Central black hole masses of galaxies
樊军辉
2003-01-01
In this paper, the stellar velocity dispersions in the host galaxies are used to estimate the central black hole masses for a sample of elliptical galaxies. We find that the central black hole masses are in the range of 10(5.5-9.5) M(○). Based on the estimated masses in this paper and those by Woo & Urry (2002) and the measured host galaxy absolute magnitude,a relation, log(MBH/M(○)) = -(0.25 ± 4.3 × 10-3)MR + (2.98 4 0.208) is found for central black hole mass and the host galaxy magnitude. Some discussions are presented.
Central black hole mass determination for blazars
Yuan Yu-Hai; Fan Jun-Hui; Huang Yong
2008-01-01
In this paper, we use a method to determine some basic parameters for the (r)-ray loud blazars. The parameters include the central black mass (M), the boosting factor (δ), the propagation angle (φ), the distance along the axis to the site of the (r)-ray production (d). A sample including 32 (r)-ray loud blazars with available variability time scaleshas been used to discuss the above properties. In this method, the (r)-ray energy, the emission size and the property of the accretion disc determine the absorption effect. If we take the intrinsic(γ)-ray luminosity to be λ Times the Eddington luminosity, I.e. Lin(r) =λLedd, then we have the following results: the mass of the black hole is in the range of (0.59 - 67.99) ⊙ (λ= 1.0) or (0.90 - 104.13) ⊙ (λ = 0.1); the boosting factor (δ) in the range of 0.16 - 2.09(λ=1.0) or 0.24 - 2.86 (λ=0.1); the angle (φ) in the range of 9.53 (λ =1.0) or 7.36°=0.1); and the distance (d/Rg) in the range of 22.39 - 609.36 (λ= 1.0) or 17.54 - 541.88 (λ = 0.1).
Observations are presented of the stellar rotation and velocity dispersion in M32. The projected rotation curve has an unresolved cusp at the center, with an amplitude of at least 60 km/s. The stellar velocity dispersion is constant at 56 + or - 5 km/s to a radius of 20 arcsec; a central bump in the observed dispersion is an artifact due to the rotation. The form of the rotation is such that isophotes have constant angular rotation velocity. The three-dimensional rotation field is modeled and the internal mean rotation of the stars around the center of M32 must reach at least 90 km/s at a radius of 2 pc. Hydrostatic equilibrium then requires 3-10 x 10 to the 6th solar masses of dark mass within the central parsec of M32. The possibility that M32 is undergoing core collapse and that this dark mass consists of dark stellar remnants is discussed, but ultimately rejected because the time scale for core collapse of M32 should be 2000 Hubble times. A more likely explanation of this dark mass, especially because of the presence of an X-ray point source at the center of M32, is a massive black hole. 37 references
Central black hole mass determination for blazers
In this paper, we use a method to determine some basic parameters for the γ-ray loud blazars. The parameters include the central black mass (M), the boosting factor (δ), the propagation angle (Φ), the distance along the axis to the site of the γ-ray production (d). A sample including 32 γ-ray loud blazars with available variability time scales has been used to discuss the above properties. In this method, the γ-ray energy, the emission size and the property of the accretion disc determine the absorption effect. If we take the intrinsic γ-ray luminosity to be λ times the Eddington luminosity, i.e. Lγin = λLEdd, then we have the following results: the mass of the black hole is in the range of (0.59 – 67.99) × 107Msun (λ = 1.0) or (0.90 – 104.13) × 107Msun (λ = 0.1); the boosting factor (δ) in the range of 0.16 – 2.09(λ = 1.0) or 0.24 – 2.86 (λ = 0.1); the angle (Φ) in the range of 9.53° – 73.85° (λ = 1.0) or 7.36° – 68.89° (λ = 0.1); and the distance (d/Rg) in the range of 22.39 – 609.36 (λ = 1.0) or 17.54 – 541.88 (λ = 0.1)
MASSIVE BLACK HOLES IN CENTRAL CLUSTER GALAXIES
We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central cluster galaxies (we will refer to these galaxies in general as ''CCGs''). Recently, the sample of MBHs in CCGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (MBH) deviate from the expected correlations with velocity dispersion (σ) and mass of the bulge (Mbulge) of the host galaxy: MBHs in CCGs appear to be ''overmassive''. This discrepancy is more pronounced when considering the MBH-σ relation than the MBH-Mbulge one. We show that this behavior stems from a combination of two natural factors: (1) CCGs experience more mergers involving spheroidal galaxies and their MBHs and (2) such mergers are preferentially gas poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors is in accordance with the trends observed in current data sets.
Models of galaxies with central black holes simulation methods
Sigurdsson, S; Quinlan, G D; Sigurdsson, Steinn; Hernquist, Lars; Quinlan, Gerald D
1994-01-01
We present a method for simulating numerically the effect of the adiabatic growth of black holes on the structure of elliptical galaxies. Using a parallel self--consistent field code, we add black holes to N--body realizations of model distribution functions for spherical galaxies, using a continuous mass--spectrum. The variable particle mass, combined with a simple multiple timestep integration scheme, makes it possible to evolve the models for many dynamical times with N \\sim 10^6-10^8, allowing high spatial and mass resolution. This paper discusses verification of the code using analytic models for spherical galaxies, comparing our numerical results of the effect of central black holes on the structure of the galaxies with previously published models. The intrinsic and projected properties of the final particle distribution, including higher order moments of the velocity distribution, permit comparison with observed characteristics of real galaxies, and constrain the masses of any central black holes prese...
Determining Central Black Hole Masses in Distant Active Galaxies
Vestergaard, Marianne
2002-01-01
An empirical relationship, of particular interest for studies of high redshift active galactic nuclei (AGNs) and quasars, between the masses of their central black-holes and rest-frame ultraviolet (UV) parameters measured in single-epoch AGN spectra is presented. This relationship is calibrated...... black-hole demographics at high redshift as well as to statistically study the fundamental properties of AGNs. The broad line region size - luminosity relationship is key to the calibrations presented here. The fact that its intrinsic scatter is also the main source of uncertainty in the calibrations...
Low-luminosity Active Galaxies and their Central Black Holes
Dong, X; Dong, Xiaoyi; Robertis, Michael M. De
2005-01-01
Central black hole masses for 118 spiral galaxies representing morphological stages S0/a through Sc and taken from the large spectroscopic survey of Ho, Filippenko & Sargent (1997) are derived using 2MASS Ks data. Black hole (BH) masses are found using a calibrated black-hole - Ks bulge luminosity relation, while bulge luminosities are measured using GALFIT, a two-dimensional bulge/disk decomposition routine. The BH masses are correlated against a variety of nuclear and host-galaxy properties. Nuclear properties such as line width and line ratios show a very high degree of correlation with BH mass. The excellent correlation with line-width supports the view that the emission-line gas is in virial equilibrium with either the BH or bulge potential. The very good emission-line ratio correlations may indicate a change in ionizing continuum shape with BH mass in the sense that more massive BHs generate harder spectra. Apart from the inclination-corrected rotational velocity, no excellent correlations are found...
The cloud of gas falling toward the central black hole in the milky way
Miralda-Escudé J.
2012-12-01
Full Text Available The cloud of gas that will pass within 200AU of the central black hole of our Galaxy in 2013 may be generated by a disk around an old, low-mass star that was created in a tidal encounter with one of the stellar black holes that are expected to accumulate in the central region of the stellar cusp.
Luminet, Jean-Pierre
1992-09-01
Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.
Stochastic Correlation Model of Galactic Bulge Velocity Dispersions and Central Black Holes Masses
Dokuchaev, V. I.; Eroshenko, Yu. N.
2002-01-01
We consider the cosmological model in which a part of the Universe \\Omega_h\\sim 10^-5 is in the form of primordial black holes with mass \\sim 10^5M_\\odot. These primordial black holes would be centers for growing protogalaxies which experienced multiple mergers with ordinary galaxies. This process of galaxies formation is accompanied by the merging of central black holes in the galactic nuclei. It is shown that recently discovered correlations between the central black holes and bulges of gal...
Galactic center research: manifestations of the central black hole
Mark R.Morris; Leo Meyer; Andrea M.Ghez
2012-01-01
This review summarizes a few of the frontiers of Galactic center research that are currently the focus of considerable activity and attention.It is aimed at providing a necessarily incomplete sketch of some of the timely work being done on phenomena taking place in,or originating in,the central few parsecs of the Galaxy,with particular attention to topics related to the Galactic black hole (GBH).We have chosen to expand on the following exciting topics:1) the characterization and the implications for the variability of emission from the GBH,2) the strong evidence for a powerful X-ray flare in the Galactic center within the past few hundred years,and the likelihood that the GBH is implicated in that event,3) the prospects for detecting the "shadow" of the GBH,4) an overview of the current state of research on the central S-star cluster,and what has been learned from the stellar orbits within that cluster,and 5) the current hypotheses for the origin of the G2 dust cloud that is projected to make a close passage by the GBH in 2013.
Hyper-accreting black hole as GRB central engine. I: Baryon loading in GRB jets
Lei, Wei-Hua; Zhang, Bing; Liang, En-Wei
2012-01-01
A hyper-accreting stellar-mass black hole has been long speculated as the best candidate of central engine of gamma-ray bursts (GRBs). Recent rich observations of GRBs by space missions such as Swift and Fermi pose new constraints on GRB central engine models. In this paper, we study the baryon loading processes of a GRB jet launched from a black hole central engine. We consider a relativistic jet powered by $\
Central charges and boundary fields for two dimensional dilatonic black holes
Pinamonti, N
2003-01-01
In this paper we first show that within the Hamiltonian description of general relativity, the central charge of a near horizon asymptotic symmetry group is zero, and therefore that the entropy of the system cannot be estimated using Cardy's formula. This is done by mapping a static black hole to a two dimensional plane. We explain how such a charge can only appear to a static observer who chooses to stay permanently outside the black hole. Then an alternative argument is given for the presence of a universal central charge. Finally we suggest an effective quantum theory on the horizon that is compatible with the thermodynamics behaviour of the black hole.
In a previous paper the authors analyzed an axisymmetric, nonstationary model of the central engine of an active galactic nucleus, consisting of a supermassive black hole surrounded by a magnetized accretion disk. The equations used were the equations of power output and angular momentum loss given by Macdonald and Thorne (1982), in which an axisymmetric, stationary model is described. In this paper, all the fundamental equations in a fully time-dependent manner and the electrodynamics of a black hole and its magnetosphere is investigated. Under the assumption that the mass accretion is confined to the equatorial plane of the black hole, the results suggest that, at the equatorial zone of the black hole, the angular velocity of the magnetic field lines anchored on the accreting matter must be close to that of the black hole. 21 references
Dualities in D=5, N=2 supergravity, black hole entropy, and AdS central charges
The issue of microstate counting for general black holes in D=5, N=2 supergravity coupled to vector multiplets is discussed from various viewpoints. The statistical entropy is computed for the near-extremal case by using the central charge appearing in the asymptotic symmetry algebra of AdS2. Furthermore, we show that the considered supergravity theory enjoys a duality invariance which connects electrically charged black holes and magnetically charged black strings. The near-horizon geometry of the latter turns out to be AdS3 x S2, which allows a microscopic calculation of their entropy using the Brown-Hennaux central charges in Cardy's formula. In both approaches we find perfect agreement between statistical and thermodynamical entropy. (orig.)
Unveiling Gargantua: A new search strategy for the most massive central cluster black holes
Brockamp, Michael; Britzen, Silke; Zensus, Anton
2016-01-01
We aim to unveil the most massive central cluster black holes in the universe. We present a new search strategy which is based on a black hole mass gain sensitive 'calorimeter' and which links the innermost stellar density profile of a galaxy to the adiabatic growth of its central SMBH. In a first step we convert observationally inferred feedback powers into SMBH growth rates by using reasonable energy conversion efficiency parameters, $\\epsilon$. In the main part of this paper we use these black hole growth rates, sorted in logarithmically increasing steps encompassing our whole parameter space, to conduct $N$-Body computations of brightest cluster galaxies with the newly developed MUESLI software. For the initial setup of galaxies we use core-Sersic models in order to account for SMBH scouring. We find that adiabatically driven core re-growth is significant at the highest accretion rates. As a result, the most massive black holes should be located in BCGs with less pronounced cores when compared to the pred...
ULTRAMASSIVE BLACK HOLE COALESCENCE
Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production
The central black hole masses for the γ-ray loud blazars
无
2010-01-01
The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST) provides an increase in sensitivity and has detected rapid variability of gamma-ray sources.The variability time scales detected from the gamma-ray loud blazars by LAT and EGRET,and gamma-ray luminosity are used to estimate the central black hole masses.In this work,we find that the lower limits of central black hole masses are in a range of (0.3-24)×107M⊙,which are compared with those obtained by other authors.Our results are consistent with other authors’ results.Also,the Lorentz factor,Γ,and the propagation angle,θ,are obtained for 18 blazars for which superluminal motions are known.
Stothers, R. B.; Ezer, D.
1972-01-01
Significant quantities that affect the internal structure of the sun are examined for factors that reduce the temperature near the sun's center. The four factors discussed are: opacity, central black hole, thermal instability, and additional neutrino sources.
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole
Are black holes totally black?
Grib, A A
2014-01-01
Geodesic completeness needs existence near the horizon of the black hole of "white hole" geodesics coming from the region inside of the horizon. Here we give the classification of all such geodesics with the energies $E/m \\le 1$ for the Schwarzschild and Kerr's black hole. The collisions of particles moving along the "white hole" geodesics with those moving along "black hole" geodesics are considered. Formulas for the increase of the energy of collision in the centre of mass frame are obtained and the possibility of observation of high energy particles arriving from the black hole to the Earth is discussed.
The connection between the formation of galaxies and that of their central supermassive black holes.
Haehnelt, Martin G
2005-03-15
Massive black holes appear to be an essential ingredient of massive galactic bulges but little is known yet to what extent massive black holes reside in dwarf galaxies and globular clusters. Massive black holes most likely grow by a mixture of merging and accretion of gas in their hierarchically merging host galaxies. While the hierarchical merging of dark matter structures extends to sub-galactic scales and very high redshift, it is uncertain if the same is true for the build-up of massive black holes. I discuss here some of the relevant problems and open questions. PMID:15681288
Nonstationary analogue black holes
We study the existence of analogue nonstationary spherically symmetric black holes. The prime example is the acoustic model see Unruh (1981 Phys. Rev. Lett. 46 1351). We consider also a more general class of metrics that could be useful in other physical models of analogue black and white holes. We give examples of the appearance of black holes and of disappearance of white holes. We also discuss the relation between the apparent and the event horizons for the case of analogue black holes. In the end we study the inverse problem of determination of black or white holes by boundary measurements for the spherically symmetric nonstationary metrics. (paper)
Hayward, Sean A.
2008-01-01
This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...
Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)
2007-11-15
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.
Strominger, Andrew
1993-01-01
The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather they obey an exotic variety of particle statistics known as ``infinite statist...
Gao, C. J.; Zhang, S. N.
2006-01-01
The exact solutions of electrically charged phantom black holes with the cosmological constant are constructed. They are labelled by the mass, the electrical charge, the cosmological constant and the coupling constant between the phantom and the Maxwell field. It is found that the phantom has important consequences on the properties of black holes. In particular, the extremal charged phantom black holes can never be achieved and so the third law of thermodynamics for black holes still holds. ...
Baker, John
2010-01-01
Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.
Levin, Janna; D'Orazio, Daniel
2016-03-01
Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.
Radio observations of NGC 6388: an upper limit on the mass of its central black hole
Cseh, D; Corbel, S; Kording, E; Coriat, M; Tzioumis, A; Lanzoni, B
2010-01-01
We present the results of deep radio observations with the Australia Telescope Compact Array (ATCA) of the globular cluster NGC 6388. We show that there is no radio source detected (with a r.m.s. noise level of 27 uJy) at the cluster centre of gravity or at the locations of the any of the Chandra X-ray sources in the cluster. Based on the fundamental plane of accreting black holes which is a relationship between X-ray luminosity, radio luminosity and black hole mass, we place an upper limit of 1500 M_sun on the mass of the putative intermediate-mass black hole located at the centre of NGC 6388. We discuss the uncertainties of this upper limit and the previously suggested black hole mass of 5700 M_sun based on surface density profile analysis.
EFFECTS OF CIRCUMNUCLEAR DISK GAS EVOLUTION ON THE SPIN OF CENTRAL BLACK HOLES
Maio, Umberto [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching b. Muenchen (Germany); Dotti, Massimo [Department of Physics of the University of Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Petkova, Margarita [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching b. Muenchen (Germany); Perego, Albino [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Volonteri, Marta [Institut d' Astrophysique de Paris, 98bis Boulevard Arago, F-75014 Paris (France)
2013-04-10
Mass and spin are the only two parameters needed to completely characterize black holes (BHs) in general relativity. However, the interaction between BHs and their environment is where complexity lies, as the relevant physical processes occur over a large range of scales. That is particularly relevant in the case of supermassive black holes (SMBHs), hosted in galaxy centers, and surrounded by swirling gas and various generations of stars. These compete with the SMBH for gas consumption and affect both dynamics and thermodynamics of the gas itself. How the behavior of such a fiery environment influences the angular momentum of the gas accreted onto SMBHs, and, hence, BH spins, is uncertain. We explore the interaction between SMBHs and their environment via first three-dimensional sub-parsec resolution simulations (ranging from {approx}0.1 pc to {approx}1 kpc scales) that study the evolution of the SMBH spin by including the effects of star formation, stellar feedback, radiative transfer, and metal pollution according to the proper stellar yields and lifetimes. This approach is crucial in investigating the impact of star formation processes and feedback effects on the angular momentum of the material that could accrete on the central hole. We find that star formation and feedback mechanisms can locally inject significant amounts of entropy in the surrounding medium, and impact the inflow inclination angles and Eddington fractions. As a consequence, the resulting trends show upper-intermediate equilibrium values for the spin parameter of a {approx_equal} 0.6-0.9, corresponding to radiative efficiencies {epsilon} {approx_equal} 9%-15%. These results suggest that star formation feedback taking place in the circumnuclear disk during the infall alone cannot induce very strong chaotic trends in the gas flow, quite independently from the different numerical parameters.
Clement, María E Gabach
2015-01-01
It is well known that celestial bodies tend to be spherical due to gravity and that rotation produces deviations from this sphericity. We discuss what is known and expected about the shape of black holes' horizons from their formation to their final, stationary state. We present some recent results showing that black hole rotation indeed manifests in the widening of their central regions, limits their global shapes and enforces their whole geometry to be close to the extreme Kerr horizon geometry at almost maximal rotation speed. The results depend only on the horizon area and angular momentum. In particular they are entirely independent of the surrounding geometry of the spacetime and of the presence of matter satisfying the strong energy condition. We also discuss the the relation of this result with the Hoop conjecture.
Galaxy Bulge Formation: Interplay with Dark Matter Halo and Central Supermassive Black Hole
Xu, B X; Zhao, H S; Xu, Bing-Xiao; Wu, Xue-Bing; Zhao, HongSheng
2007-01-01
We present a simple scenario where the formation of galactic bulges was regulated by the dark halo gravity and regulated the growth of the central supermassive black hole. Assuming the angular momentum is low, we suggest that bulges form in a runaway collapse due to the "gravothermal" instability once the central gas density or pressure exceeds certain threshold (Xu & Zhao 2007). We emphasize that the threshold is nearly universal, set by the background NFW dark matter gravity $g_{DM} \\sim 1.2 \\times 10^{-8}{\\rm cm} {\\rm sec}^{-2}$ in the central cusps of halos. Unlike known thresholds for gradual formation of galaxy disks, we show that the universal "halo-regulated" star formation threshold for spheroids matches the very high star formation rate and star formation efficiency shown in high-redshift observations of central starburst regions. The starburst feedback also builds up a pressure shortly after the collapse. This large pressure could both act outward to halt further infall of gas from larger scale...
Vestergaard, Marianne; Peterson, B. M.
2006-01-01
We present four improved empirical relationships useful for estimating the central black hole mass in nearby AGNs and distant luminous quasars alike using either optical or UV single-epoch spectroscopy. These mass-scaling relationships between line widths and luminosity are based on recently...
Merging galaxies and black hole ejections
Valtonen, M. J.
1990-01-01
In mergers of galaxies their central black holes are accumulated together. Researchers show that few black hole systems arise which decay through black hole collisions and black hole ejections. The ejection statistics are calculated and compared with two observed systems where ejections have been previously suggested: double radio sources and high redshift quasars near low redshift galaxies. In both cases certain aspects of the associations are explained by the merger hypothesis.
Stationary Scalar Clouds Around Rotating Black Holes
Hod, Shahar
2012-01-01
Motivated by novel results in the theory of wave dynamics in black-hole spacetimes, we analyze the dynamics of a massive scalar field surrounding a rapidly rotating Kerr black hole. In particular, we report on the existence of stationary (infinitely long-lived) regular field configurations in the background of maximally rotating black holes. The effective height of these scalar "clouds" above the central black hole is determined analytically. Our results support the possible existence of stat...
Stimulated Black Hole Evaporation
Spaans, Marco
2016-01-01
Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.
Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica
2016-01-01
Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.
Begelman, Mitchell C
2003-06-20
Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity. PMID:12817138
The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather, they obey an exotic variety of particle statistics known as ''infinite statistics'' which resembles that of distinguishable particles and is realized by a q deformation of the quantum commutation relations
Neves, J C S
2015-01-01
In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass terms. Using linear constraints in the energy-momentum tensor, the solutions are either regular or singular. That is, with this approach, it is possible to generate singular black holes from regular black holes and vice versa. Moreover, contrary to the Bardeen and Hayward regular solutions, the regular deformed metrics may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.
Šubr L.
2012-12-01
Full Text Available We further study the idea that a self-gravitating accretion disc around a supermassive black hole can increase the rate of gradual orbital decay of stellar trajectories (and hence tidal disruption events by setting some stars on eccentric trajectories. Cooperation between the gravitational field of the disc and the dissipative environment can provide a mechanism explaining the origin of stars that become bound tightly to the central black hole. We examine this process as a function of the black hole mass and conclude that it is most efficient for intermediate central masses of the order of ∼ 104Mʘ. Members of the cluster experience the stage of orbital decay via collisions with an accretion disc and by other dissipative processes, such as tidal effects, dynamical friction and the emission of gravitational waves. Our attention is concentrated on the region of gravitational dominance of the central body. Mutual interaction between stars and the surrounding environment establishes a non-spherical shape and anisotropy of the nuclear cluster. In some cases, the stellar sub-system acquires ring-type geometry. Stars of the nuclear cluster undergo a tidal disruption event as they plunge below the tidal radius of the supermassive black hole.
White holes and eternal black holes
We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)
White holes and eternal black holes
Stephen D. H. Hsu
2010-01-01
We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi- thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal.
Armen Yeranyan
2008-10-01
Full Text Available The general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing central charge Z and for Z = 0, are obtained for the so-called stu model, the minimal rank-3 N = 2 symmetric supergravity in d = 4 space-time dimensions. Comparisons with previous partial results, as well as the fake supergravity (first order formalism and an analysis of the marginal stability of corresponding D-brane configurations, are given.
Sgr A$^*$: a laboratory to measure the central black hole and cluster parameters
Nucita, A A; Ingrosso, G; Qadir, A; Zakharov, A F
2007-01-01
Several stars orbit around a black hole candidate of mass $3.7\\times 10^6$ M$_{\\odot}$, in the region of the Galactic Center (GC). Looking for General Relativistic (GR) periastron shifts is limited by the existence of a stellar cluster around the black hole that would modify the orbits due to classical effects that might mask the GR effect. Only if one knows the cluster parameters (its mass and core radius) it is possible to unequivocally deduce the GR effects expected and then test them. In this paper it is shown that the observation of the proper motion of Sgr A$^*$, $v_{Sgr A^*} = (0.4\\pm 0.9)$ km s$^{-1}$ (\\citealt{reid2004}), could help us to constrain the cluster parameters significantly and that future measurements of the periastron shifts for at least three stars may adequately determine the cluster parameters and the mass of the black hole.
Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for instance, the UK
Radio observations of NGC 6388: an upper limit on the mass of its central black hole
Cseh, D.; Kaaret, P.; Corbel, S.; Kording, E.; Coriat, M.; Tzioumis, A.; Lanzoni, B.
2010-01-01
We present the results of deep radio observations with the Australia Telescope Compact Array (ATCA) of the globular cluster NGC 6388. We show that there is no radio source detected (with a r.m.s. noise level of 27 uJy) at the cluster centre of gravity or at the locations of the any of the Chandra X-ray sources in the cluster. Based on the fundamental plane of accreting black holes which is a relationship between X-ray luminosity, radio luminosity and black hole mass, we place an upper limit o...
Formation of Supermassive Black Holes
Volonteri, Marta
2010-01-01
Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.
Noncommutative Singular Black Holes
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t - r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.
Noncommutative Singular Black Holes
Hamid Mehdipour, S.
2010-11-01
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t — r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.
Kragh, Helge Stjernholm
2016-01-01
Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....
Bousso, R.; Hawking, S. W.
1997-08-01
We summarise recent work on the quantum production of black holes in the inflationary era. We describe, in simple terms, the Euclidean approach used, and the results obtained both for the pair creation rate and for the evolution of the black holes.
Andersson, N
2000-01-01
This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.
Koustubh Ajit Kabe
2012-09-01
In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.
Kuchiev, M Yu
2003-01-01
Black holes are presumed to have an ideal ability to absorb and keep matter. Whatever comes close to the event horizon, a boundary separating the inside region of a black hole from the outside world, inevitably goes in and remains inside forever. This work shows, however, that quantum corrections make possible a surprising process, reflection: a particle can bounce back from the event horizon. For low energy particles this process is efficient, black holes behave not as holes, but as mirrors, which changes our perception of their physical nature. Possible ways for observations of the reflection and its relation to the Hawking radiation process are outlined.
Evolution of massive black holes
Volonteri, Marta
2007-01-01
Supermassive black holes are nowadays believed to reside in most local galaxies. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I'll discuss black hole formation processes that are likely to place at early cosmic epochs, and how massive black hole evolve in a hierarchical Universe...
Co-evolution of elliptical galaxies and their central black holes
After the discovery that supermassive black holes (SMBHs) are ubiquitous at the center of stellar spheroids and that their mass MBH, in the range 106M-109 M, is tightly related to global properties of the host stellar system, the idea of the co-evolution of elliptical galaxies and of their SMBHs has become a central topic of modern astrophysics. Here, I summarize some consequences that can be derived from the galaxy Scaling Laws (SLs) and present a coherent scenario for the formation and evolution of elliptical galaxies and their central SMBHs, focusing in particular on the establishment and maintenance of their SLs. In particular, after a first observationally based part, the discussion focuses on the physical interpretation of the Fundamental Plane. Then, two important processes in principle able to destroy the galaxy and SMBH SLs, namely galaxy merging and cooling flows, are analyzed. Arguments supporting the necessity to clearly distinguish between the origin and maintenance of the different SLs, and the unavoidable occurrence of SMBH feedback on the galaxy ISM in the late stages of galaxy evolution (when elliptical galaxies are sometimes considered as dead, red objects), are then presented. At the end of the paper I will discuss some implications of the recent discovery of super-dense ellipticals in the distant Universe. In particular, I will argue that, if confirmed, these new observations would lead to the conclusion that at early epochs a relation between the stellar mass of the galaxy and the mass of the central SMBH should hold, consistent with the present day Magorrian relation, while the proportionality coefficient between MBH and the scale of velocity dispersion of the hosting spheroids should be significantly smaller than that at the present epoch
Fluctuating Black Hole Horizons
Mei, Jianwei
2013-01-01
In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.
Hajdukovic, D
2006-01-01
We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.
Simulations of direct collisions of gas clouds with the central black hole
Alig, C.; Burkert, A.; Johansson, P. H.; Schartmann, M.
2011-03-01
We perform numerical simulations of clouds in the Galactic Centre (GC) engulfing the nuclear supermassive black hole and show that this mechanism leads to the formation of gaseous accretion discs with properties that are similar to the expected gaseous progenitor discs that fragmented into the observed stellar disc in the GC. As soon as the cloud hits the black hole, gas with opposite angular momentum relative to the black hole collides downstream. This process leads to redistribution of angular momentum and dissipation of kinetic energy, resulting in a compact gaseous accretion disc. A parameter study using 13 high-resolution simulations of homogeneous clouds falling on to the black hole and engulfing it in parts demonstrates that this mechanism is able to produce gaseous accretion discs that could potentially be the progenitor of the observed stellar disc in the GC. A comparison of simulations with different equations of state (adiabatic, isothermal and full cooling) demonstrates the importance of including a detailed thermodynamical description. However the simple isothermal approach already yields good results on the radial mass transfer and accretion rates, as well as disc eccentricities and sizes. We find that the cloud impact parameter strongly influences the accretion rate, whereas the impact velocity has a small effect on the accretion rate.
Stationary Scalar Clouds Around Rotating Black Holes
Hod, Shahar
2012-01-01
Motivated by novel results in the theory of wave dynamics in black-hole spacetimes, we analyze the dynamics of a massive scalar field surrounding a rapidly rotating Kerr black hole. In particular, we report on the existence of stationary (infinitely long-lived) regular field configurations in the background of maximally rotating black holes. The effective height of these scalar "clouds" above the central black hole is determined analytically. Our results support the possible existence of stationary scalar field dark matter distributions surrounding rapidly rotating black holes.
Relations Between Central Black Hole Mass and Total Galaxy Stellar Mass in the Local Universe
Reines, Amy E
2015-01-01
Scaling relations between central black hole (BH) mass and host galaxy properties are of fundamental importance to studies of BH and galaxy evolution throughout cosmic time. Here we investigate the relationship between BH mass and host galaxy total stellar mass using a sample of 262 broad-line active galactic nuclei (AGN) in the nearby Universe (z < 0.055), as well as 81 galaxies with dynamical BH masses. The vast majority of our AGN sample is constructed using Sloan Digital Sky Survey spectroscopy and searching for Seyfert-like narrow-line ratios and broad H-alpha emission. BH masses are estimated using standard virial techniques. We also include a small number of dwarf galaxies with total stellar masses M_stellar < 10^9.5 Msun and a sub-sample of the reverberation-mapped AGNs. Total stellar masses of all 343 galaxies are calculated in the most consistent manner feasible using color-dependent mass-to-light ratios. We find a clear correlation between BH mass and total stellar mass for the AGN host galax...
XMM-Newton reveals matter accreting onto the central supermassive black hole of NGC 2617
Giustini, M.
2016-06-01
NGC 2617 (z=0.042) underwent a strong broad-band outburst during 2013/14, concurrently switching from being a Seyfert 1.8 to be a Seyfert 1.0 sometimes during the previous 10 years. Thanks to the combination of the large effective area and the good spectral resolution of the EPIC-pn onboard XMM-Newton, striking insights about the very inner accretion flow of this AGN have been revealed. In particular, persistent Fe K absorption redshifted by ˜ 35,000 km/s was solidly detected in two observations spaced by one month: a highly ionised flow of mass toward the central supermassive black hole of NGC 2617 has started to be traced. So far NGC 2617 is a quasi-unique observational example: what are the perspectives of enlarging these studies in the future? Thanks to current large and prolonged optical surveys like the SDSS/BOSS, many "optically changing-look AGN" like NGC 2617 are being discovered month after month: XMM-Newton has the ideal instruments to perform a proper X-ray study of such objects in the near future. I will assess the impact of XMM-Newton on studying the dynamics of the inner accretion flow in AGN in a systematic way and in synergy with near- and mid-future X-ray instruments such as (ASTRO-H)Hitomi and ATHENA.
A combination of photographic and photoelectric photometry with the McDonald 2 m reflector is used to derive a precise mean luminosity profile μ/sub B/(r*) of M87 (jet excluded) at approx.0''.6 resolution out to r*=70''. Within 8'' from the center the luminosity is less than predicted by extrapolation of the r/sup 1/4/ law defined by the main body of the galaxy (8''0=30.5) the structural length of the underlying isothermal is α=2''.78=170 pc, the mass of the ''black hole'' M0 =1.7.109M/sub sun/ and the luminosity of the point source (B0 =16.95, M0=-13.55) equals 4.2% of the integrated luminosity B (6'') =13.52 of the galaxy within r*=6''. These results agree closely with and confirm the work of the Hale team. Comparison of the McDonald and Hale data suggests that the central source may have been slightly brighter (approx.0.5 mag) in 1964 than in 1975--1977
Georgiev, Iskren Y; Leigh, Natan; Lützgendorf, Nora; Neumayer, Nadine
2016-01-01
Galactic nuclei typically host either a Nuclear Star Cluster (NSC, prevalent in galaxies with masses $\\lesssim 10^{10}M_\\odot$) or a Massive Black Hole (MBH, common in galaxies with masses $\\gtrsim 10^{12}M_\\odot$). In the intermediate mass range, some nuclei host both a NSC and a MBH. In this paper, we explore scaling relations between NSC mass (${\\cal M}_{\\rm NSC}$) and host galaxy total stellar mass (${\\cal M}_{\\star,\\rm gal}$) using a large sample of NSCs in late- and early-type galaxies, including a number of NSCs harboring a MBH. Such scaling relations reflect the underlying physical mechanisms driving the formation and (co)evolution of these central massive objects. We find $\\sim\\!1.5\\sigma$ significant differences between NSCs in late- and early-type galaxies in the slopes and offsets of the relations $r_{\\rm eff,NSC}$--${\\cal M}_{\\rm NSC}$, $r_{\\rm eff, NSC}$--${\\cal M}_{\\star,\\rm gal}$ and ${\\cal M}_{\\rm NSC}$--${\\cal M}_{\\star,\\rm gal}$, in the sense that $i)$ NSCs in late-types are more compact at...
Ahn, Eun-Joo; Cavaglia, Marco
2003-01-01
Production of high-energy gravitational objects is a common feature of gravitational theories. The primordial universe is a natural setting for the creation of black holes and other nonperturbative gravitational entities. Cosmic black holes can be used to probe physical properties of the very early universe which would usually require the knowledge of the theory of quantum gravity. They may be the only tool to explore thermalisation of the early universe. Whereas the creation of cosmic black ...
2002-10-01
Star Orbiting Massive Milky Way Centre Approaches to within 17 Light-Hours [1] Summary An international team of astronomers [2], lead by researchers at the Max-Planck Institute for Extraterrestrial Physics (MPE) , has directly observed an otherwise normal star orbiting the supermassive black hole at the center of the Milky Way Galaxy. Ten years of painstaking measurements have been crowned by a series of unique images obtained by the Adaptive Optics (AO) NAOS-CONICA (NACO) instrument [3] on the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory. It turns out that earlier this year the star approached the central Black Hole to within 17 light-hours - only three times the distance between the Sun and planet Pluto - while travelling at no less than 5000 km/sec . Previous measurements of the velocities of stars near the center of the Milky Way and variable X-ray emission from this area have provided the strongest evidence so far of the existence of a central Black Hole in our home galaxy and, implicitly, that the dark mass concentrations seen in many nuclei of other galaxies probably are also supermassive black holes. However, it has not yet been possible to exclude several alternative configurations. In a break-through paper appearing in the research journal Nature on October 17th, 2002, the present team reports their exciting results, including high-resolution images that allow tracing two-thirds of the orbit of a star designated "S2" . It is currently the closest observable star to the compact radio source and massive black hole candidate "SgrA*" ("Sagittarius A") at the very center of the Milky Way. The orbital period is just over 15 years. The new measurements exclude with high confidence that the central dark mass consists of a cluster of unusual stars or elementary particles, and leave little doubt of the presence of a supermassive black hole at the centre of the galaxy in which we live . PR Photo 23a/02 : NACO image of the central region of the Milky Way
The Dynamics of Dense Stellar Systems with a Massive Central Black Hole
Gill, Michael A.
In this work, we explore the dynamics of two similar types of dense stellar systems with a central black hole of mass much greater than a typical stellar object. In particular, we use numerical N-body simulations to examine the effects that the massive black hole (MBH) has on the surrounding stars and compact objects as they pertain to indirectly observable signals. The first systems we consider are the highly uncertain cusps likely comprised of primarily massive compact objects that surround the MBHs at the center of typical galaxies. The gradual inspiral of a compact object by emission of gravitational radiation, called an extreme mass-ratio inspiral (EMRI), will produce a signal that falls in the peak detection range of the space-bound laser interferometer space antenna (LISA). Despite a veritable gold mine of astrophysical data that could be gleaned from such a detection, previous investigations in the literature have left the predicted rate of these events uncertain by several orders of magnitude. We present direct N-body simulations of the innermost ≤ 100 objects with the inclusion of the first-order Post-Newtonian correction with the aim of reducing one of the key uncertainties in the dynamics of these systems - the efficiency of resonant relaxation. We find that relativistic pericenter precession prevents a significant enhancement of the EMRI rate; the rate we derive during this work is consistent with those derived in the literature from less direct methods. We do find, however, that our EMRI progenitors originate from much closer to the MBH than previous investigations have suggested was likely. Our second investigation delves into the possibility of finding intermediate-mass black holes (IMBHs), with masses ˜ 102-4 Msun , at the center of dense star clusters. Because of the substantial investment of telescope time needed to perform the multiyear proper motion studies that are likely needed to achieve a definitive detection, careful selection of
Ciotti, L
2007-01-01
The importance of the radiative output from massive black holes at the centers of elliptical galaxies is not in doubt, given the well established relations among electromagnetic output, black hole mass and galaxy optical luminosity. We show how this AGN radiative output affects the hot ISM of an isolated elliptical galaxy with the aid of a high-resolution hydrodynamical code, where the cooling and heating functions include photoionization plus Compton heating. We find that radiative heating is a key factor in the self-regulated coevolution of massive black holes and their host galaxies and that 1) the mass accumulated by the central black hole is limited by feedback to the range observed today, and 2) relaxation instabilities occur so that duty cycles are small enough (~0.03) to account for the very small fraction of massive ellipticals observed to be in the "on" -QSO- phase, when the accretion luminosity approaches the Eddington luminosity. The duty cycle of the hot bubbles inflated at the galaxy center duri...
Ciotti, L.; Ostriker, J.P.; Proga, D.
2009-01-01
The importance of the radiative feedback from SMBHs at the centers of elliptical galaxies is not in doubt, given the well established relations among electromagnetic output, black hole mass and galaxy optical luminosity. In addition, feedback due to mechanical and thermal deposition of energy from jets and winds emitted by the accretion disk around the central SMBH is also expected to occur. In this paper we improve and extend the accretion and feedback physics explored in our previous papers...
Noncommutative Solitonic Black Hole
Chang-Young, Ee; Lee, Daeho; Lee, Youngone
2012-01-01
We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field using the Moyal product expanded up to first order in the noncommutativity parameter in the two noncommutative spatial directions. By numerical simulation we look for black hole solutions by increasing the non- commutativity parameter value starting from regular solutions with vanishing noncommutativity. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.
Hayward, Sean Alan
2013-01-01
Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn
Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)
2015-05-11
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Kleihaus, Burkhard; Yazadjiev, Stoytcho
2015-01-01
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
The central engine of quasars and AGNs - Scaling to solar mass black holes
Kazanas, D.
1988-01-01
The model of the previous paper (Ellison and Kazanas, hereafter EK) can be readily scaled to model systems with black holes 3-10 solar masses, such as those expected to exist in certain Galactic X-ray binaries. The model can account in a straightforward way for the bimodal behavior of Cyg X-1 and the other Galactic black hole candidates (White and Marshall 1984; White, et al., 1984). It is argued that the change in the spectrum with luminosity is due to the drastic increase of both the source compactness and luminosity with small changes in the accretion rate, and conversion of most of the energy into electron-positron pairs which render the source optically thick and modify its spectrum. It is also argued that similar effects may be observed in AGNs.
On Noncommutative Black Holes Thermodynamics
Faizal, Mir; Ulhoa, S C
2015-01-01
In this paper, we will analyze noncommutative deformation of the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and the noncommutative metrics using an Moyal product. We will also analyze the thermodynamics of these noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature of these black hole solutions.
The Thermodynamics of Black Holes
Wald Robert M.
2001-01-01
Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.
The Thermodynamics of Black Holes
Wald Robert M.
1999-01-01
We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.
The mass of the central black hole in the nearby Seyfert galaxy NGC 5273
We present the results of a reverberation-mapping program targeting NGC 5273, a nearby early-type galaxy with a broad-lined active galactic nucleus (AGN). Over the course of the monitoring program, NGC 5273 showed strong variability that allowed us to measure time delays in the responses of the broad optical recombination lines to changes in the continuum flux. A weighted average of these measurements results in a black hole mass determination of M BH = (4.7 ± 1.6) × 106 M ☉. An estimate of the size of the black hole sphere of influence in NGC 5273 puts it just at the limit of the resolution achievable with current ground-based large aperture telescopes. NGC 5273 is therefore an important future target for a black hole mass determination from stellar dynamical modeling, especially because it is the only nearby early-type galaxy hosting an AGN with a reverberation-based mass, allowing the best comparison for the masses determined from these two techniques.
The Mass of the Central Black Hole in the Nearby Seyfert Galaxy NGC5273
Bentz, Misty C; Bazhaw, Craig; Manne-Nicholas, Emily R; Ou-Yang, Benjamin J; Anderson, Matthew; Jones, Jeremy; Norris, Ryan P; Parks, J Robert; Saylor, Dicy; Teems, Katherine G; Turner, Clay
2014-01-01
We present the results of a reverberation-mapping program targeting NGC5273, a nearby early-type galaxy with a broad-lined active galactic nucleus. Over the course of the monitoring program, NGC5273 showed strong variability that allowed us to measure time delays in the responses of the broad optical recombination lines to changes in the continuum flux. A weighted average of these measurements results in a black hole mass determination of $M_{\\rm BH} = (4.7 \\pm 1.6) \\times 10^6$ M$_{\\odot}$. An estimate of the size of the black hole sphere of influence in NGC5273 puts it just at the limit of the resolution achievable with current ground-based large aperture telescopes. NGC5273 is therefore an important future target for a black hole mass determination from stellar dynamical modeling, especially because it is the only nearby early-type galaxy hosting an AGN with a reverberation-based mass, allowing the best comparison for the masses determined from these two techniques.
The mass of the central black hole in the nearby Seyfert galaxy NGC 5273
Bentz, Misty C.; Horenstein, Daniel; Bazhaw, Craig; Manne-Nicholas, Emily R.; Ou-Yang, Benjamin J.; Anderson, Matthew; Jones, Jeremy; Norris, Ryan P.; Parks, J. Robert; Saylor, Dicy; Teems, Katherine G.; Turner, Clay, E-mail: bentz@astro.gsu.edu [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Suite 600, Atlanta, GA 30303 (United States)
2014-11-20
We present the results of a reverberation-mapping program targeting NGC 5273, a nearby early-type galaxy with a broad-lined active galactic nucleus (AGN). Over the course of the monitoring program, NGC 5273 showed strong variability that allowed us to measure time delays in the responses of the broad optical recombination lines to changes in the continuum flux. A weighted average of these measurements results in a black hole mass determination of M {sub BH} = (4.7 ± 1.6) × 10{sup 6} M {sub ☉}. An estimate of the size of the black hole sphere of influence in NGC 5273 puts it just at the limit of the resolution achievable with current ground-based large aperture telescopes. NGC 5273 is therefore an important future target for a black hole mass determination from stellar dynamical modeling, especially because it is the only nearby early-type galaxy hosting an AGN with a reverberation-based mass, allowing the best comparison for the masses determined from these two techniques.
Ruffini, Remo; Wheeler, John A.
1971-01-01
discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)
In this review we shall concentrate on the application of the concept of black hole to different areas in astrophysics. Models in which this idea is involved are connected with basically two areas in astrophysics: a) The death of massive stars due to gravitational collapse. This process would lead to the formation of black holes with stellar masses (10-20 M sun). The detection of these kind of - objects is in principle possible, by means of studying the so-called X-ray binary system. b) Active nuclei of galaxies, including quasars as an extreme case. In this case, the best model available to explain the generation of the enormous amounts of energy observed as well as several other properties, is accretion into a supermassive black hole (106-1010 M sun) in the center. The problem of the origin of such black holes is related to cosmology. (author)
Topics in black hole evaporation
Two major aspects of particle creation by gravitational fields of black holes are studied: the neutrino emission from rotating black holes; and interactions between scalar particles emitted by a black hole. Neutrino emission is investigated under three topics: The asymmetry of the angular dependence of neutrino emission from rotating black holes; the production of a local matter excess by rotating black holes in a baryon symmetric universe; and cosmological magnetic field generation by neutrinos from evaporating black holes. Finally the author studies the effects of interactions on the black hole evaporation process
Stornaiolo, Cosimo
2001-01-01
In this paper we propose a model for the formation of the cosmological voids. We show that cosmological voids can form directly after the collapse of extremely large wavelength perturbations into low-density black holes or cosmological black holes (CBH). Consequently the voids are formed by the comoving expansion of the matter that surrounds the collapsed perturbation. It follows that the universe evolves, in first approximation, according to the Einstein-Straus cosmological model. We discuss...
No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references
Thermal corpuscular black holes
Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio
2015-01-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temp...
Black hole critical phenomena without black holes
Steven L Liebling
2000-10-01
Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I brieﬂy review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar
2015-05-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.
Black hole central engine for ultra-long gamma-ray burst 111209A and its associated supernova 2011kl
Gao, He; Lei, Wei-Hua; You, Zhi-Qiang; Xie, Wei
2016-01-01
Recently, the first association between an ultra-long gamma-ray burst (GRB) and a supernova is reported, i.e., GRB 111209A/SN 2011kl, which enables us to investigate the physics of central engines or even progenitors for ultra-long GRBs. In this paper, we inspect the broad-band data of GRB 111209A/SN 2011kl. The late-time X-ray lightcurve exhibits a GRB 121027A-like fall-back bump, suggesting a black hole central engine. We thus propose a collapsar model with fall-back accretion for GRB 11120...
Science Teacher, 2005
2005-01-01
Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…
Lützgendorf, Nora; Gebhardt, Karl; Baumgardt, Holger; Noyola, Eva; Jalali, Behrang; de Zeeuw, P Tim; Neumayer, Nadine
2012-01-01
Globular clusters are an excellent laboratory for stellar population and dynamical research. Recent studies have shown that these stellar systems are not as simple as previously assumed. With multiple stellar populations as well as outer rotation and mass segregation they turn out to exhibit high complexity. This includes intermediate-mass black holes which are proposed to sit at the centers of some massive globular clusters. Today's high angular resolution ground based spectrographs allow velocity-dispersion measurements at a spatial resolution comparable to the radius of influence for plausible IMBH masses, and to detect changes in the inner velocity-dispersion profile. Together with high quality photometric data from HST, it is possible to constrain black-hole masses by their kinematic signatures. We determine the central velocity-dispersion profile of the globular cluster NGC 2808 using VLT/FLAMES spectroscopy. In combination with HST/ACS data our goal is to probe whether this massive cluster hosts an int...
Cosmic censorship inside black holes
Thorlacius, L
2006-01-01
A simple argument is given that a traversable Cauchy horizon inside a black hole is incompatible with unitary black hole evolution. The argument assumes the validity of black hole complementarity and applies to a generic black hole carrying angular momentum and/or charge. In the second part of the paper we review recent work on the semiclassical geometry of two-dimensional charged black holes.
Bekenstein, Jacob D.
1997-01-01
In some respects the black hole plays the same role in gravitation that the atom played in the nascent quantum mechanics. This analogy suggests that black hole mass $M$ might have a discrete spectrum. I review the physical arguments for the expectation that black hole horizon area eigenvalues are uniformly spaced, or equivalently, that the spacing between stationary black hole mass levels behaves like 1/M. This sort of spectrum has also emerged in a variety of formal approaches to black hole ...
A New Model of Black Hole Formation
Thayer G. D.
2013-10-01
Full Text Available The formation of a black hole and its event horizon are described. Conclusions, which are the result of a thought experiment, show that Schwarzschild [1] was correct: A singularity develops at the event horizon of a newly-formed black hole. The intense gravitational field that forms near the event horizon results in the mass-energy of the black hole accumulating in a layer just inside the event horizon, rather than collapsing into a central singularity.
NONE
2002-02-01
Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for
Massive Black Holes and Galaxies
CERN. Geneva
2016-01-01
Evidence has been accumulating for several decades that many galaxies harbor central mass concentrations that may be in the form of black holes with masses between a few million to a few billion time the mass of the Sun. I will discuss measurements over the last two decades, employing adaptive optics imaging and spectroscopy on large ground-based telescopes that prove the existence of such a massive black hole in the Center of our Milky Way, beyond any reasonable doubt. These data also provide key insights into its properties and environment. Most recently, a tidally disrupting cloud of gas has been discovered on an almost radial orbit that reached its peri-distance of ~2000 Schwarzschild radii in 2014, promising to be a valuable tool for exploring the innermost accretion zone. Future interferometric studies of the Galactic Center Black hole promise to be able to test gravity in its strong field limit.
Disrupting Entanglement of Black Holes
Leichenauer, Stefan
2014-01-01
We study entanglement in thermofield double states of strongly coupled CFTs by analyzing two-sided Reissner-Nordstrom solutions in AdS. The central object of study is the mutual information between a pair of regions, one on each asymptotic boundary of the black hole. For large regions the mutual information is positive and for small ones it vanishes; we compute the critical length scale, which goes to infinity for extremal black holes, of the transition. We also generalize the butterfly effect of Shenker and Stanford to a wide class of charged black holes, showing that mutual information is disrupted upon perturbing the system and waiting for a time of order $\\log E/\\delta E$ in units of the temperature. We conjecture that the parametric form of this timescale is universal.
The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome ‘remnants’. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a ‘fuzzball’ structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole. - Highlights: ► The information paradox is a serious problem. ► To solve it we need to find ‘hair’ on black holes. ► In string theory we find ‘hair’ by the fuzzball construction. ► Fuzzballs help to resolve many other issues in gravity.
A relation of jet power to the central black hole and its accretion
Liu Xiang
2013-12-01
Full Text Available We have developed an integrated jet power formula in the context of the Blandford-Znajek and Blandford-Payne models, and applied this model to the Foschini sample. The result suggests that there is a positive correlation of the jet power versus the product of the disk luminosity and black hole mass within each type of source, and the di↵erent linear correlation slopes imply that the disk emissivity efficiency and/or the SMBH spin are quite di↵erent for FSRQs, BL Lacs and γ – NLS 1s.
A hyperaccreting stellar-mass black hole has been long speculated as the best candidate for the central engine of gamma-ray bursts (GRBs). Recent rich observations of GRBs by space missions such as Swift and Fermi pose new constraints on GRB central engine models. In this paper, we study the baryon-loading processes of a GRB jet launched from a black hole central engine. We consider a relativistic jet powered by ν ν-bar -annihilation or by the Blandford-Znajek (BZ) mechanism. We consider baryon loading from a neutrino-driven wind launched from a neutrino-cooling-dominated accretion flow. For a magnetically dominated BZ jet, we consider neutron drifting from the magnetic wall surrounding the jet and subsequent positron capture and proton-neutron inelastic collisions. The minimum baryon loads in both types of jet are calculated. We find that in both cases a more luminous jet tends to be more baryon poor. A neutrino-driven ''fireball'' is typically ''dirtier'' than a magnetically dominated jet, while a magnetically dominated jet can be much cleaner. Both models have the right scaling to interpret the empirical Γ-Liso relation discovered recently. Since some neutrino-driven jets have too much baryon loading as compared with the data, we suggest that at least a good fraction of GRBs should have a magnetically dominated central engine.
Hawking, S. W.
1996-03-01
One would expect spacetime to have a foamlike structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the nontrivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S2×S2 and K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S2×S2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix S/ that does not factorize into an S matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the θ angle of QCD is zero without having to invoke the problematical existence of a light axion. The picture of virtual black holes given here also suggests that macroscopic black holes will evaporate down to the Planck size and then disappear in the sea of virtual black holes.
Babichev, Eugeny; Hassaine, Mokhtar
2015-01-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...
The odd couple: quasars and black holes
Tremaine, Scott
2014-01-01
Quasars emit more energy than any other objects in the universe, yet are not much bigger than the solar system. We are almost certain that quasars are powered by giant black holes of up to $10^{10}$ times the mass of the Sun, and that black holes of between $10^6$ and $10^{10}$ solar masses---dead quasars---are present at the centers of most galaxies. Our own galaxy contains a black hole of $4.3\\times10^6$ solar masses. The mass of the central black hole appears to be closely related to other...
Galaxies of all Shapes Host Black Holes
2008-01-01
This artist's concept illustrates the two types of spiral galaxies that populate our universe: those with plump middles, or central bulges (upper left), and those lacking the bulge (foreground). New observations from NASA's Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores. Previously, astronomers thought that a galaxy without a bulge could not have a supermassive black hole. In this illustration, jets shooting away from the black holes are depicted as thin streams. The findings are reshaping theories of galaxy formation, suggesting that a galaxy's 'waistline' does not determine whether it will be home to a big black hole.
Nuclear Disk Formation by Direct Collisions of Gas Clouds with the Central Black Hole
Alig, Christian; Johansson, Peter H; Schartmann, Marc
2009-01-01
We simulate clouds in the Galactic Centre (GC) crossing over the black hole in parts and present this as a possible formation mechanism for the observed stellar disks in the GC through the redistribution of angular momentum by colliding material with opposite angular momentum. A parameter study using six high resolution simulations of an isothermal cloud of constant density falling onto the black hole and crossing over it in parts demonstrates that this mechanism is able to reproduce the observed disk properties in the GC. The evolution of the ensuing accretion disks is highly non-linear with the redistribution of the angular momentum through dissipative processes being a dominant effect. We analyse the resulting Toomre unstable, eccentric gaseous disk and show that this already yields a good comparison with the observed stellar disk size and eccentricity in the GC. The best simulation results in an outer radius of 1 pc, a mass of 10$^4$ M$_{\\sun}$ and an eccentricity of 0.24 for the Toomre unstable disk, whi...
Noncommutative black hole thermodynamics
We give a general derivation, for any static spherically symmetric metric, of the relation Th=(K/2π) connecting the black hole temperature (Th) with the surface gravity (K), following the tunneling interpretation of Hawking radiation. This derivation is valid even beyond the semi-classical regime, i.e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space-time. The effects of backreaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and backreaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746
General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a cold, stable remnant
Vaz, Cenalo; Wijewardhana, L. C. R.
2013-12-01
General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a "cold", stable remnant.
Centrella, Joan
2012-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics
Yang, Huan; Lehner, Luis
2014-01-01
We show that rapidly-spinning black holes can display turbulent gravitational behavior which is mediated by a new type of parametric instability. This instability transfers energy from higher temporal and azimuthal spatial frequencies to lower frequencies--- a phenomenon reminiscent of the inverse energy cascade displayed by 2+1-dimensional turbulent fluids. Our finding reveals a path towards gravitational turbulence for perturbations of rapidly-spinning black holes, and provides the first evidence for gravitational turbulence in an asymptotically flat spacetime. Interestingly, this finding predicts observable gravitational wave signatures from such phenomena in black hole binaries with high spins and gives a gravitational description of turbulence relevant to the fluid-gravity duality.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-01
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability—which is triggered above a certain perturbation amplitude threshold—akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies—a phenomenon reminiscent of the inverse cascade displayed by (2 +1 )-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πc(ℎ/2π)), where Φ∞≅2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
Noncommutative solitonic black hole
We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value. (paper)
Noncommutative solitonic black hole
Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone
2012-05-01
We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.
Hennigar, Robie A; Tjoa, Erickson
2016-01-01
We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Hawking, Stephen W.
1995-01-01
One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...
Aarseth, Sverre J
2007-01-01
We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.
Characterizing Black Hole Mergers
Baker, John; Boggs, William Darian; Kelly, Bernard
2010-01-01
Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.
Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.
1987-01-01
This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging.
This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging
Visser, M
1999-01-01
Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.
Good, Michael R R
2014-01-01
A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conjecture of maximum force in general relativity.
Horndeski black hole geodesics
Tretyakova, D A
2016-01-01
We examine geodesics for the scalar-tensor black holes in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits may not be present within some model parameters range. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations. We also present a new (although very similar to those previously known) solution, which contains the orbits we expect from a compact object, admits regular scalar field at the horizon and and can fit into the known stability criteria.
Black hole central engine for ultra-long gamma-ray burst 111209A and its associated supernova 2011kl
Gao, He; You, Zhi-Qiang; Xie, Wei
2016-01-01
Recently, the first association between an ultra-long gamma-ray burst (GRB) and a supernova is reported, i.e., GRB 111209A/SN 2011kl, which enables us to investigate the physics of central engines or even progenitors for ultra-long GRBs. In this paper, we inspect the broad-band data of GRB 111209A/SN 2011kl. The late-time X-ray lightcurve exhibits a GRB 121027A-like fall-back bump, suggesting a black hole central engine. We thus propose a collapsar model with fall-back accretion for GRB 111209A/SN 2011kl. The required model parameters, such as the total mass and radius of the progenitor star, suggest that the progenitor of GRB 111209A is more likely a Wolf-Rayet star instead of blue supergiant, and the central engine of this ultra-long burst is a black hole. The implications of our results is discussed.
Horowitz, Gary T.; Maldacena, Juan
2003-01-01
We propose that in quantum gravity one needs to impose a final state boundary condition at black hole singularities. This resolves the apparent contradiction between string theory and semiclassical arguments over whether black hole evaporation is unitary.
Quantum aspects of black holes
2015-01-01
Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.
Lyutikov, Maxim; McKinney, Jonathan C.
2011-10-01
The “no-hair” theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively “frozen in” the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πcℏ), where Φ∞≈2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole’s magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)
2011-09-22
A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.
Exact solutions of higher dimensional black holes
Tomizawa, Shinya
2011-01-01
We review exact solutions of black holes in higher dimensions, focusing on asymptotically flat black hole solutions and Kaluza-Klein type black hole solutions. We also summarize some properties which such black hole solutions reveal.
Black Hole Evaporation. A Survey
Benachenhou, Farid
1994-01-01
This thesis is a review of black hole evaporation with emphasis on recent results obtained for two dimensional black holes. First, the geometry of the most general stationary black hole in four dimensions is described and some classical quantities are defined. Then, a derivation of the spectrum of the radiation emitted during the evaporation is presented. In section four, a two dimensional model which has black hole solutions is introduced, the so-called CGHS model. These two dimensional blac...
Towards noncommutative quantum black holes
In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole
Towards Noncommutative Quantum Black Holes
Lopez-Dominguez, J. C.; Obregon, O.; Ramirez, C.; Sabido, M.
2006-01-01
In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole.
Black Hole: The Interior Spacetime
Ong, Yen Chin
2016-01-01
The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.
We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.
Black Holes in Higher Dimensions
In four space-time dimensions black holes of Einstein-Maxwell theory satisfy a number of theorems. In more than four space-time dimensions, however, some of the properties of black holes can change. In particular, uniqueness of black holes no longer holds. In five and more dimensions black rings arise. Thus in a certain region of the phase diagram there are three black objects with the same global charges present. Here we discuss properties of higher-dimensional vacuum and charged black holes, which possess a spherical horizon topology, and of vacuum and charged black rings, which have a ringlike horizon topology
Warped products and black holes
We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes
Warped products and black holes
Hong, S T
2005-01-01
We apply the warped product spacetime scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstr\\"om-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes.
Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others
1995-07-01
Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.
TIME SERIES ANALYSIS OF GAMMA-RAY BLAZARS AND IMPLICATIONS FOR THE CENTRAL BLACK-HOLE MASS
Nakagawa, Kenji; Mori, Masaki [Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)
2013-08-20
Radiation from the blazar class of active galactic nuclei (AGNs) exhibits fast time variability which is usually ascribed to instabilities in the emission region near the central supermassive black hole. The variability time scale is generally faster in higher energy region, and data recently provided by the Fermi Gamma-ray Space Telescope in the GeV energy band enable a detailed study of the temporal behavior of AGN. Due to its wide field-of-view in the scanning mode, most sky regions are observed for several hours per day and daily light curves of many AGNs have been accumulated for more than 4 yr. In this paper we investigate the time variability of 15 well-detected AGNs by studying the normalized power spectrum density of their light curves in the GeV energy band. One source, 3C 454.3, shows a specific time scale of 6.8 Multiplication-Sign 10{sup 5} s, and this value suggests, assuming the internal shock model, a mass for the central black hole of (10{sup 8}-10{sup 10}) M{sub Sun} which is consistent with other estimates. It also indicates the typical time interval of ejected blobs is (7-70) times the light crossing time of the Schwarzschild radius.
TIME SERIES ANALYSIS OF GAMMA-RAY BLAZARS AND IMPLICATIONS FOR THE CENTRAL BLACK-HOLE MASS
Radiation from the blazar class of active galactic nuclei (AGNs) exhibits fast time variability which is usually ascribed to instabilities in the emission region near the central supermassive black hole. The variability time scale is generally faster in higher energy region, and data recently provided by the Fermi Gamma-ray Space Telescope in the GeV energy band enable a detailed study of the temporal behavior of AGN. Due to its wide field-of-view in the scanning mode, most sky regions are observed for several hours per day and daily light curves of many AGNs have been accumulated for more than 4 yr. In this paper we investigate the time variability of 15 well-detected AGNs by studying the normalized power spectrum density of their light curves in the GeV energy band. One source, 3C 454.3, shows a specific time scale of 6.8 × 105 s, and this value suggests, assuming the internal shock model, a mass for the central black hole of (108-1010) M☉ which is consistent with other estimates. It also indicates the typical time interval of ejected blobs is (7-70) times the light crossing time of the Schwarzschild radius
Black holes, singularities and predictability
The paper favours the view that singularities may play a central role in quantum gravity. The author reviews the arguments leading to the conclusion, that in the process of black hole formation and evaporation, an initial pure state evolves to a final density matrix, thus signaling a breakdown in ordinary quantum dynamical evolution. Some related issues dealing with predictability in the dynamical evolution, are also discussed. (U.K.)
Rotating Brane World Black Holes
Modgil, Moninder Singh; Panda, Sukanta; Sengupta, Gautam
2001-01-01
A five dimensional rotating black string in a Randall-Sundrum brane world is considered. The black string intercepts the three brane in a four dimensional rotating black hole. The geodesic equations and the asymptotics in this background are discussed.
Growth of supermassive black holes, galaxy mergers and supermassive binary black holes
Komossa, S.; Baker, J G; Liu, F. K.
2016-01-01
The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the universe, and...
Observational Evidence for Black Holes
Narayan, Ramesh; McClintock, Jeffrey E.
2013-01-01
Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly corr...
Statistical mechanics of black holes
We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed
NASA Observatory Confirms Black Hole Limits
2005-02-01
The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first
Prisons of light : black holes
Ferguson, Kitty
What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.
Point mass Cosmological Black Holes
Firouzjaee, Javad T
2016-01-01
Real black holes in the universe are located in the expanding accelerating background which are called the cosmological black holes. Hence, it is necessary to model these black holes in the cosmological background where the dark energy is the dominant energy. In this paper, we argue that most of the dynamical cosmological black holes can be modeled by point mass cosmological black holes. Considering the de Sitter background for the accelerating universe, we present the point mass cosmological background in the cosmological de Sitter space time. Our work also includes the point mass black holes which have charge and angular momentum. We study the mass, horizons, redshift structure and geodesics properties for these black holes.
Compact Binaries in Star Clusters I - Black Hole Binaries Inside Globular Clusters
Downing, J. M. B.; Benacquista, M. J.; Giersz, M.; Spurzem, R.
2009-01-01
We study the compact binary population in star clusters, focusing on binaries containing black holes, using a self-consistent Monte Carlo treatment of dynamics and full stellar evolution. We find that the black holes experience strong mass segregation and become centrally concentrated. In the core the black holes interact strongly with each other and black hole-black hole binaries are formed very efficiently. The strong interactions, however, also destroy or eject the black hole-black hole bi...
Probing the spin of the central black hole in the galactic centre with secondary images
Jørgensen, Jonas Helboe; Hannestad, Steen
2016-01-01
This paper explores the possibility of determining the spin of the supermassive black hole (SMBH) in Sgr A*, by using secondary images of stars orbiting the SMBH. The photons propagate close to the SMBH and their trajectories probe the space time in a region where the spin of the SMBH is important. We find the appearance of spikes in the secondary image, which depends on the angular momentum and spin axis of the SMBH and study the specific case of the star S2 in detail. The spikes has a magnitude of $\\sim 29$ in the K-band and the required angular resolution is of order 15-20 $\\mu$as. The combination of these two requirements poses an extreme observational challenge, but might be possible with interferometric observations in the sub-mm regime. The next possible time frame for observing this effect on the star S2 is in the late 2017 and then it repeats with the period of the star.
Probing the spin of the central black hole in the Galactic Centre with secondary images
Jørgensen, Jonas Helboe; Bjælde, Ole Eggers; Hannestad, Steen
2016-06-01
This paper explores the possibility of determining the spin of the supermassive black hole (SMBH) in Sgr A* by using secondary images of stars orbiting the SMBH. The photons propagate close to the SMBH and their trajectories probe the space-time in a region where the spin of the SMBH is important. We find the appearance of spikes in the secondary image, which depends on the angular momentum and spin axis of the SMBH and study the specific case of the star S2 in detail. The spikes have a magnitude of ˜29 in the K band and the required angular resolution is of the order of 15-20 μas. The combination of these two requirements poses an extreme observational challenge, but might be possible with interferometric observations in the sub-mm regime. The next possible time frame for observing this effect on the star S2 is in the late 2017 and then it repeats with the period of the star.
Binary black hole accretion from a circumbinary disk: Gas dynamics inside the central cavity
We present the results of two-dimensional (2D) hydrodynamical simulations of circumbinary disk accretion using the finite-volume code DISCO. This code solves the 2D viscous Navier-Stokes equations on a high-resolution moving mesh which shears with the fluid flow, greatly reducing advection errors in comparison with a fixed grid. We perform a series of simulations for binary mass ratios in the range 0.026 ≤ q ≤ 1.0, each lasting longer than a viscous time so that we reach a quasi-steady accretion state. In each case, we find that gas is efficiently stripped from the inner edge of the circumbinary disk and enters the cavity along accretion streams, which feed persistent 'mini disks' surrounding each black hole. We find that for q ≳ 0.1, the binary excites eccentricity in the inner region of the circumbinary disk, creating an overdense lump which gives rise to enhanced periodicity in the accretion rate. The dependence of the periodicity on mass ratio may provide a method for observationally inferring mass ratios from measurements of the accretion rate. We also find that for all mass ratios studied, the magnitude of the accretion onto the secondary is sufficient to drive the binary toward larger mass ratio. This suggests a mechanism for biasing mass-ratio distributions toward equal mass.
Signature of an Intermediate-mass Black Hole in the Central Molecular Zone of Our Galaxy
Oka, Tomoharu; Mizuno, Reiko; Miura, Kodai; Takekawa, Shunya
2016-01-01
We mapped the high-velocity compact cloud CO-0.40-0.22 in 21 molecular lines in the 3 mm band using the Nobeyama Radio Observatory 45 m radio telescope. Eighteen lines were detected from CO-0.40-0.22. The map of each detected line shows that this cloud has a compact appearance (d ≃ 3 pc) and extremely broad velocity width (ΔV ≃ 100 km s-1). The mass and kinetic energy of CO-0.40-0.22 are estimated to be 103.6 M⊙ and 1049.7 erg, respectively. The representative position-velocity map along the major axis shows that CO-0.40-0.22 consists of an intense region with a shallow velocity gradient and a less intense high-velocity wing. Here, we show that this kinematical structure can be attributed to a gravitational kick to the molecular cloud caused by an invisible compact object with a mass of ˜105 M⊙. Its compactness and the absence of counterparts at other wavelengths suggest that this massive object is an intermediate-mass black hole.
Signature of an Intermediate-Mass Black Hole in the Central Molecular Zone of Our Galaxy
Oka, Tomoharu; Miura, Kodai; Takekawa, Shunya
2015-01-01
We mapped the high-velocity compact cloud CO-0.40-0.22 in 21 molecular lines in the 3 mm band using the Nobeyama Radio Observatory 45 m radio telescope. Eighteen lines were detected from CO-0.40-0.22. The map of each detected line shows that this cloud has a compact appearance (d=~3 pc) and extremely broad velocity width (DV=~100 km/s). The mass and kinetic energy of CO-0.40-0.22 are estimated to be 10^{3.6} M_sun and 10^{49.7} erg, respectively. The representative position-velocity map along the major axis shows that CO-0.40-0.22 consists of an intense region with a shallow velocity gradient and a less intense high-velocity wing. Here, we show that this kinematical structure can be attributed to a gravitational kick to the molecular cloud caused by an invisible compact object with a mass of ~10^5 M_sun. Its compactness and the absence of counterparts at other wavelengths suggest that this massive object is an intermediate-mass black hole.
Chamblin, A; Reall, H S
2000-01-01
Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.
Chamblin, A.; Hawking, S. W.; Reall, H. S.
2000-03-01
Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five-dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.
Black Holes in Higher Dimensions
Reall Harvey S.
2008-09-01
Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.
Bena, Iosif; Vercnocke, Bert
2012-01-01
We establish the relation between the structure governing supersymmetric and non-supersymmetric four- and five-dimensional black holes and multicenter solutions and Calabi-Yau flux compactifications of M-theory and type IIB string theory. We find that the known BPS and almost-BPS multicenter black hole solutions can be interpreted as GKP compactifications with (2,1) and (0,3) imaginary self-dual flux. We also show that the most general GKP compactification leads to new classes of BPS and non-BPS multicenter solutions. We explore how these solutions fit into N=2 truncations, and elucidate how supersymmetry becomes camouflaged. As a necessary tool in our exploration we show how the fields in the largest N=2 truncation fit inside the six-torus compactification of eleven-dimensional supergravity.
Bastos, C; Dias, N C; Prata, J N
2010-01-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity regime and it is shown that the wave function vanishes in this limit.
Noncommutative Solitonic Black Hole
Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone
2011-01-01
We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find t...
Infinitely Coloured Black Holes
Mavromatos, Nick E.; Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)
1999-01-01
We formulate the field equations for $SU(\\infty)$ Einstein-Yang-Mills theory, and find spherically symmetric black-hole solutions. This model may be motivated by string theory considerations, given the enormous gauge symmetries which characterize string theory. The solutions simplify considerably in the presence of a negative cosmological constant, particularly for the limiting cases of a very large cosmological constant or very small gauge field. The situation of an arbitrarily small gauge f...
This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)
Roberto Casadio(INFN, Bologna); Andrea Giugno; Octavian Micu; Alessio Orlandi
2015-01-01
We review some features of Bose–Einstein condensate (BEC) models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractiv...
Upper bound on the radii of black-hole photonspheres
One of the most remarkable predictions of the general theory of relativity is the existence of black-hole “photonspheres”, compact null hypersurfaces on which massless particles can orbit the central black hole. We prove that every spherically-symmetric asymptotically flat black-hole spacetime is characterized by a photonsphere whose radius is bounded from above by rγ⩽3M, where M is the total ADM mass of the black-hole spacetime. It is shown that hairy black-hole configurations conform to this upper bound. In particular, the null circular geodesic of the (bald) Schwarzschild black-hole spacetime saturates the bound
Slender Galaxy with Robust Black Hole
2008-01-01
This plot of data from NASA's Spitzer Space Telescope indicates that a flat, spiral galaxy called NGC 3621 has a feeding, supermassive black hole lurking within it -- a surprise considering that astronomers thought this particular class of super-thin galaxies lacked big black holes. The data were captured by Spitzer's infrared spectrograph, an instrument that cracks infrared light open to reveal the signatures of elements. In this case, the data, or spectrum, for NGC 3621, shows the signature of highly ionized neon -- a sure sign of an active, supermassive black hole. Only a black hole that is actively consuming gas and stars has enough energy to ionize neon to this state. The other features in this plot are polycyclic aromatic hydrocarbons and chlorine, produced in the gas surrounding stars. The results challenge current theories, which hold that supermassive black holes require the bulbous central bulges that poke out from many spiral galaxies to form and grow. NGC 3621 is the second disk galaxy without any bulge found to harbor a supermassive black hole; the first, found in 2003, is NGC 4395. Astronomers have also used Spitzer to find six other mega black holes in thin spirals with only minimal bulges. Together, the findings indicate that, for a galaxy, being plump in the middle is not a necessary condition for growing a rotund black hole.
Helfer, Adam D
2011-01-01
I review elements of the foundations of black-hole theory with attention to problematic issues, and describe some techniques which either seem to help with the difficulties or at least investigate their scope. The definition of black holes via event horizons has been problematic because it depends on knowing the global structure of space-time; often attempts to avoid this (e.g. apparent horizons) require knowledge of the interior geometry. I suggest studying instead the holonomy relating the exterior neighborhood of the incipient horizon to the regime of distant observers; at least in the spherically symmetric case, this holonomy will develop certain universal features, in principle observable from signals emitted from infalling objects. I discuss the theory of quantum fields in curved space-time, and the difficulties with Hawking's prediction of black-hole radiation. I then show that the usual, very natural, theory of quantum fields in curved space-time runs into difficulties when applied to measurement prob...
Lyutikov, Maxim
2011-01-01
The "no hair" theorem, a key result in General Relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the "no hair" theorem is not formally applicable for black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes $N_B = e \\Phi_\\infty /(\\pi c \\hbar)$, where $\\Phi_\\infty \\approx 2 \\pi^2 B_{NS} R_{NS}^3 /(P_{\\rm NS} c)$ is the initial magnetic flux through the hemisphere...
Thermal corpuscular black holes
Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio
2015-06-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number N of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy m (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω >m ). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding N -particle state can be collectively described by a single-particle wave function given by a superposition of a total ground state with energy M =N m and a Planckian distribution for E >M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave function for the system, we finally show the backreaction of modes with ω >m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.
Joint Formation of Supermassive Black Holes and Galaxies
Haehnelt, Martin G.
2003-01-01
The tight correlation between black hole mass and velocity dispersion of galactic bulges is strong evidence that the formation of galaxies and supermassive black holes are closely linked. I review the modeling of the joint formation of galaxies and their central supermassive black holes in the context of the hierarchical structure formation paradigm.
马振国
2002-01-01
Fe Kα lines are superimposed upon the x-ray continuum in most Seyfert(-like) active galactic nuclei (AGNs).By a data-fitting study, previous authors have claimed that the central black hole (BH) is either rotating ornon-rotating according to the thin disc model. We develop the disc model to the torus model to determine thereal spin of the BH. With formulations of the motion of both torus particles and photons near a BH in Kerrmetric, we simulate iron emission linesfrom a thin luminous torus. It is found that only spinning BH galaxiescan radiate observable profiles. The data-fitting to Fe lines of four AGNs observed by ASCA predicts that thecentral BH is spinning rapidly with the dimensionless specific angular momentum approaching the maximalvalueof 1.
Ciotti, L; Proga, D
2009-01-01
The importance of the radiative feedback from SMBHs at the centers of elliptical galaxies is not in doubt, given the well established relations among electromagnetic output, black hole mass and galaxy optical luminosity. In addition, feedback due to mechanical and thermal deposition of energy from jets and winds emitted by the accretion disk around the central SMBH is also expected to occur. In this paper we improve and extend the accretion and feedback physics explored in our previous papers to include also a physically motivated mechanical feedback. We study the evolution of an isolated elliptical galaxy with the aid of a high-resolution 1-D hydrodynamical code, where the cooling and heating functions include photoionization and Compton effects, and restricting to models which include only radiative or only mechanical feedback. We confirm that for Eddington ratios above 0.01 both the accretion and radiative output are forced by feedback effects to be in burst mode, so that strong intermittencies are expecte...
Angular Momentum of Dark Matter Black Holes
Frampton, Paul H
2016-01-01
The putative black holes which may constitute all the dark matter are described by a Kerr metric with only two parameters, mass M and angular momentum J. There has been little discussion of J since it plays no role in the upcoming attempt at detection by microlensing. Nevertheless J does play a central role in understanding the previous lack of detection, especially of CMB distortion. We explain why bounds previously derived from lack of CMB distortion are too strong for primordial black holes with J non-vanishing. Almost none of the dark matter black holes can be from stellar collapse, and nearly all are primordial, to avoid excessive CMB distortion.
Black holes in Born-Infeld extended new massive gravity
In this paper we find different types of black holes for the Born-Infeld extended new massive gravity. Our solutions include (un)charged warped (anti-)de Sitter black holes for four and six derivative expanded action. We also look at the black holes in unexpanded Born-Infeld action. In each case we calculate the entropy, angular momentum and mass of the black holes. We also find the central charges for the conformal field theory duals.
Stimulated emission and black holes
The probability of a black hole emitting m particles when n particles are incident on the black hole was first derived by Bekenstein and Meisels, and later, using a different method, by Panangaden and Wald. In another paper by Bekenstein, it was argued that black holes should have stimulated emission in all modes including the nonsuperradiant ones. In this paper, we use a model based on quantum field theory. We show that Bose-Einstein statistics enhances the probability for particles to scatter in the same direction. We also prove that a black hole is equivalent to a perfect blackbody surrounded by a mirror. In our model, the black hole does not exhibit stimulated emission in nonsuperradiant modes. We also compare the black hole to a gray body
Dvali, Gia
2013-01-01
According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.
Black Hole Masses are Quantized
Dvali, Gia; Mukhanov, Slava
2011-01-01
We give a simple argument showing that in any sensible quantum field theory the masses of black holes cannot assume continuous values and must be quantized. Our proof solely relies on Poincare-invariance of the asymptotic background, and is insensitive to geometric characteristics of black holes or other peculiarities of the short distance physics. Therefore, our results are equally-applicable to any other localized objects on asymptotically Poincare-invariant space, such as classicalons. By adding a requirement that in large mass limit the quantization must approximately account for classical results, we derive an universal quantization rule applicable to all classicalons (including black holes) in arbitrary number of dimensions. In particular, this implies, that black holes cannot emit/absorb arbitrarily soft quanta. The effect has phenomenological model-independent implications for black holes and other classicalons that may be created at LHC. We predict, that contrary to naive intuition, the black holes a...
According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers
Small black holes on cylinders
We find the metric of small black holes on cylinders, i.e. neutral and static black holes with a small mass in d-dimensional Minkowski space times a circle. The metric is found using an ansatz for black holes on cylinders proposed in J. High Energy Phys. 05, 032 (2002). We use the new metric to compute corrections to the thermodynamics which is seen to deviate from that of the (d+1)-dimensional Schwarzschild black hole. Moreover, we compute the leading correction to the relative binding energy which is found to be non-zero. We discuss the consequences of these results for the general understanding of black holes and we connect the results to the phase structure of black holes and strings on cylinders
Angular Momentum of Dark Matter Black Holes
Frampton, Paul H.
2016-01-01
The putative black holes which may constitute all the dark matter are described by a Kerr metric with only two parameters, mass M and angular momentum J. There has been little discussion of J since it plays no role in the upcoming attempt at detection by microlensing. Nevertheless J does play a central role in understanding the previous lack of detection, especially of CMB distortion. We explain why bounds previously derived from lack of CMB distortion are too strong for primordial black hole...
Information Storage in Black Holes
Maia, M. D.
2005-01-01
The information loss paradox for Schwarzschild black holes is examined, using the ADS/CFT correspondence extended to the $M_6 (4,2)$ bulk. It is found that the only option compatible with the preservation of the quantum unitarity is when a regular remnant region of the black hole survives to the black hole evaporation process, where information can be stored and eventually retrieved.
Origin of supermassive black holes
Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.
2007-01-01
The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...
In this talk, I present and discuss a number of attempts to construct black hole solutions in models with Warped Extra Dimensions. Then, a contact is made with models with Large Extra Dimensions, where black-hole solutions are easily constructed - here the focus will be on the properties of microscopic black holes and the possibility of using phenomena associated with them, such as the emission of Hawking radiation, to discover fundamental properties of our spacetime.
Casadio, Roberto; Giugno, Andrea; Micu, Octavian; Orlandi, Alessio
2015-10-01
We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a discrete ground state of energy $m$ (the bosons forming the black hole), and a continuous spectrum with energy $\\omega > m$ (representing the Hawking radiation and modelled with a Planckian distribution at the expected Hawking temperature). The $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M = N m$ and a Planckian distribution for $E > M$ at the same Hawking temperature. The partition function is then found to yield the usual area law for the entropy, with a logarithmic correction related with the Hawking component. The backreaction of modes with $\\omega > m$ is also shown to reduce the Hawking flux and the evaporation properly stops for vanishing mass.
Caged black holes: Black holes in compactified spacetimes. I. Theory
In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes
Black holes and the multiverse
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
Statistical Hair on Black Holes
The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society
How black holes saved relativity
Prescod-Weinstein, Chanda
2016-02-01
While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.
Thermodynamics of Accelerating Black Holes
Appels, Michael; Kubiznak, David
2016-01-01
We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.
I. Cabrera-Munguia
2015-04-01
Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.
Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N.
2010-04-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
Bastos, C; Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)
2010-04-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, {eta}. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
Roberto Casadio
2015-10-01
Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce
Holographic Black Hole Chemistry
Karch, Andreas
2015-01-01
Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation. We show that this relation can easily be understood from the point of view of the dual holographic field theory. It amounts to the simple statement that the extensive thermodynamic quantities of a large $N$ gauge theory only depend on the number of colors, $N$, via an overall factor of $N^2$.
Locking information in black holes.
Smolin, John A; Oppenheim, Jonathan
2006-03-01
We show that a central presumption in the debate over black-hole information loss is incorrect. Ensuring that information not escape during evaporation does not require that it all remain trapped until the final stage of the process. Using the recent quantum information-theoretic result of locking, we show that the amount of information that must remain can be very small, even as the amount already radiated is negligible. Information need not be additive: A small system can lock a large amount of information, making it inaccessible. Only if the set of initial states is restricted can information leak. PMID:16606164
Georgiev, Iskren Y.; Böker, Torsten; Leigh, Nathan; Lützgendorf, Nora; Neumayer, Nadine
2016-04-01
Galactic nuclei typically host either a nuclear star cluster (NSC, prevalent in galaxies with masses ≲1010 M⊙) or a massive black hole (MBH, common in galaxies with masses ≳1012 M⊙). In the intermediate-mass range, some nuclei host both an NSC and an MBH. In this paper, we explore scaling relations between NSC mass (M_NSC) and host-galaxy total stellar mass (M_{star ,gal}) using a large sample of NSCs in late- and early-type galaxies, including a number of NSCs harbouring an MBH. Such scaling relations reflect the underlying physical mechanisms driving the formation and (co)evolution of these central massive objects. We find ˜1.5σ significant differences between NSCs in late- and early-type galaxies in the slopes and offsets of the relations reff,NSC-M_NSC, reff,NSC-M_{star ,gal} and M_NSC-M_{star ,gal}, in the sense that (i) NSCs in late types are more compact at fixed M_NSC and M_{star ,gal}; and (ii) the M_NSC-M_{star ,gal} relation is shallower for NSCs in late types than in early types, similar to the M_BH-M_{star ,bulge} relation. We discuss these results in the context of the (possibly ongoing) evolution of NSCs, depending on host-galaxy type. For NSCs with an MBH, we illustrate the possible influence of an MBH on its host NSC, by considering the ratio between the radius of the MBH sphere of influence and reff,NSC. NSCs harbouring a sufficiently massive black hole are likely to exhibit surface brightness profile deviating from a typical King profile.
Casadio, Roberto; Micu, Octavian; Orlandi, Alessio
2015-01-01
We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a...
Thermal corpuscular black holes
Casadio, Roberto; Orlandi, Alessio
2015-01-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M=N\\,m$ and a Planckian distribution for $E>M$ at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction preci...
Hawking, Stephen William
1996-01-01
One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S^2\\times S^2 and K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S^2\\times S^2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix \\ that does not factorise into an S matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the \\theta angle of QCD is zero without having to invoke the problematical existence of a light axion. The pic...
Black hole thermodynamical entropy
Tsallis, Constantino [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Santa Fe Institute, Santa Fe, NM (United States); Cirto, Leonardo J.L. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil)
2013-07-15
As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S{sub BG} of a (3+1) black hole is proportional to its area L{sup 2} (L being a characteristic linear length), and not to its volume L{sup 3}. Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S{sub BG} is proportional to lnL if d=1, and to L{sup d-1} if d>1, instead of being proportional to L{sup d} (d {>=} 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)
Belloni, T M
2016-01-01
The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...
Quantum black hole evaporation
Schoutens, K; Verlinde, Erik; Schoutens, Kareljan; Verlinde, Erik; Verlinde, Herman
1993-01-01
We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to deriv...
Supermassive Black Hole Binaries as Galactic Blenders
Kandrup, H E; Terzic, B; Bohn, C L; Kandrup, Henry E.; Sideris, Ioannis V.; Terzic, Balsa; Bohn, Courtlandt L.
2003-01-01
This paper focuses on the dynamical implications of close supermassive black hole binaries both as an example of resonant phase mixing and as a potential explanation of inversions and other anomalous features observed in the luminosity profiles of some elliptical galaxies. The presence of a binary comprised of black holes executing nearly periodic orbits leads to the possibility of a broad resonant coupling between the black holes and various stars in the galaxy. This can result in efficient chaotic phase mixing and, in many cases, systematic increases in the energies of stars and their consequent transport towards larger radii. Allowing for the presence of a supermassive black hole binary with plausible parameter values near the center of a spherical, or nearly spherical, galaxy characterised initially by a Nuker density profile enables one to reproduce in considerable detail the central surface brightness distributions of such galaxies as NGC 3706.
Area spectrum of slowly rotating black holes
Myung, Yun Soo
2010-01-01
We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.
Spacetime Duality of BTZ Black Hole
Ho, Jeongwon; Kim, Won T.; Park, Young-Jai
1999-01-01
We consider the duality of the quasilocal black hole thermodynamics, explicitly the quasilocal black hole thermodynamic first law, in BTZ black hole solution as a special one of the three-dimensional low energy effective string theory.
What, no black hole evaporation
Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)
Nonlinear Electrodynamics and black holes
Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo
2007-01-01
It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.
Vestergaard, Marianne
2004-01-01
The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....
Can Black Hole Relax Unitarily?
Solodukhin, S N
2004-01-01
We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.
Quantum black hole without singularity
Kiefer, Claus
2015-01-01
We discuss the quantization of a spherical dust shell in a rigorous manner. Classically, the shell can collapse to form a black hole with a singularity. In the quantum theory, we construct a well-defined self-adjoint extension for the Hamilton operator. As a result, the evolution is unitary and the singularity is avoided. If we represent the shell initially by a narrow wave packet, it will first contract until it reaches the region where classically a black hole would form, but then re-expands to infinity. In a way, the state can be interpreted as a superposition of a black hole with a white hole.
Supersymmetric black holes in string theory
Mohaupt, T.
2007-01-01
We review recent developments concerning supersymmetric black holes in string theory. After a general introduction to the laws of black hole mechanics and to black hole entropy in string theory, we discuss black hole solutions in N=2 supergravity, special geometry, the black hole attractor equations and the underlying variational principle. Special attention is payed to the crucial role of higher derivative corrections. Finally we discuss black hole partition functions and their relation to t...
Prisons of Light - Black Holes
Ferguson, Kitty
1998-05-01
In this jargon-free review of one of the most fascinating topics in modern science, acclaimed science writer Kitty Ferguson examines the discovery of black holes, their nature, and what they can teach us about the mysteries of the universe. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light--Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.
Black Holes and Galaxy Metamorphosis
Holley-Bockelmann, K
2001-01-01
Supermassive black holes can be seen as an agent of galaxy transformation. In particular, a supermassive black hole can cause a triaxial galaxy to evolve toward axisymmetry by inducing chaos in centrophilic orbit families. This is one way in which a single supermassive black hole can induce large-scale changes in the structure of its host galaxy -- changes on scales far larger than the Schwarzschild radius ($O(10^{-5}) \\rm{pc}$) and the radius of influence of the black hole ($O(1)-O(100) \\rm{pc}$). We will discuss the transformative power of supermassive black holes in light of recent high resolution N-body realizations of cuspy triaxial galaxies.
Black holes and the multiverse
Garriga, Jaume; Zhang, Jun
2015-01-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive blac...
Quantum strings and black holes
Damour, Thibault Marie Alban Guillaume
2001-01-01
The transition between (non supersymmetric) quantum string states and Schwarzschild black holes is discussed. This transition occurs when the string coupling $g^2$ (which determines Newton's constant) increases beyond a certain critical value $g_c^2$. We review a calculation showing that self-gravity causes a typical string state of mass $M$ to shrink, as the string coupling $g^2$ increases, down to a compact string state whose mass, size, entropy and luminosity match (for the critical value $g_c^2 \\sim (M \\sqrt{\\alpha'})^{-1}$) those of a Schwarzschild black hole. This confirms the idea (proposed by several authors) that the entropy of black holes can be accounted for by counting string states. The level spacing of the quantum states of Schwarzschild black holes is expected to be exponentially smaller than their radiative width. This makes it very difficult to conceive (even Gedanken) experiments probing the discreteness of the quantum energy levels of black holes.
The quantum gravitational black hole is neither black nor white
Singh, T P; Vaz, Cenalo
2004-01-01
Understanding the end state of black hole evaporation, the microscopic origin of black hole entropy, the information loss paradox, and the nature of the singularity arising in gravitational collapse - these are outstanding challenges for any candidate quantum theory of gravity. Recently, a midisuperspace model of quantum gravitational collapse has been solved using a lattice regularization scheme. It is shown that the mass of an eternal black hole follows the Bekenstein spectrum, and a related argument provides a fairly accurate estimate of the entropy. The solution also describes a quantized mass-energy distribution around a central black hole, which in the WKB approximation, is precisely Hawking radiation. The leading quantum gravitational correction makes the spectrum non-thermal, thus providing a plausible resolution of the information loss problem.
Black Hole Atom as a Dark Matter Particle Candidate
V. I. Dokuchaev
2014-01-01
Full Text Available We propose the new dark matter particle candidate—the “black hole atom,” which is an atom with the charged black hole as an atomic nucleus and electrons in the bound internal quantum states. As a simplified model we consider the the central Reissner-Nordström black hole with the electric charge neutralized by the internal electrons in bound quantum states. For the external observers these objects would look like the electrically neutral Schwarzschild black holes. We suppose the prolific production of black hole atoms under specific conditions in the early universe.
Black Hole Atom as a Dark Matter Particle Candidate
We propose the new dark matter particle candidate—the “black hole atom,” which is an atom with the charged black hole as an atomic nucleus and electrons in the bound internal quantum states. As a simplified model we consider the the central Reissner-Nordström black hole with the electric charge neutralized by the internal electrons in bound quantum states. For the external observers these objects would look like the electrically neutral Schwarzschild black holes. We suppose the prolific production of black hole atoms under specific conditions in the early universe
Bini, Donato; Bittencourt, Eduardo; Geralico, Andrea; Jantzen, Robert T.
2015-04-01
A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand, properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.
Bini, Donato; Geralico, Andrea; Jantzen, Robert T
2015-01-01
A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.
Black Holes Have Simple Feeding Habits
2008-06-01
The biggest black holes may feed just like the smallest ones, according to data from NASA’s Chandra X-ray Observatory and ground-based telescopes. This discovery supports the implication of Einstein's relativity theory that black holes of all sizes have similar properties, and will be useful for predicting the properties of a conjectured new class of black holes. The conclusion comes from a large observing campaign of the spiral galaxy M81, which is about 12 million light years from Earth. In the center of M81 is a black hole that is about 70 million times more massive than the Sun, and generates energy and radiation as it pulls gas in the central region of the galaxy inwards at high speed. In contrast, so-called stellar mass black holes, which have about 10 times more mass than the Sun, have a different source of food. These smaller black holes acquire new material by pulling gas from an orbiting companion star. Because the bigger and smaller black holes are found in different environments with different sources of material to feed from, a question has remained about whether they feed in the same way. Using these new observations and a detailed theoretical model, a research team compared the properties of M81's black hole with those of stellar mass black holes. The results show that either big or little, black holes indeed appear to eat similarly to each other, and produce a similar distribution of X-rays, optical and radio light. AnimationMulti-wavelength Images of M81 One of the implications of Einstein's theory of General Relativity is that black holes are simple objects and only their masses and spins determine their effect on space-time. The latest research indicates that this simplicity manifests itself in spite of complicated environmental effects. "This confirms that the feeding patterns for black holes of different sizes can be very similar," said Sera Markoff of the Astronomical Institute, University of Amsterdam in the Netherlands, who led the study
Karas, Vladimír; Šubr, L.
Les Ulis: EDP Sciences, 2012 - (Saxton, R.), 01003/1-01003/4. (EPJ Web of Conferences. 39). ISSN 2100-014X. [Tidal Disruption Events and AGN Outbursts. Madrid (ES), 25.6.2012-27.6.2012] Institutional support: RVO:67985815 Keywords : black hole s * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
Chandra Data Reveal Rapidly Whirling Black Holes
2008-01-01
A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large
Estimating Black Hole Masses of Blazars
Xue-Bing Wu; F. K. Liu; M. Z. Kong; R. Wang; J. L. Han
2011-03-01
Estimating black hole masses of blazars is still a big challenge. Because of the contamination of jets, using the previously suggested size–continuum luminosity relation can overestimate the broad line region (BLR) size and black hole mass for radio-loud AGNs, including blazars. We propose a new relation between the BLR size and emission line luminosity and present evidences for using it to get more accurate black hole masses of radio-loud AGNs. For extremely radio-loud AGNs such as blazars with weak/absent emission lines, we suggest the use of fundamental plane relation of their elliptical host galaxies to estimate the central velocity dispersions and black hole masses, if their velocity dispersions are not known but the host galaxies can be mapped. The black hole masses of some well-known blazars, such as OJ 287, AO 0235+164 and 3C 66B are obtained using these two methods and the – relation. The implications of their black hole masses on other related studies are also discussed.
Rafferty, D A; Nulsen, P E J; Wise, M W
2006-01-01
We present an analysis of the growth of black holes through accretion and bulges through star formation in 33 galaxies at the centers of cooling flows. Most of these systems show evidence of cavities in the intracluster medium (ICM) inflated by radio jets emanating from their active galactic nuclei (AGN). We present a new and extensive analysis of X-ray cavities in these systems. We find that AGN are energetically able to balance radiative losses (cooling) from the ICM in more than half of our sample. Using a subsample of 17 systems, we examine the relationship between cooling and star formation. We find that the star formation rates are approaching or are comparable to X-ray and far UV limits on the rates of gas condensation onto the central galaxy. The remaining radiative losses could be offset by AGN feedback. The vast gulf between radiative losses and the sink of cooling material, which has been the primary objection to cooling flows, has narrowed and, in some cases, is no longer a serious issue. Using th...
Lu, Y.; Cheng, K. S.; Zhang, S. N.
2003-01-01
A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole (BH) harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify the accretion rate in the disk and separate the accretion flows of the disk into three different phases, like an S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of the S-shaped instability, and the faint or 'dormant' quasars are simply these systems in the lower branch. The middle branch is the transition state, which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solution (ADIOS) configuration in the stable lower branch of the S-shaped instability, and the Eddington accretion rate is used to constrain the accretion rate in the highly active phase. The mass ratio between a BH and its host galactic bulge is a natural consequence of an ADIOS. Our model also demonstrates that a seed BH approx. 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a BH with a final mass of approx. 2 x 10(exp 8) solar masses.
Brok, Mark den; Barth, Aaron J; Carson, Daniel J; Neumayer, Nadine; Cappellari, Michele; Debattista, Victor P; Ho, Luis C; Hood, Carol E; McDermid, Richard M
2015-01-01
NGC 4395 is a bulgeless spiral galaxy, harboring one of the nearest known type 1 Seyfert nuclei. Although there is no consensus on the mass of its central engine, several estimates suggest it to be one of the lightest massive black holes (MBHs) known. We present the first direct dynamical measurement of the mass of this MBH from a combination of two-dimensional gas kinematic data, obtained with the adaptive optics assisted near infrared integral field spectrograph Gemini/NIFS, and high-resolution multiband photometric data from Hubble Space Telescope's Wide Field Camera 3 (HST/WFC3). We use the photometric data to model the shape and stellar mass-to-light ratio (M/L) of the nuclear star cluster. From the Gemini/NIFS observations, we derive the kinematics of warm molecular hydrogen gas as traced by emission through the H$_2$ 1--0 S(1) transition. These kinematics show a clear rotational signal, with a position angle orthogonal to NGC 4395's radio jet. Our best fitting tilted ring models of the kinematics of th...
Krajnovic, Davor; Cappellari, Michele; Davies, Roger L
2009-01-01
[abridged] We present observations of NGC524 and NGC2549 with LGS AO obtained at GEMINI North telescope using the NIFS IFU in the K band. The purpose of these observations, together with previously obtained observations with the SAURON IFU, is to determine the masses (Mbh) of the supermassive black holes (SMBH). The targeted galaxies were chosen to have central light profiles showing a core (NGC524) and a cusp (NGC2549), to probe the feasibility of using the galaxy centre as the NGS required for LGS AO. We employ an innovative `open loop' technique. The data have spatial resolution of 0.23" and 0.17" FWHM, showing that high quality LGS AO observations of these objects are possible. We construct axisymmetric three-integral dynamical models which are constrained with both the NIFS and SAURON data. The best fitting models yield Mbh=(8.3 +2.7 -1.3) x 10^8 Msun for NGC524 and Mbh=(1.4 +0.2 -1.3) x 10^7 Msun for NGC2549 (all errors are at the 3 sigma CL). We demonstrate that the wide-field SAURON data play a crucia...
Rotating black hole and quintessence
Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)
2016-04-15
We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e{sup 2} ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a{sub E}), which corresponds to an extremal black hole with degenerate horizons, while for a < a{sub E}, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a{sub E}. We find that the extremal value a{sub E} is also influenced by the parameter ω and so is the ergoregion. (orig.)
Phase transition in black holes
Roychowdhury, Dibakar
2014-01-01
The present thesis is devoted towards the study of various aspects of the phase transition phenomena occurring in black holes defined in an Anti-de-Sitter (AdS) space. Based on the fundamental principles of thermodynamics and considering a grand canonical framework we examine various aspects of the phase transition phenomena occurring in AdS black holes. We analytically check that this phase transition between the smaller and larger mass black holes obey Ehrenfest relations defined at the critical point and hence confirm a second order phase transition. This include both the rotating and charged black holes in Einstein gravity. Apart from studying these issues, based on a canonical framework, we also investigate the critical behavior in charged AdS black holes. The scaling laws for these black holes are found to be compatible with the static scaling hypothesis. Finally, based on the usual framework of AdS/CFT duality, we investigate the phase transition phenomena occurring in charged hairy black holes defined...
A nonsingular rotating black hole
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)
Acceleration of Black Hole Universe
Zhang, Tianxi
2012-05-01
An alternative cosmological model called black hole universe has been recently proposed by the author. According to this model, the universe originated from a hot star-like black hole, and gradually grew up through a supermassive black hole to the present state by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we live, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and limits to zero for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of space-time, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. In this study. we will analyze the acceleration of black hole universe that accretes its ambient matter in an increasing rate. We will also compare the result obtained from the black hole universe model with the measurement of type Ia supernova and the result from the big bang cosmology.
2006-01-01
[figure removed for brevity, see original site] Poster Version This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end. The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light. The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.
A nonsingular rotating black hole
Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)
2015-11-15
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)
Black holes and Higgs stability
Tetradis, Nikolaos
2016-01-01
We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.
Black Hole Bound State Metamorphosis
Chowdhury, Abhishek; Saha, Arunabha; Sen, Ashoke
2012-01-01
N=4 supersymmetric string theories contain negative discriminant states whose numbers are known precisely from microscopic counting formulae. On the macroscopic side, these results can be reproduced by regarding these states as multi-centered black hole configurations provided we make certain identification of apparently distinct multi-centered black hole configurations according to a precise set of rules. In this paper we provide a physical explanation of such identifications, thereby establishing that multi-centered black hole configurations reproduce correctly the microscopic results for the number of negative discriminant states without any ad hoc assumption.
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747
The Black Hole Information Problem
Polchinski, Joseph
2016-01-01
The black hole information problem has been a challenge since Hawking's original 1975 paper. It led to the discovery of AdS/CFT, which gave a partial resolution of the paradox. However, recent developments, in particular the firewall puzzle, show that there is much that we do not understand. I review the black hole, Hawking radiation, and the Page curve, and the classic form of the paradox. I discuss AdS/CFT as a partial resolution. I then discuss black hole complementarity and its limitations, leading to many proposals for different kinds of `drama.' I conclude with some recent ideas.
Evaporation of primordial black holes
Hawking, S. W.
The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have left it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.
Thermodynamics of Lifshitz black holes
Devecioǧlu, Deniz Olgu; Sarıoǧlu, Özgür
2011-06-01
We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions, and study and discuss the first law of black hole thermodynamics. Along the way we also identify the possible critical points of the relevant quadratic curvature gravity theories. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS3 black hole solution of the three-dimensional new massive gravity theory.
Supermassive Black Holes from the SUNNS survey
Sarzi, M; Shields, J C; Rudnick, G; Ho, L C; McIntosh, D H; Filippenko, A V; Sargent, W L W; Sarzi, Marc; Rix, Hans-Walter; Shields, Joseph C.; Rudnick, Greg; Ho, Luis C.; Intosh, Daniel H. Mc; Filippenko, Alexei V.; Sargent, Wallace L. W.
2000-01-01
We report three new accurate mass measurements for the supermassive black holes hosted by the early-type disk galaxies NGC2787, NGC4459 and NGC4596. The targets were selected from a larger set of long-slit spectra obtained with the Hubble Space Telescope as part of the Survey of Nearby Nuclei with STIS (SUNNS). They display symmetric gas velocity curves that could be modeled as a rotating disk in the joint potential of the stellar bulge and a putative central black hole. They also show regular dust lane patterns that could be used to infer the nuclear disk orientation. These three galaxies fall in the black-hole mass vs. central stellar velocity dispersion plane in agreement with the recently reported relation between these two quantities.
Erratic Black Hole Regulates Itself
2009-03-01
New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don
Supermassive black holes and spectral emission lines
It is widely accepted that active galactic nuclei (AGN) are hosting a supermassive black hole in their center. The supermassive black hole is actively fueled by surrounding gas through an accretion disk, which produces a broad band continuum (from X-ray to radio emission). The hard photons from the accretion disk create the photoionized plasma around the central black hole, which emits a number of broad emission lines. Therefore, one of the signatures of the strong activity in galaxies is the emission of the broad spectral lines (line widths of several 1000 km/s), which are seen only in a fraction of AGN, so called Type 1 AGN. These broad emission lines often show very complex line profiles, usually strongly variable in time. Here we will describe the basic properties of the broad emission lines and how can we use them to derive the properties of the central supermassive black hole, i.e., the mass and spin, or see signatures of supermassive binary black holes
Accretion, Primordial Black Holes and Standard Cosmology
Nayak, Bibekananda; Singh, Lambodar Prasad
2009-01-01
Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.
Black Hole Complementary Principle and Noncommutative Membrane
In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.