WorldWideScience

Sample records for cellulose-degrading bacterium ncib

  1. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  2. Degradation of γ-irradiated cellulose by the accumulating culture of a cellulose bacterium

    International Nuclear Information System (INIS)

    Namsaraev, B.B.; Kuznetsova, E.A.; Termkhitarova, N.G.

    1987-01-01

    Possibility of degradation of γ-irradiated cellulose by the accumulating culture of an anaerobic cellulose bacterium has been investigated. Cellulose irradiation by γ-quanta (Co 60 ) has been carried out using the RKh-30 device with 35.9 Gy/min dose rate. Radiation monitoring has been carried out by the standard ferrosulfate method. Samples have been irradiated in dry state or when water presenting with MGy. It is detected that the accumulating culture with the growth on the irradiated cellulose has a lag-phase, which duration reduces when the cellulose cleaning by flushing with distillation water. The culture has higher growth and substrate consumption rate when growing by cellulose irradiated in comparison with non-irradiated one. The economical coefficient is the same in using both the irradiated and non-irradiated cellulose. The quantity of forming reducing saccharides, organic acids, methane and carbon dioxide is the same both when cultivating by irradiated cellulose and by non-irradiated. pH of the culture liquid is shifted to the acid nature in the process of growth

  3. Use of Silica-Encapsulated Pseudomonas sp. Strain NCIB 9816-4 in Biodegradation of Novel Hydrocarbon Ring Structures Found in Hydraulic Fracturing Waters

    Science.gov (United States)

    Aukema, Kelly G.; Kasinkas, Lisa; Aksan, Alptekin

    2014-01-01

    The most problematic hydrocarbons in hydraulic fracturing (fracking) wastewaters consist of fused, isolated, bridged, and spiro ring systems, and ring systems have been poorly studied with respect to biodegradation, prompting the testing here of six major ring structural subclasses using a well-characterized bacterium and a silica encapsulation system previously shown to enhance biodegradation. The direct biological oxygenation of spiro ring compounds was demonstrated here. These and other hydrocarbon ring compounds have previously been shown to be present in flow-back waters and waters produced from hydraulic fracturing operations. Pseudomonas sp. strain NCIB 9816-4, containing naphthalene dioxygenase, was selected for its broad substrate specificity, and it was demonstrated here to oxidize fundamental ring structures that are common in shale-derived waters but not previously investigated with this or related enzymes. Pseudomonas sp. NCIB 9816-4 was tested here in the presence of a silica encasement, a protocol that has previously been shown to protect bacteria against the extremes of salinity present in fracking wastewaters. These studies demonstrate the degradation of highly hydrophobic compounds by a silica-encapsulated model bacterium, demonstrate what it may not degrade, and contribute to knowledge of the full range of hydrocarbon ring compounds that can be oxidized using Pseudomonas sp. NCIB 9816-4. PMID:24907321

  4. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  5. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.

    Science.gov (United States)

    Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish

    2017-01-01

    Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes

  6. The FPase properties and morphology changes of a cellulolytic bacterium, Sporocytophaga sp. JL-01, on decomposing filter paper cellulose.

    Science.gov (United States)

    Wang, Xiuran; Peng, Zhongqi; Sun, Xiaoling; Liu, Dongbo; Chen, Shan; Li, Fan; Xia, Hongmei; Lu, Tiancheng

    2012-01-01

    Sporocytophaga sp. JL-01 is a sliding cellulose degrading bacterium that can decompose filter paper (FP), carboxymethyl cellulose (CMC) and cellulose CF11. In this paper, the morphological characteristics of S. sp. JL-01 growing in FP liquid medium was studied by Scanning Electron Microscope (SEM), and one of the FPase components of this bacterium was analyzed. The results showed that the cell shapes were variable during the process of filter paper cellulose decomposition and the rod shape might be connected with filter paper decomposing. After incubating for 120 h, the filter paper was decomposed significantly, and it was degraded absolutely within 144 h. An FPase1 was purified from the supernatant and its characteristics were analyzed. The molecular weight of the FPase1 was 55 kDa. The optimum pH was pH 7.2 and optimum temperature was 50°C under experiment conditions. Zn(2+) and Co(2+) enhanced the enzyme activity, but Fe(3+) inhibited it.

  7. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides.

    Science.gov (United States)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M; Evans, Anton F; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I; Cann, Isaac

    2016-10-17

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  8. Functional and modular analyses of diverse endoglucanases from Ruminococcus albus 8, a specialist plant cell wall degrading bacterium.

    Science.gov (United States)

    Iakiviak, Michael; Devendran, Saravanan; Skorupski, Anna; Moon, Young Hwan; Mackie, Roderick I; Cann, Isaac

    2016-07-21

    Ruminococcus albus 8 is a specialist plant cell wall degrading ruminal bacterium capable of utilizing hemicellulose and cellulose. Cellulose degradation requires a suite of enzymes including endoglucanases, exoglucanases, and β-glucosidases. The enzymes employed by R. albus 8 in degrading cellulose are yet to be completely elucidated. Through bioinformatic analysis of a draft genome sequence of R. albus 8, seventeen putatively cellulolytic genes were identified. The genes were heterologously expressed in E. coli, and purified to near homogeneity. On biochemical analysis with cellulosic substrates, seven of the gene products (Ra0185, Ra0259, Ra0325, Ra0903, Ra1831, Ra2461, and Ra2535) were identified as endoglucanases, releasing predominantly cellobiose and cellotriose. Each of the R. albus 8 endoglucanases, except for Ra0259 and Ra0325, bound to the model crystalline cellulose Avicel, confirming functional carbohydrate binding modules (CBMs). The polypeptides for Ra1831 and Ra2535 were found to contain distantly related homologs of CBM65. Mutational analysis of residues within the CBM65 of Ra1831 identified key residues required for binding. Phylogenetic analysis of the endoglucanases revealed three distinct subfamilies of glycoside hydrolase family 5 (GH5). Our results demonstrate that this fibrolytic bacterium uses diverse GH5 catalytic domains appended with different CBMs, including novel forms of CBM65, to degrade cellulose.

  9. Studies on the enzymology of cellulose degradation by the anaerobic bacterium Clostridium thermocellum and the anaerobic fungus Neocallimastix frontalis

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, K.M.; Gow, L.A.; Wilson, C.A.; Wood, T.W. (Rowett Research Inst., Aberdeen (UK))

    1990-01-01

    The extracellular cellulases from the anaerobic bacterium Clostridium thermocellum and the anaerobic rumen fungus Neocallimastix frontalis are very active on crystalline cellulose. In both cases the activity resides in a high molecular weight complex. The complex from C. thermocellum (termed the cellulosome) was found to be readily dissociated at pH 5.0 and at room temperature by a mixture of SDS, EDTA and DTT. Virtually all the activity of the unfractionated cellulosome was recovered when the dissociated enzyme components were reassociated by dialysis. Thus, the route is now established for the first time for a meaningful study of the mechanism of cellulase action of this commercially important enzyme system. Nearly all of the activity to crystalline cellulose shown by the cellulase of N. frontalis was associated with a fraction which comprised only 2% of the extracellular protein, 3% of the endoglucanase and 3% of the {beta}-glucosidase. This fraction, which could be isolated by affinity chromatography on cellulose, was produced in greater quantity when the fungus was grown in co-culture with the methanogen, Methanobrevibacter smithii. The specific activity of the partially purified enzyme for degradation of crystalline cellulose was several-fold greater than that produced by the aerobic fungus T. reesei, which is being developed world-wide for its commercial potential for converting cellulose to fermentable soluble sugars. The cellulase of N. frontalis clearly has great commercial potential. 39 refs., 19 figs., 22 tabs.

  10. Cellulose Degradation by Cellulose-Clearing and Non-Cellulose-Clearing Brown-Rot Fungi

    OpenAIRE

    Highley, Terry L.

    1980-01-01

    Cellulose degradation by four cellulose-clearing brown-rot fungi in the Coniophoraceae—Coniophora prasinoides, C. puteana, Leucogyrophana arizonica, and L. olivascens—is compared with that of a non-cellulose-clearing brown-rot fungus, Poria placenta. The cellulose- and the non-cellulose-clearing brown-rot fungi apparently employ similar mechanisms to depolymerize cellulose; most likely a nonenzymatic mechanism is involved.

  11. Enhanced Cellulose Degradation Using Cellulase-Nanosphere Complexes

    Science.gov (United States)

    Blanchette, Craig; Lacayo, Catherine I.; Fischer, Nicholas O.; Hwang, Mona; Thelen, Michael P.

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production. PMID:22870287

  12. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Directory of Open Access Journals (Sweden)

    Craig Blanchette

    Full Text Available Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC; however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  13. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Science.gov (United States)

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  14. Degradation of cellulosic substances by Thermomonospora curvata

    Energy Technology Data Exchange (ETDEWEB)

    Stutzenberger, F J

    1979-05-01

    Research is reported on the cellulolytic activity of Thermomonospora curvata, a thermophilic cellulolytic actinomycete prevalent in municipal solid waste compost. Various cellulosic wastes were evaluated for their potential for the induction of cellulase synthesis by Th. curvata and the extent of cellulose degradation under optimal culture conditions. All the substrates tested showed significant degradation of their cellulose content with the exception of sawdust and barley straw. In contrast to Trichoderma viride, cotton fibers were the best substrates for both C/sub 1/ and C/sub x/ cellulase production. Further research is recommended. (JSR)

  15. Biochemistry of cellulose degradation and cellulose utilization for feeds and for protein

    Energy Technology Data Exchange (ETDEWEB)

    Sadara, J C; Lachke, A H; Shewale, J G

    1979-01-01

    A review discussing production of single-cell protein, fuel, and glucose from cellulose decomposition; surface or solid fermentations of single-cell protein; production of cellulases; and the biochemistry of cellulose degradation was presented.

  16. Enhancement of Cellulose Degradation by Cattle Saliva

    Science.gov (United States)

    Seki, Yasutaka; Kikuchi, Yukiko; Kimura, Yoshihiro; Yoshimoto, Ryo; Takahashi, Masatoshi; Aburai, Kenichi; Kanai, Yoshihiro; Ruike, Tatsushi; Iwabata, Kazuki; Sugawara, Fumio; Sakai, Hideki; Abe, Masahiko; Sakaguchi, Kengo

    2015-01-01

    Saccharification of cellulose is a promising technique for producing alternative source of energy. However, the efficiency of conversion of cellulose into soluble sugar using any currently available methodology is too low for industrial application. Many additives, such as surfactants, have been shown to enhance the efficiency of cellulose-to-sugar conversion. In this study, we have examined first whether cattle saliva, as an additive, would enhance the cellulase-catalyzed hydrolysis of cellulose, and subsequently elucidated the mechanism by which cattle saliva enhanced this conversion. Although cattle saliva, by itself, did not degrade cellulose, it enhanced the cellulase-catalyzed degradation of cellulose. Thus, the amount of reducing sugar produced increased approximately 2.9-fold by the addition of cattle saliva. We also found that non-enzymatic proteins, which were present in cattle saliva, were responsible for causing the enhancement effect. Third, the mechanism of cattle saliva mediated enhancement of cellulase activity was probably similar to that of the canonical surfactants. Cattle saliva is available in large amounts easily and cheaply, and it can be used without further purification. Thus, cattle saliva could be a promising additive for efficient saccharification of cellulose on an industrial scale. PMID:26402242

  17. Cellulose Degradation at Alkaline Conditions: Long-Term Experiments at Elevated Temperatures

    International Nuclear Information System (INIS)

    Glaus, M.A.; Van Loon, L.R.

    2004-04-01

    The degradation of pure cellulose (Aldrich cellulose) and cotton cellulose at the conditions of an artificial cement pore water (pH 13.3) has been measured at 60 o and 90 o C for reaction times between 1 and 2 years. The purpose of the experiments is to establish a reliable relationship between the reaction rate constant for the alkaline hydrolysis of cellulose (mid-chain scission), which is a slow reaction, and temperature. The reaction products formed in solution are analysed for the presence of the two diastereomers of isosaccharinic acid using high performance anion exchange chromatography combined with pulsed amperometric detection (HPAEC-PAD), other low-molecular weight aliphatic carboxylic acids using high performance ion exclusion chromatography (HPIEC) and for total organic carbon. The remaining cellulose solids are analysed for dry weight and degree of polymerisation. The degree of cellulose degradation as a function of reaction time is calculated based on total organic carbon and on the dry weight of the cellulose remaining. The degradation of cellulose observed as a function of time can be divided in three reaction phases observed in the experiments: (i) an initial fast reaction phase taking a couple of days, (ii) a slow further reaction taking - 100 days and (iii) a complete stopping of cellulose degradation levelling-off at -60 % of cellulose degraded. The experimental findings are unexpected in several respects: (i) The degree of cellulose degradation as a function of reaction time is almost identical for the experiments carried out at 60 o C and 90 o C, and (ii) the degree of cellulose degradation as a function of reaction time is almost identical for both pure cellulose and cotton cellulose. It can be concluded that the reaction behaviour of the materials tested cannot be explained within the classical frame of a combination of the fast endwise clipping of monomeric glucose units (peeling-off process) and the slow alkaline hydrolysis at the

  18. Cellulose Degradation at Alkaline Conditions: Long-Term Experiments at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M.A.; Van Loon, L.R

    2004-04-01

    The degradation of pure cellulose (Aldrich cellulose) and cotton cellulose at the conditions of an artificial cement pore water (pH 13.3) has been measured at 60{sup o} and 90{sup o}C for reaction times between 1 and 2 years. The purpose of the experiments is to establish a reliable relationship between the reaction rate constant for the alkaline hydrolysis of cellulose (mid-chain scission), which is a slow reaction, and temperature. The reaction products formed in solution are analysed for the presence of the two diastereomers of isosaccharinic acid using high performance anion exchange chromatography combined with pulsed amperometric detection (HPAEC-PAD), other low-molecular weight aliphatic carboxylic acids using high performance ion exclusion chromatography (HPIEC) and for total organic carbon. The remaining cellulose solids are analysed for dry weight and degree of polymerisation. The degree of cellulose degradation as a function of reaction time is calculated based on total organic carbon and on the dry weight of the cellulose remaining. The degradation of cellulose observed as a function of time can be divided in three reaction phases observed in the experiments: (i) an initial fast reaction phase taking a couple of days, (ii) a slow further reaction taking - 100 days and (iii) a complete stopping of cellulose degradation levelling-off at -60 % of cellulose degraded. The experimental findings are unexpected in several respects: (i) The degree of cellulose degradation as a function of reaction time is almost identical for the experiments carried out at 60 {sup o}C and 90 {sup o}C, and (ii) the degree of cellulose degradation as a function of reaction time is almost identical for both pure cellulose and cotton cellulose. It can be concluded that the reaction behaviour of the materials tested cannot be explained within the classical frame of a combination of the fast endwise clipping of monomeric glucose units (peeling-off process) and the slow alkaline

  19. Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms

    Science.gov (United States)

    Kesel, Sara; Grumbein, Stefan; Gümperlein, Ina; Tallawi, Marwa; Marel, Anna-Kristina

    2016-01-01

    Many bacteria form surface-attached communities known as biofilms. Due to the extreme resistance of these bacterial biofilms to antibiotics and mechanical stresses, biofilms are of growing interest not only in microbiology but also in medicine and industry. Previous studies have determined the extracellular polymeric substances present in the matrix of biofilms formed by Bacillus subtilis NCIB 3610. However, studies on the physical properties of biofilms formed by this strain are just emerging. In particular, quantitative data on the contributions of biofilm matrix biopolymers to these physical properties are lacking. Here, we quantitatively investigated three physical properties of B. subtilis NCIB 3610 biofilms: the surface roughness and stiffness and the bulk viscoelasticity of these biofilms. We show how specific biomolecules constituting the biofilm matrix formed by this strain contribute to those biofilm properties. In particular, we demonstrate that the surface roughness and surface elasticity of 1-day-old NCIB 3610 biofilms are strongly affected by the surface layer protein BslA. For a second strain, B. subtilis B-1, which forms biofilms containing mainly γ-polyglutamate, we found significantly different physical biofilm properties that are also differently affected by the commonly used antibacterial agent ethanol. We show that B-1 biofilms are protected from ethanol-induced changes in the biofilm's stiffness and that this protective effect can be transferred to NCIB 3610 biofilms by the sole addition of γ-polyglutamate to growing NCIB 3610 biofilms. Together, our results demonstrate the importance of specific biofilm matrix components for the distinct physical properties of B. subtilis biofilms. PMID:26873313

  20. Formation of Highly Twisted Ribbons in a Carboxymethylcellulase Gene-Disrupted Strain of a Cellulose-Producing Bacterium

    Science.gov (United States)

    Sugano, Yasushi; Shoda, Makoto; Sakakibara, Hitoshi; Oiwa, Kazuhiro; Tuzi, Satoru; Imai, Tomoya; Sugiyama, Junji; Takeuchi, Miyuki; Yamauchi, Daisuke

    2013-01-01

    Cellulases are enzymes that normally digest cellulose; however, some are known to play essential roles in cellulose biosynthesis. Although some endogenous cellulases of plants and cellulose-producing bacteria are reportedly involved in cellulose production, their functions in cellulose production are unknown. In this study, we demonstrated that disruption of the cellulase (carboxymethylcellulase) gene causes irregular packing of de novo-synthesized fibrils in Gluconacetobacter xylinus, a cellulose-producing bacterium. Cellulose production was remarkably reduced and small amounts of particulate material were accumulated in the culture of a cmcax-disrupted G. xylinus strain (F2-2). The particulate material was shown to contain cellulose by both solid-state 13C nuclear magnetic resonance analysis and Fourier transform infrared spectroscopy analysis. Electron microscopy revealed that the cellulose fibrils produced by the F2-2 cells were highly twisted compared with those produced by control cells. This hypertwisting of the fibrils may reduce cellulose synthesis in the F2-2 strains. PMID:23243308

  1. Surface Plasmon Resonance Imaging of the Enzymatic Degradation of Cellulose Microfibrils

    Science.gov (United States)

    Reiter, Kyle; Raegen, Adam; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2012-02-01

    As the largest component of biomass on Earth, cellulose represents a significant potential energy reservoir. Enzymatic hydrolysis of cellulose into fermentable sugars, an integral step in the production of biofuel, is a challenging problem on an industrial scale. More efficient conversion processes may be developed by an increased understanding of the action of the cellulolytic enzymes involved in cellulose degradation. We have used our recently developed quantitative, angle-scanning surface plasmon resonance imaging (SPRi) device to study the degradation of cellulose microfibrils upon exposure to cellulosic enzymes. In particular, we have studied the action of individual enzymes, and combinations of enzymes, from the Hypocrea Jecorina cellulase system on heterogeneous, industrially-relevant cellulose substrates. This has allowed us to define a characteristic time of action for the enzymes for different degrees of surface coverage of the cellulose microfibrils.

  2. Degradation of cellulose in the presence of ash; Nedbrytningsmoenster foer cellulosa i naervaro av aska

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Energi och Miljoe AB, Stockholm (Sweden); Svensson, Malin; Ecke, Holger [Luleaa Univ. of Tech. (Sweden)

    2003-04-01

    This project evaluates the risks and possibilities that come up in mixtures of ash and cellulose. The focus is on alkaline degradation of cellulose and the impact on metal leaching. The literature survey shows that a combination of ash and cellulose affects both the mobility of metals and the degradation of cellulose in many ways. A combination of ash and cellulose could have positive effects on the degradation of cellulose since ash makes the pH rise in the material. Normally the pH decreases in a waste deposit with time, which results in a reduced biological degradation of the cellulose since the methanogenic organisms are sensitive for low pH values. However, even if the pH increases when cellulose is mixed with ash the methanogenic organisms could be inhibit by toxic metals. The highest degradation rate for cellulose is at natural pH values because of an effective biological degradation. If alkaline conditions appear when cellulose is mixed with ash or in contact with the leaching water the cellulose is going to be degraded by a slower process: non-biological degradation (peeling-off reactions). The main degradation product from peeling-off reactions of cellulose is isosaccharinic acid (ISA). ISA forms complex with metals, which results in increased mobilization and leaching of metals. From biological degradation the degradation products are mainly CO{sub 2} and H{sub 2}O under aerobic conditions and CO{sub 2} and CH{sub 4} under anaerobic conditions. In combinations of ash and cellulose is it possible that the formed carbon dioxide cause carbonation and fixation of metals in the ash. As mentioned, ash could result in an increment of the pH value in cellulose materials, but if the starting point is pure ash a mixture with cellulose could make the pH value decrease, in extreme cases down to 4-5, because of biological degradation. Therefore it is possible that the metal mobilization in ash will increase if the ash is mixed with cellulose. Increased leaching of

  3. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Lee

    Full Text Available Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs, including benzene, toluene, and xylene (BTX, as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  4. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    Science.gov (United States)

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  5. Enzymatic Systems for Cellulose Acetate Degradation

    Directory of Open Access Journals (Sweden)

    Oskar Haske-Cornelius

    2017-09-01

    Full Text Available Cellulose acetate (CA-based materials, like cigarette filters, contribute to landscape pollution challenging municipal authorities and manufacturers. This study investigates the potential of enzymes to degrade CA and to be potentially incorporated into the respective materials, enhancing biodegradation. Deacetylation studies based on Liquid Chromatography-Mass Spectrometry-Time of Flight (LC-MS-TOF, High Performance Liquid Chromatography (HPLC, and spectrophotometric analysis showed that the tested esterases were able to deacetylate the plasticizer triacetin (glycerol triacetate and glucose pentaacetate (cellulose acetate model compound. The most effective esterases for deacetylation belong to the enzyme family 2 (AXE55, AXE 53, GAE, they deacetylated CA with a degree of acetylation of up to 1.8. A combination of esterases and cellulases showed synergistic effects, the absolute glucose recovery for CA 1.8 was increased from 15% to 28% when an enzymatic deacetylation was performed. Lytic polysaccharide monooxygenase (LPMO, and cellobiohydrolase were able to cleave cellulose acetates with a degree of acetylation of up to 1.4, whereas chitinase showed no activity. In general, the degree of substitution, chain length, and acetyl group distribution were found to affect CA degradation. This study shows that, for a successful enzyme-based deacetylation system, a cocktail of enzymes, which will randomly cleave and generate shorter CA fragments, is the most suitable.

  6. Mechanistic studies of the alkaline degradation of cellulose in cement

    International Nuclear Information System (INIS)

    Greenfield, B.F.; Robertson, G.P.; Spindler, M.W.; Harrison, W.N.; Somers, P.J.

    1993-07-01

    The alkaline degradation of cellulose-based materials under conditions simulating those of a deep underground radioactive waste repository has been investigated. A number of key degradation products, of which 2-C-(hydroxymethyl)-3-deoxy-D-pentonic acid (isosaccharinic acid) is the most important, have been synthesised, and the solubilities of their plutonium complexes have been determined. Analysis of leachates of anaerobically degraded cellulose has shown concentrations of organic acids which are broadly consistent with the enhanced plutonium solubilities found in these leachates. Reaction mechanisms have been identified that can lead to isosaccharinic acid production by non-oxidative transformations, which may be catalysed by some divalent cations. (Author)

  7. Temporal changes in wood crystalline cellulose during degradation by brown rot fungi

    DEFF Research Database (Denmark)

    Howell, Caitlin; Hastrup, Anne Christine Steenkjær; Goodell, Barry

    2009-01-01

    The degradation of wood by brown rot fungi has been studied intensely for many years in order to facilitate the preservation of in-service wood. In this work we used X-ray diffraction to examine changes in wood cellulose crystallinity caused by the brown rot fungi Gloeophyllum trabeum, Coniophora...... planes in all degraded samples after roughly 20% weight loss, as well as a decrease in the average observed relative peak width at 2¿ = 22.2°. These results may indicate a disruption of the outer most semi-crystalline cellulose chains comprising the wood microfibril. X-ray diffraction analysis of wood...... subjected to biological attack by fungi may provide insight into degradative processes and wood cellulose structure....

  8. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  9. Enzymatic degradation of plutonium-contaminated cellulose products

    International Nuclear Information System (INIS)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.; Avens, L.

    1999-01-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with radionuclides. This presentation describes the use of one such enzyme preparation (Rapidase trademark) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste that must be disposed of in secured storage areas

  10. Enzymatic degradation of plutonium-contaminated cellulose products

    International Nuclear Information System (INIS)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.A.

    1999-01-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown previously that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with uranium. This presentation describes the use of one such enzyme preparation (Rapidase trademark, manufactured by Genencor, Rochester, NY) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste destined for costly disposal options

  11. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Velayudhan Satheeja Santhi

    2014-06-01

    Full Text Available The ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely Isoptericola sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India. It exhibited highest filter paper unit effect, endoglucanase, exoglucanase, cellobiohydrolase, β-glucosidase, xylanase and ligninase effect. The hydrolytic potential of the enzymes displayed the efficient saccharification capability of steam pretreated biomass. It was also found to degrade the paddy, sorghum, Acacia mangium and Ficus religiosa into simple reducing sugars by its efficient lignocellulose enzyme complex with limited consumption of sugars. Production of ethanol was also achieved with the Saccharomyces cerevisiae. Overall, it offers a great potential for the cellulosic ethanol production in an economically reliable and eco-friendly point-of-care.

  12. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production.

    Science.gov (United States)

    Santhi, Velayudhan Satheeja; Gupta, Ashutosh; Saranya, Somasundaram; Jebakumar, Solomon Robinson David

    2014-06-01

    The ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely Isoptericola sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India. It exhibited highest filter paper unit effect, endoglucanase, exoglucanase, cellobiohydrolase, β-glucosidase, xylanase and ligninase effect. The hydrolytic potential of the enzymes displayed the efficient saccharification capability of steam pretreated biomass. It was also found to degrade the paddy, sorghum, Acacia mangium and Ficus religiosa into simple reducing sugars by its efficient lignocellulose enzyme complex with limited consumption of sugars. Production of ethanol was also achieved with the Saccharomyces cerevisiae . Overall, it offers a great potential for the cellulosic ethanol production in an economically reliable and eco-friendly point-of-care.

  13. Modifications of the Mesoscopic Structure of Cellulose in Paper Degradation

    International Nuclear Information System (INIS)

    Missori, Mauro; Bicchieri, Marina; Mondelli, Claudia; De Spirito, Marco; Arcovito, Giuseppe; Papi, Massimiliano; Castellano, Carlo; Castellano, Agostina Congiu; Schweins, Ralf

    2006-01-01

    Paper is the main component of a huge quantity of cultural heritage. It is primarily composed of cellulose that undergoes significant degradation with the passage of time. By using small angle neutron scattering (SANS), we investigated cellulose's supramolecular structure, which allows access to degradation agents, in ancient and modern samples. For the first time, SANS data were interpreted in terms of water-filled pores, with their sizes increasing from 1.61 nm up to 1.97 nm in natural and artificially aged papers. The protective effect of gelatine sizing was also observed

  14. On the mechanisms of the radiation-induced degradation of cellulosic substances

    Science.gov (United States)

    Tissot, Chanel; Grdanovska, Slavica; Barkatt, Aaron; Silverman, Joseph; Al-Sheikhly, Mohamad

    2013-03-01

    Much interest has been generated in utilizing ionizing radiation for the production of bio-fuels from cellulosic plant materials. It is well known that exposure of cellulose to ionizing radiation causes significant breakdown of the polysaccharide. Radiation-induced degradation of cellulose may reduce or replace ecologically hazardous chemical steps in addition to reducing the number of processing stages and decreasing energy consumption.

  15. Immobilization of Cold-Active Cellulase from Antarctic Bacterium and Its Use for Kelp Cellulose Ethanol Fermentation

    Directory of Open Access Journals (Sweden)

    Yi Bin Wang

    2015-01-01

    Full Text Available Immobilization is an effective way to solve the problem associated with the application of cold-active cellulase in industrial processes. In this study, a cold-active cellulase from the Antarctic psychrophilic bacterium Pseudoalteromonas sp. NJ64 was obtained, immobilized, and analyzed for optimal immobilization conditions. Then it was used in kelp cellulose ethanol fermentation, achieving a higher purity level of kelp cellulose ethanol. The enzymatic activity of this cold-active cellulase was 49.7 U/mL. The optimal immobilization process conditions were as follows: sodium alginate, 30 g/L; calcium chloride, 5 g/L; glutaraldehyde, 0.4%; and cross-linking time, 5 h. Under these conditions, the activity recovery rate was 51.58%. The optimum reaction temperature was at 40 °C, the optimum initial pH was 9.0, and the relative enzyme activity was 58.37% after being recovered seven times. A higher purity level of kelp cellulose ethanol has reached (37.37%. Immobilized cold-active cellulase can effectively hydrolyze the cellulose of kelp residue, which is a valuable component of cellulose bio-ethanol production and will have broad implications in the development of the ethanol industry in China.

  16. Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis.

    Science.gov (United States)

    Zhao, Yue; Lu, Qian; Wei, Yuquan; Cui, Hongyang; Zhang, Xu; Wang, Xueqin; Shan, Si; Wei, Zimin

    2016-11-01

    In this study, actinobacteria agent including Streptomyces sp. and Micromonospora sp. were inoculated during chicken manure composting by different inoculation methods. The effect of different treatments on cellulose degradation and the relationship between inoculants and indigenous actinobacteria were investigated during composting. The results showed that inoculation in different stages of composting all improved the actinobacteria community diversity particularly in the cooling stage of composting (M3). Moreover, inoculation could distinctly accelerate the degradation of organic matters (OM) especially celluloses. Redundancy analysis indicated that the correlation between indigenous actinobacteria and degradation of OM and cellulose were regulated by inoculants and there were significant differences between different inoculation methods. Furthermore, synergy between indigenous actinobacteria and inoculants for degradation of OM and cellulose in M3 was better than other treatments. Conclusively, we suggested an inoculation method to regulate the indigenous actinobacteria based on the relationship between inoculants and indigenous actinobacteria and degradation content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  18. Facile Fabrication of 100% Bio-based and Degradable Ternary Cellulose/PHBV/PLA Composites

    Directory of Open Access Journals (Sweden)

    Tao Qiang

    2018-02-01

    Full Text Available Modifying bio-based degradable polymers such as polylactide (PLA and poly(hydroxybutyrate-co-hydroxyvalerate (PHBV with non-degradable agents will compromise the 100% degradability of their resultant composites. This work developed a facile and solvent-free route in order to fabricate 100% bio-based and degradable ternary cellulose/PHBV/PLA composite materials. The effects of ball milling on the physicochemical properties of pulp cellulose fibers, and the ball-milled cellulose particles on the morphology and mechanical properties of PHBV/PLA blends, were investigated experimentally and statistically. The results showed that more ball-milling time resulted in a smaller particle size and lower crystallinity by way of mechanical disintegration. Filling PHBV/PLA blends with the ball-milled celluloses dramatically increased the stiffness at all of the levels of particle size and filling content, and improved their elongation at the break and fracture work at certain levels of particle size and filling content. It was also found that the high filling content of the ball-milled cellulose particles was detrimental to the mechanical properties for the resultant composite materials. The ternary cellulose/PHBV/PLA composite materials have some potential applications, such as in packaging materials and automobile inner decoration parts. Furthermore, filling content contributes more to the variations of their mechanical properties than particle size does. Statistical analysis combined with experimental tests provide a new pathway to quantitatively evaluate the effects of multiple variables on a specific property, and figure out the dominant one for the resultant composite materials.

  19. Thermophilic Anaerobic Degradation of Butyrate by a Butyrate-Utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria

    OpenAIRE

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    We studied syntrophic butyrate degradation in thermophilic mixed cultures containing a butyrate-degrading bacterium isolated in coculture with Methanobacterium thermoautotrophicum or in triculture with M. thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic bacterium. Butyrate was β-oxidized to acetate with protons as the electron acceptors. Acetate was used concurrently with its production in the triculture. We found a higher butyrate degradation rate in th...

  20. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Huebert, S.

    1985-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given. (author)

  1. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Arnold, G.; Baer, M.; Gey, M.; Hubert, S.; Langguth, H.

    1984-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  2. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. Copyright © 2016, American Association for the Advancement of Science.

  3. Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost.

    Science.gov (United States)

    Sizova, M V; Izquierdo, J A; Panikov, N S; Lynd, L R

    2011-04-01

    Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xylan and pretreated wood with roughly the same efficiency as for cellulose. The major products of xylan fermentation were acetate and formate, with minor contributions of lactate and ethanol. Phylogenetic analyses of 16S rRNA and glycosyl hydrolase family 48 (GH48) gene sequences revealed that two xylan-utilizing isolates were related to a Clostridium clariflavum strain and represent a distinct novel branch within the GH48 family. Both isolates possessed high cellulase and xylanase activity induced independently by either cellulose or xylan. Enzymatic activity decayed after growth cessation, with more-rapid disappearance of cellulase activity than of xylanase activity. A mixture of xylan and cellulose was utilized simultaneously, with a significant synergistic effect observed as a reduction of lag phase in cellulose degradation.

  4. Hydrothermal degradation of cellulosic matter to sugars and their fermentative conversion to protein

    International Nuclear Information System (INIS)

    Bobleter, O.; Niesner, R.; Roehr, M.

    1976-01-01

    For the hydrothermal degradation of cellulosic matter, an apparatus was developed in which water is used as extraction medium. Samples, 0.15 g each, of pure cellulose (filter paper), natural straw, and 14 C-labeled straw were treated at temperatures of between 200 and 275 0 C. Of the inserted cellulose, 65.7 percent was recovered at the optimum temperature as sugars and hydroxymethylfurfural. It was possible to degrade the straw selectively: at lower temperatures, the hemicellulose part of the plant matter was converted to xylose and arabinose; and then at higher temperatures, the cellulose was converted to glucose and cellobiose. At the same time, a certain amount of the sugars was transformed to furfural compounds. The growth behavior of the yeast Candida utilis (strain Weissenbach) was analyzed, using cellobiose, xylose, and glucose (standard) as carbon sources. The growth curves applying cellobiose were nearly identical to those of glucose. Xylose showed lower productivity than the hexoses. The main products of the hydrothermal degradation can, therefore, be used favorably as nutritive substances for this protein-producing yeast

  5. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation.

    Science.gov (United States)

    Niessen, J; Schröder, U; Harnisch, F; Scholz, F

    2005-01-01

    To exploit the fermentative hydrogen generation and direct hydrogen oxidation for the generation of electric current from the degradation of cellulose. Utilizing the metabolic activity of the mesophilic anaerobe Clostridium cellulolyticum and the thermophilic Clostridium thermocellum we show that electricity generation is possible from cellulose fermentation. The current generation is based on an in situ oxidation of microbially synthesized hydrogen at platinum-poly(tetrafluoroaniline) (Pt-PTFA) composite electrodes. Current densities of 130 mA l(-1) (with 3 g cellulose per litre medium) were achieved in poised potential experiments under batch and semi-batch conditions. The presented results show that electricity generation is possible by the in situ oxidation of hydrogen, product of the anaerobic degradation of cellulose by cellulolytic bacteria. For the first time, it is shown that an insoluble complex carbohydrate like cellulose can be used for electricity generation in a microbial fuel cell. The concept represents a first step to the utilization of macromolecular biomass components for microbial electricity generation.

  6. The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting.

    Science.gov (United States)

    Zang, Xiangyun; Liu, Meiting; Fan, Yihong; Xu, Jie; Xu, Xiuhong; Li, Hongtao

    2018-01-01

    Compost habitats sustain a vast ensemble of microbes that engender the degradation of cellulose, which is an important part of global carbon cycle. β-Glucosidase is the rate-limiting enzyme of degradation of cellulose. Thus, analysis of regulation of β-glucosidase gene expression in composting is beneficial to a better understanding of cellulose degradation mechanism. Genetic diversity and expression of β-glucosidase-producing microbial communities, and relationships of cellulose degradation, metabolic products and the relative enzyme activity during natural composting and inoculated composting were evaluated. Compared with natural composting, adding inoculation agent effectively improved the degradation of cellulose, and maintained high level of the carboxymethyl cellulose (CMCase) and β-glucosidase activities in thermophilic phase. Gene expression analysis showed that glycoside hydrolase family 1 (GH1) family of β-glucosidase genes contributed more to β-glucosidase activity in the later thermophilic phase in inoculated compost. In the cooling phase of natural compost, glycoside hydrolase family 3 (GH3) family of β-glucosidase genes contributed more to β-glucosidase activity. Intracellular β-glucosidase activity played a crucial role in the regulation of β-glucosidase gene expression, and upregulation or downregulation was also determined by extracellular concentration of glucose. At sufficiently high glucose concentrations, the functional microbial community in compost was altered, which may contribute to maintaining β-glucosidase activity despite the high glucose content. This research provides an ecological functional map of microorganisms involved in carbon metabolism in cattle manure-rice straw composting. The performance of the functional microbial groups in the two composting treatments is different, which is related to the cellulase activity and cellulose degradation, respectively.

  7. Experimental and Theoretical Studies on Alkaline Degradation of Cellulose and its Impact on the Sorption of Radionuclides

    International Nuclear Information System (INIS)

    Loon, L.R. van; Glaus, M.A.

    1998-08-01

    For more than ten years, cellulose degradation has been regarded as an important process which can adversely effect the sorption of radionuclides on cement in a radioactive waste repository. However, so far, it was not possible to quantify this effect. This study reports new experimental data on alkaline degradation of cellulose, together with a re-evaluation of old literature data. For the first time now, it becomes possible to quantitatively estimate the potential role of cellulose degradation in performance assessment studies. In the first part of this study, a literature overview of other studies on alkaline degradation of cellulose is given, together with a general discussion on the effect of organic ligands on the sorption of radionuclides. Further, an overview of the important mechanisms of alkaline degradation of cellulose and some kinetic aspects of the main reactions taking place is presented. The relevance of the processes for performance assessment is explained in detail. The discussion forms the starting-point for a detailed experimental program for evaluating the role of alkaline degradation of cellulose in performance assessment. In the second part, experimental studies on alkaline degradation are presented. Different cellulosic materials were degraded in an artificial cement pore water, representing the first stage of cement degradation. The most important degradation products (α- and β-isosaccharinic acid) were characterised and the results compared with other studies. Kinetic parameters for the main reactions were measured and discussed. A good agreement was found between the measured values and values extrapolated from the literature. The solubility of the sparingly soluble Ca-salt of α-isosaccharinic acid (ISA) was studied as well as the interaction of ISA with cement. Sorption of ISA on cement can keep the ISA concentration in the pore water of a repository at a low level. The effect of pure ISA and degradation products on the sorption of

  8. Experimental and Theoretical Studies on Alkaline Degradation of Cellulose and its Impact on the Sorption of Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Loon, L.R. van; Glaus, M A

    1998-08-01

    For more than ten years, cellulose degradation has been regarded as an important process which can adversely effect the sorption of radionuclides on cement in a radioactive waste repository. However, so far, it was not possible to quantify this effect. This study reports new experimental data on alkaline degradation of cellulose, together with a re-evaluation of old literature data. For the first time now, it becomes possible to quantitatively estimate the potential role of cellulose degradation in performance assessment studies. In the first part of this study, a literature overview of other studies on alkaline degradation of cellulose is given, together with a general discussion on the effect of organic ligands on the sorption of radionuclides. Further, an overview of the important mechanisms of alkaline degradation of cellulose and some kinetic aspects of the main reactions taking place is presented. The relevance of the processes for performance assessment is explained in detail. The discussion forms the starting-point for a detailed experimental program for evaluating the role of alkaline degradation of cellulose in performance assessment. In the second part, experimental studies on alkaline degradation are presented. Different cellulosic materials were degraded in an artificial cement pore water, representing the first stage of cement degradation. The most important degradation products ({alpha}- and {beta}-isosaccharinic acid) were characterised and the results compared with other studies. Kinetic parameters for the main reactions were measured and discussed. A good agreement was found between the measured values and values extrapolated from the literature. The solubility of the sparingly soluble Ca-salt of {alpha}-isosaccharinic acid (ISA) was studied as well as the interaction of ISA with cement. Sorption of ISA on cement can keep the ISA concentration in the pore water of a repository at a low level. The effect of pure ISA and degradation products on the

  9. Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections.

    Science.gov (United States)

    Lakhundi, Sahreena; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2015-01-14

    Acanthamoeba is an opportunistic free-living amoeba that can cause blinding keratitis and fatal brain infection. Early diagnosis, followed by aggressive treatment is a pre-requisite in the successful treatment but even then the prognosis remains poor. A major drawback during the course of treatment is the ability of the amoeba to enclose itself within a shell (a process known as encystment), making it resistant to chemotherapeutic agents. As the cyst wall is partly made of cellulose, thus cellulose degradation offers a potential therapeutic strategy in the effective targeting of trophozoite encased within the cyst walls. Here, we present a comprehensive report on the structure of cellulose and cellulases, as well as known cellulose degradation mechanisms with an eye to target the Acanthamoeba cyst wall. The disruption of the cyst wall will make amoeba (concealed within) susceptible to chemotherapeutic agents, and at the very least inhibition of the excystment process will impede infection recurrence, as we bring these promising drug targets into focus so that they can be explored to their fullest.

  10. Integration of a Copper-Containing Biohybrid (CuHARS with Cellulose for Subsequent Degradation and Biomedical Control

    Directory of Open Access Journals (Sweden)

    Anik Karan

    2018-04-01

    Full Text Available We previously described the novel synthesis of a copper high-aspect ratio structure (CuHARS biohybrid material using cystine. While extremely stable in water, CuHARS is completely (but slowly degradable in cellular media. Here, integration of the CuHARS into cellulose matrices was carried out to provide added control for CuHARS degradation. Synthesized CuHARS was concentrated by centrifugation and then dried. The weighed mass was re-suspended in water. CuHARS was stable in water for months without degradation. In contrast, 25 μg/mL of the CuHARS in complete cell culture media was completely degraded (slowly in 18 days under physiological conditions. Stable integration of CuHARS into cellulose matrices was achieved through assembly by mixing cellulose micro- and nano-fibers and CuHARS in an aqueous (pulp mixture phase, followed by drying. Additional materials were integrated to make the hybrids magnetically susceptible. The cellulose-CuHARS composite films could be transferred, weighed, and cut into usable pieces; they maintained their form after rehydration in water for at least 7 days and were compatible with cell culture studies using brain tumor (glioma cells. These studies demonstrate utility of a CuHARS-cellulose biohybrid for applied applications including: (1 a platform for biomedical tracking and (2 integration into a 2D/3D matrix using natural products (cellulose.

  11. Degradation of cellulosic materials under the alkaline conditions of a cementitious repository for low- and intermediate level radioactive waste. Pt. III. Effect of degradation products on the sorption of radionuclides on feldspar

    International Nuclear Information System (INIS)

    Loon, L.R. van; Glaus, M.A.; Laube, A.; Stallone, S.

    1999-01-01

    The effect of degradation products of different cellulosic materials on the sorption behaviour of Th(IV), Eu(III) and Ni(II) on feldspar at pH 13.3 was studied. For all three metals, a decrease in sorption could be observed with increasing concentration of organics in solution. For Th(IV), α-ISA is the effective ligand present in the solutions of degraded cellulose, independent on the type of cellulose studied. For Eu(III), α-ISA is the effective ligand in the case of pure cellulose degradation. In the case of other cellulosic materials, unknown ligands cause the sorption reduction. For Ni(II), also unknown ligands cause sorption reduction, independent on the type of cellulose studied. These unknown ligands are not formed during alkaline degradation of cellulose, but are present as impurities in certain cellulosic materials. (orig.)

  12. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Science.gov (United States)

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  13. Degradation of natural cellulose by thermophilic and thermotolerant fungi

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, A P; Johri, B N

    1981-06-01

    Aspergillus fumigatus Friesen, Sporotrichum sp., Thermoascus aurantiacus Miche and Torula thermophila Cooney and Emerson were able to degrade filter paper to an appreciable extent. Absidia corymbifera (Cohn) Saccardo et Trotter, Rhizopus microsporus van Tieghem and R. rhizopodiformis (Cohn) Zopf could not degrade filter paper though they were able to grow on the media supplied. The fungi able to degrade filter paper were also capable of elaborating extracellular cellulase and produced sufficient hydrolysis of carboxymethyl cellulose. The Cx enzyme was stable at 45 degrees C for 25 days. An incubation period of 15 to 25 days was sufficient not only to degrade CMC but even more complex substrates, such as jute, cotton and filter paper. The cellulases of these fungi were inductive in nature. (Refs. 11).

  14. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard

    2013-01-01

    Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.......8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion...

  15. Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1.

    Science.gov (United States)

    Ma, Jiangshan; Zhang, Keke; Huang, Mei; Hector, Stanton B; Liu, Bin; Tong, Chunyi; Liu, Qian; Zeng, Jiarui; Gao, Yan; Xu, Ting; Liu, Ying; Liu, Xuanming; Zhu, Yonghua

    2016-01-01

    Lignocellulolytic bacteria have revealed to be a promising source for biofuel production, yet the underlying mechanisms are still worth exploring. Our previous study inferred that the highly efficient lignocellulose degradation by bacterium Pantoea ananatis Sd-1 might involve Fenton chemistry (Fe 2+  + H 2 O 2  + H +  → Fe 3+  + OH· + H 2 O), similar to that of white-rot and brown-rot fungi. The aim of this work is to investigate the existence of this Fenton-based oxidation mechanism in the rice straw degradation process of P. ananatis Sd-1. After 3 days incubation of unpretreated rice straw with P. ananatis Sd-1, the percentage in weight reduction of rice straw as well as its cellulose, hemicellulose, and lignin components reached 46.7, 43.1, 42.9, and 37.9 %, respectively. The addition of different hydroxyl radical scavengers resulted in a significant decline ( P  Fenton reagent treatment. In addition to the increased total iron ion concentration throughout the rice straw decomposition process, the Fe 3+ -reducing capacity of P. ananatis Sd-1 was induced by rice straw and predominantly contributed by aromatic compounds metabolites. The transcript levels of the glucose-methanol-choline oxidoreductase gene related to hydrogen peroxide production were significantly up-regulated (at least P  Fenton-like reactions. Our results confirmed the Fenton chemistry-assisted degradation model in P. ananatis Sd-1. We are among the first to show that a Fenton-based oxidation mechanism exists in a bacteria degradation system, which provides a new perspective for how natural plant biomass is decomposed by bacteria. This degradative system may offer an alternative approach to the fungi system for lignocellulosic biofuels production.

  16. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat.

    Science.gov (United States)

    Pankratov, Timofey A; Ivanova, Anastasia O; Dedysh, Svetlana N; Liesack, Werner

    2011-07-01

    Northern peatlands represent a major global carbon store harbouring approximately one-third of the global reserves of soil organic carbon. A large proportion of these peatlands consists of acidic Sphagnum-dominated ombrotrophic bogs, which are characterized by extremely low rates of plant debris decomposition. The degradation of cellulose, the major component of Sphagnum-derived litter, was monitored in long-term incubation experiments with acidic (pH 4.0) peat extracts. This process was almost undetectable at 10°C and occurred at low rates at 20°C, while it was significantly accelerated at both temperature regimes by the addition of available nitrogen. Cellulose breakdown was only partially inhibited in the presence of cycloheximide, suggesting that bacteria participated in this process. We aimed to identify these bacteria by a combination of molecular and cultivation approaches and to determine the factors that limit their activity in situ. The indigenous bacterial community in peat was dominated by Alphaproteobacteria and Acidobacteria. The addition of cellulose induced a clear shift in the community structure towards an increase in the relative abundance of the Bacteroidetes. Increasing temperature and nitrogen availability resulted in a selective development of bacteria phylogenetically related to Cytophaga hutchinsonii (94-95% 16S rRNA gene sequence similarity), which densely colonized microfibrils of cellulose. Among isolates obtained from this community only some subdivision 1 Acidobacteria were capable of degrading cellulose, albeit at a very slow rate. These Acidobacteria represent indigenous cellulolytic members of the microbial community in acidic peat and are easily out-competed by Cytophaga-like bacteria under conditions of increased nitrogen availability. Members of the phylum Firmicutes, known to be key players in cellulose degradation in neutral habitats, were not detected in the cellulolytic community enriched at low pH. © 2011 Society for

  17. Characterization of a Cellulomonas fimi exoglucanase/xylanase-endoglucanase gene fusion which improves microbial degradation of cellulosic biomass.

    Science.gov (United States)

    Duedu, Kwabena O; French, Christopher E

    2016-11-01

    Effective degradation of cellulose requires multiple classes of enzyme working together. However, naturally occurring cellulases with multiple catalytic domains seem to be rather rare in known cellulose-degrading organisms. A fusion protein made from Cellulomonas fimi exo- and endo- glucanases, Cex and CenA which improves breakdown of cellulose is described. A homologous carbohydrate binding module (CBM-2) present in both glucanases was fused to give a fusion protein CxnA. CxnA or unfused constructs (Cex+CenA, Cex, or CenA) were expressed in Escherichia coli and Citrobacter freundii. The latter recombinant strains were cultured at the expense of cellulose filter paper. The expressed CxnA had both exo- and endo- glucanase activities. It was also exported to the supernatant as were the non-fused proteins. In addition, the hybrid CBM from the fusion could bind to microcrystalline cellulose. Growth of C. freundii expressing CxnA was superior to that of cells expressing the unfused proteins. Physical degradation of filter paper was also faster with the cells expressing fusion protein than the other constructs. Our results show that fusion proteins with multiple catalytic domains can improve the efficiency of cellulose degradation. Such fusion proteins could potentially substitute cloning of multiple enzymes as well as improving product yields. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Use of compost bacteria to degrade cellulose from grass cuttings in ...

    African Journals Online (AJOL)

    2007-09-06

    Sep 6, 2007 ... bacteria isolated from compost, thereby producing volatile fatty acids (VFA) and other ... 100% increase in the use of water by the mining and industrial .... other intermediates of cellulose degradation, such as hydrogen.

  19. Dipeptidyl peptidase IV is involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes in Aspergillus aculeatus.

    Science.gov (United States)

    Tani, Shuji; Yuki, Shota; Kunitake, Emi; Sumitani, Jun-Ichi; Kawaguchi, Takashi

    2017-06-01

    We screened for factors involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes from approximately 12,000 Aspergillus aculeatus T-DNA insertion mutants harboring a transcriptional fusion between the FIII-avicelase gene (cbhI) promoter and the orotidine 5'-monophosphate decarboxylase gene. Analysis of 5-fluoroorodic acid (5-FOA) sensitivity, cellulose utilization, and cbhI expression of the mutants revealed that a mutant harboring T-DNA at the dipeptidyl peptidase IV (dppIV) locus had acquired 5-FOA resistance and was deficient in cellulose utilization and cbhI expression. The deletion of dppIV resulted in a significant reduction in the cellulose-responsive expression of both cbhI as well as genes controlled by XlnR-independent and XlnR-dependent signaling pathways at an early phase in A. aculeatus. In contrast, the dppIV deletion did not affect the xylose-responsive expression of genes under the control of XlnR. These results demonstrate that DppIV participates in cellulose-responsive induction in A. aculeatus.

  20. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Directory of Open Access Journals (Sweden)

    Simon P Rout

    Full Text Available The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP including α and β forms of isosaccharinic acid (ISA and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118 in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2 hr(-1 (SE ± 2.9 × 10(-3. These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  1. Potential of Biosynthesized Silver Nanoparticles as Nanocatalyst for Enhanced Degradation of Cellulose by Cellulase

    Directory of Open Access Journals (Sweden)

    Bipinchandra K. Salunke

    2015-01-01

    Full Text Available Silver nanoparticles (AgNPs as a result of their excellent optical and electronic properties are promising catalytic materials for various applications. In this study, we demonstrate a novel approach for enhanced degradation of cellulose using biosynthesized AgNPs in an enzyme catalyzed reaction of cellulose hydrolysis by cellulase. AgNPs were synthesized through reduction of silver nitrate by extracts of five medicinal plants (Mentha arvensis var. piperascens, Buddleja officinalis Maximowicz, Epimedium koreanum Nakai, Artemisia messer-schmidtiana Besser, and Magnolia kobus. An increase of around twofold in reducing sugar formation confirmed the catalytic activity of AgNPs as nanocatalyst. The present study suggests that immobilization of the enzyme onto the surface of the AgNPs can be useful strategy for enhanced degradation of cellulose, which can be utilized for diverse industrial applications.

  2. The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters.

    Science.gov (United States)

    McDonald, James E; Houghton, James N I; Rooks, David J; Allison, Heather E; McCarthy, Alan J

    2012-04-01

    Cellulose is reputedly the most abundant organic polymer in the biosphere, yet despite the fundamental role of cellulolytic microorganisms in global carbon cycling and as potential sources of novel enzymes for biotechnology, their identity and ecology is not well established. Cellulose is a major component of landfill waste and its degradation is therefore a key feature of the anaerobic microbial decomposition process. Here, we targeted a number of taxa containing known cellulolytic anaerobes (members of the bacterial genus Fibrobacter, lineages of Clostridium clusters I, III, IV and XIV, and anaerobic fungi of the Neocallimastigales) in landfill leachate and colonized cellulose 'baits' via PCR and quantitative PCR (qPCR). Fibrobacter spp. and Clostridium clusters III, IV and XIV were detected in almost all leachate samples and cluster III and XIV clostridia were the most abundant (1-6% and 1-17% of total bacterial 16S rRNA gene copies respectively). Two landfill leachate microcosms were constructed to specifically assess those microbial communities that colonize and degrade cellulose substrates in situ. Scanning electron microscopy (SEM) of colonized cotton revealed extensive cellulose degradation in one microcosm, and Fibrobacter spp. and Clostridium cluster III represented 29% and 17%, respectively, of total bacterial 16S rRNA gene copies in the biofilm. Visible cellulose degradation was not observed in the second microcosm, and this correlated with negligible relative abundances of Clostridium cluster III and Fibrobacter spp. (≤ 0.1%), providing the first evidence that the novel fibrobacters recently detected in landfill sites and other non-gut environments colonize and degrade cellulose substrates in situ. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose.

    Directory of Open Access Journals (Sweden)

    Zhuolin Yi

    Full Text Available During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A, which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9 module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c and TM2 (GH48 with three CBM3 modules synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other

  4. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose.

    Science.gov (United States)

    Yi, Zhuolin; Su, Xiaoyun; Revindran, Vanessa; Mackie, Roderick I; Cann, Isaac

    2013-01-01

    During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases

  5. Paradigmatic status of an endo- and exoglucanase and its effect on crystalline cellulose degradation

    Directory of Open Access Journals (Sweden)

    Moraïs Sarah

    2012-10-01

    Full Text Available Abstract Background Microorganisms employ a multiplicity of enzymes to efficiently degrade the composite structure of plant cell wall cellulosic polysaccharides. These remarkable enzyme systems include glycoside hydrolases (cellulases, hemicellulases, polysaccharide lyases, and the carbohydrate esterases. To accomplish this challenging task, several strategies are commonly observed either separately or in combination. These include free enzyme systems, multifunctional enzymes, and multi-enzyme self-assembled designer cellulosome complexes. Results In order to compare these different paradigms, we employed a synthetic biology approach to convert two different cellulases from the free enzymatic system of the well-studied bacterium, Thermobifida fusca, into bifunctional enzymes with different modular architectures. We then examined their performance compared to those of the combined parental free-enzyme and equivalent designer-cellulosome systems. The results showed that the cellulolytic activity displayed by the different architectures of the bifunctional enzymes was somewhat inferior to that of the wild-type free enzyme system. Conclusions The activity exhibited by the designer cellulosome system was equal or superior to that of the free system, presumably reflecting the combined proximity of the enzymes and high flexibility of the designer cellulosome components, thus enabling efficient enzymatic activity of the catalytic modules.

  6. Investigating the Mechanical Properties and Degradability of Bioplastics Made from Wheat Straw Cellulose and Date Palm Fiber

    Directory of Open Access Journals (Sweden)

    H Omrani Fard

    2014-04-01

    Full Text Available During the past two decades, the use of bioplastics as an alternative to regular plastics has received much attention in many different industries. The mechanical and degradable properties of bioplastic are important for their utilization. In this research cellulose of wheat straw and glycerol were mixed by different weight ratios and then reinforced by using date palm fibers. To prepare the bioplastic plates, the materials were poured in molds and pressed by means of a hydraulic press and simultaneously heating of the molds. The experiments were performed based on a 3×3 factorial design with three levels: 50%, 60% and 70% of wheat cellulose and three types of reinforcement methods, namely: no-reinforcement, network reinforcement and parallel string reinforcement. The effect of the two factors on tensile strength, tensile strain, bending strength, modulus of elasticity and modulus of bending were investigated. The results indicated that the two factors and their interactions had significant effects on the mentioned properties of bioplastics (at α=0.05 level . The comparison of the means of the tests showed that the network reinforcement type with 50% cellulose had the highest tensile and bending strengths with 1992.02 and 28.71 MPa, respectively. The maximum modulus of elasticity and modulus bending were 40.4 and 2.3 MPa, respectively for parallel string arrangement and 70% of cellulose. The degradability tests of bioplastic using a fistulated sheep indicated that with increasing the percentage of cellulose, the degradability rate deceased. The maximum degradability rate, after 48 h holding in the sheep rumen, was 74% that belonged to bioplastics with 50% cellulose. The degradability data were well fitted to a mathematical model (R2=0.97.

  7. Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina.

    Science.gov (United States)

    Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D; Silar, Philippe; Berrin, Jean-Guy

    2017-01-15

    Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose

  8. Cellular automata modeling depicts degradation of cellulosic material by a cellulase system with single-molecule resolution.

    Science.gov (United States)

    Eibinger, Manuel; Zahel, Thomas; Ganner, Thomas; Plank, Harald; Nidetzky, Bernd

    2016-01-01

    Enzymatic hydrolysis of cellulose involves the spatiotemporally correlated action of distinct polysaccharide chain cleaving activities confined to the surface of an insoluble substrate. Because cellulases differ in preference for attacking crystalline compared to amorphous cellulose, the spatial distribution of structural order across the cellulose surface imposes additional constraints on the dynamic interplay between the enzymes. Reconstruction of total system behavior from single-molecule activity parameters is a longstanding key goal in the field. We have developed a stochastic, cellular automata-based modeling approach to describe degradation of cellulosic material by a cellulase system at single-molecule resolution. Substrate morphology was modeled to represent the amorphous and crystalline phases as well as the different spatial orientations of the polysaccharide chains. The enzyme system model consisted of an internally chain-cleaving endoglucanase (EG) as well as two processively acting, reducing and non-reducing chain end-cleaving cellobiohydrolases (CBHs). Substrate preference (amorphous: EG, CBH II; crystalline: CBH I) and characteristic frequencies for chain cleavage, processive movement, and dissociation were assigned from biochemical data. Once adsorbed, enzymes were allowed to reach surface-exposed substrate sites through "random-walk" lateral diffusion or processive motion. Simulations revealed that slow dissociation of processive enzymes at obstacles obstructing further movement resulted in local jamming of the cellulases, with consequent delay in the degradation of the surface area affected. Exploiting validation against evidence from atomic force microscopy imaging as a unique opportunity opened up by the modeling approach, we show that spatiotemporal characteristics of cellulose surface degradation by the system of synergizing cellulases were reproduced quantitatively at the nanometer resolution of the experimental data. This in turn gave

  9. Draft Genome Sequence of Advenella kashmirensis Strain W13003, a Polycyclic Aromatic Hydrocarbon-Degrading Bacterium

    Science.gov (United States)

    Jin, Decai; Zhou, Lisha; Wu, Liang; An, Wei; Zhao, Lin

    2014-01-01

    Advenella kashmirensis strain W13003 is a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium isolated from PAH-contaminated marine sediments. Here, we report the 4.8-Mb draft genome sequence of this strain, which will provide insights into the diversity of A. kashmirensis and the mechanism of PAH degradation in the marine environment. PMID:24482505

  10. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11

    Energy Technology Data Exchange (ETDEWEB)

    Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe [Marine Biotechnology Institute, Kamaishi (Japan)

    2007-09-15

    Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

  11. In-vitro Degradation Behaviour of Irradiated Bacterial Cellulose Membrane

    International Nuclear Information System (INIS)

    Darwis, D.; Khusniya, T.; Hardiningsih, L.; Nurlidar, F.; Winarno, H.

    2012-01-01

    Bacterial cellulose membrane synthesized by Acetobacter xylinum in coconut water medium has potential application for Guided bone Regeneration. However, this membrane may not meet some application requirements due to its low biodegradation properties. In this paper, incorporation of gamma irradiation into the membrane is a developed strategy to increase its biodegradability properties. The in-vitro degradation study in synthetic body fluid (SBF) of the irradiated membrane has been analyzed during periods of 6 months by means of weight loss, mechanical properties and scanning electron microscopy observation compared to that the un-irradiated one. The result showed that weight loss of irradiated membrane with 25 kGy and 50 kGy and immersed in SBF solution for 6 months reached 18% and 25% respectively. While un-irradiated membrane did not give significant weight loss. Tensile strength of membranes decreases with increasing of irradiation dose and further decreases in tensile strength is observed when irradiated membrane was followed by immersion in SBF solution. Microscope electron image of cellulose membranes shows that un-irradiated bacterial cellulose membrane consists of dense ultrafine fibril network structures, while irradiation result in cleavage of fibrils network of cellulose. The fibrils network become loosely after irradiated membrane immersed in SBF solution due to released of small molecular weight carbohydrates formed during by irradiation from the structure (author)

  12. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases

    DEFF Research Database (Denmark)

    Yuhong, Huang; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    in Fusarium commune. Prediction of the cellulose and hemicellulose-degrading enzymes in the F. commune transcriptome using peptide pattern recognition revealed 147 genes encoding glycoside hydrolases and six genes encoding lytic polysaccharide monooxygenases (AA9 and AA11), including all relevant cellulose...

  13. Effect of urea and urea-gamma treatments on cellulose degradation of Thai rice straw and corn stalk

    International Nuclear Information System (INIS)

    Banchorndhevakul, Siriwattana

    2002-01-01

    Cellulose degradation of 20% urea treated and 20% urea-10 kGy gamma treated Thai rice straw and corn stalk showed that combination effect of urea and gamma radiation gave a higher % decrease in neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, and lignin and cutin in comparison with urea effect only for both room temperature storage and room temperature +258 K storage. The results also indicated that cellulose degradation proceeded with time, even at 258 K. A drastic drop to less than half of the original contents in NDF, ADF, and ADL could not be obtained in this study

  14. Effect of urea and urea-gamma treatments on cellulose degradation of Thai rice straw and corn stalk

    Science.gov (United States)

    Banchorndhevakul, Siriwattana

    2002-08-01

    Cellulose degradation of 20% urea treated and 20% urea-10 kGy gamma treated Thai rice straw and corn stalk showed that combination effect of urea and gamma radiation gave a higher % decrease in neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, and lignin and cutin in comparison with urea effect only for both room temperature storage and room temperature +258 K storage. The results also indicated that cellulose degradation proceeded with time, even at 258 K. A drastic drop to less than half of the original contents in NDF, ADF, and ADL could not be obtained in this study.

  15. Changes in composition, cellulose degradability and biochemical methane potential of Miscanthus species during the growing season.

    Science.gov (United States)

    Peng, Xiaowei; Li, Chao; Liu, Jing; Yi, Zili; Han, Yejun

    2017-07-01

    The composition, cellulose degradability and biochemical methane potential (BMP) of M. sinensis, M. floridulus, Miscanthus×giganteus and M. lutarioriparius were investigated concomitantly at different growth/harvest times during their growing season. For all the four species, there was only a slight change in the compositional content. Meanwhile there was a huge change in the BMP values. At the growth time of 60days the BMPs ranged from 247.1 to 266.5mlg -1 VS. As growth time was prolonged, the BMPs decreased by 11-35%. For each species, the BMP was positively correlated to the cellulose degradability with the correlation coefficients (R 2 ) ranging from 0.8055 to 0.9925. This suggests that besides the biomass yield, it is justifiable to consider cellulose degradability when selecting the suitable harvest time for biofuels production from Miscanthus, especially in tropical and subtropical regions where Miscanthus can be harvested twice or more within a year. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hyun Jong; Wi, Seung Gon; Kim, Su Bae; Shin, You Jung; Yi, Ju Hui [Chonnam National University, Bio-Energy Research Institute, Gwangju (Korea, Republic of)

    2010-10-15

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. Research scope includes 1) screening of various microorganisms from decayed biomass in order to search for more efficient lignocellulose degrading microorganism, 2) identification and verification of new cell wall degrading cellulase for application cellulose bioconversion process, and 3) identification and characterization of novel genes involved in cellulose degradation. To find good microorganism candidates for lignocellulose degrading, 75 decayed samples from different areas were assayed in triplicate and analyzed. For cloning new cell wall degrading enzymes, we selected microorganisms because it have very good lignocellulose degradation ability. From that microorganisms, we have apparently cloned a new cellulase genes (10 genes). We are applying the new cloned cellulase genes to characterize in lignocellulsoe degradation that are most important to cellulosic biofuels production

  17. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    International Nuclear Information System (INIS)

    Bae, Hyun Jong; Wi, Seung Gon; Kim, Su Bae; Shin, You Jung; Yi, Ju Hui

    2010-10-01

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. Research scope includes 1) screening of various microorganisms from decayed biomass in order to search for more efficient lignocellulose degrading microorganism, 2) identification and verification of new cell wall degrading cellulase for application cellulose bioconversion process, and 3) identification and characterization of novel genes involved in cellulose degradation. To find good microorganism candidates for lignocellulose degrading, 75 decayed samples from different areas were assayed in triplicate and analyzed. For cloning new cell wall degrading enzymes, we selected microorganisms because it have very good lignocellulose degradation ability. From that microorganisms, we have apparently cloned a new cellulase genes (10 genes). We are applying the new cloned cellulase genes to characterize in lignocellulsoe degradation that are most important to cellulosic biofuels production

  18. Carbon and Hydrogen Stable Isotope Fractionation during Aerobic Bacterial Degradation of Aromatic Hydrocarbons†

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Schink, Bernhard; Vieth, Andrea; Meckenstock, Rainer U.

    2002-01-01

    13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation. PMID:12324375

  19. Formation of brown lines in paper: characterization of cellulose degradation at the wet-dry interface.

    Science.gov (United States)

    Souguir, Zied; Dupont, Anne-Laurence; de la Rie, E René

    2008-09-01

    Brown lines were generated at the wet-dry interface on Whatman paper No. 1 by suspending the sheet vertically in deionized water. Formic acid and acetic acid were quantified in three areas of the paper defined by the wet-dry boundary (above, below, and at the tideline) using capillary zone electrophoresis with indirect UV detection. Their concentration increased upon accelerated aging of the paper and was highest in the tideline. The hydroperoxides have been quantified using reverse phase high performance liquid chromatography with UV detection based on the determination of triphenylphosphine oxide produced from the reaction with triphenylphosphine, and their highest concentration was found in the tideline as well. For the first time, it was shown that various types of hydroperoxides were present, water-soluble and non-water-soluble, most probably in part hydroperoxide functionalized cellulose. After accelerated aging, a significant increase in hydroperoxide concentration was found in all the paper areas. The molar masses of cellulose determined using size-exclusion chromatography with multiangle light scattering detection showed that, upon aging, cellulose degraded significantly more in the tideline area than in the other areas of the paper. The area below the tideline was more degraded than the area above. A kinetic study of the degradation of cellulose allowed determining the constants for glycosidic bond breaking in each of the areas of the paper.

  20. Effects of cellulose degradation products on the mobility of Eu(III) in repositories for low and intermediate level radioactive waste.

    Science.gov (United States)

    Diesen, Veronica; Forsberg, Kerstin; Jonsson, Mats

    2017-10-15

    The deep repository for low and intermediate level radioactive waste SFR in Sweden will contain large amounts of cellulosic waste materials contaminated with radionuclides. Over time the repository will be filled with water and alkaline conditions will prevail. In the present study degradation of cellulosic materials and the ability of cellulosic degradation products to solubilize and thereby mobilise Eu(III) under repository conditions has been investigated. Further, the possible immobilization of Eu(III) by sorption onto cement in the presence of degradation products has been investigated. The cellulosic material has been degraded under anaerobic and aerobic conditions in alkaline media (pH: 12.5) at ambient temperature. The degradation was followed by measuring the total organic carbon (TOC) content in the aqueous phase as a function of time. After 173days of degradation the TOC content is highest in the anaerobic artificial cement pore water (1547mg/L). The degradation products are capable of solubilising Eu(III) and the total europium concentration in the aqueous phase was 900μmol/L after 498h contact time under anaerobic conditions. Further it is shown that Eu(III) is adsorbed to the hydrated cement to a low extent (<9μmol Eu/g of cement) in the presence of degradation products. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

    Directory of Open Access Journals (Sweden)

    Peter K Busk

    Full Text Available The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.

  2. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin.

    Science.gov (United States)

    Svitil, A L; Chadhain, S; Moore, J A; Kirchman, D L

    1997-02-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products.

  3. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    Science.gov (United States)

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  4. INFLUENCE OF CELLULOSE POLYMERIZATION DEGREE AND CRYSTALLINITY ON KINETICS OF CELLULOSE DEGRADATION

    OpenAIRE

    Edita Jasiukaitytė-Grojzdek,; Matjaž Kunaver,; Ida Poljanšek

    2012-01-01

    Cellulose was treated in ethylene glycol with p-toluene sulfonic acid monohydrate as a catalyst at different temperatures. At the highest treatment temperature (150 °C) liquefaction of wood pulp cellulose was achieved and was dependant on cellulose polymerization degree (DP). Furthermore, the rate of amorphous cellulose weight loss was found to increase with cellulose degree of polymerization, while the rate of crystalline cellulose weight loss was reciprocal to the size of the crystallites. ...

  5. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw

    DEFF Research Database (Denmark)

    Thygesen, A.; Thomsen, A.B.; Schmidt, A.S.

    2003-01-01

    The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension suppleme......The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension...... hydrolysis of filter cake from wet-oxidised wheat straw for 48 h with an enzyme loading of 5 FPU/g biomass resulted in glucose yields from cellulose of 58% (w/w) and 39% (w/w) using enzymes produced by R brasilianum and a commercial enzyme mixture, respectively. At higher enzyme loading (25 FPU/g biomass...

  6. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T.

    Directory of Open Access Journals (Sweden)

    Ronald M Weiner

    2008-05-01

    Full Text Available The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40 is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment.

  7. Effects of cellulosic degradation product concentration on actinide sorption on tuffs from the Borrowdale Volcanic Group, Sellafield, Cumbria

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Boult, K.A.; Linklater, C.M.

    1994-01-01

    The Nirex Safety Assessment Research Programme includes an investigation into the effects of cellulosic degradation products on the sorption of radioelements onto geological materials. Previous batch sorption studies have shown that the presence of high concentrations of both authentic cellulosic degradation products (produced by alkaline degradation of wood/tissue) and the well-characterised simulant, gluconate, can cause marked reductions in actinide sorption. This work has now been extended to cover a range of concentrations of both authentic cellulosic degradation products and their simulants, gluconate and iso-saccharinate. Geological samples were from the proposed Nirex underground radioactive waste disposal site at Sellafied, Cumbria. The nuclides studied were thorium and plutonium. In the presence of gluconate or iso-saccharinate, at concentrations above 10 -4 M, the present work has confirmed the trends shown by earlier experiments, with a significant reduction in actinide sorption (R D values reduced by less than a factor of two), and in some cases the results suggested a slight increase (R D values increased by up to a factor of four). (orig.)

  8. Effects of cellulosic degradation product concentration on actinide sorption on tuffs from the Borrowdale Volcanic Group, Sellafield, Cumbria

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Berry, J.A. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Bond, K.A. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Boult, K.A. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Linklater, C.M. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom)

    1994-12-31

    The Nirex Safety Assessment Research Programme includes an investigation into the effects of cellulosic degradation products on the sorption of radioelements onto geological materials. Previous batch sorption studies have shown that the presence of high concentrations of both authentic cellulosic degradation products (produced by alkaline degradation of wood/tissue) and the well-characterised simulant, gluconate, can cause marked reductions in actinide sorption. This work has now been extended to cover a range of concentrations of both authentic cellulosic degradation products and their simulants, gluconate and iso-saccharinate. Geological samples were from the proposed Nirex underground radioactive waste disposal site at Sellafied, Cumbria. The nuclides studied were thorium and plutonium. In the presence of gluconate or iso-saccharinate, at concentrations above 10{sup -4} M, the present work has confirmed the trends shown by earlier experiments, with a significant reduction in actinide sorption (R{sub D} values reduced by less than a factor of two), and in some cases the results suggested a slight increase (R{sub D} values increased by up to a factor of four). (orig.)

  9. Thermophilic anaerobic degradation of butyrate by a butyrate-utilizing bacterium in coculture and triculture with methanogenic bacteria.

    Science.gov (United States)

    Ahring, B K; Westermann, P

    1987-02-01

    We studied syntrophic butyrate degradation in thermophilic mixed cultures containing a butyrate-degrading bacterium isolated in coculture with Methanobacterium thermoautotrophicum or in triculture with M. thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic bacterium. Butyrate was beta-oxidized to acetate with protons as the electron acceptors. Acetate was used concurrently with its production in the triculture. We found a higher butyrate degradation rate in the triculture, in which both hydrogen and acetate were utilized, than in the coculture, in which acetate accumulated. Yeast extract, rumen fluid, and clarified digestor fluid stimulated butyrate degradation, while the effect of Trypticase was less pronounced. Penicillin G, d-cycloserine, and vancomycin caused complete inhibition of butyrate utilization by the cultures. No growth or degradation of butyrate occurred when 2-bromoethanesulfonic acid or chloroform, specific inhibitors of methanogenic bacteria, was added to the cultures and common electron acceptors such as sulfate, nitrate, and fumarate were not used with butyrate as the electron donor. Addition of hydrogen or oxygen to the gas phase immediately stopped growth and butyrate degradation by the cultures. Butyrate was, however, metabolized at approximately the same rate when hydrogen was removed from the cultures and was metabolized at a reduced rate in the cultures previously exposed to hydrogen.

  10. A STRUCTURAL OVERVIEW OF GH61 PROTEINS – FUNGAL CELLULOSE DEGRADING POLYSACCHARIDE MONOOXYGENASES

    Directory of Open Access Journals (Sweden)

    Leila Lo Leggio

    2012-09-01

    Full Text Available Recent years have witnessed a spurt of activities in the elucidation of the molecular function of a class of proteins with great potential in biomass degradation. GH61 proteins are of fungal origin and were originally classified in family 61 of the glycoside hydrolases. From the beginning they were strongly suspected to be involved in cellulose degradation because of their expression profiles, despite very low detectable endoglucanase activities. A major breakthrough came from structure determination of the first members, establishing the presence of a divalent metal binding site and a similarity to bacterial proteins involved in chitin degradation. A second breakthrough came from the identification of cellulase boosting activity dependent on the integrity of the metal binding site. Finally very recently GH61 proteins were demonstrated to oxidatively cleave crystalline cellulose in a Cu and reductant dependant manner. This mini-review in particular focuses on the contribution that structure elucidation has made in the understanding of GH61 molecular function and reviews the currently known structures and the challenges remaining ahead for exploiting this new class of enzymes to the full.

  11. A structural overview of GH61 proteins – fungal cellulose degrading polysaccharide monooxygenases

    Directory of Open Access Journals (Sweden)

    Leila Lo Leggio

    2012-09-01

    Full Text Available Recent years have witnessed a spurt of activities in the elucidation of the molecular function of a class of proteins with great potential in biomass degradation. GH61 proteins are of fungal origin and were originally classified in family 61 of the glycoside hydrolases. From the beginning they were strongly suspected to be involved in cellulose degradation because of their expression profiles, despite very low detectable endoglucanase activities. A major breakthrough came from structure determination of the first members, establishing the presence of a divalent metal binding site and a similarity to bacterial proteins involved in chitin degradation. A second breakthrough came from the identification of cellulase boosting activity dependent on the integrity of the metal binding site. Finally very recently GH61 proteins were demonstrated to oxidatively cleave crystalline cellulose in a Cu and reductant dependant manner. This mini-review in particular focuses on the contribution that structure elucidation has made in the understanding of GH61 molecular function and reviews the currently known structures and the challenges remaining ahead for exploiting this new class of enzymes to the full.

  12. Effect of polyethelene oxide on the thermal degradation of cellulose biofilm – Low cost material for soft tissue repair in dentistry

    Science.gov (United States)

    Tyler, Rakim; Schiraldi, David; Roperto, Renato; Faddoul, Fady; Teich, Sorin

    2017-01-01

    Background Bio cellulose is a byproduct of sweet tea fermentation known as kombusha. During the biosynthesis by bacteria cellulose chains are polymerized by enzyme from activated glucose. The single chains are then extruded through the bacterial cell wall. Interestingly, a potential of the Kombucha’s byproduct bio cellulose (BC) as biomaterial had come into focus only in the past few decades. The unique physical and mechanical properties such as high purity, an ultrafine and highly crystalline network structure, a superior mechanical strength, flexibility, pronounced permeability to gases and liquids, and an excellent compatibility with living tissue that reinforced by biodegradability, biocompatibility, large swelling ratios. Material and Methods The bio-cellulose film specimens were provided by the R.P Dressel dental materials laboratory, Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, US. The films were harvested, washed with water and dried at room temperature overnight. 1wt% of PEG-2000 and 10wt% of NaOH were added into ultrapure water to prepare PEG/NaOH solution. Then bio-cellulose film was added to the mixture and swell for 3 h at room temperature. All bio-cellulose film specimens were all used in the TA Instruments Q500 Thermogravmetric Analyzer to investigate weight percent lost and degradation. The TGA was under ambient air conditions at a heating rate of 10ºC/min. Results and Conclusions PEG control exhibited one transition with the peak at 380ºC. Cellulose and cellulose/ PEG films showed 3 major transitions. Interestingly, the cellulose/PEG film showed slightly elevated temperatures when compared to the corresponding transitions for cellulose control. The thermal gravimetric analysis (TGA) degradation curves were analyzed. Cellulose control film exhibited two zero order transitions, that indicate the independence of the rate of degradation from the amount on the initial substance. The

  13. Purification of collagen-binding proteins of Lactobacillus reuteri NCIB 11951.

    Science.gov (United States)

    Aleljung, P; Shen, W; Rozalska, B; Hellman, U; Ljungh, A; Wadström, T

    1994-04-01

    Collagen type-I-binding proteins of Lactobacillus reuteri NCIB 11951 were purified. The cell surface proteins were affinity purified on collagen Sepharose and eluted with an NaCl gradient. Two protein bands were eluted from the column (29 kDa and 31 kDa), and both bound radio-labeled collagen type I. Rabbit antisera raised against the 29 kDa and 31 kDa protein reacted with the affinity-purified proteins in a Western blot with whole-cell extract used as antigen. The N-terminal sequence of the 29-kDa and 31-kDa proteins demonstrated the closest homologies with internal sequences from an Escherichia coli trigger factor protein (TIG.ECOLI). Out of nine other lactobacilli, the antisera reacted only with the L. reuteri and not with the other species tested.

  14. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    Science.gov (United States)

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  16. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  17. Extracellular Degradative Enzymes from Pleurotus pulmonarius Cultivated on Various Solid Cellulose- Radioactive Waste Simulates

    International Nuclear Information System (INIS)

    Abd El-Aziz, S.M.; El-Sayad, H.; Abu El- Soud, S.M.; Awad Alah, O.A.; Eskander, S.B.

    2008-01-01

    The present work was devoted to search the behavior of some extracellular enzymes secreted by P. pulmonarius during the bioremediation process of some cellulose based solid radioactive waste simulates. Four categories of this group, namely contaminated protective clothes, spent paper, and ruined cotton and mixture of them were subject to the fungal biodegradation and the variations in P. pulmonarius cellulase, xylanase and laccase enzymes activates were followed during three microbial growing stages. In addition, the changes in reducing sugars and total protein as end products of the degradation process were determined. Also the variations in both the secreted enzymes and the metabolism end products were measured as function of exposing the inoculated P. pulmonarius spawns to increasing doses of gamma irradiation(0.0,0.1,0.25,0.5,0.75,1.0,2.0 kGy). Based on the data so far obtained, it could be stated that the extracellular cellulase enzyme and total protein in the degraded substrate were increased throughout the whole incubation period for all types of cellulose based waste. In addition, it have been concluded that the enzymatic activities and consequently the biodegradation of the cellulose based solid radioactive simulates is enhanced by the gamma irradiation up to the dose 0.75 kGy

  18. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi.

    Science.gov (United States)

    Hastrup, Anne Christine Steenkjær; Howell, Caitlin; Larsen, Flemming Hofmann; Sathitsuksanoh, Noppadon; Goodell, Barry; Jellison, Jody

    2012-10-01

    Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Metal complexation in near field conditions of nuclear waste repository - stability constant of copper complexation with cellulose degradation products, in alkaline conditions

    International Nuclear Information System (INIS)

    Guede, Kipre Bertin

    2005-11-01

    Copper is a stable element and spent fuel component which constitutes the radioactive waste. The reaction of Copper with cellulose degradation products in alkaline conditions was performed to mimic what occurs in near field conditions of nuclear waste repository. From the characteristics of Cu (II), this thesis aims at inferring the behaviour of radionuclides vis a vis the degradation products of cellulose. The contribution of the present work is therefore the assessment of the stability of the major cellulose degradation product, its affinity for Copper and the extent of the complexation function 13 between Cu (II) and the organic moieties. The formation of cellulose degradation products was followed by measurement of p11, Conductivity, Angle of rotation, relative abundance of aliphatics and aromatics (E4/E6 ) aid by UV-visible spectroscopy. The TOC was determined using the Walkley and Black titration after respectively 31 weeks and 13 weeks of degradation for the reaction mixtures T and A, N. The stability of the major degradation products gave the following figures: ISA(A): - 13 43.39 <ΔG -10639.88 ISA(N): - Ii 436.45<ΔG< -9103.6. The study of the characteristics of Gluconic Acid, as a model compound, was carried out in an attempt to give a general picture of the roper ties of cellulose degradation products. The Complexation between Cu (II) and the organic ligand (Cellulose degradation products) was performed using UV-visible spectroscopy and Ion Distribution technique. The Log B value obtained from the complexation studies at 336 nm for 1 = 0. I Ni NaClO4 and I = 0.01 M NaClO4, falls within a range of 3.48 to 3.74 for the standard reference material (Gluconic Acid), and within I .87 to 2.3 I, and I .6 to 2.01, respectively for the degradation Products ISA (A) and ISA(N). The ion distribution studies showed that: • In (he absence of the degradation product ISA and at pH = 3.68. 56. 17 % of Cu (II) was bound to the resin. • In the presence of ISA and at 2

  20. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC

    Science.gov (United States)

    Q.Q. Wang; J.Y. Zhu; R.S. Reiner; S.P. Verrill; U. Baxa; S.E. McNeil

    2012-01-01

    This study demonstrated the potential of simultaneously recovering cellulosic solid residues (CSR) and producing cellulose nanocrystals (CNCs) by strong sulfuric acid hydrolysis to minimize cellulose loss to near zero. A set of slightly milder acid hydrolysis conditions than that considered as “optimal” were used to significantly minimize the degradation of cellulose...

  1. In vitro Cellulose Rich Organic Material Degradation by Cellulolytic Streptomyces albospinus (MTCC 8768

    Directory of Open Access Journals (Sweden)

    Pinky Prasad

    2012-09-01

    Full Text Available Aims: Cellulosic biomass is the only foreseeable sustainable source of fuels and is also one of the dominating waste materials in nature resulting from human activities. Keeping in view the environmental problems like disposal of large volumes of cellulosic wastes and shortage of fossil fuel in the world, the main aim of the present investigation was to characterize and study the cellulolytic activity of Streptomyces albospinus (MTCC 8768, isolated from municipal wastes, on natural cellulosic substrates viz. straw powder, wood powder and finely grated vegetable peels.Methodology and Result: Stanier’s Basal broth with 100 mg of each of the substrates was inoculated separately with S. albospinus (MTCC No. 8768 and incubated at 37 °C for 8 days. The cellulosic substrates were re-weighed at an interval of 2 days and the difference between the initial weight and the final weight gave the amount of substratesdegraded by the isolate. It was observed that maximum degradation was observed in the grated vegetable peels (64 mg followed by straw powder (38 mg and wood powder (28 mg over a period of 8 days.Conclusion, significance and impact of study: By the selection of efficient cellulolytic microorganisms and cost-effective operational techniques, the production of useful end products from the biodegradation of the low cost enormous stock of cellulose in nature can be very beneficial.

  2. Effects of cellulosic degradation products on uranium sorption in the geosphere

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Boult, K.A.; Brownsword, M.; Linklater, C.M.

    1994-01-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  3. Effects of cellulosic degradation products on uranium sorption in the geosphere

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Berry, J.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Bond, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Boult, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Brownsword, M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Linklater, C.M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom))

    1994-10-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  4. Proteomic Profiling of the Dioxin-Degrading Bacterium Sphingomonas wittichii RW1

    Directory of Open Access Journals (Sweden)

    David R. Colquhoun

    2012-01-01

    Full Text Available Sphingomonas wittichii RW1 is a bacterium of interest due to its ability to degrade polychlorinated dioxins, which represent priority pollutants in the USA and worldwide. Although its genome has been fully sequenced, many questions exist regarding changes in protein expression of S. wittichii RW1 in response to dioxin metabolism. We used difference gel electrophoresis (DIGE and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS to identify proteomic changes induced by growth on dibenzofuran, a surrogate for dioxin, as compared to acetate. Approximately 10% of the entire putative proteome of RW1 could be observed. Several components of the dioxin and dibenzofuran degradation pathway were shown to be upregulated, thereby highlighting the utility of using proteomic analyses for studying bioremediation agents. This is the first global protein analysis of a microorganism capable of utilizing the carbon backbone of both polychlorinated dioxins and dibenzofurans as the sole source for carbon and energy.

  5. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yiming; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Chen, Jianmeng, E-mail: jchen@zjut.edu.cn

    2016-03-05

    Highlights: • A novel efficient DMS-degrading bacterium Alcaligenes sp. SY1 was identified. • A RSM was applied to optimize incubation condition of Alcaligenes sp. SY1. • SIP was applied as C{sup 13} labelled DMS to trace intermediates during DMS degradation. • Kinetics of DMS degradation via batch experiment was revealed. • Carbon and sulfur balance were analyzed during DMS degradation process. - Abstract: Recently, the biodegradation of volatile organic sulfur compounds (VOSCs) has become a burgeoning field, with a growing focus on the reduction of VOSCs. The reduction of VOSCs encompasses both organic emission control and odor control. Herein, Alcaligenes sp. SY1 was isolated from active sludge and found to utilize dimethyl sulfide (DMS) as a growth substrate in a mineral salt medium. Response surface methodology (RSM) analysis was applied to optimize the incubation conditions. The following conditions for optimal degradation were identified: temperature 27.03 °C; pH 7.80; inoculum salinity 0.84%; and initial DMS concentration 1585.39 μM. Under these conditions, approximately 99% of the DMS was degraded within 30 h of incubation. Two metabolic compounds were detected and identified by gas chromatography–mass spectrometry (GC–MS): dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). The DMS degradation kinetics for different concentrations were evaluated using the Haldane–Andrews model and the pseudo first-order model. The maximum specific growth rate and degradation rate of Alcaligenes sp. SY1 were 0.17 h{sup −1} and 0.63 gs gx{sup −1} h{sup −1}. A possible degradation pathway is proposed, and the results suggest that Alcaligenes sp. SY1 has the potential to control odor emissions under aerobic conditions.

  6. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. Copyright © 2016, American Association for the Advancement of Science.

  7. Enzymatic Mechanism for Arabinan Degradation and Transport in the Thermophilic Bacterium Caldanaerobius polysaccharolyticus.

    Science.gov (United States)

    Wefers, Daniel; Dong, Jia; Abdel-Hamid, Ahmed M; Paul, Hans Müller; Pereira, Gabriel V; Han, Yejun; Dodd, Dylan; Baskaran, Ramiya; Mayer, Beth; Mackie, Roderick I; Cann, Isaac

    2017-09-15

    The plant cell wall polysaccharide arabinan provides an important supply of arabinose, and unraveling arabinan-degrading strategies by microbes is important for understanding its use as a source of energy. Here, we explored the arabinan-degrading enzymes in the thermophilic bacterium Caldanaerobius polysaccharolyticus and identified a gene cluster encoding two glycoside hydrolase (GH) family 51 α-l-arabinofuranosidases (CpAbf51A, CpAbf51B), a GH43 endoarabinanase (CpAbn43A), a GH27 β-l-arabinopyranosidase (CpAbp27A), and two GH127 β-l-arabinofuranosidases (CpAbf127A, CpAbf127B). The genes were expressed as recombinant proteins, and the functions of the purified proteins were determined with para -nitrophenyl ( p NP)-linked sugars and naturally occurring pectin structural elements as the substrates. The results demonstrated that CpAbn43A is an endoarabinanase while CpAbf51A and CpAbf51B are α-l-arabinofuranosidases that exhibit diverse substrate specificities, cleaving α-1,2, α-1,3, and α-1,5 linkages of purified arabinan-oligosaccharides. Furthermore, both CpAbf127A and CpAbf127B cleaved β-arabinofuranose residues in complex arabinan side chains, thus providing evidence of the function of this family of enzymes on such polysaccharides. The optimal temperatures of the enzymes ranged between 60°C and 75°C, and CpAbf43A and CpAbf51A worked synergistically to release arabinose from branched and debranched arabinan. Furthermore, the hydrolytic activity on branched arabinan oligosaccharides and degradation of pectic substrates by the endoarabinanase and l-arabinofuranosidases suggested a microbe equipped with diverse activities to degrade complex arabinan in the environment. Based on our functional analyses of the genes in the arabinan degradation cluster and the substrate-binding studies on a component of the cognate transporter system, we propose a model for arabinan degradation and transport by C. polysaccharolyticus IMPORTANCE Genomic DNA sequencing and

  8. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  9. Adhesive properties of a symbolic bacterium from a wood-boreing marine shipworm

    International Nuclear Information System (INIS)

    Imam, S.H.; Greene, R.V.; Griffin, H.L.

    1990-01-01

    Adhesive properties of cellulolytic, nitrogen-fixing bacterium isolated from a marine shipworm are described. 35 S-labeled cells of the shipworm bacterium bound preferentially Whatman no.1 cellulose filter paper, compared with its binding to other cellulose substrata or substrata lacking cellulose. The ability of the bacteria to bind to Whatman no. 1 filter paper was significantly reduced by glutaraldehyde or heat treatment of cells. Pretreatment of cells with azide, valinomycin, gramicidin-D, bis-hexafluoroacetylacetone (1799), or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone inhibited adhesion activity. Cells pretreated with pronase or trypsin also exhibited reduced binding activity, but chymotrypsin and peptidase had no effect on adhesion activity. Cellodextrins and methyl cellulose 15 inhibited the adhesion of the shipworm bacteria to filter paper, whereas glucose, cellobiose, and soluble carboxymethyl cellulose had no significant effect. The divalent cation chelators EDTA and EGTA [ethylene hlycol-bis(β-aminoethyl ether)-N,N,N'N'-tetraacetic acid] had little or no effect on adhesive properties of shipworm bacteria. Also, preabsorbing the substratum with extracellular endoglucanase isolated from the ship worm bacterium or 1% bovine serum albumin had no apparent effect on bacterial binding. Low concentration (0.01%) of sodium dodecyl sulfate solubilized a fraction from whole cells, which appeared to be involved in cellular binding activity. After removal of sodium dodecyl, sulfate, several proteins in this fraction associated with intact cells. These cells exhibited up to 50% enhanced binding to filter paper in comparison to cells which had not been exposed to the sodium dodecyl sulfate-solubilized fraction

  10. Thermal degradation of ligno-cellulosic fuels. DSC and TGA studies

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, V.; Cancellieri, D.; Leoni, E. [SPE-CNRS UMR 6134, University of Corsica, Campus Grossetti, BP 52, 20250 Corti (France)

    2006-12-01

    The scope of this work was to show the utility of thermal analysis and calorimetric experiments to study the thermal oxidative degradation of Mediterranean scrubs. We investigated the thermal degradation of four species; DSC and TGA were used under air sweeping to record oxidative reactions in dynamic conditions. Heat released and mass loss are important data to be measured for wildland fires modelling purpose and fire hazard studies on ligno-cellulosic fuels. Around 638 and 778K, two dominating and overlapped exothermic peaks were recorded in DSC and individualized using a experimental and numerical separation. This stage allowed obtaining the enthalpy variation of each exothermic phenomenon. As an application, we propose to classify the fuels according to the heat released and the rate constant of each reaction. TGA experiments showed under air two successive mass loss around 638 and 778K. Both techniques are useful in order to measure ignitability, combustibility and sustainability of forest fuels. (author)

  11. Multifarious activities of cellulose degrading bacteria from Koala (Phascolarctos cinereus) faeces.

    Science.gov (United States)

    Singh, Surender; Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2015-01-01

    Cellulose degrading bacteria from koala faeces were isolated using caboxymethylcellulose-Congo red agar, screened in vitro for different hydrolytic enzyme activities and phylogenetically characterized using molecular tools. Bacillus sp. and Pseudomonas sp. were the most prominent bacteria from koala faeces. The isolates demonstrated good xylanase, amylase, lipase, protease, tannase and lignin peroxidase activities apart from endoglucanase activity. Furthermore many isolates grew in the presence of phenanthrene, indicating their probable application for bioremediation. Potential isolates can be exploited further for industrial enzyme production or in bioremediation of contaminated sites.

  12. Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Motoki; Akahoshi, Tomohiro; Okamoto, Kenji; Yanase, Hideshi [Tottori Univ. (Japan). Dept. of Chemistry and Biotechnology

    2012-11-15

    In order to reduce the cost of bioethanol production from lignocellulosic biomass, we developed a tool for cell surface display of cellulolytic enzymes on the ethanologenic bacterium Zymobacter palmae. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, to express and display heterologous cellulolytic enzymes on the Z. palmae cell surface, we utilized the cell-surface display motif of the Pseudomonas ice nucleation protein Ina. The gene encoding Ina from Pseudomonas syringae IFO3310 was cloned, and its product was comprised of three functional domains: an N-terminal domain, a central domain with repeated amino acid residues, and a C-terminal domain. The N-terminal domain of Ina was shown to function as the anchoring motif for a green fluorescence protein fusion protein in Escherichia coli. To express a heterologous cellulolytic enzyme extracellularly in Z. palmae, we fused the N-terminal coding sequence of Ina to the coding sequence of an N-terminal-truncated Cellulomonas endoglucanase. Z. palmae cells carrying the fusion endoglucanase gene were shown to degrade carboxymethyl cellulose. Although a portion of the expressed fusion endoglucanase was released from Z. palmae cells into the culture broth, we confirmed the display of the protein on the cell surface by immunofluorescence microscopy. The results indicate that the N-terminal anchoring motif of Ina from P. syringae enabled the translocation and display of the heterologous cellulase on the cell surface of Z. palmae. (orig.)

  13. Global Kinetic Constants for Thermal Oxidative Degradation of a Cellulosic Paper

    Science.gov (United States)

    Kashiwagi, Takashi; Nambu, Hidesaburo

    1992-01-01

    Values of global kinetic constants for pyrolysis, thermal oxidative degradation, and char oxidation of a cellulosic paper were determined by a derivative thermal gravimetric study. The study was conducted at heating rates of 0.5, 1, 1.5, 3, and 5 C/min in ambient atmospheres of nitrogen, 0.28, 1.08, 5.2 percent oxygen concentrations, and air. Sample weight loss rate, concentrations of CO, CO2, and H2O in the degradation products, and oxygen consumption were continuously measured during the experiment. Values of activation energy, preexponential factor, orders of reaction, and yields of CO, CO2, H2O, total hydrocarbons, and char for each degradation reaction were derived from the results. Heat of reaction for each reaction was determined by differential scanning calorimetry. A comparison of the calculated CO, CO2, H2O, total hydrocarbons, sample weight loss rate, and oxygen consumption was made with the measured results using the derived kinetic constants, and the accuracy of the values of kinetic constants was discussed.

  14. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production.

    Science.gov (United States)

    Weselowski, Brian; Nathoo, Naeem; Eastman, Alexander William; MacDonald, Jacqueline; Yuan, Ze-Chun

    2016-10-18

    Paenibacillus polymyxa is a plant-growth promoting rhizobacterium that could be exploited as an environmentally friendlier alternative to chemical fertilizers and pesticides. Various strains have been isolated that can benefit agriculture through antimicrobial activity, nitrogen fixation, phosphate solubilization, plant hormone production, or lignocellulose degradation. However, no single strain has yet been identified in which all of these advantageous traits have been confirmed. P. polymyxa CR1 was isolated from degrading corn roots from southern Ontario, Canada. It was shown to possess in vitro antagonistic activities against the common plant pathogens Phytophthora sojae P6497 (oomycete), Rhizoctonia solani 1809 (basidiomycete fungus), Cylindrocarpon destructans 2062 (ascomycete fungus), Pseudomonas syringae DC3000 (bacterium), and Xanthomonas campestris 93-1 (bacterium), as well as Bacillus cereus (bacterium), an agent of food-borne illness. P. polymyxa CR1 enhanced growth of maize, potato, cucumber, Arabidopsis, and tomato plants; utilized atmospheric nitrogen and insoluble phosphorus; produced the phytohormone indole-3-acetic acid (IAA); and degraded and utilized the major components of lignocellulose (lignin, cellulose, and hemicellulose). P. polymyxa CR1 has multiple beneficial traits that are relevant to sustainable agriculture and the bio-economy. This strain could be developed for field application in order to control pathogens, promote plant growth, and degrade crop residues after harvest.

  15. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  16. Structure and characteristics of an endo-beta-1,4-glucanase, isolated from Trametes hirsuta, with high degradation to crystalline cellulose.

    Science.gov (United States)

    Nozaki, Kouichi; Seki, Takahiro; Matsui, Keiko; Mizuno, Masahiro; Kanda, Takahisa; Amano, Yoshihiko

    2007-10-01

    Trametes hirsuta produced cellulose-degrading enzymes when it was grown in a cellulosic medium such as Avicel or wheat bran. An endo-beta-1,4-glucanase (ThEG) was purified from the culture filtrate, and the gene and the cDNA were isolated. The gene consisted of an open reading frame encoding 384 amino acids, interrupted by 11 introns. The whole sequence showed high homology with that of family 5 glycoside hydrolase. The properties of the recombinant enzyme (rEG) in Aspergillus oryzae were compared with those of the En-1 from Irpex lacteus, which showed the highest homology among all the endoglucanases reported. The rEG activity against Avicel was about 8 times higher than that of En-1 when based on CMC degradation. A remarkable structural difference between the two enzymes was the length of the linker connecting the cellulose-binding domain to the catalytic domain.

  17. Construction of cellulose-utilizing Escherichia coli based on a secretable cellulase.

    Science.gov (United States)

    Gao, Dongfang; Luan, Yaqi; Wang, Qian; Liang, Quanfeng; Qi, Qingsheng

    2015-10-09

    The microbial conversion of plant biomass into value added products is an attractive option to address the impacts of petroleum dependency. The Gram-negative bacterium Escherichia coli is commonly used as host for the industrial production of various chemical products with a variety of sugars as carbon sources. However, this strain neither produces endogenous cellulose degradation enzymes nor secrets heterologous cellulases for its poor secretory capacity. Thus, a cellulolytic E. coli strain capable of growth on plant biomass would be the first step towards producing chemicals and fuels. We previously identified the catalytic domain of a cellulase (Cel-CD) and its N-terminal sequence (N20) that can serve as carriers for the efficient extracellular production of target enzymes. This finding suggested that cellulose-utilizing E. coli can be engineered with minimal heterologous enzymes. In this study, a β-glucosidase (Tfu0937) was fused to Cel-CD and its N-terminal sequence respectively to obtain E. coli strains that were able to hydrolyze the cellulose. Recombinant strains were confirmed to use the amorphous cellulose as well as cellobiose as the sole carbon source for growth. Furthermore, both strains were engineered with poly (3-hydroxybutyrate) (PHB) synthesis pathway to demonstrate the production of biodegradable polyesters directly from cellulose materials without exogenously added cellulases. The yield of PHB reached 2.57-8.23 wt% content of cell dry weight directly from amorphous cellulose/cellobiose. Moreover, we found the Cel-CD and N20 secretion system can also be used for the extracellular production of other hydrolytic enzymes. This study suggested that a cellulose-utilizing E. coli was created based on a heterologous cellulase secretion system and can be used to produce biofuels and biochemicals directly from cellulose. This system also offers a platform for conversion of other abundant renewable biomass to biofuels and biorefinery products.

  18. Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang; Li, Yun; Wang, Zhengdong; Liu, Huihong, E-mail: huihongliu@126.com

    2017-02-01

    Palladium nanoparticles (PdNPs) were synthesized through friendly environmental method using PdCl{sub 2} and carboxymethyl cellulose (CMC) in an aqueous solution (pH 6) at controlled water bath (80 °C) for 30 min. CMC functioned as both reducing and stabilizing agent. The characterization through high resolution-transmission electron microscopic (HRTEM) and X-ray Fluorescence Spectrometry (XRF) inferred that the as-synthesized PdNPs were spherical in shape with a face cubic crystal (FCC) structure. The results from dynamic light scattering (DLS) suggested the PdNPs had the narrow size distribution with an average size of 2.5 nm. The negative zeta potential (−52.6 mV) kept the as-synthesized PdNPs stable more than one year. The PdNPs showed the excellent catalytic activity by reducing degradation of azo-dyes, such as p-Aminoazobenzene, acid red 66, acid orange 7, scarlet 3G and reactive yellow 179, in the present of sodium borohydride. - Highlights: • Green synthesis of palladium nanoparticles using carboxymethyl cellulose. • The synthesis of palladium nanoparticles were performed easily. • Carboxymethyl cellulose acts as both reducing and stabilization agents. • The as-synthesized palladium nanoparticles show excellent catalytic activity.

  19. Cellulose-binding domains: tools for innovation in cellulosic fibre production and modification

    NARCIS (Netherlands)

    Quentin, M.G.E.; Valk, van der H.C.P.M.; Dam, van J.E.G.; Jong, de E.

    2003-01-01

    Plant cell walls are composed of cellulose, nature's most abundant macromolecule, and therefore represent a renewable resource of special technical importance. Cellulose degrading enzymes involved in plant cell wall loosening (expansins), or produced by plant pathogenic microorganisms (cellulases),

  20. Radiation and enzyme degradation of cellulose materials

    International Nuclear Information System (INIS)

    Duchacek, V.

    1983-01-01

    The results are summed up of a study of the effect of gamma radiation on pure cellulose and on wheat straw. The irradiation of cellulose yields acid substances - formic acid and polyhydroxy acids, toxic malondialdehyde and the most substantial fraction - the saccharides xylose, arabinose, glucose and certain oligosaccharides. A ten-fold reduction of the level of cellulose polymerization can be caused by relatively small doses - (up to 250 kGy). A qualitative analysis was made of the straw before and after irradiation and it was shown that irradiation had no significant effect on the qualitative composition of the straw. A 48 hour enzyme hydrolysis of the cellulose and straw were made after irradiation and an economic evaluation of the process was made. Radiation pretreatment is technically and economically advantageous; the production of fodder using enzyme hydrolysis of irradiated straw is not economically feasible due to the high cost of the enzyme. (M.D.)

  1. Effect of ionizing radiation on starch and cellulose

    International Nuclear Information System (INIS)

    Klenha, J.; Bockova, J.

    1973-09-01

    The investigation is reported of the effects of ionizing radiation both on macromolecular systems generally and on polysaccharides, starch and cellulose. Attention is focused on changes in the physical and physico-chemical properties of starch and cellulose, such as starch swelling, gelation, viscosity, solubility, reaction with iodine, UV, IR and ESR spectra, chemical changes resulting from radiolysis and from the effect of amylases on irradiated starch, changes in cellulose fibre strength, water absorption, stain affinity, and also the degradation of cellulose by radiation and the effect of cellulases on irradiated cellulose. Practical applications of the findings concerning cellulose degradation are discussed. (author)

  2. Reconstitution of a thermostable xylan-degrading enzyme mixture from the bacterium Caldicellulosiruptor bescii.

    Science.gov (United States)

    Su, Xiaoyun; Han, Yejun; Dodd, Dylan; Moon, Young Hwan; Yoshida, Shosuke; Mackie, Roderick I; Cann, Isaac K O

    2013-03-01

    Xylose, the major constituent of xylans, as well as the side chain sugars, such as arabinose, can be metabolized by engineered yeasts into ethanol. Therefore, xylan-degrading enzymes that efficiently hydrolyze xylans will add value to cellulases used in hydrolysis of plant cell wall polysaccharides for conversion to biofuels. Heterogeneous xylan is a complex substrate, and it requires multiple enzymes to release its constituent sugars. However, the components of xylan-degrading enzymes are often individually characterized, leading to a dearth of research that analyzes synergistic actions of the components of xylan-degrading enzymes. In the present report, six genes predicted to encode components of the xylan-degrading enzymes of the thermophilic bacterium Caldicellulosiruptor bescii were expressed in Escherichia coli, and the recombinant proteins were investigated as individual enzymes and also as a xylan-degrading enzyme cocktail. Most of the component enzymes of the xylan-degrading enzyme mixture had similar optimal pH (5.5 to ∼6.5) and temperature (75 to ∼90°C), and this facilitated their investigation as an enzyme cocktail for deconstruction of xylans. The core enzymes (two endoxylanases and a β-xylosidase) exhibited high turnover numbers during catalysis, with the two endoxylanases yielding estimated k(cat) values of ∼8,000 and ∼4,500 s(-1), respectively, on soluble wheat arabinoxylan. Addition of side chain-cleaving enzymes to the core enzymes increased depolymerization of a more complex model substrate, oat spelt xylan. The C. bescii xylan-degrading enzyme mixture effectively hydrolyzes xylan at 65 to 80°C and can serve as a basal mixture for deconstruction of xylans in bioenergy feedstock at high temperatures.

  3. Stereospecific oxidation of (R)- and (S)-1-indanol by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4.

    OpenAIRE

    Lee, K; Resnick, S M; Gibson, D T

    1997-01-01

    A recombinant Escherichia coli strain which expresses naphthalene dioxygenase (NDO) from Pseudomonas sp. strain NCIB 9816-4 oxidized (S)-1-indanol to trans-(1S,3S)-indan-1,3-diol (95.5%) and (R)-3-hydroxy-1-indanone (4.5%). The same cells oxidized (R)-1-indanol to cis-1,3-indandiol (71%), (R)-3-hydroxy-1-indanone (18.2%), and cis-1,2,3-indantriol (10.8%). Purified NDO oxidized (S)-1-indenol to both syn- and anti-2,3-dihydroxy-1-indanol.

  4. Stereospecific oxidation of (R)- and (S)-1-indanol by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4.

    Science.gov (United States)

    Lee, K; Resnick, S M; Gibson, D T

    1997-05-01

    A recombinant Escherichia coli strain which expresses naphthalene dioxygenase (NDO) from Pseudomonas sp. strain NCIB 9816-4 oxidized (S)-1-indanol to trans-(1S,3S)-indan-1,3-diol (95.5%) and (R)-3-hydroxy-1-indanone (4.5%). The same cells oxidized (R)-1-indanol to cis-1,3-indandiol (71%), (R)-3-hydroxy-1-indanone (18.2%), and cis-1,2,3-indantriol (10.8%). Purified NDO oxidized (S)-1-indenol to both syn- and anti-2,3-dihydroxy-1-indanol.

  5. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting.

    Science.gov (United States)

    Zhao, Yi; Zhao, Yue; Zhang, Zhechao; Wei, Yuquan; Wang, Huan; Lu, Qian; Li, Yanjie; Wei, Zimin

    2017-10-01

    The inoculum containing four cellulolytic thermophilic actinomycetes was screened from compost samples, and was inoculated into co-composting during different inoculation phases. The effect of different inoculation phases on cellulose degradation, humic substances formation and the relationship between inoculation and physical-chemical parameters was determined. The results revealed that inoculation at different phases of composting improved cellulase activities, accelerated the degradation of cellulose, increased the content of humic substances and influenced the structure of actinomycetic community, but there were significant differences between different inoculation phases. Redundancy analysis showed that the different inoculation phases had different impacts on the relationship between exogenous actinobacteria and physical-chemical parameters. Therefore, based on the promoting effort of inoculation in thermophilic phase of composting for the formation of humic substances, we suggested an optimized inoculation strategy to increase the content of humic substances, alleviate CO 2 emission during composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1-August 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. I.C.

    1980-09-01

    Progress is reported in this coordinated research program to effect the microbiological degradation of cellulosic biomass by anaerobic microorganisms possessing cellulolytic enzymes. Three main areas of research are discussed: increasing enzyme levels through genetics, mutations, and genetic manipulation; the direct conversion of cellulosic biomass to liquid fuel (ethanol); and the production of chemical feedstocks from biomass (acrylic acid, acetone/butanol, and acetic acid). (DMC)

  7. Wet oxidative degradation of cellulosic wastes 5- chemical and thermal properties of the final waste forms

    International Nuclear Information System (INIS)

    Eskander, S.B.; Saleh, H.M.

    2002-01-01

    In this study, the residual solution arising from the wet oxidative degradation of solid organic cellulosic materials, as one of the component of radioactive solid wastes, using hydrogen peroxide as oxidant. Were incorporated into ordinary Portland cement matrix. Leaching as well as thermal characterizations of the final solidified waste forms were evaluated to meet the final disposal requirements. Factors, such as the amount of the residual solution incorporated, types of leachant. Release of different radionuclides and freezing-thaw treatment, that may affect the leaching characterization. Were studied systematically from the data obtained, it was found that the final solid waste from containing 35% residual solution in tap water is higher than that in ground water or sea water. Based on the data obtained from thermal analysis, it could be concluded that incorporating the residual solution form the wet oxidative degradation of cellulosic materials has no negative effect on the hydration of cement materials and consequently on the thermal stability of the final solid waste from during the disposal process

  8. Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes.

    Science.gov (United States)

    Djajadi, Demi T; Jensen, Mads M; Oliveira, Marlene; Jensen, Anders; Thygesen, Lisbeth G; Pinelo, Manuel; Glasius, Marianne; Jørgensen, Henning; Meyer, Anne S

    2018-01-01

    Lignin is known to hinder efficient enzymatic conversion of lignocellulose in biorefining processes. In particular, nonproductive adsorption of cellulases onto lignin is considered a key mechanism to explain how lignin retards enzymatic cellulose conversion in extended reactions. Lignin-rich residues (LRRs) were prepared via extensive enzymatic cellulose degradation of corn stover ( Zea mays subsp. mays L.), Miscanthus  ×  giganteus stalks (MS) and wheat straw ( Triticum aestivum L.) (WS) samples that each had been hydrothermally pretreated at three severity factors (log R 0 ) of 3.65, 3.83 and 3.97. The LRRs had different residual carbohydrate levels-the highest in MS; the lowest in WS. The residual carbohydrate was not traceable at the surface of the LRRs particles by ATR-FTIR analysis. The chemical properties of the lignin in the LRRs varied across the three types of biomass, but monolignols composition was not affected by the severity factor. When pure cellulose was added to a mixture of LRRs and a commercial cellulolytic enzyme preparation, the rate and extent of glucose release were unaffected by the presence of LRRs regardless of biomass type and severity factor, despite adsorption of the enzymes to the LRRs. Since the surface of the LRRs particles were covered by lignin, the data suggest that the retardation of enzymatic cellulose degradation during extended reaction on lignocellulosic substrates is due to physical blockage of the access of enzymes to the cellulose caused by the gradual accumulation of lignin at the surface of the biomass particles rather than by nonproductive enzyme adsorption. The study suggests that lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier blocking the access of enzymes to cellulose rather than by inducing retardation through nonproductive adsorption of enzymes.

  9. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature.

    Science.gov (United States)

    Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You

    2017-03-01

    Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Extraction of cellulose from pistachio shell and physical and mechanical characterisation of cellulose-based nanocomposites

    Science.gov (United States)

    Movva, Mounika; Kommineni, Ravindra

    2017-04-01

    Cellulose is an important nanoentity that have been used for the preparation of composites. The present work focuses on the extraction of cellulose from pistachio shell and preparing a partially degradable nanocomposite with extracted cellulose. Physical and microstructural characteristics of nanocellulose extracted from pistachio shell powder (PSP) through various stages of chemical treatment are identified from scanning electron microscopy (SEM), Fourier transform infra-red spectroscopy (FTIR), x-ray powder diffraction (XRD), and thermogravimetric analysis (TGA). Later, characterized nanocellulose is reinforced in a polyester matrix to fabricate nanocellulose-based composites according to the ASTM standard. The resulting nanocellulose composite performance is evaluated in the mechanical perspective through tensile and flexural loading. SEM, FTIR, and XRD showed that the process for extraction is efficient in obtaining 95% crystalline cellulose. Cellulose also showed good thermal stability with a peak thermal degradation temperature of 361 °C. Such cellulose when reinforced in a matrix material showed a noteworthy rise in tensile and flexural strengths of 43 MPa and 127 MPa, at a definite weight percent of 5%.

  11. Biodegradation evaluation of bacterial cellulose, vegetable cellulose and poly (3-hydroxybutyrate in soil

    Directory of Open Access Journals (Sweden)

    Suellen Brasil Schröpfer

    2015-04-01

    Full Text Available In recent years, the inappropriate disposal of polymeric materials has increased due to industrial development and increase of population consumption. This problem may be minimized by using biodegradable polymers, such as bacterial cellulose and poly(hydroxybutyrate, from renewable resources. This work was aimed at monitoring and evaluating degradation of bacterial cellulose, vegetable cellulose and poly(3-hydroxybutyrate using Thermogravimetric Analysis and Scanning Electron Microscopy. Controlled mass polymer samples were buried in pots containing soil. Samples were removed in 30 day intervals up to 180 days. The results show that the mass of the polymer increased in the first month when in contact with the soil but then it was degraded as evidenced by mass loss and changes on the sample surface.

  12. Phase II Nuclide Partition Laboratory Study Influence of Cellulose Degradation Products on the Transport of Nuclides from SRS Shallow Land Burial Facilities; FINAL

    International Nuclear Information System (INIS)

    Serkiz, S.M.

    1999-01-01

    Degradation products of cellulosic materials (e.g., paper and wood products) can significantly influence the subsurface transport of metals and radionuclides. Codisposal of radionuclides with cellulosic materials in the E-Area slit trenches at the Savannah River Site (SRS) is, therefore, expected to influence nuclide fate and transport in the subsurface. Due to the complexities of these systems and the scarcity of site-specific data, the effects of cellulose waste loading and its subsequent influence on nuclide transport are not well established

  13. Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover.

    Science.gov (United States)

    Chang, Juan; Cheng, Wei; Yin, Qingqiang; Zuo, Ruiyu; Song, Andong; Zheng, Qiuhong; Wang, Ping; Wang, Xiao; Liu, Junxi

    2012-01-01

    In order to increase nutrient values of corn stover, effects of steam explosion (2.5 MPa, 200 s) and Aspergillus oryzae (A. oryzae) fermentation on cellulose and lignin degradation were studied. The results showed the contents of cellulose, hemicellulose and lignin in the exploded corn stover were 8.47%, 50.45% and 36.65% lower than that in the untreated one, respectively (Pcellulose and hemicellulose in the exploded and fermented corn stover (EFCS) were decreased by 24.36% and 69.90%, compared with the untreated one (Pcorn stover. The activities of enzymes in EFCS were increased. The metabolic experiment showed that about 8% EFCS could be used to replace corn meal in broiler diets, which made EFCS become animal feedstuff possible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Isolation and characterization of a novel hydrocarbon-degrading bacterium Achromobacter sp. HZ01 from the crude oil-contaminated seawater at the Daya Bay, southern China

    International Nuclear Information System (INIS)

    Deng, Mao-Cheng; Li, Jing; Liang, Fu-Rui; Yi, Meisheng; Xu, Xiao-Ming; Yuan, Jian-Ping; Peng, Juan; Wu, Chou-Fei; Wang, Jiang-Hai

    2014-01-01

    Graphical abstract: Morphological properties of the colonies and cells of strain HZ01. (A) Colonies of strain HZ01 on the LB solid plate; (B) Gram-negative bacterium of strain HZ01 (20 × 100); (C) Scanning electron microscopy (SEM) photograph of strain HZ01 (×15,000); and (D) Transmission electronic microscopy (TEM) photograph of strain HZ01 (×5000). - Highlights: • A novel petroleum degrading bacterium HZ01 was obtained from the crude oil-contaminated seawater. • Strain HZ01 had been identified as Achromobacter sp. • Strain HZ01 could degrade the evaporated diesel oil with the degradability of 96.6%. • Strain HZ01 could effectively degrade anthracene, phenanthrene and pyrence. • Strain HZ01 may be employed to remove hydrocarbon contaminants. - Abstract: Microorganisms play an important role in the biodegradation of petroleum contaminants, which have attracted great concern due to their persistent toxicity and difficult biodegradation. In this paper, a novel hydrocarbon-degrading bacterium HZ01 was isolated from the crude oil-contaminated seawater at the Daya Bay, South China Sea, and identified as Achromobacter sp. Under the conditions of pH 7.0, NaCl 3% (w/v), temperature 28 °C and rotary speed 150 rpm, its degradability of the total n-alkanes reached up to 96.6% after 10 days of incubation for the evaporated diesel oil. Furthermore, Achromobacter sp. HZ01 could effectively utilize polycyclic aromatic hydrocarbons (PAHs) as its sole carbon source, and could remove anthracene, phenanthrene and pyrence about 29.8%, 50.6% and 38.4% respectively after 30 days of incubation. Therefore, Achromobacter sp. HZ01 may employed as an excellent degrader to develop one cost-effective and eco-friendly method for the bioremediation of marine environments polluted by crude oil

  15. Cloning, Characterization and Analysis of cat and ben Genes from the Phenol Degrading Halophilic Bacterium Halomonas organivorans

    Science.gov (United States)

    Moreno, Maria de Lourdes; Sánchez-Porro, Cristina; Piubeli, Francine; Frias, Luciana; García, María Teresa; Mellado, Encarnación

    2011-01-01

    Background Extensive use of phenolic compounds in industry has resulted in the generation of saline wastewaters that produce significant environmental contamination; however, little information is available on the degradation of phenolic compounds in saline conditions. Halomonas organivorans G-16.1 (CECT 5995T) is a moderately halophilic bacterium that we isolated in a previous work from saline environments of South Spain by enrichment for growth in different pollutants, including phenolic compounds. PCR amplification with degenerate primers revealed the presence of genes encoding ring-cleaving enzymes of the β-ketoadipate pathway for aromatic catabolism in H. organivorans. Findings The gene cluster catRBCA, involved in catechol degradation, was isolated from H. organivorans. The genes catA, catB, catC and the divergently transcribed catR code for catechol 1,2-dioxygenase (1,2-CTD), cis,cis-muconate cycloisomerase, muconolactone delta-isomerase and a LysR-type transcriptional regulator, respectively. The benzoate catabolic genes (benA and benB) are located flanking the cat genes. The expression of cat and ben genes by phenol and benzoic acid was shown by RT-PCR analysis. The induction of catA gene by phenol and benzoic acid was also probed by the measurement of 1,2-CTD activity in H. organivorans growth in presence of these inducers. 16S rRNA and catA gene-based phylogenies were established among different degrading bacteria showing no phylogenetic correlation between both genes. Conclusions/Significance In this work, we isolated and determined the sequence of a gene cluster from a moderately halophilic bacterium encoding ortho-pathway genes involved in the catabolic metabolism of phenol and analyzed the gene organization, constituting the first report characterizing catabolic genes involved in the degradation of phenol in moderate halophiles, providing an ideal model system to investigate the potential use of this group of extremophiles in the decontamination of

  16. Size exclusion chromatography and viscometry in paper degradation studies. New Mark-Houwink coefficients for cellulose in cupri-ethylenediamine.

    Science.gov (United States)

    Łojewski, Tomasz; Zieba, Katarzyna; Lojewska, Joanna

    2010-10-15

    The paper deals with the application of size exclusion chromatography (SEC) for the studies of paper degradation phenomena. The goal is to solve some of the technical problems connected with the calibration of multi-detector SEC system and to find the correlation between SEC and viscometric results of degree of polymerization of cellulose. The results gathered for the paper samples degraded by acidic air pollutant (NO(2)) are used as an example of SEC-MALLS application. From the correlation between intrinsic viscosities and absolute value of molecular masses obtained with SEC/MALLS (Multi Angle Laser Light Scattering) technique, Mark-Houwink coefficients for cellulose in cupri-ethylenediamine solution were determined. Thus obtained coefficients were used for the determination of viscometric degree of polymerization (molecular mass) of the aged samples. An excellent correlation was found between the chromatographic values of molecular masses obtained with SEC-UV/VIS detection and the viscometric ones utilizing the improved values of Mark-Houwink coefficients. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Metabolism of nitrodiphenyl ether herbicides by dioxin-degrading bacterium Sphingomonas wittichii RW1.

    Science.gov (United States)

    Keum, Young Soo; Lee, Young Ju; Kim, Jeong-Han

    2008-10-08

    Nitrodiphenyl ether herbicides, including chlomethoxyfen, nitrofen, and oxyfluorfen are potent herbicides. Some metabolites and parent compounds are considered as possible mutagens and endocrine disruptors. Both properties pose serious hygienic and environmental risks. Sphingomonas wittichii RW1 is a well-known degrader of polychlorinated dibenzo- p-dioxins, dibenzofurans, and diphenyl ethers. However, no detailed research of its metabolic activity has been performed against pesticides with a diphenyl ether scaffold. In this study, we report S. wittichii RW1 as a very potent diphenyl ether herbicide-metabolizing bacterium with broad substrate specificity. The structures of metabolites were determined by instrumental analysis and synthetic standards. Most pesticides were rapidly removed from the culture medium in the order of nitrofen > oxyfluorfen > chlomethoxyfen. In general, herbicides were degraded through the initial reduction and N-acetylation of nitro groups, followed by ether bond cleavage. Relatively low concentrations of phenolic and catecholic metabolites throughout the study suggested that these metabolites were rapidly metabolized and incorporated into primary metabolism. These results indicate that strain RW1 has very versatile metabolic activities over a wide range of environmental contaminants.

  18. Molecular weights and molecular weight distributions of irradiated cellulose fibers by gel permeation chromatography

    International Nuclear Information System (INIS)

    Kusama, Y.; Kageyama, E.; Shimada, M.; Nakamura, Y.

    1976-01-01

    Radiation degradation of cellulose fibers was investigated by gel permeation chromatography (GPC). Scoured cotton of Mexican variety (cellulose I), Polynosic rayon (cellulose II), and their microcrystalline celluloses obtained by hydrolysis of the original fibers were irradiated by Co-60 γ-rays under vacuum or humid conditions. The irradiated samples were then nitrated under nondegradative conditions. The molecular weights and molecular weight distributions were measured by GPC using tetrahydrofuran as solvent. The relationship between molecular weight and elution count was obtained with cellulose trinitrate standards fractionated by preparative GPC. The degree of polymerization of the fibers decreased with increasing irradiation dose, but their microcrystalline celluloses were only slightly degraded by irradiation, especially in microcrystalline cellulose from cellulose I. Degradation of the fibers irradiated under humid conditions was less than that irradiated under vacuum. It was found that the G-values for main-chain scission for the irradiated cellulose I, cellulose II, microcrystalline cellulose I, and microcrystalline cellulose II were 2.8, 2.9, less than 1, and 2.9, respectively, but the G-value for main-chain scission for the irradiated cellulose II was increased to 11.2 at irradiation doses above 3 Mrad. Consequently, it is inferred that cellulose molecules in the amorphous regions are degraded more readily, and the well-aligned molecules in crystalline regions are not as easily degraded by irradiation

  19. Tailoring the degradation rate and release kinetics from poly(galactitol sebacate) by blending with chitosan, alginate or ethyl cellulose.

    Science.gov (United States)

    Natarajan, Janeni; Madras, Giridhar; Chatterjee, Kaushik

    2016-12-01

    Despite significant advances in recent times, the investigation of discovering a perfect biomaterial is perennial. In this backdrop, blending of natural and synthetic polymers is gaining popularity since it is the easiest way to complement the drawbacks and attain a superlative material. Based on this, the objective of this study was to synthesize a novel polyester, poly(galactitol sebacate), and subsequently blend this polymer with one of the three natural polymers such as alginate, chitosan or ethyl cellulose. FT-IR showed the presence of both the polymers in the blends. 1 H NMR confirmed the chemical structure of the synthesized poly (galactitol sebacate). Thermal characterization was performed by DSC revealing that the polymers were amorphous in nature and the glass transition temperatures increased with the increase in ratio of the natural polymers in the blends. SEM imaging showed that the blends were predominantly homogeneous. Contact angle measurements demonstrated that the blending imparted the hydrophilic nature into poly (galactitol sebacate) when blending with alginate or chitosan and hydrophobic when blending with ethyl cellulose. In vitro hydrolytic degradation studies and dye release studies indicated that the polymers became more hydrophilic in alginate and chitosan blends and thus accelerated the degradation and release process. The reverse trend was observed in the case of ethyl cellulose blends. Modeling elucidated that the degradation and dye release followed first order kinetics and Higuchi kinetics, respectively. In vitro cell studies confirmed the cytocompatible nature of the blends. It can be proposed that the chosen natural polymers for blending showed wide variations in hydrophilicity resulting in tailored degradation, release and cytocompatibility properties and thus are promising candidates for use in drug delivery and tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Thermal degradation kinetics of polylactic acid/acid fabricated cellulose nanocrystal based bionanocomposites.

    Science.gov (United States)

    Monika; Dhar, Prodyut; Katiyar, Vimal

    2017-11-01

    Cellulose nanocrystals (CNC) are fabricated from filter paper (as cellulosic source) by acid hydrolysis using different acids such as sulphuric (H 2 SO 4 ), phosphoric (H 3 PO 4 ), hydrochloric (HCl) and nitric (HNO 3 ) acid. The resulting acid derived CNC are melt mixed with Polylactic acid (PLA) using extruder at 180°C. Thermogravimetric (TGA) result shows that increase in 10% and 50% weight loss (T 10 , T 50 ) temperature for PLA-CNC film fabricated with HNO 3 , H 3 PO 4 and HCl derived CNC have improved thermal stability in comparison to H 2 SO 4 -CNC. Nonisothermal kinetic studies are carried out with modified-Coats-Redfern (C-R), Ozawa-Flynn-Wall (OFW) and Kissinger method to predict the kinetic and thermodynamic parameters. Subsequently prediction of these parameter leads to the proposal of thermal induced degradation mechanism of nanocomposites using Criado method. The distribution of E a calculated from OFW model are (PLA-H 3 PO 4 -CNC: 125-139 kJmol -1 ), (PLA-HNO 3 -CNC: 126-145 kJmol -1 ), (PLA-H 2 SO 4 -CNC: 102-123 kJmol -1 ) and (PLA-HCl-CNC: 140-182 kJmol -1 ). This difference among E a for the decomposition of PLA-CNC bionanocomposite is probably due to various acids used in this study. The E a calculated by these two methods are found in consonance with that observed from Kissinger method. Further, hyphenated TG-Fourier transform infrared spectroscopy (FTIR) result shows that gaseous products such as CO 2 , CO, lactide, aldehydes and other compounds are given off during the thermal degradation of PLA-CNC nanocomposite. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Biodegradable Cellulose-based Hydrogels: Design and Applications

    Science.gov (United States)

    Sannino, Alessandro; Demitri, Christian; Madaghiele, Marta

    2009-01-01

    Hydrogels are macromolecular networks able to absorb and release water solutions in a reversible manner, in response to specific environmental stimuli. Such stimuli-sensitive behaviour makes hydrogels appealing for the design of ‘smart’ devices, applicable in a variety of technological fields. In particular, in cases where either ecological or biocompatibility issues are concerned, the biodegradability of the hydrogel network, together with the control of the degradation rate, may provide additional value to the developed device. This review surveys the design and the applications of cellulose-based hydrogels, which are extensively investigated due to the large availability of cellulose in nature, the intrinsic degradability of cellulose and the smart behaviour displayed by some cellulose derivatives.

  2. Biodegradable Cellulose-based Hydrogels: Design and Applications

    Directory of Open Access Journals (Sweden)

    Marta Madaghiele

    2009-04-01

    Full Text Available Hydrogels are macromolecular networks able to absorb and release water solutions in a reversible manner, in response to specific environmental stimuli. Such stimuli-sensitive behaviour makes hydrogels appealing for the design of ‘smart’ devices, applicable in a variety of technological fields. In particular, in cases where either ecological or biocompatibility issues are concerned, the biodegradability of the hydrogel network, together with the control of the degradation rate, may provide additional value to the developed device. This review surveys the design and the applications of cellulose-based hydrogels, which are extensively investigated due to the large availability of cellulose in nature, the intrinsic degradability of cellulose and the smart behaviour displayed by some cellulose derivatives.

  3. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].

    Science.gov (United States)

    Li, Hong-ya; Li, Shu-na; Wang, Shu-xiang; Wang, Quan; Xue, Yin-yin; Zhu, Bao-cheng

    2015-05-01

    Microbial degradation of lignocellulose is one of the key problems that need to be solved urgently in the process of utilizing biomass resource. Bacillus amyloliquefaciens MN-8 is our previously isolated bacterium capable of degrading lignin. To determine the capability of strain MN-8 to degrade lignocellulose of corn straw, B. amyloliquefaciens MN-8 was inoculated and fermented with solid-state corn straw powder-MSM culture medium. The changes in the enzyme activity and degradation products of lignocellulose were monitored in the process of fermentation using the FTIR and GC/MS. The results showed that B. amyloliquefaciens MN-8 could produce lignin peroxidase, manganese peroxidase, cellulase and hemicellulase enzymes. The activities of all these enzymes reached the peak after being incubated for 10-16 days, and the highest enzyme activities were 55.0, 16.7, 45.4 and 60.5 U · g(-1), respectively. After 24 d of incubation, the degradation percentages of lignin, cellulose and hemicellulose were up to 42.9%, 40.6% and 27.1%, respectively. The spectroscopic data by FTIR indicated that the intensities of characteristic absorption peaks of lignin, cellulose and hemicellulose of the corn straw were decreased, indicating that the lignocellulose was degraded partly after being fermented by B. amyloliquefaciens MN-8. GC/MS analysis also demonstrated that strain MN-8 could degrade lignocellulose efficiently. It could depolymerize lignin into some monomeric compounds with retention of phenylpropane structure unit, such as amphetamine, benzene acetone and benzene propanoic acids, by the rupture of β-O-4 bond connected between lignin monomer, and it further oxidized some monomer compounds into Cα carbonyl compounds, such as 2-amino-1-benzeneacetone and 4-hydroxy-3,5-dimethoxy-acetophenone. The GC/MS analysis of the degradation products of cellulose and hemicellulose showed that there were not only monosaccharide compounds, such as glucose, mannose and galactose, but also some

  4. Isolation and Characterization of Two Cellulose Morphology Mutants of Gluconacetobacter hansenii ATCC23769 Producing Cellulose with Lower Crystallinity

    Science.gov (United States)

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  5. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    Directory of Open Access Journals (Sweden)

    Ying Deng

    Full Text Available Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC. These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of

  6. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M J [Univ. of Illinois, Urbana; Bryant, M P; Pfennig, N

    1979-01-01

    A new species of anaerobic bacterium that degrades the even-numbered carbon fatty acids, butyrate, caproate and caprylate, to acetate and H/sub 2/ and the odd-numbered carbon fatty acids, valerate and heptanoate, to acetate, propionate and H/sub 2/ was obtained in coculture with either an H/sub 2/-utilizing methanogen or H/sub 2/-utilizing desulfovibrio. The organism could be grown only in syntrophic association with the H/sub 2/-utilizer and no other energy sources or combination of electron donor and acceptors were utilized. It was a Gram-negative helical rod with 2 to 8 flagella, about 20 nm in diameter, inserted in a linear fashion about 130 nm or more apart along the concave side of the cell. It grew with a generation time of 84 h in co-culture with Methanospirillum hungatii and was present in numbers of at least 4.5 x 10/sup -6/ per g of anaerobic digest or sludge.

  7. Characteristics and degradation of chitosan/cellulose acetate microspheres with different model drugs

    Science.gov (United States)

    Zhou, Hui-yun; Chen, Xi-guang

    2008-12-01

    In this study, chitosan/cellulose acetate microspheres (CCAM) were prepared by W/O/W emulsification and solvent evaporation as a drug delivery system. The microspheres were spherical, free-flowing and non-aggregated. The CCAM had good flow and suspension ability. The loading efficiency of different model drugs increased with the increasing hydrophobicity of the drug. The loading efficiency of 6-mercaptopurine (6-MP) was more than 30% whereas that of ranitidine hydrochloride (RT) or acetaminophen (ACP) was only 10%. The pH values of solution affected the swelling ability of CCAM and the relative humidity had little effect on the characteristics of CCAM when it was not more than 75%. The CCAM system had a good effect on the controlled release of different model drugs. However, the release rate became slower with the increase of the hydrophobicity of drugs. The release rate of CCAM loaded with hydrophilic RT was almost 60% during 48 h and the release rate of CCAM loaded with hydrophobic drug of 6-MP was not more than 30%. In the meantime, the CCAM system was degradable in vitro and the degradation rate was faster in lysozyme solution than that in the medium of PBS. So the CCAM system was a degradable promising drug delivery system especially for hydrophobic drugs.

  8. Cellulose Dynamics during Foliar Litter Decomposition in an Alpine Forest Meta-Ecosystem

    Directory of Open Access Journals (Sweden)

    Kai Yue

    2016-08-01

    Full Text Available To investigate the dynamics and relative drivers of cellulose degradation during litter decomposition, a field experiment was conducted in three individual ecosystems (i.e., forest floor, stream, and riparian zone of an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Four litter species (i.e., willow: Salix paraplesia, azalea: Rhododendron lapponicum, cypress: Sabina saltuaria, and larch: Larix mastersiana that had varying initial litter chemical traits were placed separately in litterbags and then incubated on the soil surface of forest floor plots or in the water of the stream and riparian zone plots. Litterbags were retrieved five times each year during the two-year experiment, with nine replicates each time for each treatment. The results suggested that foliar litter lost 32.2%–89.2% of the initial dry mass depending on litter species and ecosystem type after two-year’s incubation. The cellulose lost 60.1%–96.8% of the initial mass with degradation rate in the order of stream > riparian zone > forest floor. Substantial cellulose degradation occurred at the very beginning (i.e., in the first pre-freezing period of litter decomposition. Litter initial concentrations of phosphorus (P and lignin were found to be the dominant chemical traits controlling cellulose degradation regardless of ecosystems type. The local-scale environmental factors such as temperature, pH, and nutrient availability were important moderators of cellulose degradation rate. Although the effects of common litter chemical traits (e.g., P and lignin concentrations on cellulose degradation across different individual ecosystems were identified, local-scale environmental factors such as temperature and nutrient availability were found to be of great importance for cellulose degradation. These results indicated that local-scale environmental factors should be considered apart from litter quality for generating a reliable predictive framework for the drivers

  9. The chemical and microbial degradation of cellulose in the near field of a repository for radioactive wastes

    International Nuclear Information System (INIS)

    Askarieh, M.M.; Chambers, A.V.; Daniel, F.B.D.; FitzGerald, P.L.; Holtom, G.J.; Pilkington, N.J.; Rees, J.H.

    2000-01-01

    This paper focuses on one aspect of the calculations of risk in performance assessments of the deep disposal of radioactive wastes in the UK, namely the apparent contradiction regarding the representation of microbial activity in performance assessments of the release of gases and of dissolved radionuclides. A discussion is presented of the current understanding of the microbial and chemical degradation of cellulose. The assumptions made in recent performance assessment calculations of the Nirex disposal concept are then stated. For the release of gases, it was assumed that the complete conversion of cellulosic wastes to gases by the action of microbes, was, in principle, permitted. However, concerning migration of radionuclides by the groundwater pathway, all the cellulose was assumed to be converted to complexants that could increase the solubility and decrease the sorption of radionuclides in the near field. This contradiction in the approach of the groundwater and gas pathway assessments stems from the consistent need to provide a cautious approach in the face of uncertainty about the actual evolution of microbial activity in the repository. Therefore, no credit is currently taken for possible beneficial effects of the microbial destruction of complexants, whereas the complete conversion of cellulose to gaseous products is assumed

  10. Mechanical Properties and Kinetics of Thermal Degradation of Bioplastics based on Straw Cellulose and Whole Wheat Flour

    Directory of Open Access Journals (Sweden)

    Hesam Omrani fard

    2012-12-01

    Full Text Available During  the  past  two  decades  the  use  of  bioplastics,  as  a  suitable  alternative to  petroleum-based  plastics,  has  attracted  researchers'  attention  to  a  great extent.  In  this  study,  the whole wheat four and  straw cellulose at different proportions were mixed with glycerol and bioplastics sheets were obtained by a press type molding machine.  The mechanical  properties  of  samples  were  examined  on compositions prepared by whole wheat weight in three proportions of 70, 60 and 50% and the cellulose in three proportions 75, 70 and 65%. The tensile tests on the samples indicated  that with  lowering  proportions  of  both  four  and  cellulose,  the modulus of elasticity and  tensile  strength of  the bioplastics dropped as well. The maximum modulus of  elasticity  achieved  for  the four  and  cellulose  compositions were 12.5, and 8.6 MPa, and the maximum tensile strengths were 878 and 202 kPa, respectively. The TGA tests indicated that the bioplastics prepared from whole wheat four showed higher temperatures of thermal degradation. The activation energies calculated for the four and cellulose bioplastics, as estimated by Arrhenius type equation, were 133.0 and 63.8 kJ/mol, respectively.

  11. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus.

    Science.gov (United States)

    Schultz-Johansen, Mikkel; Bech, Pernille K; Hennessy, Rosanna C; Glaring, Mikkel A; Barbeyron, Tristan; Czjzek, Mirjam; Stougaard, Peter

    2018-01-01

    Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66 T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66 T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66 T . The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

  12. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus

    Directory of Open Access Journals (Sweden)

    Mikkel Schultz-Johansen

    2018-05-01

    Full Text Available Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66T. The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

  13. Cloning, characterization and analysis of cat and ben genes from the phenol degrading halophilic bacterium Halomonas organivorans.

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Moreno

    Full Text Available BACKGROUND: Extensive use of phenolic compounds in industry has resulted in the generation of saline wastewaters that produce significant environmental contamination; however, little information is available on the degradation of phenolic compounds in saline conditions. Halomonas organivorans G-16.1 (CECT 5995(T is a moderately halophilic bacterium that we isolated in a previous work from saline environments of South Spain by enrichment for growth in different pollutants, including phenolic compounds. PCR amplification with degenerate primers revealed the presence of genes encoding ring-cleaving enzymes of the β-ketoadipate pathway for aromatic catabolism in H. organivorans. FINDINGS: The gene cluster catRBCA, involved in catechol degradation, was isolated from H. organivorans. The genes catA, catB, catC and the divergently transcribed catR code for catechol 1,2-dioxygenase (1,2-CTD, cis,cis-muconate cycloisomerase, muconolactone delta-isomerase and a LysR-type transcriptional regulator, respectively. The benzoate catabolic genes (benA and benB are located flanking the cat genes. The expression of cat and ben genes by phenol and benzoic acid was shown by RT-PCR analysis. The induction of catA gene by phenol and benzoic acid was also probed by the measurement of 1,2-CTD activity in H. organivorans growth in presence of these inducers. 16S rRNA and catA gene-based phylogenies were established among different degrading bacteria showing no phylogenetic correlation between both genes. CONCLUSIONS/SIGNIFICANCE: In this work, we isolated and determined the sequence of a gene cluster from a moderately halophilic bacterium encoding ortho-pathway genes involved in the catabolic metabolism of phenol and analyzed the gene organization, constituting the first report characterizing catabolic genes involved in the degradation of phenol in moderate halophiles, providing an ideal model system to investigate the potential use of this group of extremophiles in

  14. Draft Genome Sequence of the Hydrocarbon-Degrading Bacterium Alcanivorax dieselolei KS-293 Isolated from Surface Seawater in the Eastern Mediterranean Sea

    KAUST Repository

    Barbato, Marta

    2015-12-10

    We report here the draft genome sequence of Alcanivorax dieselolei KS-293, a hydrocarbonoclastic bacterium isolated from the Mediterranean Sea, by supplying diesel oil as the sole carbon source. This strain contains multiple putative genes associated with hydrocarbon degradation pathways and that are highly similar to those described in A. dieselolei type strain B5.

  15. Draft Genome Sequence of the Hydrocarbon-Degrading Bacterium Alcanivorax dieselolei KS-293 Isolated from Surface Seawater in the Eastern Mediterranean Sea

    KAUST Repository

    Barbato, Marta; Mapelli, Francesca; Chouaia, Bessem; Crotti, Elena; Daffonchio, Daniele; Borin, Sara

    2015-01-01

    We report here the draft genome sequence of Alcanivorax dieselolei KS-293, a hydrocarbonoclastic bacterium isolated from the Mediterranean Sea, by supplying diesel oil as the sole carbon source. This strain contains multiple putative genes associated with hydrocarbon degradation pathways and that are highly similar to those described in A. dieselolei type strain B5.

  16. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Directory of Open Access Journals (Sweden)

    Li Yongchao

    2012-01-01

    Full Text Available Abstract Background The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering. Results The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh and L-malate dehydrogenase (Ccel_0137; mdh genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway. Conclusions The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox

  17. Characterization of the bacterial cellulose dissolved on dimethylacetamide/lithium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Glaucia de Marco [Universidade do Vale do Itajai (PMCF/UNIVALI), Itajai, SC (Brazil). Programa de Mestrado em Ciencias Farmaceuticas; Sierakowski, Maria Rita; Faria-Tischer, Paula C.S.; Tischer, Cesar A., E-mail: cesar.tischer@pq.cnpq.b [Universidade Federal do Parana (BIOPOL/UFPR), Curitiba, PR (Brazil). Lab. de Biopolimeros

    2009-07-01

    The main barrier to the use of cellulose is his insolubility on water or organic solvents, but derivates can be obtained with the use of ionic solvents. Bacterial cellulose, is mainly produced by the bacterium Acetobacter xylinum, and is identical to the plant, but free of lignin and hemi cellulose, and with several unique physical-chemical properties. Cellulose produced in a 4 % glucose medium with static condition was dissoluted on heated DMAc/LiCl (120 '0 C, 150 '0 C or 170 '0 C). The product of dissolved cellulose was observed with 13 C-NMR and the effect on crystalline state was seen with x-ray crystallography. The crystalline structure was lost in the dissolution, becoming an amorphous structure, as well as Avicel. The process of dissolution of the bacterial cellulose is basics for the analysis of these water insoluble polymer, facilitating the analysis of these composites, by 13 C-NMR spectroscopy, size exclusion chromatography and light scattering techniques. (author)

  18. Characterization of the bacterial cellulose dissolved on dimethylacetamide/lithium chloride

    International Nuclear Information System (INIS)

    Lima, Glaucia de Marco; Sierakowski, Maria Rita; Faria-Tischer, Paula C.S.; Tischer, Cesar A.

    2009-01-01

    The main barrier to the use of cellulose is his insolubility on water or organic solvents, but derivates can be obtained with the use of ionic solvents. Bacterial cellulose, is mainly produced by the bacterium Acetobacter xylinum, and is identical to the plant, but free of lignin and hemi cellulose, and with several unique physical-chemical properties. Cellulose produced in a 4 % glucose medium with static condition was dissoluted on heated DMAc/LiCl (120 '0 C, 150 '0 C or 170 '0 C). The product of dissolved cellulose was observed with 13 C-NMR and the effect on crystalline state was seen with x-ray crystallography. The crystalline structure was lost in the dissolution, becoming an amorphous structure, as well as Avicel. The process of dissolution of the bacterial cellulose is basics for the analysis of these water insoluble polymer, facilitating the analysis of these composites, by 13 C-NMR spectroscopy, size exclusion chromatography and light scattering techniques. (author)

  19. Degradation of Phenol via Phenylphosphate and Carboxylation to 4-Hydroxybenzoate by a Newly Isolated Strain of the Sulfate-Reducing Bacterium Desulfobacterium anilini▿ †

    OpenAIRE

    Ahn, Young-Beom; Chae, Jong-Chan; Zylstra, Gerben J.; Häggblom, Max M.

    2009-01-01

    A sulfate-reducing phenol-degrading bacterium, strain AK1, was isolated from a 2-bromophenol-utilizing sulfidogenic estuarine sediment enrichment culture. On the basis of phylogenetic analysis of the 16S rRNA gene and DNA homology, strain AK1 is most closely related to Desulfobacterium anilini strain Ani1 (= DSM 4660T). In addition to phenol, this organism degrades a variety of other aromatic compounds, including benzoate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, 2-aminob...

  20. Genomics of aerobic cellulose utilization systems in actinobacteria.

    Directory of Open Access Journals (Sweden)

    Iain Anderson

    Full Text Available Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms.

  1. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    Full Text Available Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs, carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.

  2. Degradation of cellulose by basidiomycetous fungi

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Valášková, Vendula

    2008-01-01

    Roč. 32, č. 3 (2008), s. 501-521 ISSN 0168-6445 R&D Projects: GA MŠk LC06066; GA MZe QH72216 Institutional research plan: CEZ:AV0Z50200510 Keywords : cellobiohydrolase * cellulose dehydrogenase * basidiomycetes Subject RIV: EE - Microbiology, Virology Impact factor: 7.963, year: 2008

  3. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  4. Crystallization, structural relaxation and thermal degradation in Poly(L-lactide)/cellulose nanocrystal renewable nanocomposites.

    Science.gov (United States)

    Lizundia, E; Vilas, J L; León, L M

    2015-06-05

    In this work, crystallization, structural relaxation and thermal degradation kinetics of neat Poly(L-lactide) (PLLA) and its nanocomposites with cellulose nanocrystals (CNC) and CNC-grafted-PLLA (CNC-g-PLLA) have been studied. Although crystallinity degree of nanocomposites remains similar to that of neat homopolymer, results reveal an increase on the crystallization rate by 1.7-5 times boosted by CNC, which act as nucleating agents during the crystallization process. In addition, structural relaxation kinetics of PLLA chains has been drastically reduced by 53% and 27% with the addition of neat and grafted CNC, respectively. The thermal degradation activation energy (E) has been determined from thermogravimetric analysis in the light of Kissinger's and Ozawa-Flynn-Wall theoretical models. Results reveal a reduction on the thermal stability when in presence of CNC-g-PLLA, while raw CNC slightly increases the thermal stability of PLLA. Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy results confirm that the presence of residual catalyst in CNC-g-PLLA plays a pivotal role in the thermal degradation behavior of nanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A novel enzyme portfolio for red algal polysaccharide degradation in the marine bacterium Paraglaciecola hydrolytica S66T encoded in a sizeable polysaccharide utilization locus

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel; Bech, Pernille Kjersgaard; Hennessy, Rosanna Catherine

    2018-01-01

    with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases...... and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme...

  6. Focus on CSIR research in pollution waste: Cellulose degradation, volatile fatty acid formation and biological sulphate removal operating and anaerobic hybrid reactor

    CSIR Research Space (South Africa)

    Greben, H

    2007-08-01

    Full Text Available The biological sulphate removal technology requires carbon and energy sources to reduce sulphate to sulphide. Plant biomass, e.g. cut grass, is a sustainable source of energy when cellulose is utilised in the anaerobic degradation to produce...

  7. A coarse-grained model for synergistic action of multiple enzymes on cellulose

    Directory of Open Access Journals (Sweden)

    Asztalos Andrea

    2012-08-01

    Full Text Available Abstract Background Degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing β-1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, β-glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose, several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. Results We present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. Conclusions Our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures

  8. Test of Lignin and Cellulose Decomposition and Phosphate Solubilization by Soil Fungi of Gunung Halimun

    OpenAIRE

    Suciatmih, Suciatmih

    2001-01-01

    In order to know the capability of lignin and cellulose degradation and phosphate solubilization by soil fungi of Gunung Halimun National Park, a study was carried out to qualitatively analyse its physiological properties. Out of 35 soil fungi tested, 1 species that belonged to Basidiomycetes degraded lignin, 32 species degraded cellulose, and 31 species dissolved inorganic phosphate.The presence of soil fungi that degraded cellulose and dissolved phosphate could be used as a candidate for bi...

  9. Irradiation effects in wood and cellulose

    International Nuclear Information System (INIS)

    McLaren, K.G.

    1976-01-01

    For cellulosic materials the predominant effect of high energy radiation is depolymerisation and degradation by chain scission, although there is some evidence that crosslinking or cellulose stabilisation can occur under certain conditions. When the cellulose is in the form of a natural product such as wood, where it is intimately associated with other polysaccharides, lignins, resins and gums, the effects of radiation can be significantly modified. Examination of cellulose produced by chemical pulping treatment of wood which had been previously given small doses of radiation, showed significant differences in the extent of cellulose depolymerisation with different wood species. The relevance of this work to the paper pulp industry will also be discussed. (author)

  10. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome.

    Science.gov (United States)

    Hirano, Katsuaki; Nihei, Satoshi; Hasegawa, Hiroki; Haruki, Mitsuru; Hirano, Nobutaka

    2015-07-01

    The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Clostridium thermocellum: adhesion and sporulation while adhered to cellulose and hemicellulose

    Energy Technology Data Exchange (ETDEWEB)

    Wiegel, J.; Dykstra, M.

    1984-01-01

    During growth in the presence of fibers composed of cellulose or hemicellulose, various strains of the thermophilic soil bacterium Clostridium thermocellum and several newly isolated thermophilic anaerobic soil bacteria adhered to the fibers. Attachment occurred via a fibrous ruthenium red-staining material. C. thermocellum sporulated while attached to the fibers when the pH dropped below 6.4. It is postulated that the attachment is involved in cellulose breakdown and that C. thermocellum gaines an advantage by remaining attached to its insoluble substrates when the environment is not suitable for rapid growth. The tendency to adhere to cellulose fibers was used in the purification of thermophilic cellulolytic anaerobes. 27 references, 7 figures.

  12. Ethanol production by Clostridium thermocellum grown on hydrothermally and organosolv-pretreated lignocellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hoermeyer, H F; Bonn, G; Bobleter, O; Tailliez, P; Millet, J; Girard, H; Aubert, J P

    1988-12-01

    Two strains of the thermophilic anaerobe Clostridium thermocellum, the wild type NCIB 10682 and its ethanol-hyperproductive mutant 647, were tested for their ability to grow on natural lignocellulosic materials (poplar wood, wheat straw) which had been pretreated by either hydrothermolysis or an organosolv process. For both materials and both strains, the dependencies of substrate accessibility on the pretreatment temperature were established in terms of cellulose hydrolysis and of product formation. In addition to the non-pH-controlled shake flask assays, in vitro experiments with cell-free culture supernatant and in vivo cellulolyses under pH regulation in a laboratory fermenter indicated that lignocellulosics pretreated at approx. 230/sup 0/C were degraded efficiently by the Clostridium strains investigated.

  13. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  14. Single-molecule study of oxidative enzymatic deconstruction of cellulose.

    Science.gov (United States)

    Eibinger, Manuel; Sattelkow, Jürgen; Ganner, Thomas; Plank, Harald; Nidetzky, Bernd

    2017-10-12

    LPMO (lytic polysaccharide monooxygenase) represents a unique paradigm of cellulosic biomass degradation by an oxidative mechanism. Understanding the role of LPMO in deconstructing crystalline cellulose is fundamental to the enzyme's biological function and will help to specify the use of LPMO in biorefinery applications. Here we show with real-time atomic force microscopy that C1 and C4 oxidizing types of LPMO from Neurospora crassa (NcLPMO9F, NcLPMO9C) bind to nanocrystalline cellulose with high preference for the very same substrate surfaces that are also used by a processive cellulase (Trichoderma reesei CBH I) to move along during hydrolytic cellulose degradation. The bound LPMOs, however, are immobile during their adsorbed residence time ( ~ 1.0 min for NcLPMO9F) on cellulose. Treatment with LPMO resulted in fibrillation of crystalline cellulose and strongly ( ≥ 2-fold) enhanced the cellulase adsorption. It also increased enzyme turnover on the cellulose surface, thus boosting the hydrolytic conversion.Understanding the role of enzymes in biomass depolymerization is essential for the development of more efficient biorefineries. Here, the authors show by atomic force microscopy the real-time mechanism of cellulose deconstruction by lytic polysaccharide monooxygenases.

  15. The identification of and relief from Fe3+ inhibition for both cellulose and cellulase in cellulose saccharification catalyzed by cellulases from Penicillium decumbens.

    Science.gov (United States)

    Wang, Mingyu; Mu, Ziming; Wang, Junli; Hou, Shaoli; Han, Lijuan; Dong, Yanmei; Xiao, Lin; Xia, Ruirui; Fang, Xu

    2013-04-01

    Lignocellulosic biomass is an underutilized, renewable resource that can be converted to biofuels. The key step in this conversion is cellulose saccharification catalyzed by cellulase. In this work, the effect of metal ions on cellulose hydrolysis by cellulases from Penicillium decumbens was reported for the first time. Fe(3+) and Cu(2+) were shown to be inhibitory. Further studies on Fe(3+) inhibition showed the inhibition takes place on both enzyme and substrate levels. Fe(3+) treatment damages cellulases' capability to degrade cellulose and inhibits all major cellulase activities. Fe(3+) treatment also reduces the digestibility of cellulose, due to its oxidation. Treatment of Fe(3+)-treated cellulose with DTT and supplementation of EDTA to saccharification systems partially relieved Fe(3+) inhibition. It was concluded that Fe(3+) inhibition in cellulose degradation is a complicated process in which multiple inhibition events occur, and that relief from Fe(3+) inhibition can be achieved by the supplementation of reducing or chelating agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Cellobiohydrolase 1 from Trichoderma reesei degrades cellulose in single cellobiose steps

    Science.gov (United States)

    Brady, Sonia K.; Sreelatha, Sarangapani; Feng, Yinnian; Chundawat, Shishir P. S.; Lang, Matthew J.

    2015-12-01

    Cellobiohydrolase 1 from Trichoderma reesei (TrCel7A) processively hydrolyses cellulose into cellobiose. Although enzymatic techniques have been established as promising tools in biofuel production, a clear understanding of the motor's mechanistic action has yet to be revealed. Here, we develop an optical tweezers-based single-molecule (SM) motility assay for precision tracking of TrCel7A. Direct observation of motility during degradation reveals processive runs and distinct steps on the scale of 1 nm. Our studies suggest TrCel7A is not mechanically limited, can work against 20 pN loads and speeds up when assisted. Temperature-dependent kinetic studies establish the energy requirements for the fundamental stepping cycle, which likely includes energy from glycosidic bonds and other sources. Through SM measurements of isolated TrCel7A domains, we determine that the catalytic domain alone is sufficient for processive motion, providing insight into TrCel7A's molecular motility mechanism.

  17. Study The Properties and Weight Loss Degradation of The Blend LDPE/Cellulose in Soil Environment

    Directory of Open Access Journals (Sweden)

    Zuhair Jabbar Abdul Ameer

    2017-05-01

    Full Text Available Wider applications of polyethylene (PE in packaging and agriculture have raised serious issue of waste disposal and pollution. Therefore, it is necessary to raise its biodegradability by additives.In this study, we will add cellulose to low density polyethylene to prepare polymer blend have ability to degradation in soil environment.The samples were prepared by using twin screw extruder.LDPE and CELL have been mixing with different weight proportions, and studied their properties in order to determine its compliance with the required specifications to be able to be used biodegradable polymers. To improve the viability of decomposition PEG has been added to the resulting blend. Several tests were applied to identify those properties such as tensile,hardness, density and creep test. FTIR, digital microscope and SEM test acheved in order to determine the miscibility and blend morphology befor and after degradation.The results show that,the blend weight loss increase with increasing CELL percent.

  18. Effect of γ-radiation on the saccharification of cellulose

    International Nuclear Information System (INIS)

    De la Rosa, A.M.; Banzon, R.B.; Abad, L.V.; Nuguid, Z.F.; Bulos, A.S.

    1985-01-01

    The effect of gamma radiation on the acid and saccharification of agricultural cellulosic wastes was investigated. Radiation doses of 200 KGy and higher significantly increased the saccharification of rice straw, rice hull and corn husk. The observed radiation effects varied with the cellulosic material. Rice straw exhibited the greatest radiosensitivity while rice hull showed the least susceptibility to gamma radiation. Possible mechanisms for the radiation-induced degradation of cellulose and agricultural cellulosic wastes are discussed. (author)

  19. Characterization of the 4,6-α-glucanotransferase GTFB enzyme of Lactobacillus reuteri 121 isolated from inclusion bodies.

    Science.gov (United States)

    Bai, Yuxiang; van der Kaaij, Rachel Maria; Woortman, Albert Jan Jacob; Jin, Zhengyu; Dijkhuizen, Lubbert

    2015-06-09

    The GTFB enzyme of the probiotic bacterium Lactobacillus reuteri 121 is a 4,6-α-glucanotransferase of glycoside hydrolase family 70 (GH70; http://www.cazy.org ). Contrary to the glucansucrases in GH70, GTFB is unable to use sucrose as substrate, but instead converts malto-oligosaccharides and starch into isomalto-/malto- polymers that may find application as prebiotics and dietary fibers. The GTFB enzyme expresses well in Escherichia coli BL21 Star (DE3), but mostly accumulates in inclusion bodies (IBs) which generally contain wrongly folded protein and inactive enzyme. Denaturation followed by refolding, as well as ncIB preparation were used for isolation of active GTFB protein from inclusion bodies. Soluble, refolded and ncIB GTFB were compared using activity assays, secondary structure analysis by FT-IR, and product analyses by NMR, HPAEC and SEC. Expression of GTFB in E. coli yielded > 100 mg/l relatively pure and active but mostly insoluble GTFB protein in IBs, regardless of the expression conditions used. Following denaturing, refolding of GTFB protein was most efficient in double distilled H2O. Also, GTFB ncIBs were active, with approx. 10 % of hydrolysis activity compared to the soluble protein. When expressed as units of activity obtained per liter E. coli culture, the total amount of ncIB GTFB expressed possessed around 180 % hydrolysis activity and 100 % transferase activity compared to the amount of soluble GTFB enzyme obtained from one liter culture. The product profiles obtained for the three GTFB enzyme preparations were similar when analyzed by HPAEC and NMR. SEC investigation also showed that these 3 enzyme preparations yielded products with similar size distributions. FT-IR analysis revealed extended β-sheet formation in ncIB GTFB providing an explanation at the molecular level for reduced GTFB activity in ncIBs. The thermostability of ncIB GTFB was relatively high compared to the soluble and refolded GTFB. In view of their relatively high yield

  20. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wang

    Full Text Available Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.

  1. Fermentation of cellulose and fatty acids with enrichments from sewage sludge

    International Nuclear Information System (INIS)

    Winter, J.U.; Cooney, C.L.

    1980-01-01

    A mixed culture enriched from sewage sludge and anaerobic digestor effluent was able to degrade cellulose and acetate rapidly and quantitatively to methane and carbon dioxide. The maximum specific rate of gas production was 87ml/gm cell-h, corresponding to a rate of cellulose utilization of 0.1g/g cells-h. Acetate, an intermediate in cellulose degradation, was fermented much more rapidly than butyrate or propionate; its maximum utilization rate was first order with a rate constant of 0.34h -1 . Addition of 2- 14 C-acetate to a digestor fed cellulose showed that 2% of the methyl groups were oxidized to carbon dioxide. When 1- 14 C-acetate was added to a similar digestor, 52% of the carboxyl groups were reduced to methane, suggesting that not all the carbon dioxide during simultaneous cellulose and acetate utilization is treated equally. The pulse addition of large amounts of acetate, propionate and butyrate to a cellulose fed digestor was also examined. (orig.)

  2. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Science.gov (United States)

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  3. Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B.

    Science.gov (United States)

    Jiao, Yue; Wan, Caichao; Bao, Wenhui; Gao, He; Liang, Daxin; Li, Jian

    2018-06-01

    A magnetic cellulose aerogel-supported Fe 3 O 4 nanoparticles composite was designed as a highly efficient and eco-friendly catalyst for Fenton-like degradation of Rhodamine B (RhB). The composite (coded as Fe 3 O 4 @CA) was formed by embedding well-dispersed Fe 3 O 4 nanoparticles into the 3D structure of cellulose aerogels by virtue of a facile and cheap hydrothermal method. Comparative studies indicate that the RhB decolorization ratio is much higher in co-presence of Fe 3 O 4 and H 2 O 2 than that in presence of Fe 3 O 4 or H 2 O 2 only, revealing that the Fe 3 O 4 @CA-catalyzed Fenton-like reaction governed the RhB decolorization process. It was also found that almost 100% RhB removal was achieved in the Fenton-like system. Moreover, the composite exhibited higher catalytic activity than that of the individual Fe 3 O 4 particles. In addition, the Fe 3 O 4 @CA catalyst retained ∼97% of its ability to degrade RhB after the six successive degradation experiments, suggesting its excellent reusability. All these merits indicate that the green and low-cost catalyst with strong magnetic responsiveness possesses good potential for H 2 O 2 -driven Fenton-like treatment of organic dyestuff wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Molecular and biochemical analyses of the GH44 module of CbMan5B/Cel44A, a bifunctional enzyme from the hyperthermophilic bacterium Caldicellulosiruptor bescii.

    Science.gov (United States)

    Ye, Libin; Su, Xiaoyun; Schmitz, George E; Moon, Young Hwan; Zhang, Jing; Mackie, Roderick I; Cann, Isaac K O

    2012-10-01

    A large polypeptide encoded in the genome of the thermophilic bacterium Caldicellulosiruptor bescii was determined to consist of two glycoside hydrolase (GH) modules separated by two carbohydrate-binding modules (CBMs). Based on the detection of mannanase and endoglucanase activities in the N-terminal GH5 and the C-terminal GH44 module, respectively, the protein was designated CbMan5B/Cel44A. A GH5 module with >99% identity from the same organism was characterized previously (X. Su, R. I. Mackie, and I. K. Cann, Appl. Environ. Microbiol. 78:2230-2240, 2012); therefore, attention was focused on CbMan5A/Cel44A-TM2 (or TM2), which harbors the GH44 module and the two CBMs. On cellulosic substrates, TM2 had an optimal temperature and pH of 85°C and 5.0, respectively. Although the amino acid sequence of the GH44 module of TM2 was similar to those of other GH44 modules that hydrolyzed cello-oligosaccharides, cellulose, lichenan, and xyloglucan, it was unique that TM2 also displayed modest activity on mannose-configured substrates and xylan. The TM2 protein also degraded Avicel with higher specific activity than activities reported for its homologs. The GH44 catalytic module is composed of a TIM-like domain and a β-sandwich domain, which consists of one β-sheet at the N terminus and nine β-sheets at the C terminus. Deletion of one or more β-sheets from the β-sandwich domain resulted in insoluble proteins, suggesting that the β-sandwich domain is essential for proper folding of the polypeptide. Combining TM2 with three other endoglucanases from C. bescii led to modest synergistic activities during degradation of cellulose, and based on our results, we propose a model for cellulose hydrolysis and utilization by C. bescii.

  5. Ethanol production from cellulose, lactose and xylose using yeasts and enzymes. Gewinnung von Ethanol aus Cellulose, Lactose, und Xylose mit Hilfe von Hefen und Enzymen

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, U

    1986-07-03

    Experiments with mixtures of whey and corn showed that more than 85% of the lactose was degraded into ethanol. The applicability of cellulose was investigated by means of potatoes. Cellulase is inhibited by glucose, which is a fermentation intermediate, as well as by the end product ethanol. A cellulase inhibitor in potatoes was detected and stabilized; this inhibitor could be degraded into neutral components by a suitable enzyme. Saccharification and fermentation experiments showed that the cellulose fraction of potatoes can be reduced efficiently. The effects of non-enzymatic pretreatment on enzymatic degradation of cellulose, combined with fermentation of the degradation products, are illustrated by the example of cellulose treated with acid and alkaline substances. A continuous fermentation system was developed from which the ethanol is withdrawn in vapour form. The system made better use of the cellulase activity and increased the efficiency of a xylose-fermenting yeast. The new method is compared with batch experiments in order to assess its efficiency. The advantages of the continuous process are proved for two yeasts of the species Pachysolu and Pichia. Specific fermentation rates up to 0.08 g/(g x h) and fermentation yields up to 0.42 g ethanol/g xylose were achieved with Pichia stipitis.

  6. Effect of Sodium Carboxymethyl Celluloses on Water-catalyzed Self-degradation of 200-degree C-heated Alkali-Activated Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.

    2012-05-01

    We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200°C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cement’s self-degradation. Thus, CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.

  7. Radiation degradation of short-cotton linters

    International Nuclear Information System (INIS)

    Ma Zue Teh; Zhou Rui Min

    1984-01-01

    Radiation degradation of short-cotton linters has been studied by using X-ray diffraction, an infrared spectrometer and a viscosimeter. Average molecular weight and crystallinity of short-cotton linters and the change of reducing sugar in γ-radiation degradation were examined. It was found that cellulosic saccharification in hydrolysis was enhanced with preirradiation of linter. This probably resulted from the radiation induced change of cellulosic structure. Sensitizers to promote radiation degradation effect were investigated. Carbon tetrachloride has been found to be effective. (author)

  8. Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction

    Directory of Open Access Journals (Sweden)

    Amnuaikit T

    2011-06-01

    Full Text Available Thanaporn Amnuaikit, Toon Chusuit, Panithi Raknam, Prapaporn BoonmeDepartment of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, ThailandBackground: Cellulose masks obtained from natural sources such as bacteria are of interest as cosmetic devices for the treatment of dry skin because they not only improve hydration of the skin, but have low toxicity and are biodegradable. The aims of this study were to determine the in vivo effects of a cellulose mask obtained from Acetobacter xylinum on skin characteristics and to evaluate user satisfaction with the product.Methods: Thirty healthy Thai volunteers aged 21–40 years participated in the study. The volunteers were randomly separated into a control group and an experimental group. For the control group, volunteers were assigned to apply moist towels to the face for 25 minutes. For the experimental group, the volunteers were assigned to apply the masks, ie, translucent patches which could be fitted onto the face for the same period. The following week, the groups were changed over to the alternative treatment. Skin moisture, sebum, elasticity, texture, dullness, and desquamation levels were assessed using a system used for routine skin counseling before applying the trial product and five minutes after its removal. Degree of satisfaction with use of the cellulose mask was investigated using a five-point rating scale.Results: The cellulose mask increased moisture levels in the skin significantly more than moist towels (P < 0.05 after a single application. No obvious effects on other skin characteristics were found. The cellulose mask product rated around 4/5 on the satisfaction rating scale.Conclusions: A single application of the trial cellulose mask enhanced moisture uptake by facial skin. Users also reported being satisfied with the trial product.Keywords: bacterial cellulose, facial mask, skin characteristics, skin hydration, user

  9. γ radiolysis of cellulose acetate

    International Nuclear Information System (INIS)

    Ali, S.M.; Clay, P.G.

    1979-01-01

    The major degradative process in γ-irradiated cellulose acetate is chain scission. For the dry powder the G/sub s/ value (number of scissions per 100 eV of energy absorbed) was found to be 7.1. The water-swollen material was found to degrade at the higher rate of G/sub s/ = 9.45. Additions of ethanol and methanol to the water brought about reductions in G/sub s/, whereas dissolved nitrous oxide produced an increase in G/sub s/. The useful life of cellulose acetate reverse osmosis membranes exposed to γ radiation was estimated by observations of the water permeation rate during irradiation. Membrane breakdown occurred at 15 Mrad in pure water, but the dose to breakdown was extended to 83 Mrad in the presence of 4% methanol. 3 figures, 1 table

  10. Characterization of the arabinoxylan-degrading machinery of the thermophilic bacterium Herbinix hemicellulosilytica-Six new xylanases, three arabinofuranosidases and one xylosidase.

    Science.gov (United States)

    Mechelke, M; Koeck, D E; Broeker, J; Roessler, B; Krabichler, F; Schwarz, W H; Zverlov, V V; Liebl, W

    2017-09-10

    Herbinix hemicellulosilytica is a newly isolated, gram-positive, anaerobic bacterium with extensive hemicellulose-degrading capabilities obtained from a thermophilic biogas reactor. In order to exploit its potential as a source for new industrial arabinoxylan-degrading enzymes, six new thermophilic xylanases, four from glycoside hydrolase family 10 (GH10) and two from GH11, three arabinofuranosidases (1x GH43, 2x GH51) and one β-xylosidase (GH43) were selected. The recombinantly produced enzymes were purified and characterized. All enzymes were active on different xylan-based polysaccharides and most of them showed temperature-vs-activity profiles with maxima around 55-65°C. HPAEC-PAD analysis of the hydrolysates of wheat arabinoxylan and of various purified xylooligosaccharides (XOS) and arabinoxylooligosaccharides (AXOS) was used to investigate their substrate and product specificities: among the GH10 xylanases, XynB showed a different product pattern when hydrolysing AXOS compared to XynA, XynC, and XynD. None of the GH11 xylanases was able to degrade any of the tested AXOS. All three arabinofuranosidases, ArfA, ArfB and ArfC, were classified as type AXH-m,d enzymes. None of the arabinofuranosidases was able to degrade the double-arabinosylated xylooligosaccharides XA 2+3 XX. β-Xylosidase XylA (GH43) was able to degrade unsubstituted XOS, but showed limited activity to degrade AXOS. Copyright © 2017. Published by Elsevier B.V.

  11. Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas gelida and Azospirillum species or Bacillus macerans

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Gibson, A.H.

    1985-10-01

    Mixed cultures of Cellulomonas gelida plus Azospirillum lipoferum or Azospirillum brasilense and C. gelida plus Bacillus macerans were shown to degrade cellulose and straw and to utilize the energy-yielding products to fix atmospheric nitrogen. This cooperative process was followed over 30 days in sand-based cultures in which the breakdown of 20% of the cellulose and 28 to 30% of the straw resulted in the fixation of 12 to 14.6 mg of N per g of cellulose and 17 to 19 mg of N per g of straw consumed. Cellulomonas species have certain advantages over aerobic cellulose-degrading fungi in being able to degrade cellulose at oxygen concentrations as low as 1% O/sub 2/ (vol/vol) which would allow a close association between cellulose-degrading and microaerobic diazotrophic microorganisms. Cultures inoculated with initially different proportions of A. brasilense and C. gelida all reached a stable ratio of approximately 1 Azospirillum/3 Cellulomonas cells.

  12. Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii.

    Science.gov (United States)

    Blifernez-Klassen, Olga; Klassen, Viktor; Doebbe, Anja; Kersting, Klaudia; Grimm, Philipp; Wobbe, Lutz; Kruse, Olaf

    2012-01-01

    Plants convert sunlight to biomass, which is primarily composed of lignocellulose, the most abundant natural biopolymer and a potential feedstock for fuel and chemical production. Cellulose assimilation has so far only been described for heterotrophic organisms that rely on photosynthetically active primary producers of organic compounds. Among phototrophs, the unicellular green microalga Chlamydomonas reinhardtii is widely known as one of the best established model organisms. It occupies many habitats, including aquatic and soil ecosystems. This ubiquity underscores the versatile metabolic properties of this microorganism. Here we present yet another paradigm of adaptation for C. reinhardtii, highlighting its photoheterotrophic ability to utilize cellulose for growth in the absence of other carbon sources. When grown under CO(2)-limiting conditions in the light, secretion of endo-β-1,4-glucanases by the cell causes digestion of exogenous cellulose, followed by cellobiose uptake and assimilation. Phototrophic microbes like C. reinhardtii may thus serve as biocatalysts for cellulosic biofuel production.

  13. Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination.

    Directory of Open Access Journals (Sweden)

    Juan Liu

    Full Text Available A phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs. Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg · L(-1 in a minimal salts medium (MSM within 48 hours at an initial pH of 7.0 and a temperature of 30 °C. Pn2 could grow well on the MSM plates with a series of other PAHs, including naphthalene, acenaphthene, anthracene and pyrene, and degrade them to different degrees. Pn2 could also colonize the root surface of ryegrass (Lolium multiflorum Lam, invade its internal root tissues and translocate into the plant shoot. When treated with the endophyte Pn2 under hydroponic growth conditions with 2 mg · L(-1 of phenanthrene in the Hoagland solution, the phenanthrene concentrations in ryegrass roots and shoots were reduced by 54% and 57%, respectively, compared with the endophyte-free treatment. Strain Pn2 could be a novel and useful bacterial resource for eliminating plant PAH contamination in polluted environments by degrading the PAHs inside plants. Furthermore, we provide new perspectives on the control of the plant uptake of PAHs via endophytic bacteria.

  14. Formation of cellulases and degradation of cellulose by several fungi

    Energy Technology Data Exchange (ETDEWEB)

    Herr, D; Luck, G; Dellweg, H

    1978-01-01

    Five strains of fungi (Aspergillus niger, Lenzites trabea, Myrothecium verrucaria, Trichoderma koningii and Trichoderma lignorum) were tested for the production of cellulolytic enzymes on pure glucose and on cellulose media. The most active strains belonging to the genera of Trichoderma, Aspergillus and Myrothecium, also secreting high activities of ..beta..-glucosidase, were grown in a bioreactor under defined conditions. Depending on the strain this procedure resulted in a manifold increase in cellulolytic activities. The culture filtrates were concentrated and standardized with respect to ..beta..-glucosidase activity and used for the hydrolysis of cellulose powder. With Trichoderma-cellulase, 46% conversion of crystalline cellulose to glucose was achieved within 48 h. The ratio of cellobiose to glucose found in the hydrolysate, the amount of high molecular carbohydrates as well as the degree of hydrolysis widely depended on the type of cellulase used.

  15. The Effect of Dust Particles on Cellulose Degradation

    Czech Academy of Sciences Publication Activity Database

    Bartl, B.; Mašková, Ludmila; Paulusová, H.; Smolík, Jiří; Bartlová, L.; Vodička, Petr

    2016-01-01

    Roč. 61, č. 4 (2016), s. 203-208 ISSN 0039-3630 R&D Projects: GA MK DF11P01OVV020 Keywords : cellulose * paper * dust Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.578, year: 2016

  16. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Mette; Pilgaard, Bo

    2014-01-01

    The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence....... In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important...

  17. How copper corrosion can be retarded--New ways investigating a chronic problem for cellulose in paper.

    Science.gov (United States)

    Ahn, Kyujin; Hofmann, Christa; Horsky, Monika; Potthast, Antje

    2015-12-10

    To better assess the stabilization effects of chemical treatments on Cu(II)-catalyzed cellulose degradation, we developed Cu(II)-containing model rag paper with typical copper corrosion characteristics using e-beam radiation. The paper can be prepared homogeneously and quickly compared to tedious pre-aging methods. Using the Cu(II)-containing model rag paper, the stabilization effects of various chemicals on Cu(II)-catalyzed degradation of cellulose were tested. Benzotriazol was highly effective in retarding the degradation of the Cu(II)-containing model rag paper under hot and humid aging condition, as well as under photo-oxidative stress. Tetrabutylammonium bromide reduced Cu(II)-catalyzed degradation of cellulose, but its efficacy was dependent on the accelerated aging conditions. The results with the alkaline treatments and gelatin treatment suggested that their roles in the degradation mechanisms of cellulose in the presence of Cu(II) differ from those of benzotriazol and tetrabutylammonium bromide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production.

    Science.gov (United States)

    Machado, Rachel T A; Gutierrez, Junkal; Tercjak, Agnieszka; Trovatti, Eliane; Uahib, Fernanda G M; Moreno, Gabriela de Padua; Nascimento, Andresa P; Berreta, Andresa A; Ribeiro, Sidney J L; Barud, Hernane S

    2016-11-05

    A strain isolated from Kombucha tea was isolated and used as an alternative bacterium for the biosynthesis of bacterial cellulose (BC). In this study, BC generated by this novel bacterium was compared to Gluconacetobacter xylinus biosynthesized BC. Kinetic studies reveal that Komagataeibacter rhaeticus was a viable bacterium to produce BC according to yield, thickness and water holding capacity data. Physicochemical properties of BC membranes were investigated by UV-vis and Fourier transform infrared spectroscopies (FTIR), thermogravimetrical analysis (TGA) and X-ray diffraction (XRD). Additionally, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were also used for morphological characterization. Mechanical properties at nano and macroscale were studied employing PeakForce quantitative nanomechanical property mapping (QNM) and dynamic mechanical analyzer (DMA), respectively. Results confirmed that BC membrane biosynthesized by Komagataeibacter rhaeticus had similar physicochemical, morphological and mechanical properties than BC membrane produced by Gluconacetobacter xylinus and can be widely used for the same applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characterization of TEMPO-oxidized bacterial cellulose

    International Nuclear Information System (INIS)

    Nascimento, Eligenes S.; Pereira, Andre L.S.; Lima, Helder L.; Barroso, Maria K. de A.; Barros, Matheus de O.; Morais, Joao P.S.; Borges, Maria de F.; Rosa, Morsyleide de F.

    2015-01-01

    The aim of this study was to characterize the TEMPO-oxidized bacterial cellulose, as a preliminary research for further application in nanocomposites. Bacterial cellulose (BC) was selectively oxidized at C-6 carbon by TEMPO radical. Oxidized bacterial cellulose (BCOX) was characterized by TGA, FTIR, XRD, and zeta potential. BCOX suspension was stable at pH 7.0, presented a crystallinity index of 83%, in spite of 92% of BC, because of decrease in the free hydroxyl number. FTIR spectra showed characteristic BC bands and, in addition, band of carboxylic group, proving the oxidation. BCOX DTG showed, in addition to characteristic BC thermal events, a maximum degradation peak at 233 °C, related to sodium anhydro-glucuronate groups formed during the cellulose oxidation. Thus, BC can be TEMPO-oxidized without great loss in its structure and properties. (author)

  20. Selection of the N-acylhomoserine lactone-degrading bacterium Alteromonas stellipolaris PQQ-42 and of its potential for biocontrol in aquaculture

    Directory of Open Access Journals (Sweden)

    Marta eTorres

    2016-05-01

    Full Text Available The production of virulence factors by many pathogenic microorganisms depends on the intercellular communication system called quorum sensing (QS, which involves the production and release of signal molecules known as autoinducers. Based on this, new-therapeutic strategies have emerged for the treatment of a variety of infections, such as the enzymatic degradation of signalling molecules, known as quorum quenching (QQ. In this study, we present the screening of QQ activity amongst 450 strains isolated from a bivalve hatchery in Granada (Spain, and the selection of the strain PQQ-42, which degrades a wide range of N-acylhomoserine lactones (AHLs. The selected strain, identified as Alteromonas stellipolaris, degraded the accumulation of AHLs and reduced the production of protease and chitinase and swimming motility of a Vibrio species in co-cultivation experiments in vitro. In the bio-control experiment, strain PQQ-42 significantly reduced the pathogenicity of V. mediterranei VibC-Oc-097 upon the coral Oculina patagonica showing a lower degree of tissue damage (29.25±14.63 % in its presence, compared to when the coral was infected with V. mediterranei VibC-Oc-097 alone (77.53±13.22 %. Our results suggest that this AHL-degrading bacterium may have biotechnological applications in aquaculture.

  1. Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes

    DEFF Research Database (Denmark)

    Djajadi, Demi T.; Jensen, Mads M.; Oliveira, Marlene

    2018-01-01

    -rich residues (LRRs) were prepared via extensive enzymatic cellulose degradation of corn stover (Zea mays subsp. mays L.), Miscanthus × giganteus stalks (MS) and wheat straw (Triticum aestivum L.) (WS) samples that each had been hydrothermally pretreated at three severity factors (log R0) of 3.65, 3.83 and 3...

  2. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.

    Science.gov (United States)

    Mnif, S; Chamkha, M; Sayadi, S

    2009-09-01

    To isolate and characterize an efficient hydrocarbon-degrading bacterium under hypersaline conditions, from a Tunisian off-shore oil field. Production water collected from 'Sercina' petroleum reservoir, located near the Kerkennah island, Tunisia, was used for the screening of halotolerant or halophilic bacteria able to degrade crude oil. Bacterial strain C2SS100 was isolated after enrichment on crude oil, in the presence of 100 g l(-1) NaCl and at 37 degrees C. This strain was aerobic, Gram-negative, rod-shaped, motile, oxidase + and catalase +. Phenotypic characters and phylogenetic analysis based on the 16S rRNA gene of the isolate C2SS100 showed that it was related to members of the Halomonas genus. The degradation of several compounds present in crude oil was confirmed by GC-MS analysis. The use of refined petroleum products such as diesel fuel and lubricating oil as sole carbon source, under the same conditions of temperature and salinity, showed that significant amounts of these heterogenic compounds could be degraded. Strain C2SS100 was able to degrade hexadecane (C16). During growth on hexadecane, cells surface hydrophobicity and emulsifying activity increased indicating the production of biosurfactant by strain C2SS100. A halotolerant bacterial strain Halomonas sp. C2SS100 was isolated from production water of an oil field, after enrichment on crude oil. This strain is able to degrade hydrocarbons efficiently. The mode of hydrocarbon uptake is realized by the production of a biosurfactant which enhances the solubility of hydrocarbons and renders them more accessible for biodegradation. The biodegradation potential of the Halomonas sp. strain C2SS100 gives it an advantage for possibly application on bioremediation of water, hydrocarbon-contaminated sites under high-salinity level.

  3. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation.

    Science.gov (United States)

    Long, Lingfeng; Tian, Dong; Hu, Jinguang; Wang, Fei; Saddler, Jack

    2017-11-01

    Although biological pretreatment of cellulosic fiber based on endoglucanases has shown some promise to facilitate cellulose nanofibrillation, its efficacy is still limited. In this study, a xylanase-aided endoglucanase pretreatment was assessed on the bleached hardwood and softwood Kraft pulps to facilitate the downstream cellulose nanofibrillation. Four commercial xylanase preparations were compared and the changes of major fiber physicochemical characteristics such as cellulose/hemicellulose content, gross fiber properties, fiber morphologies, cellulose accessibility/degree of polymerization (DP)/crystallinity were systematically evaluated before and after enzymatic pretreatment. It showed that the synergistic cooperation between endoglucanase and certain xylanase (Biobrite) could efficiently "open up" the hardwood Kraft pulp with limited carbohydrates degradation (cellulose nanofibrillation during mild sonication process (90Wh) with more uniform disintegrated nanofibril products (50-150nm, as assessed by scanning electron microscopy and UV-vis spectroscopy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cellulose-Based Nanomaterials for Energy Applications.

    Science.gov (United States)

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Silica ecosystem for synergistic biotransformation

    Science.gov (United States)

    Mutlu, Baris R.; Sakkos, Jonathan K.; Yeom, Sujin; Wackett, Lawrence P.; Aksan, Alptekin

    2016-06-01

    Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues, we designed and produced a synthetic ecosystem by co-encapsulation in a silica gel matrix, which enabled precise control of the microbial populations and their microenvironment. As a case study, two greatly different microorganisms: Pseudomonas sp. NCIB 9816 and Synechococcus elongatus PCC 7942 were encapsulated. NCIB 9816 can aerobically biotransform over 100 aromatic hydrocarbons, a feat useful for synthesis of higher value commodity chemicals or environmental remediation. In our system, NCIB 9816 was used for biotransformation of naphthalene (a model substrate) into CO2 and the cyanobacterium PCC 7942 was used to provide the necessary oxygen for the biotransformation reactions via photosynthesis. A mathematical model was constructed to determine the critical cell density parameter to maximize oxygen production, and was then used to maximize the biotransformation rate of the system.

  6. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1.

    Directory of Open Access Journals (Sweden)

    Margret E Berg Miller

    Full Text Available BACKGROUND: Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. METHODOLOGY/PRINCIPAL FINDINGS: The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb, and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs, polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs. Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315 exhibited the highest levels of up-regulation. CONCLUSIONS/SIGNIFICANCE: The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional

  7. Degradation of cellulose at the wet-dry interface. II. Study of oxidation reactions and effect of antioxidants.

    Science.gov (United States)

    Jeong, Myung-Joon; Dupont, Anne-Laurence; de la Rie, E René

    2014-01-30

    To better understand the degradation of cellulose upon the formation of a tideline at the wet-dry interface when paper is suspended in water, the production of chemical species involved in oxidation reactions was studied. The quantitation of hydroperoxides and hydroxyl radicals was carried out in reverse phase chromatography using triphenylphosphine and terephthalic acid, respectively, as chemical probes. Both reactive oxygen species were found in the tideline immediately after its formation, in the range of micromoles and nanomoles per gram of paper, respectively. The results indicate that hydroxyl radicals form for the most part in paper before the tideline experiment, whereas hydroperoxides appear to be produced primarily during tideline formation. Iron sulfate impregnation of the paper raised the production of hydroperoxides. After hygrothermal aging in sealed vials the hydroxyl radical content in paper increased significantly. When aged together in the same vial, tideline samples strongly influenced the degradation of samples from other areas of the paper (multi-sample aging). Different types of antioxidants were added to the paper before the tideline experiment to investigate their effect on the oxidation reactions taking place. In samples treated with iron sulfate or artificially aged, the addition of Irgafos 168 (tris(2,4-ditert-butylphenyl) phosphate) and Tinuvin 292 (bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate) reduced the concentration of hydroperoxides and hydroxyl radicals, respectively. Tinuvin 292 was also found to considerably lower the rate of cellulose chain scission reactions during hygrothermal aging of the paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar.

    Science.gov (United States)

    Fu, Liang; Chen, Siqian; Yi, Jiulong; Hou, Zongxia

    2014-07-01

    A strain of acidogenic bacterium was isolated from the fermentation liquid of Cantonese-style rice vinegar produced by traditional surface fermentation. 16S rDNA identification confirmed the bacterium as Gluconacetobacter xylinus, which synthesizes bacterial cellulose, and the acid productivity of the strain was investigated. In the study, the effects of the membrane integrity and the comparison of the air-liquid interface membrane with immerged membrane on total acidity, cellulose production, alcohol dehydrogenase (ADH) activity and number of bacteria were investigated. The cellulose membrane and the bacteria were observed under SEM for discussing their relationship. The correlations between oxygen consumption and total acid production rate were compared in surface and shake flask fermentation. The results showed the average acid productivity of the strain was 0.02g/(100mL/h), and the integrity of cellulose membrane in surface fermentation had an important effect on total acidity and cellulose production. With a higher membrane integrity, the total acidity after 144 h of fermentation was 3.75 g/100 mL, and the cellulose production was 1.71 g/100 mL after 360 h of fermentation. However, when the membrane was crushed by mechanical force, the total acidity and the cellulose production were as low as 0.36 g/100 mL and 0.14 g/100 mL, respectively. When the cellulose membrane was forced under the surface of fermentation liquid, the total acid production rate was extremely low, but the activity of ADH in the cellulose membrane was basically the same with the one above the liquid surface. The bacteria were mainly distributed in the cellulose membrane during the fermentation. The bacterial counts in surface fermentation were more than in the shake flask fermentation and G. xylinus consumed the substrate faster, in surface fermentation than in shake flask fermentation. The oxygen consumption rate and total acid production rate of surface fermentation were respectively 26

  9. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8.

    Science.gov (United States)

    Iakiviak, Michael; Mackie, Roderick I; Cann, Isaac K O

    2011-11-01

    Ruminococcus albus 8 is a fibrolytic ruminal bacterium capable of utilization of various plant cell wall polysaccharides. A bioinformatic analysis of a partial genome sequence of R. albus revealed several putative enzymes likely to hydrolyze glucans, including lichenin, a mixed-linkage polysaccharide of glucose linked together in β-1,3 and β-1,4 glycosidic bonds. In the present study, we demonstrate the capacity of four glycoside hydrolases (GHs), derived from R. albus, to hydrolyze lichenin. Two of the genes encoded GH family 5 enzymes (Ra0453 and Ra2830), one gene encoded a GH family 16 enzyme (Ra0505), and the last gene encoded a GH family 3 enzyme (Ra1595). Each gene was expressed in Escherichia coli, and the recombinant protein was purified to near homogeneity. Upon screening on a wide range of substrates, Ra0453, Ra2830, and Ra0505 displayed different hydrolytic properties, as they released unique product profiles. The Ra1595 protein, predicted to function as a β-glucosidase, preferred cleavage of a nonreducing end glucose when linked by a β-1,3 glycosidic bond to the next glucose residue. The major product of Ra0505 hydrolysis of lichenin was predicted to be a glucotriose that was degraded only by Ra0453 to glucose and cellobiose. Most importantly, the four enzymes functioned synergistically to hydrolyze lichenin to glucose, cellobiose, and cellotriose. This lichenin-degrading enzyme mix should be of utility as an additive to feeds administered to monogastric animals, especially those high in fiber.

  10. Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose

    International Nuclear Information System (INIS)

    Wang, Shurong; Dai, Gongxin; Ru, Bin; Zhao, Yuan; Wang, Xiaoliu; Xiao, Gang; Luo, Zhongyang

    2017-01-01

    The influence of torrefaction on cellulose structural characteristics and the resulting pyrolysis behavior was investigated in this study. Torrefaction reduced O/C ratio in cellulose and increased its high heating value. The crystallinity of cellulose increased slightly first and then decreased sharply with the increase of torrefaction temperature, which could be ascribed to competitive degradation between crystalline region and amorphous region, as indicated by "1"3C CP/MAS NMR analysis. Besides, the cleavage of β-1,4-glycosidic bond and the dehydration of hydroxyl were the major reactions occurring in torrefaction. Avrami-Erofeev model was found to be the most suitable kinetic reaction model for explaining the thermogravimetric weight loss during the pyrolysis of the raw and torrefied cellulose. A distributed activation energy model based on Avrami-Erofeev model was subsequently used to reveal the pyrolytic kinetics. It was found that the changes in cellulose structure influenced the kinetic parameters greatly. Torrefaction also changed pyrolytic product distribution. The yields of furfural, alicyclic ketones and anhydrosugars increased while that of 5-hydroxymethyl-furfural decreased as torrefaction temperature increased. - Highlights: • Competitive degradation of crystalline and amorphous regions caused CrI change. • Cleavage of glycosidic bond and dehydration of hydroxyl occurred during torrefaction. • Am-DAEM was used to analyze the raw and torrefied cellulose pyrolysis kinetics. • Torrefaction changed cellulose pyrolytic products distribution greatly.

  11. Cellulose biosynthesis in higher plants

    Directory of Open Access Journals (Sweden)

    Krystyna Kudlicka

    2014-01-01

    Full Text Available Knowledge of the control and regulation of cellulose synthesis is fundamental to an understanding of plant development since cellulose is the primary structural component of plant cell walls. In vivo, the polymerization step requires a coordinated transport of substrates across membranes and relies on delicate orientations of the membrane-associated synthase complexes. Little is known about the properties of the enzyme complexes, and many questions about the biosynthesis of cell wall components at the cell surface still remain unanswered. Attempts to purify cellulose synthase from higher plants have not been successful because of the liability of enzymes upon isolation and lack of reliable in vitro assays. Membrane preparations from higher plant cells incorporate UDP-glucose into a glucan polymer, but this invariably turns out to be predominantly β -1,3-linked rather than β -1,4-linked glucans. Various hypotheses have been advanced to explain this phenomenon. One idea is that callose and cellulose-synthase systems are the same, but cell disruption activates callose synthesis preferentially. A second concept suggests that a regulatory protein as a part of the cellulose-synthase complex is rapidly degraded upon cell disruption. With new methods of enzyme isolation and analysis of the in vitro product, recent advances have been made in the isolation of an active synthase from the plasma membrane whereby cellulose synthase was separated from callose synthase.

  12. Utilization of cellulose and hemicellulose of pig faeces by Trichoderma viride

    NARCIS (Netherlands)

    Wit, de W.

    1980-01-01

    The purpose of this investigation was to study the microbiological degradation of the cellulose-hemicellulose-lignin complexes of the faeces of pigs. Cellulose, hemicellulose and lignin are components of the cell wall of plants and residues of plant material occur in large quantities in faeces

  13. Bacterial Cellulose (BC) as a Functional Nanocomposite Biomaterial

    Science.gov (United States)

    Nandgaonkar, Avinav Ghanashyam

    Cellulosic is the most abundant biopolymer in the landscape and can be found in many different organisms. It has been already seen use in the medical field, for example cotton for wound dressings and sutures. Although cellulose is naturally occurring and has found a number of applications inside and outside of the medical field, it is not typically produced in its pure state. A lengthy process is required to separate the lignin, hemicelluloses and other molecules from the cellulose in most renewables (wood, agricultural fibers such as cotton, monocots, grasses, etc.). Although bacterial cellulose has a similar chemical structure to plant cellulose, it is easier to process because of the absence of lignin and hemicelluloses which require a lot of energy and chemicals for removal. Bacterial cellulose (BC) is produced from various species of bacteria such as Gluconacetobacter xylinus. Due to its high water uptake, it has the tendency to form gels. It displays high tensile strength, biocompatibility, and purity compared to wood cellulose. It has found applications in fields such as paper, paper products, audio components (e.g., speaker diaphragms), flexible electronics, supercapacitors, electronics, and soft tissue engineering. In my dissertation, we have functionalized and studied BC-based materials for three specific applications: cartilage tissue engineering, bioelectronics, and dye degradation. In our first study, we prepared a highly organized porous material based on BC by unidirectional freezing followed by a freeze-drying process. Chitosan was added to impart additional properties to the resulting BC-based scaffolds that were evaluated in terms of their morphological, chemical, and physical properties for cartilage tissue engineering. The properties of the resulting scaffold were tailored by adjusting the concentration of chitosan over 1, 1.5, and 2 % (by wt-%). The scaffolds containing chitosan showed excellent shape recovery and structural stability after

  14. Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Renata Toczyłowska-Mamińska

    2018-01-01

    Full Text Available The abundance of cellulosic wastes make them attractive source of energy for producing electricity in microbial fuel cells (MFCs. However, electricity production from cellulose requires obligate anaerobes that can degrade cellulose and transfer electrons to the electrode (exoelectrogens, and thus most previous MFC studies have been conducted using two-chamber systems to avoid oxygen contamination of the anode. Single-chamber, air-cathode MFCs typically produce higher power densities than aqueous catholyte MFCs and avoid energy input for the cathodic reaction. To better understand the bacterial communities that evolve in single-chamber air-cathode MFCs fed cellulose, we examined the changes in the bacterial consortium in an MFC fed cellulose over time. The most predominant bacteria shown to be capable electron generation was Firmicutes, with the fermenters decomposing cellulose Bacteroidetes. The main genera developed after extended operation of the cellulose-fed MFC were cellulolytic strains, fermenters and electrogens that included: Parabacteroides, Proteiniphilum, Catonella and Clostridium. These results demonstrate that different communities evolve in air-cathode MFCs fed cellulose than the previous two-chamber reactors.

  15. In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold.

    Science.gov (United States)

    Yadav, Vikas; Sun, Lin; Panilaitis, Bruce; Kaplan, David L

    2015-12-01

    A current focus of tissue engineering is the use of adult human mesenchymal stem cells (hMSCs) as an alternative to autologous chondrocytes for cartilage repair. Several natural and synthetic polymers (including cellulose) have been explored as a biomaterial scaffold for cartilage tissue engineering. While bacterial cellulose (BC) has been used in tissue engineering, its lack of degradability in vivo and high crystallinity restricts widespread applications in the field. Recently we reported the formation of a novel bacterial cellulose that is lysozyme-susceptible and -degradable in vivo from metabolically engineered Gluconacetobacter xylinus. Here we report the use of this modified bacterial cellulose (MBC) for cartilage tissue engineering using hMSCs. MBC's glucosaminoglycan-like chemistry, combined with in vivo degradability, suggested opportunities to exploit this novel polymer in cartilage tissue engineering. We have observed that, like BC, MBC scaffolds support cell attachment and proliferation. Chondrogenesis of hMSCs in the MBC scaffolds was demonstrated by real-time RT-PCR analysis for cartilage-specific extracellular matrix (ECM) markers (collagen type II, aggrecan and SOX9) as well as histological and immunohistochemical evaluations of cartilage-specific ECM markers. Further, the attachment, proliferation, and differentiation of hMSCs in MBC showed unique characteristics. For example, after 4 weeks of cultivation, the spatial cell arrangement and collagen type-II and ACAN distribution resembled those in native articular cartilage tissue, suggesting promise for these novel in vivo degradable scaffolds for chondrogenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Insight into glycoside hydrolases for debranched xylan degradation from extremely thermophilic bacterium Caldicellulosiruptor lactoaceticus.

    Directory of Open Access Journals (Sweden)

    Xiaojing Jia

    Full Text Available Caldicellulosiruptor lactoaceticus 6A, an anaerobic and extremely thermophilic bacterium, uses natural xylan as carbon source. The encoded genes of C. lactoaceticus 6A for glycoside hydrolase (GH provide a platform for xylan degradation. The GH family 10 xylanase (Xyn10A and GH67 α-glucuronidase (Agu67A from C. lactoaceticus 6A were heterologously expressed, purified and characterized. Both Xyn10A and Agu67A are predicted as intracellular enzymes as no signal peptides identified. Xyn10A and Agu67A had molecular weight of 47.0 kDa and 80.0 kDa respectively as determined by SDS-PAGE, while both appeared as homodimer when analyzed by gel filtration. Xyn10A displayed the highest activity at 80 °C and pH 6.5, as 75 °C and pH 6.5 for Agu67A. Xyn10A had good stability at 75 °C, 80 °C, and pH 4.5-8.5, respectively, and was sensitive to various metal ions and reagents. Xyn10A possessed hydrolytic activity towards xylo-oligosaccharides (XOs and beechwood xylan. At optimum conditions, the specific activity of Xyn10A was 44.6 IU/mg with beechwood xylan as substrate, and liberated branched XOs, xylobiose, and xylose. Agu67A was active on branched XOs with methyl-glucuronic acids (MeGlcA sub-chains, and primarily generated XOs equivalents and MeGlcA. The specific activity of Agu67A was 1.3 IU/mg with aldobiouronic acid as substrate. The synergistic action of Xyn10A and Agu67A was observed with MeGlcA branched XOs and xylan as substrates, both backbone and branched chain of substrates were degraded, and liberated xylose, xylobiose, and MeGlcA. The synergism of Xyn10A and Agu67A provided not only a thermophilic method for natural xylan degradation, but also insight into the mechanisms for xylan utilization of C. lactoaceticus.

  17. Microdiversity of an Abundant Terrestrial Bacterium Encompasses Extensive Variation in Ecologically Relevant Traits

    Directory of Open Access Journals (Sweden)

    Alexander B. Chase

    2017-11-01

    Full Text Available Much genetic diversity within a bacterial community is likely obscured by microdiversity within operational taxonomic units (OTUs defined by 16S rRNA gene sequences. However, it is unclear how variation within this microdiversity influences ecologically relevant traits. Here, we employ a multifaceted approach to investigate microdiversity within the dominant leaf litter bacterium, Curtobacterium, which comprises 7.8% of the bacterial community at a grassland site undergoing global change manipulations. We use cultured bacterial isolates to interpret metagenomic data, collected in situ over 2 years, together with lab-based physiological assays to determine the extent of trait variation within this abundant OTU. The response of Curtobacterium to seasonal variability and the global change manipulations, specifically an increase in relative abundance under decreased water availability, appeared to be conserved across six Curtobacterium lineages identified at this site. Genomic and physiological analyses in the lab revealed that degradation of abundant polymeric carbohydrates within leaf litter, cellulose and xylan, is nearly universal across the genus, which may contribute to its high abundance in grassland leaf litter. However, the degree of carbohydrate utilization and temperature preference for this degradation varied greatly among clades. Overall, we find that traits within Curtobacterium are conserved at different phylogenetic depths. We speculate that similar to bacteria in marine systems, diverse microbes within this taxon may be structured in distinct ecotypes that are key to understanding Curtobacterium abundance and distribution in the environment.

  18. Longevity in vivo of primary cell wall cellulose synthases.

    Science.gov (United States)

    Hill, Joseph Lee; Josephs, Cooper; Barnes, William J; Anderson, Charles T; Tien, Ming

    2018-02-01

    Our work focuses on understanding the lifetime and thus stability of the three main cellulose synthase (CESA) proteins involved in primary cell wall synthesis of Arabidopsis. It had long been thought that a major means of CESA regulation was via their rapid degradation. However, our studies here have uncovered that AtCESA proteins are not rapidly degraded. Rather, they persist for an extended time in the plant cell. Plant cellulose is synthesized by membrane-embedded cellulose synthase complexes (CSCs). The CSC is composed of cellulose synthases (CESAs), of which three distinct isozymes form the primary cell wall CSC and another set of three isozymes form the secondary cell wall CSC. We determined the stability over time of primary cell wall (PCW) CESAs in Arabidopsis thaliana seedlings, using immunoblotting after inhibiting protein synthesis with cycloheximide treatment. Our work reveals very slow turnover for the Arabidopsis PCW CESAs in vivo. Additionally, we show that the stability of all three CESAs within the PCW CSC is altered by mutations in individual CESAs, elevated temperature, and light conditions. Together, these results suggest that CESA proteins are very stable in vivo, but that their lifetimes can be modulated by intrinsic and environmental cues.

  19. Coarse-grained model for the interconversion between different crystalline cellulose allomorphs

    Energy Technology Data Exchange (ETDEWEB)

    Langan, Paul [ORNL

    2012-01-01

    We present the results of Langevin dynamics simulations on a coarse grained model for crystalline cellulose. In particular, we analyze two different cellulose crystalline forms: cellulose I (the natural form of cellulose) and cellulose IIII (obtained after cellulose I is treated with anhydrous liquid ammonia). Cellulose IIII has been the focus of wide interest in the field of cellulosic biofuels as it can be efficiently hydrolyzed to glucose (its enzymatic degradation rates are up to 5 fold higher than those of cellulose I ). In turn, glucose can eventually be fermented into fuels. The coarse-grained model presented in this study is based on a simplified geometry and on an effective potential mimicking the changes in both intracrystalline hydrogen bonds and stacking interactions during the transition from cellulose I to cellulose IIII. The model accurately reproduces both structural and thermomechanical properties of cellulose I and IIII. The work presented herein describes the structural transition from cellulose I to cellulose IIII as driven by the change in the equilibrium state of two degrees of freedom in the cellulose chains. The structural transition from cellulose I to cellulose IIII is essentially reduced to a search for optimal spatial arrangement of the cellulose chains.

  20. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Ait Si Mamar, S.; Hadjadj, A.

    1990-01-01

    The conversion of wheat straw agricultural cellulosic wastes to reducing sugars and glucose has been studied by pretreatments by acid hydrolysis and gamma radiolysis over the dose 0-2 MGy. The pretreatment of cellulosic wastes by gamma radiolysis in the presence of sulfuric acid solution shows that the reducing sugars yield increases with the irradiation dose. The effect of radiation degradation on cellulosic wastes between 0.1 MGy and 2 MGy shows the glucose and reducing sugars yields after enzymatic hydrolysis by cellulase vary with the dose. In the relatively low dose range, up to about 0.5 MGy, the reducing sugars yields vary slightly. For an acid hydrolysis followed by radiation at dose range below 0.5 MGy the reducing sugars yields are practically insensitive to radiation. On the other hand, the pretreatment by radiation in higher dose range from 0.5 to 2 MGy followed by enzymatic hydrolysis is effective for the conversion of cellulosic wastes into glucose. The radiation induced degradation of cellulose into glucose depends on the type of acid hydrolysis and on the enzymatic hydrolysis time by cellulase. Pre-irradiation in air is more effective than in acid solution. (author)

  1. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    Science.gov (United States)

    Mamar, S. Ait Si; Hadjadj, A.

    The conversion of wheat straw agricultural cellulosic wastes to reduning sugars and glucose has been studied by pretreatments by acid hydrolysis and gamma radiolysis over the dose 0-2 MGy. The pretreatment of cellulosic wastes by gamma radiolysis in the presence of sulfuric acid solution shows that the reducing sugars yield increases with the irradiation dose. The effect of radiation degradation on cellulosic wastes between 0.1 MGy and 2 MGy shows the glucose and reducing sugars yields after enzymatic hydrolysis by cellulase vary with the dose. In the relatively low dose range, up to about 0.5 MGy, the reducing sugars yields vary slightly. For an acid hydrolysis followed by radiation at dose range below 0.5 MGy the reducing sugars yields are practically insensitive to radiation. On the other hand, the pretreatment by radiation in higher dose range from 0.5 to 2 MGy followed by enzymatic hydrolysis is effective for the conversion of cellulosic wastes into glucose. The radiation induced degradation of cellulose into glucose depends on the type of acid hydrolysis and on the enzymatic hydrolysis time by cellulase. Pre-irradiation in air is more effective than in acid solution.

  2. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Final report, February 1, 1978-January 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    This is a coordinated program to effect the microbiological degradation of cellulosic biomasses and will focus on the use of anaerobic microorganisms which possess cellulolytic enzyme. The studies will attempt to increase the enzyme levels through genetics, mutation and strain selection. In addition, the direct conversion from cellulosic biomasses to liquid fuel (ethanol) and/or soluble sugars by the cellulolytic, anaerobic organism is also within the scope of this program. Process and engineering scale-up, along with economic analyses, will be performed throughout the course of the program. The second area of our major effort is devoted to the production of chemical feedstocks. In particular, three fermentations have been identified for exploration. These are: acrylic acid, acetone/butanol and acetic acid. The main efforts in these fermentations will address means for the reduction of the cost of manufacturing for these large volume chemicals.

  3. Radiation-induced degradation and subsequent hydrolysis of waste cellulose materials

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1979-01-01

    The effect of γ-pre-irradiation of cellulose in cellulose containing waste plants was investigated through enzymatic and acidic hydrolysis reaction. Pre-irradiation of waste rice straw, chaff and saw dust accelerated the enzymatic hydrolysis by cellulase. Reducing sugar and glucose yields were higher with an increasing radiation dose in these materials. The required dose for effective acceleration of enzymatic hydrolysis was much reduced by the addition of chlorine during radiation. However, reducing sugar and glucose yields in the subsequent acidic hydrolysis of waste products decreased through pre-irradiation treatment. This was attributed to an acceleration effect of a secondary acidic decomposition of sugar to lower molecular weight-products through pre-irradiation. (author)

  4. Radiation-induced degradation and subsequent hydrolysis of waste cellulose materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, M; Kaetsu, I [Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment

    1979-03-01

    The effect of ..gamma..-pre-irradiation of cellulose in cellulose containing waste plants was investigated through enzymatic and acidic hydrolysis reaction. Pre-irradiation of waste rice straw, chaff and saw dust accelerated the enzymatic hydrolysis by cellulase. Reducing sugar and glucose yields were higher with an increasing radiation dose in these materials. The required dose for effective acceleration of enzymatic hydrolysis was much reduced by the addition of chlorine during radiation. However, reducing sugar and glucose yields in the subsequent acidic hydrolysis of waste products decreased through pre-irradiation treatment. This was attributed to an acceleration effect of a secondary acidic decomposition of sugar to lower molecular weight-products through pre-irradiation.

  5. Radiation-induced degradation and subsequent hydrolysis of waste cellulose materials

    Energy Technology Data Exchange (ETDEWEB)

    Kamakura, M; Kaetsu, I

    1979-03-01

    The effect of gamma-pre-irradiation of cellulose in cellulose-containing waste plants was investigated through enzymatic and acidic hydrolysis reaction. Pre-irradiation of waste rice straw, chaff and saw dust accelerated the enzymatic hydrolysis by cellulase. Reducing sugar and glucose yields were higher with an increasing radiation dose in these materials. The required dose for effective acceleration of enzymatic hydrolysis was much reduced by the addition of chlorine during radiation. However, reducing sugar and glucose yields in the subsequent acidic hydrolysis of waste products decreased through pre-irradiation treatment. This was attributed to an acceleration effect of a secondary acidic decomposition of sugar to lower molecular weight-products through pre-irradiation.

  6. Radiation-induced transformations of cellulose ethers

    International Nuclear Information System (INIS)

    Nud'ga, L.A.; Petropavlovskii, G.S.; Plisko, E.A.; Isakova, O.V.; Ershov, B.G.

    1988-01-01

    The purpose of this investigation was to study the transformation which take place under the action of γ-radiation in a number of cellulose ethers containing both saturated (carboxymethyl, hydroxyethyl) and unsaturated (allyl, methacryloyl) groups. Irradiation was carried out on a 60 Co unit in air at 77 and 300 K; the dose rate was 37 and 50 kGy/h respectively. The EPR spectra of γ-irradiated hydroxyethyl- and allylhydroxyethylcelluloses are identical. Under the action of γ-radiation extensive changes took place in cellulose ethers which are exhibited in degradation or the formation of three-dimensional structures and are accompanied by a change in the functional composition. The efficiency in the formation of radicals and their localization are determined by the nature and number of substituents in the cellulose ethers

  7. methoxyethanol by a new bacterium isolate Pseudomonas sp. Strain

    African Journals Online (AJOL)

    Michael Horsfall

    A 2-methoxyethanol degrading bacterium was isolated from anaerobic sludge of a municipal sewage from ... Stoichiometrically, the strain utilized one mole of oxygen per one mole of 2-methoxyethanol instead of ... physiological and biochemical characterization of the .... observed with acetate and the intact resting cells.

  8. Extraction and characterization of cellulose nano whiskers from balsa wood

    International Nuclear Information System (INIS)

    Morelli, Carolina L.; Bretas, Rosario E.S.; Marconcini, Jose M.; Pereira, Fabiano V.; Branciforti, Marcia C.

    2011-01-01

    In this study cellulose nano whiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were subjected to hydrolysis reactions for lignin and hemi cellulose digestion and acquisition of nano-scale cellulose. Cellulose nano crystals obtained had medium length and thickness of 176 nm and 7 nm respectively. Infrared spectroscopy and x-ray diffraction showed that the process used for extracting nano whiskers could digest nearly all the lignin and hemi cellulose from the balsa fiber and still preserve the aspect ratio and crystallinity, satisfactory enough for future application in polymer nano composites. Thermogravimetry showed that the onset temperature of thermal degradation of cellulose nano crystals (226 degree C) was higher than the temperature of the balsa fiber (215 degree C), allowing its use in molding processes with many polymers from the molten state.(author)

  9. Co-inoculating ruminal content neither provides active hydrolytic microbes nor improves methanization of ¹³C-cellulose in batch digesters.

    Science.gov (United States)

    Chapleur, Olivier; Bize, Ariane; Serain, Thibaut; Mazéas, Laurent; Bouchez, Théodore

    2014-03-01

    Cellulose hydrolysis often limits the kinetics and efficiency of anaerobic degradation in industrial digesters. In animal digestive systems, specialized microorganisms enable cellulose biodegradation at significantly higher rates. This study aims to assess the potential of ruminal microbial communities to settle and to express their cellulolytic properties in anaerobic digesters. Cellulose-degrading batch incubations were co-inoculated with municipal solid waste digester sludge and ruminal content. ¹³C-labeled cellulose degradation was described over time with Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry. Results were linked to the identification of the microorganisms assimilating ¹³C and to the monitoring of their relative dynamics. Cellulose degradation in co-inoculated incubations was efficient but not significantly improved. Transient disturbances in degradation pathways occurred, as revealed by propionate accumulation. Automated Ribosomal Intergenic Spacer Analysis dynamics and pyrosequencing revealed that expected classes of Bacteria and Archaea were active and degraded cellulose. However, despite the favorable co-inoculation conditions, molecular tools also revealed that no ruminal species settled in the bioreactors. Other specific parameters were probably needed for this to happen. This study shows that exploiting the rumen's cellulolytic properties in anaerobic digesters is not straightforward. Co-inoculation can only be successful if ruminal microorganisms manage to thrive in the anaerobic digester and outcompete native microorganisms, which requires specific nutritional and environmental parameters, and a meticulous reproduction of the selection pressure encountered in the rumen. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Degradation of phenol via phenylphosphate and carboxylation to 4-hydroxybenzoate by a newly isolated strain of the sulfate-reducing bacterium Desulfobacterium anilini.

    Science.gov (United States)

    Ahn, Young-Beom; Chae, Jong-Chan; Zylstra, Gerben J; Häggblom, Max M

    2009-07-01

    A sulfate-reducing phenol-degrading bacterium, strain AK1, was isolated from a 2-bromophenol-utilizing sulfidogenic estuarine sediment enrichment culture. On the basis of phylogenetic analysis of the 16S rRNA gene and DNA homology, strain AK1 is most closely related to Desulfobacterium anilini strain Ani1 (= DSM 4660(T)). In addition to phenol, this organism degrades a variety of other aromatic compounds, including benzoate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, 2-aminobenzoate, 2-fluorophenol, and 2-fluorobenzoate, but it does not degrade aniline, 3-hydroxybenzoate, 4-cyanophenol, 2,4-dihydroxybenzoate, monohalogenated phenols, or monohalogenated benzoates. Growth with sulfate as an electron acceptor occurred with acetate and pyruvate but not with citrate, propionate, butyrate, lactate, glucose, or succinate. Strain AK1 is able to use sulfate, sulfite, and thiosulfate as electron acceptors. A putative phenylphosphate synthase gene responsible for anaerobic phenol degradation was identified in strain AK1. In phenol-grown cultures inducible expression of the ppsA gene was verified by reverse transcriptase PCR, and 4-hydroxybenzoate was detected as an intermediate. These results suggest that the pathway for anaerobic degradation of phenol in D. anilini strain AK1 proceeds via phosphorylation of phenol to phenylphosphate, followed by carboxylation to 4-hydroxybenzoate. The details concerning such reaction pathways in sulfidogenic bacteria have not been characterized previously.

  11. Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61▿†

    Science.gov (United States)

    Langston, James A.; Shaghasi, Tarana; Abbate, Eric; Xu, Feng; Vlasenko, Elena; Sweeney, Matt D.

    2011-01-01

    Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization. PMID:21821740

  12. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  13. Grafted Cellulose Based Adsorbents for Selective Separation Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, E; Wojnarovits, L [Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary)

    2012-09-15

    The effect of high energy ionizing radiation on cotton-cellulose was studied. It was found that degradation of cellulose started at low doses, below 5 kGy, resulting in decrease in the degree of polymerization. However, the mechanical properties of cotton-cellulose samples only slightly changed with the dose up to 40 kGy. Acrylate type monomers were successfully grafted to cellulose by mutual and by pre-irradiation grafting technique. With both techniques the grafting yield increased with increasing dose and monomer concentration. In the case of pre-irradiation grafting the increase in grafting time also resulted in an increase in grafting percentage. Cotton-cellulose was functionalized using pre-irradiation grafting (PIG) and simultaneous grafting (SG) of glycidyl methacrylate (GMA). The adsorption properties of this material were further enhanced by {beta}-cyclodextrin (CD) immobilization. This molecule is known for its unique ability to form inclusion complexes among others with aromatic compounds like phenols, pesticide, dyes, etc. (author)

  14. Isolation and identification of a bacterium from marine shrimp digestive tract: A new degrader of starch and protein

    Science.gov (United States)

    Li, Jiqiu; Tan, Beiping; Mai, Kangsen

    2011-09-01

    It is a practical approach to select candidate probiotic bacterial stains on the basis of their special traits. Production of digestive enzyme was used as a trait to select a candidate probiotic bacterial strain in this study. In order to select a bacterium with the ability to degrade both starch and protein, an ideal bacterial strain STE was isolated from marine shrimp ( Litopenaeus vannamei) intestines by using multiple selective media. The selected isolate STE was identified on the basis of its morphological, physiological, and biochemical characteristics as well as molecular analyses. Results of degradation experiments confirmed the ability of the selected isolate to degrade both starch and casein. The isolate STE was aerobic, Gram-negative, rod-shaped, motile and non-spore-forming, and had catalase and oxidase activities but no glucose fermentation activity. Among the tested carbon/nitrogen sources, only Tween40, alanyl-glycine, aspartyl-glycine, and glycyl-l-glutamic acid were utilized by the isolate STE. Results of homology comparison analyses of the 16S rDNA sequences showed that the isolate STE had a high similarity to several Pseudoalteromonas species and, in the phylogenetic tree, grouped with P. ruthenica with maximum bootstrap support (100%). In conclusion, the isolate STE was characterized as a novel strain belonging to the genus Pseudoalteromonas. This study provides a further example of a probiotic bacterial strain with specific characteristics isolated from the host gastrointestinal tract.

  15. Transcriptome analysis and ultrastructure observation reveal that hawthorn fruit softening is due to cellulose/hemicellulose degradation

    Directory of Open Access Journals (Sweden)

    Jiayu Xu

    2016-10-01

    Full Text Available Softening, a common phenomenon in many fruits, is a well coordinated and genetically determined process. However, the process of flesh softening during ripening has rarely been described in hawthorn. In this study, we found that ‘Ruanrou Shanlihong 3 Hao’ fruits became softer during ripening, whereas ‘Qiu JinXing’ fruits remained hard. At late developmental stages, the firmness of ‘Ruanrou Shanlihong 3 Hao’ fruits rapidly declined, and that of ‘Qiu JinXing’ fruits remained essentially unchanged. According to transmission electron microscopy (TEM, the middle lamella of ‘Qiu JinXing’ and ‘Ruanrou Shanlihong 3 Hao’ fruit flesh was largely degraded as the fruits matured. Microfilaments in ‘Qiu JinXing’ flesh were arranged close together and were deep in color, whereas those in ‘Ruanrou Shanlihong 3 Hao’ fruit flesh were arranged loosely, partially degraded and light in color. RNA-Seq analysis yielded approximately 46.72 Gb of clean data and 72,837 unigenes. Galactose metabolism and pentose and glucuronate interconversions are involved in cell wall metabolism, play an important role in hawthorn texture. We identified 85 unigenes related to the cell wall between hard- and soft-fleshed hawthorn fruits. Based on data analysis and real-time PCR, we suggest that β-GAL and PE4 have important functions in early fruit softening. The genes Ffase, Gns, α-GAL, PE63, XTH and CWP, which are involved in cell wall degradation, are responsible for the different textures of hawthorn fruits. Thus, we hypothesize that the different textures of ‘Qiu JinXing’ and ‘Ruanrou Shanlihong 3 Hao’ fruits at maturity mainly result from cellulose/hemicelluloses degradation rather than from lamella degradation. Overall, we propose that different types of hydrolytic enzymes in cells interact to degrade the cell wall, resulting in ultramicroscopic Structure changes in the cell wall and, consequently, fruit softening. These results provide

  16. Endurance of high molecular weight carboxymethyl cellulose in corrosive environments

    Science.gov (United States)

    Murodov, M. M.; Rahmanberdiev, G. R.; Khalikov, M. M.; Egamberdiev, E. A.; Negmatova, K. C.; Saidov, M. M.; Mahmudova, N.

    2012-07-01

    Lignin obtained from the waste cooking liquor, formed after soda pulping process, is used as an inhibitor of NaCMC thermo oxidative degradation in presence of in extreme conditions during drilling oil wells. In this paper the schematic process of obtaining NaCMC by the principle of "monoapparat" on the basis of cellulose produced by non-wood cellulose materials is presented.

  17. Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

    Science.gov (United States)

    Jung, Sang-Kyu; Parisutham, Vinuselvi; Jeong, Seong Hun; Lee, Sung Kuk

    2012-01-01

    A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies. PMID:22911272

  18. Hydrolysis of cellulose-containing materials by cellulase of the Trichoderma lignorum OM 534 fungus

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, S L; Lobanok, A G

    1977-01-01

    Of the cellulose containing materials, hydrocellulose was most easily degraded while lignocellulose was hardest to break down with cellulase from T. lignorum grown on lactose or cellulose. Grinding and heat treatment (at 200/sup 0/) of lignocellulose enhanced its enzymic degradability. Hydrolysis was highest by cellulase from lactose-cultured Trichoderma. The hydrolysis products contained glucose, galactose, xylose, and mannose. Filtrates from T. lignorum grown on a lignocellulose were enzymically active after purification.

  19. Lignin depletion enhances the digestibility of cellulose in cultured xylem cells.

    Directory of Open Access Journals (Sweden)

    Catherine I Lacayo

    Full Text Available Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinniaelegans. Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis

  20. Radiation-chemical destruction of cellulose and other polysaccharides

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1998-01-01

    The studies concerning the radiation-chemical destruction of cellulose, its ethers and some polysaccharides (xylan, starch, decstrans, chitin, chitosan and geparin) are discussed. Ionising irradiation causes the destruction of these compounds with the decay of pyranose ring, accompanied by the formation of compounds containing carbonyl or carboxyl groups, as well as hydrogen, carbon dioxide, and carbon oxide. The efficiency of radiation degradation increases with increasing the temperature and depends on the structure of polysaccharides and the nature of substituents. The mechanism of radiation-chemical transformations of cellulose and others polysaccharides is proposed. Prospects of the application of radiation-chemical methods of treatment of cellulose and other polysaccharides in industry and agriculture considered [ru

  1. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Zhuo; Inokuma, Kentaro; Ho, Shih-Hsin; den Haan, Riaan; van Zyl, Willem H; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-06-01

    Crystalline cellulose is one of the major contributors to the recalcitrance of lignocellulose to degradation, necessitating high dosages of cellulase to digest, thereby impeding the economic feasibility of cellulosic biofuels. Several recombinant cellulolytic yeast strains have been developed to reduce the cost of enzyme addition, but few of these strains are able to efficiently degrade crystalline cellulose due to their low cellulolytic activities. Here, by combining the cellulase ratio optimization with a novel screening strategy, we successfully improved the cellulolytic activity of a Saccharomyces cerevisiae strain displaying four different synergistic cellulases on the cell surface. The optimized strain exhibited an ethanol yield from Avicel of 57% of the theoretical maximum, and a 60% increase of ethanol titer from rice straw. To our knowledge, this work is the first optimization of the degradation of crystalline cellulose by tuning the cellulase ratio in a cellulase cell-surface display system. This work provides key insights in engineering the cellulase cocktail in a consolidated bioprocessing yeast strain. Biotechnol. Bioeng. 2017;114: 1201-1207. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    Science.gov (United States)

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing.

  3. Bidirectional gene sequences with similar homology to functional proteins of alkane degrading bacterium pseudomonas fredriksbergensis DNA

    International Nuclear Information System (INIS)

    Megeed, A.A.

    2011-01-01

    The potential for two overlapping fragments of DNA from a clone of newly isolated alkanes degrading bacterium Pseudomonas frederiksbergensis encoding sequences with similar homology to two parts of functional proteins is described. One strand contains a sequence with high homology to alkanes monooxygenase (alkB), a member of the alkanes hydroxylase family, and the other strand contains a sequence with some homology to alcohol dehydrogenase gene (alkJ). Overlapping of the genes on opposite strands has been reported in eukaryotic species, and is now reported in a bacterial species. The sequence comparisons and ORFS results revealed that the regulation and the genes organization involved in alkane oxidation represented in Pseudomonas frederiksberghensis varies among the different known alkane degrading bacteria. The alk gene cluster containing homologues to the known alkane monooxygenase (alkB), and rubredoxin (alkG) are oriented in the same direction, whereas alcohol dehydrogenase (alkJ) is oriented in the opposite direction. Such genomes encode messages on both strands of the DNA, or in an overlapping but different reading frames, of the same strand of DNA. The possibility of creating novel genes from pre-existing sequences, known as overprinting, which is a widespread phenomenon in small viruses. Here, the origin and evolution of the gene overlap to bacteriophages belonging to the family Microviridae have been investigated. Such a phenomenon is most widely described in extremely small genomes such as those of viruses or small plasmids, yet here is a unique phenomenon. (author)

  4. The cellulases and their application in degrading agro-industrial waste

    Directory of Open Access Journals (Sweden)

    Wolfgang H. Schwarz

    2002-01-01

    Full Text Available A huge amount of lignocellulosic biomass is available which can be used to produce storable energy and basic material for the chemical industry. Its use is especially beneficial for a country's economy if it is waste material, which can be obtained at almost no cost and which presents an environmental burden. However, the polysaccharides present in biomass are difficult to degrade due to their heterogeneity and crystalline structure. This article addresses the enzymatic hydrolysis of cellulose by its natural degraders, the anaerobic bacteria. The difficulties of cellulose digestion are explained and the strategies used by the hydrolytic enzymes and enzyme systems, allowing for efficient degradation. The multitude of enzymes is uniform in having an identical chemical specificity, but differs in each component's action mode. Only by combining this with binding modules can efficient hydrolysis be performed. The variation of modular structures within a single enzyme family is an example of enzymatic activity's evolutionary diversification. A model for hydrolytically degrading natural cellulose is presented, but much more research has to be done to explain and describe the process on the molecular level, and to optimize an industrial enzymatic cellulose hydrolysis process.

  5. Linear equations on thermal degradation products of wood chips in alkaline glycerol

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2004-01-01

    Wood chips of 0.3 and 2 mm depth from poplar and spruce wood samples, respectively, were degraded by using glycerol as a solvent and alkaline glycerol with and without Na 2 CO 3 and NaOH catalysts at different degradation temperatures: 440, 450, 460, 470, 480, 490 and 500 K. By products from the degradation processes of the ligno celluloses include lignin degradation products. Lignin and its degradation products have fuel values. The total degradation degree and cellulose degradation of the wood chips were determined to find the relationship, if any, between the yields of total degradation degree (YTD) and degradation temperature (T). There is a good linear relationship between YTD or the yields of cellulose degradation (YCD) and T (K). For the wood samples, the regression equations from NaOH (10%) catalytic runs for 0.3 mm x 15 mm x 15 mm chip size are: For poplar wood: (YTD=0.7250T-267.507) (YCD=0.1736T-71.707) For spruce wood: (YTD=0.2650T-105.979) (YCD=0.0707T-27.507) For Eqs., the square of the correlation coefficient (r 2 ) were 0.9841, 0.9496, 0.9839 and 0.9447, respectively

  6. Roman Brunecky | NREL

    Science.gov (United States)

    enzymes to protein scaffolds. The thermophilic bacterium Caldicellulosiruptor bescii uses an intermediate Systems I am interested in the novel mechanisms by which newly discovered multimodular cellulase enzymes bacteria degrade plant cell walls by secreting free, complementary enzymes that hydrolyze cellulose

  7. Engineering of family-5 glycoside hydrolase (Cel5A from an uncultured bacterium for efficient hydrolysis of cellulosic substrates.

    Directory of Open Access Journals (Sweden)

    Amar A Telke

    Full Text Available Cel5A, an endoglucanase, was derived from the metagenomic library of vermicompost. The deduced amino acid sequence of Cel5A shows high sequence homology with family-5 glycoside hydrolases, which contain a single catalytic domain but no distinct cellulose-binding domain. Random mutagenesis and cellulose-binding module (CBM fusion approaches were successfully applied to obtain properties required for cellulose hydrolysis. After two rounds of error-prone PCR and screening of 3,000 mutants, amino acid substitutions were identified at various positions in thermotolerant mutants. The most heat-tolerant mutant, Cel5A_2R2, showed a 7-fold increase in thermostability. To enhance the affinity and hydrolytic activity of Cel5A on cellulose substrates, the family-6 CBM from Saccharophagus degradans was fused to the C-terminus of the Cel5A_2R2 mutant using overlap PCR. The Cel5A_2R2-CBM6 fusion protein showed 7-fold higher activity than the native Cel5A on Avicel and filter paper. Cellobiose was a major product obtained from the hydrolysis of cellulosic substrates by the fusion enzyme, which was identified by using thin layer chromatography analysis.

  8. Draft Genome Sequence of Komagataeibacter intermedius Strain AF2, a Producer of Cellulose, Isolated from Kombucha Tea.

    Science.gov (United States)

    Dos Santos, Renato Augusto Corrêa; Berretta, Andresa Aparecida; Barud, Hernane da Silva; Ribeiro, Sidney José Lima; González-García, Laura Natalia; Zucchi, Tiago Domingues; Goldman, Gustavo H; Riaño-Pachón, Diego M

    2015-12-03

    Here, we present the draft genome sequence of Komagataeibacter intermedius strain AF2, which was isolated from Kombucha tea and is capable of producing cellulose, although at lower levels compared to another bacterium from the same environment, K. rhaeticus strain AF1. Copyright © 2015 dos Santos et al.

  9. Isolation and Characteristics of Cellulose and Nanocellulose from Lotus Leaf Stalk Agro-wastes

    Directory of Open Access Journals (Sweden)

    Yandan Chen

    2014-12-01

    Full Text Available Valorization of lotus leaf stalks (LLS produced as an abundantly available agro-waste was achieved through the extraction of value-added nanocellulose. Nanofibrillated cellulose (NFC was successfully prepared from LLS by using chemical pretreatment combined with high-intensity ultrasonication. The morphological characteristics of the chemically purified LLS cellulose microfibrils were characterized by optical microscopy and MorFi fiber analysis. Fourier transform infrared (FTIR spectroscopy indicated the extensive removal of non-cellulosic components after chemical pretreatment. The transmission electron microscopy (TEM results revealed agglomeration of the developed individual NFC, with a width of 20 ± 5 nm and length on a micron scale, into a network-like feature. X-ray diffraction results showed that the resulting NFC had a cellulose I crystal structure with a high crystallinity (70%. The NFC started to degrade at around 217 °C, and the peak rate of degradation occurred at 344 °C. Nanofibrils obtained from LLS have great potential as reinforcement agents in nanocomposites.

  10. Cost-effective production of bacterial cellulose using acidic food industry by-products.

    Science.gov (United States)

    Revin, Victor; Liyaskina, Elena; Nazarkina, Maria; Bogatyreva, Alena; Shchankin, Mikhail

    2018-03-13

    To reduce the cost of obtaining bacterial cellulose, acidic by-products of the alcohol and dairy industries were used without any pretreatment or addition of other nitrogen sources. Studies have shown that the greatest accumulation of bacterial cellulose (6.19g/L) occurs on wheat thin stillage for 3 days of cultivation under dynamic conditions, which is almost 3 times higher than on standard Hestrin and Schramm medium (2.14g/L). The use of whey as a nutrient medium makes it possible to obtain 5.45g/L bacterial cellulose under similar conditions of cultivation. It is established that the pH of the medium during the growth of Gluconacetobacter sucrofermentans B-11267 depends on the feedstock used and its initial value. By culturing the bacterium on thin stillage and whey, there is a decrease in the acidity of the waste. It is shown that the infrared spectra of bacterial cellulose obtained in a variety of environments have a similar character, but we found differences in the micromorphology and crystallinity of the resulting biopolymer. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Effects of low-temperature pretreatment on carbonization of cellulose for the production of biocarbons

    Science.gov (United States)

    Kwon, Gu-Joong; Kim, Dae-Young; Kang, Kyu-Young

    2012-05-01

    Pretreatment of cellulose at temperatures below 300 °C prior to carbonization at 1200 °C was studied for the production of high-yield biocarbons. Filter paper as the cellulosic raw material was pyrolyzed by using heating schemes, including 16-h isothermal step at 215-270 °C under nitrogen atmosphere, followed by fast heating up to 600 °C and finally to 1200 °C. Cellulose degradation was completed in the 16-h holding isothermal step at a temperature above 250 °C, as confirmed by IR spectroscopy and X-ray diffraction. The yield of char was increased from 11% to 21% by pretreatment of cellulose after post-treatment at 600 °C or 1200 °C. The BET surface area as the microporosity value was also significantly enhanced from 461 m2/g to 837 m2/g by straight heating of 10 °C/min. These results are thought to be caused by slow heating and stabilizing effects due to pretreatment of cellulose at the critical temperature for degradation.

  12. Mitigation of membrane biofouling by a quorum quenching bacterium for membrane bioreactors.

    Science.gov (United States)

    Ham, So-Young; Kim, Han-Shin; Cha, Eunji; Park, Jeong-Hoon; Park, Hee-Deung

    2018-06-01

    In this study, a quorum-quenching (QQ) bacterium named HEMM-1 was isolated at a membrane bioreactor (MBR) plant. HEMM-1 has diplococcal morphology and 99% sequence identity to Enterococcus species. The HEMM-1 cell-free supernatant (CFS) showed higher QQ activities than the CFS of other QQ bacteria, mostly by degrading N-acyl homoserine lactones (AHLs) with short acyl chains. Instrumental analyses revealed that HEMM-1 CFS degraded AHLs via lactonase activity. Under static, flow, and shear conditions, the HEMM-1 CFS was effective in reducing bacterial and activated-sludge biofilms formed on membrane surfaces. In conclusion, the HEMM-1 isolate is a QQ bacterium applicable to the control of biofouling in MBRs via inhibition of biofilm formation on membrane surfaces. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens

    International Nuclear Information System (INIS)

    Amikam, D.; Benziman, M.

    1989-01-01

    The occurrence of the novel regulatory nucleotide bis(3',5')-cyclic diguanylic acid (c-di-GMP) and its relation to cellulose biogenesis in the plant pathogen Agrobacterium tumefaciens was studied. c-di-GMP was detected in acid extracts of 32 P-labeled cells grown in various media, and an enzyme responsible for its formation from GTP was found to be present in cell-free preparations. Cellulose synthesis in vivo was quantitatively assessed with [ 14 C]glucose as a tracer. The organism produced cellulose during growth in the absence of plant cells, and this capacity was retained in resting cells. Synthesis of a cellulosic product from UDP-glucose in vitro with membrane preparations was markedly stimulated by c-di-GMP and its precursor GTP and was further enhanced by Ca2+. The calcium effect was attributed to inhibition of a c-di-GMP-degrading enzyme shown to be present in the cellulose synthase-containing membranes

  14. Insight into Enzymatic Degradation of Corn, Wheat, and Soybean Cell Wall Cellulose Using Quantitative Secretome Analysis of Aspergillus fumigatus.

    Science.gov (United States)

    Sharma Ghimire, Prakriti; Ouyang, Haomiao; Wang, Qian; Luo, Yuanming; Shi, Bo; Yang, Jinghua; Lü, Yang; Jin, Cheng

    2016-12-02

    Lignocelluloses contained in animal forage cannot be digested by pigs or poultry with 100% efficiency. On contrary, Aspergillus fumigatus, a saprophytic filamentous fungus, is known to harbor 263 glycoside hydrolase encoding genes, suggesting that A. fumigatus is an efficient lignocellulose degrader. Hence the present study uses corn, wheat, or soybean as a sole carbon source to culture A. fumigatus under animal physiological condition to understand how cellulolytic enzymes work together to achieve an efficient degradation of lignocellulose. Our results showed that A. fumigatus produced different sets of enzymes to degrade lignocelluloses derived from corn, wheat, or soybean cell wall. In addition, the cellulolytic enzymes produced by A. fumigatus were stable under acidic condition or at higher temperatures. Using isobaric tags for a relative and absolute quantification (iTRAQ) approach, a total of ∼600 extracellular proteins were identified and quantified, in which ∼50 proteins were involved in lignocellulolysis, including cellulases, hemicellulases, lignin-degrading enzymes, and some hypothetical proteins. Data are available via ProteomeXchange with identifier PXD004670. On the basis of quantitative iTRAQ results, 14 genes were selected for further confirmation by RT-PCR. Taken together, our results indicated that the expression and regulation of lignocellulolytic proteins in the secretome of A. fumigatus were dependent on both nature and complexity of cellulose, thus suggesting that a different enzyme system is required for degradation of different lignocelluloses derived from plant cells. Although A. fumigatus is a pathogenic fungus and cannot be directly used as an enzyme source, as an efficient lignocellulose degrader its strategy to synergistically degrade various lignocelluloses with different enzymes can be used to design enzyme combination for optimal digestion and absorption of corn, wheat, or soybean that are used as forage of pig and poultry.

  15. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    Science.gov (United States)

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  16. Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium.

    Science.gov (United States)

    Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi

    2016-05-10

    Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Enzymatically-Mediated Co-Production of Cellulose Nanocrystals and Fermentable Sugars

    Directory of Open Access Journals (Sweden)

    Dawit Beyene

    2017-10-01

    Full Text Available Cellulose nanocrystals (CNCs can be extracted from cellulosic materials through the degradation of non-crystalline cellulose domains in the feedstock via acid hydrolysis. However, the sugars released from the hydrolysis process cannot be easily recovered from the acid waste stream. In this study, cellulases were used to preferentially degrade non-crystalline domains with the objectives of recovering sugars and generating a feedstock with concentrated CNC precursors for a more efficient acid hydrolysis process. Filter paper and wood pulp substrates were enzyme-treated for 2–10 h to recover 20–40 wt % glucose. Substantial xylose yield (6–12 wt % was generated from wood pulp. CNC yields from acid hydrolysis of cellulases-treated filter paper, and wood pulp improved by 8–18% and 58–86%, respectively, when compared with the original substrate. It was thought that CNC precursors accumulated in the cellulases-treated feedstock due to enzymatic digestion of the more accessible non-crystalline celluloses. Therefore, acid hydrolysis from enzyme-treated feedstock will require proportionally less water and reagents resulting in increased efficiency and productivity in downstream processes. This study demonstrates that an enzymatically-mediated process allows recovery of fermentable sugars and improves acid hydrolysis efficiency for CNC production.

  18. Development of a genetically programed vanillin-sensing bacterium for high-throughput screening of lignin-degrading enzyme libraries.

    Science.gov (United States)

    Sana, Barindra; Chia, Kuan Hui Burton; Raghavan, Sarada S; Ramalingam, Balamurugan; Nagarajan, Niranjan; Seayad, Jayasree; Ghadessy, Farid J

    2017-01-01

    Lignin is a potential biorefinery feedstock for the production of value-added chemicals including vanillin. A huge amount of lignin is produced as a by-product of the paper industry, while cellulosic components of plant biomass are utilized for the production of paper pulp. In spite of vast potential, lignin remains the least exploited component of plant biomass due to its extremely complex and heterogenous structure. Several enzymes have been reported to have lignin-degrading properties and could be potentially used in lignin biorefining if their catalytic properties could be improved by enzyme engineering. The much needed improvement of lignin-degrading enzymes by high-throughput selection techniques such as directed evolution is currently limited, as robust methods for detecting the conversion of lignin to desired small molecules are not available. We identified a vanillin-inducible promoter by RNAseq analysis of Escherichia coli cells treated with a sublethal dose of vanillin and developed a genetically programmed vanillin-sensing cell by placing the 'very green fluorescent protein' gene under the control of this promoter. Fluorescence of the biosensing cell is enhanced significantly when grown in the presence of vanillin and is readily visualized by fluorescence microscopy. The use of fluorescence-activated cell sorting analysis further enhances the sensitivity, enabling dose-dependent detection of as low as 200 µM vanillin. The biosensor is highly specific to vanillin and no major response is elicited by the presence of lignin, lignin model compound, DMSO, vanillin analogues or non-specific toxic chemicals. We developed an engineered E. coli cell that can detect vanillin at a concentration as low as 200 µM. The vanillin-sensing cell did not show cross-reactivity towards lignin or major lignin degradation products including vanillin analogues. This engineered E. coli cell could potentially be used as a host cell for screening lignin-degrading enzymes that

  19. Substrate-induced production and secretion of cellulases by Clostridium acetobutylicum

    NARCIS (Netherlands)

    Lopez Contreras, A.M.; Gabor, K.; Martens, A.A.; Renckens, B.A.M.; Claassen, P.A.M.; Oost, van der J.; Vos, de W.M.

    2004-01-01

    Clostridium acetobutylicum ATCC 824 is a solventogenic bacterium that grows heterotrophically on a variety of carbohydrates, including glucose, cellobiose, xylose, and lichenan, a linear polymer of beta-1,3- and beta-1,4-linked beta-D-glucose units. C. acetobutylicum does not degrade cellulose,

  20. Engineering yeast for the expression and secretion of cellulase cocktails

    Science.gov (United States)

    Enzyme systems that digest the cellulose in plant cell walls have potential value in the biorefining of renewable feedstocks such as crop residues, straws, and grasses to biofuels and other bioproducts. The bacterium Clostridium cellulovorans is a useful source of biomass-degrading enzymes because ...

  1. Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium.

    Science.gov (United States)

    Fang, Shumei; An, Xuejiao; Liu, Hongyuan; Cheng, Yi; Hou, Ning; Feng, Lu; Huang, Xinning; Li, Chunyan

    2015-06-01

    Nitriles are common environmental pollutants, and their removal has attracted increasing attention. Microbial degradation is considered to be the most acceptable method for removal. In this work, we investigated the biodegradation of three aliphatic nitriles (acetonitrile, acrylonitrile and crotononitrile) by Rhodococcus rhodochrous BX2 and the expression of their corresponding metabolic enzymes. This organism can utilize all three aliphatic nitriles as sole carbon and nitrogen sources, resulting in the complete degradation of these compounds. The degradation kinetics were described using a first-order model. The degradation efficiency was ranked according to t1/2 as follows: acetonitrile>trans-crotononitrile>acrylonitrile>cis-crotononitrile. Only ammonia accumulated following the three nitriles degradation, while amides and carboxylic acids were transient and disappeared by the end of the assay. mRNA expression and enzyme activity indicated that the tested aliphatic nitriles were degraded via both the inducible NHase/amidase and the constitutive nitrilase pathways, with the former most likely preferred. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, June 1-August 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1978-08-01

    Studies concerning the cellobiose properties of Clostridium thermocellum were started to determine if the cellulose degradation end products can be enhanced for glucose (with a subsequent decrease in cellobiose). Implications of preliminary studies indicate that the cells or the enzyme(s) responsible for converting cellobiose to glucose can be manipulated environmentally and genetically to increase the final yield of glucose. The second area of effort is to the production of chemical feedstocks. Three fermentations have been identified for exploration. Preliminary reports on acrylic acid acetone/butanol, and acetic acid production by C. propionicum, C. acetobutylicum, and C. thermoaceticum, respectively, are included. (DMC)

  3. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1

    Science.gov (United States)

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L.; Rahman, Pattanathu K. S. M.; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l-1). Specifically, the low molecular weight compounds, i.e., C10–C14 were completely degraded, while C15–C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment. PMID:28232826

  4. Radiation modification of swollen and chemically modified cellulose

    International Nuclear Information System (INIS)

    Borsa, J.; Toth, T.

    2002-01-01

    Complete text of publication follows. Biodegradable hydrogel was produced by radiation-induced crosslinking of water soluble carboxymethyl cellulose. Mobility of the molecular chain was found to play an important role in the crosslinking reaction. In this work the role of cellulose chains' mobility in radiation-induced reactions of fibrous cellulose was studied. Mobility of chains was improved by swelling (in sodium hydroxide and tetramethylammonium hydroxide) and chemical modification (substitution of about 3 % of hydroxyl groups with carboxymethyl groups), respectively. All samples were neutralized after the treatments. Accessibility of cellulose characterized by water adsorption and retention was significantly improved by the treatments in the following order: sodium hydroxide < tetramethylammonium hydroxide < carboxymethylation. Less fibrillar structure of modified fibers was observed by electron microscope. Samples were irradiated in wet form in open air (10 kGy). Untreated sample coated with soluble CMC was also irradiated. Degree of polymerization, FTIR spectra, and water sorption of samples before and after irradiation are presented. Amount of water adsorbed on samples decreased after irradiation. It can be considered the consequence of crosslinks, which might improve the crease recovery ability of cotton fabric. High accessibility improved degradation rather than crosslinking of cellulose chains

  5. Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess.

    Science.gov (United States)

    Wang, Zhenyu; Cao, Guangli; Zheng, Ju; Fu, Defeng; Song, Jinzhu; Zhang, Junzheng; Zhao, Lei; Yang, Qian

    2015-01-01

    Consolidated bioprocessing (CBP) of butanol production from cellulosic biomass is a promising strategy for cost saving compared to other processes featuring dedicated cellulase production. CBP requires microbial strains capable of hydrolyzing biomass with enzymes produced on its own with high rate and high conversion and simultaneously produce a desired product at high yield. However, current reported butanol-producing candidates are unable to utilize cellulose as a sole carbon source and energy source. Consequently, developing a co-culture system using different microorganisms by taking advantage of their specific metabolic capacities to produce butanol directly from cellulose in consolidated bioprocess is of great interest. This study was mainly undertaken to find complementary organisms to the butanol producer that allow simultaneous saccharification and fermentation of cellulose to butanol in their co-culture under mesophilic condition. Accordingly, a highly efficient and stable consortium N3 on cellulose degradation was first developed by multiple subcultures. Subsequently, the functional microorganisms with 16S rRNA sequences identical to the denaturing gradient gel electrophoresis (DGGE) profile were isolated from consortium N3. The isolate Clostridium celevecrescens N3-2 exhibited higher cellulose-degrading capability was thus chosen as the partner strain for butanol production with Clostridium acetobutylicum ATCC824. Meanwhile, the established stable consortium N3 was also investigated to produce butanol by co-culturing with C. acetobutylicum ATCC824. Butanol was produced from cellulose when C. acetobutylicum ATCC824 was co-cultured with either consortium N3 or C. celevecrescens N3-2. Co-culturing C. acetobutylicum ATCC824 with the stable consortium N3 resulted in a relatively higher butanol concentration, 3.73 g/L, and higher production yield, 0.145 g/g of glucose equivalent. The newly isolated microbial consortium N3 and strain C. celevecrescens N3

  6. Mitigation of Membrane Biofouling in MBR Using a Cellulolytic Bacterium, Undibacterium sp. DM-1, Isolated from Activated Sludge.

    Science.gov (United States)

    Nahm, Chang Hyun; Lee, Seonki; Lee, Sang Hyun; Lee, Kibaek; Lee, Jaewoo; Kwon, Hyeokpil; Choo, Kwang-Ho; Lee, Jung-Kee; Jang, Jae Young; Lee, Chung-Hak; Park, Pyung-Kyu

    2017-03-28

    Biofilm formation on the membrane surface results in the loss of permeability in membrane bioreactors (MBRs) for wastewater treatment. Studies have revealed that cellulose is not only produced by a number of bacterial species but also plays a key role during formation of their biofilm. Hence, in this study, cellulase was introduced to a MBR as a cellulose-induced biofilm control strategy. For practical application of cellulase to MBR, a cellulolytic ( i.e ., cellulase-producing) bacterium, Undibacterium sp. DM-1, was isolated from a lab-scale MBR for wastewater treatment. Prior to its application to MBR, it was confirmed that the cell-free supernatant of DM-1 was capable of inhibiting biofilm formation and of detaching the mature biofilm of activated sludge and cellulose-producing bacteria. This suggested that cellulase could be an effective anti-biofouling agent for MBRs used in wastewater treatment. Undibacterium sp. DM-1-entrapping beads ( i.e ., cellulolytic-beads) were applied to a continuous MBR to mitigate membrane biofouling 2.2-fold, compared with an MBR with vacant-beads as a control. Subsequent analysis of the cellulose content in the biofilm formed on the membrane surface revealed that this mitigation was associated with an approximately 30% reduction in cellulose by cellulolytic-beads in MBR.

  7. Influence of Environmental Stressors on the Physiology of Pollutant Degrading Bacteria

    DEFF Research Database (Denmark)

    Svenningsen, Nanna Bygvraa

    of model degrader bacteria to nutrient- and oxidative stress, two highly relevant stress scenarios in natural environments, and at evaluating the impact of these environmental stress conditions on catabolic gene expression. The results suggest that environmental bacteria, here represented by the toluene...... biodegradative or catabolic performance. To date, details concerning the physiology of degrader microorganisms and their ability to express the relevant catabolic genes in the context of a complex and stressful environment have yet to be elucidated. In order to fully exploit the catabolic potential of degrader......- and xylene degrading bacterium Pseudomonas putida mt-2 and the phenoxy acid herbicide degrading bacterium Cupriavidus pinatubonensis JMP134, have a high defense capacity towards archetypical environmental stressors. However, the results also showed that induction of a stress defense may have a cost in regard...

  8. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, December 1, 1976--February 28, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1977-05-01

    The microbial degradation of cellulosic biomass has focused on the use of a thermophilic (55 to 60/sup 0/C), anaerobic microorganism, Clostridium thermocellum. When this organism is grown with a crystalline cellulose, the cellulases produced are mainly extracellular. This same organism when grown on solka floc, high specific growth rates are exhibited as well as the ability to produce high concentrations of soluble reducing sugars. The rate of soluble sugar production appears to be growth associated. Studies on acrylic acid production are focused on two organisms: Peptostreptococcus elsdenii and Clostridium propionicum. An economic analysis on the acetone/butanol fermentation has been completed. The results show that continuous operation can reduce significantly the production cost compared to batch operation with the cost of raw material being major fractions for both processes. An increase in solvent concentration will effect substantial cost reduction. The production of acetic acid by Clostridium thermoaceticum has been shown to occur rapidly by this organism. Acetic acid concentration between 15 to 20 gm/liter have been achieved, corresponding to 86 percent of the theoretical maximum yield.

  9. Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation

    Directory of Open Access Journals (Sweden)

    Nabil Jallouli

    2017-05-01

    Full Text Available In the present study, photocatalytic degradation of acetaminophen ((N-(4-hydroxyphe-nylacetamide, an analgesic drug has been investigated in a batch reactor using TiO2 P25 as a photocatalyst in slurry and under UV light. Using TiO2 P25 nanoparticles, much faster photodegradation of paracetamol and effective mineralization occurred, more than 90% of 2.65 × 10−4 M paracetamol was degraded under UV irradiation. Changes in pH values affected the adsorption and the photodegradation of paracetamol. pH 9.0 is found to be the optimum for the photodegradation of paracetamol. HPLC detected hydroquinone, benzoquinone, p-nitrophenol, and 1,2,4-trihydroxybenzene during the TiO2-assisted photodegradation of paracetamol among which some pathway products are disclosed for the first time. The results showed that TiO2 suspension/UV system is more efficient than the TiO2/cellulosic fiber mode combined to solar light for the photocatalytic degradation of paracetamol. Nerveless the immobilization of TiO2 showed many advantages over slurry system because it can enhance adsorption properties while allowing easy separation of the photocatalyst from the treated solution with improved reusable performance.

  10. Relationships between sulphate reduction and COD/VFA utilisation using grass cellulose as carbon and energy sources

    CSIR Research Space (South Africa)

    Mulopo, J

    2010-07-01

    Full Text Available /fermentation products of grass cellulose, volatile fatty acids (VFA), function as the electron donors and SO2/4 as the electron acceptor. The aim of the study presented here was to elucidate the interactions between the cellulose degradation rate, the chemical oxygen...

  11. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax

    Directory of Open Access Journals (Sweden)

    Guangli Wang

    2010-06-01

    Full Text Available Microbial degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenylethane (DDT is the most promising way to clean up DDT residues found in the environment. In this paper, a bacterium designated as wax, which was capable of co-metabolizing DDT with other carbon sources, was isolated from a long-term DDT-contaminated soil sample by an enrichment culture technique. The new isolate was identified as a member of the Pseudoxanthomonas sp., based on its morphological, physiological and biochemical properties, as well as by 16S rRNA gene analysis. In the presence of 100 mg l-1 glucose, the wax strain could degrade over 95% of the total DDT, at a concentration of 20 mg l-1, in 72 hours, and could degrade over 60% of the total DDT, at a concentration of 100 mg l-1, in 144 hours. The wax strain had the highest degradation efficiency among all of the documented DDT-degrading bacteria. The wax strain could efficiently degrade DDT at temperatures ranging from 20 to 37ºC, and with initial pH values ranging from 7 to 9. The bacterium could also simultaneously co-metabolize 1,1-dichloro-2,2-bis(p-chlorophenylethane (DDD, 2,2-bis(p-chlorophenyl-1,1-dichlorethylene (DDE, and other organochlorine compounds. The wax strain could also completely remove 20 mg kg-1 of DDT from both sterile and non-sterile soils in 20 days. This study demonstrates the significant potential use of Pseudoxanthomonas sp. wax for the bioremediation of DDT in the environment.

  12. Studies of action of heavy metals on caffeine degradation by ...

    African Journals Online (AJOL)

    Caffeine is an important naturally occurring compound that can be degraded by bacteria. Excessive caffeine consumption is known to have some adverse problems. Previously, Leifsonia sp. strain SIU capable of degrading caffeine was isolated from agricultural soil. The bacterium was tested for its ability to degrade caffeine ...

  13. Novel enzymes for the degradation of cellulose

    Directory of Open Access Journals (Sweden)

    Horn Svein

    2012-07-01

    Full Text Available Abstract The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.

  14. Gelria glutamica gen. nov., sp. a thermophilic oligately syntrophic glutamate-degrading anaerobe

    NARCIS (Netherlands)

    Plugge, C.M.; Balk, M.; Zoetendal, E.G.; Stams, A.J.M.

    2002-01-01

    A novel anaerobic, Gram-positive, thermophilic, spore-forming, obligately syntrophic, glutamate-degrading bacterium, strain TGO(T), was isolated from a propionate-oxidizing methanogenic enrichment culture. The axenic culture was obtained by growing the bacterium on pyruvate. Cells were rod-shaped

  15. A universal route for the simultaneous extraction and functionalization of cellulose nanocrystals from industrial and agricultural celluloses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guo-Yin; Yu, Hou-Yong, E-mail: phdyu@zstu.edu.cn; Zhang, Cai-Hong [Zhejiang Sci-Tech University, The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles (China); Zhou, Ying; Yao, Ju-Ming, E-mail: yaoj@zstu.edu.cn [Zhejiang Sci-Tech University, National Engineering Lab for Textile Fiber Materials & Processing Technology (China)

    2016-02-15

    A simple route was designed to extract the cellulose nanocrystals (CNCs) with formate groups from industrial and agricultural celluloses like microcrystalline cellulose (MCC), viscose fiber, ginger fiber, and bamboo fiber. The effect of reaction time on the microstructure and properties of the CNCs was investigated in detail, while microstructure and properties of different CNCs were compared. The rod-like CNCs (MCC) with hundreds of nanometers in length and about 10 nm in width, nanofibrillated CNCs (ginger fiber bamboo fiber) with average width of 30 nm and the length of 1 μm, and spherical CNCs (viscose fiber) with the width of 56 nm were obtained by one-step HCOOH/HCl hydrolysis. The CNCs with improved thermal stability showed the maximum degradation temperature (T{sub max}) of 368.9–388.2 °C due to the introduction of formate groups (reducibility) and the increased crystallinity. Such CNCs may be used as an effective template for the synthesis of nanohybrids or reinforcing material for high-performance nanocomposites.

  16. A universal route for the simultaneous extraction and functionalization of cellulose nanocrystals from industrial and agricultural celluloses

    International Nuclear Information System (INIS)

    Chen, Guo-Yin; Yu, Hou-Yong; Zhang, Cai-Hong; Zhou, Ying; Yao, Ju-Ming

    2016-01-01

    A simple route was designed to extract the cellulose nanocrystals (CNCs) with formate groups from industrial and agricultural celluloses like microcrystalline cellulose (MCC), viscose fiber, ginger fiber, and bamboo fiber. The effect of reaction time on the microstructure and properties of the CNCs was investigated in detail, while microstructure and properties of different CNCs were compared. The rod-like CNCs (MCC) with hundreds of nanometers in length and about 10 nm in width, nanofibrillated CNCs (ginger fiber bamboo fiber) with average width of 30 nm and the length of 1 μm, and spherical CNCs (viscose fiber) with the width of 56 nm were obtained by one-step HCOOH/HCl hydrolysis. The CNCs with improved thermal stability showed the maximum degradation temperature (T max ) of 368.9–388.2 °C due to the introduction of formate groups (reducibility) and the increased crystallinity. Such CNCs may be used as an effective template for the synthesis of nanohybrids or reinforcing material for high-performance nanocomposites

  17. Polycyclovorans algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton.

    Science.gov (United States)

    Gutierrez, Tony; Green, David H; Nichols, Peter D; Whitman, William B; Semple, Kirk T; Aitken, Michael D

    2013-01-01

    A strictly aerobic, halotolerant, rod-shaped bacterium, designated strain TG408, was isolated from a laboratory culture of the marine diatom Skeletonema costatum (CCAP1077/1C) by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (compounds and small organic acids. Notably, it displayed versatility in degrading two- and three-ring PAHs. Moreover, catechol 2,3-dioxygenase activity was detected in lysates, indicating that this strain utilizes the meta-cleavage pathway for aromatic compound degradation. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain TG408 was Q-8, and the dominant fatty acids were C(16:0), C(16:1) ω7c, and C(18:1) ω7c. The G+C content of the isolate's DNA was 64.3 mol% ± 0.34 mol%. On the basis of distinct phenotypic and genotypic characteristics, strain TG408 represents a novel genus and species in the class Gammaproteobacteria for which the name Polycyclovorans algicola gen. nov., sp. nov., is proposed. Quantitative PCR primers targeting the 16S rRNA gene of this strain were developed and used to show that this organism is found associated with other species of marine phytoplankton. Phytoplankton may be a natural biotope in the ocean where new species of hydrocarbon-degrading bacteria await discovery and which contribute significantly to natural remediation processes.

  18. Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation.

    Science.gov (United States)

    Brun, Sylvain; Malagnac, Fabienne; Bidard, Frédérique; Lalucque, Hervé; Silar, Philippe

    2009-10-01

    NADPH oxidases are enzymes that produce reactive oxygen species. Studies in mammals, plants and fungi have shown that they play important roles in differentiation, defence, host/pathogen interaction and mutualistic symbiosis. In this paper, we have identified a Podospora anserina mutant strain impaired for processes controlled by PaNox1 and PaNox2, the two Nox isoforms characterized in this model ascomycete. We show that the gene mutated is PaNoxR, the homologue of the gene encoding the regulatory subunit p67(phox), conserved in mammals and fungi, and that PaNoxR regulates both PaNox1 and PaNox2. Genome sequence analysis of P. anserina reveals that this fungus posses a third Nox isoform, PaNox3, related to human Nox5/Duox and plant Rboh. We have generated a knock-out mutant of PaNox3 and report that PaNox3 plays a minor role in P. anserina, if any. We show that PaNox1 and PaNox2 play antagonist roles in cellulose degradation. Finally, we report for the first time that a saprobic fungus, P. anserina, develops special cell structures dedicated to breach and to exploit a solid cellulosic substrate, cellophane. Importantly, as for similar structures present in some plant pathogens, their proper differentiation requires PaNox1, PaNox2, PaNoxR and the tetraspanin PaPls1.

  19. POTENCY OF LIGNOCELLULOSE DEGRADING BACTERIA ISOLATED FROM BUFFALO AND HORSE GASTROINTESTINAL TRACT AND ELEPHANT DUNG FOR FEED FIBER DEGRADATION

    Directory of Open Access Journals (Sweden)

    A. Wahyudi

    2014-10-01

    Full Text Available Lignin is limiting factor for cellulose and hemicellulose degradation in rumen. Isolation andselection bacteria from buffalo and horse gastrointestinal tract and elephant dung could be foundbacteria that have superiority to degrade lignin, xylan, and cellulose. Those animals were chosenbecause they were herbivores that consume low quality crude fiber as their main energy sources.Lignocellulose degrading bacteria were isolated by Hungate selective media, by using lignin (tannicacid, xylan, and cellulose as selective substrates. The morphological identification used an enrichmentmedia by measuring color, colony size, diffusion zone, clear zone, and biochemical identification usingproduction of ligninase, xylanase, and cellulase enzymes. The best lignocellulose degrading bacteriathen was determined by the morphological and biochemical character. This study showed thatlignocellulose degrading bacteria could be found in gastrointestinal tract of buffalo and horse, andelephant dung. Highest number colony was found in samples from buffalo's colon (376, followed byhorse's cecum (203, elephant’s dung (46, buffalo’s cecum (23, buffalo's rumen (9 and horse’s colon(7. The highest isolates activity of lignolytic, xylanolytic, and cellulolytic were reached by buffalo’scecum (7.64, horse's cecum (6.27, and buffalo’s colon (2.48. Meanwhile the highest enzymesproductivities were: buffalo’s cecum (0.0400 µmol, horse’s cecum (1.3912 µmol and buffalo’s colon(0.1971 µmol. Based on morphologycal character and biochemical test, it could be concluded thatlignolytic from buffalo’s cecum, xylanolytic from horse’s cecum, and cellulolytic from buffalo’s colonwere the superior isolates and they were 99% analyzed as Enterococcus casseliflavus/gallinarumspecies.

  20. Change in birchwood cellulose in the presence of sulfuric acid during furfural manufacture. Part III. Isolation of cellulose preparations

    Energy Technology Data Exchange (ETDEWEB)

    Rose, I.; Vedernikov, N.A.

    1981-01-01

    The use of 10-90% H/sub 2/SO/sub 4/ in the manufacture of furfural from birchwood at 147-157 degrees leads to the formation of lignocellulose containing 43-63% cellulose. The content of cellulose in lignocellulose decreases linearly with increasing temperature, particularly in the presence of 10-30% H/sub 2/SO/sub 4/. The degree of degradation of hydrolysis-resistant polysaccharides at 137-167 degrees in the presence of H/sub 2/SO/sub 4/ increases linearly with increasing temperature, but decreases with increasing H/sub 2/SO/sub 4/ concentration. The results confirm the hypothesis (V.A. Vedernikov, 1965) of differential catalysis of consecutive hydrolysis and dehydration reactions in carbohydrates.

  1. Radioactive intermediate products in the photolysis of the system [1-14C] tributyltin oxide cellulose

    International Nuclear Information System (INIS)

    Kloetzer, D.

    1982-01-01

    Interactions between matrix and applied biocide in the photochemical degradation of the system [1- 14 C] tributyltin oxide/cellulose have been investigated. The intermediate formation of [1- 14 C] tributylstannyl cellulose ethers was found to be the most important step. The photochemical preparation of bis [8- 14 C] tributylstannyl glucose ether is described. (author)

  2. (Hemi)cellulose degradation by microorganisms from the intestinal tract of arthropods

    NARCIS (Netherlands)

    Cazemier, Anne Engeline

    1999-01-01

    Photosynthesis yields up to 136 x 1015 g of dry plant material annually. Major components of this plant material are cellulose and hemicellulose. Under anaerobic conditions, these plant polymers may be converted to methane and carbon dioxide.The residence time for this anaerobic conversion can be a

  3. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Hamilton, Choo Yieng [ORNL; Rodriguez, Jr., Miguel [ORNL; Liao, James C [ORNL; Schadt, Christopher Warren [ORNL; Guss, Adam M [ORNL; Yang, Yunfeng [ORNL; Graham, David E [ORNL

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to

  4. Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota.

    Directory of Open Access Journals (Sweden)

    Tatsuki Ogura

    Full Text Available Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an "ECOMICS" web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation.

  5. Physicochemical and biochemical characterization of non-biodegradable cellulose in Miocene gymnosperm wood from the Entre-Sambre-et-Meuse, Southern Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Lechien, Valerie; Rodriguez, Christian; Ongena, Marc; Hiligsmann, Serge; Thonart, Philippe [Liege Univ., Walloon Center of Industrial Biology, Gembloux (Belgium); Rulmont, Andre [Liege Univ., Chemistry Dept., Liege (Belgium)

    2006-11-15

    Specimens of Miocene fossil wood from the Entre-Sambre-et-Meuse karsts (southern Belgium) were examined using physicochemical and biochemical techniques in order to understand the reasons for the exceptional preservation of these fossilized remains after 15 million years. Structural and chemical changes were assessed by comparing the structural features of the fossil samples with those of their modern counterpart, Metasequoia. Solid state {sup 13} C nuclear magnetic resonance (NMR) and microscopic analysis showed good preservation of the cellulose structure in the fossil wood from the Florennes peat deposit. Despite the substantial cellulose fraction available in the fossil tissue, an enzymatic degradation test and a biochemical methane potential assay showed that the fossil cellulose could not be degraded by cellulases and anaerobic microorganisms usually involved in the biodegradation of organic matter. Moreover, the cellulose structure (crystallinity and surface area) seemed to have no effect on cellulose biodegradability in these Miocene fossil wood samples. On the basis of our observations, we suggest that the presence of a modified lignin structure could greatly influence cellulose preservation/biodegradability. (Author)

  6. Degradation of thiram in soil

    International Nuclear Information System (INIS)

    Raghu, K.; Murthy, N.B.K.; Kumarsamy, R.

    1975-01-01

    Determination of the residual 35 S labelled tetramethylthiuram disulfide showed that the fungicide persisted longer in sterilized than in unsterilized soil, while the chloroform extractable radioactivity decreased, the water extractable radioactivity increased with increase in time. However, in sterilized soil the water extractable radioactivity remained more or less constant. Degradation of the fungicide was further demonstrated by the release of C 35 S 2 from soil treated with labelled thiram. Dimethylamine was found to be one of the degradation products. A bacterium isolated from thiram-enriched soil could degrade the fungicide in shake culture. The degradation pathways of thiram in sterilized and unsterilized soils are discussed. (author)

  7. In Vivo Isotopic Labeling of Symbiotic Bacteria Involved in Cellulose Degradation and Nitrogen Recycling within the Gut of the Forest Cockchafer (Melolontha hippocastani).

    Science.gov (United States)

    Alonso-Pernas, Pol; Bartram, Stefan; Arias-Cordero, Erika M; Novoselov, Alexey L; Halty-deLeon, Lorena; Shao, Yongqi; Boland, Wilhelm

    2017-01-01

    The guts of insects harbor symbiotic bacterial communities. However, due to their complexity, it is challenging to relate a specific symbiotic phylotype to its corresponding function. In the present study, we focused on the forest cockchafer ( Melolontha hippocastani ), a phytophagous insect with a dual life cycle, consisting of a root-feeding larval stage and a leaf-feeding adult stage. By combining in vivo stable isotope probing (SIP) with 13 C cellulose and 15 N urea as trophic links, with Illumina MiSeq (Illumina-SIP), we unraveled bacterial networks processing recalcitrant dietary components and recycling nitrogenous waste. The bacterial communities behind these processes change between larval and adult stages. In 13 C cellulose-fed insects, the bacterial families Lachnospiraceae and Enterobacteriaceae were isotopically labeled in larvae and adults, respectively. In 15 N urea-fed insects, the genera Burkholderia and Parabacteroides were isotopically labeled in larvae and adults, respectively. Additionally, the PICRUSt-predicted metagenome suggested a possible ability to degrade hemicellulose and to produce amino acids of, respectively, 13 C cellulose- and 15 N urea labeled bacteria. The incorporation of 15 N from ingested urea back into the insect body was confirmed, in larvae and adults, by isotope ratio mass spectrometry (IRMS). Besides highlighting key bacterial symbionts of the gut of M. hippocastani , this study provides example on how Illumina-SIP with multiple trophic links can be used to target microorganisms embracing different roles within an environment.

  8. In Vivo Isotopic Labeling of Symbiotic Bacteria Involved in Cellulose Degradation and Nitrogen Recycling within the Gut of the Forest Cockchafer (Melolontha hippocastani

    Directory of Open Access Journals (Sweden)

    Pol Alonso-Pernas

    2017-10-01

    Full Text Available The guts of insects harbor symbiotic bacterial communities. However, due to their complexity, it is challenging to relate a specific symbiotic phylotype to its corresponding function. In the present study, we focused on the forest cockchafer (Melolontha hippocastani, a phytophagous insect with a dual life cycle, consisting of a root-feeding larval stage and a leaf-feeding adult stage. By combining in vivo stable isotope probing (SIP with 13C cellulose and 15N urea as trophic links, with Illumina MiSeq (Illumina-SIP, we unraveled bacterial networks processing recalcitrant dietary components and recycling nitrogenous waste. The bacterial communities behind these processes change between larval and adult stages. In 13C cellulose-fed insects, the bacterial families Lachnospiraceae and Enterobacteriaceae were isotopically labeled in larvae and adults, respectively. In 15N urea-fed insects, the genera Burkholderia and Parabacteroides were isotopically labeled in larvae and adults, respectively. Additionally, the PICRUSt-predicted metagenome suggested a possible ability to degrade hemicellulose and to produce amino acids of, respectively, 13C cellulose- and 15N urea labeled bacteria. The incorporation of 15N from ingested urea back into the insect body was confirmed, in larvae and adults, by isotope ratio mass spectrometry (IRMS. Besides highlighting key bacterial symbionts of the gut of M. hippocastani, this study provides example on how Illumina-SIP with multiple trophic links can be used to target microorganisms embracing different roles within an environment.

  9. Plant Wall Degradative Compounds and Systems

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The present invention relates to cell wall degradative systems, in particular to systems containing enzymes that bind to and/or depolymerize cellulose. These systems...

  10. Lignocellulose-Adapted Endo-Cellulase Producing Streptomyces Strains for Bioconversion of Cellulose-Based Materials.

    Science.gov (United States)

    Ventorino, Valeria; Ionata, Elena; Birolo, Leila; Montella, Salvatore; Marcolongo, Loredana; de Chiaro, Addolorata; Espresso, Francesco; Faraco, Vincenza; Pepe, Olimpia

    2016-01-01

    Twenty-four Actinobacteria strains, isolated from Arundo donax, Eucalyptus camaldulensis and Populus nigra biomass during natural biodegradation and with potential enzymatic activities specific for the degradation of lignocellulosic materials, were identified by a polyphasic approach. All strains belonged to the genus Streptomyces ( S .) and in particular, the most highly represented species was Streptomyces argenteolus representing 50% of strains, while 8 strains were identified as Streptomyces flavogriseus (synonym S. flavovirens ) and Streptomyces fimicarius (synonyms Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies , and Streptomyces flavofuscus ), and the other four strains belonged to the species Streptomyces drozdowiczii, Streptomyces rubrogriseus, Streptomyces albolongus , and Streptomyces ambofaciens . Moreover, all Streptomyces strains, tested for endo and exo-cellulase, cellobiase, xylanase, pectinase, ligninase, peroxidase, and laccase activities using qualitative and semi-quantitative methods on solid growth medium, exhibited multiple enzymatic activities (from three to six). The 24 strains were further screened for endo-cellulase activity in liquid growth medium and the four best endo-cellulase producers ( S. argenteolus AE58P, S. argenteolus AE710A, S. argenteolus AE82P, and S. argenteolus AP51A) were subjected to partial characterization and their enzymatic crude extracts adopted to perform saccharification experiments on A. donax pretreated biomass. The degree of cellulose and xylan hydrolysis was evaluated by determining the kinetics of glucose and xylose release during 72 h incubation at 50°C from the pretreated biomass in the presence of cellulose degrading enzymes (cellulase and β-glucosidase) and xylan related activities (xylanase and β-xylosidase). The experiments were carried out utilizing the endo-cellulase activities from the selected S. argenteolus strains supplemented with commercial β-gucosidase and

  11. Application of radiation degraded carbohydrates for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Yoshu, F.

    1999-01-01

    Radiation degraded carbohydrates such as chitosan, sodium alginate, carageenan, cellulose, pectin, etc. were applied for plant cultivation. Chitosan (poly-β -D-glucosamine) was easily degraded by irradiation and induced various kinds of biological activities such as anti-microbacterial activity, promotion of plant growth, suppression of heavy metal stress on plants, phytoalexins induction, etc. Pectic fragments obtained from degraded pectin also induced the phytoalexins such as glyceollins in soybean and pisafin in pea. The irradiated chitosan shows the higher elicitor activity for pisafin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. The hot water and ethanol extracts from EFB and sugar cane bagasse were increased by irradiation. These extracts promoted the growth of plants and suppressed the damage on barley with salt and Zn stress. The results show that the degraded polysaccharides by radiation have the potential to induce various biological activities and the products can be use for agricultural and medical fields

  12. Poly(Aspartic Acid) Degradation by a Sphingomonas sp. Isolated from Freshwater

    OpenAIRE

    Tabata, Kenji; Kasuya, Ken-Ichi; Abe, Hideki; Masuda, Kozue; Doi, Yoshiharu

    1999-01-01

    A poly(aspartic acid) degrading bacterium (strain KT-1 [JCM10459]) was isolated from river water and identified as a member of the genus Sphingomonas. The isolate degraded only poly(aspartic acid)s of low molecular masses (

  13. A green and efficient technology for the degradation of cellulosic materials: structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt.

    Science.gov (United States)

    Zhang, Yanjuan; Li, Qian; Su, Jianmei; Lin, Ye; Huang, Zuqiang; Lu, Yinghua; Sun, Guosong; Yang, Mei; Huang, Aimin; Hu, Huayu; Zhu, Yuanqin

    2015-02-01

    A new technology for the pretreatment of natural cellulose was developed, which combined mechanical activation (MA) and metal salt treatments in a stirring ball mill. Different valent metal nitrates were used to investigate the changes in degree of polymerization (DP) and crystallinity index (CrI) of cellulose after MA+metal salt (MAMS) pretreatment, and Al(NO3)3 showed better pretreatment effect than NaNO3 and Zn(NO3)2. The destruction of morphological structure of cellulose was mainly resulted from intense ball milling, and the comparative studies on the changes of DP and crystal structure of MA and MA+Al(NO3)3 pretreated cellulose samples showed a synergistic interaction of MA and Al(NO3)3 treatments with more effective changes of structural characteristics of MA+Al(NO3)3 pretreated cellulose and substantial increase of reducing sugar yield in enzymatic hydrolysis of cellulose. In addition, the results indicated that the presence of Al(NO3)3 had significant enhancement for the enzymatic hydrolysis of cellulose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5.

    Science.gov (United States)

    Qiao, N; Shao, Z

    2010-04-01

    Our goal was to identify a novel biosurfactant produced by a marine oil-degrading bacterium. Biosurfactants were produced by Alcanivorax dieselolei strain B-5(T) growing with diesel oil as the sole carbon and energy source. Culture supernatant was first extracted with chloroform/methanol (1:1, v/v), then further purified step by step with a normal phase silica gel column, a Sephadex LH20 gel column and a preparative thin layer plate. The main component was determined to be a lipopeptide; it was chemically characterized with nuclear magnetic resonance, liquid chromatography-quadrupole ion-trap mass spectrometry, amino acid analysis and GC-MS and was found to be a mixture of proline lipids. The monomers of the proline lipids were composed of a proline residue and a fatty acid (C(14:0), C(16:0) or C(18:0)). The critical micelle concentration of the mixed proline lipids was determined to be 40 mg l(-1). Moreover, activity variations in ranges of pH, temperature and salinity were also detected and showed reasonable stability. Alcanivorax dieselolei B-5 produced a novel linear lipoamino biosurfactant, characterized as a proline lipid. A proline lipid was characterized for the first time as a bacterial biosurfactant. This product has potential in both environmental and industrial applications.

  15. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  16. An insect herbivore microbiome with high plant biomass-degrading capacity.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    2010-09-01

    Full Text Available Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini, which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  17. Temporal Alterations in the Secretome of the Selective Ligninolytic Fungus Ceriporipsis subvermispora during growth on Aspen Wood Reveal this Organism's Strategy for Degrading Lighnocellulose

    Science.gov (United States)

    Chiaki Hori; Jill Gaskell; Kiyohiko Igarashi; Phil Kersten; Michael Mozuch; Masahiro Samejima; Dan Cullen

    2014-01-01

    The white-rot basidiomycetes efficiently degrade all wood cell wall polymers. Generally, these fungi simultaneously degrade cellulose and lignin, but certain organisms, such as Ceriporiopsis subvermispora, selectively remove lignin in advance of cellulose degradation. However, relatively little is known about themechanismof selective ligninolysis. To...

  18. Radiation induced crosslinking of cellulose ethers

    International Nuclear Information System (INIS)

    Wach, A.R.; Mitomo, H.; Yoshii, F.; Kume, T.

    2002-01-01

    The effects of high-energy radiation on four ethers of cellulose: carboxymethyl (CMC); hydroxypropyl (HPC), hydroxyethyl (HEC) and methylcellulose (MC) were investigated. Polymers are irradiated in solid state and in aqueous solutions at various concentrations. Degree of substitution (DS) of the derivatives, the concentration of their aqueous solutions and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid state and in diluted aqueous solutions resulted in their degradation. However, it was found that for concentrated solutions gel formation occurred. Paste-like form of the initial material, when water plasticizes the bulk of polymer as well as the high dose rate, what prevents oxygen penetration of the polymer during irradiation, have been found favourable for hydrogel formation. Up to 95% of gel fraction was obtained from solutions of CMC with concentration over 50% irradiated by γ-rays or electron beam. It was pointed out that the ability to the formation of the three-dimensional network is related to the DS of anhydroglucose units and a type of chemical group introduced to main chain of cellulose. Produced hydrogels swelled markedly in water. Despite of the crosslinked structure they underwent degradation by the action of cellulase enzyme or microorganisms from compost, and can be included into the group of biodegradable materials. (author)

  19. Enhanced Agarose and Xylan Degradation for Production of Polyhydroxyalkanoates by Co-Culture of Marine Bacterium, Saccharophagus degradans and Its Contaminant, Bacillus cereus

    Directory of Open Access Journals (Sweden)

    Shailesh S. Sawant

    2017-02-01

    Full Text Available Over reliance on energy or petroleum products has raised concerns both in regards to the depletion of their associated natural resources as well as their increasing costs. Bioplastics derived from microbes are emerging as promising alternatives to fossil fuel derived petroleum plastics. The development of a simple and eco-friendly strategy for bioplastic production with high productivity and yield, which is produced in a cost effective manner utilising abundantly available renewable carbon sources, would have the potential to result in an inexhaustible global energy source. Here we report the biosynthesis of bioplastic polyhydroxyalkanoates (PHAs in pure cultures of marine bacterium, Saccharophagus degradans 2-40 (Sde 2-40, its contaminant, Bacillus cereus, and a co-culture of these bacteria (Sde 2-40 and B. cereus degrading plant and algae derived complex polysaccharides. Sde 2-40 degraded the complex polysaccharides agarose and xylan as sole carbon sources for biosynthesis of PHAs. The ability of Sde 2-40 to degrade agarose increased after co-culturing with B. cereus. The association of Sde 2-40 with B. cereus resulted in increased cell growth and higher PHA production (34.5% of dry cell weight from xylan as a carbon source in comparison to Sde 2-40 alone (22.7% of dry cell weight. The present study offers an innovative prototype for production of PHA through consolidated bioprocessing of complex carbon sources by pure and co-culture of microorganisms.

  20. Characterization of TEMPO-oxidized bacterial cellulose; Caracterizacao de celulose bacteriana tempo-oxidada

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Eligenes S.; Pereira, Andre L.S.; Lima, Helder L.; Barroso, Maria K. de A., E-mail: eligenessampaio@hotmail.com [Universidade Federal Ceara (UFC), Fortaleza, CE (Brazil); Barros, Matheus de O. [Instituto Federal do Ceara (IFCE), Fortaleza, CE (Brazil); Morais, Joao P.S. [Embrapa Algodao, Campina Grande, PB (Brazil); Borges, Maria de F.; Rosa, Morsyleide de F. [Embrapa Agroindustria Tropical, Fortaleza, CE (Brazil)

    2015-07-01

    The aim of this study was to characterize the TEMPO-oxidized bacterial cellulose, as a preliminary research for further application in nanocomposites. Bacterial cellulose (BC) was selectively oxidized at C-6 carbon by TEMPO radical. Oxidized bacterial cellulose (BCOX) was characterized by TGA, FTIR, XRD, and zeta potential. BCOX suspension was stable at pH 7.0, presented a crystallinity index of 83%, in spite of 92% of BC, because of decrease in the free hydroxyl number. FTIR spectra showed characteristic BC bands and, in addition, band of carboxylic group, proving the oxidation. BCOX DTG showed, in addition to characteristic BC thermal events, a maximum degradation peak at 233 °C, related to sodium anhydro-glucuronate groups formed during the cellulose oxidation. Thus, BC can be TEMPO-oxidized without great loss in its structure and properties. (author)

  1. Properties of cellulose nanocrystals from oil palm trunk isolated by total chlorine free method.

    Science.gov (United States)

    Lamaming, Junidah; Hashim, Rokiah; Leh, Cheu Peng; Sulaiman, Othman

    2017-01-20

    Cellulose nanocrystals were isolated from oil palm trunk by total chlorine free method. The samples were either water pre-hydrolyzed or non-water pre-hydrolyzed, subjected to soda pulping, acidified and ozone bleached. Cellulose and cellulose nanocrystal (CNC) physical, chemical, thermal properties, and crystallinity index were investigated by composition analysis, scanning electron microscopy, transmission electron microscopy, fourier transform infrared, thermogravimetric analysis and X-ray diffraction. Water pre-hydrolysis reduced lignin (process compared to non-fibrillated of non-water pre-hydrolyzed cellulose. Water pre-hydrolysis improved final CNC crystallinity (up to 75%) compared to CNC without water pre-hydrolysis crystallinity (69%). Cellulose degradation was found to occur during ozone bleaching stage but CNC showed an increase in crystallinity after acid hydrolysis. Thus, oil palm trunk CNC can be potentially applied in pharmaceutical, food, medical and nanocomposites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells.

    Science.gov (United States)

    Harini, K; Chandra Mohan, C; Ramya, K; Karthikeyan, S; Sukumar, M

    2018-03-15

    The main aim of the present study is to extract and characterize cashew nut shell (CNS) starch and walnut shell cellulose (WNC) for development of cellulose reinforced starch films. Moreover, the extraction and characterization of pomegranate peel extract, for incorporation with CNS-WNC films, was investigated. CNS starch was examined to be a moderate amylose starch with 26.32 ± 0.43% amylose content. Thermal degradation temperature of CNS starch was found to be 310 °C. Walnut shell cellulose was found to have high crystallinity index of 72%, with two thermal degradation temperatures of 319 °C and 461 °C. 2% WN cellulose reinforced CNS starch films were examined to have good oxygen transfer rate, mechanical and physical properties. Thermal degradation temperature of CNS-WNC starch films were found to be at the range of 298-302 °C. Surface roughness of CNS-WNC starch films were found to be increasing with increase in concentration of cellulose in films. Hydroxymethylfurfurole, Benzene, 2-methoxy-1,3,4-trimethyl and 1,2,3-Propanetriol, 1-acetate were found to be major active compounds present in hydrophilic extracts of Punica granatum peels. 2% WN cellulose reinforced starch films infused with hydrophilic active compounds of pomegranate peel was examined to be having good active package properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Screening for cellulose and hemicellulose degrading enzymes from the fungal genus Ulocladium

    DEFF Research Database (Denmark)

    Pedersen, Mads; Hollensted, Morten; Lange, L.

    2009-01-01

    The fungal genus Ulocladium consists mostly of saprotrophic species and can readily be isolated from dead vegetation, rotten wood. paper, textiles and other cellulose containing materials. Thus, they must produce cellulolytic and hemicellulolytic enzymes. In this study fifty Ulocladium strains from...

  4. Hydrolysis of the amorphous cellulose in cotton-based paper.

    Science.gov (United States)

    Stephens, Catherine H; Whitmore, Paul M; Morris, Hannah R; Bier, Mark E

    2008-04-01

    Hydrolysis of cellulose in Whatman no. 42 cotton-based paper was studied using gel permeation chromatography (GPC), electrospray ionization-mass spectrometry (ESI-MS), and uniaxial tensile testing to understand the course and kinetics of the reaction. GPC results suggested that scission reactions passed through three stages. Additionally, the evolution of soluble oligomers in the ESI-MS data and the steady course of strength loss showed that the hydrolysis reaction occurred at a constant rate. These findings are explained with a more detailed description of the cellulose hydrolysis, which includes multiple chain scissions on amorphous segments. The breaks occur with increasing frequency near the ends of amorphous segments, where chains protrude from crystalline domains. Oligomers unattached to crystalline domains are eventually created. Late-stage reactions near the ends of amorphous segments produce a kinetic behavior that falsely suggests that hydrolysis had ceased. Monte Carlo simulations of cellulose degradation corroborated the experimental findings.

  5. Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH

    International Nuclear Information System (INIS)

    Peng, Huadong; Chen, Hongzhang; Qu, Yongshui; Li, Hongqiang; Xu, Jian

    2014-01-01

    Highlights: • High concentration of alkali or temperature was necessary in cellulose degradation. • Effects of alkali pretreatment could be enhanced with the addition of microwave irradiation. • The structures diversities of microcrystalline cellulose were eliminated in the fermentation. • The significance of particle size and treat condition varied with reaction time. - Abstract: The process of microwave irradiation (MWI) pretreatment on microcrystalline cellulose (MCC) with different sizes with/without NaOH was investigated on the variation of the ratio of degradated solid residue (R DS ), particle size, crystallinity index (CrI), crystallite size (Sc) and specific surface area (SSA). High concentration of alkali or high temperature was necessary in dissolving or decomposing the cellulose. Appropriate pretreatment severity eliminated the effects of structural diversities in feedstocks, which led to convergence in the ethanol fermentation. After the reaction proceeded to 120 h, the samples could be converted to glucose completely and the highest ethanol yield of the theoretical was 58.91% for all the samples pretreated by the combined treatment of MWI and NaOH. In addition, the statistical analysis implied that when reaction time got to 24 h, particle size and pretreatment condition affected much more significant than other factors

  6. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Ardica, S.; Calderaro, E.; Cappadona, C.

    1985-01-01

    The effect of γ-ray pre-irradiation of cellulose materials such as wood chips, paper, grain straw, hay and kapok on glucose production on enzymatic hydrolysis by cellulase has been investigated. These materials have been irradiated in air, water and acetate buffer solution over the dose range 10 3 to 4 x 10 6 Gy. In the relatively low dose range, up to about 5 x 10 5 Gy, the glucose yields after enzymatic hydrolysis are practically insensitive to radiation. At higher dose levels, up to 1.7 to 2 x 10 6 Gy, the pre-irradiation becomes very effective on enzymatic cellulose conversion. It has been found that the radiation-induced degradation of cellulose into low molecular weight polysaccharides is dependent on the nature and chemical composition of the cellulose materials and on the radiation environmental conditions. Further increases of dose causes radiation-induced structural modifications in polysaccharides previously produced, which can lead to a decrease in glucose production by enzymatic hydrolysis. (author)

  7. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    Science.gov (United States)

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-09-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4-86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4-84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy.

  8. Cellulose synthase complex organization and cellulose microfibril structure.

    Science.gov (United States)

    Turner, Simon; Kumar, Manoj

    2018-02-13

    Cellulose consists of linear chains of β-1,4-linked glucose units, which are synthesized by the cellulose synthase complex (CSC). In plants, these chains associate in an ordered manner to form the cellulose microfibrils. Both the CSC and the local environment in which the individual chains coalesce to form the cellulose microfibril determine the structure and the unique physical properties of the microfibril. There are several recent reviews that cover many aspects of cellulose biosynthesis, which include trafficking of the complex to the plasma membrane and the relationship between the movement of the CSC and the underlying cortical microtubules (Bringmann et al. 2012 Trends Plant Sci. 17 , 666-674 (doi:10.1016/j.tplants.2012.06.003); Kumar & Turner 2015 Phytochemistry 112 , 91-99 (doi:10.1016/j.phytochem.2014.07.009); Schneider et al. 2016 Curr. Opin. Plant Biol. 34 , 9-16 (doi:10.1016/j.pbi.2016.07.007)). In this review, we will focus on recent advances in cellulose biosynthesis in plants, with an emphasis on our current understanding of the structure of individual catalytic subunits together with the local membrane environment where cellulose synthesis occurs. We will attempt to relate this information to our current knowledge of the structure of the cellulose microfibril and propose a model in which variations in the structure of the CSC have important implications for the structure of the cellulose microfibril produced.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).

  9. Preparation of Low Allergenic Protein Concentrated Natural Rubber Latex Using Suitable Low Molecular Weight Cellulose Derivatives Induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Siri-Upathum, Chyagrit; Boonyawat, Jariya

    2007-08-01

    Full text: Low molecular weight carboxy methyl cellulose (CMC), hydroxyl ethyl cellulose (HEC), hydroxyl propyl cellulose (HPC) and methyl cellulose (MC) prepared by radiation-induced degradation were added into diluted natural concentrated latex prior to centrifuge for a purpose of reducing allergenic rubber protein in the latex. Optimum molecular weight (Mv) of CMC and HEC for such a purpose was found to be 17-18 kDa which decreased allergenic rubber protein (14-94 kDa) to an undetectable amount as determined by SDS PAGE method

  10. Toxicity of Phenol and Salt on the Phenol-Degrading Pseudomonas aeruginosa Bacterium

    Directory of Open Access Journals (Sweden)

    Samaei

    2016-08-01

    Full Text Available Background Phenolic compounds, phenol and phenol derivatives are environmental contaminants in some industrial effluents. Entrance of such substances into the environment causes severe environmental pollution, especially pollution of water resources. Biological treatment is a method that uses the potential of microorganisms to clean up contaminated environments. Among microorganisms, bacteria play an important role in treating wastewater contaminated with phenol. Objectives This study aimed to examine the effects of Pseudomonas aeruginosa on degradation of phenol in wastewater contaminated with this pollutant. Methods In this method, the growth rate of P. aeruginosa bacteria was investigated using different concentrations of salt and phenol. This is an experimental study conducted as a pilot in a batch reactor with different concentrations of phenol (25, 50, 100, 150, 300 and 600 mg L-1 and salt (0%, 0.5%, 1%, 2.5% and 5% during 9, 12 and 15 hours. During three days, from 5 experimental and 3 control samples, 18 samples were taken a day forming a sample size of 54 samples for each phenol concentration. Given the number of phenol concentrations (n = 6, a total of 324 samples were analyzed using a spectrophotometer at a wavelength of 600 nm. Results The phenol concentration of 600 mg L-1 was toxic for P. aeruginosa. However, at a certain concentration, it acts as a carbon source for P. aeruginosa. During investigations, it was found that increasing the concentration of phenol increases the rate of bacteria growth. The highest bacteria growth rate occurred was at the salt concentration of zero and phenol concentration of 600 mg L-1. Conclusions The findings of the current study indicate that at high concentrations of salt, the growth of bacteria reduces so that it stops at a concentration of 50 mg L-1 (5%. Thus, the bacterium is halotolerant or halophilic. With an increase in phenol concentration, the growth rate increased. Phenol toxicity appears

  11. Cellulase producing microorganism ATCC 55702

    Science.gov (United States)

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  12. A study on displacement of crystalline diffraction peaks in electron-beam irradiated filter paper cellulose

    International Nuclear Information System (INIS)

    Zhou Ruimin; Xiang Qun; Song Jing

    1997-01-01

    It is found that the crystalline diffraction angles of the electron-beam irradiated filter paper cellulose shift regularly when the irradiation dose is increased. The experiments indicate that the molecules between crystalline area and amorphous area in the filter paper cellulose will be degraded by the irradiation and the cellulose molecules in the surface of crystal will come off, thus the microcrystalline dimension will be reduced and the diffraction angle will become smaller. The fact that intensity of the 002 peak for filter paper samples decreases gradually with the increasing storage time can be attributed to the post-irradiation effect

  13. How do polymers degrade?

    Science.gov (United States)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  14. Effects of organic degradation products on the sorption of actinides

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M.

    1992-01-01

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH ∝ 11) and at the edge of the zone of migration of the alkaline plume (pH ∝ 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.)

  15. Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fazlurrahman; Pandey, Janmejay; Vikram, Surendra; Pal, Deepika; Cameotra, Swaranjit Singh, E-mail: ssc@imtech.res.in

    2013-06-15

    Highlights: • This study reports isolation of a novel bacterium capable of mineralizing 4-nitroaniline (4-NA). • This bacterium has been identified as Rhodococcus sp. strain FK48. • Strain FK48 degrades 4-NA via a novel aerobic degradation pathway that involves 4-AP and 1,2,4-BT. • Subsequent degradation proceeds via ring fission and formation of maleylacetate. • This is the first report showing elucidation of catabolic pathway for microbial degradation 4-NA. -- Abstract: An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO{sub 2} substituent) and deamination (release of NH{sub 2} substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC–MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway.

  16. Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48

    International Nuclear Information System (INIS)

    Khan, Fazlurrahman; Pandey, Janmejay; Vikram, Surendra; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    Highlights: • This study reports isolation of a novel bacterium capable of mineralizing 4-nitroaniline (4-NA). • This bacterium has been identified as Rhodococcus sp. strain FK48. • Strain FK48 degrades 4-NA via a novel aerobic degradation pathway that involves 4-AP and 1,2,4-BT. • Subsequent degradation proceeds via ring fission and formation of maleylacetate. • This is the first report showing elucidation of catabolic pathway for microbial degradation 4-NA. -- Abstract: An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO 2 substituent) and deamination (release of NH 2 substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC–MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway

  17. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    Science.gov (United States)

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and contained cytochrome c3 and desulfoviridin. Except for furfural degradation, the characteristics of the furfural isolate were remarkably similar to those of the sulfate reducer Desulfovibrio gigas. The furfural isolate has been tentatively identified as Desulfovibrio sp. strain F-1. Images PMID:16346423

  18. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification.

    Science.gov (United States)

    Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  19. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    OpenAIRE

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and c...

  20. Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp.

    Science.gov (United States)

    Hutterer, Christian; Kliba, Gerhard; Punz, Manuel; Fackler, Karin; Potthast, Antje

    2017-07-01

    The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Cellulose is not just cellulose

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Felby, Claus; Johansen, Katja Salomon

    2012-01-01

    are not regions where free cellulose ends are more abundant than in the bulk cell wall. In more severe cases cracks between fibrils form at dislocations and it is possible that the increased accessibility that these cracks give is the reason why hydrolysis of cellulose starts at these locations. If acid...... or enzymatic hydrolysis of plant cell walls is carried out simultaneously with the application of shear stress, plant cells such as fibers or tracheids break at their dislocations. At present it is not known whether specific carbohydrate binding modules (CBMs) and/or cellulases preferentially access cellulose...

  2. Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass.

    Science.gov (United States)

    Uju; Nakamoto, Aya; Shoda, Yasuhiro; Goto, Masahiro; Tokuhara, Wataru; Noritake, Yoshiyuki; Katahira, Satoshi; Ishida, Nobuhiro; Ogino, Chiaki; Kamiya, Noriho

    2013-05-01

    The potential of 1-hexylpyridinium chloride ([Hpy][Cl]), to pretreat cellulosic feedstocks was investigated using microcrystalline cellulose (Avicel) and Bagasse at 80 °C or 100 °C. Short [Hpy][Cl] pretreatments, conversion of pretreated Avicel to glucose was attained after 24h enzymatic saccharification under optimal conditions, whereas regenerated Bagasse showed 1-3-fold higher conversion than untreated biomass. FT-IR analysis of both Avicel and Bagasse samples pretreated with [Hpy][Cl] or 1-ethyl-3-methyimidazolium acetate ([Emim][OAc]) revealed that these ionic liquids behaved differently during pretreatment. [Hpy][Cl] pretreatment for an extended duration (180 min) released mono- and disaccharides without using cellulase enzymes, suggesting [Hpy][Cl] has capability for direct saccharification of cellulosic feedstocks. On the basis of the results obtained, [Hpy][Cl] pretreatment enhanced initial reaction rates in enzymatic saccharification by either crystalline polymorphic alteration of cellulose or partial degradation of the crystalline cellulosic fraction in biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Interactions among buffelgrass, phenanthrene and phenanthrene-degrading bacteria in gnotobiotic microcosms.

    Science.gov (United States)

    Robert, Francoise M; Sun, Wenhao H; Toma, Marisa; Jones, Ryan K; Tang, Chung-Shih

    2008-07-15

    An experiment was undertaken in gnotobiotic microcosms to determine the role of buffelgrass (Cenchrus ciliaris) and a phenanthrene-degrading bacterium (strain PM600) in the degradation of phenanthrene. The Gram-negative bacterium was identified as a Sphingomonas sp. by 16S rRNA gene sequence analysis and as S. paucimobilis by biochemical tests (API 20 NE strips). Its yellow pigment corresponded to nostoxanthin and its cellular fatty acids were typical of the genus Sphingomonas. Moreover, it was devoid of lipopolysaccharides. Strain PM600 was tested for growth on mineral medium supplemented with No. 2 diesel, hexadecane, mineral oil, pristane, phenanthrene, and pyrene as single carbon sources. It was capable of utilizing phenanthrene only. In the gnotobiotic microcosms silica sand was either or not supplemented with 150 mg of phenanthrene kg(-1) sand, inoculated with strain PM600, and planted to sterile young seedlings of buffelgrass. After 28 days, 67% of the reduction of the phenanthrene concentration was assigned to degradation by the bacterium and ca. 20% to abiotic factors. No statistically significant effect of the young buffelgrass was found. In the absence of phenanthrene, the bacterial population significantly increased in the rhizosphere of buffelgrass. However, in the presence of buffelgrass and phenanthrene, the bacterial population preferentially responded to phenanthrene. The growth of buffelgrass was severely curtailed by phenanthrene in the absence of the bacterium. However, strain PM600 effectively protected buffelgrass against the phytotoxicity of phenanthrene.

  4. DEVELOPMENT OF MICROORGANISMS FOR CELLULOSE-BIOFUEL CONSOLIDATED BIOPROCESSINGS: METABOLIC ENGINEERS' TRICKS

    Directory of Open Access Journals (Sweden)

    Roberto Mazzoli

    2012-10-01

    By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.

  5. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation

    OpenAIRE

    Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin

    2018-01-01

    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal ...

  6. Induction of mutation in Aspergillus niger for conversion of cellulose into glucose

    Energy Technology Data Exchange (ETDEWEB)

    Helmi, S.; Khalil, A.E.; Tahoun, M.K.; Khairy, A.H. [Univ. of Alexandria Research Centre, Alexandria (Egypt)

    1991-12-31

    Plant wastes are very important part of biomass used and investigated for energy, chemical, and fuel production. Cellulose is the major renewable form of carbohydrate in the world, about 10{sup 11} tons of which is synthesized annually. For general use, it must be hydrolyzed first, either chemically or by cellulases derived from a few specialized microorganisms. Enzymes are acceptable environmentally but expensive to produce. Certainly, induction of mutations and selection of high cellulose microbial strains with significant adaptability to degrade cellulose to glucose is promising solutions. Induction of mutations in other fungi and Aspergillus sp. rather than Aspergillus niger was reported. Aspergillus ustus and Trichoderma harzianum were induced by gamma irradiation indicating mutants that excrete higher cellulose yields, particularly exocellobiohydrolase (Avicelase) than their respective wild types. Mutants from the celluiolytic fungus Penicillium pinophilum were induced by chemical and UV-irradiation. Enhancing the production of endo-1,4-{Beta}-D-glucanase (CMCase) and particularly {Beta}-glucosidase was obtained by gamma irradiation of Altemaria alternate. To overcome the lower activity of {beta}-glucosidase in certain fungi species rather than A. niger, mixed cultures of different species were tried. Thus, Aspergillus phonicis with Trichoderma reesei Rut 30, produced a cellulose complex that improved activity twofold over cellulose from Trichoderma alone.

  7. Grass-cellulose as energy source for biological sulphate removal from acid mine effluents

    CSIR Research Space (South Africa)

    Greben, HA

    2008-11-01

    Full Text Available The biological sulphate removal technology requires carbon and energy sources to reduce sulphate to sulphide. Plant biomass, e.g. grass, is a sustainable source of energy when cellulose is utilised during anaerobic degradation, producing volatile...

  8. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil.

    Science.gov (United States)

    Liu, Xu-Yun; Li, Chun-Xiu; Luo, Xiao-Jing; Lai, Qi-Liang; Xu, Jian-He

    2014-09-01

    A methyl parathion (MP) degrading bacterial strain, designated MP-1(T), was isolated from a waste land where pesticides were formerly manufactured in Jiangsu province, China. Polyphasic taxonomic studies showed that MP-1(T) is a Gram-stain-negative, non-spore-forming, rod-shaped and motile bacterium. The bacterium could grow at salinities of 0-1 % (w/v) and temperatures of 15-40 °C. Strain MP-1(T) could reduce nitrate to nitrite, utilize d-glucose and l-arabinose, but not produce indole, or hydrolyse gelatin. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that MP-1(T) belongs to the genus Burkholderia, showing highest sequence similarity to Burkholderia grimmiae DSM 25160(T) (98.5 %), and similar strains including Burkholderia zhejiangensis OP-1(T) (98.2 %), Burkholderia choica LMG 22940(T) (97.5 %), Burkholderia glathei DSM 50014(T) (97.4 %), Burkholderia terrestris LMG 22937(T) (97.2 %) and Burkholderia telluris LMG 22936(T) (97.0 %). In addition, the gyrB and recA gene segments of strain MP-1(T) exhibited less than 89.0 % and 95.1 % similarities with the most highly-related type strains indicated above. The G+C content of strain MP-1(T) was 62.6 mol%. The major isoprenoid quinone was ubiquinone Q-8. The predominant polar lipids comprised phosphatidyl ethanolamine, phosphatidyl glycerol, aminolipid and phospholipid. The principal fatty acids in strain MP-1(T) were C18 : 1ω7c/C18 : 1ω6c (23.3 %), C16 : 0 (16.8 %), cyclo-C17 : 0 (15.0 %), C16 : 1ω7c/C16 : 1ω6 (8.5 %), cyclo-C19 : 0ω8c (8.1 %), C16 : 1 iso I/C14 : 0 3-OH (5.7 %), C16 : 0 3-OH (5.6 %) and C16 : 02-OH (5.1 %). The DNA-DNA relatedness values between strain MP-1(T) and the three type strains (B. grimmiae DSM 25160(T), B. zhejiangensis OP-1(T) and B. glathei DSM 50014(T)) ranged from 24.6 % to 37.4 %. In accordance with phenotypic and genotypic characteristics, strain MP-1(T) represents a novel

  9. Isolation and survey of novel fluoroacetate-degrading bacteria belonging to the phylum Synergistetes.

    Science.gov (United States)

    Davis, Carl K; Webb, Richard I; Sly, Lindsay I; Denman, Stuart E; McSweeney, Chris S

    2012-06-01

    Microbial dehalogenation of chlorinated compounds in anaerobic environments is well known, but the degradation of fluorinated compounds under similar conditions has rarely been described. Here, we report on the isolation of a bovine rumen bacterium that metabolizes fluoroacetate under anaerobic conditions, the mode of degradation and its presence in gut ecosystems. The bacterium was identified using 16S rRNA gene sequence analysis as belonging to the phylum Synergistetes and was designated strain MFA1. Growth was stimulated by amino acids with greater quantities of amino acids metabolized in the presence of fluoroacetate, but sugars were not fermented. Acetate, formate, propionate, isobutryate, isovalerate, ornithine and H(2) were end products of amino acid metabolism. Acetate was the primary end product of fluoroacetate dehalogenation, and the amount produced correlated with the stoichiometric release of fluoride which was confirmed using fluorine nuclear magnetic resonance ((19) F NMR) spectroscopy. Hydrogen and formate produced in situ were consumed during dehalogenation. The growth characteristics of strain MFA1 indicated that the bacterium may gain energy via reductive dehalogenation. This is the first study to identify a bacterium that can anaerobically dehalogenate fluoroacetate. Nested 16S rRNA gene-specific PCR assays detected the bacterium at low numbers in the gut of several herbivore species. © 2012 Commonwealth of Australia.

  10. Effects of frequency and a radical scavenger on ultrasonic degradation of water-soluble polymers.

    Science.gov (United States)

    Koda, Shinobu; Taguchi, Kimihiko; Futamura, Kazunori

    2011-01-01

    Ultrasonic degradation of methyl cellulose, pullulan, dextran and poly(ethylene oxide) in aqueous solutions was investigated at the frequencies of 20 and 500 kHz, where the ultrasonic power delivered into solutions was kept constant (22 W). The number average molecular mass and the polydispersity were obtained as a function of sonication time. The degradation under sonication at the 500 kHz frequency proceeded faster in comparison with the 20 kHz sonication for four polymers. The addition of a radical scavenger, t-BuOH, resulted in suppression of degradation of water-soluble polymers. The degradation rate constants were estimated from the plot of molecular weight against sonication time. The degradation rate of methyl cellulose was the largest one among the investigated polymers. The difference in the degradation rates was discussed in terms of the flexibility and the hydrodynamic radius of polymer chains in aqueous solutions. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    Science.gov (United States)

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  12. The endophytic bacterium Serratia sp. PW7 degrades pyrene in wheat.

    Science.gov (United States)

    Zhu, Xuezhu; Wang, Wanqing; Crowley, David E; Sun, Kai; Hao, Shupeng; Waigi, Michael Gatheru; Gao, Yanzheng

    2017-03-01

    This research was conducted to isolate polycyclic aromatic hydrocarbon-degrading (PAH-degrading) endophytic bacteria and investigate their potential in protecting plants against PAH contamination. Pyrene-degrading endophytic bacteria were isolated from plants grown in PAH-contaminated soil. Among these endophytic bacteria, strain PW7 (Serratia sp.) isolated from Plantago asiatica was selected to investigate the suppression of pyrene accumulation in Triticum aestivum L. In the in vitro tests, strain PW7 degraded 51.2% of the pyrene in the media within 14 days. The optimal biodegradation conditions were pH 7.0, 30 °C, and MS medium supplemented with additional glucose, maltose, sucrose, and peptones. In the in vivo tests, strain PW7 successfully colonized the roots and shoots of inoculated (E + ) wheat plants, and its colonization decreased pyrene accumulation and pyrene transportation from roots to shoots. Remarkably, the concentration of pyrene in shoots decreased much more than that in roots, suggesting that strain PW7 has the potential for protecting wheat against pyrene contamination and mitigating the threat of pyrene to human health via food consumption.

  13. Properties of cellulose derivatives produced from radiation-Modified cellulose pulps

    International Nuclear Information System (INIS)

    Iller, Edward; Stupinska, Halina; Starostka, Pawel

    2007-01-01

    The aim of project was elaboration of radiation methods for properties modification of cellulose pulps using for derivatives production. The selected cellulose pulps were exposed to an electron beam with energy 10 MeV in a linear accelerator. After irradiation pulps underwent the structural and physico-chemical investigations. The laboratory test for manufacturing carboxymethylocellulose (CMC), cellulose carbamate (CC) and cellulose acetate (CA) with cellulose pulps irradiated dose 10 and 15 kGy have been performed. Irradiation of the pulp influenced its depolimerisation degree and resulted in the drop of viscosity of CMC. However, the expected level of cellulose activation expressed as a rise of the substitution degree or increase of the active substance content in the CMC sodium salt was not observed. In the case of cellulose esters (CC, CA) formation, the action of ionising radiation on cellulose pulps with the dose 10 and 15 kGy enables obtaiment of the average values of polimerisation degree as required for CC soluble in aqueous sodium hydroxide solution. The properties of derivatives prepared by means of radiation and classic methods were compared

  14. Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites.

    Science.gov (United States)

    Voronova, Marina I; Surov, Oleg V; Guseinov, Sabir S; Barannikov, Vladimir P; Zakharov, Anatoly G

    2015-10-05

    Thermal stability of polyvinyl alcohol/cellulose nanocrystals (PVA/CNCs) composites prepared with solution casting technique was studied. The PVA/CNCs composites were characterized by Fourier transform infrared spectrometry, X-ray diffraction, differential scanning calorimeter (DSC) and thermogravimetric (TG) analysis. Due to the presence of CNCs nanoparticles, thermal degradation of the composites occurs at much higher temperatures compared to that of the neat PVA. Thermal stability of the PVA/CNCs composites is maximally enhanced with CNCs content of 8-12 wt%. Some thermal degradation products of the PVA/CNCs composites were identified by mass spectrometric analysis. TG measurements with synchronous recording of mass spectra revealed that the thermal degradation of both CNCs and PVA in the composites with CNCs content of 8-12 wt% occurs simultaneously at a much higher temperature than that of CNCs or the neat PVA. However, with increasing CNCs content more than 12 wt% the thermal stability of the composites decreases. In this case, the degradation of CNCs comes first followed by the degradation of PVA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Synthesis and characterization of cellulose derivatives obtained from bacterial cellulose

    International Nuclear Information System (INIS)

    Oliveira, Rafael L. de; Barud, Hernane; Ribeiro, Sidney J.L.; Messaddeq, Younes

    2011-01-01

    The chemical modification of cellulose leads to production of derivatives with different properties from those observed for the original cellulose, for example, increased solubility in more traditional solvents. In this work we synthesized four derivatives of cellulose: microcrystalline cellulose, cellulose acetate, methylcellulose and carboxymethylcellulose using bacterial cellulose as a source. These were characterized in terms of chemical and structural changes by examining the degree of substitution (DS), infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy - NMR 13 C. The molecular weight and degree of polymerization were evaluated by viscometry. The characterization of the morphology of materials and thermal properties were performed with the techniques of X-ray diffraction, electron microscopy images, differential scanning calorimetry (DSC) and thermogravimetric analysis. (author)

  16. Plasticized Biodegradable Poly(lactic acid Based Composites Containing Cellulose in Micro- and Nanosize

    Directory of Open Access Journals (Sweden)

    Katalin Halász

    2013-01-01

    Full Text Available The aim of this work was to study the characteristics of thermal processed poly(lactic acid composites. Poly(ethylene glycol (PEG400, microcrystalline cellulose (MCC, and ultrasound-treated microcrystalline cellulose (USMCC were used in 1, 3, and 5 weight percents to modify the attributes of PLA matrix. The composite films were produced by twin screw extrusion followed by film extrusion. The manufactured PLA-based films were characterized by tensile testing, differential scanning calorimetry (DSC, scanning electron microscopy (SEM, wide angle X-ray diffraction (WAXD, and degradation test.

  17. Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus

    Directory of Open Access Journals (Sweden)

    Noda Shuhei

    2012-04-01

    Full Text Available Abstract Background Benzoic acid is one of the most useful aromatic compounds. Despite its versatility and simple structure, benzoic acid production using microbes has not been reported previously. Streptomyces are aerobic, Gram-positive, mycelia-forming soil bacteria, and are known to produce various kinds of antibiotics composed of many aromatic residues. S. maritimus possess a complex amino acid modification pathway and can serve as a new platform microbe to produce aromatic building-block compounds. In this study, we carried out benzoate fermentation using S. maritimus. In order to enhance benzoate productivity using cellulose as the carbon source, we constructed endo-glucanase secreting S. maritimus. Results After 4 days of cultivation using glucose, cellobiose, or starch as a carbon source, the maximal level of benzoate reached 257, 337, and 460 mg/l, respectively. S. maritimus expressed β-glucosidase and high amylase-retaining activity compared to those of S. lividans and S. coelicolor. In addition, for effective benzoate production from cellulosic materials, we constructed endo-glucanase-secreting S. maritimus. This transformant efficiently degraded the phosphoric acid swollen cellulose (PASC and then produced 125 mg/l benzoate. Conclusions Wild-type S. maritimus produce benzoate via a plant-like β-oxidation pathway and can assimilate various carbon sources for benzoate production. In order to encourage cellulose degradation and improve benzoate productivity from cellulose, we constructed endo-glucanase-secreting S. maritimus. Using this transformant, we also demonstrated the direct fermentation of benzoate from cellulose. To achieve further benzoate productivity, the L-phenylalanine availability needs to be improved in future.

  18. Effects of organic degradation products on the sorption of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M. (AEA Decommissioning and Radwaste, Harwell Lab. (United Kingdom))

    1992-01-01

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH [proportional to] 11) and at the edge of the zone of migration of the alkaline plume (pH [proportional to] 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.).

  19. Shorten fungal treatment of lignocellulosic waste with additives to improve rumen degradability

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2014-01-01

    Selective lignin degrading fungi can be used as pre-treatment to make cellulose in plant cell walls accessible for rumen microbes. According to previous studies, Ceriporiopsis subvermispora and Lentinula edodes can increase the in vitro rumen degradability of lignocellulosic biomass in 7 to 8 weeks.

  20. Characterizing the Range of Extracellular Protein Post-Translational Modifications in a Cellulose-Degrading Bacteria Using a Multiple Proteolyic Digestion/Peptide Fragmentation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Dykstra, Andrew B [ORNL; Rodriguez, Jr., Miguel [ORNL; Raman, Babu [Dow Chemical Company, The; Cook, Kelsey [ORNL; Hettich, Robert {Bob} L [ORNL

    2013-01-01

    Post-translational modifications (PTMs) are known to play a significant role in many biological functions. The focus of this study is to characterize the post-translational modifications of the cellulosome protein complex used by the bacterium Clostridium thermocellum to better understand how this protein machine is tuned for enzymatic cellulose solubilization. To enhance comprehensive characterization, the extracellular cellulosome proteins were analyzed using multiple proteolytic digests (trypsin, Lys-C, Glu-C) and multiple fragmentation techniques (collisionally-activated dissociation, electron transfer dissociation, decision tree). As expected, peptide and protein identifications were increased by utilizing alternate proteases and fragmentation methods, in addition to the increase in protein sequence coverage. The complementarity of these experiments also allowed for a global exploration of PTMs associated with the cellulosome based upon a set of defined PTMs that included methylation, oxidation, acetylation, phosphorylation, and signal peptide cleavage. In these experiments, 85 modified peptides corresponding to 28 cellulosome proteins were identified. Many of these modifications were located in active cellulolytic or structural domains of the cellulosome proteins, suggesting a level of possible regulatory control of protein function in various cellulotyic conditions. The use of multiple enzymes and fragmentation technologies allowed for independent verification of PTMs in different experiments, thus leading to increased confidence in PTM identifications.

  1. Identification and genetic characterization of phenol- degrading ...

    African Journals Online (AJOL)

    SAURABH

    2013-02-20

    Feb 20, 2013 ... this paper, we reported about the new strain of Acinetobacter sp. ... characteristics of an efficient phenol-degrading microorganism. ... compounds are widespread in the environment. The problem is compounded by the fact that phenol is toxic, ... The phenol biodegradation ability of this bacterium was.

  2. Concurrent Haloalkanoate Degradation and Chlorate Reduction by Pseudomonas chloritidismutans AW-1T.

    Science.gov (United States)

    Peng, Peng; Zheng, Ying; Koehorst, Jasper J; Schaap, Peter J; Stams, Alfons J M; Smidt, Hauke; Atashgahi, Siavash

    2017-06-15

    Haloalkanoates are environmental pollutants that can be degraded aerobically by microorganisms producing hydrolytic dehalogenases. However, there is a lack of information about the anaerobic degradation of haloalkanoates. Genome analysis of Pseudomonas chloritidismutans AW-1 T , a facultative anaerobic chlorate-reducing bacterium, showed the presence of two putative haloacid dehalogenase genes, the l-DEX gene and dehI , encoding an l-2-haloacid dehalogenase (l-DEX) and a halocarboxylic acid dehydrogenase (DehI), respectively. Hence, we studied the concurrent degradation of haloalkanoates and chlorate as a yet-unexplored trait of strain AW-1 T The deduced amino acid sequences of l-DEX and DehI revealed 33 to 37% and 26 to 86% identities with biochemically/structurally characterized l-DEX and the d- and dl-2-haloacid dehalogenase enzymes, respectively. Physiological experiments confirmed that strain AW-1 T can grow on chloroacetate, bromoacetate, and both l- and d-α-halogenated propionates with chlorate as an electron acceptor. Interestingly, growth and haloalkanoate degradation were generally faster with chlorate as an electron acceptor than with oxygen as an electron acceptor. In line with this, analyses of l-DEX and DehI dehalogenase activities using cell-free extract (CFE) of strain AW-1 T grown on dl-2-chloropropionate under chlorate-reducing conditions showed up to 3.5-fold higher dehalogenase activity than the CFE obtained from AW-1 T cells grown on dl-2-chloropropionate under aerobic conditions. Reverse transcription-quantitative PCR showed that the l-DEX gene was expressed constitutively independently of the electron donor (haloalkanoates or acetate) or acceptor (chlorate or oxygen), whereas the expression of dehI was induced by haloalkanoates. Concurrent degradation of organic and inorganic halogenated compounds by strain AW-1 T represents a unique metabolic capacity in a single bacterium, providing a new piece of the puzzle of the microbial halogen cycle

  3. Interactions between Pteris vittata L. genotypes and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) in arsenic uptake and PAH-dissipation.

    Science.gov (United States)

    Sun, Lu; Zhu, Ganghui; Liao, Xiaoyong; Yan, Xiulan

    2017-11-01

    The effects of two Pteris vittata L. accessions and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) on arsenic (As) uptake and phenanthrene dissipation were studied. The Alcaligenes sp. survived in the rhizosphere and improved soil As bioavailability with co-exposure. However, bacterial inoculation altered Pteris vittata L. stress tolerance, and substantially affected the As distribution in the rhizosphere of the two P. vittata accessions. Bacterial inoculation was beneficial to protect the Guangxi accession against the toxic effects, and significantly increased plant As and phenanthrene removal ratios by 27.8% and 2.89%, respectively. In contrast, As removal was reduced by 29.8% in the Hunan accession, when compared with corresponding non-inoculated treatments. We conclude that plant genotype selection is critically important for successful microorganism-assisted phytoremediation of soil co-contaminated with As and PAHs, and appropriate genotype selection may enhance remediation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. [Construction of a microbial consortium RXS with high degradation ability for cassava residues and studies on its fermentative characteristics].

    Science.gov (United States)

    He, Jiang; Mao, Zhong-Gui; Zhang, Qing-Hua; Zhang, Jian-Hua; Tang, Lei; Zhang, Hong-Jian

    2012-03-01

    A microbial consortium with high effective and stable cellulosic degradation ability was constructed by successive enrichment and incubation in a peptone cellulose medium using cassava residues and filter paper as carbon sources, where the inoculums were sampled from the environment filled with rotten lignocellulosic materials. The degradation ability to different cellulosic materials and change of main parameters during the degradation process of cassava residues by this consortium was investigated in this study. It was found that, this consortium can efficiently degrade filter paper, absorbent cotton, avicael, wheat-straw and cassava residues. During the degradation process of cassava residues, the key hydrolytic enzymes including cellulase, hemicellulase and pectinase showed a maximum enzyme activity of 34.4, 90.5 and 15.8 U on the second or third day, respectively. After 10 days' fermentation, the degradation ratio of cellulose, hemicellulose and lignin of cassava residues was 79.8%, 85.9% and 19.4% respectively, meanwhile the loss ratio of cassava residues reached 61.5%. Otherwise,it was found that the dominant metabolites are acetic acid, butyric acid, caproic acid and glycerol, and the highest hydrolysis ratio is obtained on the second day by monitoring SCOD, total volatile fatty acids and total sugars. The above results revealed that this consortium can effectively hydrolyze cassava residues (the waste produced during the cassava based bioethanol production) and has great potential to be utilized for the pretreatment of cassava residues for biogas fermentation.

  5. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification

    Directory of Open Access Journals (Sweden)

    Paolo Longoni

    2015-01-01

    Full Text Available Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  6. Cellulose-Hemicellulose Interactions at Elevated Temperatures Increase Cellulose Recalcitrance to Biological Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Rajeev [University of California, Riverside; Oak Ridge National Laboratory; ; Smith, Micholas Dean [Oak Ridge National Laboratory; University of Tennessee; Petridis, Loukas [Oak Ridge National Laboratory; University of Tennessee; Ong, Rebecca G. [Michigan Technological University; Cai, Charles M. [University of California, Riverside; Oak Ridge National Laboratory; Balan, Venkatesh [University of Houston; Dale, Bruce E. [Michigan State University; Ragauskas, Arthur J. [Oak Ridge National Laboratory; University of Tennessee; Smith, Jeremy C. [Oak Ridge National Laboratory; University of Tennessee; Wyman, Charles E. [University of California, Riverside; Oak Ridge National Laboratory

    2018-01-23

    It has been previously shown that cellulose-lignin droplets' strong interactions, resulting from lignin coalescence and redisposition on cellulose surface during thermochemical pretreatments, increase cellulose recalcitrance to biological conversion, especially at commercially viable low enzyme loadings. However, information on the impact of cellulose-hemicellulose interactions on cellulose recalcitrance following relevant pretreatment conditions are scarce. Here, to investigate the effects of plausible hemicellulose precipitation and re-association with cellulose on cellulose conversion, different pretreatments were applied to pure Avicel(R) PH101 cellulose alone and Avicel mixed with model hemicellulose compounds followed by enzymatic hydrolysis of resulting solids at both low and high enzyme loadings. Solids produced by pretreatment of Avicel mixed with hemicelluloses (AMH) were found to contain about 2 to 14.6% of exogenous, precipitated hemicelluloses and showed a remarkably much lower digestibility (up to 60%) than their respective controls. However, the exogenous hemicellulosic residues that associated with Avicel following high temperature pretreatments resulted in greater losses in cellulose conversion than those formed at low temperatures, suggesting that temperature plays a strong role in the strength of cellulose-hemicellulose association. Molecular dynamics simulations of hemicellulosic xylan and cellulose were found to further support this temperature effect as the xylan-cellulose interactions were found to substantially increase at elevated temperatures. Furthermore, exogenous, precipitated hemicelluloses in pretreated AMH solids resulted in a larger drop in cellulose conversion than the delignified lignocellulosic biomass containing comparably much higher natural hemicellulose amounts. Increased cellulase loadings or supplementation of cellulase with xylanases enhanced cellulose conversion for most pretreated AMH solids; however, this approach

  7. Preparation of Bio-beads and Their Atrazine Degradation Characteristics

    Institute of Scientific and Technical Information of China (English)

    BI Hai-tao; ZHANG Lan-ying; LIU Na; ZHU Bo-lin

    2011-01-01

    Screened atrazine-mineralizing bacterium-Pseudomonas W4 was embedded inside an improved PVAH3BO3 embedment matrix to make bio-beads to degrade atrazine. The atrazine degradation characteristics were studied. The preparation procedure of bio-beads was as follows: (1) preparing a mixture of 100, 12.5, 10, 1.5 and 1 g/L PVA, bentonite(Ca), activated carbon powder, sodium alginate and centrifuged Pseudomonas W4 bacterium, respectively; (2) the mixture was dropped into a gently stirred cross linker solution(pH=6.7) and cured at 10 ℃ for 24 h.The optimal atrazine degradation conditions by bio-beads were as follows: pH=7, the auxiliary carbon source was glucose, and the concentration of glucose was greater than 325 mg/L. The bio-beads demonstrated stronger tolerance ability than the free microorganism to the increase of PCBs, hydrogen ion and hydroxide ion. SEM images show the uniform distribution of the microorganism inside bio-beads and the porous cross-linked structure of bio-beads which provides excellent mass transfer capacity.

  8. Synthesis and characterization of amorphous cellulose from triacetate of cellulose

    International Nuclear Information System (INIS)

    Vega-Baudrit, Jose; Sibaja, Maria; Nikolaeva, Svetlana; Rivera A, Andrea

    2014-01-01

    It was carried-out a study for the synthesis and characterization of amorphous cellulose starting from cellulose triacetate. X-rays diffraction was used in order to obtain the cellulose crystallinity degree, also infrared spectroscopy FTIR was used. (author)

  9. Process optimization for obtaining nano cellulose from curaua fiber

    International Nuclear Information System (INIS)

    Lunz, Juliana do N.; Cordeiro, Suellem B.; Mota, Jose Carlos F.; Marques, Maria de Fatima V.

    2011-01-01

    This study focuses on the methodology for optimization to obtain nanocellulose from vegetal fibers. An experimental planning was carried out for the treatment of curaua fibers and parameters were estimated, having the concentration of H 2 SO 4 , hydrolysis time, reaction temperature and time of sonication applied as independent variables for further statistical analysis. According to the estimated parameters, the statistically significant effects were determined for the process of obtaining nanocellulose. According to the results obtained from the thermogravimetric analysis (TGA) it was observed that certain conditions led to cellulose with degradation temperatures near or even above that of untreated cellulose fibers. The crystallinity index (IC) obtained after fiber treatment (X-ray diffraction) were higher than that of the pure fiber. Treatments with high acid concentrations led to higher IC. (author)

  10. Degradation of Chlorinated Aliphatic Hydrocarbons by Methylosinus trichosporium OB3b Expressing Soluble Methane Monooxygenase

    NARCIS (Netherlands)

    Oldenhuis, R.; Vink, Ruud L.J.M.; Janssen, D. B.; Witholt, B.

    1989-01-01

    Degradation of trichloroethylene (TCE) by the methanotrophic bacterium Methylosinus trichosporium OB3b was studied by using cells grown in continuous culture. TCE degradation was a strictly cometabolic process, requiring the presence of a cosubstrate, preferably formate, and oxygen. M. trichosporium

  11. The impact of alterations in lignin deposition on cellulose organization of the plant cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiliang; Kim, Jeong Im; Cusumano, Joanne C.; Chapple, Clint; Venugopalan, Nagarajan; Fischetti, Robert F.; Makowski, Lee

    2016-06-17

    Background: Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we seek to identify aspects of that codependency by studying the structural organization of cellulose fibrils in stems from Arabidopsis plants harboring mutations in genes encoding enzymes involved in lignin biosynthesis. Plants containing high levels of G-lignin, S-lignin, H-lignin, aldehyde-rich lignin, and ferulic acid-containing lignin, along with plants with very low lignin content were grown and harvested and longitudinal sections of stem were prepared and dried. Scanning X-ray microdiffraction was carried out using a 5-micron beam that moved across the sections in 5-micron steps and complete diffraction patterns were collected at each raster point. Approximately, 16,000 diffraction patterns were analyzed to determine cellulose fibril orientation and order within the tissues making up the stems. Results: Several mutations-most notably those exhibiting (1) down-regulation of cinnamoyl CoA reductase which leads to cell walls deficient in lignin and (2) defect of cinnamic acid 4-hydroxylase which greatly reduces lignin content-exhibited significant decrease in the proportion of oriented cellulose fibrils in the cell wall. Distinctions between tissues were maintained in all variants and even in plants exhibiting dramatic changes in cellulosic order the trends between tissues (where apparent) were generally maintained. The resilience of cellulose to degradative processes was investigated by carrying out the same analysis on samples stored in water for 30 days prior to data collection. This treatment led to significant loss of cellulosic order in plants rich in aldehyde or H-lignin, less change in wild type, and essentially no change in samples with

  12. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles

    Science.gov (United States)

    Simoneit, B. R. T.; Schauer, J. J.; Nolte, C. G.; Oros, D. R.; Elias, V. O.; Fraser, M. P.; Rogge, W. F.; Cass, G. R.

    The major organic components of smoke particles from biomass burning are monosaccharide derivatives from the breakdown of cellulose, accompanied by generally lesser amounts of straight-chain, aliphatic and oxygenated compounds and terpenoids from vegetation waxes, resins/gums, and other biopolymers. Levoglucosan and the related degradation products from cellulose can be utilized as specific and general indicator compounds for the presence of emissions from biomass burning in samples of atmospheric fine particulate matter. This enables the potential tracking of such emissions on a global basis. There are other compounds (e.g. amyrones, friedelin, dehydroabietic acid, and thermal derivatives from terpenoids and from lignin—syringaldehyde, vanillin, syringic acid, vanillic acid), which are additional key indicators in smoke from burning of biomass specific to the type of biomass fuel. The monosaccharide derivatives (e.g. levoglucosan) are proposed as specific indicators for cellulose in biomass burning emissions. Levoglucosan is emitted at such high concentrations that it can be detected at considerable distances from the original combustion source.

  13. Magnetic poly(lactide-co-glycolide) (PLGA) and cellulose particles for MRI-based cell tracking

    Science.gov (United States)

    Nkansah, Michael K.; Thakral, Durga; Shapiro, Erik M.

    2010-01-01

    Biodegradable, superparamagnetic micro- and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into micro- and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt% for PLGA and 69.6 wt% for cellulose). While PLGA and cellulose nanoparticles displayed highest r2* values per millimole of iron (399 s-1mM-1 for cellulose and 505 s-1mM-1 for PLGA), micron-sized PLGA particles had a much higher r2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for non-invasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long term (cellulose-based particles) experiments. PMID:21404328

  14. Draft Genome Sequence of a Cellulase-Producing Psychrotrophic Paenibacillus Strain, IHB B 3415, Isolated from the Cold Environment of the Western Himalayas, India.

    Science.gov (United States)

    Dhar, Hena; Swarnkar, Mohit Kumar; Gulati, Arvind; Singh, Anil Kumar; Kasana, Ramesh Chand

    2015-02-19

    Paenibacillus sp. strain IHB B 3415 is a cellulase-producing psychrotrophic bacterium isolated from a soil sample from the cold deserts of Himachal Pradesh, India. Here, we report an 8.44-Mb assembly of its genome sequence with a G+C content of 50.77%. The data presented here will provide insights into the mechanisms of cellulose degradation at low temperature. Copyright © 2015 Dhar et al.

  15. Radiation modification of cellulose pulps. Preparation of cellulose derivatives

    International Nuclear Information System (INIS)

    Iller, E.; Zimek, Z.; Stupinska, H.; Mikolajczyk, W; Starostka, P.

    2005-01-01

    One of the most common methods of cellulose pulp modification (activation) applied in the production process of cellulose derivatives is the treatment of the pulp with NaOH solutions leading to the formation of alkalicellulose. The product then undergoes a prolonged process of maturation by its storage under specific conditions. The goal of the process is lowering of the molecular weight of cellulose down to the level resulting from various technological requirements. The process is time-consuming and costly; besides, it requires usage of large-capacity technological vessels and produces considerable amounts of liquid waste. Therefore, many attempts have been made to limit or altogether eliminate the highly disadvantageous stage of cellulose treatment with lye. One of the alternatives proposed so far is the radiation treatment of the cellulose pulp. In the pulp exposed to an electron beam, the bonds between molecules of D-antihydroglucopiranoses loosen and the local crystalline lattice becomes destroyed. This facilitates the access of chemical reagents to the inner structure of the cellulose and, in consequence, eliminates the need for the prolonged maturation of alkalicellulose, thus reducing the consumption of chemicals by the whole process. Research aimed at the application of radiation treatment of cellulose pulp for the production of cellulose derivatives has been conducted by a number of scientific institutions including the Institute of Nuclear Chemistry and Technology, Institute of Biopolymers and Chemical Fibres, and Pulp and Paper Research Institute. For the investigations and assessment of the molecular, hypermolecular, morphologic properties and the chemical reactivity, cellulose pulps used for chemical processing, namely Alicell, Borregaard and Ketchikan, as well as paper pulps made from pine and birch wood were selected. The selected cellulose pulps were exposed to an electron beam with an energy of 10 MeV generated in a linear electron accelerator

  16. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose

    Science.gov (United States)

    2013-01-01

    Background Numerous studies have examined the direct fermentation of cellulosic materials by cellulase-expressing yeast; however, ethanol productivity in these systems has not yet reached an industrial level. Certain microorganisms, such as the cellulolytic fungus Trichoderma reesei, produce expansin-like proteins, which have a cellulose-loosening effect that may increase the breakdown of cellulose. Here, to improve the direct conversion of cellulose to ethanol, yeast Saccharomyces cerevisiae co-displaying cellulase and expansin-like protein on the cell surface were constructed and examined for direct ethanol fermentation performance. Results The cellulase and expansin-like protein co-expressing strain showed 246 mU/g-wet cell of phosphoric acid swollen cellulose (PASC) degradation activity, which corresponded to 2.9-fold higher activity than that of a cellulase-expressing strain. This result clearly demonstrated that yeast cell-surface expressed cellulase and expansin-like protein act synergistically to breakdown cellulose. In fermentation experiments examining direct ethanol production from PASC, the cellulase and expansin-like protein co-expressing strain produced 3.4 g/L ethanol after 96 h of fermentation, a concentration that was 1.4-fold higher than that achieved by the cellulase-expressing strain (2.5 g/L). Conclusions The PASC degradation and fermentation ability of an engineered yeast strain was markedly improved by co-expressing cellulase and expansin-like protein on the cell surface. To our knowledge, this is the first report to demonstrate the synergetic effect of co-expressing cellulase and expansin-like protein on a yeast cell surface, which may be a promising strategy for constructing direct ethanol fermenting yeast from cellulose. PMID:23835302

  17. An Investigation of Cellulose Digesting Bacteria in the Camel Feces Microbiome

    Science.gov (United States)

    Man, V.; Leung, F. C.

    2015-12-01

    Research Question: Is there a bacteria in camel feces that digests cellulose material and can be used for waste to energy projects? Fossil fuels are the current main resource of energy in the modern world. However, as the demand for fuel increases, biofuels have been proposed as an alternative energy source that is a more sustainable form of liquid fuel generation from living things or waste, commonly known as biofuels and ethanol. The Camelus dromedarius', also known as Arabian camel, diet consist of grass, grains, wheat and oats as well desert vegetation in their natural habitat. However, as the Arabian camel lacks the enzymes to degrade cellulose, it is hypothesized that cellulose digestion is performed by microbial symbionts in camel microbiota. Fecal samples were collected from the Camelus dromedarius in United Arab Emirates and diluted 10-7 times. The diluted sample was then streaked onto a Sodium Carboxymethyl Cellulose plate, and inoculated onto CMC and Azure-B plates. Afterwards, Congo Red was used for staining in order to identify clearance zones of single colonies that may potentially be used as a qualitative assays for cellulose digestion. Then the colonies undergo polymerase chain reaction amplification to produce amplified RNA fragments. The 16S ribosomal RNA gene is identified based on BLAST result using Sanger Sequencing. Amongst the three identified microbes: Bacillus, Staphylococcus and Escherichia coli, both Bacillus and Staphylococcus are cellulose-digesting microbes, and through the fermentation of lignocellulosic, biomasses can be converted into cellulosic ethanol (Biofuel). According to the Improvements in Life Cycle Energy Efficiency and Greenhouse Gas Emissions of Corn-Ethanol by Adam J. Liska, ""Ethanol reduces greenhouse gas emissions by 40-50% when compared directly to gasoline." The determination of bacterial communities that are capable of efficiently and effectively digesting cellulose materials requires that the bacteria be first

  18. Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus.

    Science.gov (United States)

    Han, Yejun; Agarwal, Vinayak; Dodd, Dylan; Kim, Jason; Bae, Brian; Mackie, Roderick I; Nair, Satish K; Cann, Isaac K O

    2012-10-12

    Hemicellulose is the next most abundant plant cell wall component after cellulose. The abundance of hemicellulose such as xylan suggests that their hydrolysis and conversion to biofuels can improve the economics of bioenergy production. In an effort to understand xylan hydrolysis at high temperatures, we sequenced the genome of the thermophilic bacterium Caldanaerobius polysaccharolyticus. Analysis of the partial genome sequence revealed a gene cluster that contained both hydrolytic enzymes and also enzymes key to the pentose-phosphate pathway. The hydrolytic enzymes in the gene cluster were demonstrated to convert products from a large endoxylanase (Xyn10A) predicted to anchor to the surface of the bacterium. We further use structural and calorimetric studies to demonstrate that the end products of Xyn10A hydrolysis of xylan are recognized and bound by XBP1, a putative solute-binding protein, likely for transport into the cell. The XBP1 protein showed preference for xylo-oligosaccharides as follows: xylotriose > xylobiose > xylotetraose. To elucidate the structural basis for the oligosaccharide preference, we solved the co-crystal structure of XBP1 complexed with xylotriose to a 1.8-Å resolution. Analysis of the biochemical data in the context of the co-crystal structure reveals the molecular underpinnings of oligosaccharide length specificity.

  19. [Isolation, identification and characterization of a diethylstilbestrol-degrading bacterial strain Serratia sp].

    Science.gov (United States)

    Xu, Ran-Fang; Sun, Min-Xia; Liu, Juan; Wang, Hong; Li, Xin; Zhu, Xue-Zhu; Ling, Wan-Ting

    2014-08-01

    Utilizing the diethylstilbestrol (DES)-degrading bacteria to biodegrade DES is a most reliable technique for cleanup of DES pollutants from the environment. However, little information is available heretofore on the isolation of DES-degrading bacteria and their DES removal performance in the environment. A novel bacterium capable of degrading DES was isolated from the activated sludge of a wastewater treatment plant. According to its morphology, physiochemical characteristics, and 16S rDNA sequence analysis, this strain was identified as Serratia sp.. The strain was an aerobic bacterium, and it could degrade 68.3% of DES (50 mg x L(-1)) after culturing for 7 days at 30 degrees C, 150 r x min(-1) in shaking flasks. The optimal conditions for DES biodegradation by the obtained strain were 30 degrees C, 40-60 mg x L(-1) DES, pH 7.0, 5% of inoculation volume, 0 g x L(-1) of added NaCl, and 10 mL of liquid medium volume in 100 mL flask.

  20. Enzymatic hydrolysis of cellulosic materials by Sclerotium rolfsii culture filtrate for sugar production

    Energy Technology Data Exchange (ETDEWEB)

    Shewale, J G; Sadana, J C

    1979-06-01

    The hydrolysis of purified celluloses (cotton, Avicel, Cellulose-123, Solka Floc SW40) and cellulosic wastes (rice straw, sugarcane bagasse, wood powders, paper factory effluents) by Sclerotium rolfsii CPC 142 culture filtrate was studied. Factors which effect saccharification such as pH, temperature, enzyme concentration, substrate concentration, produce inhibition, adsorption, and inactivation of enzyme and particle size were studied. Virtually no inhibition (less than 3%) of cellulose hydrolysis by the culture filtrate was observed by cellobiose and glucose up to 100 mg/mL. Filter paper degrading enzyme(s) (but neither carboxymethylcellulase nor beta-glucosidase) was adsorbed on cellulose. The n value in the S. rolfsii system was calculated to be 0.32 for Avicel P.H. 101 and 0.53 for alkali-treated (AT) rice straw indicating penetration of cellulase into AT rice straw. In batch experiments at 10% substrate level, solutions containing 6 to 7%, 3.8 to 4.7%, 4.0 to 5.1%, and 4.2 to 4.9% reducing sugars were produced in 24 to 48 from AT rice straw. AT bagasse, alkali - peracetic acid treated mesta wood and paper factory sedimented sludge effluent, respectively. The main constituent in the hydrolysate from cellulose was glucose with little or no cellobiose, probably due to the high cellobiase content in the culture filtrate.

  1. Development of plasmid vector and electroporation condition for gene transfer in sporogenic lactic acid bacterium, Bacillus coagulans.

    Science.gov (United States)

    Rhee, Mun Su; Kim, Jin-Woo; Qian, Yilei; Ingram, L O; Shanmugam, K T

    2007-07-01

    Bacillus coagulans is a sporogenic lactic acid bacterium that ferments glucose and xylose, major components of plant biomass, a potential feedstock for cellulosic ethanol. The temperature and pH for optimum rate of growth of B. coagulans (50 to 55 degrees C, pH 5.0) are very similar to that of commercially developed fungal cellulases (50 degrees C; pH 4.8). Due to this match, simultaneous saccharification and fermentation (SSF) of cellulose to products by B. coagulans is expected to require less cellulase than needed if the SSF is conducted at a sub-optimal temperature, such as 30 degrees C, the optimum for yeast, the main biocatalyst used by the ethanol industry. To fully exploit B. coagulans as a platform organism, we have developed an electroporation method to transfer plasmid DNA into this genetically recalcitrant bacterium. We also constructed a B. coagulans/E. coli shuttle vector, plasmid pMSR10 that contains the rep region from a native plasmid (pMSR0) present in B. coagulans strain P4-102B. The native plasmid, pMSR0 (6823bp), has 9 ORFs, and replicates by rolling-circle mode of replication. Plasmid pNW33N, developed for Geobacillus stearothermophilus, was also transformed into this host and stably maintained while several other Bacillus/Escherichia coli shuttle vector plasmids were not transformed into B. coagulans. The transformation efficiency of B. coagulans strain P4-102B using the plasmids pNW33N or pMSR10 was about 1.5x10(16) per mole of DNA. The availability of shuttle vectors and an electroporation method is expected to aid in genetic and metabolic engineering of B. coagulans.

  2. Draft Genome Sequence of MCPA-Degrading Sphingomonas sp. Strain ERG5, Isolated from a Groundwater Aquifer in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Tue Kjærgaard; Kot, Witold; Sørensen, Sebastian R

    2015-01-01

    Sphingomonas sp. strain ERG5 was isolated from a bacterial community, originating from a groundwater aquifer polluted with low pesticide concentrations. This bacterium degrades 2-methyl-4-chlorophenoxyacetic acid (MCPA) in a wide spectrum of concentrations and has been shown to function in bioaug......Sphingomonas sp. strain ERG5 was isolated from a bacterial community, originating from a groundwater aquifer polluted with low pesticide concentrations. This bacterium degrades 2-methyl-4-chlorophenoxyacetic acid (MCPA) in a wide spectrum of concentrations and has been shown to function...

  3. Extraction and characterization of cellulose nano whiskers from balsa wood; Extracao e caracterizacao de nanocristais de celulose obtidos da madeira balsa

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, Carolina L.; Bretas, Rosario E.S., E-mail: bretas@ufscar.br [Universidade Federal de Sao Carlos - UFSCar, Sao Carlos, SP (Brazil); Marconcini, Jose M. [Embrapa Instrumentacao, Sao Carlos, SP (Brazil); Pereira, Fabiano V. [Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG (Brazil); Branciforti, Marcia C. [Universidade de Sao Paulo - USP, Sao Carlos, SP (Brazil)

    2011-07-01

    In this study cellulose nano whiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were subjected to hydrolysis reactions for lignin and hemi cellulose digestion and acquisition of nano-scale cellulose. Cellulose nano crystals obtained had medium length and thickness of 176 nm and 7 nm respectively. Infrared spectroscopy and x-ray diffraction showed that the process used for extracting nano whiskers could digest nearly all the lignin and hemi cellulose from the balsa fiber and still preserve the aspect ratio and crystallinity, satisfactory enough for future application in polymer nano composites. Thermogravimetry showed that the onset temperature of thermal degradation of cellulose nano crystals (226 degree C) was higher than the temperature of the balsa fiber (215 degree C), allowing its use in molding processes with many polymers from the molten state.(author)

  4. Volume reduction of solid waste by biological conversion of cellulosics

    International Nuclear Information System (INIS)

    Strandberg, G.W.

    1981-06-01

    It has been demonstrated that the types of cellulosic wastes generated at ORNL can be effectively degraded in an anaerboic bioreactor. The rate and extent of anaerobic microbial digestion of blotter paper, cloth, sanitary napkins, and pine sawdust in various types and sizes of bench-scale anaerobic bioreactors are described. Preliminary tests indicate that the resulting digests are amenable to incorporation into hydrofracture grouts

  5. Going from Microbial Ecology to Genome Data and Back: Studies on a Haloalkaliphilic Bacterium Isolated from Soap Lake, Washington State

    Directory of Open Access Journals (Sweden)

    Melanie R. Mormile

    2014-11-01

    Full Text Available Soap Lake is a meromictic, alkaline (~pH 9.8 and saline (~14 to 140 g liter-1 lake located in the semiarid area of eastern Washington State. Of note is the length of time it has been meromictic (at least 2000 years and the extremely high sulfide level (~140 mM in its monimolimnion. As expected, the microbial ecology of this lake is greatly influenced by these conditions. A bacterium, Halanaerobium hydrogeniformans, was isolated from the mixolimnion region of this lake. H. hydrogeniformans is a haloalkaliphilic bacterium capable of forming hydrogen from 5- and 6-carbon sugars derived from hemicellulose and cellulose. Due to its ability to produce hydrogen under saline and alkaline conditions, in amounts that rival genetically modified organisms, its genome was sequenced. This sequence data provides an opportunity to explore the unique metabolic capabilities of this organism, including the mechanisms for tolerating the extreme conditions of both high salinity and alkalinity of its environment.

  6. Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column.

    Science.gov (United States)

    Ommedal, Hege; Torsvik, Terje

    2007-12-01

    A Gram-negative, sulphate-reducing bacterium (strain H3(T)) was isolated from an oil-reservoir model column. The new isolate was able to oxidize toluene coupled to hydrogen sulphide production. For growth, the optimum salt concentration was 1.5 % (w/v), the optimum pH was 7.2 and the optimum temperature was 34 degrees C. The cells were straight to slightly curved rods, 0.6-1.0 microm in diameter and 1.4-2.5 microm in length. The predominant fatty acids were C(16 : 0), C(16 : 1)omega7c and C(17 : 0) cyclo, and the cells also contained dimethylacetals. Cloning and sequencing of a 1505 bp long fragment of the 16S rRNA gene showed that strain H3(T) is a member of the Deltaproteobacteria and is related closely to Desulfotignum balticum DSM 7044(T). The G+C content of the DNA was 52.0 mol% and the DNA-DNA similarity to D. balticum DSM 7044(T) was 56.1 %. Based on differences in DNA sequence and the unique property of toluene degradation, it is proposed that strain H3(T) should be designated a member of a novel species within the genus Desulfotignum, for which the name Desulfotignum toluenicum sp. nov. is proposed. The type strain is H3(T) (=DSM 18732(T)=ATCC BAA-1460(T)).

  7. Successive changes in community structure of an ethylbenzene-degrading sulfate-reducing consortium.

    Science.gov (United States)

    Nakagawa, Tatsunori; Sato, Shinya; Yamamoto, Yoko; Fukui, Manabu

    2002-06-01

    The microbial community structure and successive changes in a mesophilic ethylbenzene-degrading sulfate-reducing consortium were for the first time clarified by the denaturing gradient gel electrophoresis (DGGE) analysis of the PCR amplified 16S rRNA gene fragments. At least ten bands on the DGGE gel were detected in the stationary phase. Phylogenetic analysis of the DGGE bands revealed that the consortium consisted of different eubacterial phyla including the delta subgroup of Proteobacteria, the order Sphingobacteriales, the order Spirochaetales, and the unknown bacterium. The most abundant band C was closely related to strain mXyS1, an m-xylene-degrading sulfate-reducing bacterium (SRB), and occurred as a sole band on DGGE gels in the logarithmic growth phase that 40% ethylbenzene was consumed accompanied by sulfide production. During further prolonged incubation, the dominancy of band C did not change. These results suggest that SRB corresponds to the most abundant band C and contributes mainly to the degradation of ethylbenzene coupled with sulfate reduction.

  8. Characterization and evaluation of residue 'grits' of the cellulose industry

    International Nuclear Information System (INIS)

    Destefani, A.Z.; Santos, M.M.; Holanda, J.N.F.

    2010-01-01

    The cellulose industry generates huge amounts of solid waste residue called 'grits'. These wastes have been willing over time in landfills near the mills. However, this type of disposal is not environmentally friendly and can cause degradation and environmental pollution. In addition, environmental legislation increasingly severe and the high costs of landfill have led the search for new alternatives for final disposition of this abundant waste. In this context, this study is to characterize waste grits, generated by the cellulose industry in the region of Aracruz-ES. The residue samples were characterized in terms of chemical composition, X-ray diffraction, particle size distribution and thermal analysis (DTA and TGA). The characterization of the residual 'grits' demonstrated its potential as a feedstock for production of soil-cement bricks. (author)

  9. Conditions for selective degradation of lignin by the fungus Ganoderma australis

    Energy Technology Data Exchange (ETDEWEB)

    Rios, S.; Eyzaguirre, J. (Universidad Catolica de Chile, Santiago (Chile). Lab. de Bioquimica)

    1992-08-01

    The white-rot fungus Ganoderma australis selectively degrades lignin in the ecosystem 'palo podrido'. Using conditions that simulate those of 'palo podrido' in the laboratory, it was found that low nitrogen content and low O{sub 2} tension stimulate the production of manganese peroxidase and lignin degradation, and depress cellulose degradation and cellulase production. The inverse is found at high nitrogen concentration and high O{sub 2} tension. This agrees with previous results indicating that low O{sub 2} tension and low nitrogen stimulate selective lignin degradation by this fungus. (orig.).

  10. Physicotechnical, spectroscopic and thermogravimetric properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells

    Directory of Open Access Journals (Sweden)

    Chukwuemeka P. Azubuike

    2012-09-01

    Full Text Available α-Cellulose and microcrystalline cellulose powders, derived from agricultural waste products, that have for the pharmaceutical industry, desirable physical (flow properties were investigated. α–Cellulose (GCN was extracted from groundnut shell (an agricultural waste product using a non-dissolving method based on inorganic reagents. Modification of this α -cellulose was carried out by partially hydrolysing it with 2N hydrochloric acid under reflux to obtain microcrystalline cellulose (MCGN. The physical, spectroscopic and thermal properties of the derived α-cellulose and microcrystalline cellulose powders were compared with Avicel® PH 101, a commercial brand of microcrystalline cellulose (MCCA, using standard methods. X-ray diffraction and infrared spectroscopy analysis showed that the α-cellulose had lower crystallinity. This suggested that treatment with 2N hydrochloric acid led to an increase in the crystallinity index. Thermogravimetric analysis showed quite similar thermal behavior for all cellulose samples, although the α-cellulose had a somewhat lower stability. A comparison of the physical properties between the microcrystalline celluloses and the α-cellulose suggests that microcrystalline cellulose (MCGN and MCCA might have better flow properties. In almost all cases, MCGN and MCCA had similar characteristics. Since groundnut shells are agricultural waste products, its utilization as a source of microcrystalline cellulose might be a good low-cost alternative to the more expensive commercial brand.

  11. Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers’ tricks

    Directory of Open Access Journals (Sweden)

    Roberto Mazzoli

    2012-10-01

    Full Text Available Cellulose waste biomass is the most abundant and attractive substrate for "biorefinery strategies" that are aimed to produce high-value products (e.g. solvents, fuels, building blocks by economically and environmentally sustainable fermentation processes. However, cellulose is highly recalcitrant to biodegradation and its conversion by biotechnological strategies currently requires economically inefficient multistep industrial processes. The need for dedicated cellulase production continues to be a major constraint to cost-effective processing of cellulosic biomass.Research efforts have been aimed at developing recombinant microorganisms with suitable characteristics for single step biomass fermentation (consolidated bioprocessing, CBP. Two paradigms have been applied for such, so far unsuccessful, attempts: a “native cellulolytic strategies”, aimed at conferring high-value product properties to natural cellulolytic microorganisms; b “recombinant cellulolytic strategies”, aimed to confer cellulolytic ability to microorganisms exhibiting high product yields and titers.By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.

  12. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Lampugnani, Edwin R.; Persson, Staffan

    2016-01-01

    Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated with the ...

  13. One-Pot Route towards Active TiO2 Doped Hierarchically Porous Cellulose: Highly Efficient Photocatalysts for Methylene Blue Degradation

    Directory of Open Access Journals (Sweden)

    Xiaoxia Sun

    2017-03-01

    Full Text Available In this study, novel photocatalyst monolith materials were successfully fabricated by a non-solvent induced phase separation (NIPS technique. By adding a certain amount of ethyl acetate (as non-solvent into a cellulose/LiCl/N,N-dimethylacetamide (DMAc solution, and successively adding titanium dioxide (TiO2 nanoparticles (NPs, cellulose/TiO2 composite monoliths with hierarchically porous structures were easily formed. The obtained composite monoliths possessed mesopores, and two kinds of macropores. Scanning Electron Microscope (SEM, Energy Dispersive Spectroscopy (EDS, Fourier Transform Infrared Spectroscopy (FT-IR, X-ray Diffraction (XRD, Brunauer-Emmett-Teller (BET, and Ultraviolet-visible Spectroscopy (UV-Vis measurements were adopted to characterize the cellulose/TiO2 composite monolith. The cellulose/TiO2 composite monoliths showed high efficiency of photocatalytic activity in the decomposition of methylene blue dye, which was decomposed up to 99% within 60 min under UV light. Moreover, the composite monoliths could retain 90% of the photodegradation efficiency after 10 cycles. The novel NIPS technique has great potential for fabricating recyclable photocatalysts with highly efficiency.

  14. Performance of improved bacterial cellulose application in the production of functional paper.

    Science.gov (United States)

    Basta, A H; El-Saied, H

    2009-12-01

    The purpose of this work was to study the feasibility of producing economic flame retardant bacterial cellulose (BC) and evaluating its behaviour in paper production. This type of BC was prepared by Gluconacetobacter subsp. xylinus and substituting the glucose in the cultivation medium by glucose phosphate as a carbon source; as well as using corn steep liquor as a nitrogen source. The investigated processing technique did not dispose any toxic chemicals that pollute the surroundings or cause unacceptable effluents, making the process environmentally safe. The fire retardant behaviour of the investigated BC has been studied by non-isothermal thermogravimetric analysis (TGA & DTGA). The activation energy of each degradation stage and the order of degradation were estimated using the Coats-Redfern equation and the least square method. Strength, optical properties, and thermogravimetric analysis of BC-phosphate added paper sheets were also tested. The study confirmed that the use of glucose phosphate along with glucose was significant in the high yield production of phosphate containing bacterial cellulose (PCBC1); more so than the use of glucose phosphate alone (PCBC2). Incorporating 5% of the PCBC with wood pulp during paper sheet formation was found to significantly improve kaolin retention, strength, and fire resistance properties as compared to paper sheets produced from incorporating bacterial cellulose (BC). This modified BC is a valuable product for the preparation of specialized paper, in addition to its function as a fillers aid.

  15. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Science.gov (United States)

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  16. Lactobacillus diolivorans sp nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage

    NARCIS (Netherlands)

    Krooneman, J; Faber, F; Alderkamp, AC; Elferink, SJHWO; Driehuis, F; Cleenwerck, [No Value; Swings, J; Gottschal, JC; Vancanneyt, M

    Inoculation of maize silage with Lactobacillus buchneri (5 x 10(5) c.f.u. g(-1) of maize silage) prior to ensiling results in the formation of aerobically stable silage. After 9 months, lactic acid bacterium counts are approximately 10(10) c.f.u. g(-1) in these treated silages. An important

  17. Thermotoga lettingae sp. nov. : a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor

    NARCIS (Netherlands)

    Balk, M.; Weijma, J.; Stams, A.J.M.

    2002-01-01

    A novel, anaerobic, non-spore-forming, mobile, Gram-negative, thermophilic bacterium, strain TMO(T), was isolated from a thermophilic sulfate-reducing bioreactor operated at 65 degrees C with methanol as the sole substrate. The G C content of the DNA of strain TMO(T) was 39.2 molÐThe optimum pH,

  18. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway.

    Science.gov (United States)

    Zhao, Huanhuan; Xu, Jun; Dong, Fengshou; Liu, Xingang; Wu, Yanbing; Wu, Xiaohu; Zheng, Yongquan

    2016-08-01

    Persistent use of the diphenyl ether herbicides oxyfluorfen may seriously increase the health risks and ecological safety problems. A newly bacterium R-21 isolated from active soil was able to degrade and utilize oxyfluorfen as the sole carbon source. R-21 was identified as Chryseobacterium aquifrigidense by morphology, physiobiochemical characteristics, and genetic analysis. Under the optimum cultural conditions (pH 6.9, temperature 33.4 °C, and inoculum size 0.2 g L(-1)), R-21 could degrade 92.1 % of oxyfluorfen at 50 mg L(-1) within 5 days. During oxyfluorfen degradation, six metabolites were detected and identified by atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry and ultra-performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry, and a plausible degradation pathway was deduced. Strain R-21 is a promising potential in bioremediation of oxyfluorfen-contaminated environments.

  19. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil.

    Science.gov (United States)

    Lee, Yunho; Jeon, Che Ok

    2018-04-01

    A Gram-stain-negative, facultatively aerobic, aromatic hydrocarbon-degrading bacterium, designated strain BN5 T , was isolated from gasoline-contaminated soil. Cells were motile and slightly curved rods with a single flagellum showing catalase and oxidase activities. Growth was observed at 20-37 °C (optimum, 25-30 °C), pH 3-7 (optimum, pH 5-6) and 0-2 % NaCl (optimum, 0 %). Ubiquinone-8 was the predominant respiratory quinone. The major fatty acids were C16 : 0, cyclo-C19 : 0ω8c and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c). Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phosphoamino lipid, three unidentified amino lipids and eight unidentified lipids were the identified polar lipids. The DNA G+C content was 62.93 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BN5 T formed a phylogenic lineage with members of the genus Paraburkholderia and showed the highest 16S rRNA gene sequence similarities to Paraburkholderia phytofirmans PsJN T (99.4 %), Paraburkholderia dipogonis DL7 T (98.8 %) and Paraburkholderia insulsa PNG-April T (98.8 %). The average nucleotide identity and in silico DNA-DNA hybridization (DDH) values between strain BN5 T and P. phytofirmans PsJN T were 88.5 and 36.5 %, respectively. The DDH values for strain BN5 T with P. dipogonis LMG 28415 T and P. insulsa DSM 28142 T were 41.0±4.9 % (reciprocal, 33.0±4.3 %) and 47.1±6.6 % (reciprocal, 51.7±5.4 %), respectively. Based on its physiological, chemotaxonomic and phylogenetic features, we conclude that strain BN5 T is a novel species of the genus Paraburkholderia, for which the name Paraburkholderia aromaticivorans sp. nov. is proposed. The type strain is BN5 T (=KACC 19419 T =JCM 32303 T ).

  20. Practical screening of purified cellobiohydrolases and endoglucanases with α-cellulose and specification of hydrodynamics

    Directory of Open Access Journals (Sweden)

    Jäger Gernot

    2010-08-01

    Full Text Available Abstract Background It is important to generate biofuels and society must be weaned from its dependency on fossil fuels. In order to produce biofuels, lignocellulose is pretreated and the resulting cellulose is hydrolyzed by cellulases such as cellobiohydrolases (CBH and endoglucanases (EG. Until now, the biofuel industry has usually applied impractical celluloses to screen for cellulases capable of degrading naturally occurring, insoluble cellulose. This study investigates how these cellulases adsorb and hydrolyze insoluble α-cellulose − considered to be a more practical substrate which mimics the alkaline-pretreated biomass used in biorefineries. Moreover, this study investigates how hydrodynamics affects cellulase adsorption and activity onto α-cellulose. Results First, the cellulases CBH I, CBH II, EG I and EG II were purified from Trichoderma reesei and CBH I and EG I were utilized in order to study and model the adsorption isotherms (Langmuir and kinetics (pseudo-first-order. Second, the adsorption kinetics and cellulase activities were studied under different hydrodynamic conditions, including liquid mixing and particle suspension. Third, in order to compare α-cellulose with three typically used celluloses, the exact cellulase activities towards all four substrates were measured. It was found that, using α-cellulose, the adsorption models fitted to the experimental data and yielded parameters comparable to those for filter paper. Moreover, it was determined that higher shaking frequencies clearly improved the adsorption of cellulases onto α-cellulose and thus bolstered their activity. Complete suspension of α-cellulose particles was the optimal operating condition in order to ensure efficient cellulase adsorption and activity. Finally, all four purified cellulases displayed comparable activities only on insoluble α-cellulose. Conclusions α-Cellulose is an excellent substrate to screen for CBHs and EGs. This current investigation

  1. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Matsuhashi, S.

    2000-01-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48 V and 62 Zn. (author)

  2. The environmental benefits of cellulosic energy crops at a landscape scale

    International Nuclear Information System (INIS)

    Graham, R.L.; Liu, W.; English, B.C.

    1995-01-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops--particularly the cellulosic energy crops current under development. For this discussion, the term energy crop refers to a crop grown primarily to create feedstock for either making biofuels such as ethanol or burning in a heat or electricity generation facility. Cellulosic energy crops are designed to be used in cellulose-based ethanol conversion processes (as opposed to starch or sugar-based ethanol conversion processes). As more cellulose can be produced per hectare of land than can sugar or starch, the cellulose-based ethanol conversion process is a more efficient sue of land for ethanol production. Assessing the environmental impacts of biomass energy from energy crops is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing cellulosic energy crops especially at the landscape or regional scale. However, to set the stage for this discussion, the authors begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics

  3. Characterization of a mycobacterial cellulase and its impact on biofilm- and drug-induced cellulose production.

    Science.gov (United States)

    Van Wyk, Niël; Navarro, David; Blaise, Mickaël; Berrin, Jean-Guy; Henrissat, Bernard; Drancourt, Michel; Kremer, Laurent

    2017-05-01

    It was recently shown that Mycobacterium tuberculosis produces cellulose which forms an integral part of its extracellular polymeric substances within a biofilm set-up. Using Mycobacterium smegmatis as a proxy model organism, we demonstrate that M. smegmatis biofilms treated with purified MSMEG_6752 releases the main cellulose degradation-product (cellobiose), detected by using ionic chromatography, suggesting that MSMEG_6752 encodes a cellulase. Its overexpression in M. smegmatis prevents spontaneous biofilm formation. Moreover, the method reported here allowed detecting cellobiose when M. smegmatis cultures were exposed to a subinhibitory dose of rifampicin. Overall, this study highlights the role of the MSMEG_6752 in managing cellulose production induced during biofilm formation and antibiotic stress response. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  5. Effect of repeated application of 14C-carbaryl and of addition of glucose and cellulose to soil samples

    International Nuclear Information System (INIS)

    Hirata, R.; Luchini, L.C.; Mesquita, T.B.; Ruegg, E.F.

    1984-01-01

    The behaviour of the insecticide carbaryl is studied in samples of Gley Humic and Red-Yellow Latosol soil by means of radiometric techniques. In the Red-Yellow Latosol two carbon sources - glucose and cellulose - and a mixture of glucose plus cellulose were added. Repeated applications of carbaryl in both soils highly increased the rate of degradation, probably due to a rapid increase in the number of microorganisms by using the pesticide as substrate. (M.A.C.) [pt

  6. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  7. Hydrothermal Treatment of Cellulose in Hot-Pressurized Water for the Production of Levulinic Acid

    Directory of Open Access Journals (Sweden)

    ASLI YUKSEL

    2016-12-01

    Full Text Available In this paper, hot-pressurized water, operating above boiling point and below critical point of water (374. 15 °C and 22.1 MPa, was used as a reaction medium for the decomposition of cellulose to high-value chemicals, such levulinic acid. Effects of reaction temperature, pressure, time, external oxidant type and concentration on the cellulose degradation and product distribution were evaluated. In order to compare the cellulose decomposition and yields of levulinic acid, experiments were performed with and without addition of oxidizing agents (H2SO4 and H2O2. Analysis of the liqueur was monitored by HPLC and GC-MS at different temperatures (150 - 280 °C, pressures (5-64 bars and reaction times (30 - 120 mins. Levulinic acid, 5-HMF and formic acid were detected as main products. 73% cellulose conversion was achieved with 38% levulinic acid yield when 125 mM of sulfuric acid was added to the reaction medium at 200 °C for 60 min reaction time.

  8. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, June 1, 1977--August 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1977-09-01

    Studies on the microbial degradation of cellulose biomass continues to be centered around Clostridium thermocellum. The effect of surfactants on growth and cellulase production by C. thermocellum was investigated. The effect of pH on growth and reducing sugar accumulation rate of Clostridium thermocellum on solka floc was evaluated. Activity of extracellular cellulase of Clostridium thermocellum ATCC 27405 was examined using TNP--CMC and Avicel as substrates. The pH optima are 5 and 4.5, respectively. Hydrolysis of either substrate is not inhibited by cellobiose, xylose, or glucose. The enzyme appears to be quite stable under reaction conditions at 60/sup 0/C. Thus far, regulation studies indicate that CMCase formation is not repressed by cellobiose. The search for plasmids in C. thermocellum was continued. The presence of plasmids was confirmed by cesium chloride ethidium bromide gradient centrifugation and electron microscopy. Two plasmids were detected, one with an approximate molecular weight of 1 x 10/sup 6/ daltons. Studies on the fermentation of lactic acid to propionic acid showed the pathway in C. propionicum to be simpler than in M. elsdenii and hence more amenable to manipulation for acrylate production. Using Lactobacillius delbrueckii, it was possible to convert glucose, cellobiose, and cellulose hydrolysates to lactic acid rapidly and quantitatively. Fermentations of C. acetobutylicum growing in soluble media were performed. Detailed studies of Clostridium thermoaceticum have shown that pH is the primary limiting factor in the production of acetic acid. pH-controlled fermentations indicated accumulations of over 30 gm/l of acetic acid.

  9. Degradation of aldrin by bacillus licheniformis, isolated from water and sediment from the Cienaga Grande, Santa Marta, Colombia

    International Nuclear Information System (INIS)

    Sanchez Diazgranados, Jose Gregorio; Henry Lopez, Carlos Andres

    2012-01-01

    The bacterium bacillus licheniformis was isolated from sediment and water samples from estuary lagoon Cienaga Grande de Santa Marta (CGSM), Colombian Caribbean. The aim of the work was to use this microorganism as an alternative in the degradation of organic persistent pollutants. b. licheniformis was able to tolerate aerobic conditions and concentrations of the pesticide organochlorine, aldrin. The test was made during 30 days with 60 ng/l of aldrin in order to evaluate the degradation capacity of this bacterium. Identification and isolation of b. licheniformis was made through morphological (gram test), as well as biochemical characterization (bbl crystal system). Aldrin concentration was determined by gas chromatography. Results show that b. licheniformis had a degradation capacity of 24% from total concentration. Factors like solar light exposition and volatilization had an extra influence of 31% on aldrin degradation.

  10. Degradation of 14C-parathion 'in vitro' by microorganisms isolated from a gley humic soil

    International Nuclear Information System (INIS)

    Andrea, M.M. de; Ruegg, E.F.

    1982-01-01

    It was determined 'in vitro' the degradation of Parathion by a bacterium and a fungus isolated from a sample of Gley Humic soil previously treated with repeated applications of the insecticide. In a qualitative colorimetric assay hydrolisis of parathion to p-nitrophenol just the bacterium gave a positive answer. In quantitative assays of 14 C-parathion degradation in culture media containing both microorganisms, organic solvents extractions resulted in organic and aqueous phases, which were analysed by liquid scintillation counting and thin-layer chromatography. In a mineral salts medium plus buffer, the bacterium and the fungus behaved differently from the control, because part of the 14 C-insecticide was metabolized to, at least, one metabolite and besides, the microorganisms presented smaller percentages of total recovery. The largest percentage of the radio carbon recovery from the extracts of the medium containing the fungus plus extract of yeast, was obtained from the aqueous phase and the existence of other metabolite was demonstrated by chromatograms of the organic phase. (Author) [pt

  11. Dissolution mechanism of crystalline cellulose in H3PO4 as assessed by high-field NMR spectroscopy and fast field cycling NMR relaxometry.

    Science.gov (United States)

    Conte, Pellegrino; Maccotta, Antonella; De Pasquale, Claudio; Bubici, Salvatore; Alonzo, Giuseppe

    2009-10-14

    Many processes have been proposed to produce glucose as a substrate for bacterial fermentation to obtain bioethanol. Among others, cellulose degradation appears as the most convenient way to achieve reliable amounts of glucose units. In fact, cellulose is the most widespread biopolymer, and it is considered also as a renewable resource. Due to extended intra- and interchain hydrogen bonds that provide a very efficient packing structure, however, cellulose is also a very stable polymer, the degradation of which is not easily achievable. In the past decade, researchers enhanced cellulose reactivity by increasing its solubility in many solvents, among which concentrated phosphoric acid (H(3)PO(4)) played the major role because of its low volatility and nontoxicity. In the present study, the solubilization mechanism of crystalline cellulose in H(3)PO(4) has been elucidated by using high- and low-field NMR spectroscopy. In particular, high-field NMR spectra showed formation of direct bonding between phosphoric acid and dissolved cellulose. On the other hand, molecular dynamics studies by low-field NMR with a fast field cycling (FFC) setup revealed two different H(3)PO(4) relaxing components. The first component, described by the fastest longitudinal relaxation rate (R(1)), was assigned to the H(3)PO(4) molecules bound to the biopolymer. Conversely, the second component, characterized by the slowest R(1), was attributed to the bulk solvent. The understanding of cellulose dissolution in H(3)PO(4) represents a very important issue because comprehension of chemical mechanisms is fundamental for process ameliorations to produce bioenergy from biomasses.

  12. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application

    International Nuclear Information System (INIS)

    Fu, Jiapeng; Pang, Zengyuan; Yang, Jie; Huang, Fenglin; Cai, Yibing; Wei, Qufu

    2015-01-01

    Graphical abstract: - Highlights: • PANI nanorods have been grown onto the surface of CMC/cellulose nanofibers for the fabrication of biosensor substrate material. • The proposed laccase biosensor exhibited a low detection limit and high sensitivity in the detection of catechol. • Hierarchical PANI/CMC/cellulose nanofibers are the promising material in the design of high-efficient biosensors. - Abstract: We report a facile approach to synthesizing and immobilizing polyaniline nanorods onto carboxymethyl cellulose (CMC)-modified cellulose nanofibers for their biosensing application. Firstly, the hierarchical PANI/CMC/cellulose nanofibers were fabricated by in situ polymerization of aniline on the CMC-modified cellulose nanofiber. Subsequently, the PANI/CMC/cellulose nanofibrous mat modified with laccase (Lac) was used as biosensor substrate material for the detection of catechol. PANI/CMC/cellulose nanofibers with highly conductive and three dimensional nanostructure were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, the Lac/PANI/CMC/cellulose/glassy carbon electrode (GCE) exhibited a fast response time (within 8 s), a linear response range from 0.497 μM to 2.27 mM with a high sensitivity and low detection limit of 0.374 μM (3σ). The developed biosensor also displayed good repeatability, reproducibility as well as selectivity. The results indicated that the composite mat has potential application in enzyme biosensors

  13. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiapeng, E-mail: firgexiao@sina.cn; Pang, Zengyuan, E-mail: pangzengyuan1212@163.com; Yang, Jie, E-mail: young1993@126.com; Huang, Fenglin, E-mail: flhuang@jiangnan.edu.cn; Cai, Yibing, E-mail: yibingcai@jiangnan.edu.cn; Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn

    2015-09-15

    Graphical abstract: - Highlights: • PANI nanorods have been grown onto the surface of CMC/cellulose nanofibers for the fabrication of biosensor substrate material. • The proposed laccase biosensor exhibited a low detection limit and high sensitivity in the detection of catechol. • Hierarchical PANI/CMC/cellulose nanofibers are the promising material in the design of high-efficient biosensors. - Abstract: We report a facile approach to synthesizing and immobilizing polyaniline nanorods onto carboxymethyl cellulose (CMC)-modified cellulose nanofibers for their biosensing application. Firstly, the hierarchical PANI/CMC/cellulose nanofibers were fabricated by in situ polymerization of aniline on the CMC-modified cellulose nanofiber. Subsequently, the PANI/CMC/cellulose nanofibrous mat modified with laccase (Lac) was used as biosensor substrate material for the detection of catechol. PANI/CMC/cellulose nanofibers with highly conductive and three dimensional nanostructure were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, the Lac/PANI/CMC/cellulose/glassy carbon electrode (GCE) exhibited a fast response time (within 8 s), a linear response range from 0.497 μM to 2.27 mM with a high sensitivity and low detection limit of 0.374 μM (3σ). The developed biosensor also displayed good repeatability, reproducibility as well as selectivity. The results indicated that the composite mat has potential application in enzyme biosensors.

  14. Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, M.; Ezaki, S.; Suzuki, N.; Kurane, R. [Kubota Corporation, Ryuugasaki City (Japan). Biotechnology Research Centre

    2005-07-01

    The biphenyl-utilizing bacterial strain KBC101 has been newly isolated from soil. Biphenyl-grown cells of KBC101 efficiently degraded di- to nonachlorobiphenyls. The isolate was identified as Paenibacillus sp. with respect to its 16S rDNA sequence and fatty acid profiles, as well as various biological and physiological characteristics. In the case of highly chlorinated biphenyl (polychlorinated biphenyl; PCB) congeners, the degradation activities of this strain were superior to those of the previously reported strong PCB degrader, Rhodococcus sp. RHA1. Recalcitrant coplanar PCBs, such as 3,4,3',4'-CB, were also efficiently degraded by strain KBC101 cells. This is the first report of a representative of the genus Paenibacillus capable of degrading PCBs. In addition to growth of biphenyl, strain KBC101 could grow on dibenzofuran, xanthene, benzophenone, anthrone, phenanthrene, napthalene, fluorene, fluoranthene, and chrysene as sole sources of carbon and energy. Paenibacillus sp. strain KBC101 presented heterogeneous degradation profiles toward various aromatic compounds. (orig.)

  15. High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    KAUST Repository

    Puspasari, Tiara

    2018-04-11

    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration of trimethylsilyl cellulose (TMSC), an easily synthesized cellulose derivative. The amorphous hydrophilic feature of the regenerated cellulose enabled fast permeation of water vapour. The pore-free cellulose layer thickness was adjustable by the initial TMSC concentration and acted as an efficient gas barrier. As a result, a 5,000 GPU water vapour transmission rate (WVTR) at the highest ideal selectivity of 1.1 x 106 was achieved by the membranes spin coated from a 7% (w/w) TMSC solution. The membranes maintained a 4,000 GPU WVTR with selectivity of 1.1 x 104 in the mixed-gas experiments, surpassing the performances of the previously reported composite membranes. This study provides a simple way to not only produce high performance membranes but also to advance cellulose as a low-cost and sustainable membrane material for dehumidification applications.

  16. Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns

    NARCIS (Netherlands)

    Boerstoel, H.

    2006-01-01

    The presen thesis describes a new process for manufacturing high tenacity and high modulus cellulose yarns. A new direct solvent for cellulose has been discovered, leading to liquid crystalline solutions. This new solvent, superphosphoric acid, rapidly dissolves cellulose. These liquid crystalline

  17. Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001.

    Science.gov (United States)

    Yusuf, Ibrahim; Ahmad, Siti Aqlima; Phang, Lai Yee; Syed, Mohd Arif; Shamaan, Nor Aripin; Abdul Khalil, Khalilah; Dahalan, Farrah Aini; Shukor, Mohd Yunus

    2016-12-01

    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes. Copyright © 2016. Published by

  18. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134.

    OpenAIRE

    Harker, A R; Kim, Y

    1990-01-01

    The bacterium Alcaligenes eutrophus JMP134(pJP4) degrades trichloroethylene (TCE) by a chromosomal phenol-dependent pathway and by the plasmid-encoded 2,4-dichlorophenoxyacetic acid pathway. The two pathways were independent and exhibited different rates of removal and capacities for quantity of TCE removed. The phenol-dependent pathway was more rapid (0.2 versus 0.06 nmol of TCE removed per min per mg of protein) and consumed all detectable TCE. The 2,4-dichlorophenoxyacetic acid-dependent p...

  19. Modification of Sorghum Starch-Cellulose Bioplastic with Sorghum Stalks Filler

    Directory of Open Access Journals (Sweden)

    Yuli Darni

    2017-05-01

    Full Text Available This study evaluated the feasibility of bioplastics production by various ratio of sorghum starch and cellulose from red seaweed Eucheuma spinossum, and the use of glycerol as plasticizer and sorghum stalks as filler. Solid-liquid matrix transition should be far over the operating temperature of gelatinization and extracted at 95oC in order to avoid the loss of conductivity. The analyzed variables were starch and cellulose seaweed Eucheuma spinossum and the addition of variation of filler. Sorghum stalk could be expected to affect the mechanical and physical properties of bioplastics. A thin sheet of plastic (plastic film was obtained as a result that have been tested mechanically to obtain the best condition for the formulation of starch-cellulose 8.5:1.5 (g/g. From the result of morphological studies, the fillers in the mixture composites were more randomly in each product and the addition of filler can increase mechanical properties of bioplastics. Chemical modification had a major effect on the mechanical properties. The phenomena of degradation and thermoplasticization were visible at chemical changes that can be observed in FTIR spectrum test results.

  20. Fabrication and investigation of a biocompatible microfilament with high mechanical performance based on regenerated bacterial cellulose and bacterial cellulose.

    Science.gov (United States)

    Wu, Huan-Ling; Bremner, David H; Wang, Hai-Jun; Wu, Jun-Zi; Li, He-Yu; Wu, Jian-Rong; Niu, Shi-Wei; Zhu, Li-Min

    2017-10-01

    A high-strength regenerated bacterial cellulose (RBC)/bacterial cellulose (BC) microfilament of potential use as a biomaterial was successfully prepared via a wet spinning process. The BC not only consists of a 3-D network composed of nanofibers with a diameter of several hundred nanometers but also has a secondary structure consisting of highly oriented nanofibrils with a diameter ranging from a few nanometers to tens of nanometers which explains the reason for the high mechanical strength of BC. Furthermore, a strategy of partially dissolving BC was used and this greatly enhanced the mechanical performance of spun filament and a method called post-treatment was utilized to remove residual solvents from the RBC/BC filaments. A comparison of structure, properties, as well as cytocompatibility between BC nanofibers and RBC/BC microfilaments was achieved using morphology, mechanical properties, X-ray Diffraction (XRD) and an enzymatic hydrolysis assay. The RBC/BC microfilament has a uniform groove structure with a diameter of 50-60μm and XRD indicated that the crystal form was transformed from cellulose Iα to cellulose III I and the degree of crystallinity of RBC/BC (33.22%) was much lower than the original BC (60.29%). The enzymatic hydrolysis assay proved that the RBC/BC material was more easily degraded than BC. ICP detection indicated that the residual amount of lithium was 0.07mg/g (w/w) and GC-MS analysis showed the residual amount of DMAc to be 8.51μg/g (w/w) demonstrating that the post-treatment process is necessary and effective for removal of residual materials from the RBC/BC microfilaments. Also, a cell viability assay demonstrated that after post-treatment the RBC/BC filaments had good cytocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of Forest Gaps on Litter Lignin and Cellulose Dynamics Vary Seasonally in an Alpine Forest

    Directory of Open Access Journals (Sweden)

    Han Li

    2016-01-01

    Full Text Available To understand how forest gaps and the associated canopy control litter lignin and cellulose dynamics by redistributing the winter snow coverage and hydrothermal conditions in the growing season, a field litterbag trial was conducted in the alpine Minjiang fir (Abies faxoniana Rehder and E.H. Wilson forest in a transitional area located in the upper reaches of the Yangtze River and the eastern Tibetan Plateau. Over the first year of litter decomposition, the litter exhibited absolute cellulose loss and absolute lignin accumulation except for the red birch litter. The changes in litter cellulose and lignin were significantly affected by the interactions among gap position, period and species. Litter cellulose exhibited a greater loss in the winter with the highest daily loss rate observed during the snow cover period. Both cellulose and lignin exhibited greater changes under the deep snow cover at the gap center in the winter, but the opposite pattern occurred under the closed canopy in the growing season. The results suggest that decreased snowpack seasonality due to winter warming may limit litter cellulose and lignin degradation in alpine forest ecosystems, which could further inhibit litter decomposition. As a result, the ongoing winter warming and gap vanishing would slow soil carbon sequestration from foliar litter in cold biomes.

  2. Characterization of cellulose nanowhiskers

    International Nuclear Information System (INIS)

    Nascimento, Nayra R.; Pinheiro, Ivanei F.; Morales, Ana R.; Ravagnani, Sergio P.; Mei, Lucia

    2015-01-01

    Cellulose is the most abundant polymer earth. The cellulose nanowhiskers can be extracted from the cellulose. These have attracted attention for its use in nanostructured materials for various applications, such as nanocomposites, because they have peculiar characteristics, among them, high aspect ratio, biodegradability and excellent mechanical properties. This work aims to characterize cellulose nanowhiskers from microcrystalline cellulose. Therefore, these materials were characterized by X-ray diffraction (XRD) to assess the degree of crystallinity, infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) to the morphology of nanowhiskers and thermal stability was evaluated by Thermogravimetric Analysis (TGA). (author)

  3. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment

    OpenAIRE

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant?Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, F?bio Oliveira; Souza, Emanuel Maltempi; Brandelli, Adriano; Passaglia, Luciane M. P.

    2015-01-01

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments.

  4. CELLULOSIC NANOCOMPOSITES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2008-08-01

    Full Text Available Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

  5. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses

    Directory of Open Access Journals (Sweden)

    Larroque Mathieu

    2012-11-01

    Full Text Available Abstract Background Oomycetes are fungal-like microorganisms evolutionary distinct from true fungi, belonging to the Stramenopile lineage and comprising major plant pathogens. Both oomycetes and fungi express proteins able to interact with cellulose, a major component of plant and oomycete cell walls, through the presence of carbohydrate-binding module belonging to the family 1 (CBM1. Fungal CBM1-containing proteins were implicated in cellulose degradation whereas in oomycetes, the Cellulose Binding Elicitor Lectin (CBEL, a well-characterized CBM1-protein from Phytophthora parasitica, was implicated in cell wall integrity, adhesion to cellulosic substrates and induction of plant immunity. Results To extend our knowledge on CBM1-containing proteins in oomycetes, we have conducted a comprehensive analysis on 60 fungi and 7 oomycetes genomes leading to the identification of 518 CBM1-containing proteins. In plant-interacting microorganisms, the larger number of CBM1-protein coding genes is expressed by necrotroph and hemibiotrophic pathogens, whereas a strong reduction of these genes is observed in symbionts and biotrophs. In fungi, more than 70% of CBM1-containing proteins correspond to enzymatic proteins in which CBM1 is associated with a catalytic unit involved in cellulose degradation. In oomycetes more than 90% of proteins are similar to CBEL in which CBM1 is associated with a non-catalytic PAN/Apple domain, known to interact with specific carbohydrates or proteins. Distinct Stramenopile genomes like diatoms and brown algae are devoid of CBM1 coding genes. A CBM1-PAN/Apple association 3D structural modeling was built allowing the identification of amino acid residues interacting with cellulose and suggesting the putative interaction of the PAN/Apple domain with another type of glucan. By Surface Plasmon Resonance experiments, we showed that CBEL binds to glycoproteins through galactose or N-acetyl-galactosamine motifs. Conclusions This study

  6. Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans.

    Science.gov (United States)

    Alva Munoz, Luis Esteban; Riley, Mark R

    2008-08-01

    Utilization of wastes from agriculture is becoming increasingly important due to concerns of environmental impact. The goals of this work were to evaluate the ability of an unusual organism, Saccharophagus degradans (ATCC 43961), to degrade the major components of plant cell walls and to evaluate the ability of S. degradans to produce polyhydroxyalkanoates (PHAs, also known as bioplastics). S. degradans can readily attach to cellulosic fibers, degrade the cellulose, and utilize this as the primary carbon source. The growth of S. degradans was assessed in minimal media (MM) containing glucose, cellobiose, avicel, and bagasse with all able to support growth. Cells were able to attach to avicel and bagasse fibers; however, growth on these insoluble fibers was much slower and led to a lower maximal biomass production than observed with simple sugars. Lignin in MM alone did not support growth, but did support growth upon addition of glucose, although with an increased adaptation phase. When culture conditions were switched to a nitrogen depleted status, PHA production commences and extends for at least 48 h. At early stationary phase, stained inclusion bodies were visible and two chronologically increasing infrared light absorbance peaks at 1,725 and 1,741 cm(-1) confirmed the presence of PHAs. This work demonstrates for what we believe to be the first time, that a single organism can degrade insoluble cellulose and under similar conditions can produce and accumulate PHA. Additional work is necessary to more fully characterize these capabilities and to optimize the PHA production and purification. (c) 2008 Wiley Periodicals, Inc.

  7. Defining Determinants and Dynamics and Cellulose Microfibril Biosynthesis, Assembly and Degredation OSP Number: 63079/A001

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-01

    The central paradigm for converting plant biomass into soluble sugars for subsequent conversion to transportation fuels involves the enzymatic depolymerization of lignocellulosic plant cell walls by microbial enzymes. Despite decades of intensive research, this is still a relatively inefficient process, due largely to the recalcitrance and enormous complexity of the substrate. A major obstacle is still insufficient understanding of the detailed structure and biosynthesis of major wall components, including cellulose. For example, although cellulose is generally depicted as rigid, insoluble, uniformly crystalline microfibrils that are resistant to enzymatic degradation, the in vivo structures of plant cellulose microfibrils are surprisingly complex. Crystallinity is frequently disrupted, for example by dislocations and areas containing chain ends, resulting in “amorphous” disordered regions. Importantly, microfibril structure and the relative proportions of crystalline and non-crystalline disordered surface regions vary substantially and yet the molecular mechanisms by which plants regulate microfibril crystallinity, and other aspects of microfibril architecture, are still entirely unknown. This obviously has a profound effect on susceptibility to enzymatic hydrolysis and so this is a critical area of research in order to characterize and optimize cellulosic biomass degradation. The entire field of cell wall assembly, as distinct from polysaccharide biosynthesis, and the degree to which they are coupled, are relatively unexplored, despite the great potential for major advances in addressing the hurdle of biomass recalcitrance. Our overarching hypothesis was that identification of the molecular machinery that determine microfibril polymerization, deposition and structure will allow the design of more effective degradative systems, and the generation of cellulosic materials with enhanced and predictable bioconversion characteristics. Our experimental framework had

  8. Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia

    Energy Technology Data Exchange (ETDEWEB)

    Warikoo, V.; McInerney, M.J.; Suflita, J.M. [and others

    1997-03-01

    Benzoate degradation by an anaerobic, syntrophic bacterium, strain SB, in coculture with Desulfovibrio strain G-11 reached a threshold value which depended on the amount of acetate added, and ranged from about 2.5 to 29.9 {mu}M. Increasing acetate concentrations also uncompetitively inhibited benzoate degradation. The apparent V{sub max} and K{sub m} for benzoate degradation decreased with increasing acetate concentration, but the benzoate degradation capacity (V{sub max}/K{sub m}) of cell suspensions remained comparable. The addition of an acetate-using bacterium to cocultures after the threshold was reached resulted in the degradation of benzoate to below the detection limit. Mathematical simulations showed that the benzoate threshold was not predicted by the inhibitory effect of acetate on benzoate degradation kinetics. With nitrate instead of sulfate as the terminal electron acceptor, no benzoate threshold was observed in the presence of 20 mM acetate even though the degradation capacity was lower with nitrate than with sulfate. When strain SB was grown with a hydrogen-using partner that had a 5-fold lower hydrogen utilization capacity, a 5 to 9-fold lower the benzoate degradation capacity was observed compared to SB/G-11 cocultures. The Gibb`s free energy for benzoate degradation was less negative in cell suspensions with threshold compared to those without threshold. These studies showed that the threshold was not a function of the inhibition of benzoate degradation capacity by acetate, or the toxicity of the undissociated form of acetate. Rather a critical or minimal Gibb`s free energy may exist where thermodynamic constraints preclude further benzoate degradation.

  9. Discovery of novel algae-degrading enzymes from marine bacteria

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel; Bech, Pernille Kjersgaard; Hennessy, Rosanna Catherine

    Algal cell wall polysaccharides, and their derived oligosaccharides, display a range of health beneficial bioactive properties. Enzymes capable of degrading algal polysaccharides into oligosaccharides may be used to produce biomolecules with new functionalities for the food and pharma industry....... Some marine bacteria are specialized in degrading algal biomass and secrete enzymes that can decompose the complex algal cell wall polysaccharides. In order to identify such bacteria and enzymatic activities, we have used a combination of traditional cultivation and isolation methods, bioinformatics...... and functional screening. This resulted in the discovery of a novel marine bacterium which displays a large enzymatic potential for degradation of red algal polysaccharides e.g. agar and carrageenan. In addition, we searched metagenome sequence data and identified new enzyme candidates for degradation...

  10. Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials

    Directory of Open Access Journals (Sweden)

    Hongxiang Xie

    2018-01-01

    Full Text Available The recent strategies in preparation of cellulose nanocrystals (CNCs and cellulose nanofibrils (CNFs were described. CNCs and CNFs are two types of nanocelluloses (NCs, and they possess various superior properties, such as large specific surface area, high tensile strength and stiffness, low density, and low thermal expansion coefficient. Due to various applications in biomedical engineering, food, sensor, packaging, and so on, there are many studies conducted on CNCs and CNFs. In this review, various methods of preparation of CNCs and CNFs are summarized, including mechanical, chemical, and biological methods. The methods of pretreatment of cellulose are described in view of the benefits to fibrillation.

  11. Functional analysis of the Glucan Degradation Locus (GDL) in Caldicellulosiruptor bescii reveals essential roles of component glycoside hydrolases in plant biomass deconstruction.

    Science.gov (United States)

    Conway, Jonathan M; McKinley, Bennett S; Seals, Nathaniel L; Hernandez, Diana; Khatibi, Piyum A; Poudel, Suresh; Giannone, Richard J; Hettich, Robert L; Williams-Rhaesa, Amanda M; Lipscomb, Gina L; Adams, Michael W W; Kelly, Robert M

    2017-10-06

    The ability to hydrolyze microcrystalline cellulose is an uncommon feature in the microbial world, but one that can be exploited for conversion of lignocellulosic feedstocks into bio-based fuels and chemicals. Understanding the physiological and biochemical mechanisms by which microorganisms deconstruct cellulosic material is key to achieving this objective. The Glucan Degradation Locus (GDL) in the genomes of extremely thermophilic Caldicellulosiruptor species encodes polysaccharide lyases (PLs), unique cellulose binding proteins (tāpirins), and putative post-translational modifying enzymes, in addition to multi-domain, multi-functional glycoside hydrolases (GHs), thereby representing an alternative paradigm for plant biomass degradation, as compared to fungal or cellulosomal systems. To examine the individual and collective in vivo roles of the glycolytic enzymes, the six GHs in the GDL of Caldicellulosiruptor bescii were systematically deleted, and the extent to which the resulting mutant strains could solubilize microcrystalline cellulose (Avicel) and plant biomasses (switchgrass or poplar) was examined. Three of the GDL enzymes, Athe_1867 (CelA) (GH9-CBM3-CBM3-CBM3-GH48), Athe_1859 (GH5-CBM3-CBM3-GH44), and Athe_1857 (GH10-CBM3-CBM3-GH48), acted synergistically in vivo and accounted for 92% of naked microcellulose (Avicel) degradation. However, the relative importance of the GDL GHs varied for the plant biomass substrates tested. Furthermore, mixed cultures of mutant strains showed switchgrass solubilization depended on the secretome-bound enzymes collectively produced by the culture and not on the specific strain from which they came. These results demonstrate that certain GDL GHs are primarily responsible for the degradation of microcrystalline-containing substrates by C. bescii and provide new insights into the workings of a novel microbial mechanism for lignocellulose utilization. Importance The efficient and extensive degradation of complex

  12. Bioconversion of cellulose into electrical energy in microbial fuel cells

    Science.gov (United States)

    Rismani-Yazdi, Hamid

    .5, 53 and 47 mWm-2, respectively. The anode potential varied under the different circuit loads employed. Higher coulombic efficiencies were achieved in MFCs with lower external resistance. The effect of different external resistances on the bacterial diversity and metabolism in cellulose-fed MFCs was investigated as the fourth objective. DGGE analysis of partial 16S rRNA genes showed clear differences between the planktonic and the anode-attached populations at various external resistances. Cellulose degradation was complete (anaerobic degradation of cellulose was accompanied by production of acetic, propionic, butyric, isobutyric, valeric, isovaleric, and lactic acids, with acetic acid being predominant. The profile of metabolites was different among the MFCs. The concentrations of SCFA were higher in MFCs with larger external resistance. High levels of SCFA indicated that fermentative metabolism dominated over anaerobic respiration, resulting in relatively low coulombic efficiencies. The accumulation of SCFA at higher circuit resistances corresponded to lower power outputs. Methanogenesis shifts the flow of electrons available from the substrate away from electricity generation in MFCs. The fifth objective of this research was to assess the influence of methane formation on the performance of cellulose-fed MFCs under long-term operation. A maximum volumetric power density of 3.5 W m-3 was achieved in R20O MFCs, which was three times greater than that obtained with R100O MFCs (1.03 W m-3). The diversity of methanogens in cellulose-fed MFCs was also characterized. It was shown that the suppression of methanogenesis was accompanied by a decrease in the diversity of methanogens and changes in the concentration of SCFA, as revealed by DGGE analysis of PCR-amplified 16S rRNA genes and HPLC analysis, respectively. Analysis of partial 16S rRNA gene Sequences indicated that the most predominant methanogens were related to the family Methanobacteriaceae . The results

  13. Versatile High-Performance Regenerated Cellulose Membranes Prepared using Trimethylsilyl Cellulose as a Precursor

    KAUST Repository

    Puspasari, Tiara

    2018-01-01

    (TMSC), a highly soluble cellulose derivative, as a precursor for the fabrication of cellulose thin film composite membranes. TMSC is an attractive precursor to assemble thin cellulose films with good deposition behavior and film morphology; cumbersome

  14. A molecular analysis of (hemi-)cellulose degradation by Aspergilli

    NARCIS (Netherlands)

    Gielkens, M.M.C.

    1999-01-01

    Glycosylhydrolases like cellulases and xylanases are of great importance for the ecological recycling of biomass. The saprophytic fungi, e.g Aspergillus niger , are capable of degrading plant cell wall material by secreting these enzymes. Because of their properties, a

  15. [Digestive utilization of purified cellulose in the rainbow trout (Salmo gairdneri) and the common carp (Cyprinus carpio)].

    Science.gov (United States)

    Bergot, F

    1981-01-01

    A semi-purified diet containing 22 p. 100 of a wood cellulose extract without lignin but still containing 22 p. 100 of hemicelluloses was distributed for one month to rainbow trout and common carp reared at 17 and 20 degrees C, respectively. The digestibility of the main dietary constituents was determined by an indirect method using chrome oxide as an inert tracer. The feces were recovered by a continuous automatic collector which rapidly removed them from the water, minimizing alteration by leaching. The cellulose content was estimated by the Weende (crude fiber) and the Van Soest (neutral detergent fiber and acid detergent fiber) methods. The digestibility coefficients obtained for trout as well as for carp indicate that cellulose and hemicelluloses were not digested. In both species, volatile fatty acid concentration in the different segments of the digestive tract was low (less than 10 mM/l). These results lead us to suggest that trout and carp cannot degrade purified cellulose.

  16. Draft Genome Sequence of Caenibacillus caldisaponilyticus B157T, a Thermophilic and Phospholipase-Producing Bacterium Isolated from Acidulocompost

    Science.gov (United States)

    Tsujimoto, Yoshiyuki; Saito, Ryo; Sahara, Takehiko; Kimura, Nobutada; Tsuruoka, Naoki; Shigeri, Yasushi

    2017-01-01

    ABSTRACT Caenibacillus caldisaponilyticus B157T (= NBRC 111400T = DSM 101100T), in the family Sporolactobacillaceae, was isolated from acidulocompost as a thermophilic and phospholipid-degrading bacterium. Here, we report the 3.36-Mb draft genome sequence, with a G+C content of 51.8%, to provide the genetic information coding for phospholipases. PMID:28360164

  17. Conformations and Intermolecular Interactions in Cellulose/Silk Fibroin Blend Films: A Solid-State NMR Perspective.

    Science.gov (United States)

    Tian, Donglin; Li, Tao; Zhang, Rongchun; Wu, Qiang; Chen, Tiehong; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2017-06-29

    Fabricating materials with excellent mechanical performance from the natural renewable and degradable biopolymers has drawn significant attention in recent decades due to the environmental concerns and energy crisis. As two of the most promising substitutes of synthetic polymers, silk fibroin (SF), and cellulose, have been widely used in the field of textile, biomedicine, biotechnology, etc. Particularly, the cellulose/SF blend film exhibits better strength and toughness than that of regenerated cellulose film. Herein, this study is aimed to understand the molecular origin of the enhanced mechanical properties for the cellulose/SF blend film, using solid-state NMR as a main tool to investigate the conformational changes, intermolecular interactions between cellulose and SF and the water organization. It is found that the content of the β-sheet structure is increased in the cellulose/SF blend film with respect to the regenerated SF film, accompanied by the reduction of the content of random coil structures. In addition, the strong hydrogen bonding interaction between the SF and cellulose is clearly elucidated by the two-dimensional (2D) 1 H- 13 C heteronuclear correlation (HETCOR) NMR experiments, demonstrating that the SF and cellulose are miscible at the molecular level. Moreover, it is also found that the -NH groups of SF prefer to form hydrogen bonds with the hydroxyl groups bonded to carbons C2 and C3 of cellulose, while the hydroxyl groups bonded to carbon C6 and the ether oxygen are less favorable for hydrogen bonding interactions with the -NH groups of SF. Interestingly, bound water is found to be present in the air-dried cellulose/SF blend film, which is predominantly associated with the cellulose backbones as determined by 2D 1 H- 13 C wide-line-separation (WISE) experiments with spin diffusion. This clearly reveals the presence of nanoheterogeneity in the cellulose/SF blend film, although cellulose and SF are miscible at a molecular level. Without doubt

  18. Cellulolytic activity of some cellulose-decomposing fungi in salinized soils

    Directory of Open Access Journals (Sweden)

    R. A. Badran

    2014-08-01

    Full Text Available Maximum evolution of CO2 was marked in control soil inoculated by tested fungi but its rate decreased with the increasing salinity. The period of 10 days was most suitable for cellulose degradation by A. niger and P. chrysoecnum and 15 days by A. flavus and C. globosum in control soil. High salinity levels affected greatly the cellulolylic activities of tesled fungi. Carbon content of saline soils increased white the nitrogen content decreased.

  19. Stenotrophomonas sp. RZS 7, a novel PHB degrader isolated from plastic contaminated soil in Shahada, Maharashtra, Western India.

    Science.gov (United States)

    Wani, S J; Shaikh, S S; Tabassum, B; Thakur, R; Gulati, A; Sayyed, R Z

    2016-12-01

    This paper reports an isolation and identification of novel poly-β-hydroxybutyrate (PHB) degrading bacterium Stenotrophomonas sp. RZS 7 and studies on its extracellular PHB degrading depolymerase enzyme. The bacterium isolated from soil samples of plastic contaminated sites of municipal area in Shahada, Maharashtra, Western India. It was identified as Stenotrophomonas sp. RZS 7 based on polyphasic approach. The bacterium grew well in minimal salt medium (MSM) and produced a zone (4.2 mm) of PHB hydrolysis on MSM containing PHB as the only source of nutrient. An optimum yield of enzyme was obtained on the fifth day of incubation at 37 °C and at pH 6.0. Further increase in enzyme production was recorded with Ca 2+ ions, while other metal ions like Fe 2+ (1 mM) and chemical viz. mercaptoethanol severally affected the production of enzyme.

  20. Genome sequence of the agar-degrading marine bacterium Alteromonadaceae sp. strain G7.

    Science.gov (United States)

    Kwak, Min-Jung; Song, Ju Yeon; Kim, Byung Kwon; Chi, Won-Jae; Kwon, Soon-Kyeong; Choi, Soobeom; Chang, Yong-Keun; Hong, Soon-Kwang; Kim, Jihyun F

    2012-12-01

    Here, we present the high-quality draft genome sequence of the agar-degrading marine gammaproteobacterium Alteromonadaceae sp. strain G7, which was isolated from coastal seawater to be utilized as a bioresource for production of agar-derived biofuels. The 3.91-Mb genome contains a number of genes encoding algal polysaccharide-degrading enzymes such as agarases and sulfatases.

  1. Genome Sequence of the Agar-Degrading Marine Bacterium Alteromonadaceae sp. Strain G7

    OpenAIRE

    Kwak, Min-Jung; Song, Ju Yeon; Kim, Byung Kwon; Chi, Won-Jae; Kwon, Soon-Kyeong; Choi, Soobeom; Chang, Yong-Keun; Hong, Soon-Kwang; Kim, Jihyun F.

    2012-01-01

    Here, we present the high-quality draft genome sequence of the agar-degrading marine gammaproteobacterium Alteromonadaceae sp. strain G7, which was isolated from coastal seawater to be utilized as a bioresource for production of agar-derived biofuels. The 3.91-Mb genome contains a number of genes encoding algal polysaccharide-degrading enzymes such as agarases and sulfatases.

  2. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jennifer R. [Brown University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Teshima, Hazuki [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Wei, Chia-Lin [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Sello, Jason K. [Brown University

    2013-01-01

    We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass- degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized compo- nent of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism.

  3. Drug-loaded Cellulose Acetate and Cellulose Acetate Butyrate Films ...

    African Journals Online (AJOL)

    The purpose of this research work was to evaluate the contribution of formulation variables on release properties of matrix type ocular films containing chloramphenicol as a model drug. This study investigated the use of cellulose acetate and cellulose acetate butyrate as film-forming agents in development of ocular films.

  4. Gas generation from transuranic waste degradation: an interim assessment

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1979-10-01

    A review of all available, applicable data pertaining to gas generation from the degradation of transuranic waste matrix material and packaging is presented. Waste forms are representative of existing defense-related TRU wastes and include cellulosics, plastics, rubbers, concrete, process sludges, and mild steel. Degradation mechanisms studied were radiolysis, thermal, bacterial, and chemical corrosion. Gas generation rates are presented in terms of moles of gas produced per year per drum, and in G(gas) values for radiolytic degradation. Comparison of generation rates is made, as is a discussion of potential short- and long-term concerns. Techniques for reducing gas generation rates are discussed. 6 figures, 10 tables

  5. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.

    Science.gov (United States)

    Manso Cobos, Isabel; Ibáñez García, María Isabel; de la Peña Moreno, Fernando; Sáez Melero, Lara Paloma; Luque-Almagro, Víctor Manuel; Castillo Rodríguez, Francisco; Roldán Ruiz, María Dolores; Prieto Jiménez, María Auxiliadora; Moreno Vivián, Conrado

    2015-06-10

    Cyanide is one of the most toxic chemicals produced by anthropogenic activities like mining and jewelry industries, which generate wastewater residues with high concentrations of this compound. Pseudomonas pseudoalcaligenes CECT5344 is a model microorganism to be used in detoxification of industrial wastewaters containing not only free cyanide (CN(-)) but also cyano-derivatives, such as cyanate, nitriles and metal-cyanide complexes. Previous in silico analyses suggested the existence of genes putatively involved in metabolism of short chain length (scl-) and medium chain length (mcl-) polyhydroxyalkanoates (PHAs) located in three different clusters in the genome of this bacterium. PHAs are polyesters considered as an alternative of petroleum-based plastics. Strategies to optimize the bioremediation process in terms of reducing the cost of the production medium are required. In this work, a biological treatment of the jewelry industry cyanide-rich wastewater coupled to PHAs production as by-product has been considered. The functionality of the pha genes from P. pseudoalcaligenes CECT5344 has been demonstrated. Mutant strains defective in each proposed PHA synthases coding genes (Mpha(-), deleted in putative mcl-PHA synthases; Spha(-), deleted in the putative scl-PHA synthase) were generated. The accumulation and monomer composition of scl- or mcl-PHAs in wild type and mutant strains were confirmed by gas chromatography-mass spectrometry (GC-MS). The production of PHAs as by-product while degrading cyanide from the jewelry industry wastewater was analyzed in batch reactor in each strain. The wild type and the mutant strains grew at similar rates when using octanoate as the carbon source and cyanide as the sole nitrogen source. When cyanide was depleted from the medium, both scl-PHAs and mcl-PHAs were detected in the wild-type strain, whereas scl-PHAs or mcl-PHAs were accumulated in Mpha(-) and Spha(-), respectively. The scl-PHAs were identified as homopolymers of 3

  6. Brittle Culm1, a COBRA-Like Protein, Functions in Cellulose Assembly through Binding Cellulose Microfibrils

    Science.gov (United States)

    Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity. PMID:23990797

  7. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Directory of Open Access Journals (Sweden)

    Lifeng Liu

    Full Text Available Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1, a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  8. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Science.gov (United States)

    Liu, Lifeng; Shang-Guan, Keke; Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  9. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation.

    Science.gov (United States)

    Zhang, Xiaoyang; Rogowski, Artur; Zhao, Lei; Hahn, Michael G; Avci, Utku; Knox, J Paul; Gilbert, Harry J

    2014-01-24

    Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.

  10. Interactions of fungi from fermented sausage with regenerated cellulose casings.

    Science.gov (United States)

    Sreenath, Hassan K; Jeffries, Thomas W

    2011-11-01

    This research examined cellulolytic effects of fungi and other microbes present in cured sausages on the strength and stability of regenerated cellulose casings (RCC) used in the sausage industry. Occasionally during the curing process, RCC would split or fail, thereby leading to loss of product. The fungus Penicillium sp. BT-F-1, which was isolated from fermented sausages, and other fungi, which were introduced to enable the curing process, produced small amounts of cellulases on RCC in both liquid and solid cultivations. During continued incubation for 15-60 days in solid substrate cultivation (SSC) on RCC support, the fungus Penicillium sp isolate BT-F-1 degraded the casings' dry weights by 15-50% and decreased their tensile strengths by ~75%. Similarly commercial cellulase(s) resulted in 20-50% degradation of RCC in 48 h. During incubation with Penicillium sp BT-F-1, the surface structure of RCC collapsed, resulting in loss of strength and stability of casings. The matrix of industrial RCC comprised 88-93% glucose polymer residues with 0.8-4% xylan impurities. Premature casing failure appeared to result from operating conditions in the manufacturing process that allowed xylan to build up in the extrusion bath. The sausage fungus Penicillium sp BT-F-1 produced xylanases to break down soft xylan pockets prior to slow cellulosic dissolution of RCC.

  11. Biodegradation of dimethyl phthalate by Sphingomonas sp. isolated from phthalic-acid-degrading aerobic granules.

    Science.gov (United States)

    Zeng, Ping; Moy, Benjamin Yan-Pui; Song, Yong-Hui; Tay, Joo-Hwa

    2008-10-01

    Phthalic acid esters (PAEs) contamination in water, air, and soil is one of the major environmental concerns in many countries. Besides the PAE biodegradation process, the PAE degrading bacteria have become one of the focuses of study. This study reports the successful isolation of one kind of indigenous bacterium PA-02 from phthalic acid (PA)-degrading aerobic granules. Based on its 16S ribosomal DNA sequence, isolate PA-02 was identified as Sphingomonas genus with 100% similarity to Sphingomonas sp. strain D84532. Strain PA-02 was a Gram-negative, rod-shaped bacterium with strong auto-aggregation ability. In particular, the strain PA-02 possessed PAE-degrading ability without acclimation. Results of growth tests showed that strain PA-02 could degrade dimethyl phthalate (DMP), dibutyl phthalate, and diethylhexyl phthalate. The specific degradation rates of DMP and PA were concentration-dependent with maximum values of 0.4 g-DMP g(-1) biomass h(-1) and 1.3 g-PA g(-1) biomass h(-1), respectively. Kinetic studies also revealed that PA-02 was robust under high concentrations of DMP and PA. Even when the PA concentration was increased to 1,000.0 mg l(-1), the specific PA degradation rate was about 0.25 g-PA g(-1) biomass h(-1). The corresponding value for DMP was 0.067 g-DMP g(-1) biomass h(-1) at 1,000 mg l(-1).

  12. Bio-hydrogen production based on catalytic reforming of volatiles generated by cellulose pyrolysis: An integrated process for ZnO reduction and zinc nanostructures fabrication

    International Nuclear Information System (INIS)

    Maciel, Adriana Veloso; Job, Aldo Eloizo; Nova Mussel, Wagner da; Brito, Walter de; Duarte Pasa, Vanya Marcia

    2011-01-01

    The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor-solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H 2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N 2 atmosphere, at temperatures up to 900 o C, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.

  13. Bacteria that degrade hazardous waste: The isolation of trichloroethylene-degrading methanotrophic bacteria and development of monoclonal antibodies specific to them

    International Nuclear Information System (INIS)

    Little, C.D.

    1988-01-01

    Trichloroethylene (TCE), a suspected carcinogen, is one of the most frequently reported groundwater contaminants at hazardous waste sites in the US. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a Type I methanotrophic bacterium, degraded TCE when growing on methane or methanol, producing CO 2 and water-soluble products. Gas chromatography and 14 C radiotracer techniques were used to determine the rate, methane dependence, and mechanism of TCE biodegradation. TCE biodegradation by strain 46-1 appears to be a co-metabolic process that occurs when the organism is actively metabolizing a suitable growth substrate such as methane or methanol. Five mouse monoclonal antibodies (MABS) that specifically bind strain 46-1 were prepared by conventional hybridoma technology. These MABS are apparently biochemically distinct and were used to develop enzyme-linked and fluorescent immunoassays to detect strain 46-1 cells in environmental samples. A fluorescent immunoassay utilizing four of these MABS easily distinguished laboratory-grown 46-1 cells from other methanotrophic and heterotrophic bacteria, but failed to detect 46-1 cells in groundwater samples and cultures

  14. Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting.

    Science.gov (United States)

    Yao, Qiufang; Fan, Bitao; Xiong, Ye; Wang, Chao; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng

    2017-07-15

    A self-reporting aerogel toward stress sensitive slectricity (SSE) was presented using an interconnected 3D fibrous network of Ag nanoparticles/cellulose nanofiber aerogel (Ag/CNF), which was prepared via combined routes of silver mirror reaction and ultrasonication. Sphere-like Ag nanoparticles (AgNPs) with mean diameter of 74nm were tightly anchored in the cellulose nanofiber through by the coherent interfaces as the conductive materials. The as-prepared Ag/CNF as a self-reporting material for SSE not only possessed quick response and sensitivity, but also be easily recovered after 100th compressive cycles without plastic deformation or degradation in compressive strength. Consequently, Ag/CNF could play a viable role in self-reporting materials as a quick electric-stress responsive sensor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance[W

    Science.gov (United States)

    Hernández-Blanco, Camilo; Feng, Dong Xin; Hu, Jian; Sánchez-Vallet, Andrea; Deslandes, Laurent; Llorente, Francisco; Berrocal-Lobo, Marta; Keller, Harald; Barlet, Xavier; Sánchez-Rodríguez, Clara; Anderson, Lisa K.; Somerville, Shauna; Marco, Yves; Molina, Antonio

    2007-01-01

    Cellulose is synthesized by cellulose synthases (CESAs) contained in plasma membrane–localized complexes. In Arabidopsis thaliana, three types of CESA subunits (CESA4/IRREGULAR XYLEM5 [IRX5], CESA7/IRX3, and CESA8/IRX1) are required for secondary cell wall formation. We report that mutations in these proteins conferred enhanced resistance to the soil-borne bacterium Ralstonia solanacearum and the necrotrophic fungus Plectosphaerella cucumerina. By contrast, susceptibility to these pathogens was not altered in cell wall mutants of primary wall CESA subunits (CESA1, CESA3/ISOXABEN RESISTANT1 [IXR1], and CESA6/IXR2) or POWDERY MILDEW–RESISTANT5 (PMR5) and PMR6 genes. Double mutants indicated that irx-mediated resistance was independent of salicylic acid, ethylene, and jasmonate signaling. Comparative transcriptomic analyses identified a set of common irx upregulated genes, including a number of abscisic acid (ABA)–responsive, defense-related genes encoding antibiotic peptides and enzymes involved in the synthesis and activation of antimicrobial secondary metabolites. These data as well as the increased susceptibility of ABA mutants (abi1-1, abi2-1, and aba1-6) to R. solanacearum support a direct role of ABA in resistance to this pathogen. Our results also indicate that alteration of secondary cell wall integrity by inhibiting cellulose synthesis leads to specific activation of novel defense pathways that contribute to the generation of an antimicrobial-enriched environment hostile to pathogens. PMID:17351116

  16. Anaerobic degradation of long-chain alkylamines by a denitrifying Pseudomonas stutzeri

    NARCIS (Netherlands)

    Nguyen, P.D.; Ginkel, van C.G.; Plugge, C.M.

    2008-01-01

    The anaerobic degradation of tetradecylamine and other long-chain alkylamines by a newly isolated denitrifying bacterium was studied. Strain ZN6 was isolated from a mixture of soil and active sludge and was identified as representing Pseudomonas stutzeri, based on partial 16S rRNA gene sequence

  17. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  18. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.

    Science.gov (United States)

    Huang, Kelin; Wang, Ben; Cao, Yan; Li, Huiquan; Wang, Jinshu; Lin, Weijiang; Mu, Chaoshi; Liao, Dankui

    2011-05-25

    Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) were prepared homogeneously in a 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid system from sugarcane bagasse (SB). The reaction temperature, reaction time, and molar ratio of butyric (propionic) anhydride/anhydroglucose units in the cellulose affect the butyryl (B) or propionyl (P) content of CAB or CAP samples. The (13)C NMR data revealed the distribution of the substituents of CAB and CAP. The thermal stability of sugar cane bagasse cellulose was found by thermogravimetric analysis to have decreased after chemical modification. After reaction, the ionic liquid was effectively recycled and reused. This study provides a new way for high-value-added utilization of SB and realizing the objective of turning waste into wealth.

  19. ISOLATION AND CHARACTERIZATION OF A MOLYBDENUM-REDUCING, PHENOL- AND CATECHOL-DEGRADING PSEUDOMONAS PUTIDA STRAIN AMR-12 IN SOILS FROM EGYPT

    Directory of Open Access Journals (Sweden)

    M. Abd. AbdEl-Mongy

    2016-02-01

    Full Text Available Sites contaminated with both heavy metals and organic xenobiotic pollutants warrants the effective use of either a multitude of bacterial degraders or bacteria having the capacity to detoxify numerous toxicants simultaneously. A molybdenum-reducing bacterium with the capacity to degrade phenolics is reported. Molybdenum (sodium molybdate reduction was optimum between pH 6.0 and 7.0 and between 20 and 30 °C. The most suitable electron donor was glucose. A narrow range of phosphate concentrations between 5.0 and 7.5 mM was required for optimal reduction, while molybdate between 20 and 30 mM were needed for optimal reduction. The scanning absorption spectrum of the molybdenum blue produced indicated that Mo-blue is a reduced phosphomolybdate. Molybdenum reduction was inhibited by the heavy metals mercury, silver and chromium. Biochemical analysis identified the bacterium as Pseudomonas putida strain Amr-12. Phenol and phenolics cannot support molybdenum reduction. However, the bacterium was able to grow on the phenolic compounds (phenol and catechol with observable lag periods. Maximum growth on phenol and catechol occurred around the concentrations of 600 mg∙L-1. The ability of this bacterium to detoxify molybdenum and grown on toxic phenolic makes this bacterium an important tool for bioremediation.

  20. A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods.

    Science.gov (United States)

    Du, Lanxing; Wang, Jinwu; Zhang, Yang; Qi, Chusheng; Wolcott, Michael P; Yu, Zhiming

    2017-08-01

    This study demonstrated the technical potential for the large-scale co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals. Ball-milled woods with two particle sizes were prepared by ball milling for 80min or 120min (BMW 80 , BMW 120 ) and then enzymatically hydrolyzed. 78.3% cellulose conversion of BMW 120 was achieved, which was three times as high as the conversion of BMW 80 . The hydrolyzed residues (HRs) were neutrally sulfonated cooking. 57.72g/L and 88.16g/L lignosulfonate concentration, respectively, were harvested from HR 80 and HR 120 , and 42.6±0.5% lignin were removed. The subsequent solid residuals were purified to produce cellulose and then this material was acid-hydrolyzed to produce cellulose nanocrystals. The BMW 120 maintained smaller particle size and aspect ratio during each step of during the multiple processes, while the average aspect ratio of its cellulose nanocrystals was larger. The crystallinity of both materials increased with each step of wet processing, reaching to 74% for the cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Versatile High-Performance Regenerated Cellulose Membranes Prepared using Trimethylsilyl Cellulose as a Precursor

    KAUST Repository

    Puspasari, Tiara

    2018-05-01

    Cellulose has emerged as an indispensable membrane material due to its abundant availability, low cost, fascinating physiochemical properties and environment benignancy. However, it is believed that the potential of this polymer is not fully explored yet due to its insolubility in the common organic solvents, encouraging the use of derivatization-regeneration method as a viable alternative to the direct dissolution in exotic or reactive solvents. In this work, we use trimethylsilyl cellulose (TMSC), a highly soluble cellulose derivative, as a precursor for the fabrication of cellulose thin film composite membranes. TMSC is an attractive precursor to assemble thin cellulose films with good deposition behavior and film morphology; cumbersome solvents used in the one step cellulose processing are avoided. This derivative is prepared from cellulose by the known silylation reaction. The complete transformation of TMSC back into cellulose after the membrane formation is carried out by vapor-phase acid treatment, which is simple, scalable and reproducible. This process along with the initial TMSC concentration determines the membrane sieving characteristics. Unlike the typical regenerated cellulose membranes with meso- or macropores, membranes regenerated from TMSC display micropores suitable for the selective separation of nanomolecules in aqueous and organic solvent nanofiltration. The membranes introduced in this thesis represent the first polymeric membranes ever reported for highly selective separation of similarly sized small organic molecules based on charge and size differences with outstanding fluxes. Owing to its strong hydrophilic and amorphous character, the membranes also demonstrate excellent air-dehumidification performance as compared to previously reported thin film composite membranes. Moreover, the use of TMSC enables the creation of the previously unfeasible cellulose–polydimethylsiloxane (PDMS) and cellulose–polyethyleneimine (PEI) blend membranes

  2. Ethyl cellulose microcapsules for protecting and controlled release of folic acid.

    Science.gov (United States)

    Prasertmanakit, Satit; Praphairaksit, Nalena; Chiangthong, Worawadee; Muangsin, Nongnuj

    2009-01-01

    Ethyl cellulose microcapsules were developed for use as a drug-delivery device for protecting folic acid from release and degradation in the undesirable environmental conditions of the stomach, whilst allowing its release in the intestinal tract to make it available for absorption. The controlled release folic acid-loaded ethyl cellulose microcapsules were prepared by oil-in-oil emulsion solvent evaporation using a mixed solvent system, consisting of a 9:1 (v/v) ratio of acetone:methanol and light liquid paraffin as the dispersed and continuous phase. Span 80 was used as the surfactant to stabilize the emulsion. Scanning electron microscopy revealed that the microcapsules had a spherical shape. However, the particulate properties and in vitro release profile depended on the concentrations of the ethyl cellulose, Span 80 emulsifier, sucrose (pore inducer), and folic acid. The average diameter of the microcapsules increased from 300 to 448 microm, whilst the folic acid release rate decreased from 52% to 40%, as the ethyl cellulose concentration was increased from 2.5% to 7.5% (w/v). Increasing the Span 80 concentration from 1% to 4% (v/v) decreased the average diameter of microcapsules from 300 to 141 microm and increased the folic acid release rate from 52% to 79%. The addition of 2.5-7.5% (w/v) of sucrose improved the folic acid release from the microcapsules. The entrapment efficiency was improved from 64% to 88% when the initial folic acid concentration was increased from 1 to 3 mg/ml.

  3. Physicochemical analysis of cellulose from microalgae ...

    African Journals Online (AJOL)

    USER

    2016-06-15

    Jun 15, 2016 ... The extraction method of algae cellulose was a modification of ... triplicate. Characterization of cellulose. Analysis of ... The current analysis of the cellulose extracted .... Cellulose nanomaterials review: structure, properties and.

  4. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment.

    Science.gov (United States)

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant'Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fábio Oliveira; Souza, Emanuel Maltempi; Brandelli, Adriano; Passaglia, Luciane M P

    2015-04-02

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments. Copyright © 2015 Pereira et al.

  5. [Evaluation of the influence of sterilization method on the stability of carboxymethyl cellulose wound dressing].

    Science.gov (United States)

    Muselík, Jan; Wojnarová, Lenka; Masteiková, Ruta; Sopuch, Tomáš

    2013-04-01

    Carboxymethyl cellulose, especially its sodium salt, is a versatile pharmaceutical excipient. From a therapeutic point of view, sodium salt of carboxymethyl cellulose is used in the production of modern wound dressings to allow moist wound healing. Wound dressings must be sterile and stable throughout their shelf life and have to be able to withstand different temperature conditions. At the present time, a number of sterilization methods are available. In the case of polymeric materials, the selected sterilization process must not induce any changes in the polymer structure, such as polymer chains cleavage, changes in cross-linking, etc. This paper evaluates the influence of different sterilization methods (γ-radiation, β-radiation, ethylene oxide) on the stability of carboxymethyl cellulose and the results of long-term and accelerated stability testing. Evaluation of samples was performed using size-exclusion chromatography. The obtained results showed that ethylene oxide sterilization was the least aggressive variant of the sterilization methods tested. When the γ-radiation sterilization was used, the changes in the size of the carboxymethyl cellulose molecule occurred. In the course of accelerated and long term stability studies, no further degradation changes were observed, and thus sterilized samples are suitable for long term storage.

  6. Alkaline degradation of organic materials contained in TRU wastes under repository conditions

    International Nuclear Information System (INIS)

    Otsuka, Yoshiki; Banba, Tsunetaka

    2007-09-01

    Alkaline degradation tests for 9 organic materials were conducted under the conditions of TRU waste disposal: anaerobic alkaline conditions. The tests were carried out at 90degC for 91 days. The sample materials for the tests were selected from the standpoint of constituent organic materials of TRU wastes. It has been found that cellulose and plastic solidified products are degraded relatively easily and that rubbers are difficult to degrade. It could be presumed that the alkaline degradation of organic materials occurs starting from the functional group in the material. Therefore, the degree of degradation difficulty is expected to be dependent on the kinds of functional group contained in the organic material. (author)

  7. Solar photocatalytic gas-phase degradation of n-decane--a comparative study using cellulose acetate monoliths coated with P25 or sol-gel TiO₂ films.

    Science.gov (United States)

    Miranda, Sandra M; Lopes, Filipe V S; Rodrigues-Silva, Caio; Martins, Susana D S; Silva, Adrián M T; Faria, Joaquim L; Boaventura, Rui A R; Vilar, Vítor J P

    2015-01-01

    Cellulose acetate monoliths (CAM) were used as the substrate for the deposition of TiO2 films to produce honeycombed photoactive structures to fill a tubular photoreactor equipped with a compound parabolic collector. By using such a setup, an efficient single-pass gas-phase conversion was achieved in the degradation of n-decane, a model volatile organic compound. The CAM three-dimensional, gas-permeable transparent structure with a rugged surface enables a good adhesion of the catalytic coating. It also provides a rigid structure for packing the tubular photoreactor, and maximizing the illuminated catalyst surface. The efficiency of the photocatalytic oxidation (PCO) process on n-decane degradation was evaluated under different operating conditions, such as feeding concentration (73 and 146 ppm), gas stream flow rate (73, 150, and 300 mL min(-1)), relative humidity (3 and 25 %), and UV irradiance (18.9, 29.1, and 38.4 WUV m(-2)). The results show that n-decane degradation by neat photolysis is negligible, but mineralization efficiencies of 86 and 82 % were achieved with P25-CAM and SG-CAM, respectively, for parent pollutant conversions above 95 %, under steady-state conditions. A mass transfer model, considering the mass balance to the plug-flow packed photoreactor, and PCO reaction given by a Langmuir-Hinshelwood bimolecular non-competitive two types of sites equation, was able to predict well the PCO kinetics under steady-state conditions, considering all the operational parameters tested. Overall, the performance of P25-CAM was superior taking into account mineralization efficiency, cost of preparation, surface roughness, and robustness of the deposited film.

  8. Screening for isolation and characterisation of microorganisms and enzymes with usefull potential for degradation of celullose and hemicelluose

    Directory of Open Access Journals (Sweden)

    José Fernando Mikán Venegas

    2004-01-01

    Full Text Available A practical, applied microbiology and biotechnology model is presented for isolating and characterising micro-organisms, this being a tiny part of the immense biodiversity of tropical soils. These microbes' ability to produce depolymerases and accessory hydrolases degrading xyloglucans-pectates or glucoarabinoxylans is analysed to evaluate their potential for degrading plant material. We propose culturing micro-organisms on the cell wall as main carbon source and as hydrolitic activity inducer. The same cell walls can be used for cross-linking xylan and for rapid, low cost purification of cellulose and hemicellose degrading enzymes. A 500% xylanase purification yield was obtained in a single step with these affinity supports. Out of the 65 isolates obtained were finally selected for characterising isoenzymes for cellulase and xylanase activities. The five strains are suggested as being potentially useful in different industrial processes regarding degrading cellulose and hemicellulose. Key words: Cellulase, hemicellulase, affinity chromatography, cross-linked substrate, microbiological diversity, composting

  9. Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Knudsen, Berith Elkær; Frkova, Zuzana

    2014-01-01

    The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with ......The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon...... and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ =0.1 h−1); slower growth was observed on succinate and acetic...... acid (μ =0.01 h−1). Standard conditions for growth of theMSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ =0.1 h−1 on traditional mineral salt medium to μ =0.18 h−1 on the optimized mineral salt...

  10. Atomic-scale modeling of cellulose nanocrystals

    Science.gov (United States)

    Wu, Xiawa

    Cellulose nanocrystals (CNCs), the most abundant nanomaterials in nature, are recognized as one of the most promising candidates to meet the growing demand of green, bio-degradable and sustainable nanomaterials for future applications. CNCs draw significant interest due to their high axial elasticity and low density-elasticity ratio, both of which are extensively researched over the years. In spite of the great potential of CNCs as functional nanoparticles for nanocomposite materials, a fundamental understanding of CNC properties and their role in composite property enhancement is not available. In this work, CNCs are studied using molecular dynamics simulation method to predict their material' behaviors in the nanoscale. (a) Mechanical properties include tensile deformation in the elastic and plastic regions using molecular mechanics, molecular dynamics and nanoindentation methods. This allows comparisons between the methods and closer connectivity to experimental measurement techniques. The elastic moduli in the axial and transverse directions are obtained and the results are found to be in good agreement with previous research. The ultimate properties in plastic deformation are reported for the first time and failure mechanism are analyzed in details. (b) The thermal expansion of CNC crystals and films are studied. It is proposed that CNC film thermal expansion is due primarily to single crystal expansion and CNC-CNC interfacial motion. The relative contributions of inter- and intra-crystal responses to heating are explored. (c) Friction at cellulose-CNCs and diamond-CNCs interfaces is studied. The effects of sliding velocity, normal load, and relative angle between sliding surfaces are predicted. The Cellulose-CNC model is analyzed in terms of hydrogen bonding effect, and the diamond-CNC model compliments some of the discussion of the previous model. In summary, CNC's material properties and molecular models are both studied in this research, contributing to

  11. Microbial degradation of coconut coir dust for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Uyenco, F.R.; Ochoa, J.A.K.

    Several species of white-rot fungi were studied for its ability to degrade the lignocellulose components of coir dust at optimum conditions. The most effective fungi was Phanerochaeta chrysosporium UPCC 4003. This organism degraded the lignocellulose complex of coir dust at a rate of about 25 percent in 4 weeks. The degradation process was carried on with minimal nitrogen concentration, coconut water supplementation and moisture levels between 85-90 percent. Shake flask cultures of the degraded coir dust using cellulolytic fungi were not effective. In fermentor cultures with Chaetomium cellulolyticum UPCC 3934, supplemented coir dust was converted into a microbial biomass product (MBP) with 15.58 percent lignin, 19.20 percent cellulose and 18.87 percent protein. More work is being done on the utilization of coir dust on a low technology.

  12. Optimizing Extraction of Cellulose and Synthesizing Pharmaceutical Grade Carboxymethyl Sago Cellulose from Malaysian Sago Pulp

    Directory of Open Access Journals (Sweden)

    Anand Kumar Veeramachineni

    2016-06-01

    Full Text Available Sago biomass is an agro-industrial waste produced in large quantities, mainly in the Asia-Pacific region and in particular South-East Asia. This work focuses on using sago biomass to obtain cellulose as the raw material, through chemical processing using acid hydrolysis, alkaline extraction, chlorination and bleaching, finally converting the material to pharmaceutical grade carboxymethyl sago cellulose (CMSC by carboxymethylation. The cellulose was evaluated using Thermogravimetric Analysis (TGA, Infrared Spectroscopy (FTIR, X-Ray Diffraction (XRD, Differential Scanning Calorimetry (DSC and Field Emission Scanning Electronic Microscopy (FESEM. The extracted cellulose was analyzed for cellulose composition, and subsequently modified to CMSC with a degree of substitution (DS 0.6 by typical carboxymethylation reactions. X-ray diffraction analysis indicated that the crystallinity of the sago cellulose was reduced after carboxymethylation. FTIR and NMR studies indicate that the hydroxyl groups of the cellulose fibers were etherified through carboxymethylation to produce CMSC. Further characterization of the cellulose and CMSC were performed using FESEM and DSC. The purity of CMSC was analyzed according to the American Society for Testing and Materials (ASTM International standards. In this case, acid and alkaline treatments coupled with high-pressure defibrillation were found to be effective in depolymerization and defibrillation of the cellulose fibers. The synthesized CMSC also shows no toxicity in the cell line studies and could be exploited as a pharmaceutical excipient.

  13. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers.

    Science.gov (United States)

    Babaee, Mehran; Jonoobi, Mehdi; Hamzeh, Yahya; Ashori, Alireza

    2015-11-05

    In this study the effects of chemical modification of cellulose nanofibers (CNFs) on the biodegradability and mechanical properties of reinforced thermoplastic starch (TPS) nanocomposites was evaluated. The CNFs were modified using acetic anhydride and the nanocomposites were fabricated by solution casting from corn starch with glycerol/water as the plasticizer and 10 wt% of either CNFs or acetylated CNFs (ACNFs). The morphology, water absorption (WA), water vapor permeability rate (WVP), tensile, dynamic mechanical analysis (DMA), and fungal degradation properties of the obtained nanocomposites were investigated. The results demonstrated that the addition of CNFs and ACNFs significantly enhanced the mechanical properties of the nanocomposites and reduced the WVP and WA of the TPS. The effects were more pronounced for the CNFs than the ACNFs. The DMA showed that the storage modulus was improved, especially for the CNFs/TPS nanocomposite. Compared with the neat TPS, the addition of nanofibers improved the degradation rate of the nanocomposite and particularly ACNFs reduced degradation rate of the nanocomposite toward fungal degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Draft genome sequence of a caprolactam degrader bacterium: Pseudomonas taiwanensis strain SJ9

    Directory of Open Access Journals (Sweden)

    Sung-Jun Hong

    Full Text Available Abstract Pseudomonas taiwanensis strain SJ9 is a caprolactam degrader, isolated from industrial wastewater in South Korea and considered to have the potential for caprolactam bioremediation. The genome of this strain is approximately 6.2 Mb (G + C content, 61.75% with 6,010 protein-coding sequences (CDS, of which 46% are assigned to recognized functional genes. This draft genome of strain SJ9 will provide insights into the genetic basis of its caprolactam-degradation ability.

  15. Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose

    International Nuclear Information System (INIS)

    Li, Yuping; Liao, Yuhe; Cao, Xiaofeng; Wang, Tiejun; Ma, Longlong; Long, Jinxing; Liu, Qiying; Xua, Ying

    2015-01-01

    In this review, recent advances in the one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose to value-added polyols, including hexitols (sorbitol, mannitol, and isosorbide) and 1,2-alkanediols (ethylene glycol and 1,2-propylene glycol), are summarized. Methods for the generation of H + in the first step of cellulose hydrolysis to form intermediate sugars, such as the use of soluble acids (mineral acids and heteropoly acids) and H + produced in situ from functional supports and H 2 dissociation, are classified and analyzed, considering its combination with active metals for the subsequent hydrogenation or hydrogenolysis of sugars to polyols. The interaction of non-noble metals such as nickel, bimetals, and tungsten with support materials in the catalytic conversion of intermediate sugars to hexitols and ethylene glycol is reviewed. The corresponding reaction pathways and mechanisms are discussed, including the conversion process using basic supports and solution conditions. Major challenges and promising routes are also suggested for the future development of the chemocatalytic conversion of cellulose. - Highlights: • Advances in the one-pot hydrolytic hydrogenation/hydrogenolysis of cellulose are summarized. • The interaction of non-noble metals with support materials for cellulose conversion is reviewed. • Method for the generation of in situ H + and effects of the acidic groups on supports are discussed. • Incomplete identification of intermediates/products causes mechanism complications. • Efficient conversion, separation and purification are other concerns for cellulose degrading

  16. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    Directory of Open Access Journals (Sweden)

    Solimabi Wahidullah

    Full Text Available As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl with salicylic acid (3-8 were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12, metabolites produced by the bacterium include antimicrobial indole (13 and β-carbolines, norharman (14, harman (15 and methyl derivative (16, which are beneficial to the host and the environment.

  17. A Molecular Description of Cellulose Biosynthesis

    Science.gov (United States)

    McNamara, Joshua T.; Morgan, Jacob L.W.; Zimmer, Jochen

    2016-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed. PMID:26034894

  18. Screening assays of termite gut microbes that potentially as probiotic for human to digest cellulose as new food source

    Science.gov (United States)

    Abdullah, R.; Ananda, K. R. T.; Wijanarka

    2018-05-01

    According to UN, earth population will increase approximately 7.3 billion people up to 11.2 billion from 2015 until 2100. On the other side, food needs are not balance with the availability of food on earth. People of the world need solution for a new food source. By cellulose digesting ability, people analyzed can consume cellulose as the new food source to get glucose. The aims of research is obtaining termite gut cellulase bacteria selected which is potential as probiotic to split cellulose. Method used was as follows; isolation of termite gut microbes, microbial cellulase purification by screening method and probiotic test includes microbial pathogenicity test and human stomach acid and salt osmotic concentration resistance test. The result shows, 3 pure isolates of termite gut microbes can break down cellulose in the medium 1% CMC and 0.1% congo red (indicator of cellulose degradation activity) and life at pH 2- 2.5 and osmotic salt condition. Two isolates show the activity of gamma hemolysis (non-pathogenic in terms of pathogenicity on human blood). In conclusion, there are isolated termite gut microbes can be used as probiotic candidate for human to digest cellulose of the new food source for global food scarcity era.

  19. Regiocontroll synthesis cellulose-graft-polycaprolactone copolymer (2,3-di-O-PCL-cellulose by a new route

    Directory of Open Access Journals (Sweden)

    K. L. Wang

    2017-12-01

    Full Text Available A new and convenient route to the regiocontrolled synthesis of a cellulose-based derivate copolymer (2,3-di-O-polycaprolactone-cellulose grafting ε-caprolactone (ε-CL from α-cellulose, cellulose-graft-polycaprolactone (cellulose-g-PCL, by a classical ring-opening polymerization (ROP reaction, using stannous octoate (Sn(Oct2 as catalyst, in 68% concentration of zinc chloride aqueous solution at 120 °C was presented. By controlling the hydroxyl of cellulose/ε-CL, catalyst/monomer ratio and the reaction time, the molecular architecture of the copolymers can be altered. The solubility of cellulose in zinc chloride aqueous was indicated by UV/VIS spectrometer and rheological measurements. The structures and thermal properties of cellulose-g-polycaprolactone copolymers were characterized using Fourier Transform Infrared (FT-IR, Proton Nuclear Magnetic Resonance Spectroscopy (1H NMR, X-ray Diffraction (XRD, Thermogravimetric Analysis (TGA, Differential Scanning Calorimetry (DSC and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES. The interesting results confirm that zinc chloride solution can break the intra-molecular hydrogen bonds of cellulose selectively (not only O3H···O5, but also O2H···O6, and has no effect on the inter-molecular hydrogen bonds (O6H···O3. And the grafting reactivity of hydroxyl on cellulose is C2–OH > C3–OH >> C6–OH in zinc chloride solution, and this is clearly different from other researches. Most importantly, this work confirms that the method to regiocontrolled synthesis cellulose-based derivative polymers by regiobreaking hydrogen bonds is feasible. It is strongly believed that the new discovery may give a novel, environmental, simple and inexpensive method to modify cellulose chemically with various side chains grafted on a given hydroxyl, through liberating hydroxyl as reactive group from hydrogen bonds broken selectively by different solvents.

  20. Proof of concept for the simplified breakdown of cellulose by combining Pseudomonas putida strains with surface displayed thermophilic endocellulase, exocellulase and β-glucosidase.

    Science.gov (United States)

    Tozakidis, Iasson E P; Brossette, Tatjana; Lenz, Florian; Maas, Ruth M; Jose, Joachim

    2016-06-10

    The production and employment of cellulases still represents an economic bottleneck in the conversion of lignocellulosic biomass to biofuels and other biocommodities. This process could be simplified by displaying the necessary enzymes on a microbial cell surface. Such an approach, however, requires an appropriate host organism which on the one hand can withstand the rough environment coming along with lignocellulose hydrolysis, and on the other hand does not consume the generated glucose so that it remains available for subsequent fermentation steps. The robust soil bacterium Pseudomonas putida showed a strongly reduced uptake of glucose above a temperature of 50 °C, while remaining structurally intact hence recyclable, which makes it suitable for cellulose hydrolysis at elevated temperatures. Consequently, three complementary, thermophilic cellulases from Ruminiclostridium thermocellum were displayed on the surface of the bacterium. All three enzymes retained their activity on the cell surface. A mixture of three strains displaying each one of these enzymes was able to synergistically hydrolyze filter paper at 55 °C, producing 20 μg glucose per mL cell suspension in 24 h. We could establish Pseudomonas putida as host for the surface display of cellulases, and provided proof-of-concept for a fast and simple cellulose breakdown process at elevated temperatures. This study opens up new perspectives for the application of P. putida in the production of biofuels and other biotechnological products.

  1. High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    KAUST Repository

    Puspasari, Tiara; Akhtar, Faheem Hassan; Ogieglo, Wojciech; Alharbi, Ohoud; Peinemann, Klaus-Viktor

    2018-01-01

    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration

  2. Preparation of cellulose II and IIII films by allomorphic conversion of bacterial cellulose I pellicles

    International Nuclear Information System (INIS)

    Faria-Tischer, Paula C.S.; Tischer, Cesar A.; Heux, Laurent; Le Denmat, Simon; Picart, Catherine; Sierakowski, Maria-R.

    2015-01-01

    The structural changes resulting from the conversion of native cellulose I (Cel I) into allomorphs II (Cel II) and III I (Cel III I ) have usually been studied using powder samples from plant or algal cellulose. In this work, the conversion of Cel I into Cel II and Cel III I was performed on bacterial cellulose films without any mechanical disruption. The surface texture of the films was observed by atomic force microscopy (AFM) and the morphology of the constituting cellulose ribbons, by transmission electron microscopy (TEM). The structural changes were characterized using solid-state NMR spectroscopy as well as X-ray and electron diffraction. The allomorphic change into Cel II and Cel III I resulted in films with different crystallinity, roughness and hydrophobic/hydrophilicity surface and the films remained intact during all process of allomorphic conversion. - Highlights: • Description of a method to modify the allomorphic structure of bacterial cellulose films • Preparation of films with specific morphologies and hydrophobic/hydrophilic surface characters • First report on cellulose III films from bacterial cellulose under swelling conditions • Detailed characterization of cellulose II and III films with complementary techniques • Development of films with specific properties as potential support for cells, enzymes, and drugs

  3. Application of Molecular Techniques to Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site

    International Nuclear Information System (INIS)

    Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.

    2010-01-01

    Low-level radioactive waste sites, including those at various U.S. Department of Energy (DOE) sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a non-radioactive model low-level waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rDNA clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both the clone library and PhyloChip results revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more unique Operational Taxonomic Units (OTUs), and therefore more relative diversity, than the clone libraries. Calculated diversity indices suggest that diversity is lowest in the Fill (F) and Fill Waste (FW) layers and greater in the Wood Waste (WW) and Waste Clay (WC) layers. Principal coordinates analysis and lineage specific analysis determined that Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose degrading microorganisms suggests the FW layer is an enrichment environment for cellulose degradation. Overall, these results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system.

  4. Purification and characterization of an endoglucanase from a newly isolated thermophilic anaerobic bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Creuzet, N; Frixon, C [Laboratoire de Chimie Bacterienne, C.N.R.S., 13 - Marseille (France)

    1983-02-01

    An endoglucanase (1,4-..beta..-D-glucan glucanohydrolase, EC 3.2.1.4) from a new cellulotytic thermophilic bacterium was purified to apparent homogeneity after being separated from a xylanase. Little carbohydrate was associated with the endoglucanase. A molecular weight of 91,000 and 99,000 was determined by SDS-polyacrylamide gel electrophoresis and by gel filtration of the native enzyme on Ultrogel ACA 34. The optimal pH was approximately 6.4 and the enzyme was isoelectric at pH 3.85. The enzyme was found highly thermostable: it retained 50% of its activity after 1 hour at 85/sup 0/C. Hydrolysis of CMC took place with a rapid decrease in viscosity but a slow liberation of reducing sugars, indicating to hydrolyze highly ordered cellulose. Cellobiose inhibited the activity of the endoglucanase. None of the metal ions tested stimulated the activity. The enzyme was completely inactivated by 1 mM Hg/sup 2 +/ and was inhibited by thiol reagents.

  5. Cellulose nanocrystal properties and their applications

    Directory of Open Access Journals (Sweden)

    mahdi jonoobi

    2015-05-01

    Full Text Available The main purpose of this work is to provide an overview of recent research in the area of cellulose nonmaterials production from different sources. Due to their abundance, their renewability, high strength and stiffness, being eco-friendly, and low weight; numerous studies have been reported on the isolation of cellulose nanomaterials from different cellulosic sources and their use in high performance applications. This work covers an introduction into the nano cellulose definition as well as used methods for isolation of nanomaterials (nanocrystals from various sources. The rod-like cellulose nanocrystals (CNC can be isolated from sources like wood, plant fibers, agriculture and industrial bio residues, tunicates, and bacterial cellulose using acid hydrolysis process. Following this, the paper focused on characterization methods, materials properties and structure. The current review is a comprehensive literature regarding the nano cellulose isolation and demonstrates the potential of cellulose nanomaterials to be used in a wide range of high-tech applications.

  6. The Effect of Mechanochemical Treatment of the Cellulose on Characteristics of Nanocellulose Films

    Science.gov (United States)

    Barbash, V. A.; Yaschenko, O. V.; Alushkin, S. V.; Kondratyuk, A. S.; Posudievsky, O. Y.; Koshechko, V. G.

    2016-09-01

    The development of the nanomaterials with the advanced functional characteristics is a challenging task because of the growing demand in the market of the optoelectronic devices, biodegradable plastics, and materials for energy saving and energy storage. Nanocellulose is comprised of the nanosized cellulose particles, properties of which depend on characteristics of plant raw materials as well as methods of nanocellulose preparation. In this study, the effect of the mechanochemical treatment of bleached softwood sulfate pulp on the optical and mechanical properties of nanocellulose films was assessed. It was established that the method of the subsequent grinding, acid hydrolysis and ultrasound treatment of cellulose generated films with the significant transparency in the visible spectral range (up to 78 % at 600 nm), high Young's modulus (up to 8.8 GPa), and tensile strength (up to 88 MPa) with increased ordering of the packing of the cellulose macromolecules. Morphological characterization was done using the dynamic light scattering (DLS) analyzer and transmission electron microscopy (TEM). The nanocellulose particles had an average diameter of 15-30 nm and a high aspect ratio in the range 120-150. The crystallinity was increased with successive treatments as shown by the X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. The thermal degradation behavior of cellulose samples was explored by thermal gravimetric analysis (TGA).

  7. Hydrogen gas production by fermentation from various organic wastewater using Clostridium butyricum NCIB 9576 and Rhodopseudomonas sphaeroides E15-1

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young Sue; Kim, Hyun Kyung; Rye, Hye Yeon; Lee, In Gu; Kim, Mi Sun [Biomass Research Team, Korea Institute of Energy Research, Taejeon (Korea)

    2000-03-01

    Anaerobic fermentation using Clostidium butyricum NCIB 9576, and phto-fermentation using Rhodopseudomonas sphaeroides E15-1 were studied for the production of hydrogen from Makkoli, fruits (orange and apple, watermelon and melon) and Tofu wastewaters. From the Makkoli wastewater, which contained 0.94 g/liter sugars and 2.74 g/liter solubel starch, approximately 49 mM H{sub 2}/liter wastewater was produced during the initial 18h of the anaerobic fermentation with pH control between 6.5-7.0. Several organic acids such as butyric acid, acetic acid, propionic acid, lactic acid and ethanol were also produced. From watermelon and melon wastewater, which contained 43 g/liter sugars, generated about approximately 71 mM H{sub 2}/liter wastewater was produced during the initial 24h of the anaerobic fermentation. Tofu wastewater, pH 6.5, containing 12.6 g/liter soluble starch and 0.74 g/liter sugars, generated about 30mM H{sub 2}/liter wastewater, along with some organic acids, during the initial 24 h of anaerobic fermentation. Makkoli and Tofu wastewaters as substrates for the photo-fermentation by Rhodopseudomonas sphaeroides E15-1 produced approximately 37.9 and 22.2 {mu}M H{sub 2}/ml wastewaters, respectively for 9 days of incubation under the average of 9,000010,000 lux illumination at the surface of reactor using tungsten halogen lamps. Orange and apple wastewater, which contained 93.4 g/l produced approximately 13.1 {mu}M H{sub 2}/ml wastewater only for 2 days of photo-fermentation and the growth of Rhodopseudomonas spnaeroides E15-1 and hydrogen production were stopped. 22 refs, 4 figs., 2 tabs.

  8. Polymorphy in native cellulose: recent developments

    International Nuclear Information System (INIS)

    Atalla, R.H.

    1984-01-01

    In a number of earlier studies, the authors developed a model of cellulose structure based on the existence of two stable, linearly ordered conformations of the cellulose chain that are dominant in celluloses I and II, respectively. The model rests on extensive Raman spectral observations together with conformational considerations and solid-state 13 C-NMR studies. More recently, they have proposed, on the basis of high resolution solid-state 13 C-NMR observations, that native celluloses are composites of two distinct crystalline forms that coexist in different proportions in all native celluloses. In the present work, they examine the Raman spectra of the native celluloses, and reconcile their view of conformational differences with the new level of crystalline polymorphy of native celluloses revealed in the solid-state 13 C-NMR investigations

  9. All-cellulose composites of regenerated cellulose fibres by surface selective dissolution

    NARCIS (Netherlands)

    Soykeabkaew, N.; Nishino, T.; Peijs, Ton

    2009-01-01

    All-cellulose composites of Lyocell and high modulus/strength cellulose fibres were successfully prepared using a surface selective dissolution method. The effect of immersion time of the fibres in the solvent during composite's preparation and the effect of the starting fibre's structure on their

  10. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum.

    Science.gov (United States)

    Sousa, Diana Z; Smidt, Hauke; Alves, M Madalena; Stams, Alfons J M

    2007-03-01

    An anaerobic, mesophilic, syntrophic fatty-acid-oxidizing bacterium, designated strain OL-4(T), was isolated as a co-culture with Methanobacterium formicicum DSM 1535(NT) from an anaerobic expanded granular sludge bed reactor used to treat an oleate-based effluent. Strain OL-4(T) degraded oleate, a mono-unsaturated fatty acid, and straight-chain fatty acids C(4 : 0)-C(18 : 0) in syntrophic association with Methanobacterium formicicum DSM 1535(NT). Even-numbered fatty acids were degraded to acetate and methane whereas odd-numbered fatty acids were degraded to acetate, propionate and methane. Branched-chain fatty acids were not degraded. The bacterium could not grow axenically with any other substrate tested and therefore is considered to be obligately syntrophic. Fumarate, sulfate, thiosulfate, sulfur and nitrate could not serve as electron acceptors for strain OL-4(T) to degrade oleate or butyrate. Cells of strain OL-4(T) were curved rods, formed spores and showed a variable response to Gram staining. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain OL-4(T) was most closely related to the fatty-acid-oxidizing, syntrophic bacterium Syntrophomonas sp. TB-6 (95 % similarity), Syntrophomonas wolfei subsp. wolfei DSM 2245(T) (94 % similarity) and Syntrophomonas erecta DSM 16215(T) (93 % similarity). In addition to this moderate similarity, phenotypic and physiological characteristics, such as obligate syntrophy, spore formation and utilization of a broader substrate range, differentiated strain OL-4(T) from these Syntrophomonas species. Therefore strain OL-4(T) represents a novel species, for which the name Syntrophomonas zehnderi sp. nov. is proposed. The type strain is OL-4(T) (=DSM 17840(T)=JCM 13948(T)).

  11. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Science.gov (United States)

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  12. 21 CFR 573.420 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl cellulose. 573.420 Section 573.420 Food and... Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether containing...

  13. 21 CFR 172.868 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  14. Isolation and characterization of a novel nitrobenzene-degrading bacterium with high salinity tolerance: Micrococcus luteus.

    Science.gov (United States)

    Zheng, Chunli; Qu, Baocheng; Wang, Jing; Zhou, Jiti; Wang, Jing; Lu, Hong

    2009-06-15

    Strain Z3 was isolated from nitrobenzene-contaminated sludge. Strain Z3 was able to utilize nitrobenzene as a sole source of carbon, nitrogen and energy under aerobic condition. Based on the morphology, physiological biochemical characteristics, and 16S rDNA sequence, strain Z3 was identified as Micrococcus luteus. Strain Z3 completely degraded nitrobenzene with initial concentration of 100, 150, 200, and 250 mg L(-1) within 70, 96, 120 and 196 h, respectively. Kinetics of nitrobenzene degradation was described using the Andrews equation. The kinetic parameters were as follows: q(max)=1.19 h(-1), K(s)=29.11 mg L(-1), and K(i)=94.00 mg L(-1). Strain Z3 had a high salinity tolerance. It degraded 200 mg L(-1) nitrobenzene completely in 5% NaCl (w/w%). Strain Z3 therefore could be an excellent candidate for the bio-treatment of nitrobenzene industrial wastewaters with high salinity. This is the first report on the degradation of nitrobenzene by M. luteus and the degradation of nitrobenzene achieved in such a high salinity.

  15. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes. Final Report

    International Nuclear Information System (INIS)

    Lidstrom, Mary E.

    2003-01-01

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions

  16. Biochemical studies of mouse brain tubulin: colchicine binding (DEAE-cellulose filter) assay and subunits (α and β) biosynthesis and degradation (in newborn brain)

    International Nuclear Information System (INIS)

    Tse, C.F.

    1978-01-01

    A DEAE-cellulose filter assay, measuring [ 3 H]colchicine bound to colchicine binding protein (CBP) absorbed on filter discs, has been modified to include lM sucrose in the incubation medium for complexing colchicine to CBP in samples before applying the samples to filter discs (single point assay). Due to the much greater stability of colchicine binding capacity in the presence of lM sucrose, multiple time-point assays and least squares linear regression analysis were not necessary for accurate determination of CBP in hybrid mouse brain at different stages of development. The highest concentrations of CBP were observed in the 160,000g supernatant and pellet of newborn brain homogenate. Further studies of the modified filter assay documented that the assay has an overall counting efficiency of 27.3%, that DEAE-cellulose filters bind and retain all tubulin in the assay samples, and that one molecule of colchicine binds approximately one molecule of tubulin dimer. Therefore, millimoles of colchicine bound per milligram total protein can be used to calculate tubulin content. With this technique tubulin content of brain supernatant was found to be 11.9% for newborn, and 7.15% for 11 month old mice. Quantitative densitometry was also used to measure mouse brain supernatant actin content for these two stages. In vivo synthesis and degradation rates of tubulin α and β subunits of two day mouse brain 100,000g supernatant were studied after intracerebral injection of [ 3 H]leucine. Quantitative changes of the ratio of tritium specific activities of tubulin α and β subunits with time were determined. The pattern of change was biphasic. During the first phase the ratio decreased; during the second phase the ratio increased continuously. An interpretation consistent with all the data in this study is that the α subunit is synthesized at a more rapid rate than the β subunit

  17. Identification of cellulose fibres belonging to Spanish cultural heritage using synchrotron high resolution X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L.K.; Justo, A.; Duran, A.; Haro, M.C.J. de; Franquelo, M.L.; Perez Rodriguez, J.L. [CSIC-Seville University, Materials Science Institute of Seville, Seville (Spain)

    2010-05-15

    A complete characterisation of fibres used in Spanish artwork is necessary to provide a complete knowledge of these natural fibres and their stage of degradation. Textile samples employed as painting supports on canvas and one sample of unprocessed plant material were chosen for this study. All the samples were investigated by synchrotron radiation X-ray diffraction (SR-XRD). Flax and cotton have the Cellulose I structure. The values of the crystalline index (CI) were calculated for both types of fibres. The structure of Cellulose IV was associated with the unprocessed plant material. The information obtained by SR-XRD was confirmed by laboratory techniques including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). (orig.)

  18. Internally plasticised cellulose polymers

    International Nuclear Information System (INIS)

    Burnup, M.; Hayes, G.F.; Fydelor, P.J.

    1981-01-01

    Plasticised cellulose polymers comprise base polymer having a chain of β-anhydroglucose units joined by ether linkages, with at least one of said units carrying at least one chemically unreactive side chain derived from an allylic monomer or a vinyl substituted derivative of ferrocene. The side chains are normally formed by radiation grafting. These internally plasticised celluloses are useful in particular as inhibitor coatings for rocket motor propellants and in general wherever cellulose polymers are employed. (author)

  19. Synthesis and Self-Assembly of Cellulose Microfibrils from Reconstituted Cellulose Synthase.

    Science.gov (United States)

    Cho, Sung Hyun; Purushotham, Pallinti; Fang, Chao; Maranas, Cassandra; Díaz-Moreno, Sara M; Bulone, Vincent; Zimmer, Jochen; Kumar, Manish; Nixon, B Tracy

    2017-09-01

    Cellulose, the major component of plant cell walls, can be converted to bioethanol and is thus highly studied. In plants, cellulose is produced by cellulose synthase, a processive family-2 glycosyltransferase. In plant cell walls, individual β-1,4-glucan chains polymerized by CesA are assembled into microfibrils that are frequently bundled into macrofibrils. An in vitro system in which cellulose is synthesized and assembled into fibrils would facilitate detailed study of this process. Here, we report the heterologous expression and partial purification of His-tagged CesA5 from Physcomitrella patens Immunoblot analysis and mass spectrometry confirmed enrichment of PpCesA5. The recombinant protein was functional when reconstituted into liposomes made from yeast total lipid extract. The functional studies included incorporation of radiolabeled Glc, linkage analysis, and imaging of cellulose microfibril formation using transmission electron microscopy. Several microfibrils were observed either inside or on the outer surface of proteoliposomes, and strikingly, several thinner fibrils formed ordered bundles that either covered the surfaces of proteoliposomes or were spawned from liposome surfaces. We also report this arrangement of fibrils made by proteoliposomes bearing CesA8 from hybrid aspen. These observations describe minimal systems of membrane-reconstituted CesAs that polymerize β-1,4-glucan chains that coalesce to form microfibrils and higher-ordered macrofibrils. How these micro- and macrofibrils relate to those found in primary and secondary plant cell walls is uncertain, but their presence enables further study of the mechanisms that govern the formation and assembly of fibrillar cellulosic structures and cell wall composites during or after the polymerization process controlled by CesA proteins. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Cellulose Nanomaterials in Water Treatment Technologies

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  1. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  2. Preparation and Characterization of Nanofibrillated Cellulose from Bamboo Fiber via Ultrasonication Assisted by Repulsive Effect

    Directory of Open Access Journals (Sweden)

    Zhijun Hu

    2017-01-01

    Full Text Available Nanofibrillated celluloses (NFCs have recently drawn much attention because of their exceptional physicochemical properties. However, the existing preparation procedures either produce low yields or severely degrade the cellulose and, moreover, are not energy efficient. The purpose of this study was to develop a novel process using ultrasonic homogenization to isolate fibrils from bamboo fiber (BF with the assistance of negatively charged entities. The obtained samples were characterized by the degree of substitution (DS of carboxymethyl, Fourier-transform infrared (FT-IR spectroscopy, X-ray diffraction (XRD, thermogravimetric analysis, and transmission electron microscopy (TEM. The results showed that an NFC yield could be obtained above 70% through this route. The enzyme hydrolysis could enhance the surface charge of the fiber, and mechanical activation facilitates an increase in the DS. The disintegrating efficiency of the cellulose fibrils significantly depended on the input power of ultrasonication and the DS. FT-IR spectra confirmed the occurrence of the carboxymethylation reaction based on the appearance of the characteristic signal for the carboxyl group. From XRD analysis, it was observed that the presence of the carboxyl groups makes the isolation more efficient attributed to the ionic repulsion between the carboxylate groups of the cellulose chains.

  3. Degradation product emission from historic and modern books by headspace SPME/GC-MS: evaluation of lipid oxidation and cellulose hydrolysis.

    Science.gov (United States)

    Clark, Andrew J; Calvillo, Jesse L; Roosa, Mark S; Green, David B; Ganske, Jane A

    2011-04-01

    Volatile organic compounds emitted from a several decade series of bound periodicals (1859-1939) printed on ground wood paper, as well as historical books dating from the 1500s to early 1800s made from cotton/linen rag, were studied using an improved headspace SPME/GC-MS method. The headspace over the naturally aging books, stored upright in glass chambers, was monitored over a 24-h period, enabling the identification of a wide range of organic compounds emanating from the whole of the book. The detection of particular straight chain aldehydes, as well as characteristic alcohols, alkenes and ketones is correlated with oxidative degradation of the C(18) fatty acid constituency of paper. The relative importance of hydrolytic and oxidative chemistry involved in paper aging in books published between 1560 and 1939 was examined by comparing the relative abundances of furfural (FUR) a known cellulose hydrolysis product, and straight chain aldehydes (SCA) produced from the oxidation of fatty acids in paper. The relative abundance of furfural is shown to increase across the 379-year publication time span. A comparison of relative SCA peak areas across the series of books examined reveals that SCA emission is more important in the cotton/linen rag books than in the ground wood books.

  4. Posidonia oceanica as a Renewable Lignocellulosic Biomass for the Synthesis of Cellulose Acetate and Glycidyl Methacrylate Grafted Cellulose

    Directory of Open Access Journals (Sweden)

    Elena Vismara

    2013-05-01

    Full Text Available High-grade cellulose (97% α-cellulose content of 48% crystallinity index was extracted from the renewable marine biomass waste Posidonia oceanica using H2O2 and organic peracids following an environmentally friendly and chlorine-free process. This cellulose appeared as a new high-grade cellulose of waste origin quite similar to the high-grade cellulose extracted from more noble starting materials like wood and cotton linters. The benefits of α-cellulose recovery from P. oceanica were enhanced by its transformation into cellulose acetate CA and cellulose derivative GMA-C. Fully acetylated CA was prepared by conventional acetylation method and easily transformed into a transparent film. GMA-C with a molar substitution (MS of 0.72 was produced by quenching Fenton’s reagent (H2O2/FeSO4 generated cellulose radicals with GMA. GMA grafting endowed high-grade cellulose from Posidonia with adsorption capability. GMA-C removes β-naphthol from water with an efficiency of 47%, as measured by UV-Vis spectroscopy. After hydrolysis of the glycidyl group to glycerol group, the modified GMA-C was able to remove p-nitrophenol from water with an efficiency of 92%, as measured by UV-Vis spectroscopy. α-cellulose and GMA-Cs from Posidonia waste can be considered as new materials of potential industrial and environmental interest.

  5. Assessment of the anaerobic degradation of six active pharmaceutical ingredients.

    Science.gov (United States)

    Musson, Stephen E; Campo, Pablo; Tolaymat, Thabet; Suidan, Makram; Townsend, Timothy G

    2010-04-01

    Research examined the anaerobic degradation of 17 alpha-ethynylestradiol, acetaminophen, acetylsalicylic acid, ibuprofen, metoprolol tartrate, and progesterone by methanogenic bacteria. Using direct sample analysis and respirometric testing, anaerobic degradation was examined with (a) each compound as the sole organic carbon source and (b) each compound at a lower concentration (250 microg/L) and cellulose serving as the primary organic carbon source. The change in pharmaceutical concentration was determined following 7, 28, 56, and 112 days of anaerobic incubation at 37 degrees C. Only acetylsalicylic acid demonstrated significant degradation; the remaining compounds showed a mixture of degradation and abiotic removal mechanisms. Experimental results were compared with BIOWIN, an anaerobic degradation prediction model of the US Environmental Protection Agency. The BIOWIN model predicted anaerobic biodegradability of the compounds in the order: acetylsalicylic acid > metoprolol tartrate > ibuprofen > acetaminophen > 17 alpha-ethinylestradiol >progesterone. This corresponded well with the experimental findings which found degradability in the order: acetylsalicylic acid > metoprolol tartrate > acetaminophen > ibuprofen. (c) 2010 Elsevier B.V. All rights reserved.

  6. Degradation of /sup 14/C-parathion 'in vitro' by microorganisms isolated from a gley humic soil

    Energy Technology Data Exchange (ETDEWEB)

    Andrea, M.M. de; Ruegg, E.F. (Instituto Biologico, Sao Paulo (Brazil). Centro de Radioisotopos)

    It was determined 'in vitro' the degradation of Parathion by a bacterium and a fungus isolated from a sample of Gley Humic soil previously treated with repeated applications of the insecticide. In a qualitative colorimetric assay hydrolysis of parathion to p-nitrophenol just the bacterium gave a positive answer. In quantitative assays of /sup 14/C-parathion degradation in culture media containing both microorganisms, organic solvents extractions resulted in organic and aqueous phases, which were analysed by liquid scintillation counting and thin-layer chromatography. In a mineral salts medium plus buffer, the bacterium and the fungus behaved differently from the control, because part of the /sup 14/C-insecticide was metabolized to, at least, one metabolite and besides, the microorganisms presented smaller percentages of total recovery. The largest percentage of the radio carbon recovery from the extracts of the medium containing the fungus plus extract of yeast, was obtained from the aqueous phase and the existence of other metabolite was demonstrated by chromatograms of the organic phase.

  7. Inhibitory effect of vanillin on cellulase activity in hydrolysis of cellulosic biomass.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Wan, Yinhua

    2014-09-01

    Pretreatment of lignocellulosic material produces a wide variety of inhibitory compounds, which strongly inhibit the following enzymatic hydrolysis of cellulosic biomass. Vanillin is a kind of phenolics derived from degradation of lignin. The effect of vanillin on cellulase activity for the hydrolysis of cellulose was investigated in detail. The results clearly showed that vanillin can reversibly and non-competitively inhibit the cellulase activity at appropriate concentrations and the value of IC50 was estimated to be 30 g/L. The inhibition kinetics of cellulase by vanillin was studied using HCH-1 model and inhibition constants were determined. Moreover, investigation of three compounds with similar structure of vanillin on cellulase activity demonstrated that aldehyde group and phenolic hydroxyl groups of vanillin had inhibitory effect on cellulase. These results provide valuable and detailed information for understanding the inhibition of lignin derived phenolics on cellulase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Production of bacterial cellulose and enzyme from waste fiber sludge

    Science.gov (United States)

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  9. Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions.

    Science.gov (United States)

    Griffiths, Jonathan S; North, Helen M

    2017-05-01

    The cell wall defines the shape of cells and ultimately plant architecture. It provides mechanical resistance to osmotic pressure while still being malleable and allowing cells to grow and divide. These properties are determined by the different components of the wall and the interactions between them. The major components of the cell wall are the polysaccharides cellulose, hemicellulose and pectin. Cellulose biosynthesis has been extensively studied in Arabidopsis hypocotyls, and more recently in the mucilage-producing epidermal cells of the seed coat. The latter has emerged as an excellent system to study cellulose biosynthesis and the interactions between cellulose and other cell wall polymers. Here we review some of the major advances in our understanding of cellulose biosynthesis in the seed coat, and how mucilage has aided our understanding of the interactions between cellulose and other cell wall components required for wall cohesion. Recently, 10 genes involved in cellulose or hemicellulose biosynthesis in mucilage have been identified. These discoveries have helped to demonstrate that xylan side-chains on rhamnogalacturonan I act to link this pectin directly to cellulose. We also examine other factors that, either directly or indirectly, influence cellulose organization or crystallization in mucilage. © 2017 INRA. New Phytologist © 2017 New Phytologist Trust.

  10. Cellulose ionics: switching ionic diode responses by surface charge in reconstituted cellulose films.

    Science.gov (United States)

    Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank

    2017-09-25

    Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.

  11. Hexavalent Molybdenum Reduction to Mo-Blue by a Sodium-Dodecyl-Sulfate-Degrading Klebsiella oxytoca Strain DRY14

    Directory of Open Access Journals (Sweden)

    M. I. E. Halmi

    2013-01-01

    Full Text Available Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS- degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v, between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant.

  12. The O-antigen structure of bacterium Comamonas aquatica CJG.

    Science.gov (United States)

    Wang, Xiqian; Kondakova, Anna N; Zhu, Yutong; Knirel, Yuriy A; Han, Aidong

    2017-11-01

    Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1 H and 13 C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.

  13. Molecular identification of phosphate solubilizing bacterium ...

    African Journals Online (AJOL)

    A phosphate solubilizing bacterium was isolated from the rhizosphere soil of upland rice and identified by 16S rRNA gene sequencing. The gene sequence showed 99% homology with Alcaligenes faecalis. Based on the gene sequence homology, it was identified as A. faecalis. Interaction effect of this bacterium on growth ...

  14. Aerobic degradation of N-methyl-4-nitroaniline (MNA by Pseudomonas sp. strain FK357 isolated from soil.

    Directory of Open Access Journals (Sweden)

    Fazlurrahman Khan

    Full Text Available N-Methyl-4-nitroaniline (MNA is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA, 4-aminophenol (4-AP, and 1, 2, 4-benzenetriol (BT as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway.

  15. Characterization of Cellulose Synthesis in Plant Cells

    Science.gov (United States)

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  16. Characterization of Cellulose Synthesis in Plant Cells

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Maleki

    2016-01-01

    Full Text Available Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4 D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.

  17. Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle

    NARCIS (Netherlands)

    Patyshakuliyeva, A.; Post, H.; Zhou, M.; Jurak, E.; Heck, A.J.R.; Hilden, K.S.; Kabel, M.A.; Makela, M.R.; Altenaar, M.A.F.; Vries, de R.P.

    2015-01-01

    The economically important edible basidiomycete mushroom Agaricus bisporus thrives on decaying plant material in forests and grasslands of North America and Europe. It degrades forest litter and con-tributes to global carbon recycling, depolymerizing (hemi-)cellulose and lignin in plant biomass.

  18. Raman spectroscopy in the analysis of cellulose nanomaterials

    Science.gov (United States)

    Umesh P. Agarwal

    2017-01-01

    Cellulose nanomaterials (CNs) are new types of materials derived from celluloses and offer unique challenges and opportunities for Raman spectroscopic investigations. CNs can be classified into the categories of cellulose nanocrystals (CNCs, also known as cellulose whisker) and cellulose nanofibrils (CNFs, also known as nanofibrillated cellulose or NFCs) which when...

  19. Modelling the bioconversion of cellulose into microbial products: rate limitations

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, J A

    1984-12-01

    The direct bioconversion of cellulose into microbial products carried out as a simultaneous saccharification and fermentation has a strong effect on the rates of cellulose degradation because cellobiose and glucose inhibition of the reaction are circumvented. A general mathematical model of the kinetics of this bioconversion has been developed. Its use in representing aerobic systems and in the analysis of the kinetic limitations has been investigated. Simulations have been carried out to find the rate limiting steps in slow fermentations and in rapid ones as determined by the specific rate of product formation. The requirements for solubilising and depolymerising enzyme activities (cellulase and cellobiase) in these systems has been determined. The activity that have been obtained for fungal cellulases are adequate for the kinetic requirements of the fastest fermentative strains. The results also show that for simultaneous bioconversions where strong cellobiose and glucose inhibition is overcome, no additional cellobiase is necessary to increase the rate of product formation. These results are useful for the selection of cellolytic micro-organisms and in the determination of enzymes to be cloned in recombinant strains. 17 references.

  20. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation.

    Science.gov (United States)

    Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin

    2018-01-26

    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 Å resolution. IsPETase has a Ser-His-Asp catalytic triad at its active site and contains an optimal substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moieties of PET. Based on structural and site-directed mutagenesis experiments, the detailed process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested. Moreover, other PETase candidates potentially having high PET-degrading activities are suggested based on phylogenetic tree analysis of 69 PETase-like proteins.