dependent morphological phenotypes at the neuromuscular junction including synaptic size and presence of satellite boutons. Our data suggest a model whereby dFMRP is neuroprotective by remodeling TDP-43 containing RNA granules, reducing aggregation and restoring the translation of specific mRNAs in motor neurons. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia

    Science.gov (United States)

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-01-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  1. Verbal Memory Impairments in Children after Cerebellar Tumor Resection

    Directory of Open Access Journals (Sweden)

    Matthew P. Kirschen

    2008-01-01

    Full Text Available This study was designed to investigate cerebellar lobular contributions to specific cognitive deficits observed after cerebellar tumor resection. Verbal working memory (VWM tasks were administered to children following surgical resection of cerebellar pilocytic astrocytomas and age-matched controls. Anatomical MRI scans were used to quantify the extent of cerebellar lobular damage from each patient's resection. Patients exhibited significantly reduced digit span for auditory but not visual stimuli, relative to controls, and damage to left hemispheral lobule VIII was significantly correlated with this deficit. Patients also showed reduced effects of articulatory suppression and this was correlated with damage to the vermis and hemispheral lobule IV/V bilaterally. Phonological similarity and recency effects did not differ overall between patients and controls, but outlier patients with abnormal phonological similarity effects to either auditory or visual stimuli were found to have damage to hemispheral lobule VIII/VIIB on the left and right, respectively. We postulate that damage to left hemispheral lobule VIII may interfere with encoding of auditory stimuli into the phonological store. These data corroborate neuroimaging studies showing focal cerebellar activation during VWM paradigms, and thereby allow us to predict with greater accuracy which specific neurocognitive processes will be affected by a cerebellar tumor resection.

  2. Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

    Directory of Open Access Journals (Sweden)

    Samira Abbasi

    2016-01-01

    Discussion: Therefore, inhibition of SK channel in DCN can cause cerebellar ataxia, and SK channel openers can have a therapeutic effect on cerebellar ataxia. In addition, the location of SK channels could be important in therapeutic goals. Dendritic SK channels can be a more effective target compared to somatic SK channels

  3. Differential distribution patterns in cerebellar irrigation. A study with autopsy material

    Directory of Open Access Journals (Sweden)

    Hernando Yesid Estupiñan

    2018-02-01

    Full Text Available Aim: The aim of this investigation was characterize morphologically the cerebellar artery and its branches in a specimen of autopsy material. Methods: This descriptive cross-sectional study evaluated the anatomical characteristics of the cerebellar arteries and their branches in 93 brain stem and cerebellum blocks obtained from fresh cadavers. The specimens were perfused bilaterally channeling the proximal segments of the internal carotid and vertebral arteries with a semi-synthetic resin (Palatal GP40L 85%; styrene 15% impregnated with mineral red dye. We evaluated the distribution patterns of the cerebellar artery and its branches. Results: The calibers of the superior cerebellar artery (SCA, anterior inferior cerebellar artery (AICA and posterior inferior cerebellar artery (PICA were 1.46 ± 0.2 mm, 1.02 ± 0.35 mm and 1.45 ± 0.37 mm, respectively. Agenesis of the SCA was observed in six specimens (3.2%, AICA in 30 (16.1%, and PICA in 14 (7.5% specimens. Usual irrigation was observed in 44 (47.3% cerebellar blocks, whereas 49 (52.7% specimens showed irrigation variants, 23 (46.9% of which appeared bilaterally. The dominant distribution of the cerebellar arteries corresponded to SCA in 9 (12.5% cases, AICA in 46 (63.9% and PICA in 7 (9.7% specimens; shared dominance was found in 10 (13.9% specimens. Conclusion: The high variability of the cerebellar arteries observed in the present study is consistent with previous reports. The diverse anatomic expressions of the cerebellar arteries were typified in relation to their dominance and territories irrigated, useful for the diagnosis and clinical-surgical management of the cerebellum blood supply.

  4. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics.

    Science.gov (United States)

    Gal, Jozsef; Kuang, Lisha; Barnett, Kelly R; Zhu, Brian Z; Shissler, Susannah C; Korotkov, Konstantin V; Hayward, Lawrence J; Kasarskis, Edward J; Zhu, Haining

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.

  5. Mathematical models of human cerebellar development in the fetal period.

    Science.gov (United States)

    Dudek, Krzysztof; Nowakowska-Kotas, Marta; Kędzia, Alicja

    2018-04-01

    The evaluation of cerebellar growth in the fetal period forms a part of a widely used examination to identify any features of abnormalities in early stages of human development. It is well known that the development of anatomical structures, including the cerebellum, does not always follow a linear model of growth. The aim of the study was to analyse a variety of mathematical models of human cerebellar development in fetal life to determine their adequacy. The study comprised 101 fetuses (48 males and 53 females) between the 15th and 28th weeks of fetal life. The cerebellum was exposed and measurements of the vermis and hemispheres were performed, together with statistical analyses. The mathematical model parameters of fetal growth were assessed for crown-rump length (CRL) increases, transverse cerebellar diameter and ventrodorsal dimensions of the cerebellar vermis in the transverse plane, and rostrocaudal dimensions of the cerebellar vermis and hemispheres in the frontal plane. A variety of mathematical models were applied, including linear and non-linear functions. Taking into consideration the variance between models and measurements, as well as correlation parameters, the exponential and Gompertz models proved to be the most suitable for modelling cerebellar growth in the second and third trimesters of pregnancy. However, the linear model gave a satisfactory approximation of cerebellar growth, especially in older fetuses. The proposed models of fetal cerebellar growth constructed on the basis of anatomical examination and objective mathematical calculations could be useful in the estimation of fetal development. © 2018 Anatomical Society.

  6. A review on granules initiation and development inside UASB Reactor and the main factors affecting granules formation process

    Energy Technology Data Exchange (ETDEWEB)

    Habeeb, S.A.; Latiff, Ab Aziz Bin Abdul; Daud, Zawawi Bin; Ahmad, Zulkifli Bin [Civil and Environmental Engineering, University Tun Hussein Onn Malaysia (Malaysia)

    2011-07-01

    Decades of investigations and explorations in the field of anaerobic wastewater treatment have resulted in significant indications about the role importance of sludge granules in biodegradation anaerobic process. It is believed that the development of anaerobic granules is reflecting an important role on the performance of reactor. An overview on the concept of up-flow anaerobic sludge bed (UASB) reactor operation as well as the main parts that reactor consists of is briefly explained in this paper, whereas the major theories of anaerobic granules formation are listed by related researchers. The correlations and compositions of such sludge granule have been specifically explained. It is believed that the extracellular polymer (ECP) is totally responsible of bacterial cell correlations and the formation of bacterial communities in the form of granules. In addition, the dependable factors for the performance of anaerobic granules formation process e.g. temperature, organic loading rate, pH, and alkalinity, nutrients, and cations and heavy metals have been discussed in this paper. Strong evidences proved that the process of gas production in the form of biogas is related to the methanogens activities, which are practically found in the core of granules. The aim of this review is to explore and assess the mechanisms of granules initiation and development inside UASB reactor.

  7. Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function

    Directory of Open Access Journals (Sweden)

    Chris I De Zeeuw

    2015-07-01

    Full Text Available Just as there is a huge morphological and functional diversity of neuron types specialized for specific aspects of information processing in the brain, astrocytes have equally distinct morphologies and functions that aid optimal functioning of the circuits in which they are embedded. One type of astrocyte, the Bergmann glial cell of the cerebellum, is a prime example of a highly diversified astrocyte type, the architecture of which is adapted to the cerebellar circuit and facilitates an impressive range of functions that optimize information processing in the adult brain. In this review we expand on the function of the Bergmann glial cell in the cerebellum to highlight the importance of astrocytes not only in housekeeping functions, but also in contributing to plasticity and information processing in the cerebellum.

  8. A composite neurobehavioral test to evaluate acute functional deficits after cerebellar haemorrhage in rats.

    Science.gov (United States)

    McBride, Devin W; Nowrangi, Derek; Kaur, Harpreet; Wu, Guangyong; Huang, Lei; Lekic, Tim; Tang, Jiping; Zhang, John H

    2018-03-01

    Cerebellar haemorrhage accounts for 5-10% of all intracerebral haemorrhages and leads to severe, long-lasting functional deficits. Currently, there is limited research on this stroke subtype, which may be due to the lack of a suitable composite neuroscoring system specific for cerebellar injury in rodents. The purpose of this study is to develop a comprehensive composite neuroscore test for cerebellar injury using a rat model of cerebellar haemorrhage. Sixty male Sprague-Dawley rats were subjected to either sham surgery or cerebellar haemorrhage. Twenty-four hours post-injury, neurological behaviour was evaluated using 17 cost-effective and easy-to-perform tests, and a composite neuroscore was developed. The composite neuroscore was then used to assess functional recovery over seven days after cerebellar haemorrhage. Differences in the composite neuroscore deficits for the mild and moderate cerebellar haemorrhage models were observed for up to five days post-ictus. Until now, a composite neuroscore for cerebellar injury was not available for rodent studies. Herein, using mild and moderate cerebellar haemorrhage rat models a composite neuroscore for cerebellar injury was developed and used to assess functional deficits after cerebellar haemorrhage. This composite neuroscore may also be useful for other cerebellar injury models.

  9. Diffusion Tensor Imaging of Human Cerebellar Pathways and their Interplay with Cerebral Macrostructure

    Directory of Open Access Journals (Sweden)

    Zafer eKeser

    2015-04-01

    Full Text Available Cerebellar white matter connections to the central nervous system are classified functionally into the spinocerebellar, vestibulocerebellar, and cerebrocerebellar subdivisions. The Spinocerebellar (SC pathways project from spinal cord to cerebellum, whereas the vestibulocerebellar (VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI. Ten right-handed healthy subjects (7 males and 3 females, age range 20-51 years were studied. DT-MRI data were acquired with a voxel size = 2mm x 2mm x 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC, parieto-ponto-cerebellar (PPC, temporo-ponto-cerebellar (TPC and occipito-ponto-cerebellar (OPC. The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM, cerebral white matter (WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~ 3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~ 25.8 ± 7.3 mL, or a percentage of 1.52 ± 0.43 of the total intracranial volume.

  10. Sensorimotor-correlated discharge recorded from ensembles of cerebellar Purkinje cells varies across the estrous cycle of the rat.

    Science.gov (United States)

    Smith, S S

    1995-09-01

    1. In the present study, locomotor-correlated activity of cerebellar Purkinje cells, recorded using arrays of microwires chronically implanted in adult female rats, was examined across estrous-cycle-associated fluctuations in endogenous sex steroids. Ongoing studies from this laboratory have shown that systemic and local administration of the sex steroid 17 beta-estradiol (E2) augments excitatory responses of cerebellar Purkinje cells to iontophoretically applied glutamate, recorded in vivo from anesthetized female rats. In addition, this steroid potentiated discharge correlated with limb movement. For the present study, extracellular single-unit activity was recorded from as many as 5-11 Purkinje cells simultaneously during treadmill locomotion paradigms. Motor modulation of activity was recorded across three to five consecutive estrous cycles from behaviorally identified cohorts of neurons to test the hypothesis that fluctuations in endogenous sex steroids alter motor modulation of Purkinje cell discharge. 2. Locomotor-associated discharge correlated with treadmill locomotion was increased by a mean of 47% on proestrus, when E2 levels are elevated, relative to diestrus 1. These changes in discharge rate during treadmill locomotion were of significantly greater magnitude than corresponding cyclic alterations in discharge during stationary periods. 3. Correlations with the circadian cycle were also significant, because peak levels of locomotor-associated discharge on the night of behavioral estrus, following elevations in circulating E2, were on average 67% greater than corresponding discharge recorded during the light (proestrus). 4. Alterations in the step cycle were also observed across the estrous cycle: significant decreases in the duration of the flexion phase (by 265 ms, P estrus compared with diestrus. 5. When recorded on estrus, Purkinje cell discharge correlated with the stance or flexion phase of the step cycle was greater in magnitude and preceded the

  11. Effects of vestibular rehabilitation combined with transcranial cerebellar direct current stimulation in patients with chronic dizziness: An exploratory study.

    Science.gov (United States)

    Koganemaru, Satoko; Goto, Fumiyuki; Arai, Miki; Toshikuni, Keitaro; Hosoya, Makoto; Wakabayashi, Takeshi; Yamamoto, Nobuko; Minami, Shujiro; Ikeda, Satoshi; Ikoma, Katsunori; Mima, Tatsuya

    Vestibular rehabilitation is useful to alleviate chronic dizziness in patients with vestibular dysfunction. It aims to induce neuronal plasticity in the central nervous system (especially in the cerebellum) to promote vestibular compensation. Transcranial cerebellar direct current stimulation (tcDCS) reportedly enhances cerebellar function. We investigated whether vestibular rehabilitation partially combined with tcDCS is superior to the use of rehabilitation alone for the alleviation of dizziness. Patients with chronic dizziness due to vestibular dysfunction received rehabilitation concurrently with either 20-min tcDCS or sham stimulation for 5 days. Pre- and post-intervention (at 1 month) dizziness handicap inventory (DHI) scores and psychometric and motor parameters were compared. Sixteen patients completed the study. DHI scores in the tcDCS group showed significant improvement over those in the sham group (Mann-Whitney U test, p = 0.033). Vestibular rehabilitation partially combined with tcDCS appears to be a promising approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    International Nuclear Information System (INIS)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S.

    2006-01-01

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  13. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan)

    2006-03-15

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  14. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons

    DEFF Research Database (Denmark)

    Brekke, Eva Marie; Walls, Anne Byriel; Schousboe, Arne

    2012-01-01

    is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-(13)C]glucose or [3-(13)C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism...

  15. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum

    NARCIS (Netherlands)

    G.A. Higuera (Gustavo A.); Iaffaldano, G. (Grazia); Bedar, M. (Meiwand); G. Shpak (Guy); R. Broersen (Robin); S.T. Munshi (Shashini T.); Dupont, C. (Catherine); J.H. Gribnau (Joost); F.M.S. Vrij (Femke); S.A. Kushner (Steven); C.I. de Zeeuw (Chris)

    2017-01-01

    textabstractThe directed differentiation of patient-derived induced pluripotent stem cells into cell-type specific neurons has inspired the development of therapeutic discovery for neurodegenerative diseases. Many forms of ataxia result from degeneration of cerebellar Purkinje cells, but thus far it

  16. Improving cerebellar segmentation with statistical fusion

    Science.gov (United States)

    Plassard, Andrew J.; Yang, Zhen; Prince, Jerry L.; Claassen, Daniel O.; Landman, Bennett A.

    2016-03-01

    The cerebellum is a somatotopically organized central component of the central nervous system well known to be involved with motor coordination and increasingly recognized roles in cognition and planning. Recent work in multiatlas labeling has created methods that offer the potential for fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally equivalent to cortical gray matter areas). This work explores the trade offs of using different statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We demonstrate the effectiveness of our algorithm, Non- Local SIMPLE, for segmentation of a mixed population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms previous gold standard techniques but is outperformed by a non-locally weighted vote with the deeper population of atlases available. This work advances the state of the art in open source cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted volumes with approximately 1 mm isotropic resolution.

  17. Factors Involved in Sludge Granulation under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Jalal Shayegan

    2011-03-01

    Full Text Available This paper investigates the effects of factors involved in sludge anaerobic granulation. Granulated sludge formation is the main parameter contributing to the success of UASB reactors. Anaerobic granulation leads to reduced reactor size, space requirement, and investment costs. Operation costs are also greatly reduced due to lack of aeration. An important parameter affecting process performance is the size of sludge granules; the factors involved in granule size will be investigated. Some of the important parameters of anaerobic sludge granulation are: existence of growth cores as inert particles or granulated sludge, process operational conditions (Sludge Loading Rate and Organic Loading Rate, Loading rate increase and …, and environment conditions (nutrients, temperature, pH, combination and ….

  18. The number of granule cells in rat hippocampus is reduced after chronic mild stress and re-established after chronic escitalopram treatment

    DEFF Research Database (Denmark)

    Jayatissa, Magdalena N; Bisgaard, Christina; West, Mark J

    2008-01-01

    mild stress and chronic escitalopram treatment. Furthermore, we investigated which classes of immature granule cells are affected by stress and targeted by escitalopram. Rats were initially exposed to 2weeks of CMS and 4weeks of escitalopram treatment with concurrent exposure to stress. The behavioral...... changes, indicating a decrease in sensitivity to a reward, were assessed in terms of sucrose consumption. We found a significant 22.4% decrease in the total number of granule cells in the stressed rats. This decrease was reversed in the stressed escitalopram treated rats that responded to the treatment......, but not in the rats that did not respond to escitalopram treatment. These changes were not followed by alterations in the volume of the granule cell layer. We also showed a differential regulation of dentate neurons, in different stages of development, by chronic stress and chronic escitalopram treatment. Our study...

  19. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Korogi, Y.; Tomiguchi, S.; Takahashi, M. [Dept. of Radiology, Kumamoto University School of Medicine (Japan); Okajima, T. [Dept. of Neurology, Johnan Hospital, Maihara, Johnan-mochi (Japan); Sato, H. [Dept. of Neurology, Minamata City General Hospital and Medical Centre (Japan)

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  20. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    International Nuclear Information System (INIS)

    Itoh, K.; Korogi, Y.; Tomiguchi, S.; Takahashi, M.; Okajima, T.; Sato, H.

    2001-01-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  1. A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons

    DEFF Research Database (Denmark)

    Borgius, Lotta; Restrepo, C. Ernesto; Leao, Richardson N.

    2010-01-01

    Excitatory glutamatergic neurons are part of most of the neuronal circuits in the mammalian nervous system. We have used BAC-technology to generate a BAC-Vglut2::Cre mouse line where Cre expression is driven by the vesicular glutamate transporter 2 (Vglut2) promotor. This BAC-Vglut2::Cre mouse line...... showed specific expression of Cre in Vglut2 positive cells in the spinal cord with no ectopic expression in GABAergic or glycinergic neurons. This mouse line also showed specific Cre expression in Vglut2 positive structures in the brain such as thalamus, hypothalamus, superior colliculi, inferior...... colliculi and deep cerebellar nuclei together with nuclei in the midbrain and hindbrain. Cre-mediated recombination was restricted to Cre expressing cells in the spinal cord and brain and occurred as early as E 12.5. Known Vglut2 positive neurons showed normal electrophysiological properties in the BAC...

  2. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids

    Science.gov (United States)

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-01-01

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167

  3. Spatiotemporal expression of chondroitin sulfate sulfotransferases in the postnatal developing mouse cerebellum.

    Science.gov (United States)

    Ishii, Maki; Maeda, Nobuaki

    2008-08-01

    Chondroitin sulfate (CS) proteoglycans are major components of the cell surface and the extracellular matrix in the developing brain and bind to various proteins via CS chains in a CS structure-dependent manner. This study demonstrated the expression pattern of three CS sulfotransferase genes, dermatan 4-O-sulfotransferase (D4ST), uronyl 2-O-sulfotransferase (UST), and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), in the mouse postnatal cerebellum. These sulfotransferases are responsible for the biosynthesis of oversulfated structures in CS chains such as B, D, and E units, which constitute the binding sites for various heparin-binding proteins. Real-time reverse transcription-polymerase chain reaction analysis indicated that the expression of UST increased remarkably during cerebellar development. The amounts of B and D units, which are generated by UST activity, in the cerebellar CS chains also increased during development. In contrast, the expression of GalNAc4S-6ST and its biosynthetic product, E unit, decreased during postnatal development. In situ hybridization experiments revealed the levels of UST and GalNAc4S-6ST mRNAs to correlate inversely in many cells including Purkinje cells, granule cells in the external granular layer, and inhibitory interneurons. In these neurons, the expression of UST increased and that of GalNAc4S-6ST decreased during development and/or maturation. D4ST was also expressed by many neurons, but its expression was not simply correlated with development, which might contribute to the diversification of CS structures expressed by distinct neurons. These results suggest that the CS structures of various cerebellar neurons change during development and such changes of CS are involved in the regulation of various signaling pathways.

  4. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum

    NARCIS (Netherlands)

    Higuera, Gustavo A; Iaffaldano, Grazia; Bedar, Meiwand; Shpak, Guy; Broersen, Robin; Munshi, Shashini T; Dupont, Catherine; Gribnau, Joost; de Vrij, Femke M S; Kushner, Steven A; De Zeeuw, Chris I

    2017-01-01

    The directed differentiation of patient-derived induced pluripotent stem cells into cell-type specific neurons has inspired the development of therapeutic discovery for neurodegenerative diseases. Many forms of ataxia result from degeneration of cerebellar Purkinje cells, but thus far it has not

  5. Cerebellar abiotrophy in a family of Border Collie dogs.

    Science.gov (United States)

    Sandy, J R; Slocombe, R E; Mitten, R W; Jedwab, D

    2002-11-01

    Cerebellar abiotrophies have a nonsex-linked, autosomal, recessively inherited basis in a number of species, and lesions typically reflect profound and progressive loss of Purkinje cells. In this report, an unusual form of abiotrophy is described for two sibling Border Collies. Extensive loss of the cerebellar granular cell layer was present with relative sparing of Purkinje cells of two female pups. The biochemical basis for this form of cerebellar abiotrophy is unknown, but the lack of disease in other siblings supports an autosomal recessive mode of inheritance.

  6. Joint Effects of Granule Size and Degree of Substitution on Octenylsuccinated Sweet Potato Starch Granules As Pickering Emulsion Stabilizers.

    Science.gov (United States)

    Li, Jinfeng; Ye, Fayin; Lei, Lin; Zhou, Yun; Zhao, Guohua

    2018-05-02

    The granules of sweet potato starch were size fractionated into three portions with significantly different median diameters ( D 50 ) of 6.67 (small-sized), 11.54 (medium-sized), and 16.96 μm (large-sized), respectively. Each portion was hydrophobized at the mass-based degrees of substitution (DS m ) of approximately 0.0095 (low), 0.0160 (medium), and 0.0230 (high). The Pickering emulsion-stabilizing capacities of modified granules were tested, and the resultant emulsions were characterized. The joint effects of granule size and DS m on emulsifying capacity (EC) were investigated by response surface methodology. For small-, medium-, and large-sized fractions, their highest emulsifying capacities are comparable but, respectively, encountered at high (0.0225), medium (0.0158), and low (0.0095) DS m levels. The emulsion droplet size increased with granule size, and the number of freely scattered granules in emulsions decreased with DS m . In addition, the term of surface density of the octenyl succinic group (SD -OSG ) was first proposed for modified starch granules, and it was proved better than DS m in interpreting the emulsifying capacities of starch granules with varying sizes. The present results implied that, as the particulate stabilizers, the optimal DS m of modified starch granules is size specific.

  7. Organization of rat neuronal DNA as a function of dose, time after irradiation and age

    International Nuclear Information System (INIS)

    Jaberaboansari, A.

    1989-01-01

    The organization of DNA and chromatin structure were examined in male Fisher 344 rat cerebellar neurons at various times from < 5 min to 2 years after exposure to ionizing radiation. Immediately after irradiation, the organization of neuronal DNA was altered. First, the DNA superhelical structure was changed due to removal of the topological constraints on the supercoiled DNA loops. Secondly, the accessibility of bulk neuronal DNA to digestion by micrococcal nuclease was increased. This increase in the m. nuclease sensitivity of bulk DNA did not depend on the oxygen concentration during irradiation. Thirdly, the accessibility of the nuclear matrix-associated DNA to digestion by DNase I was decreased. This decrease was most likely caused by masking the DNA with additional nuclear matrix-associated proteins. This increase in protein content was independent of oxygen, but inhibited if irradiations were performed at 4 degree C. The kinetics were consistent with the saturation kinetics observed for DNA repair in cerebellar neurons. Thus, these proteins may be associated with repair of radiation-induced DNA damage. The neuronal DNA/chromatin structure was restored to its unirradiated state by 24 hr after irradiation with biphasic kinetics having half-times similar to those reported for repair of radiation-induced DNA damage. However, the evidence suggested that residual DNA damage occurred in aging rats that had received a relatively high radiation dose at 4 months of age. In those rats, there was: (a) a decrease in the total nuclear protein content with age, (b) an increase in the digestibility of bulk DNA by m. nuclease with age, and (c) a reduction in the amount of nuclear matrix-associated proteins that persisted with age

  8. Neuron Morphology Influences Axon Initial Segment Plasticity.

    Science.gov (United States)

    Gulledge, Allan T; Bravo, Jaime J

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation.

  9. Cerebellar malformations alter regional cerebral development.

    Science.gov (United States)

    Bolduc, Marie-Eve; Du Plessis, Adre J; Evans, Alan; Guizard, Nicolas; Zhang, Xun; Robertson, Richard L; Limperopoulos, Catherine

    2011-12-01

    The aim of this study was to compare total and regional cerebral volumes in children with isolated cerebellar malformations (CBMs) with those in typically developing children, and to examine the extent to which cerebellar volumetric reductions are associated with total and regional cerebral volumes. This is a case-control study of children diagnosed with isolated CBMs. Each child was matched on age and sex to two typically developing children. Using advanced three-dimensional volumetric magnetic resonance imaging, the cerebrum was segmented into tissue classes and partitioned into eight regions. Analysis of variance was used to compare cerebral volumes between children with CBMs and control children, and linear regressions to examine the impact of cerebellar volume reduction on cerebral volumes. Magnetic resonance imaging was performed at a mean age of 27 months in 20 children (10 males, 10 females) with CBMs and 40 typically developing children. Children with CBMs showed significantly smaller deep grey matter nuclei (p developing children. Greater cerebellar volumetric reduction in children with CBMs was associated with decreased total cerebral volume and deep grey matter nuclei (p = 0.02), subgenual white/grey matter (p = 0.001), midtemporal white (p = 0.02) and grey matter (p = 0.01), and parieto-occipital grey matter (p = 0.004). CBMs are associated with impaired regional cerebral growth, suggesting deactivation of principal cerebello-cerebral pathways. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  10. Heat stroke induced cerebellar dysfunction: A “forgotten syndrome”

    Science.gov (United States)

    Kosgallana, Athula D; Mallik, Shreyashee; Patel, Vishal; Beran, Roy G

    2013-01-01

    We report a case of heat stroke induced acute cerebellar dysfunction, a rare neurological disease characterized by gross cerebellar dysfunction with no acute radiographic changes, in a 61 years old ship captain presenting with slurred speech and gait ataxia. A systematic review of the literature on heat stroke induced cerebellar dysfunction was performed, with a focus on investigations, treatment and outcomes. After review of the literature and detailed patient investigation it was concluded that this patient suffered heat stroke at a temperature less than that quoted in the literature. PMID:24340279

  11. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective

    OpenAIRE

    Llinás, Rodolfo R.

    2014-01-01

    This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified towards one in which sensory input modulates rather than dictate...

  12. Crossed cerebellar diaschisis in ischemic stroke

    DEFF Research Database (Denmark)

    Meneghetti, G; Vorstrup, S; Mickey, B

    1984-01-01

    Seventy measurements of CBF were performed in 12 stroke patients by 133Xe inhalation and a rapidly rotating single photon emission computerized tomograph. CBF was measured every other day during the acute phase and at 2- and 6-month follow-up visits. A persistent contralateral cerebellar blood flow....... It is concluded from this serial study that crossed cerebellar diaschisis is a common finding in completed stroke. It is probably caused by disconnection of the corticopontine pathways, a disconnection that tends to persist. The phenomenon is in fact less variable than the stroke-related CBF changes...

  13. Cerebellar abnormalities contribute to disability including cognitive impairment in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Katrin Weier

    Full Text Available The cerebellum is known to be involved not only in motor but also cognitive and affective processes. Structural changes in the cerebellum in relation to cognitive dysfunction are an emerging topic in the field of neuro-psychiatric disorders. In Multiple Sclerosis (MS cerebellar motor and cognitive dysfunction occur in parallel, early in the onset of the disease, and the cerebellum is one of the predilection sites of atrophy. This study is aimed at determining the relationship between cerebellar volumes, clinical cerebellar signs, cognitive functioning and fatigue in MS. Cerebellar volumetry was conducted using T1-weighted MPRAGE magnetic resonance imaging of 172 MS patients. All patients underwent a clinical and brief neuropsychological assessment (information processing speed, working memory, including fatigue testing. Patients with and without cerebellar signs differed significantly regarding normalized cerebellar total volume (nTCV, normalized brain volume (nBV and whole brain T2 lesion volume (LV. Patients with cerebellar dysfunction likewise performed worse in cognitive tests. A regression analysis indicated that age and nTCV explained 26.3% of the variance in SDMT (symbol digit modalities test performance. However, only age, T2 LV and nBV remained predictors in the full model (r(2 = 0.36. The full model for the prediction of PASAT (Paced Auditory Serial Addition Test scores (r(2 = 0.23 included age, cerebellar and T2 LV. In the case of fatigue, only age and nBV (r(2 = 0.17 emerged as significant predictors. These data support the view that cerebellar abnormalities contribute to disability, including cognitive impairment in MS. However, this contribution does not seem to be independent of, and may even be dominated by wider spread MS pathology as reflected by nBV and T2 LV.

  14. Magnetic resonance imaging of cerebellar Schistosomiasis mansoni

    International Nuclear Information System (INIS)

    Braga, Bruno Perocco; Costa Junior, Leodante Batista da; Lambertucci, Jose Roberto

    2003-01-01

    A 15-year-old boy was admitted to hospital with a history of headache, dizziness, vomiting and double vision that started two weeks before. His parents denied any previous disease. During clinical examination he presented diplopia on lateral gaze to the left and horizontal nystagmus. No major neurological dysfunction was detected. He was well built, mentally responsive and perceptive. Laboratory findings revealed a leukocyte count of 10,000/mL, a normal red blood cell count and no eosinophilia. The magnetic resonance images (MRI) of the brain showed a left cerebellar lesion with mass effect compressing the surrounding tissues. Contrast-enhanced images showed a mass like structure and punctate nodules (Figures A and B: axial and coronal contrast-enhanced T1-weighted MR images showed the nodular - yellow arrows - enhancement pattern of a left cerebellar intraxial lesion). The lesion extended to the vermis and brachium pons and compressed the medulla. There was no hydrocephalus. He was taken to the operating room with the presumptive diagnosis of a neuroglial tumor, and submitted to a lateral suboccipital craniectomy. A brown, brittle tumoral mass without a clearly defined margin with the cerebellar tissue was removed. Microscopic examination revealed schistosomal granulomas in the productive phase in the cerebellum (Figure C). After surgery, treatment with praziquantel (50 mg/kg/dia, single dose) and prednisone (1 mg/kg/day) was offered and the patient improved quickly. Thirty days later he was seen again at the outpatient clinic: he was asymptomatic and with no neurological impairment. This is the eighth case of cerebellar involvement in schistosomiasis mansoni and the second report of a tumoral form of cerebellar schistosomiasis documented by magnetic resonance images. (author)

  15. Signals and Circuits in the Purkinje Neuron

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2011-09-01

    Full Text Available Purkinje neurons in the cerebellum have over 100,000 inputs organized in an orthogonal geometry, and a single output channel. As the sole output of the cerebellar cortex layer, their complex firing pattern has been associated with motor control and learning. As such they have been extensively modeled and measured using tools ranging from electrophysiology and neuroanatomy, to dynamic systems and artificial intelligence methods. However, there is an alternative approach to analyze and describe the neuronal output of these cells using concepts from Electrical Engineering, particularly signal processing and digital/analog circuits. By viewing the Purkinje neuron as an unknown circuit to be reverse-engineered, we can use the tools that provide the foundations of today’s integrated circuits and communication systems to analyze the Purkinje system at the circuit level. We use Fourier transforms to analyze and isolate the inherent frequency modes in the Purkinje neuron and define 3 unique frequency ranges associated with the cells’ output. Comparing the Purkinje neuron to a signal generator that can be externally modulated adds an entire level of complexity to the functional role of these neurons both in terms of data analysis and information processing, relying on Fourier analysis methods in place of statistical ones. We also re-describe some of the recent literature in the field, using the nomenclature of signal processing. Furthermore, by comparing the experimental data of the past decade with basic electronic circuitry, we can resolve the outstanding controversy in the field, by recognizing that the Purkinje neuron can act as a multivibrator circuit.

  16. Non-synaptic signaling from cerebellar climbing fibers modulates Golgi cell activity.

    Science.gov (United States)

    Nietz, Angela K; Vaden, Jada H; Coddington, Luke T; Overstreet-Wadiche, Linda; Wadiche, Jacques I

    2017-10-13

    Golgi cells are the principal inhibitory neurons at the input stage of the cerebellum, providing feedforward and feedback inhibition through mossy fiber and parallel fiber synapses. In vivo studies have shown that Golgi cell activity is regulated by climbing fiber stimulation, yet there is little functional or anatomical evidence for synapses between climbing fibers and Golgi cells. Here, we show that glutamate released from climbing fibers activates ionotropic and metabotropic receptors on Golgi cells through spillover-mediated transmission. The interplay of excitatory and inhibitory conductances provides flexible control over Golgi cell spiking, allowing either excitation or a biphasic sequence of excitation and inhibition following single climbing fiber stimulation. Together with prior studies of spillover transmission to molecular layer interneurons, these results reveal that climbing fibers exert control over inhibition at both the input and output layers of the cerebellar cortex.

  17. Defective cerebellar control of cortical plasticity in writer’s cramp

    Science.gov (United States)

    Hubsch, Cecile; Roze, Emmanuel; Popa, Traian; Russo, Margherita; Balachandran, Ammu; Pradeep, Salini; Mueller, Florian; Brochard, Vanessa; Quartarone, Angelo; Degos, Bertrand; Vidailhet, Marie; Kishore, Asha

    2013-01-01

    A large body of evidence points to a role of basal ganglia dysfunction in the pathophysiology of dystonia, but recent studies indicate that cerebellar dysfunction may also be involved. The cerebellum influences sensorimotor adaptation by modulating sensorimotor plasticity of the primary motor cortex. Motor cortex sensorimotor plasticity is maladaptive in patients with writer’s cramp. Here we examined whether putative cerebellar dysfunction in dystonia is linked to these patients’ maladaptive plasticity. To that end we compared the performances of patients and healthy control subjects in a reaching task involving a visuomotor conflict generated by imposing a random deviation (−40° to 40°) on the direction of movement of the mouse/cursor. Such a task is known to involve the cerebellum. We also compared, between patients and healthy control subjects, how the cerebellum modulates the extent and duration of an ongoing sensorimotor plasticity in the motor cortex. The cerebellar cortex was excited or inhibited by means of repeated transcranial magnetic stimulation before artificial sensorimotor plasticity was induced in the motor cortex by paired associative stimulation. Patients with writer’s cramp were slower than the healthy control subjects to reach the target and, after having repeatedly adapted their trajectories to the deviations, they were less efficient than the healthy control subjects to perform reaching movement without imposed deviation. It was interpreted as impaired washing-out abilities. In healthy subjects, cerebellar cortex excitation prevented the paired associative stimulation to induce a sensorimotor plasticity in the primary motor cortex, whereas cerebellar cortex inhibition led the paired associative stimulation to be more efficient in inducing the plasticity. In patients with writer’s cramp, cerebellar cortex excitation and inhibition were both ineffective in modulating sensorimotor plasticity. In patients with writer’s cramp, but not

  18. Cerebro-cerebellar interactions underlying temporal information processing.

    Science.gov (United States)

    Aso, Kenji; Hanakawa, Takashi; Aso, Toshihiko; Fukuyama, Hidenao

    2010-12-01

    The neural basis of temporal information processing remains unclear, but it is proposed that the cerebellum plays an important role through its internal clock or feed-forward computation functions. In this study, fMRI was used to investigate the brain networks engaged in perceptual and motor aspects of subsecond temporal processing without accompanying coprocessing of spatial information. Direct comparison between perceptual and motor aspects of time processing was made with a categorical-design analysis. The right lateral cerebellum (lobule VI) was active during a time discrimination task, whereas the left cerebellar lobule VI was activated during a timed movement generation task. These findings were consistent with the idea that the cerebellum contributed to subsecond time processing in both perceptual and motor aspects. The feed-forward computational theory of the cerebellum predicted increased cerebro-cerebellar interactions during time information processing. In fact, a psychophysiological interaction analysis identified the supplementary motor and dorsal premotor areas, which had a significant functional connectivity with the right cerebellar region during a time discrimination task and with the left lateral cerebellum during a timed movement generation task. The involvement of cerebro-cerebellar interactions may provide supportive evidence that temporal information processing relies on the simulation of timing information through feed-forward computation in the cerebellum.

  19. Autophagy meets fused in sarcoma-positive stress granules.

    Science.gov (United States)

    Matus, Soledad; Bosco, Daryl A; Hetz, Claudio

    2014-12-01

    Mutations in fused in sarcoma and/or translocated in liposarcoma (FUS, TLS or FUS) are linked to familial cases of amyotrophic lateral sclerosis (ALS). Mutant FUS selectively accumulates into discrete cytosolic structures known as stress granules under various stress conditions. In addition, mutant FUS expression can alter the dynamics and morphology of stress granules. Although the link between mutant FUS and stress granules is well established, the mechanisms modulating stress granule formation and disassembly in the context of ALS are poorly understood. In this issue of Neurobiology of Aging, Ryu et al. uncover the impact of autophagy on the potential toxicity of mutant FUS-positive stress granules. The authors provide evidence indicating that enhanced autophagy activity reduces the number of stress granules, which in the case of cells containing mutant FUS-positive stress granules, is neuroprotective. Overall, this study identifies an intersection between the proteostasis network and alterations in RNA metabolism in ALS through the dynamic assembly and disassembly of stress granules. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Visuomotor learning in cerebellar patients.

    Science.gov (United States)

    Timmann, D; Shimansky, Y; Larson, P S; Wunderlich, D A; Stelmach, G E; Bloedel, J R

    1996-11-01

    The aim of the present study was to demonstrate that patients with pathology affecting substantial regions of the cerebellum can improve their performance in a series of two-dimensional tracing tasks, thus supporting the view that this type of motor behavior can be acquired even when the integrity of this structure is compromised. Eight patients with chronic, isolated cerebellar lesions and eight age- and sex-matched healthy controls were tested. Three patients had mild, five had moderate upper limb ataxia. The experiment was divided into two parts. In the first, subjects traced an irregularly shaped outline over 20 consecutive trials ('Trace 1' task). Next, subjects were asked to redraw the object without any underlying template as a guide ('Memory 1' task). In the second part of the study, subjects were asked to trace a different, irregularly shaped outline over 20 consecutive trials ('Trace 2' task). Next, they were required to redraw it by memory with its axis rotated 90 degrees ('Memory 2' task). In each of the memory tasks the template was placed over the drawn image after each trial and shown to the subjects. The error of performance was determined by calculating three different measurements, each focused on different aspects of the task. Based on these measurements, the cerebellar patients showed improvement in both memory tasks. In the 'Memory 1' task the calculated error decreased significantly for the patients with mild ataxia. In the 'Memory 2' task all cerebellar patients improved their performance substantially enough to reduce significantly the magnitude of all three error measurements. The experiments demonstrate that patients with cerebellar lesions are capable of improving substantially their performance of a complex motor task involving the recall of memorized shapes and the visuomotor control of a tracing movement.

  1. [Study of cerebellar infarction with isolated vertigo].

    Science.gov (United States)

    Utsumi, Ai; Enomoto, Hiroyuki; Yamamoto, Kaoru; Kimura, Yu; Koizuka, Izumi; Tsukuda, Mamoru

    2010-07-01

    Isolated vertigo is generally attributed to labyrinthine disease, but may also signal otherwise asymptomatic cerebellar infarction. Of 309 subjects admitted between April 2004 and March 2009 for the single symptom of acute vertigo initially thought to be labyrinthine, four were found to have cerebellar infarction of the posterior inferior cerebellar artery area (PICA). All were over 60 years old and had risk factors including hypertension, diabetes mellitus, arrhythmia, and/or hyperlipidemia. Two had trunk ataxia, with magnetic resonance imaging (MRI) showing infarction within a few days. The other two could walk without apparent trunk ataxia, however, it took 4 to 7 days to find the infarction, mainly through neurological, neurootological, and MRI findings. Neurologically, astasia, dysbasia or trunk ataxia were important signs. Neurootologically, nystagmus and electronystagmographic testing involving eye tracking, saccade, and optokinetic patttens were useful.

  2. Study of light scattering by a granulated coated sphere - a model of granulated blood cells

    NARCIS (Netherlands)

    Yurkin, M.A.; de Kanter, D.; Hoekstra, A.G.

    2008-01-01

    We performed extensive simulations of light scattering by granulated coated sphere model using the discrete dipole approximation and varying model parameters in the ranges of sizes and refractive indices of granulated blood cells. We compared these results with predictions of Maxwell-Garnett

  3. Postural responses to multidirectional stance perturbations in cerebellar ataxia

    NARCIS (Netherlands)

    Bakker, Maaike; Allum, John H J; Visser, Jasper E; Grüneberg, Christian; van de Warrenburg, Bart P; Kremer, H P H; Bloem, Bastiaan R

    2006-01-01

    Previous studies of patients with focal cerebellar damage underscored the importance of the cerebellum for balance control. These studies were restricted to postural control in the pitch plane, and focused mainly on leg muscle responses. Here, we examined the effect of degenerative cerebellar

  4. Postural responses to multidirectional stance perturbations in cerebellar ataxia

    NARCIS (Netherlands)

    Bakker, Maaike; Allum, John H J; Visser, Jasper E; Grüneberg, Christian; van de Warrenburg, Bart P; Kremer, H P H; Bloem, Bastiaan R

    Previous studies of patients with focal cerebellar damage underscored the importance of the cerebellum for balance control. These studies were restricted to postural control in the pitch plane, and focused mainly on leg muscle responses. Here, we examined the effect of degenerative cerebellar

  5. Time estimation in Parkinson's disease and degenerative cerebellar disease

    NARCIS (Netherlands)

    Beudel, Martijin; Galama, Sjoukje; Leenders, Klaus L.; de Jong, Bauke M.

    2008-01-01

    With functional MRI, we recently identified fronto-cerebellar activations in predicting time to reach a target and basal ganglia activation in velocity estimation, that is, small interval assessment. We now tested these functions in patients with Parkinson's disease (PD) and degenerative cerebellar

  6. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells

    Science.gov (United States)

    Incontro, Salvatore; Ciruela, Francisco; Ziff, Edward; Hofmann, Franz; Sánchez-Prieto, José; Torres, Magdalena

    2014-01-01

    Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity. PMID:23545413

  7. Pattern separation: a common function for new neurons in hippocampus and olfactory bulb.

    Science.gov (United States)

    Sahay, Amar; Wilson, Donald A; Hen, René

    2011-05-26

    While adult-born neurons in the olfactory bulb (OB) and the dentate gyrus (DG) subregion of the hippocampus have fundamentally different properties, they may have more in common than meets the eye. Here, we propose that new granule cells in the OB and DG may function as modulators of principal neurons to influence pattern separation and that adult neurogenesis constitutes an adaptive mechanism to optimally encode contextual or olfactory information. See the related Perspective from Aimone, Deng, and Gage, "Resolving New Memories: A Critical Look at the Dentate Gyrus, Adult Neurogenesis, and Pattern Separation," in this issue of Neuron. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Late Onset of Cerebellar Abiotrophy in a Boxer Dog

    Directory of Open Access Journals (Sweden)

    Sanjeev Gumber

    2010-01-01

    Full Text Available Cerebellar abiotrophy is a degenerative disorder of the central nervous system and has been reported in humans and animals. This case report documents clinical, histopathological, and immunohistochemical findings of cerebellar abiotrophy in an adult Boxer dog. A 3.5-year-old, female, tan Boxer dog presented with a six-week history of left-sided head tilt. Neurological examination and additional diagnostics during her three subsequent visits over 4.5 months revealed worsening of neurological signs including marked head pressing, severe proprioceptive deficits in all the four limbs, loss of menace response and palpebral reflex in the left eye, and a gradual seizure lasting one hour at her last visit. Based on the immunohistochemical staining for glial fibrillary acidic protein and histopathological examination of cerebellum, cerebellar cortical abiotrophy was diagnosed. This is the first reported case of cerebellar abiotrophy in a Boxer dog to our knowledge.

  9. The biology and dynamics of mammalian cortical granules

    Directory of Open Access Journals (Sweden)

    Liu Min

    2011-11-01

    Full Text Available Abstract Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals.

  10. Cerebellar ataxia of early onset

    International Nuclear Information System (INIS)

    Yamashita, Sumimasa; Miyake, Shota; Yamada, Michiko; Iwamoto, Hiroko; Yamada, Kazuhiko.

    1989-01-01

    Eight cases of childhood cerebellar ataxia were reported. All these cases showed chronic cerebellar ataxia with early onset, and the other diseases of cerebellum such as infections, neoplasms and storage diseases were excluded by clinical symptoms and laboratory findings including blood counts, blood chemistry, lactate, pyruvate, ceruloplasmine, urinalysis, serum immunoglobulins, amino acid analysis in blood and urine, CSF analysis, leukocyte lysosomal enzymes, MCV, EMG, EEG and brain X-CT. Two pairs of siblings were included in this study. The clinical diagnosis were cerebellar type (5), spinocerebellar type (1), one Marinesco-Sjoegren syndrome and undetermined type (1). The age of onset was 1 to 5 years. The chief complaint was motor developmental delay in 6 cases; among them 5 patients could walk alone at the ages of 2 to 3 years'. Mental retardation was observed in 7 cases and epilepsy in 2. TRH was effective in 5 cases. The MRI study revealed that the area of medial sagittal slice of the cerebellum was reduced significantly in all cases and also that of pons was reduced in 5 cases. Different from typical adult onset spinocerebellar degenerations, most of the present cases have achieved slow developmental milestones and the clinical course was not progressive. Genetic factors are suspected in the pathogenesis of this disease in some cases. (author)

  11. Computed tomography in hypertensive cerebellar hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Nose, T; Maki, Y; Ono, Y; Yoshizawa, T; Tsuboi, K [Tsukuba Univ., Sakura, Ibaraki (Japan)

    1981-11-01

    Fourteen cases of cerebellar hemorrhage were analysed from the point of CT-scan, and the following results were obtained. 1. The number of cases of cerebellar hemorrhage forms 4.4% of that of total intracranial hemorrhage. 2. Most of the cerebellar hematomas extend upward. Downward extension is rare. 3. In acute dead cases hematomas are 5 cm or more in diameter and lie over bilateral hemispheres with the extension to third or fourth ventricles in CT-scans. 4. Slowly progressive cases are detriorated by the secondary hydrocephalus. 5. In mild cases hematomas are 3cm or less in diameter on CT-scans and the hematoma evacuation is not indicated for these cases. 6. The shunt operation alone is sufficient for the life saving of the slowly progressive cases, but the hematoma evacuation is indicated in these cases if the functional prognosis is taken into consideration. 7. Immediate hematoma evacuation together with the ventricular drainage is considered to be effective for the life saving of the acute fulminant cases.

  12. Computed tomography in hypertensive cerebellar hemorrhage

    International Nuclear Information System (INIS)

    Nose, Tadao; Maki, Yutaka; Ono, Yukio; Yoshizawa, Takashi; Tsuboi, Kohji

    1981-01-01

    Fourteen cases of cerebellar hemorrhage were analysed from the point of CT-scan, and the following results were obtained. 1. The number of cases of cerebellar hemorrhage forms 4.4% of that of total intracranial hemorrhage. 2. Most of the cerebellar hematomas extend upward. Downward extension is rare. 3. In acute dead cases hematomas are 5 cm or more in diameter and lie over bilateral hemispheres with the extension to third or fourth ventricles in CT-scans. 4. Slowly progressive cases are detriorated by the secondary hydrocephalus. 5. In mild cases hematomas are 3cm or less in diameter on CT-scans and the mematoma evacuation is not indicated for these cases. 6. The shunt operation alone is sufficient for the life saving of the slowly progressive cases, but the hematoma evacuation is indicated in these cases if the functional prognosis is taken into consideration. 7. Immediate hematoma evacuation togather with the ventricular dranage is considered to be effective for the life saving of the acute fulminant cases. (author)

  13. Medical image of the week: granulation tissue

    Directory of Open Access Journals (Sweden)

    Ganesh A

    2014-03-01

    Full Text Available A 57 year old woman presented with a tickling sensation in the back of throat and intermittent bleeding from the healing stoma one month after decannulation of her tracheostomy tube. On bronchoscopy a granuloma with surrounding granulation tissue was present in the subglottic space (Figure 1. Argon plasma coagulation (APC was performed to cauterize the granulation tissue (Figure 2. Formation of granulation tissue after tracheostomy is a common complication which can result in tracheal stenosis. APC and electrocautery using flexible bronchoscopy has been shown to safely and effectively remove the granulation tissue.

  14. Mutant human FUS Is ubiquitously mislocalized and generates persistent stress granules in primary cultured transgenic zebrafish cells.

    Directory of Open Access Journals (Sweden)

    Jamie Rae Acosta

    Full Text Available FUS mutations can occur in familial amyotrophic lateral sclerosis (fALS, a neurodegenerative disease with cytoplasmic FUS inclusion bodies in motor neurons. To investigate FUS pathology, we generated transgenic zebrafish expressing GFP-tagged wild-type or fALS (R521C human FUS. Cell cultures were made from these zebrafish and the subcellular localization of human FUS and the generation of stress granule (SG inclusions examined in different cell types, including differentiated motor neurons. We demonstrate that mutant FUS is mislocalized from the nucleus to the cytosol to a similar extent in motor neurons and all other cell types. Both wild-type and R521C FUS localized to SGs in zebrafish cells, demonstrating an intrinsic ability of human FUS to accumulate in SGs irrespective of the presence of disease-associated mutations or specific cell type. However, elevation in relative cytosolic to nuclear FUS by the R521C mutation led to a significant increase in SG assembly and persistence within a sub population of vulnerable cells, although these cells were not selectively motor neurons.

  15. 21 CFR 520.905b - Fenbendazole granules.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Fenbendazole granules. 520.905b Section 520.905b... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.905b Fenbendazole granules. (a) Specifications. Each gram of granules contains 222 milligrams (mg) fenbendazole. (b) Sponsor. See...

  16. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb

    Science.gov (United States)

    Deshpande, Aditi; Bergami, Matteo; Ghanem, Alexander; Conzelmann, Karl-Klaus; Lepier, Alexandra; Götz, Magdalena; Berninger, Benedikt

    2013-01-01

    Identifying the connectome of adult-generated neurons is essential for understanding how the preexisting circuitry is refined by neurogenesis. Changes in the pattern of connectivity are likely to control the differentiation process of newly generated neurons and exert an important influence on their unique capacity to contribute to information processing. Using a monosynaptic rabies virus-based tracing technique, we studied the evolving presynaptic connectivity of adult-generated neurons in the dentate gyrus (DG) of the hippocampus and olfactory bulb (OB) during the first weeks of their life. In both neurogenic zones, adult-generated neurons first receive local connections from multiple types of GABAergic interneurons before long-range projections become established, such as those originating from cortical areas. Interestingly, despite fundamental similarities in the overall pattern of evolution of presynaptic connectivity, there were notable differences with regard to the development of cortical projections: although DG granule neuron input originating from the entorhinal cortex could be traced starting only from 3 to 5 wk on, newly generated neurons in the OB received input from the anterior olfactory nucleus and piriform cortex already by the second week. This early glutamatergic input onto newly generated interneurons in the OB was matched in time by the equally early innervations of DG granule neurons by glutamatergic mossy cells. The development of connectivity revealed by our study may suggest common principles for incorporating newly generated neurons into a preexisting circuit. PMID:23487772

  17. a-Band Oscillations in Intracellular Membrane Potentials of Dentate Gyrus Neurons in Awake Rodents

    Science.gov (United States)

    Anderson, Ross W.; Strowbridge, Ben W.

    2014-01-01

    The hippocampus and dentate gyrus play critical roles in processing declarative memories and spatial information. Dentate granule cells, the first relay in the trisynaptic circuit through the hippocampus, exhibit low spontaneous firing rates even during locomotion. Using intracellular recordings from dentate neurons in awake mice operating a…

  18. Caffeine Modulates Vesicle Release and Recovery at Cerebellar Parallel Fibre Terminals, Independently of Calcium and Cyclic AMP Signalling

    Science.gov (United States)

    Dobson, Katharine L.; Jackson, Claire; Balakrishnan, Saju; Bellamy, Tomas C.

    2015-01-01

    Background Cerebellar parallel fibres release glutamate at both the synaptic active zone and at extrasynaptic sites—a process known as ectopic release. These sites exhibit different short-term and long-term plasticity, the basis of which is incompletely understood but depends on the efficiency of vesicle release and recycling. To investigate whether release of calcium from internal stores contributes to these differences in plasticity, we tested the effects of the ryanodine receptor agonist caffeine on both synaptic and ectopic transmission. Methods Whole cell patch clamp recordings from Purkinje neurons and Bergmann glia were carried out in transverse cerebellar slices from juvenile (P16-20) Wistar rats. Key Results Caffeine caused complex changes in transmission at both synaptic and ectopic sites. The amplitude of postsynaptic currents in Purkinje neurons and extrasynaptic currents in Bergmann glia were increased 2-fold and 4-fold respectively, but paired pulse ratio was substantially reduced, reversing the short-term facilitation observed under control conditions. Caffeine treatment also caused synaptic sites to depress during 1 Hz stimulation, consistent with inhibition of the usual mechanisms for replenishing vesicles at the active zone. Unexpectedly, pharmacological intervention at known targets for caffeine—intracellular calcium release, and cAMP signalling—had no impact on these effects. Conclusions We conclude that caffeine increases release probability and inhibits vesicle recovery at parallel fibre synapses, independently of known pharmacological targets. This complex effect would lead to potentiation of transmission at fibres firing at low frequencies, but depression of transmission at high frequency connections. PMID:25933382

  19. Cerebellar Volume in Children With Attention-Deficit Hyperactivity Disorder (ADHD).

    Science.gov (United States)

    Wyciszkiewicz, Aleksandra; Pawlak, Mikolaj A; Krawiec, Krzysztof

    2017-02-01

    Attention Deficit Hyperactivity Disorder (ADHD) is associated with altered cerebellar volume and cerebellum is associated with cognitive performance. However there are mixed results regarding the cerebellar volume in young patients with ADHD. To clarify the size and direction of this effect, we conducted the analysis on the large public database of brain images. The aim of this study was to confirm that cerebellar volume in ADHD is smaller than in control subjects in currently the largest publicly available cohort of ADHD subjects.We applied cross-sectional case control study design by comparing 286 ADHD patients (61 female) with age and gender matched control subjects. Volumetric measurements of cerebellum were obtained using automated segmentation with FreeSurfer 5.1. Statistical analysis was performed in R-CRAN statistical environment. Patients with ADHD had significantly smaller total cerebellar volumes (134.5±17.11cm 3 vs.138.90±15.32 cm 3 ). The effect was present in both females and males (males 136.9±14.37 cm 3 vs. 141.20±14.75 cm 3 ; females 125.7±12.34 cm 3 vs. 131.20±15.03 cm 3 ). Age was positively and significantly associated with the cerebellar volumes. These results indicate either delayed or disrupted cerebellar development possibly contributing to ADHD pathophysiology.

  20. Increased accuracy of starch granule type quantification using mixture distributions

    OpenAIRE

    Tanaka, Emi; Ral, Jean-Phillippe F.; Li, Sean; Gaire, Raj; Cavanagh, Colin R.; Cullis, Brian R.; Whan, Alex

    2017-01-01

    Background The proportion of granule types in wheat starch is an important characteristic that can affect its functionality. It is widely accepted that granule types are either large, disc-shaped A-type granules or small, spherical B-type granules. Additionally, there are some reports of the tiny C-type granules. The differences between these granule types are due to its carbohydrate composition and crystallinity which is highly, but not perfectly, correlated with the granule size. A majority...