Anderson, HH
1981-01-01
Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The
Gülich, Johann Friedrich
2014-01-01
This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...
Centrifugal pumps for rocket engines
Campbell, W. E.; Farquhar, J.
1974-01-01
The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.
Centrifugal pumps and allied machinery
Anderson, HH
1994-01-01
This book will be of vital interest to all engineers and designers concerned with centrifugal pumps and turbines. Including statistical information derived from 20000 pumps and 700 turbines with capacities of 5gpm to 5000000gpm, this book offers the widest range and scope of information currently available. Statistical analyses suggest practical methods of increasing pump performance and provide valuable data for new design aspects.
Performance of a Centrifugal Slurry Pump
Hawas Yahya Bajawi; Basharat Salim; Ziyadh Suhibani
2014-01-01
The aim of this study was to experimentally investigate the effect of speed, concentration and size of slurry on the performance of a centrifugal pump. For this purpose a facility was built where the performance of a centrifugal slurry pump was examined using aggregate slurry. Three sizes of slurry with three concentrations and at three impeller speeds were used for the performance investigations of a centrifugal slurry pump. As a reference performance the performance of centrifugal slurry pu...
Cavitation Effects in Centrifugal Pumps- A Review
Maxime Binama
2016-05-01
Full Text Available Cavitation is one of the most challenging fluid flow abnormalities leading to detrimental effects on both the centrifugal pump flow behaviors and physical characteristics. Centrifugal pumps’ most low pressure zones are the first cavitation victims, where cavitation manifests itself in form of pitting on the pump internal solid walls, accompanied by noise and vibration, all leading to the pump hydraulic performance degradation. In the present article, a general description of centrifugal pump performance and related parameters is presented. Based on the literature survey, some light were shed on fundamental cavitation features; where different aspects relating to cavitation in centrifugal pumps were briefly discussed
Return Vane Installed in Multistage Centrifugal Pump
Miyano, Masafumi; Kanemoto, Toshiaki; Kawashima, Daisuke; Wada, Akihiro; Hara, Takashi; Sakoda, Kazuyuki
2008-01-01
To optimize the stationary components in the multistage centrifugal pump, the effects of the return vane profile on the performances of the multistage centrifugal pump were investigated experimentally, taking account of the inlet flow conditions for the next stage impeller. The return vane, whose trailing edge is set at the outer wall position of the annular channel downstream of the vane and which discharges the swirl-less flow, gives better pump performances. By equipping such return vane w...
CFD Analysis of Centrifugal Pump: A Review
Narayan P. Jaiswal
2014-01-01
The main objective of this work is to understand role of the computational fluid dynamics (CFD) technique in analyzing and predicting the performance of centrifugal pump. Computational Fluid Dynamics (CFD) is the present day state-of-art technique for fluid flow analysis. The critical review of CFD analysis of CFD analysis of centrifugal pump along with future scope for further improvement is presented in this paper. Different solver like ANSYS-CFX, FLUENT etc can be used for ...
Performance of a Centrifugal Slurry Pump
Hawas Yahya Bajawi
2014-02-01
Full Text Available The aim of this study was to experimentally investigate the effect of speed, concentration and size of slurry on the performance of a centrifugal pump. For this purpose a facility was built where the performance of a centrifugal slurry pump was examined using aggregate slurry. Three sizes of slurry with three concentrations and at three impeller speeds were used for the performance investigations of a centrifugal slurry pump. As a reference performance the performance of centrifugal slurry pump was also tested with clean water. The performance of pump has been reported as variations of head, power and efficiency at various flow rates along with the system characteristics of the pump. The results reveal that the pump performance is grossly affected by the type of slurry, its concentration and size. Besides this the variation in speed also affects the performance as is observed in pumps with water. The maximum decrease in the head, with respect to clear water, at the operating point was found to be 47% for aggregate for size 20 mm, 15% concentration and 2600 rpm. The maximum decrement in efficiency at operating point for aggregate was found to be 47% for 4 mm size, 15% concentration and at 2200 rpm. The power increment requirement for aggregate was 9% for 4 mm size, 15% concentration and 2600 rpm.
Vibration analysis of large centrifugal pump rotors
Y Zhao, W.; Ge, J. G.; Ma, D.; Li, C. M.; Bao, S. B.
2013-12-01
Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance.
Vibration analysis of large centrifugal pump rotors
Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance
Fault Detection and Isolation in Centrifugal Pumps
Kallesøe, Carsten
Centrifugal pumps are used in a variety of different applications, such as water supply, wastewater, and different industrial applications. Some pump installations are crucial for the applications to work. Failures can lead to substantial economic losses and can influence the life of many people...... when they occur. Therefore, detection of faults, if possible in an early stage, and isolation of their causes are of great interest. Especially fault detection, which can be used for predictive maintenance, can decrease working expenses and increase the reliability of the application in which the pump...... is placed. The topic of this work is Fault Detection and Identification in centrifugal pumps. Different approaches are developed with special focus on robustness. Robustness with respect to disturbances, unknown parts of the system, and parameter variations are considered. All developed algorithms...
Centrifugal Pump Experiment for Chemical Engineering Undergraduates
Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.
2012-01-01
The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…
Design Optimization of Centrifugal Pump Using Radial Basis Function Metamodels
Yu Zhang; Jinglai Wu; Yunqing Zhang; Liping Chen
2014-01-01
Optimization design of centrifugal pump is a typical multiobjective optimization (MOO) problem. This paper presents an MOO design of centrifugal pump with five decision variables and three objective functions, and a set of centrifugal pumps with various impeller shroud shapes are studied by CFD numerical simulations. The important performance indexes for centrifugal pump such as head, efficiency, and required net positive suction head (NPSHr) are investigated, and the results indicate that th...
Potential flow through centrifugal pumps and turbines
Sorensen, E
1941-01-01
The methods of conformal transformation up to the present have been applied to the potential flows in the rotation of solid bodies only to a limited extent. This report deals with aspects of centrifugal pumps and turbines such as: the complex potential for rotation, potential for the flow due to the blade rotation, velocities at the blade tip, comparison with "infinite number of blades," and a variable number of blades.
[Hemodynamic analysis of a centrifugal blood pump].
Wang, Yang; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Li, Qilei; Xu, Liang
2015-01-01
This paper built the mathematical model of a centrifugal blood pump, which was designed by ourselves, combined it with that of the human cardiovascular system and simulated the coupling system using Matlab. Then we set up the experiment platform, linked the blood pump to mock human cardiovascular system in case of three-stage heart failure, and measured aortic pressure and flow under different speed. The comparison between experiment results and simulation results not only indicates the coupling model is correct and the blood pump works well, but also shows that with the increase of blood pump speed, the pulsation of aortic pressure and flow will be reduced, this situation will affect the structure and function of blood vessels. PMID:26027287
Improvements to self priming centrifugal pumps
This invention concerns a self priming centrifugal pump for dangerous liquids, high radioactive, flammable, explosive and very toxic liquids for instance, for which it is necessary to enclose the equipment in a biological protection cell, as is done in the nuclear industry (reprocessing of irradiated fuels). The device ensures that all the gases and radioactive and toxic aerosols present in the delivery pipe are returned through leak tight pipes into the drawing tank, the gaseous top of which is connected to a gas processing plant, without it being possible for them to escape from the plant and contaminate the cell or penetrate into an apparatus such as a filter under pressure that cannot work in their presence. The pump impeller cage is provided with horizontal partitions which define the pump body, a lower suction chamber, a middle delivery chamber and an upper venting chamber respectively connected to a suction pipe, a delivery pipe and a venting pipe connected to a gas processing unit significantly at atmospheric pressure. Leak tightness between these different chambers and the body of the pump is provided by three ring seals resting on the truncated part of the pump body as well as by an internal gasket fixed between the motor shaft and the upper wall of the venting chamber. As all the pipes are attached to the fixed pump body, the removable unit may be easily taken out or placed back simply by moving it vertically upwards
Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump
Tao Li; Weiming Zhang; Ming Jiang; Zhengyang Li
2013-01-01
A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Re...
Numerical Investigations on the Transient Performance of a Centrifugal Pump
Asim, Taimoor; Mishra, Rakesh
2015-01-01
Centrifugal pumps are an integral part of plants used in process industries. The flow structure within a centrifugal pump is very complex due to the interaction between the rotating impeller and the geometric features around it. In the present study, numerical investigations on a centrifugal pump have been carried out using a Computational Fluid Dynamics (CFD) based solver. This study employs finite volume technique in order to analyse the influence of variations in the rotational speed of th...
Latex Micro-balloon Pumping in Centrifugal Microfluidic Platforms
Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Wadi harun, Sulaiman; Madou, Marc
2014-01-01
Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-stepped processes on a single microfluidics disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a...
Parametric representation of centrifugal pump homologous curves
Veloso, Marcelo A.; Mattos, Joao R.L. de, E-mail: velosom@cdtn.br, E-mail: jrmattos@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2015-07-01
Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic quantities: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. The curves showing the relationships between these four variables are called the pump characteristic curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, this configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the parametric form appears as the simplest way to deal with the homologous curves. In this approach, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a pressurized water reactor (PWR) are transformed to the parametric form. (author)
Rotordynamic Forces on Centrifugal Pump Impellers
Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A.J
1987-01-01
The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with rad...
Design Method for Single-Blade Centrifugal Pump Impeller
Nishi, Yasuyuki; Fujiwara, Ryota; Fukutomi, Junichiro
The sewage pumps are demanded a high pump efficiency and a performance in passing foreign bodies. Therefore, the impeller used by these usages requires the large passed particle size (minimum particle size in the pump). However, because conventional design method of pump impeller results in small impeller exit width, it is difficult to be applied to the design of single-blade centrifugal pump impeller which is used as a sewage pump. This paper proposes a design method for single-blade centrifugal pump impeller. As a result, the head curve of the impeller designed by the proposed design method satisfied design specifications, and pump efficiency was over 62% more than conventional single-blade centrifugal pump impeller. By comparing design values with CFD analysis values, the suction velocity ratio of the design parameter agreed well with each other, but the relative velocity ratio did not agree due to the influence of the backflow of the impeller entrance.
Prediction of performance of centrifugal pumps during starts under pressure
Rostafinski, W.
1969-01-01
Method which calculates start-up characteristics of centrifugal pumps reveals a capacity to predict pressure drop characteristics of pumps with vaned diffusers. Calculations are based on pump geometry, design-point flow, speed, and pressure rise, and the pump characteristic within range of approximately ten percent of the design-point flow.
Stability of centrifugal pump characteristic curve
Chmatil, Ľuboš
2011-01-01
Předložená diplomová práce obsahuje teoretický rozbor charakteristik odstředíveho čerpadla, podmínky stability Y(Q) charakteristiky, výpočet charakteristiky ßč(ns), úpravy vedúce k stabilizaci spirálního telesa a oběžného kola, návrh spirály, obežného kola a následný výpočet v programe Fluent. This master's thesis includes theoretical analysis of characteristics of a centrifugal pump, conditions of stability of Y(Q) characteristic, calculation of characteristics ßč(ns), modifications leadi...
Rotordynamic forces on centrifugal pump impellers
Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.
1987-01-01
The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with radically increased shroud clearance, a two-dimensional impeller, and an impeller with an inducer, the impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). In each case, a destabilizing force was observed over a region of positive whirl.
Performance analysis of mini centrifugal pump with splitter blades
Shigemitsu, T.; Fukutomi, J.; Wada, T.; Shinohara, H.
2013-12-01
Design method for a mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Then, a semi-open impeller for the mini centrifugal pump with 55mm impeller diameter is adopted in this research to take simplicity and maintenance into consideration. Splitter blades are adopted in this research to improve the performance and internal flow condition of mini centrifugal pump having large blade outlet angle. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on the performance and internal flow condition of the mini centrifugal pump. A three dimensional steady numerical flow analysis is conducted to analyze rotor, volute efficiency and loss caused by a vortex. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. Flow condition at outlet of the rotor becomes uniform and back flow regions are suppressed in the case with the splitter blades. Further, the volute efficiency increases and the vortex loss decreases. In the present paper, the performance of the mini centrifugal pump is shown and the flow condition is clarified with the results of the experiment and the numerical flow analysis. Furthermore, the performance analyses of the mini centrifugal pumps with and without the splitter blades are conducted.
Numerical Calculation on Cavitation Pressure Pulsation in Centrifugal Pump
Weidong Shi; Chuan Wang; Wei Wang; Bing Pei
2014-01-01
In order to study the internal flow in centrifugal pump when cavitation occurs, numerical calculation of the unsteady flow field in the WP7 automobile centrifugal pump is conducted based on the Navier-Stokes equations with the RNG k-ε turbulence model and Zwart-Gerber-Belamri cavitation model. The distributions of bubble volume fraction and pressure pulsation laws in the pump are analyzed when cavitation occurs. The conclusions are as follows: the bubble volume fraction is larger on the sucti...
Investigation on complete characteristics and hydraulic transient of centrifugal pump
An improved method was developed to obtain the complete characteristic of centrifugal pump. The conversion formula of complete characteristics is established based on the normal performance curve. An example was presented to illuminate the new method, and the complete characteristic curves of 14SA-10 centrifugal pump were obtained by the new method. The hydraulic transient of the centrifugal pump failure and start-up was simulated by method of characteristics (MOC), which quote the complete characteristics data. The results show that the inversion method is available to obtain the complete pump characteristic curves provided the normal performance curve. For hydraulic transient simulation, more accurate numerical result can be obtained, if the new model is adopted to convert the experimental normal performance curve to complete characteristics curve of centrifugal pump
Investigation of Flow in a Centrifugal Pump
Fischer, Karl
1946-01-01
The investigation of the flow in a centrifugal pump indicated that the flow patterns in frictional fluid are fundamentally different from those in frictionless fluid. In particular, the dead air space adhering to the section side undoubtedly causes a reduction of the theoretically possible delivery head. The velocity distribution over a parallel circle is also subjected to a noticeable change as a result of the incomplete filling of the passages. The relative velocity on the pressure side of the vane, which for passages completely filled with active flow would differ little from zero even at comparatively lower than normal delivery volume, is increased, so that no rapid reverse flow occurs on the pressure side of the vane even for smaller delivery volume. It was established, further, that the flow ceases to be stationary for very small quantities of water. The inflow to the impeller can be regarded as radial for the operating range an question. The velocity triangles at the exit are subjected to a significant alteration in shape ae a result of the increased peripheral velocity, which may be of particular importance in the determination of the guide vane entrance angle.
Effect of pumping chamber on performance of non-overload centrifugal pump
谷云庆; 吴登昊; 牟介刚; 蒋兰芳; 代东顺; 施瀚昱; 郑水华
2015-01-01
In order to specify the characteristics of un-overloaded centrifugal pumps, the IH100-65-200 pump was chosen as the model pump. Different calculation models for centrifugal pumps were established under different pumping chamber sectional parameters. In the numerical simulation of the centrifugal pumps flow field, the shaft power, head, efficiency, and the changes of the internal flow field under different sectional areas and sectional shapes were studied with the RNGk−εturbulence model, and the influence of the pumping chamber section characteristics of the non-overloaded centrifugal pumps were analyzed. The results show that sectional areas have a significant impact on the non-overload characteristics of centrifugal pumps. The shaft power and head of centrifugal pump are increasing with a lager sectional area, by which the gradient of head curves decreases. The efficiency is improved under a large flow rate condition, but the head and the efficiency are reduced at a small flow rate. It is also observed that the sectional shapes have less influence on the shaft power, the hydraulic performance and flow field characteristics of a centrifugal pump.
Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump
Tao Li
2013-01-01
Full Text Available A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Results show that the system flow rate is determined by the sliding vane pump. In order to ensure the stability of the series operation pumping system, the energy consumption required by the pipeline under the system flow should be greater than the pressure energy centrifugal pump can generate. Otherwise, the centrifugal pump can not operate stably, with reflux, swirl, gas-liquid two-phase flow in the runner and strong vibration and noise. The sliding vane pump can be in serial operation with the centrifugal pump under limited conditions.
Centrifugal pumping of gas-liquid mixtures: a mechanistic approach
Estevam, Valdir [PETROBRAS, Rio de Janeiro, RJ (Brazil); Franca, Fernando A. [Universidade Estadual de Campinas, SP (Brazil); Alhanati, Francisco J.S. [C-Fer Technologies, Edmonton, Alberta (Canada)
2004-07-01
Centrifugal pumps are known to show a 'surging' behavior at certain conditions of free gas and liquid flow rate at the intake. In the 'surging region' on a pump characteristic curve, the head generated is significantly lower than if the pump were handling a gas-liquid homogeneous mixture. The surging happens, as one shows in this paper, due to the existence of a gas pocket, referred as 'elongated bubble', at the pump impeller inlet region. Therefore, to be able to predict the performance of centrifugal pumps under two-phase conditions, one has to disclose and model the mechanisms that set existence of the elongated bubble at the impeller inlet, besides calculating its length inside the impeller. This paper reports on the results of experimental and mechanistic modelling work conducted with the objective of better predicting the gas-liquid performance of centrifugal pumps under all range of conditions, including those characterized by 'surging'. The focus was on small diameter centrifugal pumps used to produce oil wells. A mechanistic two-fluid model devised to calculate the head generated by the pump was developed. The predictions of the model show good agreement with data collected for this study, and with data recently collected by other research organizations. (author)
Model Based Fault Detection in a Centrifugal Pump Application
Kallesøe, Carsten; Cocquempot, Vincent; Izadi-Zamanabadi, Roozbeh
2006-01-01
A model based approach for fault detection in a centrifugal pump, driven by an induction motor, is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, observer design and Analytical Redundancy Relation (ARR) design. Structural considerations...... the algorithm is capable of detecting four different faults in the mechanical and hydraulic parts of the pump....
Parametric performance evaluation of a hydraulic centrifugal pump
Parametric study of a hydraulic centrifugal pump with backward curved blades has been performed numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The shear stress transport turbulence model was used for analysis of turbulence. The finite volume method and an unstructured grid system were used for the numerical solution. The optimal grid system in the computational domain was selected through a grid dependency test. Tested parameters were related to the geometry of the impeller and volute: seven variables defining the hub and shroud contours and the blades angle of impeller, and two variables defining the inlet width and expansion angle of volute. The effects of these parameters on the hydrodynamic performance of the centrifugal pump have been investigated. It was found that the centrifugal water pump with the twisted blades has the enhancing efficiency compared to the straight blades pump
Parametric performance evaluation of a hydraulic centrifugal pump
Heo, M. W.; Y Kim, K.; Ma, S. B.; Yoo, I. S.; Choi, W. C.; Kim, J. H.; Choi, Y. S.
2014-03-01
Parametric study of a hydraulic centrifugal pump with backward curved blades has been performed numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The shear stress transport turbulence model was used for analysis of turbulence. The finite volume method and an unstructured grid system were used for the numerical solution. The optimal grid system in the computational domain was selected through a grid dependency test. Tested parameters were related to the geometry of the impeller and volute: seven variables defining the hub and shroud contours and the blades angle of impeller, and two variables defining the inlet width and expansion angle of volute. The effects of these parameters on the hydrodynamic performance of the centrifugal pump have been investigated. It was found that the centrifugal water pump with the twisted blades has the enhancing efficiency compared to the straight blades pump.
Damages on pumps and systems the handbook for the operation of centrifugal pumps
Merkle, Thomas
2014-01-01
Damage on Pumps and Systems. The Handbook for the Operation of Centrifugal Pumps offers a combination of the theoretical basics and practical experience for the operation of circulation pumps in the engineering industry. Centrifugal pumps and systems are extremely vulnerable to damage from a variety of causes, but the resulting breakdown can be prevented by ensuring that these pumps and systems are operated properly. This book provides a total overview of operating centrifugal pumps, including condition monitoring, preventive maintenance, life cycle costs, energy savings and economic aspects. Extra emphasis is given to the potential damage to these pumps and systems, and what can be done to prevent breakdown. Addresses specific issues about pumping of metal chips, sand, abrasive dust and other solids in fluidsEmphasis on economic and efficiency aspects of predictive maintenance and condition monitoring Uses life cycle costs (LCC) to evaluate and calculate the costs of pumping systems
A REVIEW PAPER ON DEVELOPMENT OF IMPELLER OF CENTRIFUGAL PUMP USING COMPUTATIONAL FLUID DYNAMICS
Mr. Nilesh Nemgonda Patil
2015-01-01
Nowadays, the centrifugal pumps became very popular because of recent development of high speed electric motors, steam turbines etc.Centrifugal pumps can be single-stage or may be multistage pumps. It depends upon the number of impellers used in the pump. Single stage pump consists of only one impeller while in multistage pumps the impellers are mounted in the series in pumps. These Centrifugal pumps can be analyzed by software code like Computational Fluid Dynamics (CFD).This CFD...
A centrifugal pump concept designed for multiple use in space
Wunderlich, E.; Wulz, H. G.
A centrifugal pump concept was elaborated for a multiple application in future spacecrafts. Based on this concept a prototype of a small centrifugal pump was manufactured and comprehensively tested. The model pump has been approved in different test series with the fluids liquid ammonia and demineralized water. The design of the model pump was driven by strict requirements of COLUMBUS, namely long life, noiseless operation, minimum mass and low energy consumption. Because of its modular design and as a result of selected materials of multiple compatibility, this pump is suited for the delivery of various further fluids, such as freons, hydrocarbons, propellants (hydrazine) etc.. It is also capable of pumping corrosive or toxic fluids for laboratory processes in space. The wide speed range from about 1,00 to 20,000 rpm which corresponds to a flow from about 1 to 20 l/min, permits an energy saving adaption and flow control.
Fault Diagnosis in a Centrifugal Pump Using Active Magnetic Bearings
Nordmann Rainer; Aenis Martin
2004-01-01
The number of rotors running in active magnetic bearings (AMBs) has increased over the last few years. These systems offer a great variety of advantages compared to conventional systems. The aim of this article is to use the AMBs together with a developed built-in software for identification, fault detection, and diagnosis in a centrifugal pump. A single-stage pump representing the turbomachines is investigated. During full operation of the pump, the AMBs are used as actuators to generate def...
Kimura, Mitsutoshi; Kinoshita, Osamu; Nawata, Kan; Yamauchi, Haruo; Itoda, Yoshifumi; Hoshino, Yasuhiro; Kashiwa, Koichi; Kubo, Hitoshi; Kurosawa, Hideo; Takahashi, Mai; Koga, Sayaka; Ono, Minoru
2015-05-01
Nipro paracorporeal ventricular assist device( VAD) is often associated with pump thrombosis which causes severe complications such as brain infarction, often requiring pump change. However, Nipro VAD pump is an expensive device and it is difficult to change pumps frequently at a short interval. We have temporarily used Rotaflow centrifugal pump for recurrent pump thrombosis in patients with Nipro VADs. From January 2012 through December 2013, 19 patients underwent Nipro VADs implantation at our institution, and 9 of them underwent pump change from Nipro pumps to Rotaflow centrifugal pumps. A total of 25 Rotaflow centrifugal pumps were used in these 9 patients, with the total circulatory support duration of 526 days. The median support period was 15 days (range;2-128 days). There were 2 cerebrovascular accidents and 1 Rotaflow pump circuit thrombosis during this period. Change from Rotaflow to Nipro VAD pump resulted in decrease in hematocrit by about 3 point. There was no difference in liver or renal function between before and after the pump change. Our results suggest that temporary use of Rotaflow centrifugal pump for recurrent pump thrombosis in patients with Nipro VADs may be a promising alternative. PMID:25963778
A multiple disk centrifugal pump as a blood flow device.
Miller, G E; Etter, B D; Dorsi, J M
1990-02-01
A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps. PMID:2312140
Effect of centrifugal pump impeller shapes on cavitation erosion
The cavitation erosion test and suction performance test for five types of centrifugal pump impellers with different blade inlet angles and different position of blade inlet edges are carried out by using the open-type pump test loop and painting method. The relationship among the shape of impellers, flow rate, pump running time and position, degree of cavitation erosion inside impellers are made clear under the state of 3% pump head dropping. The experimental results are discussed with the internal flow pattern and inlet reverse flow occurred in the pump
Fault diagnosis of monoblock centrifugal pump using SVM
V. Muralidharan
2014-09-01
Full Text Available Monoblock centrifugal pumps are employed in variety of critical engineering applications. Continuous monitoring of such machine component becomes essential in order to reduce the unnecessary break downs. At the outset, vibration based approaches are widely used to carry out the condition monitoring tasks. Particularly fuzzy logic, support vector machine (SVM and artificial neural networks were employed for continuous monitoring and fault diagnosis. In the present study, the application of SVM algorithm in the field of fault diagnosis and condition monitoring is discussed. The continuous wavelet transforms were calculated for different families and at different levels. The computed transformation coefficients form the feature set for the classification of good and faulty conditions of the components of centrifugal pump. The classification accuracies of different continuous wavelet families at different levels were calculated and compared to find the best wavelet for the fault diagnosis of the monoblock centrifugal pump.
Small centrifugal pumps for low thrust rockets
Gulbrandsen, N. C.; Furst, R. B.; Burgess, R. M.; Scheer, D. D.
1985-01-01
This paper presents the results of a combined analytical and experimental investigation of low specific speed pumps for potential use as components of propellant feed systems for low thrust rocket engines. Shrouded impellers and open face impellers were tested in volute type and vaned diffuser type pumps. Full- and partial-emission diffusers and full- and partial-admission impellers were tested. Axial and radial loads, head and efficiency versus flow, and cavitation tests were conducted. Predicted performance of two pumps are compared when pumping water and liquid hydrogen. Detailed pressure loss and parasitic power values are presented for two pump configurations. Partial-emission diffusers were found to permit use of larger impeller and diffuser passages with a minimal performance penalty. Normal manufacturing tolerances were found to result in substantial power requirement variation with only a small pressure rise change. Impeller wear ring leakage was found to reduce pump pressure rise to an increasing degree as the pump flowrate was decreased.
The effect of gas fraction on centrifugal pump
Zhu, Z. T.; Wang, Y.; Zhao, L. F.; Ning, C.; Xie, S. F.; Liu, Z. C.
2015-01-01
In order to study the multiphase flow field in M125 centrifugal pump, three-dimensional modeling was used for internal flow through three-dimensional software Pro/E. Then based on SST turbulence model combining with Rayleigh-Plesset cavitation model, and structured grid to simulate the hydraulic characteristics of volute and impeller within different gas conditions. The velocity, pressure and gas volume fraction distributions of the interior flow field of volute and impeller were obtained and analyzed, which revealed the effect of gas fractions on the flow characteristic of the centrifugal pump.
Flow in a Low Specific Speed Centrifugal Pump Using PIV
Cui Dai; Liang Dong
2013-01-01
The interflow plays important roles in centrifugal pump design. In order to study the effect of rotation and z-axis on internal flow, two-dimensional particle image velocimetry (PIV) measurements have been performed to measure the steady velocity field on three planes in all impeller passages of a low specific-speed centrifugal pump. The results show that the relative velocity flows in blade passages are obviously different in terms of the positions of the blade relative to the tongue. The in...
Characterization of a centrifugal pump in He II
Weisend, J. G., II; Van Sciver, S. W.
1988-01-01
As part of an effort to determine the feasibility of helium transfer in space, a centrifugal pump was tested in He II at a variety of flow rates, pump speeds, and fluid temperatures. The pump, which has a straight bladed impeller 6.86 cm in diameter, generated a maximum pressure rise of 15 kPa and a maximum flow rate of 22 g/s for the conditions of the test. Pump performance seems to be independent of fluid temperature and is in good agreement with the values predicted by the manufacturer. Over the range of flow coefficients, the measured maximum efficiency is around 50 percent. Cavitation is observed in the pump and is thought to be highly dependent on the local heating of the helium in the pump. Preliminary measurements of the noise spectra of the pump suggest a possible mechanism to predict the onset of cavitation.
Computer-aided design and optimization of centrifugal pumps
Asuaje, M.; Bakir, F.; Kouidri, S.; Noguera, R.; Rey, R.
2005-03-15
Improvement in computer power and the development of numerical computational methods over the last few years have allowed the emergence of computational fluid dynamic (CFD) codes, making possible the numerical simulation of flow and energy transfer in turbo machines. To improve the efficiency of these tools, fast design software must be used. Within the framework of the optimization process of centrifugal pumps, HELIOX software was developed. It is a tool for design and performance analysis of centrifugal pumps. HELIOX allows quick design of new pumps and improvement of existing ones. HELIOX's performance analysis has been validated through many industrial cases: approximately 100 machines of different sizes and mechanical power. Heliox can be linked to quasi-and three-dimensional analysis tools; these tools enable a better understanding of physical phenomena so as to control the flow fields inside pumps. (Author)
Axial and centrifugal pump meanline performance analysis
Veres, Joseph P.
1994-01-01
A meanline pump flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump flow code (PUMPA) has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design point rotor efficiency is obtained from empirically derived correlations of loss to rotor specific speed. The rapid input setup and computer run time for the meanline pump flow code makes it an effective analysis and conceptual design tool. The map generation capabilities of the PUMPA code provide the information needed for interfacing with a rocket engine system modeling code.
Measurements of the rotordynamic shroud forces for centrifugal pumps
Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.
1990-01-01
An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.
Small, submersible, centrifugal pump for liquid nitrogen
Rustad, B.M.; Nielsen, A.; Passell, L.
1965-01-01
Full details are given of a pump designed to circulate several liters/min. It can be evacuated before use to exclude oxygen and may be used at pressures of several atmospheres.......Full details are given of a pump designed to circulate several liters/min. It can be evacuated before use to exclude oxygen and may be used at pressures of several atmospheres....
Improvement of Pump Performance and Suppression of Cavitation in a Centrifugal Pump by J-Groove
Young-Do, Choi; Kurokawa, Junichi; Shiraki, Satoshi; Kimura, Tomonori; Nagahara, Takahide
2006-01-01
The purpose of the present study is not only to develop a simple method to improve pump performance but also to suppress the occurrence of cavitation in the centrifugal pump by use of J-Groove. J-Groove is a shallow groove installed on the casing wall in the meridional direction. The application of J-Groove to a centrifugal pump with a new type impeller of "semi-closed impeller" has proved its effectiveness as a useful countermeasure of the unstable pump performance and cavitation. The result...
Impeller inlet geometry effect on performance improvement for centrifugal pumps
This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m3min-1.min-1 and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-ε turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump
A small centrifugal pump for circulating cryogenic helium
A small centrifugal pump is described which has been developed to circulate supercritical helium through a test loop for superconducting magnets. The pump has a fully enclosed warm and which contains the adjustable speed brushless DC drive motor and self-acting bearings operating in helium gas. The drive and bearing system is designed to minimize contaimination to the circulating supercritical helium in the test loop. The performance data which have been obtained show that the pump operates very close to its design specifications. Additional tests are planned to provide a more complete range of performance data for the pump. Subsequent record discussion concerned the pump shaft and the efficiency of the heat leak to the heat station. Efficiency of at least 65% is attainable with this pump, including all heat leak
Experiment of a centrifugal pump during changing speed operation
In this paper, a method of changing rotational speed of impeller periodically as the pulsatile working condition is developed to realize pulse outputs both of flow discharge and of head for a centrifugal pump through experiment. The performance of the centrifugal pump under pulsatile working operation condition is measured which indicates this model pump could produce desired pulse flow under such condition. Flow patterns at four testing points under pulsatile conditions are obtained by means of the particle image velocimetry (PIV) technology both with laser induced fluorescence (LIF) particles and refractive index matched (RIM) fluid. Results of PIV measurement show the distributions of velocity, streamlines, and the principal Reynolds normal stress (PRNS). Under the design flow rate condition, the relative velocity in the blade channel distributes smoothly and decreases from inlet to exit. And at the impeller exit, the relative velocity is lower close to suction side than that near pressure side of blade in most of blade channels.
Experiment of a centrifugal pump during changing speed operation
Yuan, H. J.; Shao, J.; Wu, Y. L.; Liu, S. H.
2012-11-01
In this paper, a method of changing rotational speed of impeller periodically as the pulsatile working condition is developed to realize pulse outputs both of flow discharge and of head for a centrifugal pump through experiment. The performance of the centrifugal pump under pulsatile working operation condition is measured which indicates this model pump could produce desired pulse flow under such condition. Flow patterns at four testing points under pulsatile conditions are obtained by means of the particle image velocimetry (PIV) technology both with laser induced fluorescence (LIF) particles and refractive index matched (RIM) fluid. Results of PIV measurement show the distributions of velocity, streamlines, and the principal Reynolds normal stress (PRNS). Under the design flow rate condition, the relative velocity in the blade channel distributes smoothly and decreases from inlet to exit. And at the impeller exit, the relative velocity is lower close to suction side than that near pressure side of blade in most of blade channels.
Numerical investigation of suction vortices behavior in centrifugal pump
An, Young Joon; Shin, Byeong Rog [Changwon National University, Changwon (Korea, Republic of)
2011-03-15
A numerical simulation on suction vortices behavior in a centrifugal pump was carried out to investigate their influence on the internal flow through impellers including formation and shedding of cavitation by using a finite-volume method and k-{omega} Shear Stress Transport turbulence model. For cavitating flow, a two phase homogeneous cavitation model was used. A full three-dimensional flow in a single section centrifugal pump consisting of a six blade impeller and shroud ring was computed with structured mesh. A constant suction vortex is imposed as a boundary condition. Vortices behavior was investigated according to the variation of flow rates of two pump systems with and without suction vortices. From the results, suction vortices induced biased flow structure and more cavitations, especially at the low flow rate condition. Complicated internal flow phenomena through impellers such as formation of cavitations, growing and shedding of the vortex, flow separation and flow unsteadiness due to the suction vortices are investigated and discussed.
Numerical investigation of suction vortices behavior in centrifugal pump
A numerical simulation on suction vortices behavior in a centrifugal pump was carried out to investigate their influence on the internal flow through impellers including formation and shedding of cavitation by using a finite-volume method and k-ω Shear Stress Transport turbulence model. For cavitating flow, a two phase homogeneous cavitation model was used. A full three-dimensional flow in a single section centrifugal pump consisting of a six blade impeller and shroud ring was computed with structured mesh. A constant suction vortex is imposed as a boundary condition. Vortices behavior was investigated according to the variation of flow rates of two pump systems with and without suction vortices. From the results, suction vortices induced biased flow structure and more cavitations, especially at the low flow rate condition. Complicated internal flow phenomena through impellers such as formation of cavitations, growing and shedding of the vortex, flow separation and flow unsteadiness due to the suction vortices are investigated and discussed
Optimization of centrifugal pump cavitation performance based on CFD
Xie, S. F.; Wang, Y.; Liu, Z. C.; Zhu, Z. T.; Ning, C.; Zhao, L. F.
2015-01-01
In order to further improve the cavitation performance of a centrifugal pump, slots on impeller blade near inlet were studied and six groups of hydraulic model were designed. Base on cavitating flow feature inside a centrifugal pump, bubble growth and implosion are calculated from the Rayleigh-Plesset equation which describes the dynamic behavior of spherical bubble and RNG κ-epsilon model was employed to simulate and analyze the internal two-phase flow of the model pump under the same conditions. The simulation results show that slots on blade near inlet could improve the cavitation performance and cavitation performance improvement of the second group was more obvious. Under the same conditions, the pressure on the back of blade near inlet was higher than the pressure on the back of unmodified blade near inlet, and energy distribution in the flow channel between the two blades was more uniform with a small change of head.
Cavitating flow investigation inside centrifugal impellers for a condensate pump
In order to investigate the effect of blade inlet angle on centrifugal pump cavitation performance, numerical simulation of cavitating turbulent flow is conducted for a condensate pump with different impellers based on SST k−ω turbulence model and a mixture cavitation model. The results indicate that for a condensate pump having meridional section with larger area at blade leading edge compared with conventional pumps, the reverse flows inside the blade-to-blade channels are not negligible. It is noted that large incidence at blade leading edge is helpful to improve the cavitation performance for the pump. The possible reason may be the growth of cavities inside the impeller has less influence on the flow in the channel between two neighboring blades. Further, uniform incidence angle along the blade leading edge is preferable for the improvement of cavitation performance.
Diagnosis of Centrifugal Pump Faults Using Vibration Methods
Pumps are the largest single consumer of power in industry. This means that faulty pumps cause a high rate of energy loss with associated performance degradation, high vibration levels and significant noise radiation. This paper investigates the correlations between pump performance parameters including head, flow rate and energy consumption and surface vibration for the purpose of both pump condition monitoring and performance assessment. Using an in-house pump system, a number of experiments have been carried out on a centrifugal pump system using five impellers: one in good condition and four others with different defects, and at different flow rates for the comparison purposes. The results have shown that each defective impeller performance curve (showing flow, head, efficiency and NPSH (Net Positive Suction Head) is different from the benchmark curve showing the performance of the impeller in good condition. The exterior vibration responses were investigated to extract several key features to represent the healthy pump condition, pump operating condition and pump energy consumption. In combination, these parameter allow an optimal decision for pump overhaul to be made.
Flow Analysis of the Cleveland Clinic Centrifugal Pump
Veres, Joseph P.; Golding, Leonard A. R.; Smith, William A.; Horvath, David; Medvedev, Alexander
1997-01-01
An implantable ventricular assist rotordynamic blood pump is being developed by the Cleveland Clinic Foundation in cooperation with the NASA Lewis Research Center. At the nominal design condition, the pump provides blood flow at the rate of 5 liters per minute at a pressure rise of 100 mm of mercury and a rotative speed of 3000 RPM. Bench testing of the centrifugal pump in a water/glycerin mixture has provided flow and pressure data at several rotative speeds. A one-dimensional empirical based pump flow analysis computer code developed at NASA Lewis Research Center has been used in the design process to simulate the flow in the primary centrifugal pump stage. The computer model was used to size key impeller and volute geometric parameters that influence pressure rise and flow. Input requirements to the computer model include a simple representation of the pump geometry. The model estimates the flow conditions at the design and at off-design operating conditions at the impeller leading and trailing edges and the volute inlet and exit. The output from the computer model is compared to flow and pressure data obtained from bench testing.
Macgregor, C.; Csomor, A.
1974-01-01
Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low-thrust, high-performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm, and helirotor pump concepts. The centrifugal pump and the gear pump were selected and these were carried through detailed design and fabrication. Mechanical difficulties were encountered with the gear pump during the preliminary tests in Freon-12. Further testing and development was therefore limited to the centrifugal pump. Tests on the centrifugal pump were conducted in Freon-12 to determine the hydrodynamic performance and in liquid fluorine to demonstrate chemical compatibility.
Origins of hydrodynamic forces on centrifugal pump impellers
Adkins, Douglas R.; Brennen, Christopher E.
1986-01-01
Hydrodynamic interactions that occur between a centrifugal pump impeller and volute are experimentally and theoretically investigated. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of the flow in the volute. The disturbance at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force pe...
Analyses of Hydrodynamic Radial Forces on Centrifugal Pump Impellers
Adkins, D. R.; Brennen, C. E.
1988-01-01
Hydrodynamic interactions that occur between a centrifugal pump impeller and a volute are experimentally and theoretically investigates. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of flow in the volute. Flow disturbances at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force...
Xu, Y.; Tan, L.; Cao, S. L.; Wang, Y. C.; Meng, G.; Qu, W. S.
2015-01-01
The influence of blade angle distribution along leading edge on cavitation performance of centrifugal pumps is analysed in the present paper. Three sets of blade angle distribution along leading edge for three blade inlet angles are chosen to design nine centrifugal pump impellers. The RNG k-epsilon turbulence model and the Zwart-Gerber-Belamri cavitation model are employed to simulate the cavitation flows in centrifugal pumps with different impellers and the same volute. The numerical results are compared with the experimental data, and the comparison proves that the numerical simulation can accurately predict the cavitation performance of centrifugal pumps. On the basis of the numerical simulations, the pump head variations with pump inlet pressure, and the flow details in centrifugal pump are revealed to demonstrate the influence of blade angle distribution along leading edge on cavitation performances of centrifugal pumps.
Modelling of flow with cavitation in centrifugal pump
The paper concerns flow modelling in centrifugal pump with special consideration of cavitation phenomena. Cavitation occurs when local pressure drops below the saturation pressure according to the temperature of the flow. Vapour bubbles are created and then they flow through the areas with higher pressure. The bubbles collapse rapidly generating pressure wave, noise and vibration. Working under cavitation condition is very dangerous to a pump and can significantly shorten its lifetime. The investigated centrifugal pump consists of three two-flow rotors and stators working on a single shaft. The modelling process started with grid independence study. When the grid was chosen, the pump performance curve was obtained using the single phase fluid model. Next, using the results from pump performance curve calculations, the cavitation characteristic was obtained. The constant capacity was held when the pressure at the inlet was reduced. The two – phase model was used with Zwart cavitation model. The results indicate that the pump work in safe range of parameters. The analysis also provides wide range of information about the areas of vapour appearance. The most endangered regions are leading edges of rotor. When pressure at the inlet drops to about one third of pressure that calculations started from the cavitation cloud appears in whole rotor. The intense of vapour bubbles creation is greater near the shroud of the pump, rather than near the hub. As cavitation is strongly unsteady phenomena, the transient calculations were performed to check if the results are close to those obtained using the steady state type. The differences are not significant.
Modelling of flow with cavitation in centrifugal pump
Homa, D.; Wróblewski, W.
2014-08-01
The paper concerns flow modelling in centrifugal pump with special consideration of cavitation phenomena. Cavitation occurs when local pressure drops below the saturation pressure according to the temperature of the flow. Vapour bubbles are created and then they flow through the areas with higher pressure. The bubbles collapse rapidly generating pressure wave, noise and vibration. Working under cavitation condition is very dangerous to a pump and can significantly shorten its lifetime. The investigated centrifugal pump consists of three two-flow rotors and stators working on a single shaft. The modelling process started with grid independence study. When the grid was chosen, the pump performance curve was obtained using the single phase fluid model. Next, using the results from pump performance curve calculations, the cavitation characteristic was obtained. The constant capacity was held when the pressure at the inlet was reduced. The two - phase model was used with Zwart cavitation model. The results indicate that the pump work in safe range of parameters. The analysis also provides wide range of information about the areas of vapour appearance. The most endangered regions are leading edges of rotor. When pressure at the inlet drops to about one third of pressure that calculations started from the cavitation cloud appears in whole rotor. The intense of vapour bubbles creation is greater near the shroud of the pump, rather than near the hub. As cavitation is strongly unsteady phenomena, the transient calculations were performed to check if the results are close to those obtained using the steady state type. The differences are not significant.
Active magnetic bearings: As applied to centrifugal pumps
Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon
1992-01-01
Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.
Internal Flow Measurement of a Very Low Specific-Speed Centrifugal Pump by PIV
Choi, Y.-D.; Kurokawa, Junichi; Nishino, K; Matsui, J.; Imamura, H.
2002-01-01
As the performance characteristics of a very low specific-speed centrifugal pump are much different from those of a normal specific-speed pump, there is strong demand of full understanding for the internal flow of the very low specific-speed centrifugal pump in order to improve the pump performance. The purpose of this study is to establish a method of visualization by PIV for a very low specific-speed centrifugal pump and to make clear the internal flow characteristics of the pump. Test pump...
Cavitation Performance of a Centrifugal Pump with Water and Mercury
Hammitt, F. G.; Barton, R. K.; Cramer, V. F.; Robinson, M. J.
1961-01-01
The cavitation performance of a given centrifugal pump with water (hot and cold) and mercury is compared. It is found that there are significant scale effects with all fluids tested, with the Thoma cavitation parameter decreasing in all cases for increased pump speed or fluid Reynolds' number. The data for a fixed flow coefficient fall into a single curve when plotted against pump speed (or fluid velocity), rather than against Reynolds' number. Conversely, the Thoma parameter for a given Reynolds' number is approximately twice as large for mercury as for water. The direction of this variation is as predicted from consideration of the cavitation thermodynamic parameters which vary by a factor of 10(exp 7) between these fluids. No difference in cavitation performance between hot and cold water (approximately 160 F and 80 F) was observed, However, the thermodynamic parameters vary only by a factor of 5.
Approaches to Stable Operation of Shaftless Centrifugal Pump
Ryunosuke Kawashima; Mitsuo Uno; Toshiaki Kanemoto
2009-01-01
The shaft-less impeller of the centrifugal pump, which is driven by the magnetic induction, was developed. The impeller rotates under the floating condition without any control device. The floating condition of the impeller is realized by utilizing the pressure in pump casing. The pump performance and the rotational behavior of the im-peUer were investigated experimentally. It has found that the floating position of the impeller become quite unsta-ble in a partial flow rate operation. And the pressure distribution at the casing wall affects the rotational posture of the impeller. This paper presents the effect of the casing treatment on the rotational posture of the impeller and the pressure distribution. The reasonable casing treatment is available for the stable rotational posture of the impeller.
Study of blade clearance effects on centrifugal pumps
Hoshide, R. K.; Nielson, C. E.
1972-01-01
A program of analysis, design, fabrication, and testing has been conducted to develop and experimentally verify analytical models to predict the effects of impeller blade clearance on centrifugal pumps. The effect of tip clearance on pump efficiency, and the relationship between the head coefficient and torque loss with tip clearance was established. Analysis were performed to determine the cost variation in design, manufacture, and test that would occur between unshrouded and shrouded impellers. An impeller, representative of typical rocket engine impellers, was modified by removing its front shroud to permit variation of its blade clearances. It was tested in water with special instrumentation to provide measurements of blade surface pressures during operation. Pump performance data were obtained from tests at various impeller tip clearances. Blade pressure data were obtained at the nominal tip clearance. Comparisons of predicted and measured data are given.
Prediction of centrifugal pump-cleaning ability in waste sludge
Radioactive waste at the Savannah River Plant (SRP) is being transferred from older waste tanks to new, stress-relieved tanks for more effective waste management. The technology developed for waste removal involves the use of long-shaft, recirculating, centrifugal pumps (slurry pumps). Testing completed at the Savannah River Laboratory's 30-meter-diameter mock-up waste tank related the effective cleaning radius (ECR) of a slurry pump to critical pump and materials characteristics. Presently, this theory is being applied to radioactive waste at SRP. However, the technology can be applied to other remote handling situations where the slurry rheology can be determined. For SRP waste, an equation of the form: ECR α DV0 (rho/tau0)/sup 1/2/ was determined where D is the nozzle diameter, V0 is the average initial velocity, rho is the density of the slurry, and tau0 is the yield stress of the slurry. Using this relationship, the cleaning performance of a pump operating in any SRP sludge environment can be predicted. Specifically, yield stress and density measurements on sludge samples can be used to predict the required number and effective location for slurry pumps in actual SRP waste tanks
Analysis of Centrifugal Pump in Diffuser Vane By Using CFD
V.R.Sivakumar
2014-02-01
Full Text Available Flow analysis in centrifugal pumps has long been an intensive subject of research. Computational Fluid Dynamics (CFD is the present day state are created in different parts of the pump at off radial gaps. The operating characteristic curves predicted by the numerical simulation were compared with the results of model testing and are found in good agreement. The test case consists of an enshrouded centrifugal impeller with seven blades and a radial vane diffuser with 7 vanes. A large number of measurements are available in the radial gap between the impeller and the diffuse, makin of steady and unsteady calculations of the flow in the pump are compared with the experimental ones, and four different turbulent models are analyzed. The steady K frozen rotor concept, while the unsteady simulation uses a fully resolved sliding grid approach. The comparisons show that the unsteady numerical results accurately predict the unsteadiness of the flow, demonstrating the validit and applicability of that methodology for unsteady incompressible turbo machinery flow computations. The steady approach is less accurate, with an unphysical advection of the impeller wakes, but accurate enough for a crude approximation. The different turbulence models predict the flow at the same level of accuracy, with slightly different results.
The Effect of Viscosity on Performance of a Low Specific Speed Centrifugal Pump
Rouhollah Torabi; Seyyed Ahmad Nourbakhsh
2016-01-01
Centrifugal pump delivery head and flow rate drop effectively during the pumping of viscous fluids. Several methods and correlations have been developed to predict reduction rate in centrifugal pump performance when handling viscous fluids, but their results are not in very good agreement with each other. In this study, a common industrial low specific speed pump, which is extensively used in different applications, is studied. The entire pump, including impeller, volute, pipes, front and rea...
Main characteristic parameters of centrifugal pump and safe operation of reactor
Based on main characteristic parameters of centrifugal pump, the problems are discussed during the reactor operation. To High-Flux Engineering Test Reactor, ten-type typical faults are generalized in the reactor operation. Making use of basic knowledge of centrifugal pump, it can help reactor operators to find out whether centrifugal pump is out of order and to handle it. So, the safety of reactor can be assured
Analyses of hydrodynamic radial forces on centrifugal pump impellers
Adkins, D. R.; Brennen, C. E.
1988-01-01
An experimental and theoretical study of the hydrodynamic interactions occurring between a centrifugal pump impeller and a volute is presented. The theoretical analysis provides a quasi-one-dimensional treatment of the flow in the volute, and it is extended to include the hydrodynamic force perturbations caused by the impeller whirling eccentrically in the volute. It is noted that these perturbations are often destabilizing. The theoretical models were found to accurately predict the radial forces caused by the flow through the impeller. The pressure acting on the front shroud of the impeller is shown to have a significant effect on the destabilizing hydrodyamic forces.
Exit flow measurements of a centrifugal pump impeller
Discharge flows from a centrifugal pump impeller with a specific speed of 150 [rpm, m3/min, m] were experimentally investigated. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow, i.e. without interaction of the impeller and the volute. The unsteady flow was measured at the impeller exit and vaneless diffuser using a hot film probe and a pressure transducer. The flow at impeller exit showed pronounced jet-wake flow patterns. The wake, which was on the suction/hub side at high flow rate, became enlarged pitchwisely on both the hub and the shroud side as the flow rate decreases. The pitchwise non-uniformity of the flow rapidly decreased along the downstream and the non-uniformity almost disappeared at radius ratio of 1.18 for medium flow rate. The mean vaneless diffuser flow was reasonably predicted using a one dimensional analysis when an empirical constant was used to specify the skin friction coefficient. The data can be used for a centrifugal pump impeller design and validation of CFD codes and flow modeling
Influence of clearance model on numerical simulation of centrifugal pump
Wang, Z.; Gao, B.; Yang, L.; Du, W. Q.
2016-05-01
Computing models are always simplified to save the computing resources and time. Particularly, the clearance that between impeller and pump casing is always ignored. But the completer model is, the more precise result of numerical simulation is in theory. This paper study the influence of clearance model on numerical simulation of centrifugal pump. We present such influence via comparing performance, flow characteristic and pressure pulsation of two cases that the one of two cases is the model pump with clearance and the other is not. And the results show that the head decreases and power increases so that efficiency decreases after computing with front and back cavities. Then no-leakage model would improve absolute velocity magnitude in order to reach the rated flow rate. Finally, more disturbance induced by front cavity flow and wear-ring flow would change the pressure pulsation of impeller and volute. The performance of clearance flow is important for the whole pump in performance, flow characteristic, pressure pulsation and other respects.
Babayigit Osman; Kocaaslan Osman; Aksoy Muharrem Hilmi; Guleren Kursad Melih; Ozgoren Muammer
2015-01-01
Nowadays, single and multistage centrifugal pumps are widely used in industrial and mining enterprises. One of the most important components of a centrifugal pump is the impeller. The performance characteristics are related to the pump comprising the head and the overall efficiency rely a great deal on the impeller geometry. In this work, effects of blade exit angle change on hydraulic efficiency of a multi stage pump impeller are investigated via Ansys-Fluent computational fluid dynamics sof...
Yuksel, E; B. Eker
2009-01-01
The extent of this work is operating characteristics of a horizontal shafted centrifugal pump which has been operated for 6 ½ to 7 hours on the average. A closed circuit pump system (circulating within itself) which was formed by attaching a horizontal shafted centrifugal pump which can be used in irrigation applications with a drum has been operated for 180 hours at laboratory conditions. To define the operating properties of the pump, its operating characteristics were measured in respect t...
A modal approach for vibration analysis and condition monitoring of a centrifugal pump
Ramana Podugu; J.Suresh Kumar*; B.V.Ramana murthy; N.Syam Kumar
2011-01-01
The modal analysis of the centrifugal pump and its assembly is performed using FEM technology. The mathematical model and FEA model are built for the original centrifugal casing and simulation is made to find the pump natural frequencies. The first ten natural frequencies were compared to pump operating speed and their multiples up to pump vane passing frequency as per HIS (Hydraulic Institute Standards -9.6.4-2000) guidelines. In the original design, the first natural frequency in vertical d...
A REVIEW PAPER ON DEVELOPMENT OF IMPELLER OF CENTRIFUGAL PUMP USING COMPUTATIONAL FLUID DYNAMICS
Mr. Nilesh Nemgonda Patil
2015-09-01
Full Text Available Nowadays, the centrifugal pumps became very popular because of recent development of high speed electric motors, steam turbines etc.Centrifugal pumps can be single-stage or may be multistage pumps. It depends upon the number of impellers used in the pump. Single stage pump consists of only one impeller while in multistage pumps the impellers are mounted in the series in pumps. These Centrifugal pumps can be analyzed by software code like Computational Fluid Dynamics (CFD.This CFD tool or code helps to optimize the pump performance. The complex internal flows are to be predicted with the CFD code. The optimized pumps are used for various applications like drainage and drinking water system, chemical Industries- Catalyst transfer, acid transfer and neutralizing, waste water/Chemicals- Industrial effluents, purifying water, in process industriespaper pulp, chemicals, and pharmaceuticals etc
Numerical Calculation of the Three-Dimensional Swirling Flow Inside the Centrifugal Pump Volutes
E. Cezmi Nursen
2003-01-01
Full Text Available The flow inside the volute of a centrifugal pump is threedimensional and, depending upon the position of the inlet relative to the cross-section center line, a single or double swirling flow occurs. The purpose of this study was the calculation of the three-dimensional swirling flow inside the centrifugal pump volute.
Small centrifugal pumps for low-thrust rocket engines
Furst, R. B.
1986-01-01
Six small, low specific speed centrifugal pump configurations were designed, fabricated, and tested. The configurations included shrouded, and 25 and 100% admission open face impellers with 2 inch tip diameters; 25, 50, and 100% emission vaned diffusers; and volutes with conical exits. Impeller tip widths varied from 0.030 inch to 0.052 inch. Design specific speeds (N sub s = RPM*GPM**0.5.FT**0.75) were 430 (four configurations) and 215 (two configurations). The six configurations were tested with water as the pumped fluid. Noncavitating performance results are presented for the design speed of 24,500 rpm over a flowrate range from 1 to 6 gpm for the N sub s = 430 configurations and test speeds up to 29,000 rpm over a flowrate range from 0.3 to 1.2 gpm for the N sub s = 215 configurations. Cavitating performance results are presented over a flowrate range from 60 to 120% of design flow. Fabrication of the small pump conponents is also discussed.
Transient analysis of charging system with centrifugal charging pumps
The CARD (CVCS Analysis for Design) code has been developed for the transient analysis of the letdown and charging system of Korea Standard Nuclear Power Plant. The computer code has been already verified and validated by comparing with actual test results. Analyzed in this paper are the flow and pressure transients in the charging line. The sensitivity studies are performed to select the acceptable control parameters of charging line backpressure controller and seal injection flow controller. In addition, the seal injection system transient is evaluated for the pressurizer auxiliary spray operation. It is shown that the charging line backpressure controller control parameters yield a significant effect on the charging system stability. The results obtained from this study will be used to verify the system design and to select the optimum control parameters for the charging system with centrifugal charging pumps
Origins of hydrodynamic forces on centrifugal pump impellers
Adkins, Douglas R.; Brennen, Christopher E.
1987-01-01
Hydrodynamic interactions that occur between a centrifugal pump impeller and volute are experimentally and theoretically investigated. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of the flow in the volute. The disturbance at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force perturbations that are caused by the impeller whirling eccentrically in the volute. Under many operating conditions, these force perturbations were found to be destablizing. Comparisons are made between the theoretical model and the experimental measurements of pressure distributions and radial forces on the impeller. The theoretical model yields fairly accurate predictions of the radial forces caused by the flow through the impeller. However, it was found that the pressure acting on the front shroud of the impeller has a substantial effect on the destablizing hydrodynamic forces.
DETECTION OF CAVITATION IN CENTRIFUGAL PUMP BY VIBRATION METHODS
NI Yongyan; YUAN Shouqi; PAN Zhongyong; YUAN Jianping
2008-01-01
For the purpose of detecting the cavitation of centrifugal pump onsite and real time, the vibration signals on varied operation conditions of both cavitation and non-cavitation obtained through acceleration sensors were analyzed. When cavitation occurs, the cavities near the leading edge of the blade will appear periodic oscillating, which will induce quasi-synchronous vibration. The frequency of the quasi-synchronous vibration symmetrically appears on the two sides of the blade passing frequency, by which the cavitation incipiency can be detected. During the developing process of the cavitation, as the severe complexity of the unsteady flow, it is very difficult to detect the development of cavitation by classical analysis methods. Fractal method of Higuchi is successfully used for detecting the incipiency, fully development of cavitation and the development between them.
EXPERIMENTAL STUDY ON HIGH-SPEED CENTRIFUGAL PUMPS WITH DIFFERENT IMPELLERS
无
2002-01-01
The experimental study is carded out on high-speed centrifugal pumps with three different impellers. The ex-perimental results and analysis show that high-speed centrifugal pumps with a closed complex impeller can achieve thehighest efficiency and the lowest head coefficient followed by those with half-open impeller and open-impeller, and canobtain much easily stable head-capacity characrastic curve, while those with a half-open complex impeller can't. Thecharacteristic curve with a open impeller is almost constant horizontal line before dropping sharply. The results also showthat the axial clearance between pump casing and impeller can influence greatly on the performance of centrifugal pumps.
Zhang, X. L.; Hu, S. B.; Shen, Z. Z.; Wu, S. P.; Li, K.
2016-05-01
In this paper, an attempt has been made for the calculation of an expression for the intrinsic law of input power which has not yet been given by current theory of Rotodynamic pump. By adequate recognition of the characteristics of non-inertial system within the rotating impeller, it is concluded that the input power consists of two power components, the first power component, whose magnitude increases with the increase of the flow rate, corresponds to radial velocity component, and the second power component, whose magnitude decreases with the increase of the flow rate, corresponds to tangential velocity component, therefore, the law of rise, basic levelness and drop of input power curves of centrifugal pump, mixed-flow pump and axial-flow pump can be explained reasonably. Through further analysis, the main ways for realizing non-overload of centrifugal pump are obtained, and its equivalent design factor is found out, the factor correlates with the outlet angle of leading face and back face of the blade, wrap angle, number of blades, outlet width, area ratio, and the ratio of operating flow rate to specified flow rate and so on. These are verified with actual example.
Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields
This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and 19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.
Berten, Stefan; Dupont, Philippe; Fabre, Laurent; Kayal, Maher; Avellan, Francois; Farhat, Mohamed
2009-01-01
In centrifugal pumps, the interaction between the rotating impeller and the stationary diffuser generates specific pressure fluctuation patterns. When the pump is operated at off design conditions, these pressure fluctuations increase. The resulting rise of mechanical vibration levels may negatively affect the operational performance and the life span of mechanical components. This paper presents detailed pressure fluctuation measurements performed in a high speed centrifugal pump...
Vibration Characteristics Induced by Cavitation in a Centrifugal Pump with Slope Volute
Ning Zhang; Minguan Yang; Bo Gao; Zhong Li
2015-01-01
Cavitation is one of the instability sources in centrifugal pump, which would cause some unexpected results. The goal of this paper was to analyze the influence of cavitation process on different frequency bands in a centrifugal pump with slope volute. And special attention was paid to low frequency signals, which were often filtered in the reported researches. Results show that at noncavitation condition, vibration level is closely related to flow structure interior pump. At partial flow rat...
Startup Characteristics of a Centrifugal Pump Delivering Gas-Liquid Two-Phase Flow
Yu-Liang Zhang; Jun-Jian Xiao; Jian-Ping Yu; Ying-Yu Ji
2014-01-01
The transient performance of centrifugal pumps during the startup period has drawn more and more attention in recent years due to urgent engineering needs. In order to make certain the transient startup characteristics of a high specific-speed prototype centrifugal pump delivering the gas-liquid two-phase flow, the transient flows inside the pump are numerically simulated during the startup period using the dynamic slip region method in this paper. The results show that the difference in head...
Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction
Yu Zhang; Sanbao Hu; Yunqing Zhang; Liping Chen
2014-01-01
This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at ...
Experimental Investigation and Passive Flow Control of a Cavitating Centrifugal Pump
Spyridon D. Kyparissis; Dionissios P. Margaris
2012-01-01
Passive flow control techniques are used to improve the flow field and efficiency of centrifugal pumps and turbomachines, in general. An important phenomenon that mechanical engineers have to take into account is cavitation. It leads to the decrease of the pump performance and total head. In the present experimental study, a centrifugal pump is investigated in cavitating conditions. A passive flow control is realized using three different blade leading edge angles in order to reduce the cavit...
Hongtao Xue; Zhongxing Li; Huaqing Wang; Peng Chen
2014-01-01
This paper proposed an intelligent diagnosis method for a centrifugal pump system using statistic filter, support vector machine (SVM), possibility theory, and Dempster-Shafer theory (DST) on the basis of the vibration signals, to diagnose frequent faults in the centrifugal pump at an early stage, such as cavitation, impeller unbalance, and shaft misalignment. Firstly, statistic filter is used to extract the feature signals of pump faults from the measured vibration signals across an optimum ...
Simulation and sensitivity analysis on process of switching double centrifugal pump
The experimental and simulating processes of switching centrifugal pump in the double centrifugal pump water supply system were studied. The experiment results verified the validity of the model. Based on the sensitivity analysis of the experimental process with the model, we can get the following conclusions: In the process of switching centrifugal pump in the double centrifugal pump water supply system, the smaller the system flow and the greater the centrifugal moment of inertia, the greater the loss water, the smaller the minimum flow rate, the longer the system recovery stability; the smaller the characteristic time of the check valves, the more stable the flow volatility of the main circuit, but the volatility of the system flow during switching is very limited. (authors)
Numerical studies in a centrifugal pump with the improved blade considering cavitation
Song, P. F.; Zhang, Y. X.; Xu, C.; Zhou, X.; Zhang, J. Y.
2015-01-01
In this paper, a centrifugal pump with the improved blade for cavitation is studied numerically. A 3D impeller with logarithmic spiral blade profile was designed by the in-house hydraulic design code using a centrifugal pump geometric parameters, and the blade profile curve of suction side on the designed impeller is replaced by a combination of tangent line and circle arc line. The cavitation flows in the centrifugal pump with designed impeller, modified impeller and centrifugal pump spectrum impeller are respectively calculated by two-phase CFD simulation at three flow rates. The tests of the centrifugal pump have been conducted to verify numerical simulation. The effects of designed impeller and modified impeller on hydraulic efficiency, critical cavitation number, cavitation length, head drop performance and vapor cavity distribution in impeller are investigated. The results show that the modification of blade profile curve of suction side can improve the cavitation performance of an impeller and hydraulic efficiency of centrifugal pump. Compared with designed impeller, the critical cavitation number of centrifugal pump with modified impeller decrease by 26.5% under the same flow rate coefficient, and the cavitation intensity in the modified impeller is weakened effectively. The hydraulic efficiency of modified impeller also increases by 4.9%.
Optimization and analysis of centrifugal pump considering fluid-structure interaction.
Zhang, Yu; Hu, Sanbao; Zhang, Yunqing; Chen, Liping
2014-01-01
This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690
Numerical Study of a Fuel Centrifugal Pump with Variable Impeller Width for Aero-engines
Wang, Bin; Guan, Huasheng; Ye, Zhifeng
2015-12-01
As typical pump with large flow rate and high reliability, centrifugal pumps in fuel system of aero-engines mostly regulate flow rate by flow bypass, which leads to low efficiency and large fuel temperature rise especially at low flow rate. An innovative fuel centrifugal pump with variable impeller width is a more effective way to regulate flow rate than flow bypass. To find external characteristics of the centrifugal pump with variable impeller width proposed in this paper, flow domain within the pump is simulated numerically and some primary performance parameters and their correlation are analyzed. Results show that flow rate of the pump can be regulated by variable impeller width and that efficiency for this scheme is higher than that for flow bypass. The higher outlet static pressure the pump runs at, the wider range of flow rates can be obtained with stronger nonlinear relationship between flow rate and impeller width.
Effect of Blade Exit Shape on Performance and Vibration of a Double Volute Centrifugal Pump
Atia E. Khalifa
2014-01-01
The fluid-structure interaction phenomenon is the main cause of flow-induced vibrations at the blade passing frequency in large and high pressure centrifugal pumps. One way to reduce the effects of this interaction and pump vibration is to increase the effective gap by cutting the blade exit of the impeller. However, this cut of the impeller blade will affect the pump head and the flow pattern inside the pump volute. A single stage of a double volute centrifugal pump is used to investigate th...
Halaweish, Ihab; Cole, Adam; Cooley, Elaine; Lynch, William R; Haft, Jonathan W
2015-01-01
Centrifugal pumps are increasingly used for extracorporeal membrane oxygenation (ECMO) rather than roller pumps. However, shear forces induced by these types of continuousflow pumps are associated with acquired von Willebrand factor deficiency and bleeding complications. This study was undertaken to compare adverse bleeding complications with the use of centrifugal and roller pumps in patients on prolonged ECMO support. The records of all adult ECMO patients from June 2002 to 2013 were retrospectively reviewed using the University of Michigan Health System database and the Extracorporeal Life Support Organization registry, focusing on patients supported for at least 5 days. Ninety-five ECMO patients met criteria for inclusion (48 roller vs. 47 centrifugal pump). Indications included pulmonary (79%), cardiac (15%), and extracorporeal cardiopulmonary resuscitation (6%), without significant difference between the two groups. Despite lower heparin anticoagulation (10.9 vs. 13.7 IU/kg/hr) with centrifugal pumps, there was a higher incidence of nonsurgical bleeding (gastrointestinal, pulmonary, and neurological) in centrifugal pump patients (26.1 vs. 9.0 events/1,000 patient-days, p = 0.024). In conclusion, in our historical comparison, despite reduced anticoagulation, ECMO support using centrifugal pumps was associated with a higher incidence of nonsurgical bleeding. The mechanisms behind this are multifactorial and require further investigation. PMID:25914954
Boldyrev, S. V.; Boldyrev, A. V.
2014-12-01
The numerical simulation method of turbulent flow in a running space of the working-stage in a centrifugal pump using the periodicity conditions has been formulated. The proposed method allows calculating the characteristic indices of one pump step at a lower computing resources cost. The comparison of the pump characteristics' calculation results with pilot data has been conducted.
Performance and internal flow condition of mini centrifugal pump with splitter blades
Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-CFX) to investigate the internal flow condition in detail. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. The blade-to-blade low velocity regions are suppressed in the case with the splitter blades and the total pressure loss regions are decreased. The effects of the splitter blades on the performance and the internal flow condition are discussed in this paper.
Performance and internal flow condition of mini centrifugal pump with splitter blades
Shigemitsu, T.; Fukutomi, J.; Kaji, K.; Wada, T.
2012-11-01
Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-CFX) to investigate the internal flow condition in detail. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. The blade-to-blade low velocity regions are suppressed in the case with the splitter blades and the total pressure loss regions are decreased. The effects of the splitter blades on the performance and the internal flow condition are discussed in this paper.
77 FR 65360 - Grant of Authority for Subzone Status (Centrifugal and Submersible Pumps); Auburn, NY
2012-10-26
... subzone at the centrifugal and submersible pump manufacturing and warehousing facilities of Xylem Water..., filed 10-21-2011); Whereas, notice inviting public comment has been given in the Federal Register (76 FR... Foreign-Trade Zones Board Grant of Authority for Subzone Status (Centrifugal and Submersible...
Numerical Calculation of the Three-Dimensional Swirling Flow Inside the Centrifugal Pump Volutes
Nursen C. E.; Ayder E.
2003-01-01
The flow inside the volute of a centrifugal pump is threedimensional and, depending upon the position of the inlet relative to the cross-section center line, a single or double swirling flow occurs. The purpose of this study was the calculation of the three-dimensional swirling flow inside the centrifugal pump volute.The developed flow solver provides detailed pressure and velocity distribution information inside the volute, and the calculated results are verified by means of the experimental...
Lei Tan; Baoshan Zhu; Shuliang Cao; Yuchuan Wang; Binbin Wang
2014-01-01
The influence of prewhirl regulation by inlet guide vanes (IGVs) on a centrifugal pump performance is investigated experimentally and numerically. The experimental results show that IGVs can obviously change the head and increase the efficiency of the tested centrifugal pump over a wide range of flow rates. Although the cavitation performance is degraded, the variation of the cavitation critical point is less than 0.5 m. Movement of the computed three-dimensional streamlines in suction pipe a...
Analysis on Energy Conversion of Screw Centrifugal Pump in Impeller Domain Based on Profile Lines
Hui Quan; Rennian Li; Qingmiao Su; Wei Han; Pengcheng Wang
2013-01-01
In order to study the power capability of impeller and energy conversion mechanism of screw centrifugal pump, the methods of theoretical analysis and numerical simulation by computational fluid dynamics theory (CFD) were adopted, specifically discussing the conditions of internal flow such as velocity, pressure, and concentration. When the medium is sand-water two-phase flow and dividing the rim of the lines and wheel lines of screw centrifugal pump to segments to analyze energy conversion ca...
Numerical studies of the velocity distribution within the volute of a centrifugal pump
Al-Obaidi, Ahmed; Pradhan, Suman; Asim, Taimoor; Mishra, Rakesh; Zala, Karina
2014-01-01
Centrifugal pumps play an essential role in engineering systems since they are widely used in the process and power industries. The performance of a centrifugal pump needs to be maximised due to its importance and this depends on the flow structure within the pump. The flow structure within a pump is very complex due to the presence of a rotating impeller and its interaction with the volute casing. In this paper, a numerical investigation using CFD analysis has been carried out to determine t...
Study on High-Speed Centrifugal-Regenerative Pump with an Inducer
朱祖超; 陈鹰; 金庆明; 黄敦回
2002-01-01
The study on high-speed centrifugal-regenerative pumps with an inducer (HCRP) is carried out. Thecombined structure of inducer, centrifugal impeller, and regenerative impeller is presented, and a theoretical parallelcombinatorial hydraulic design method is investigated. The comparative experimental results show that efficiency insmaller capacity region, head coefficient and efficiency in larger capacity region of HCRPs is few lower, much higherand lower than those of high-speed centrifugal pumps, respectively, anci that the suction performance of HCRPs isdetermined only by inducer. HCRPs can be more suitably applied to deliver small-capacity high-head liquids inchemical and petrochemical industries.
Parametric Study and Design Optimization of Centrifugal Pump Impeller-A Review
Vijaypratap R Singh ,
2014-01-01
Full Text Available Centrifugal pumps are widely used for irrigation, water supply plants, steam power plants, sewage, oil refineries, chemical plants, hydraulic power service, food processing factories and mines, because of their suitability in practically any service. Therefore it is necessary to find out the design parameters and working conditions that yield optimal output and maximum efficiency with lowest power consumption. Study indicates that Computational fluid dynamics (CFD analysis is being increasingly applied in the design of centrifugal pumps. With the aid of the CFD approach, the complex internal flows in water pump impellers, can be well predicted, to speed up the pump design procedure. This paper exposes the various research work carried out in this direction especially in the content of parametric study and optimization of centrifugal pump impeller using CFD tool and DoE technique. Literature surveys indicate that very restricted work has been done in this area.
Design optimization of flow channel and performance analysis for a new-type centrifugal blood pump
Ji, J. J.; Luo, X. W.; Y Wu, Q.
2013-12-01
In this paper, a new-type centrifugal blood pump, whose impeller is suspended inside a pump chamber with hydraulic bearings, is presented. In order to improve the hydraulic performance of the pump, an internal flow simulation is conducted to compare the effects of different geometrical parameters of pump flow passage. Based on the numerical results, the pumps can satisfy the operation parameters and be free of hemolysis. It is noted that for the pump with a column-type supporter at its inlet, the pump head and hydraulic efficiency decreases compared to the pump with a step-type support structure. The performance drop is caused by the disturbed flow upstream impeller inlet. Further, the unfavorable flow features such as reverse flow and low velocity in the pump may increases the possibility of thrombus. It is also confirmed that the casing shape can little influence pump performance. Those results are helpful for design optimization in blood pump development.
Unsteady internal flow conditions of mini-centrifugal pump with splitter blades
Shigemitsu, T.; Fukutomi, J.; Kaji, K.; Wada, T.
2013-02-01
Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional unsteady numerical flow analysis was conducted to investigate the change of the internal flow according to the rotor rotation. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the splitter blades. The blade-to-blade low velocity region was suppressed in the case with the splitter blades. In addition to that, the unsteady flows near the volute casing tongue were suppressed due to the splitter blades. In the present paper, the performance of the mini centrifugal pump is shown and the unsteady flow condition is clarified with the results of the numerical flow analysis. Furthermore, the effects of the splitter blades on the performance and the unsteady internal flow condition are investigated.
2011 IEEE Visualization Contest Winner: Visualizing Unsteady Vortical Behavior of a Centrifugal Pump
Otto, Mathias
2012-09-01
In the 2011 IEEE Visualization Contest, the dataset represented a high-resolution simulation of a centrifugal pump operating below optimal speed. The goal was to find suitable visualization techniques to identify regions of rotating stall that impede the pump\\'s effectiveness. The winning entry split analysis of the pump into three parts based on the pump\\'s functional behavior. It then applied local and integration-based methods to communicate the unsteady flow behavior in different regions of the dataset. This research formed the basis for a comparison of common vortex extractors and more recent methods. In particular, integration-based methods (separation measures, accumulated scalar fields, particle path lines, and advection textures) are well suited to capture the complex time-dependent flow behavior. This video (http://youtu.be/ oD7QuabY0oU) shows simulations of unsteady flow in a centrifugal pump. © 2012 IEEE.
Experimental and numerical study of a centrifugal pump in the performance of viscous flow
For pumping viscous fluids like oil and petrochemical products, by using the centrifugal pumps, fluid flow rate and pumping head are smaller than that of water, while the required power is increased. This is due to increased frictional losses in impeller passages. The characteristic curves for pumps, offered by different manufacturers are exclusively for water and can not be valid for viscous fluids. In the present project a centrifugal pump manufactured by pump iran has been tested on a test bed for different industrial oils as well as water. In order to investigate the effect of different design parameters on pump characteristics, a new impeller has been designed with reduced number of blades, the shroud has been taken away and with new dimensions for blades. The results obtained from different oil tests indicate that head, capacity and efficiency are increased. The numerical simulation of fluid flow inside the passage of impellers for two model by fluent code confirmed the results of hydraulic tests
Research on energy conversion mechanism of a screw centrifugal pump under the water
In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase
Korakianitis, Theodosios; Rezaienia, Mohammad A; Paul, Gordon M; Rahideh, Akbar; Rothman, Martin T; Mozafari, Sahand
2016-01-01
The application of artificial mechanical pumps as heart assist devices impose power and size limitations on the pumping mechanism, and therefore requires careful optimization of pump characteristics. Typically new pumps are designed by relying on the performance of other previously designed pumps of known performance using concepts of fluid dynamic similarity. Such data are readily available for industrial pumps, which operate in Reynolds numbers region of 10. Heart assist pumps operate in Reynolds numbers of 10. There are few data available for the design of centrifugal pumps in this characteristic range. This article develops specific speed versus specific diameter graphs suitable for the design and optimization of these smaller centrifugal pumps concentrating in dimensions suitable for ventricular assist devices (VADs) and mechanical circulatory support (MCS) devices. A combination of experimental and numerical techniques was used to measure and analyze the performance of 100 optimized pumps designed for this application. The data are presented in the traditional Cordier diagram of nondimensional specific speed versus specific diameter. Using these data, nine efficient designs were selected to be manufactured and tested in different operating conditions of flow, pressure, and rotational speed. The nondimensional results presented in this article enable preliminary design of centrifugal pumps for VADs and MCS devices. PMID:27258221
Kochevsky, A N
2005-01-01
The paper describes capabilities of numerical simulation of liquid flows with solid and/or gas admixtures in centrifugal pumps using modern commercial CFD software packages, with the purpose to predict performance curves of the pumps treating such media. In particular, the approaches and multiphase flow models available in the package CFX-5 are described; their advantages and disadvantages are analyzed.
Flow instability of a centrifugal pump determined using the energy gradient method
Li, Yi; Dong, Wenlong; He, Zhaohui; Huang, Yuanmin; Jiang, Xiaojun
2015-02-01
The stability of the centrifugal pump has not been well revealed because of the complexity of internal flow. To analyze the flow characteristics of a centrifugal pump operating at low capacity, methods of numerical simulation and experimental research were adopted in this paper. Characteristics of the inner flow were obtained. Standard k-ɛ turbulence models were used to calculate the inner flow of the pump under off-design conditions. The distribution of the energy gradient function K was obtained by three-dimensional numerical simulation at different flow rates. The relative velocity component was acquired from the absolute velocity obtained in particle image velocimetry. By comparing with experimental results, it was found that flow instability occurs at the position of maximum K. The flow stability reduces with an increasing flow rate. The research results provide a theoretical basis for the optimization design of a centrifugal pump.
Performance analysis on solid-liquid mixed flow in a centrifugal pump
Ning, C.; Wang, Y.
2016-05-01
In order to study the solid-liquid mixed flow hydraulic characteristics of centrifugal pump, the Pro/E software was used for three-dimensional modeling of centrifugal pump chamber. By using the computational fluid dynamics software CFX, the numerical simulation calculation of solid-liquid two-phase flow within whole flow passage of centrifugal pump was conducted. Aim at different particle diameters, the Reynolds-averaged N-S equations with the RNG k-Ɛ turbulence model and SIMPLEC algorithm were used to simulate the two-phase flow respectively on the condition of different volume fraction. The influence of internal flow characteristic on pump performance was analyzed. On the conditions of different particle diameter and different volume fraction, the turbulence kinetic energy and particle concentration are analyzed. It can be found that the erosion velocity ratio on the flow channel wall increases along with the increasing of the volume fraction
Critical cavitation coefficient analysis of a space low specific centrifugal pump with micro gravity
Liu, J. T.; Li, Y.; Gao, Y.; Hu, Q.; Zhou, C.; Wu, Y. L.
2016-05-01
Centrifugal pump was used in the loop as a baselined unit. The flow rate of the pump was very small, while the head was high. This space pump must work stable for a long time (more than a year), so the performance of the pump attracted public attention. The rotational speed of the impeller was limited for stability, so the pump belonged to low specific centrifugal pump. In this paper, a single-phase centrifugal pump, which was designed for single-phase fluid loops in satellites, was modeled for numerical simulation. The hydraulic region of the pump was discretized by structured mesh. Three dimensional (3-D) flow in the pump was studied by the use of computational fluid dynamics. Partially-Averaged Navier- Stokes (PANS) model based on RNG k-ε turbulence model was developed for the simulation of the unsteady flow. Velocity inlet and pressure outlet was used as the boundary conditions. Interface was used between the impeller and the casing, as well as the impeller and inlet pipe. Performances and pressure fluctuation of the pump were investigated. The dominant frequency of the pressure fluctuation is blade passing frequency at the region close to the tongue of the casing, while it is twice of blade passing frequency at the other region.
Mitsuo Uno
2004-01-01
Full Text Available This article focuses on the impeller construction, non contact driving method and performance of a newly developed shaftless floating pump with centrifugal impeller. The drive principle of the floating impeller pump used the magnet induction method similar to the levitation theory of the linear motor. In order to reduce the axial thrust by the pressure different between shroud and disk side, the balance hole and the aileron blade were installed in the floating impeller. Considering the above effect, floating of an impeller in a pump was realized. Moreover, the performance curves of a developed pump are in agreement with a general centrifugal pump, and the dimensionless characteristic curve also agrees under the different rotational speed due to no mechanical friction of the rotational part. Therefore, utility of a non contacting magnetic-drive style pump with the floating impeller was made clear.
Secondary flow is one of the main reasons for low efficiency in double suction centrifugal pump. In a 3-D inverse design method, the pump blade could be designed by a specified loading distribution to control the flow field in pump. In order to study the influence of loading distribution on secondary flow of a double suction centrifugal pump, the external characteristics and the internal flow field of the pump with three kinds of loading distributions are analysed by using CFD approach. According to the simulation results, it is found that the form of fore-loading distribution at shroud and aft-loading distribution at hub could improve the optimal efficiency and broaden the high efficiency area of the pump. Furthermore, the secondary flow in impeller exit region and volute could be significantly suppressed if the slope of loading distribution curve of shroud is set to be −0.7
Leng, H. F.; Wang, F. J.; Zhang, Z. C.; Yao, Z. F.; Zhou, P. J.
2013-12-01
Secondary flow is one of the main reasons for low efficiency in double suction centrifugal pump. In a 3-D inverse design method, the pump blade could be designed by a specified loading distribution to control the flow field in pump. In order to study the influence of loading distribution on secondary flow of a double suction centrifugal pump, the external characteristics and the internal flow field of the pump with three kinds of loading distributions are analysed by using CFD approach. According to the simulation results, it is found that the form of fore-loading distribution at shroud and aft-loading distribution at hub could improve the optimal efficiency and broaden the high efficiency area of the pump. Furthermore, the secondary flow in impeller exit region and volute could be significantly suppressed if the slope of loading distribution curve of shroud is set to be -0.7.
Experimental Investigation and Passive Flow Control of a Cavitating Centrifugal Pump
Spyridon D. Kyparissis
2012-01-01
Full Text Available Passive flow control techniques are used to improve the flow field and efficiency of centrifugal pumps and turbomachines, in general. An important phenomenon that mechanical engineers have to take into account is cavitation. It leads to the decrease of the pump performance and total head. In the present experimental study, a centrifugal pump is investigated in cavitating conditions. A passive flow control is realized using three different blade leading edge angles in order to reduce the cavitation development and enhance the pump performance. The experiments are carried out in a pump test rig specially designed and constructed, along with the impellers. The head drop and total efficiency curves are presented in order to examine the effect of the blade leading edge angle on the cavitation and pump performance. Finally, the vapour distribution along with the blades is illustrated for the tested blade leading edge angles.
Displacement Pumping of Liquids Radially Inward on Centrifugal Microfluidic Platforms in Motion
Eric D. Salin
2011-12-01
Full Text Available We describe two novel centrifugal microfluidic platform designs that enable passive pumping of liquids radially inward while the platform is in motion. The first design uses an immiscible liquid to displace an aqueous solution back towards the center of the platform, while the second design uses an arbitrary pumping liquid with a volume of air between it and the solution being pumped. Both designs demonstrated the ability to effectively pump 55% to 60% of the solution radially inward at rotational frequencies as low as 400 rpm (6.7 Hz to 700 rpm (11.7 Hz. The pumping operations reached completion within 120 s and 400 s respectively. These platform designs for passive pumping of liquids do not require moving parts or complex fabrication techniques. They offer great potential for increasing the number of sequential operations that can be performed on centrifugal microfluidic platforms, thereby reducing a fundamental limitation often associated with these platforms.
Diagnosis of Centrifugal Pump Faults Using Vibration Methods
Albraik, A.; Al Thobiani, Faisal; Gu, Fengshou; Ball, Andrew
2012-01-01
Pumps are the largest single consumer of power in industry. This means that faulty pumps cause a high rate of energy loss with associated performance degradation, high vibration levels and significant noise radiation. This paper investigates the correlations between pump performance parameters including head, flow rate and energy consumption and surface vibration for the purpose of both pump condition monitoring and performance assessment. Using an in-house pump system, a number of experiment...
Experimental study on cavitation in centrifugal pump impellers
Investigations concerning cavitation in centrifugal impellers were carried out in a closed circuit. The value of net positive suction head (NPSH) at different head drops and at breakdown were used to verify the affinity laws
Shou, Chen; Guo, Yongjun; Su, Lei; Li, Yongqian
2014-12-01
The impeller profile, which is one of the most important factors, determines the creation of shear stress which leads to blood hemolysis in the internal flow of centrifugal blood pump. The investigation of the internal flow field in centrifugal blood pump and the estimation of the hemolysis within different impeller profiles will provide information to improve the performance of centrifugal blood pump. The SST kappa-omega with low Reynolds correction was used in our laboratory to study the internal flow fields for four kinds of impellers of centrifugal blood pump. The flow fields included distributions of pressure field, velocity field and shear stress field. In addition, a fast numerical hemolysis approximation was adopted to calculate the normalized index of hemolysis (NIH). The results indicated that the pressure field distribution in all kinds of blood pump were reasonable, but for the log spiral impeller pump, the vortex and backflow were much lower than those of the other pumps, and the high shear stress zone was just about 0.004%, and the NIH was 0.0089. PMID:25868241
Ling Zhou; Weidong Shi; Suqing Wu
2013-01-01
In order to improve the hydrodynamic performance of the centrifugal pump, an orthogonal experiment was carried out to optimize the impeller design parameters. This study employs the commercial computational fluid dynamics (CFD) code to solve the Navier-Stokes equations for three-dimensional steady flow and predict the pump performance. The prototype experimental test results of the original pump were acquired and compared with the data predicted from the numerical simulation, which presents a...
Hydrogen test of a small, low specific speed centrifugal pump stage
1991-01-01
A small, low specific speed centrifugal pump stage with a 2 inch tip diameter, .030 inch tip width shrouded impeller and volute collector was tested with liquid hydrogen as the pumped fluid. The hydrodynamic design of the pump stage is summarized and the noncavitating and cavitating performance results are presented. Test speeds were 60 and 80 percent of the 77,000 rpm design speed. Liquid hydrogen test results are compared with data from previous tests of the stage in water.
Response of a radial-bladed centrifugal pump to sinusoidal disturbances for noncavitating flow
Anderson, D. A.; Blade, R. J.; Stevans, W.
1971-01-01
A radial-bladed centrifugal pump was run in water with sinusoidal fluctuations of pressure and flow rate imposed at the pump inlet. Since the flow was noncavitating, zero gain was assumed in computing pump impedance. The inertive reactance became greater than the resistance at relatively low frequencies. An electric circuit model was developed in order to explain the trends of inertance and resistance with frequency.
Liquid helium centrifugal pump characteristics from 80 g/s to 1200 g/s
Pengo, R; Junker, S
2010-01-01
The large amount of data collected from three different centrifugal liquid helium pumps tested, namely with 80, 600 and 1200 g/s nominal mass flow are reviewed. The data include the analysis of the characteristic curves, their total efficiencies, their Net Positive Suction Head (NPSH) and the slip factor. The 1200 g/s pumps tested are of the full emission type, with curved blades, whilst the other pumps have straight blades. The pumps were also tested at different rotary speeds. The pumps were manufactured by Barber \\& Nichols (Denver, USA). (C) 2009 Elsevier Ltd. All rights reserved.
A Method to Determine the Slip Factor of Centrifugal Pumps through Experiment
Zhang, Yu-Liang; Zhu, Zu-Chao; Dou, Hua-Shu; Cui, Bao-Ling; Li, Yi; Xiao, Jun-Jian
2015-04-01
In this paper, a method to determine the slip factor of centrifugal impellers is proposed based on the experimental result of the external performance of centrifugal pumps. This proposed method is superior to the conventional experimental method, which needs not to measure the flow parameters at impeller outlet. The results show that the present method can be used to obtain the slip factor at offdesign condition in a wide range of flow rate besides at the design point.
A New Method to Calculate Centrifugal Pump Performance Parameters for Industrial Oils
mohammad hassan shojaeefard
2015-01-01
Full Text Available Pumping of oil instead of water using centrifugal pumps causes rapid increase in the hydraulic losses which results significant reduction in head and efficiency. Therefore, deriving analytical methods to calculate variation of pump performance parameters versus working fluid viscosity is very important. In the present study, a novel method is proposed to calculate the head (H, efficiency ( and input power ( in P based on the loss analysis for pumps using industrial oils. A computer code is developed based on represented method and the results of this method are compared with experimental results for a centrifugal pump of type KWP KBloc65- 200. The results show good agreement between analytical and experimental methods. Finally, using such computer code, diagrams of head, efficiency and input power versus working fluid viscosity are plotted.The results show an interesting point known as “sudden rising head” which is observed experimentally and numerically in literatures.
Lei Tan
2014-02-01
Full Text Available The influence of prewhirl regulation by inlet guide vanes (IGVs on a centrifugal pump performance is investigated experimentally and numerically. The experimental results show that IGVs can obviously change the head and increase the efficiency of the tested centrifugal pump over a wide range of flow rates. Although the cavitation performance is degraded, the variation of the cavitation critical point is less than 0.5 m. Movement of the computed three-dimensional streamlines in suction pipe and impeller are analyzed in order to reveal the mechanism how the IGVs realize the prewhirl regulation. The calculated results show that the influence of IGVs on the cavitation performance of centrifugal pump is limited by a maximum total pressure drop of 1777 Pa, about 7.6% of the total pressure at the suction pipe inlet for a prewhirl angle of 24°.
LI Jun; FENG Zhen-ping; TSUKAMOTO Hiroshi
2004-01-01
This paper presents a hydrodynamic redesign of the conventional vaned diffuser into the low solidity vaned diffuser for the maximum static pressure recovery in a centrifugal pump. A Bezier curve representation for profile description was coupled with a blade-to-blade flow calculation and a real-coded genetic algorithm. A low solidity vaned diffuser of 0.89 in solidity was obtained through the present optimum design. Numerical analysis and experimental test were made to evaluate the hydrodynamic performance of the centrifugal pump with the designed low solidity vaned diffuser and original vaned diffuser. The obtained results demonstrate that the centrifugal pump with the optimized vaned diffuser has compact size compared with the original one while the performance requirements have been met.
A modal approach for vibration analysis and condition monitoring of a centrifugal pump
Ramana Podugu
2011-08-01
Full Text Available The modal analysis of the centrifugal pump and its assembly is performed using FEM technology. The mathematical model and FEA model are built for the original centrifugal casing and simulation is made to find the pump natural frequencies. The first ten natural frequencies were compared to pump operating speed and their multiples up to pump vane passing frequency as per HIS (Hydraulic Institute Standards -9.6.4-2000 guidelines. In the original design, the first natural frequency in vertical direction of the pump is found to be thecause for resonance at the first multiple speed of the pump. The first natural frequency of the original model was found to be 63.25 Hz which is very close to 62.5 Hz of the pump operating speed by a margin of 1.2%. As per HIS clause 9.6.4.4, the first natural frequency should be 10% above or below the pump operating speed. Finally, the model was modified by stiffening the pump pedestals and again FEA analysis was carried out to find the natural frequencies. As a result of modification in design, the first natural frequency was increased to 74.31Hz which is above 10% the pump operating speed i.e., 62.5 Hz. Hence, the results of the modified design aresatisfied with HIS clause. The results also show that the higher the stiffness of the pump, higher the natural frequency is.
Open-cycle centrifugal vapor-compression heat pump
Burgmeier, L. R.; Horner, J. E.
1987-11-01
The objectives of the program were: (1) to develop an open cycle, high lift, centrifugal steam compressor system that can be efficiently retrofitted to existing multi-effect and high temperature differential evaporators while maintaining the cost benefits of a single stage centrifugal compressor, and (2) to demonstrate the energy saving cost benefits of driving the compressor with a natural gas fueled gas turbine engine. The turbine exhaust was to be used for final drying of the product that was evaporated. The installation of the system is described along with the test activities through May 1987.
Development of a compact, sealless, tripod supported, magnetically driven centrifugal blood pump.
Yuhki, A; Nogawa, M; Takatani, S
2000-06-01
In this study, a tripod supported sealless centrifugal blood pump was designed and fabricated for implantable application using a specially designed DC brushless motor. The tripod structure consists of 3 ceramic balls mounted at the bottom surface of the impeller moving in a polyethylene groove incorporated at the bottom pump casing. The follower magnet inside the impeller is coupled to the driver magnet of the motor outside the bottom pump casing, thus allowing the impeller to slide-rotate in the polyethylene groove as the motor turns. The pump driver has a weight of 230 g and a diameter of 60 mm. The acrylic pump housing has a weight of 220 g with the priming volume of 25 ml. At the pump rpm of 1,000 to 2,200, the generated head pressure ranged from 30 to 150 mm Hg with the maximum system efficiency being 12%. When the prototype pump was used in the pulsatile mock loop to assist the ventricle from its apex to the aorta, a strong correlation was obtained between the motor current and bypass flow waveforms. The waveform deformation index (WDI), defined as the ratio of the fundamental to the higher order harmonics of the motor current power spectral density, was computed to possibly detect the suction occurring inside the ventricle due to the prototype centrifugal pump. When the WDI was kept under the value of 0.20 by adjusting the motor rpm, it was successful in suppressing the suction due to the centrifugal pump in the ventricle. The prototype sealless, centrifugal pump together with the control method based on the motor current waveform analysis may offer an intermediate support of the failing left or right ventricle bridging to heart transplantation. PMID:10886073
Yuksel, E; B. Eker
2009-01-01
The extent of this work is operating characteristics of a horizontal shafted centrifugal pump (which has stainless steel wheel) which has been operated for 7 hours on the average. A closed circuit pump system (circulating within itself) which was formed by attaching a horizontal shafted centrifugal pump which can be used in irrigation applications with a drum has been operated for 150 hours at laboratory conditions. To define the operating properties of the pump, its operating characteristics...
Application of energy gradient theory in flow instability in a centrifugal pump
The flow instability in a centrifugal pump is studied using the energy gradient theory. Since the Re is high, the base flow is assumed to be turbulent. The distribution of the energy gradient function K at various flow rates is obtained from numerical simulations. According to the energy gradient method, the area with larger value of K is the place to cause instability and to be of high turbulence intensity. The results show that instability is easier to be excited in the area of impeller outlet and volute tongue. In order to improve the stability of centrifugal pumps working under low flow rate condition, carefulness must be taken in these two key areas
Defect diagnosis and root cause analysis for thrust roller bearing of centrifugal charging pump
The centrifugal charging pump is one of the most important equipment for Nuclear power plant which requires very high reliability, during C9 fuel-cycle, the continuous high level vibration alarm happened on the centrifugal charging pump B, we diagnosed its faults correctly and selected the right operation mode and right time to dismantle it which ensure the safety and economic benefits of Nuclear power plant, and through deeply analysis the root causes of thrust bearing defaults, we can learn much from it especially for the diagnosis and analysis to the bearing faults which is common for rotating equipment. (author)
Cavitation performance and flow characteristic in a centrifugal pump with inlet guide vanes
Tan, L.; Zha, L.; Cao, S. L.; Wang, Y. C.; Gui, S. B.
2015-01-01
The influence of prewhirl regulation by inlet guide vanes (IGVs) on cavitation performance and flow characteristic in a centrifugal pump is investigated. At the impeller inlet, the streamlines are regulated by the IGVs, and the axial velocity distribution is also influenced by the IGVs. Due to the total pressure loss on the IGVs, the cavitation performance of the centrifugal pump degrades. The cavitation area in impeller with IGVs is larger than one without IGVs. The specify values of total pressure loss between the suction pipe inlet and impeller inlet for three cavitation conditions show that the IGVs will generate additional pressure loss, which is related to the IGVs angles and cavitation conditions.
Numerical simulation and analysis of cavitation flows in a double suction centrifugal pump
Meng, G.; Tan, L.; Cao, S. L.; Jian, W.; Liu, W. W.; Jiang, D. J.
2015-01-01
Cavitation is an unsteady phenomenon, which is nearly inevitable in pumps. It would degrade the pump performance, generate vibrations and noises, and even erode pump flow passage components. The double suction centrifugal pump at design flow rate and large flow rate is numerically simulated using the k-ω turbulence model and the mass transport cavitation model. As a result, the calculated variation of pump head with pump inlet pressure agreed well with the experimental data. The results demonstrate that the numerical model and method can accurately predict the cavitation flows in a double suction centrifugal pump. The cavitation characteristics are analysed in great details. In addition, based on the calculation results, the reason that the plunge of pump head curve is revealed. It is found that the steep fall of pump head happens when the cavity reaches the blade to blade throat and the micro-vortex group appears at the back of the blade suction side. At the same time, this practice can provide guidance for the optimal design of double suction pumps.
A concept for improving efficiency of multistage centrifugal pumps
Gardy, H. F.
1970-01-01
Multichannel impeller consists of successive stage impellers arranged concentrically without clearances between them. Reduction in friction is predicted to increase pump efficiency by 5 to 10 percent.
Experimental testing of centrifugal pump: small and medium sized enterprise product
Ismail, R.; Paddiyatu, F.; Khafidh, M.; Nugroho, S.; Sugiyanto, S.; Jamari, J.
2014-06-01
This paper reports the experimental testing for centrifugal pump for fisherman ship, manufactured by small and medium sized enterprises in Central Java Province, Indonesia. The research covers material analysis, component observation, endurance and vibration test. Six centrifugal pumps are tested and three main pump components are discussed: shaft, bearings and seals. The results show that the material of the shaft is predicted to support and transmit the load from the engine to impeller. The problem found in the tolerance and geometry accuracy of the shaft which causes difficulties during assembling process, excessive wear and leakage during testing. From the endurance and vibration test, the ball bearings fail and lock the shaft due to the fatigue on the rolling elements and raceways. The oil seal and water seal also fail in maintaining the oil and water in the chamber and induce the unlubricated system for the ball bearings. Some suggestions are delivered to improve the product quality of the centrifugal pump. A good quality of the centrifugal pump for fishermen ship and long life span is expected to be produced by local SMEs to win the free trade competition in the Indonesian market.
Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction
Yu Zhang
2014-01-01
Full Text Available This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI. A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller.
Investigation of Flow Through Centrifugal Pump Impellers Using Computational Fluid Dynamics
Zhou W.; Zhao Z; Lee S. T.; Winoto H. S.
2003-01-01
With the aid of computational fluid dynamics, the complex internal flows in water pump impellers can be well predicted, thus facilitating the design of pumps. This article describes the three-dimensional simulation of internal flow in three different types of centrifugal pumps (one pump has four straight blades and the other two have six twisted blades). A commercial three-dimensional Navier-Stokes code called CFX, with a standard k–ε two-equation turbulence model was used to simulate the pro...
Lu, J. X.; Yuan, S. Q.; Yuan, J. P.; Ren, X. D.; Pei, J.; Si, Q. R.
2015-12-01
An experimental investigation has been carried out to research the noise induced by cavitation under the asymmetric cavitation (AC) condition in a centrifugal pump. The acoustic pressure signals at the pump inlet and outlet were measured respectively during the development of cavitation in a closed hydraulic test rig. It could be found that both the pump inlet and outlet acoustic pressures changed obviously with the development of cavitation. The time domain and the power spectrum density of the pump inlet and outlet acoustic pressure pulsations were analyzed. The broadband pulses of the acoustic pressure pulsations were found and the reasons for the phenomenon were given.
Characteristics of centrifugal pumps handling air-water mixtures are analyzed on the basis of a gas-liquid separated flow model, which is generally accepted in the analysis of the data on a two-phase flow in piping systems. And a method for predicting the pump characteristics is presented with use of parameters of friction-loss and shock-loss multipliers. Size of air bubbles flowing through pump impellers was measured. The bubbles in the inlet region of the impellers have an extremely uniform size with fairly small diameters. But in course of flow, the bubble diameter grows gradually due to coalescence of the bubbles. (author)
Application of two turbulence models for computation of cavitating flows in a centrifugal pump
To seek a better numerical method to simulate the cavitating flow field in a centrifugal pump, the applications between RNG k- ε and LES turbulence model were compared by using the Zwart-Gerber-Belamri cavitation model. It was found that both the models give almost the same results with respect to pump performance and cavitation evolutions including growth, local contraction, stability and separation in the impeller passage. But the LES model can not only capture the pump suction recirculation and the low frequency fluctuation caused by it, but also combine the changes of the shaft frequency amplitude acting on the impeller with the cavitation unstable characteristics. Thus the LES model has more advantages than RNG k- ε model in calculating the unsteady cavitating flow in a centrifugal pump
Hydraulic performance of a low specific speed centrifugal pump with Spanwise-Slotted Blades
The hydraulic efficiency of a low specific speed centrifugal pump is low because of the long and narrow meridian flow passage, and the severe disk friction. Spanwise slotted blade flow control technology has been applied to the low specific speed centrifugal pump. This paper concluded that spanwise slotted blades can improve the pump performance in both experiments and simulations. In order to study the influence to the impeller and volute by spanwise slotted blade, impeller efficiency and volute efficiency were defined. The minimum volute efficiency and the maximum pump efficiency appear at the same time in the design flow condition in the unsteady simulation. The mechanism of spanwise slotted blade flow control technology should be researched furthermore
Hydraulic performance of a low specific speed centrifugal pump with Spanwise-Slotted Blades
Ye, D. X.; Li, H.; Wang, Y.
2013-12-01
The hydraulic efficiency of a low specific speed centrifugal pump is low because of the long and narrow meridian flow passage, and the severe disk friction. Spanwise slotted blade flow control technology has been applied to the low specific speed centrifugal pump. This paper concluded that spanwise slotted blades can improve the pump performance in both experiments and simulations. In order to study the influence to the impeller and volute by spanwise slotted blade, impeller efficiency and volute efficiency were defined. The minimum volute efficiency and the maximum pump efficiency appear at the same time in the design flow condition in the unsteady simulation. The mechanism of spanwise slotted blade flow control technology should be researched furthermore.
NUMERICAL SIMULATION OF THE FLOW IN THE CENTRIFUGAL PUMP WITHIN VANE AND VANELESS DIFFUSER
K. Melih GÜLEREN
2004-03-01
Full Text Available In this study, the flow in a 5-bladed centrifugal pump within vaned and vaneless diffuser is analyzed numerically. The method contains of assumption as steady, incompressible and viscous flow solved according to 2-D Navier-Stokes equations relating finite volume technique. The pump used in this study runs at 890 rpm, its impeller diameter is approximately 20 cm and it has back-swept blade geometry. The jet-wake flow structures within the impeller and diffuser passages are investigated elaborately and in addition to this, the effects of vaned and vaneless diffuser of the pump are analyzed. The results are shown as velocity vectors, pressure and turbulent kinetic energy distributions in centrifugal pump, beside the performance curves. Moreover, the results are compared with available experimental data which is seen good agreement.
Application of two turbulence models for computation of cavitating flows in a centrifugal pump
He, M.; Guo, Q.; Zhou, L. J.; Wang, Z. W.; Wang, X.
2013-12-01
To seek a better numerical method to simulate the cavitating flow field in a centrifugal pump, the applications between RNG k- ε and LES turbulence model were compared by using the Zwart-Gerber-Belamri cavitation model. It was found that both the models give almost the same results with respect to pump performance and cavitation evolutions including growth, local contraction, stability and separation in the impeller passage. But the LES model can not only capture the pump suction recirculation and the low frequency fluctuation caused by it, but also combine the changes of the shaft frequency amplitude acting on the impeller with the cavitation unstable characteristics. Thus the LES model has more advantages than RNG k- ε model in calculating the unsteady cavitating flow in a centrifugal pump.
Babayigit Osman
2015-01-01
Full Text Available Nowadays, single and multistage centrifugal pumps are widely used in industrial and mining enterprises. One of the most important components of a centrifugal pump is the impeller. The performance characteristics are related to the pump comprising the head and the overall efficiency rely a great deal on the impeller geometry. In this work, effects of blade exit angle change on hydraulic efficiency of a multi stage pump impeller are investigated via Ansys-Fluent computational fluid dynamics software for constant width impeller entrance and exit gates, blade numbers and blade thickness. Firstly, the flow volume of a centrifugal pump impeller is generated and then mesh structure is formed for the full impeller flow volume. Secondly, rotational periodic flow model are adopted in order to examine the effect of periodic flow assumption on the performance predictions. Corresponding to the available experimental data, inlet mass flow rate, outlet static pressure and rotation of impeller are taken as 0.02m3s-1, 450 kPa and 2950 rpm, respectively for the water fluid. No slip boundary condition is exposed to all solid of surface in the flow volume. The continuity and Navier-Stokes equations with the k-ε turbulence model and the standard wall functions are used. During the study, numerical analyses are conducted for the blade exit angle values of 18°, 20°, 25°, 30° and 35°. In consequence of the performed analyses, it is determined that hydraulic efficiency of the pump impeller value is changed between 81.0-84.6%. The most convenient blade exit angle that yields 84.6% hydraulic efficiency at is 18°. The obtained results show that the blade exit angle range has an impact on the centrifugal pump performance describing the pump head and the hydraulic efficiency.
Ji Pei; Wenjie Wang; Shouqi Yuan; Jieyun Mao
2014-01-01
Pressure fluctuations are the main factors that can give rise to reliability problems in centrifugal pumps. The periodically unsteady pressure characteristics caused by rotor-stator interaction have been investigated by CFD calculation in a residual heat removal pump. Side chamber flow effect is also considered for the simulation to accurately predict the flow in whole flow passage. The pressure fluctuation results in time and frequency domains were considered for several typical monitoring p...
CFD analysis and redesign of centrifugal impeller flows for rocket pumps
Lupi, Alessandro
1993-01-01
The analysis and redesign of a centrifugal impeller for a rocket pump is presented in this thesis. A baseline impeller was designed by Rocketdyne for the NASA Marshall Pump Consortium. Initially, the objective was to reduce the circumferential exit flow distortion of the baseline impeller. Later in the study, the objective became raising the head coefficient of the impeller. The study presented in this thesis was also undertaken to demonstrate current CFD capabilities for im...
The Effect of Inlet Swirl on the Rotordynamic Shroud Forces in a Centrifugal Pump
Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.
1992-01-01
The role played by fluid forces in determining the rotordynamic stability of a centrifugal pump is gaining increasing attention. The present research investigates the contributions to the rotordynamic forces from the discharge-to-suction leakage flows between the front shroud of the rotating impeller and the stationary pump casing. In particular, the dependency of the rotordynamic characteristics of leakage flows on the swirl at the inlet to the leakage path was examined. An inlet guide va...
Babayigit, Osman; Kocaaslan, Osman; Hilmi Aksoy, Muharrem; Melih Guleren, Kursad; Ozgoren, Muammer
2015-05-01
Nowadays, single and multistage centrifugal pumps are widely used in industrial and mining enterprises. One of the most important components of a centrifugal pump is the impeller. The performance characteristics are related to the pump comprising the head and the overall efficiency rely a great deal on the impeller geometry. In this work, effects of blade exit angle change on hydraulic efficiency of a multi stage pump impeller are investigated via Ansys-Fluent computational fluid dynamics software for constant width impeller entrance and exit gates, blade numbers and blade thickness. Firstly, the flow volume of a centrifugal pump impeller is generated and then mesh structure is formed for the full impeller flow volume. Secondly, rotational periodic flow model are adopted in order to examine the effect of periodic flow assumption on the performance predictions. Corresponding to the available experimental data, inlet mass flow rate, outlet static pressure and rotation of impeller are taken as 0.02m3s-1, 450 kPa and 2950 rpm, respectively for the water fluid. No slip boundary condition is exposed to all solid of surface in the flow volume. The continuity and Navier-Stokes equations with the k-ɛ turbulence model and the standard wall functions are used. During the study, numerical analyses are conducted for the blade exit angle values of 18°, 20°, 25°, 30° and 35°. In consequence of the performed analyses, it is determined that hydraulic efficiency of the pump impeller value is changed between 81.0-84.6%. The most convenient blade exit angle that yields 84.6% hydraulic efficiency at is 18°. The obtained results show that the blade exit angle range has an impact on the centrifugal pump performance describing the pump head and the hydraulic efficiency.
Model based fault diagnosis in a centrifugal pump application using structural analysis
Kallesøe, C. S.; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik;
2004-01-01
A model based approach for fault detection and isolation in a centrifugal pump is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, Analytical Redundant Relations (ARR) and observer designs. Structural considerations on the system are used...... to an industrial benchmark. The benchmark tests have shown that the algorithm is capable of detection and isolation of five different faults in the mechanical and hydraulic parts of the pump....
Investigation of CFD calculation method of a centrifugal pump with unshrouded impeller
Wu, Dazhuan; Yang, Shuai; Xu, Binjie; Liu, Qiaoling; Wu, Peng; Wang, Leqin
2014-03-01
Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishing an accurate analytical model to improve performance prediction accuracy is therefore necessary. In this paper, a three-dimensional numerical simulation is conducted to predict the performance of a low-specific-speed centrifugal pump, and the modeling, numerical scheme, and turbulent selection methods are discussed. The pump performance is tested in a model pump test bench, and flow rate, head, power and efficiency of the pump are obtained. The effect of taking into consideration the back-out vane passage, clearance, and balance holes is analyzed by comparing it with experimental results, and the performance prediction methods are validated by experiments. The analysis results show that the pump performance can be accurately predicted by the improved method. Ignoring the back-out vane passage in the calculation model of unshrouded impeller is found to generate better numerical results. Further, the calculation model with the clearances and balance holes can obviously enhance the numerical accuracy. The application of disconnect interface can reduce meshing difficulty but increase the calculation error at the off-design operating point at the same time. Compared with the standard k-ɛ, renormalization group k-ɛ, and Spalart-Allmars models, the Realizable k-ɛ model demonstrates the fastest convergent speed and the highest precision for the unshrouded impeller flow simulation. The proposed modeling and numerical simulation methods can improve the performance prediction accuracy of the low-specific-speed centrifugal pumps, and the modeling method is especially suitable for the centrifugal pump with unshrouded impeller.
End Suction Centrifugal Pump Operating in Turbine Mode for Microhydro Applications
Mohd Azlan Ismail; Al Khalid Othman; Shahidul Islam; Hushairi Zen
2014-01-01
This paper reviews the current research works on the end suction centrifugal pump coupled with induction generator running in turbine mode for microhydro application. The information can be used by practicing engineers, researchers, and plant managers to understand the potential of pump running as turbine. Review on experimental and simulation works was carried out encompassing end suction single stage low specific speed which is less than 10 kW. This is followed by review of their efficiency...
A New Proposed Return Guide Vane for Compact Multistage Centrifugal Pumps
Qihua Zhang; Weidong Shi; Yan Xu; Xiongfa Gao; Chuan Wang; Weigang Lu; Dongqi Ma
2013-01-01
For widely used multistage centrifugal pumps, their former structures are so bulky that nowadays growing interest has been shifted to the development of more compact structures. Following this trend, a compact pump structure is provided and analysed. To maintain the pump’s pressure recovery, as well as to meet the water flow from the impeller, a circumferential twisted return guide vane (RGV) is proposed. To validate this design method, the instantaneous CFD simulations are performed to inves...
Model Based Fault Diagnosis in a Centrifugal Pump Application using Structural Analysis
Kallesøe, C. S.; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik;
2004-01-01
A model based approach for fault detection and isolation in a centrifugal pump is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, Analytical Redundant Relations (ARR) and observer designs. Structural considerations on the system are used...... to an industrial benchmark. The benchmark tests have shown that the algorithm is capable of detection and isolation of five different faults in the mechanical and hydraulic parts of the pump....
Mitsuo Uno; Takaaki Masuzoe; Isamu Aotani; Shin Oba; Toshiaki Kanemoto
2004-01-01
This article focuses on the impeller construction, non contact driving method and performance of a newly developed shaftless floating pump with centrifugal impeller. The drive principle of the floating impeller pump used the magnet induction method similar to the levitation theory of the linear motor. In order to reduce the axial thrust by the pressure different between shroud and disk side, the balance hole and the aileron blade were installed in the floating impeller. Considering the above ...
Influence of Splitter Blades on the Cavitation Performance of a Double Suction Centrifugal Pump
Wei Yang; Ruofu Xiao; Fujun Wang; Yulin Wu
2014-01-01
In order to study the influence of splitter blades on double suction centrifugal pumps two impellers with and without splitter blades were investigated numerically and experimentally. Three-dimensional turbulence simulations with and without full cavitation model were applied to simulate the flow in the two pumps with different impellers. The simulation results agreed with the experiment results and the internal flows were analyzed. Both the numerical and experimental results show that by add...
Experimental and Numerical Investigation of Radial Forces Acting on Centrifugal Pump Impeller
Karaskiewicz Krzysztof; Szlaga Marek
2014-01-01
The paper presents the results of measurements and predictions of radial thrust in centrifugal pump with specific speed ns = 26. In the pump tested, a volute with rectangular cross-section was used. The tests were carried out for several rotational speeds, including speeds above and below the nominal one. Commercial code ANSYS Fluent was used for the calculations. Apart from the predictions of the radial force, the calculations of axial thrust were also conducted, and correlation between thru...
Numerical analysis of the flow field in the pump chamber of a centrifugal pump with back blades
Black blade is frequently used as a non-contact seal structure in centrifugal pumps transporting solid-liquid two-phase flow. However, it will disturb the flow in the pump and affect the pump performance. Numerical simulation for 3D turbulence in whole flow passage of a centrifugal pump with back blades was carried out based on RANS method, with SST k-ω turbulence model and SIMPLEC algorithm. Calculation for a similar pump without back blades was also carried out as a comparison. Boundary condition was improved due to the existence of back blade. The influence of back blades on the flow field was analysed qualitatively for three typical conditions. Meanwhile the leakage rate was calculated for several conditions and the effect of back blades was discussed. According to the results, compared with the condition without back blades, it could be seen that back blade apparently changed the flow state in the front chamber, improved near the front shroud and worsened near the pump cover. Velocity was increased and more fluid, which flowed into the front chamber from the pump cover side, flowed back to the spiral casing from the impeller shroud side. With the increase of discharge, the absolute value of leakage rate first went up and then dropped, as a consequence of the combination of two factors, discharge and differential pressure between the impeller outlet and inlet. The seal effect of back blades is most obvious under small discharge condition, and the leakage loss diminished as discharge increased
Numerical analysis of the flow field in the pump chamber of a centrifugal pump with back blades
Cao, L.; Wang, Z. W.; Y Luo, Y.; Liu, M.
2013-12-01
Black blade is frequently used as a non-contact seal structure in centrifugal pumps transporting solid-liquid two-phase flow. However, it will disturb the flow in the pump and affect the pump performance. Numerical simulation for 3D turbulence in whole flow passage of a centrifugal pump with back blades was carried out based on RANS method, with SST k-ω turbulence model and SIMPLEC algorithm. Calculation for a similar pump without back blades was also carried out as a comparison. Boundary condition was improved due to the existence of back blade. The influence of back blades on the flow field was analysed qualitatively for three typical conditions. Meanwhile the leakage rate was calculated for several conditions and the effect of back blades was discussed. According to the results, compared with the condition without back blades, it could be seen that back blade apparently changed the flow state in the front chamber, improved near the front shroud and worsened near the pump cover. Velocity was increased and more fluid, which flowed into the front chamber from the pump cover side, flowed back to the spiral casing from the impeller shroud side. With the increase of discharge, the absolute value of leakage rate first went up and then dropped, as a consequence of the combination of two factors, discharge and differential pressure between the impeller outlet and inlet. The seal effect of back blades is most obvious under small discharge condition, and the leakage loss diminished as discharge increased.
Method of investigation of vibroacoustic characteristics of centrifugal pumps
Pokrovskiy, B. V.; Rubinov, V. Y.; Yurgin, A. M.
1973-01-01
A method for acoustical diagnostics of pumps is described which consists of taking sonograms of the pump, by means of an audio spectrograph. In distinction from usual analyzers, the spectrograph makes it possible to obtain a three-dimensional image of the signal being analyzed, in which its frequency-amplitude characteristics developed over time are depicted with a resolving power of 0.004 sec. As an example, a sonogram of an electrically driven pump, in the 40-4000 Hz frequency range, is presented. The amplitude ratios are determined on the sonogram by the contrast of individual contours, with an accuracy of 6 db.
Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD
Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.
2013-12-01
As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.
Experimental and numerical investigation of centrifugal pumps with asymmetric inflow conditions
Mittag, Sten; Gabi, Martin
2015-11-01
Most of the times pumps operate off best point states. Reasons are changes of operating conditions, modifications, pollution and wearout or erosion. As consequences non-rotational symmetric flows, transient operational conditions, increased risk of cavitation, decrease of efficiency and unpredictable wearout can appear. Especially construction components of centrifugal pumps, in particular intake elbows, contribute to this matter. Intake elbows causes additional losses and secondary flows, hence non-rotational velocity distributions as intake profile to the centrifugal pump. As a result the impeller vanes experience permanent changes of the intake flow angle and with it transient flow conditions in the blade channels. This paper presents the first results of a project, experimentally and numerically investigating the consequences of non-rotational inflow to leading edge flow conditions of a centrifugal pump. Therefore two pumpintake- elbow systems are compared, by only altering the intake elbow geometry: a common single bended 90° elbow and a numerically optimized elbow (improved regarding rotational symmetric inflow conditions and friction coefficient). The experiments are carried out, using time resolved stereoscopic PIV on a full acrylic pump with refractions index matched (RIM) working fluid. This allows transient investigations of the flow field simultaneously for all blade leading edges. Additional CFD results are validated and used to further support the investigation i.e. for comparing an analog pump system with ideal inflow conditions.
Schibilsky, David; Lenglinger, Matthias; Avci-Adali, Meltem; Haller, Christoph; Walker, Tobias; Wendel, Hans Peter; Schlensak, Christian
2015-08-01
The hemocompatible properties of rotary blood pumps commonly used in mechanical circulatory support (MCS) are widely unknown regarding specific biocompatibility profiles of different pump technologies. Therefore, we analyzed the hemocompatibility indicating markers of an axial flow and a magnetically levitated centrifugal device within an in vitro mock loop. The HeartMate II (HM II; n = 3) device and a CentriMag (CM; n = 3) adult pump were investigated in a human whole blood mock loop for 360 min using the MCS devices as a driving component. Blood samples were analyzed by enzyme-linked immunosorbent assay for markers of coagulation, complement system, and inflammatory response. There was a time-dependent activation of the coagulation (thrombin-antithrombin complexes [TAT]), complement (SC5b-9), and inflammation system (polymorphonuclear [PMN] elastase) in both groups. The mean value of TAT (CM: 4.0 μg/L vs. 29.4 μg/L, P centrifugal CM device showed significantly lower activation of coagulation and inflammation than that of the HM II axial flow pump. Both HM II and CM have demonstrated an acceptable hemocompatibility profile in patients. However, there is a great opportunity to gain a clinical benefit by developing techniques to lower the blood surface interaction within both pump technologies and a magnetically levitated centrifugal pump design might be superior. PMID:26234452
Hydraulic design and pre-whirl regulation law of inlet guide vane for centrifugal pump
无
2010-01-01
A new hydraulic design method of three-dimensional guide vane for centrifugal pump is proposed on the assumption that the fluid at the outlet of guide vane satisfies the uniform velocity moment condition.The geometry of blade is controlled by the distributed rule of blade angles along the meridional streamline which is described by a fourth-order polynomial.Experiment results demonstrate that the designed guide vane can overcome the drawback of two-dimensional guide vane,enlarge the high efficiency scope and improve the hydraulic performance of centrifugal pump on the off-design operation conditions.In comparison with the performance of the centrifugal pump without inlet guide vane,the peak value of efficiency can be enhanced by 2.13% after the three-dimensional guide vane was being installed.The three-dimensional entire flow field of the centrifugal pump with inlet guide vane is simulated,and the basic principle and mechanism of inlet guide vane pre-whirl regulation are analyzed.The validity of design method has been proved.
Numerical investigation of nonlinear vibration for rotor-seal system of centrifugal pump
The exciting force in the seal is an important factor for the stability of a multiple stage centrifugal pump. With the speed increasing, the rotor system of multiple stage centrifugal pump presents some nonlinear characters. In order to provide supports for the research of nonlinear characters of multiple stage centrifugal pump, a rotor-seal system model of centrifugal pump is presented and the Muszynska nonlinear seal model is used to express the seal exciting force with multiple parameters in the paper. The fourth-order Runge-Kutta method is also used to determine the vibration response at the impeller place and obtain bifurcation diagram, axis orbit, phase diagram as well as Poincaré Map. The bifurcation results show that the rotor-seal system would be stable under a lower speed and change to be unstable as the rotor speed increases. Various multi-periodic motions and quasi-periodic motions are found showing the complicated motions in the rotor-seal system under nonlinear seal forces
Root cause analysis of vibrations and pulsations in a naphtha pipe system with centrifugal pumps
Bokhorst, E. van; Almasy, S.
2010-01-01
The capacity of a platform installation consisting of naphtha feed lines from centrifugal pumps to an oven has been increased by 25 % in combination with rerouting of the piping layout upstream of the oven and inside the convection zone. The operating company observed considerable increase of the vi
Badie, R.; Jonker, J.B.; Braembussche, van den R.A.
1994-01-01
In this paper we present a finite-element-based methode for the calculation of the unsteady potential flow in rotor/stator configurations. A numerical algorithm was developed to calculate the two-dimensional flow through a centrifugal volute pump, taking into account the width variation of the volut
PIV measurements and CFD computations of secondary flow in a centrifugal pump impeller
Westra, R.W.; Broersma, L.; Andel, van K.; Kruyt, N.P.
2010-01-01
Two-dimensional particle image velocimetry measurements and three-dimensional computational fluid dynamics (CFD) analyses have been performed on the steady velocity field inside the shrouded impeller of a low specific-speed centrifugal pump operating with a vaneless diffuser. Flow rates ranging from
Skarstrom, C.; Urey, H.C.; Cohen, K.
1960-08-01
A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.
Study on cavitation in centrifugal sodium pumps for FBTR and PFBR
Fast Breeder Test Reactor (FBTR) which is expected to become critical shortly is a loop type reactor of 40 MW thermal capacity and has two primary and two secondary centrifugal pumps for heat removal. During the initial periods of reactor operation, the steam generator is bypassed and the secondary sodium pumps are required to operate at flows less than that at best efficiency point. This paper deals with the cavitation problems associated with operation at partial f lows, theoretical estimations and experimental cavitation measurements carried out on FBTR secondary sodium pumps. These investigations revealed that operation of FBTR pumps at this off design condition is free from cavitation damage. Cavitation experiments on a model pump for the development of large sodium pumps for a 500 MWe Prototype Fast Breeder Reactor (PFBR) are described in this paper
Liu, Hou-lin; Wang, Jian; Wang, Yong; Zhang, Hua; Huang, Haoqin
2014-03-01
The phenomenon of cavitation is an unsteady flow, which is nearly inevitable in pump. It would degrade the pump performance, produce vibration and noise and even damage the pump. Hence, to improve accuracy of the nu¬merical prediction of the pump cavitation performance is much desirable. In the present work, a homogenous model, the Zwart-Gerber-Belamri cavitation model, is considered to investigate the influence of the empirical coefficients on predicting the pump cavitation performance, concerning a centrifugal pump. Three coefficients are analyzed, namely the nucleation site radius, evaporation and condensation coefficients. Also, the experiments are carried out to validate the numerical simulations. The results indicate that, to get a precise prediction, the approaches of declining the initial bubble radius, the condensation coefficient or increasing the evaporation coefficient are all feasible, especially for de¬clining the condensation coefficient, which is the most effective way.
Veres, Joseph P.
1992-01-01
Design features and concepts that have primary influence on the stable operating flow range of propellant-feed centrifugal turbopumps in a rocket engine are discussed. One of the throttling limitations of a pump-fed rocket engine is the stable operating range of the pump. Several varieties of pump hydraulic instabilities are mentioned. Some pump design criteria are summarized and a qualitative correlation of key parameters to pump stall and surge are referenced. Some of the design criteria were taken from the literature on high pressure ratio centrifugal compressors. Therefore, these have yet to be validated for extending the stable operating flow range of high-head pumps. Casing treatment devices, dynamic fluid-damping plenums, backflow-stabilizing vanes and flow-reinjection techniques are summarized. A planned program was undertaken at LeRC to validate these concepts. Technologies developed by this program will be available for the design of turbopumps for advanced space rocket engines for use by NASA in future space missions where throttling is essential.
A study on energy saving rate for variable speed condition of multistage centrifugal pump
Suh, Sang-Ho; Rakibuzzaman; Kim, Kyung-Wuk; Kim, Hyoung-Ho; Yoon, In Sik; Cho, Min-Tae
2015-11-01
Centrifugal pumps are being widely used in many industrial and commercial applications. Many of these pumps are being operated at constant speed but could provide energy savings through adjustable speed operations. The purpose of this study was to get the energy saving rates of the multistage centrifugal pump with variable speed conditions. For this investigation an experimental set up of variable flow and pressure system was made to get energy saving rates and numerical analyses are applied to validate the pump performance. The energy saving and therefore the cost saving depends on the specific duty cycle of which the machine operates. Duty cycle is the proportion of time during which a component, device and system is operated. The duty cycle segmented into different flow rates and weighting the average value for each segment by the interval time. The system was operated at 50% or less of the pump capacity. The input power of the system was carried out by pump characteristics curve of each operating point. The energy consumption was done by the product of specific duty cycle and the input power of the system for constant speed and variable speed drive operation. The total energy consumed for constant speed drive pump was 75,770 kW.hr and for variable speed drive pump was 31,700 kW.hr. The total energy saving of the system was 44,070 kW.hr or 58.16% annually. So, this paper suggests a method of implementing an energy saving on variable-flow and pressure system of the multistage centrifugal pump.
M. H.S. Fard; F. A. Boyaghchi
2007-01-01
In this study the centrifugal pump performances with different blade outlet angles are tested when handling water and viscous oils as Newtonian fluids. Also, this study shows a numerical simulation of the three-dimensional fluid flows inside the centrifugal pump with different blade outlet angles. For these numerical simulations the SIMPLEC algorithm is used for solving governing equations of incompressible viscous/turbulent flows through the pump at different operating conditions. The k-^...
Ji Pei; Shouqi Yuan; Wenjie Wang
2013-01-01
For high power centrifugal pump which is usually used in high risk applications, circular casing structure has been adopted to increase the reliability of the pump. This special casing structure can make the flow more complex and cause huge hydraulic losses. In this paper, the periodically unsteady turbulent flow in the circular casing of a high power centrifugal diffuser pump has been investigated numerically by CFD calculation. The velocity distributions in different positions were analyzed...
The Impeller Improvement of the Centrifugal Pump Based on BVF Diagnostic Method
Xin Zhou; Yongxue Zhang; Zhongli Ji; Long Chen
2014-01-01
Selecting one IS 150-125-250 centrifugal pump as reference model, impeller with 3D blades has been designed using two-dimensional theory. Numerical simulations using Reynolds averaged N-S equations with a RNG k-ε two-equation turbulence model and log-law wall function are used to estimate the hydraulic performance of pump and obtain BVF distributions on impeller blade pressure surfaces and suction surfaces. The results show that, compared with IS150-125-250 pump, the designed one shows better...
Performance of Very Low Specific Speed Centrifugal Pumps with Circular Casing
Kagawa, Shusaku; Kurokawa, Junichi; Matsui, Jun; Choi, Young-Do
2007-01-01
Efficiency of a centrifugal pump is known to drop rapidly with a decrease of specific speed ns in the range of ns ≦ 100 [m,m3/min,min-1]. However, below ns = 60, the pump efficiency is not yet clear, and the spiral angle of a volute casing becomes too small to manufacture. To solve this problem, a circular casing is considered appropriate in the very low ns range. The present study is aimed to reveal the relation between pump efficiency and a specific speed in the range of ns ≦ 60, when a cir...
Flow in the Low Specific Speed Centrifugal Pump with Circular Casing
Matsui, Jun; Kurokawa, Junichi; Choi, Young-Do; Nishino, Kouichi
2006-01-01
The internal flow of a centrifugal pump with semi-open impeller, whose type-number is O.244, is measured by PIV method and analyzed numerically The head and efficiency of a pump that has a circular casing with a very small radius are almost same as those of the spiral casing. Even at the best efficiency point, the internal flow in the pump of circular casing is asymmetric. The flow goes out from the impeller only at the exhaust area of the casing. Also, there is a very strong unsteady flow ne...
Performance of a small centrifugal pump in He I and He II
Ludtke, P. R.; Daney, D. E.; Steward, W. G.
1988-01-01
The performance characteristics of a small centrifugal pump in He I and He II are determined over the temperature range of 1.6 to 4.2 K. The single-stage pump is powered by a close-coupled cryogenic induction motor. In the absence of cavitation, pump performance (head and capacity) was found to be identical for He I and He II. Developed heads up to 16 m and capacities of up to 900 liters/hr are obtained at 7000 rpm. A three-blade screw inducer was shown to require much less suction head than a six-blade propeller inducer.
Blade design loads on the flow exciting force in centrifugal pump
Xu, Y.; Yang, A. L.; Langand, D. P.; Dai, R.
2012-11-01
The three-dimensional viscous flow field of two centrifugal pumps, which have the same volute, design head, design flow rate and rotational speed but the blade design load, are analyzed based on large eddy simulation. The comparisons are implemented including the hydraulic efficiencies, flow field characteristics, pressure pulsations and unsteady forces applied on the impellers to investigate the effect of the design blade load on hydraulic performance and flow exciting force. The numerical results show that the efficiency of the pump, the impeller blade of which has larger design load, is improved by 1.1%~2.9% compared to the centrifugal pump with lower blade design load. The pressure fluctuation of the pump with high design load is more remarkable. Its maximum amplitude of coefficient of static pressure is higher by 43% than the latter. At the same time the amplitude of unsteady radial force is increased by 11.6% in the time domain. The results also imply that the blade design load is an important factor on the excitation force in centrifugal pumps.
Effects of mesh style and grid convergence on numerical simulation accuracy of centrifugal pump
刘厚林; 刘明明; 白羽; 董亮
2015-01-01
In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedral and hybrid prismatic/tetrahedral meshes were generated for a centrifugal pump model. And quantitative grid convergence was assessed based on a grid convergence index (GCI), which accounts for the degree of grid refinement. The structured, unstructured or hybrid meshes are found to have certain difference for velocity distributions in impeller with the change of grid cell number. And the simulation results have errors to different degrees compared with experimental data. The GCI-value for structured meshes calculated is lower than that for the unstructured and hybrid meshes. Meanwhile, the structured meshes are observed to get more vortexes in impeller passage. Nevertheless, the hybrid meshes are found to have larger low-velocity area at outlet and more secondary vortexes at a specified location than structured meshes and unstructured meshes.
Unsteady diffuser vane pressure and impeller wake measurements in a centrifugal pump
Arndt, N.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.
1987-01-01
Unsteady surface pressure measurements on a vaned diffuser of a centrifugal pump, and wake measurements of the flow exiting a centrifugal impeller into a vaneless diffuser are presented. Frequency spectra and ensemble averages are given for the unsteady measurements. Two different impellers were used, the pump impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine) and a two-dimensional impeller. The magnitude of the unsteady total pressure measured in the stationary frame at the impeller exit was found to be of the same order of magnitude as the total pressure rise across the pump. The magnitude of the unsteady diffuser vane pressures was observed to be significantly different on suction and pressure side of the vane, attaining its largest value on the suction side the leading edge while decreasing along the vane.
Measurements for the rotordynamic shroud forces for centrifugal pumps
Guinzburg, A.; Brennen, C. E.; Acosta, A.J; Caughey, T. K.
1990-01-01
An experiment was designed to measure the rotordynamic shroud forces on a centrigual pump impeller. The measurements were doen for various whirl/impeller ratios and for different flow rates. A destabilising tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.
Rushing, F.C.
1960-09-01
A vibration damping mechanism for damping vibration forces occurring during the operation of a centrifuge is described. The vibration damping mechanism comprises a plurality of nested spaced cylindrical elements surrounding the rotating shaft of the centrifuge. Some of the elements are held substantially stationary while the others are held with respect to a pair of hearings spaced along the rotating shaft. A fluid is retained about the cylindrical elements.
Marshall, Cornelius
2012-02-03
Electrical failure during cardiopulmonary bypass (CPB) has previously been reported to occur in 1 of every 1500 cases. Most heart-lung machine pump consoles are equipped with built-in battery back-up units. Battery run times of these devices are variable and have not been reported. Different conditions of use can extend battery life in the event of electrical failure. This study was designed to examine the run time of a fully charged battery under various conditions of pump speed, pressure loads, pump boot material, multiple pump usage, and battery life. Battery life using a centrifugal pump also was examined. The results of this study show that battery life is affected by pump speed, circuit pressure, boot stiffness, and the number of pumps in service. Centrifugal pumps also show a reduced drain on battery when compared with roller pumps. These elements affect the longevity and performance of the battery. This information could be of value to the individual during power failure as these are variables that can affect the battery life during such a challenging scenario.
WANG Fangqun; LI Lan; FENG Zhigang; QIAN Kunxi
2005-01-01
A quantitative evaluation of shear stress-related hemolysis in centrifugal blood pumps with different impeller designs has been investigated. Computational fluid dynamics (CFD) is applied to track the shear stress history of the streamlines of red cells. The power law model of the relations among the hemolysis, shear stress and exposure time is used to evaluate the hemolysis in the pumps.Hemolysis tests are also conducted to verify the estimations. Both the estimations and experimentally measured hemolysis levels show that the hemolysis in the streamlined impeller pump developed by the authors is lower than the pump with straight-vane under the same boundary conditions. The approach is proved to be acceptable and practical to predict hemolysis levels of blood pumps.
Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics
In this study, optimization of the impeller and design of volute were carried out in order to improve the performance of a centrifugal pump. Design parameters from vane plane development for impeller design were selected and effect of the design parameters on the performance of the pump was analyzed using CFD and Response Surface Method to optimized impeller. This study also proposed the optimization geometry of pump impeller for performance improvement through the results from numerical analysis that was obtained optimum design pump; efficiency 98.2% and head 64.5m. In addition, the pump design method was suggested by designing volute which was suitable for the optimized impeller through volute design where Stepanoff theory was applied and numerical analysis.
Theoretical model for cavitation erosion prediction in centrifugal pump impeller
Cavitation is known to have great effects on pump hydraulic and mechanical characteristics. These effects are mainly described by deviation in pump performance, increasing vibration and noise level as well as erosion of blade and casing materials. In the present work, only the hydrodynamic aspect of cavitation was considered. The efforts were directed toward the study of cavitation inception, cavity mechanics and material erosion in order to clarify the macrohydrodynamic aspects of cavitation erosive wear in real machines. As a result of this study, it was found that cavitation damage can be predicted from model data. The obtained theoretical results show good agreement with the experimental results obtained in this investigation and with results of some other investigations. The application of the findings of this work will help the design engineer in predicting the erosion rate, according to the different operating conditions. (author)
Lysiak, Vladyslav
2015-01-01
Using the mathematical model of the pump station power supply system in steady-state modes developed by the author, the influence of the parameters of induction motor-centrifugal pump units with in-seriesconnected hydropaths of the pumps on their steady-state modes was studied. A comparison was drawn on the operation of a number of coupled units with different pump ratings. It was revealed that the difference in rated flow of the operating fluid in centrifugal pumps results in the fact that o...
Numerical Analysis of the FDA Centrifugal Blood Pump
Marinova, V.; Kerroumi, I.; Lintermann, Andreas; Göbbert, Jens Henrik; Moulinec, C.; Rible, S.; Fournier, Y.; Behbahani, M.
2016-01-01
Ventricular Assist Devices (VADs) are commonly implanted to assist patients suffering fromheart diseases. They provide long- and short-term support for the human heart and help patientsto recover from heart attacks and from congestive heart failure. It is essential to design bloodsensitiveVADs to minimise the risk of hemolysis and thrombosis. The blood pump, however,must operate at a wide range of flow rates and pressure heads which makes a low-risk design achallenging task. In this study the...
Cavitation improvement of double suction centrifugal pump HPP Fuhren
Škerlavaj, A.; Titzschkau, M.; Pavlin, R.; Vehar, F.; Mežnar, P.; Lipej, A.
2012-11-01
A double suction storage pump has been refurbished because of the strong cavitation which resulted in cavitation damage on blade and consequently in frequent repairs of the impeller. The analyses of the old and the new impeller were done by the computational fluid dynamics (CFD), performing transient simulations with the commercial solver Ansys CFX. In the simulations, the scale-adaptive-simulation with the curvature correction (SAS-CC) turbulence model was used. No model tests were carried out. Additionally, observations with the digital camera were made through the specially designed plexi-glass window, mounted at the lid at the suction side. The predicted pump head at the operating point agrees well with the pump characteristics measurements, performed with the direct thermodynamic method. The extent of the cavitation predicted by CFD is smaller than the observed one because the cloud cavitation was not predicted. The observations of the cavitation extent show that the impeller design is better than the old one, which was also possible to anticipate based on the CFD results.
Vibration Characteristics Induced by Cavitation in a Centrifugal Pump with Slope Volute
Ning Zhang
2015-01-01
Full Text Available Cavitation is one of the instability sources in centrifugal pump, which would cause some unexpected results. The goal of this paper was to analyze the influence of cavitation process on different frequency bands in a centrifugal pump with slope volute. And special attention was paid to low frequency signals, which were often filtered in the reported researches. Results show that at noncavitation condition, vibration level is closely related to flow structure interior pump. At partial flow rates, especially low flow rates, vibration level increases rapidly with the onset of rotating stall. At cavitation condition, it is proved that cavitation process has a significant impact on low frequency signals. With cavitation number decreasing, vibration level first rises to a local maximum, then it drops to a local minimum, and finally it rises again. At different flow rates, vibration trends in variable frequency bands differ obviously. Critical point inferred from vibration level is much larger than that from 3% head drop, which indicates that cavitation occurs much earlier than that reflected in head curve. Also, it is noted that high frequency signals almost increase simultaneously with cavitation occurring, which can be used to detect cavitation in centrifugal pump.
Murashige, Tomotaka; Kosaka, Ryo; Sakota, Daisuke; Nishida, Masahiro; Kawaguchi, Yasuo; Yamane, Takashi; Maruyama, Osamu
2015-01-01
We have developed a hydrodynamically levitated centrifugal blood pump for extracorporeal circulatory support. In the blood pump, a spiral groove bearing was adopted for a thrust bearing. In the spiral groove bearing, separation of erythrocytes and plasma by plasma skimming has been postulated to occur. However, it is not clarified that plasma skimming occurs in a spiral groove bearing. The purpose of this study is to verify whether plasma skimming occurs in the spiral groove bearing of a hydrodynamically levitated centrifugal blood pump. For evaluation of plasma skimming in the spiral groove bearing, an impeller levitation performance test using a laser focus displacement meter and a microscopic visualization test of erythrocyte flow using a high-speed microscope were conducted. Bovine blood diluted with autologous plasma to adjust hematocrit to 1.0% was used as a working fluid. Hematocrit on the ridge region in the spiral groove bearing was estimated using image analysis. As a result, hematocrits on the ridge region with gaps of 45 μm, 31 μm, and 25 μm were calculated as 1.0%, 0.6%, and 0.3%, respectively. Maximum skimming efficiency in this study was calculated as 70% with a gap of 25 μm. We confirmed that separation of erythrocyte and plasma occurred in the spiral groove bearing with decrease in bearing gap in a hydrodynamically levitated centrifugal blood pump. PMID:26736252
Cui, Baoling; Chen, Desheng; Xu, Wenjing; Jin, Yingzi; Zhu, Zuchao
2015-02-01
To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centrifugal pump with complex impeller is numerically simulated under different conditions. The RNG κ-ɛ turbulence model and sliding mesh are adopted during the process of computation. The results show that the interaction between impeller and volute results in the unstable flow of the fluid, which causes the uneven distribution of pressure fluctuations around the circumference of volute. Besides the main frequency and its multiple frequency of pressure fluctuations in the centrifugal pump, the frequency caused by the long blades of complex impeller also plays a dominant role in the low-frequency areas. Furthermore, there exists biggish fluctuation phenomenon near the tongue. The composition of static pressure fluctuations frequency on the volute wall and blade outlet is similar except that the fluctuation amplitude near the volute wall reduces. In general, the different flow rates mainly have influence on the amplitude of fluctuation frequency in the pump, while have little effect on the frequency composition.
Rotordynamic forces generated by discharge-to-suction leakage flows in centrifugal pumps
LIU Quan-zhong; WANG Hong-jie; LIU Zhan-sheng
2009-01-01
In order to investigate the flow-induced vibration in the shroud passage of centrifugal pump and pre-dict rotordynamic forces of centrifugal pump rotor system,an analysis of rotordynamic forces arising from shrou-ded centnlugal pump is presented.CFD techniques were utilized to analyze the full three-dimensional viscous,primary/secondary flow field in a centrifugal pump impeller to determine rotordynamic forces. Multiple quasi-steady solutions of an eccentric three-dimensional model at different whirl frequency ratios yielded the rotordy-namic forces. The skew-symmetric stiffness,damping,and mass matrices were obtained by second-order least-squares analysis.Simulation of the coupled primary/secondary flow field was conducted,and the complex flow characteristcs.in the flow field of a shroud passage were achieved including the mean velocity and pressure,as well as the eddy in a large scale of flow field due to viscosity.The rotordynamic force coefficients were calculat-ed,and the results were in good agreement with those of experiment except for the direct inertial coefficient without the consideration of whirling forces from the impeller primary flow passage.
Adrian CIOCANEA
2013-09-01
Full Text Available The paper presents a method for mitigating the negative effect of vortex motion inside the suction chambers of centrifugal pumps in order to obtain better use of water resource and decrease the risk related to loss of prime. It was studied the influence of a rotating device on the vortex motion in the case of a vertical suction pipe. The device is consisting of three thin vertical cylinders symmetrically mounted on a horizontal rotating disk placed in front of the inlet section of the suction pipe. The experimental research was conducted for various diameters of the cylinders, water levels in the suction chamber and pump flow rates. It was assessed the vortex type, frequency of arising and living life of vortices. The experimental results are compared with the case the device is absent in order to assess the efficiency of the solution. By using the device a decrease of about 1215% of vortex arising is observed for most of the water levels in the suction chamber and for 80 -90 % of the centrifugal pump flow rates. If high flow rates and low water level in the suction chamber are simultaneously present, violent vortex motion is blocking the rotating device and the volume of air entered the pipe is massive - extreme regime. The flow pattern in the suction chamber was visualized using a laser sheet. At the inlet section of the suction pipe one can observe two main flow patterns: central vortex entrance for high water level in the suction chamber and reduce flow rates of the centrifugal pump and lateral vortex entrance for low water level and high flow rates. The conclusions of the experiment confirm the energy dissipation of the vortices arising in the suction chamber, due to utilization of the rotating device, in most of the centrifugal pump regimes.
Effect of impeller reflux balance holes on pressure and axial force of centrifugal pump
CAO Wei-dong; DAI Xun; HU Qi-xiang
2015-01-01
The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low specific-speed centrifugal pump with Q=12.5 m3/h,H=60 m,n=2950 r/min was selected to be designed with eight axial reflux balance holes with 4.5 mm in diameter. The simulated Q-H curve and net positive suction head (NPSH) were in good agreement with experimental results, which illustrated that centrifugal pump with axial reflux balance holes was superior in the cavitation characteristic; however, it showed to little superiority in head and efficiency. The pressure in rear pump chamber at 0.6 times rate flow is 29.36% of pressure difference between outlet and inlet, which reduces to 29.10% at rate flow and 28.33% at 1.4 times rate flow. As the whole, the pressure distribution on front and rear shrouds from simulation results is not a standard parabola, and axial force decreases as flow rate increases. Radical reflux balance holes chosen to be 5.2 mm and 5.9 mm in diameter were further designed with other hydraulic parts unchanged. With structural grids adopted for total flow field, contrast numerical simulation on internal flow characteristics was conducted based on momentum equations and standard turbulence model (κ-ε). It is found that axial force of pump with radical reflux balance holes of 5.2 mm and 5.9 mm in diameter is significantly less than that with radical reflux balance holes of 4.5 mm in diameter. Better axial force balance is obtained as the ratio of area of reflux balance holes and area of sealing ring exceeds 6.
Gu, Y. John; van Oeveren, Willem; Mungroop, Hubert E.; Epema, Anne H.; den Hamer, Inez J.; Keizer, Jorrit J.; Leuvenink, Ron P.; Mariani, Massimo A.; Rakhorst, Gerhard
2011-01-01
Although the centrifugal pump has been widely used as a nonpulsatile pump for cardiopulmonary bypass (CPB), little is known about its performance as a pulsatile pump for CPB, especially on its efficacy in producing hemodynamic energy and its clinical effectiveness. We performed a study to evaluate w
Numerical study of a centrifugal blood pump with different impeller profiles.
Song, Guoliang; Chua, Leok Poh; Lim, Tau Meng
2010-01-01
Computational fluid dynamic simulations of the Kyoto-NTN magnetically suspended centrifugal blood pump with 16 forward-bending blades (16FB), 16 straight blades (16SB), and eight backward-bending blades (8BB) impellers were performed in this study. Commercial CFD software package FLUENT were used as the solver. The purpose of this study is to find out how the impeller blade profiles affect the inner flow and the performance of the centrifugal blood pump. The simulations were carried out with the same impeller rotating speed of 2,000 rpm and pump flow rate of 5 L/min to compare the three pump models. It was found that the 16SB impeller can produce higher pressure head than the 16FB and 8BB impellers under the same impeller rotating speed and pump flow rate. The flow particle tracing was carried out to estimate the blood damage level caused by the three different impeller profiles. It was found that the 16FB and 8BB models have caused the highest and lowest blood damage, respectively. The 16SB is recommended among the three pumps because it can generate the highest pressure head and induce mild blood damage index, although it was higher than that of the 8BB model. PMID:20019595
Centrifugal and Axial Pump Design and Off-Design Performance Prediction
Veres, Joseph P.
1995-01-01
A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.
In order to find the effects of blade arrangement on impeller radial force, a double-suction centrifugal pump with two impeller configurations is investigated by using CFD approach. The two impeller have same geometry, same blade number, and different blade arrangement. One is staggered impeller in which the blades are arranged with half of blade phase angle staggered in circular direction, another is traditional symmetrical impeller with symmetrical blade arrangement. Results show that the radial force vector diagram for symmetrical impeller is a hexagonal, while it is nearly a circle for staggered impeller. The staggered impeller results no radial force saltation which exists in symmetrical impeller. The blade passing frequency dominates the radial force fluctuation in symmetrical impeller, while this frequency is almost not existed in staggered impeller. The results indicate that staggered blade arrangement can significantly reduce radial force fluctuation in double-suction centrifugal pump
Zhang, Z. C.; Wang, F. J.; Yao, Z. F.; Leng, H. F.; Zhou, P. J.
2013-12-01
In order to find the effects of blade arrangement on impeller radial force, a double-suction centrifugal pump with two impeller configurations is investigated by using CFD approach. The two impeller have same geometry, same blade number, and different blade arrangement. One is staggered impeller in which the blades are arranged with half of blade phase angle staggered in circular direction, another is traditional symmetrical impeller with symmetrical blade arrangement. Results show that the radial force vector diagram for symmetrical impeller is a hexagonal, while it is nearly a circle for staggered impeller. The staggered impeller results no radial force saltation which exists in symmetrical impeller. The blade passing frequency dominates the radial force fluctuation in symmetrical impeller, while this frequency is almost not existed in staggered impeller. The results indicate that staggered blade arrangement can significantly reduce radial force fluctuation in double-suction centrifugal pump.
SEQUENTIAL DIAGNOSIS FOR A CENTRIFUGAL PUMP BASED ON FUZZY NEURAL NETWORK
ZHOU Xiong; WANG Huaqing; CHEN Peng; TANG Yike
2008-01-01
A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectively distinguished at an early stage on the basis of the possibilities of symptom parameters. The non-dimensional symptom parameters in time domain are defined for reflecting the features of time signals measured for the fault diagnosis of rotating machinery. The synthetic detection index is also proposed to evaluate the sensitivity of non-dimensional symptom parameters for detecting faults. The practical example of condition diagnosis for detecting and distinguishing fault states of a centrifugal pump system, such as cavitation, impeller eccentricity which often occur in a centrifugal pump system, are shown to verify the efficiency of the method proposed in this paper.
Zhu, Bing; Chen, Hongxun; Wei, Qun
2014-06-01
This paper is to study the cavitating characteristics in a low specific speed centrifugal pump with gap structure impeller experimentally and numerically. A scalable DES numerical method is proposed and developed by introducing the von Karman scale instead of the local grid scale, which can switch at the RANS and LES region interface smoothly and reasonably. The SDES method can detect and grasp unsteady scale flow structures, which were proved by the flow around a triangular prism and the cavitation flow in a centrifugal pump. Through numerical and experimental research, it's shown that the simulated results match qualitatively with tested cavitation performances and visualization patterns, and we can conclude that the gap structure impeller has a superior feature of cavitation suppression. Its mechanism may be the guiding flow feature of the small vice blade and the pressure auto-balance effect of the gap tunnel.
Dazhuan Wu; Leqin Wang; Qinglei Jiang; Lulu Zhai
2011-01-01
The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The ...
Liu, Houlin; Kai WANG; Yuan, Shouqi; Tan, Minggao; Wang, Yong; Dong, Liang
2012-01-01
In order to improve internal unsteady flow in a double-blade centrifugal pump (DBCP), this study used major geometric parameters of the original design as the initial values, heads at three conditions (i.e., 80% design flow rate, 100% design flow rate, and 120% design flow rate) as the constraints conditions, and the maximum of weighted average efficiency at the three conditions as the objective function. An adaptive simulated annealing algorithm was selected to solve the energy performance c...
Chamieh, Dmitri S.; Acosta, Allan J.; Brennen, Christopher E.; Caughey, Thomas K.
1985-01-01
The present work is an experimental investigation of the possible forces of fluid dynamic origin that can act on a turbomachine rotor particularly when it is situated off its normal center position. An experimental facility, the Rotor Force Test Facility, has been designed and contructed in order to measure these kinds of forces acting on a centrifugal pump impeller when the latter is made to whirl in a slightly eccentric circular orbit. The scope of the present experimental work consists o...
Arndt, N.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.
1990-01-01
This paper describes an experimental investigation of rotor-stator interaction in a centrifugal pump with several vaned diffusers. Steady and unsteady diffuser vane pressure measurements were made for a two-dimensional test impeller. Unsteady impeller blade pressure measurements were made for a second two-dimensional impeller with blade number and blade geometry identical to the two-dimensional impeller used for the diffuser vane pressure measurements. The experiments were conducted for di...
Modal Analysis of a Centrifugal Pump Impeller Using Finite Element Method
Ashri Muhammad; Karuppanan Saravanan; Patil Santosh; Ibrahim Idris
2014-01-01
The turbo machinery design has evolved rapidly in the last 50 years. The development in the design of any turbo machinery involves interdisciplinary process, namely stress analysis, vibration analysis, fluid dynamics, thermodynamics and the material selection. One of the major and common analyses used in the development of any mechanical part subjected to dynamic loading is the modal analysis. In this paper, the dynamic characteristics of an impeller of a centrifugal pump were studied. The dy...
Maintenance optimisation of centrifugal pumps in a European refinery: : A case study
Laquet, Andrei
2015-01-01
Maintenance has gained credit over the past decades. The oil and gas industry requires efficient maintenance programs due to the hazardousness surrounding the industry. Crude oil margins are also dropping and maintenance yields high controllable costs. Therefore, safety and economy are the driving forces of maintenance optimisation. Refineries have to operate when margins are the most profitable so reliability is crucial.Centrifugal pumps are essential features of the refining process. Due to...
Pressure Fluctuation in a Vaned Diffuser Downstream from a Centrifugal Pump Impeller
Akinori Furukawa; Hisasada Takahara; Takahiro Nakagawa; Yusuke Ono
2003-01-01
Periodic flows downstream from a centrifugal pump impeller in vaneless and vaned diffusers were measured by using a single hole yawmeter and a phase-locked sampling method. The flows were also calculated by an inviscid flow analysis using the blade-surface singularity method. The periodic variations in calculated static pressure with the impeller rotating quantitatively agree well with the measured ones. The flow behaviors in the vaned diffuser are discussed, citing measured and calculated re...
Discussion on the Performance of Multistage Centrifugal Pumps%多级离心泵性能的探讨
赵义; 于文华; 宋杨; 蔡亚光
2011-01-01
Considering the hydraulic loss, volumetric loss and mechanical loss of factors influencing multistage centrifugal pumps and different factors is revealed, pumps. pumps are presented and the relatio which provides theory basis and methods centrifugal pumps, through experiments, the nship between the efficiency of centrifugal for the efficient use of multistage centrifugal%综合考虑了离心水泵的水力损失、容积损失和机械损失,通过实验提出了影响多级离心泵性能的因素,揭示了离心泵使用效率与各因素的关系,为高效使用多级离心水泵提供了理论依据和方法。
Denghao Wu; Yun Ren; Houlin Liu; Jiegang Mu; Lanfang Jiang
2014-01-01
This paper presents an experimental investigation of large-scale flow-field instabilities in a centrifugal pump impeller of low specific speed. Measurements of pump hydraulic performance and flow-field in the impeller passages were made with a hydraulic test rig and a Particle Image Velocimetry (PIV) system separately. Analyses of Q-H data and flow structures in the impeller passages were performed. Results showed that an unstable area existed in the range from 0.1QBEP to 0.6QBEP and had a cl...
Numerical Flow Simulation in a Centrifugal Pump at Design and Off-Design Conditions
Cheah, K. W.; Lee, T. S.; S. H. Winoto; Z. M. Zhao
2007-01-01
The current investigation is aimed to simulate the complex internal flow in a centrifugal pump impeller with six twisted blades by using a three-dimensional Navier-Stokes code with a standard k-ε two-equation turbulence model. Different flow rates were specified at inlet boundary to predict the characteristics of the pump. A detailed analysis of the results at design load, Qdesign, and off-design conditions, Q = 0.43 Qdesign and Q = 1.45 Qdesign, is presented. From t...
Miguel Asuaje; Farid Bakir; Smaïne Kouidri; Frank Kenyery; Robert Rey
2005-01-01
A 3D-CFD simulation of the impeller and volute of a centrifugal pump has been performed using CFX codes. The pump has a specific speed of 32 (metric units) and an outside impeller diameter of 400 mm. First, a 3D flow simulation for the impeller with a structured grid is presented. A sensitivity analysis regarding grid quality and turbulence models were also performed. The final impeller model obtained was used for a 3D quasi-unsteady flow simulation of the impeller-volute...
Arndt, N.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.
1990-01-01
Steady and unsteady diffuser vane pressure measurements have been conducted with a two-dimensional test impeller, in an experimental investigation of rotor-stator interaction within a centrifugal pump having several vaned diffusers, under conditions of different flow coefficients and different radial gaps between the impeller blade trailing edge and the diffuser vane leading edge. The largest pressure fluctuations on the diffuser vanes and the impeller blades were found to be of the same order of magnitude as the total pressure rise across the pump. Increasing the number of diffuser vanes was found to result in a significant decrease of impeller blade pressure fluctuations.
Experimental and Numerical Investigation of Radial Forces Acting on Centrifugal Pump Impeller
Karaskiewicz Krzysztof
2014-12-01
Full Text Available The paper presents the results of measurements and predictions of radial thrust in centrifugal pump with specific speed ns = 26. In the pump tested, a volute with rectangular cross-section was used. The tests were carried out for several rotational speeds, including speeds above and below the nominal one. Commercial code ANSYS Fluent was used for the calculations. Apart from the predictions of the radial force, the calculations of axial thrust were also conducted, and correlation between thrust and the radial force was found. In the range of the measured rotational speeds, similarity of radial forces was checked.
A 2.5D Single Passage CFD Model for Centrifugal Pumps
Nakamura S.; Ding, W.; Yano, K.
1998-01-01
This paper describes the single passage model based on CFD to analyze the flow in blade passages of a centrifugal pump. The model consists of the flow passage between two impeller blades and the spaces in the inlet eye as well as in the volute. The incompressible Navier-Stokes equations in the conservation form are solved by a finite difference method. The code is designed to investigate the velocity and pressure distributions and intended to investigate how the pump design affects fluid flow through the rotor as well as the pump performance. An early part of the paper investigates the behavior of the model as well as validity of the assumptions made in the model. Then, applications to a rotodynamic heart pump are presented.
Investigation of Flow Through Centrifugal Pump Impellers Using Computational Fluid Dynamics
Weidong Zhou
2003-01-01
Full Text Available With the aid of computational fluid dynamics, the complex internal flows in water pump impellers can be well predicted, thus facilitating the design of pumps. This article describes the three-dimensional simulation of internal flow in three different types of centrifugal pumps (one pump has four straight blades and the other two have six twisted blades. A commercial three-dimensional Navier-Stokes code called CFX, with a standard k–ε two-equation turbulence model was used to simulate the problem under examination. In the calculation, the finite-volume method and an unstructured grid system were used for the solution procedure of the discretized governing equations for this problem.
Cavitation characteristics of a small centrifugal pump in He I and He II
Ludtke, P. R.; Daney, D. E.
1988-01-01
The cavitation characteristics of a small preinduced centrifugal pump operating in He I and He II over the temperature range 1.8-4.2 K are presented. The pump and close-coupled induction motor operate immersed in liquid helium. A six-blade propeller inducer and a three-blade screw inducer were both tested. With this pump configuration using either inducer, there is a tremendous difference between the cavitation characteristics of He I and He II. The net positive suction head requirements for this pump with the screw inducer could not be determined for He I, but it is less than -100 mm and, depending on flow rate, ranges between 35 and 165 mm for He II.
Influence of blade outlet angle on performance of low-specific-speed centrifugal pump
Cui, Baoling; Wang, Canfei; Zhu, Zuchao; Jin, Yingzi
2013-04-01
In order to analyze the influence of blade outlet angle on inner flow field and performance of low-specific-speed centrifugal pump, the flow field in the pump with different blade outlet angles 32.5° and 39° was numerically calculated. The external performance experiment was also carried out on the pump. Based on SIMPLEC algorithm, time-average N-S equation and the rectified k-ɛ turbulent model were adopted during the process of computation. The distributions of velocity and pressure in pumps with different blade outlet angles were obtained by calculation. The numerical results show that backflow areas exist in the two impellers, while the inner flow has a little improvement in the impeller with larger blade outlet angle. Blade outlet angle has a certain influence on the static pressure near the long-blade leading edge and tongue, but it has little influence on the distribution of static pressure in the passages of impeller. The experiment results show that the low-specific-speed centrifugal pump with larger blade outlet angle has better hydraulic performance.
Numerical analysis for causes of cavitation fracture working condition on centrifugal pump
In order to research the flow-head curve plunge caused by the cavitation of centrifugal pump, the standard k-ε turbulence model, homogeneous multiphase model and Rayleigh-Plesset equation were applied to simulate the cavitation characteristics in a centrifugal pump with specific speed of 59 under different conditions based on ANSYS CFX software. The results show that the numerical simulation result has the same trend with experiment result, and absolute error is 0.02%. The analysis of flow field shows that: the steep fall of flow-head curve is not only caused by the traditional cavitation, but also mainly caused by the Vortex loss. As the empty bubble in the passageway increases to some degree, the liquid boundary layer separation happened, then vortex appears and vortex losses. While the vortex appears originally, it has an impact on the flow-head curve. When the bubble becomes more and the whole passageway is full of vortex, cavitation fault condition happens. It reveals the vapor-liquid tow-phase flow distribution within the centrifugal pump. (authors)
Flow analysis of centrifugal pump using CFX solver and remedies for cavitation mitigation
Dr. G. Rambabu,
2015-07-01
Full Text Available In this scholarly thesis pertinent to the working of centrifugal pump, a CFD solver namely CFX is employed in order to simulate fluid flow characteristics with well-defined constraints and boundary conditions defining the problem. Stringent solid model is meticulously prepared encompassing the present day usage and constructional features of a centrifugal pump and is constrained with various boundary conditions having fixed domain in order to evaluate plots and results. To spearhead and facilitate this analysis program a numerical approximation tool with high degree of convergence rate called ANSYS 15.0 software is used. The ASNYS software avoids tedious calculations presumably impending in the design procedure and uses ultimate numerical tool to approximate the solution of the partial differential equations associated with continuity, momentum and energy phases of a flow problem in a 3-D model. This exquisite feature of ANSYS enables designer to optimize the design procedure in an iterative manner based on the final plots of post-processing phase. In addition, the scholarly writing also constitutes the appraisal of the most debilitating and painstaking problem retarding the efficiency of the centrifugal pump known as cavitation. Possible remedies for overcoming this problem will be indirectly inferred from the various plots and figures derived from the post-processing phase of the design process.
Lei Cao
2016-01-01
Full Text Available Clearance flows in the sidewall gaps of centrifugal pumps are unsteady as well as main flows in the volute casing and impeller, which may cause vibration and noise, and the corresponding pressure fluctuations are related to the axial clearance size. In this paper, unsteady numerical simulations were conducted to predict the unsteady flows within the entire flow passage of a centrifugal pump operating in the design condition. Pressure fluctuation characteristics in the volute casing, impeller, and sidewall gaps were investigated with three axial clearance sizes. Results show that an axial clearance variation affects the pressure fluctuation characteristics in each flow domain by different degree. The greatest pressure fluctuation occurs at the blade pressure surface and is almost not influenced by the axial clearance variation which has a certainly effect on the pressure fluctuation characteristics around the tongue. The maximum pressure fluctuation amplitude in the sidewall gaps is larger than that in the volute casing, and different spectrum characteristics show up in the three models due to the interaction between the clearance flow and the main flow as well as the rotor-stator interaction. Therefore, clearance flow should be taken into consideration in the hydraulic design of centrifugal pumps.
MOTION OF TRACER PARTICLES IN A CENTRIFUGAL PUMP AND ITS TRACKING CHARACTERISTICS
LI Ya-lin; YUAN Shou-qi; TANG Yue; YUAN Jian-ping
2012-01-01
The Basset-Boussinesq-Oseen (BBO) equation can be used for most flows to trace the motion of a particle,but in a centrifugal pump,among the forces that act on the particles,one should also include those due to the impeller rotation,as additional effects.This paper firstly reviews various approximations of the BBO equation for the motion of dispersion particles in a viscous fluid.Then based on the motion equation for particles in low Reynolds number centrifugal pumps,a formula for calculating the tracking characteristics of tracer particles is deduced through the Fourier integral transformation.After that the deviations of the particle motion from the fluid motion,as predicted by the various approximations,are discussed and compared.At last,with an emphasis on the Particle Image Velocimetry (PIV) results,the tracking characteristics of particles are estimated.Also,advantages and disadvantages of different tracer particles are discussed and suitable tracer particles for application in PIV studies for flow fields in centrifugal pumps are suggested.
CAVITATING SUPPRESSION OF LOW SPECIFIC SPEED CENTRIFUGAL PUMP WITH GAP DRAINAGE BLADES
ZHU Bing; CHEN Hong-xun
2012-01-01
This paper aims to clarify the cavitation suppression mechanism of the gap structure impeller based on the analysis of cavitation characteristics in a low specific speed centrifugal pump.In order to obtain reliable and consistent numerical results,some numerical considerations and modeling methodology were demonstrated and researched,and a check of the time and space resolution were also conducted.Hence the predicted cavitation performance of the two centrifugal pumps were investigated and compared with experimental results,and they were in qualitative agreement.It was confirmed that the new gap structure impeller has a very good characteristic of inhibiting cavitation,especially in large flow area,the present numerical method can effectively capture the major internal flow features in the centrifugal pump,through the comparison of the two type impeller flow fields,the cavitation suppression mechanism of the gap impeller may be the combination effects of the small vice blade's guiding flow and gap tunnel's auto-balancing of pressure.
Yasuyuki Nishi; Junichiro Fukutomi
2015-01-01
Single-blade centrifugal impellers for sewage systems undergo both unsteady radial and axial thrusts. Therefore, it is extremely important for the improvement of pump reliability to quantitatively grasp these fluctuating hydrodynamic forces and determine the generation mechanism behind them. In this study, we conducted component analyses of radial and axial thrusts of closed, single-blade centrifugal pumps with different blade outlet angles by numerical analysis while considering leakage flow...
Ran Tao; Ruofu Xiao; Wei Yang; Fujun Wang
2014-01-01
RANS simulation is widely used in the flow prediction of centrifugal pumps. Influenced by impeller rotation and streamline curvature, the eddy viscosity models with turbulence isotropy assumption are not accurate enough. In this study, Spalart-Shur rotation/curvature correction was applied on the SST k-ω turbulence model. The comparative assessment of the correction was proceeded in the simulations of a centrifugal pump impeller. CFD results were compared with existing PIV and LDV data under ...
Evaluation of a multiple disk centrifugal pump as an artificial ventricle.
Miller, G E; Sidhu, A; Fink, R; Etter, B D
1993-07-01
A multiple-disk centrifugal pump based on the Tesla Turbine design has been modified for potential use as an artificial ventricle or ventricular assist device. The pump consists of a series of interconnected parallel disks placed within a spiral volute housing. This pump normally operates as a continuous flow device; however, a controller circuit has been developed to also allow for pulsatile operation. Frequency, systolic duration, systolic rise time, and diastolic decay time can be independently controlled to produce a wide range of pulsatile pressures and flows. This pumping system was tested in vitro on a mock circulatory system using a blood analogue. Inlet and outlet pressures, outlet flow, and motor rotations per minute were continually monitored over a wide range of physiologic operating conditions. The disk pump output was compared with that of other artificial ventricles and produced favorable results. Direct experimental comparisons were made with a Harvard Apparatus pulsatile piston pump. Unlike the Harvard pump, the disk pump does not use valves. Rather, a slight forward rotation of the disks is used to offset the adverse diastolic pressure gradient, which avoids backflow through the device. PMID:8338431
LIU Hou-lin; LIU Dong-xi; WANG Yong; WU Xian-fang; WANG Jian; DU Hui
2013-01-01
This paper studies the attached sheet cavitation in centrifugal pumps.A pump casted from Perspex is used as the test subject.The cavitation bubbles were observed in the entrance of the impeller and the drops of the head coefficients were measured under different operating conditions.A Filter-Based Model (FBM),derived from the RNG k-ε model,and a modified Zwart model are adopted in the numerical predictions of the unsteady cavitating flows in the pump.The simulations are carried out and the results are compared with experimental results for 3 different flow coefficients,from 0.077 to 0.114.Under four operating conditions,qualitative comparisons are made between experimental and numerical cavitation patterns,as visualized by a high-speed camera and described as isosurfaces of the vapour volume fraction αv =0.1.It is shown that the simulation can truly represent the development of the attached sheet cavitation in the impeller.At the same time,the curves for the drops of the head coefficients obtained from experiments and calculations are also quantitatively compared,which shows that the decline of the head coefficients at every flow coefficient is correctly captured,and the prediction accuracy is high.In addition,the detailed analysis is made on the vapour volume fraction contours on the plane of span is 0.5 and the loading distributions around the blade section at the midspan.It is shown that the FBM model and the modified Zwart model are effective for the numerical simulation of the cavitating flow in centrifugal pumps.The analysis results can also be used as the basis for the further research of the attached sheet cavitation and the improvement of centrifugal pumps.
Dynamic stress analysis of sewage centrifugal pump impeller based on two-way coupling method
Pei, Ji; Yuan, Shouqi; Yuan, Jianping
2014-03-01
Current research on the operational reliability of centrifugal pumps has mainly focused on hydrodynamic instability. However, the interaction between the fluid and structure has not been sufficiently considered; this interaction can cause vibration and dynamic stress, which can affect the reliability. In this study, the dynamic stresses in a single-blade centrifugal pump impeller are analysed under different operating conditions; the two-way coupling method is used to calculate the fluid-structure interaction. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations are solved with the SST k-ω turbulence model for the fluid in the whole flow passage, while transient structure dynamic analysis is used with the finite element method for the structure side. The dynamic stresses in the rotor system are computed according to the fourth strength theory. The stress results show that the highest stress is near the loose bearing and that the equivalent stress increases with the flow rate because the dynamic stresses are closely related to the pressure load. The stress distributions on the blade pressure side, suction side, leading edge, and trailing edge are each analysed for different flow rates; the highest stress distribution is found on the pressure side. On the blade pressure side, a relatively large stress is found near the trailing edge and hub side. Based on these results, a stress distribution prediction method is proposed for centrifugal pumps, which considers the interaction between the fluid and structure. The method can be used to check the dynamic stress at different flow rates when optimising the pump design to increase the pump reliability.
Primary formulation derivation indicates that the dimension of one existing centrifugal boiler circulation pump casing is too large. As great manufacture cost can be saved by dimension decrease, a numerical simulation research is developed in this paper on dimension decrease for annular casing of this pump with a specific speed equaling to 189, which aims at finding an appropriately smaller dimension of the casing while hydraulic performance and strength performance will hardly be changed according to the requirements of the cooperative company. The research object is one existing centrifugal pump with a diffuser and a semi-spherical annular casing, working as the boiler circulation pump for (ultra) supercritical units in power plants. Dimension decrease, the modification method, is achieved by decreasing the existing casing's internal radius (marked as Ri0) while keeping the wall thickness. The research analysis is based on primary formulation derivation, CFD (Computational Fluid Dynamics) simulation and FEM (Finite Element Method) simulation. Primary formulation derivation estimates that a design casing's internal radius should be less than 0.75 Ri0. CFD analysis indicates that smaller casing with 0.75 Ri0 has a worse hydraulic performance when working at large flow rates and a better hydraulic performance when working at small flow rates. In consideration of hydraulic performance and dimension decrease, an appropriate casing's internal radius is determined, which equals to 0.875 Ri0. FEM analysis then confirms that modified pump casing has nearly the same strength performance as the existing pump casing. It is concluded that dimension decrease can be an economical method as well as a practical method for large pumps in engineering fields.
Leme, Juliana; Fonseca, Jeison; Bock, Eduardo; da Silva, Cibele; da Silva, Bruno Utiyama; Dos Santos, Alex Eugênio; Dinkhuysen, Jarbas; Andrade, Aron; Biscegli, José F
2011-05-01
A new model of blood pump for cardiopulmonary bypass (CPB) application has been developed and evaluated in our laboratories. Inside the pump housing is a spiral impeller that is conically shaped and has threads on its surface. Worm gears provide an axial motion of the blood column. Rotational motion of the conical shape generates a centrifugal pumping effect and improves pumping performance. One annular magnet with six poles is inside the impeller, providing magnetic coupling to a brushless direct current motor. In order to study the pumping performance, a mock loop system was assembled. Mock loop was composed of Tygon tubes (Saint-Gobain Corporation, Courbevoie, France), oxygenator, digital flowmeter, pressure monitor, electronic driver, and adjustable clamp for flow control. Experiments were performed on six prototypes with small differences in their design. Each prototype was tested and flow and pressure data were obtained for rotational speed of 1000, 1500, 2000, 2500, and 3000 rpm. Hemolysis was studied using pumps with different internal gap sizes (1.35, 1.45, 1.55, and 1.7 mm). Hemolysis tests simulated CPB application with flow rate of 5 L/min against total pressure head of 350 mm Hg. The results from six prototypes were satisfactory, compared to the results from the literature. However, prototype #6 showed the best results. Best hemolysis results were observed with a gap of 1.45 mm, and showed a normalized index of hemolysis of 0.013 g/100 L. When combined, axial and centrifugal pumping principles produce better hydrodynamic performance without increasing hemolysis. PMID:21595709
Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles.
Song, Guoliang; Chua, Leok Poh; Lim, Tau Meng
2010-02-01
Computational fluid dynamic simulations of the flow in the Kyoto-NTN (Kyoto University, Kyoto, Japan) magnetically suspended centrifugal blood pump with a 16-straight-bladed impeller were performed in the present study. The flow in the pump was assumed as unsteady and turbulent, and blood was treated as a Newtonian fluid. At the impeller rotating speed of 2000 rpm and flow rate of 5 L/min, the pump produces a pressure head of 113.5 mm Hg according to the simulation. It was found that the double volute of the pump has caused symmetrical pressure distribution in the volute passages and subsequently caused symmetrical flow patterns in the blade channels. Due to the tangentially increasing pressure in the volute passages, the flow through the blade channels initially increases at the low-pressure region and then decreases due to the increased pressure. The reverse flow and vortices have been identified in the impeller blade channels. The high shear stress of the flow in the pump mainly occurred at the inlet and outlet of the blade channels, the beginning of the volute passages and the regions around the tips of the cutwater and splitter plate. Higher shear stress is obtained when the tips of the cutwater and splitter plate are located at the impeller blade trailing edges than when they are located at the middle of the impeller blade channel. It was found that the blood damage index assessed based on the blood corpuscle path tracing of the present pump was about 0.94%, which has the same order of magnitude as those of the clinical centrifugal pumps reported in the literature. PMID:19817732