WorldWideScience

Sample records for cellular ofdm networks

  1. Energy-efficient optical network units for OFDM PON based on time-domain interleaved OFDM technique.

    Science.gov (United States)

    Hu, Xiaofeng; Cao, Pan; Zhang, Liang; Jiang, Lipeng; Su, Yikai

    2014-06-02

    We propose and experimentally demonstrate a new scheme to reduce the energy consumption of optical network units (ONUs) in orthogonal frequency division multiplexing passive optical networks (OFDM PONs) by using time-domain interleaved OFDM (TI-OFDM) technique. In a conventional OFDM PON, each ONU has to process the complete downstream broadcast OFDM signal with a high sampling rate and a large FFT size to retrieve its required data, even if it employs a portion of OFDM subcarriers. However, in our scheme, the ONU only needs to sample and process one data group from the downlink TI-OFDM signal, effectively reducing the sampling rate and the FFT size of the ONU. Thus, the energy efficiency of ONUs in OFDM PONs can be greatly improved. A proof-of-concept experiment is conducted to verify the feasibility of the proposed scheme. Compared to the conventional OFDM PON, our proposal can save 17.1% and 26.7% energy consumption of ONUs by halving and quartering the sampling rate and the FFT size of ONUs with the use of the TI-OFDM technology.

  2. Experimental demonstration of SCMA-OFDM for passive optical network

    Science.gov (United States)

    Lin, Bangjiang; Tang, Xuan; Shen, Xiaohuan; Zhang, Min; Lin, Chun; Ghassemlooy, Zabih

    2017-12-01

    We introduces a novel architecture for next generation passive optical network (PON) based on the employment of sparse code multiple access (SCMA) combined with orthogonal frequency division multiplexing (OFDM) modulation, in which the binary data is directly encoded to multi-dimensional codewords and then spread over OFDM subcarriers. The feasibility of SCMA-OFDM-PON is verified with experimental demonstration. We show that the SCMA-OFDM offers 150% overloading gain in the number of optical network units compared with the orthogonal frequency division multiplexing access.

  3. Analysis of blocking probability for OFDM-based variable bandwidth optical network

    Science.gov (United States)

    Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi

    2011-12-01

    Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.

  4. Physical-layer network coding in coherent optical OFDM systems.

    Science.gov (United States)

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  5. Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission.

    Science.gov (United States)

    Liu, Lei; Peng, Wei-Ren; Casellas, Ramon; Tsuritani, Takehiro; Morita, Itsuro; Martínez, Ricardo; Muñoz, Raül; Yoo, S J B

    2014-01-13

    Optical Orthogonal Frequency Division Multiplexing (O-OFDM), which transmits high speed optical signals using multiple spectrally overlapped lower-speed subcarriers, is a promising candidate for supporting future elastic optical networks. In contrast to previous works which focus on Coherent Optical OFDM (CO-OFDM), in this paper, we consider the direct-detection optical OFDM (DDO-OFDM) as the transport technique, which leads to simpler hardware and software realizations, potentially offering a low-cost solution for elastic optical networks, especially in metro networks, and short or medium distance core networks. Based on this network scenario, we design and deploy a software-defined networking (SDN) control plane enabled by extending OpenFlow, detailing the network architecture, the routing and spectrum assignment algorithm, OpenFlow protocol extensions and the experimental validation. To the best of our knowledge, it is the first time that an OpenFlow-based control plane is reported and its performance is quantitatively measured in an elastic optical network with DDO-OFDM transmission.

  6. Experimental demonstration of IDMA-OFDM for passive optical network

    Science.gov (United States)

    Lin, Bangjiang; Tang, Xuan; Li, Yiwei; Zhang, Min; Lin, Chun; Ghassemlooy, Zabih

    2017-11-01

    We present interleave division multiple access (IDMA) scheme combined with orthogonal frequency division multiplexing (OFDM) for passive optical network, which offers improved transmission performance and good chromatic dispersion tolerance. The interleavers are employed to separate different users and the generated chips are modulated on OFDM subcarriers. The feasibility of IDMA-OFDM-PON is experimentally verified with a bitrate of 3.3 Gb/s per user. Compared with OFDMA, IDMA-OFDM offers 8 and 6 dB gains in term of receiver sensitivity in the cases of 2 and 4 users, respectively.

  7. Coded-subcarrier-aided chromatic dispersion monitoring scheme for flexible optical OFDM networks.

    Science.gov (United States)

    Tse, Kam-Hon; Chan, Chun-Kit

    2014-08-11

    A simple coded-subcarrier aided scheme is proposed to perform chromatic dispersion monitoring in flexible optical OFDM networks. A pair of coded label subcarriers is added to both edges of the optical OFDM signal spectrum at the edge transmitter node. Upon reception at any intermediate or the receiver node, chromatic dispersion estimation is performed, via simple direct detection, followed by electronic correlation procedures with the designated code sequences. The feasibility and the performance of the proposed scheme have been experimentally characterized. It provides a cost-effective monitoring solution for the optical OFDM signals across intermediate nodes in flexible OFDM networks.

  8. OFDM with Index Modulation for Asynchronous mMTC Networks.

    Science.gov (United States)

    Doğan, Seda; Tusha, Armed; Arslan, Hüseyin

    2018-04-21

    One of the critical missions for next-generation wireless communication systems is to fulfill the high demand for massive Machine-Type Communications (mMTC). In mMTC systems, a sporadic transmission is performed between machine users and base station (BS). Lack of coordination between the users and BS in time destroys orthogonality between the subcarriers, and causes inter-carrier interference (ICI). Therefore, providing services to asynchronous massive machine users is a major challenge for Orthogonal Frequency Division Multiplexing (OFDM). In this study, OFDM with index modulation (OFDM-IM) is proposed as an eligible solution to alleviate ICI caused by asynchronous transmission in uncoordinated mMTC networks. In OFDM-IM, data transmission is performed not only by modulated subcarriers but also by the indices of active subcarriers. Unlike classical OFDM, fractional subcarrier activation leads to less ICI in OFDM-IM technology. A novel subcarrier mapping scheme (SMS) named as Inner Subcarrier Activation is proposed to further alleviate adjacent user interference in asynchronous OFDM-IM-based systems. ISA reduces inter-user interference since it gives more activation priority to inner subcarriers compared with the existing SMS-s. The superiority of the proposed SMS is shown through both theoretical analysis and computer-based simulations in comparison to existing mapping schemes for asynchronous systems.

  9. Energy efficiency analysis for flexible-grid OFDM-based optical networks

    DEFF Research Database (Denmark)

    Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso

    2012-01-01

    As the Internet traffic grows, the energy efficiency gains more attention as a design factor for the planning and operation of telecommunication networks. This paper is devoted to the study of energy efficiency in optical transport networks, comparing the performance of an innovative flexible......-grid network based on Orthogonal Frequency Division Multiplexing (OFDM) with that of conventional fixed-grid Wavelength Division Multiplexing (WDM) networks with a Single Line Rate (SLR) and with a Mixed Line Rate (MLR) operation. The power consumption values of the network elements are introduced. Energy......-aware heuristic algorithms are proposed for the resource allocation both in static (offline) and dynamic (online) scenarios with time-varying demands for the Elastic-bandwidth OFDM-based network and the WDM networks (with SLR and MLR). The energy efficiency performance of the two network technologies under...

  10. A virtually blind spectrum efficient channel estimation technique for mimo-ofdm system

    International Nuclear Information System (INIS)

    Ullah, M.O.

    2015-01-01

    Multiple-Input Multiple-Output antennas in conjunction with Orthogonal Frequency-Division Multiplexing is a dominant air interface for 4G and 5G cellular communication systems. Additionally, MIMO- OFDM based air interface is the foundation for latest wireless Local Area Networks, wireless Personal Area Networks, and digital multimedia broadcasting. Whether it is a single antenna or a multi-antenna OFDM system, accurate channel estimation is required for coherent reception. Training-based channel estimation methods require multiple pilot symbols and therefore waste a significant portion of channel bandwidth. This paper describes a virtually blind spectrum efficient channel estimation scheme for MIMO-OFDM systems which operates well below the Nyquist criterion. (author)

  11. Photonic layer security in fiber-optic networks and optical OFDM transmission

    Science.gov (United States)

    Wang, Zhenxing

    Currently the Internet is experiencing an explosive growth in the world. Such growth leads to an increased data transmission rate demand in fiber-optical networks. Optical orthogonal frequency multiplexing (OFDM) is considered as a promising solution to achieve data rate beyond 100Gb/s per wavelength channel. In the meanwhile, because of extensive data transmission and sharing, data security has become an important problem and receives considerable attention in current research literature. This thesis focuses on data security issues at the physical layer of optical networks involving code-division multiple access (CDMA) systems and steganography methods. The thesis also covers several implementation issues in optical OFDM transmission. Optical CDMA is regarded as a good candidate to provide photonic layer security in multi-access channels. In this thesis we provide a systematic analysis of the security performance of incoherent optical CDMA codes. Based on the analysis, we proposed and experimentally demonstrated several methods to improve the security performance of the optical CDMA systems, such as applying all-optical encryption, and code hopping using nonlinear wavelength conversion. Moreover, we demonstrate that the use of wireless CDMA codes in optical systems can enhance the security in one single-user end-to-end optical channel. Optical steganography is another method to provide photonic data security and involves hiding the existence of data transmissions. In the thesis, we demonstrate that an optical steganography channel can exist in phase modulated public channels as well as traditional on-off-keying (OOK) modulated channels, without data synchronization. We also demonstrate an optical steganography system with enhanced security by utilizing temporal phase modulation techniques. Additionally, as one type of an overlay channel, the optical steganography technology can carry the sensor data collected by wireless sensor network on top of public optical

  12. Implementation of orthogonal frequency division multiplexing (OFDM) and advanced signal processing for elastic optical networking in accordance with networking and transmission constraints

    Science.gov (United States)

    Johnson, Stanley

    An increasing adoption of digital signal processing (DSP) in optical fiber telecommunication has brought to the fore several interesting DSP enabled modulation formats. One such format is orthogonal frequency division multiplexing (OFDM), which has seen great success in wireless and wired RF applications, and is being actively investigated by several research groups for use in optical fiber telecom. In this dissertation, I present three implementations of OFDM for elastic optical networking and distributed network control. The first is a field programmable gate array (FPGA) based real-time implementation of a version of OFDM conventionally known as intensity modulation and direct detection (IMDD) OFDM. I experimentally demonstrate the ability of this transmission system to dynamically adjust bandwidth and modulation format to meet networking constraints in an automated manner. To the best of my knowledge, this is the first real-time software defined networking (SDN) based control of an OFDM system. In the second OFDM implementation, I experimentally demonstrate a novel OFDM transmission scheme that supports both direct detection and coherent detection receivers simultaneously using the same OFDM transmitter. This interchangeable receiver solution enables a trade-off between bit rate and equipment cost in network deployment and upgrades. I show that the proposed transmission scheme can provide a receiver sensitivity improvement of up to 1.73 dB as compared to IMDD OFDM. I also present two novel polarization analyzer based detection schemes, and study their performance using experiment and simulation. In the third implementation, I present an OFDM pilot-tone based scheme for distributed network control. The first instance of an SDN-based OFDM elastic optical network with pilot-tone assisted distributed control is demonstrated. An improvement in spectral efficiency and a fast reconfiguration time of 30 ms have been achieved in this experiment. Finally, I

  13. Novel Spectrum Sensing Algorithms for OFDM Cognitive Radio Networks.

    Science.gov (United States)

    Shi, Zhenguo; Wu, Zhilu; Yin, Zhendong; Cheng, Qingqing

    2015-06-15

    Spectrum sensing technology plays an increasingly important role in cognitive radio networks. Consequently, several spectrum sensing algorithms have been proposed in the literature. In this paper, we present a new spectrum sensing algorithm "Differential Characteristics-Based OFDM (DC-OFDM)" for detecting OFDM signal on account of differential characteristics. We put the primary value on channel gain θ around zero to detect the presence of primary user. Furthermore, utilizing the same method of differential operation, we improve two traditional OFDM sensing algorithms (cyclic prefix and pilot tones detecting algorithms), and propose a "Differential Characteristics-Based Cyclic Prefix (DC-CP)" detector and a "Differential Characteristics-Based Pilot Tones (DC-PT)" detector, respectively. DC-CP detector is based on auto-correlation vector to sense the spectrum, while the DC-PT detector takes the frequency-domain cross-correlation of PT as the test statistic to detect the primary user. Moreover, the distributions of the test statistics of the three proposed methods have been derived. Simulation results illustrate that all of the three proposed methods can achieve good performance under low signal to noise ratio (SNR) with the presence of timing delay. Specifically, the DC-OFDM detector gets the best performance among the presented detectors. Moreover, both of the DC-CP and DC-PT detector achieve significant improvements compared with their corresponding original detectors.

  14. Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal.

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Kongtao; Su, Yikai

    2012-03-26

    We propose and experimentally demonstrate a scheme to improve the energy efficiency of wavelength division multiplexing - orthogonal frequency division multiplexing - passive optical networks (WDM-OFDM-PONs). By using an N × M opto-mechanic switch in optical line terminal (OLT), an OFDM modulation module is shared by several channels to deliver data to multiple users with low traffic demands during non-peak hours of the day, thus greatly reducing the number of operating devices and minimizing the energy consumption of the OLT. An experiment utilizing one OFDM modulation module to serve three optical network units (ONUs) in a WDM-OFDM-PON is performed to verify the feasibility of our proposal. Theoretical analysis and numerical calculation show that the proposed scheme can achieve a saving of 23.6% in the energy consumption of the OFDM modulation modules compared to conventional WDM-OFDM-PON.

  15. Potential of OFDM for next generation optical access

    Science.gov (United States)

    Fritzsche, Daniel; Weis, Erik; Breuer, Dirk

    2011-01-01

    This paper shows the requirements for next generation optical access (NGOA) networks and analyzes the potential of OFDM (orthogonal frequency division multiplexing) for the use in such network scenarios. First, we show the motivation for NGOA systems based on the future requirements on FTTH access systems and list the advantages of OFDM in such scenarios. In the next part, the basics of OFDM and different methods to generate and detect optical OFDM signals are explained and analyzed. At the transmitter side the options include intensity modulation and the more advanced field modulation of the optical OFDM signal. At the receiver there is the choice between direct detection and coherent detection. As the result of this discussion we show our vision of the future use of OFDM in optical access networks.

  16. Investigation of Doppler Effects on high mobility OFDM-MIMO systems with the support of High Altitude Platforms (HAPs)

    Science.gov (United States)

    Mohammed, H. A.; Sibley, M. J. N.; Mather, P. J.

    2012-05-01

    The merging of Orthogonal Frequency Division Multiplexing (OFDM) with Multiple-input multiple-output (MIMO) is a promising mobile air interface solution for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. This paper details the design of a highly robust and efficient OFDM-MIMO system to support permanent accessibility and higher data rates to users moving at high speeds, such as users travelling on trains. It has high relevance for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. The paper begins with a comprehensive literature review focused on both technologies. This is followed by the modelling of the OFDM-MIMO physical layer based on Simulink/Matlab that takes into consideration high vehicular mobility. Then the entire system is simulated and analysed under different encoding and channel estimation algorithms. The use of High Altitude Platform system (HAPs) technology is considered and analysed.

  17. Investigation of Doppler Effects on high mobility OFDM-MIMO systems with the support of High Altitude Platforms (HAPs)

    International Nuclear Information System (INIS)

    Mohammed, H A; Sibley, M J N; Mather, P J

    2012-01-01

    The merging of Orthogonal Frequency Division Multiplexing (OFDM) with Multiple-input multiple-output (MIMO) is a promising mobile air interface solution for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. This paper details the design of a highly robust and efficient OFDM-MIMO system to support permanent accessibility and higher data rates to users moving at high speeds, such as users travelling on trains. It has high relevance for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. The paper begins with a comprehensive literature review focused on both technologies. This is followed by the modelling of the OFDM-MIMO physical layer based on Simulink/Matlab that takes into consideration high vehicular mobility. Then the entire system is simulated and analysed under different encoding and channel estimation algorithms. The use of High Altitude Platform system (HAPs) technology is considered and analysed.

  18. Frequency interleaving towards spectrally efficient directly detected optical OFDM for next-generation optical access networks.

    Science.gov (United States)

    Mehedy, Lenin; Bakaul, Masuduzzaman; Nirmalathas, Ampalavanapillai

    2010-10-25

    In this paper, we theoretically analyze and demonstrate that spectral efficiency of a conventional direct detection based optical OFDM system (DDO-OFDM) can be improved significantly using frequency interleaving of adjacent DDO-OFDM channels where OFDM signal band of one channel occupies the spectral gap of other channel and vice versa. We show that, at optimum operating condition, the proposed technique can effectively improve the spectral efficiency of the conventional DDO-OFDM system as much as 50%. We also show that such a frequency interleaved DDO-OFDM system, with a bit rate of 48 Gb/s within 25 GHz bandwidth, achieves sufficient power budget after transmission over 25 km single mode fiber to be used in next-generation time-division-multiplexed passive optical networks (TDM-PON). Moreover, by applying 64- quadrature amplitude modulation (QAM), the system can be further scaled up to 96 Gb/s with a power budget sufficient for 1:16 split TDM-PON.

  19. Adaptation of AMO-FBMC-OQAM in optical access network for accommodating asynchronous multiple access in OFDM-based uplink transmission

    Science.gov (United States)

    Jung, Sun-Young; Jung, Sang-Min; Han, Sang-Kook

    2015-01-01

    Exponentially expanding various applications in company with proliferation of mobile devices make mobile traffic exploded annually. For future access network, bandwidth efficient and asynchronous signals converged transmission technique is required in optical network to meet a huge bandwidth demand, while integrating various services and satisfying multiple access in perceived network resource. Orthogonal frequency division multiplexing (OFDM) is highly bandwidth efficient parallel transmission technique based on orthogonal subcarriers. OFDM has been widely studied in wired-/wireless communication and became a Long term evolution (LTE) standard. Consequently, OFDM also has been actively researched in optical network. However, OFDM is vulnerable frequency and phase offset essentially because of its sinc-shaped side lobes, therefore tight synchronism is necessary to maintain orthogonality. Moreover, redundant cyclic prefix (CP) is required in dispersive channel. Additionally, side lobes act as interference among users in multiple access. Thus, it practically hinders from supporting integration of various services and multiple access based on OFDM optical transmission In this paper, adaptively modulated optical filter bank multicarrier system with offset QAM (AMO-FBMC-OQAM) is introduced and experimentally investigated in uplink optical transmission to relax multiple access interference (MAI), while improving bandwidth efficiency. Side lobes are effectively suppressed by using FBMC, therefore the system becomes robust to path difference and imbalance among optical network units (ONUs), which increase bandwidth efficiency by reducing redundancy. In comparison with OFDM, a signal performance and an efficiency of frequency utilization are improved in the same experimental condition. It enables optical network to effectively support heterogeneous services and multiple access.

  20. Algebraic Number Precoded OFDM Transmission for Asynchronous Cooperative Multirelay Networks

    Directory of Open Access Journals (Sweden)

    Hua Jiang

    2014-01-01

    Full Text Available This paper proposes a space-time block coding (STBC transmission scheme for asynchronous cooperative systems. By combination of rotated complex constellations and Hadamard transform, these constructed codes are capable of achieving full cooperative diversity with the analysis of the pairwise error probability (PEP. Due to the asynchronous characteristic of cooperative systems, orthogonal frequency division multiplexing (OFDM technique with cyclic prefix (CP is adopted for combating timing delays from relay nodes. The total transmit power across the entire network is fixed and appropriate power allocation can be implemented to optimize the network performance. The relay nodes do not require decoding and demodulation operation, resulting in a low complexity. Besides, there is no delay for forwarding the OFDM symbols to the destination node. At the destination node the received signals have the corresponding STBC structure on each subcarrier. In order to reduce the decoding complexity, the sphere decoder is implemented for fast data decoding. Bit error rate (BER performance demonstrates the effectiveness of the proposed scheme.

  1. Wired and wireless convergent extended-reach optical access network using direct-detection of all-optical OFDM super-channel signal.

    Science.gov (United States)

    Chow, C W; Yeh, C H; Sung, J Y; Hsu, C W

    2014-12-15

    We propose and demonstrate the feasibility of using all-optical orthogonal frequency division multiplexing (AO-OFDM) for the convergent optical wired and wireless access networks. AO-OFDM relies on all-optically generated orthogonal subcarriers; hence, high data rate (> 100 Gb/s) can be easily achieved without hitting the speed limit of electronic digital-to-analog and analog-to-digital converters (DAC/ADC). A proof-of-concept convergent access network using AO-OFDM super-channel (SC) is demonstrated supporting 40 - 100 Gb/s wired and gigabit/s 100 GHz millimeter-wave (MMW) ROF transmissions.

  2. On-the-field performance of quintuple-play long-reach OFDM-based WDM-PON optical access networks.

    Science.gov (United States)

    Llorente, Roberto; Morant, Maria; Pellicer, Eloy; Herman, Milan; Nagy, Zsolt; Alves, Tiago; Cartaxo, Adolfo; Herrera, Javier; Correcher, Jose; Quinlan, Terence; Walker, Stuart; Rodrigues, Cláudio; Cluzeaud, Pierre; Schmidt, Axel; Piesiewicz, Radoslaw; Sambaraju, Rakesh

    2014-03-24

    In this paper the on-the-field performance of a WDM-PON optical access providing quintuple-play services using orthogonal frequency division multiplexing (OFDM) modulation is evaluated in a real fiber-to-the-home (FTTH) network deployed by Towercom operator in Bratislava (Slovakia). A bundle of quintuple-play services comprising full-standard OFDM-based signals (LTE, WiMAX, UWB and DVB-T) and an ad-hoc OFDM-GbE signal is transmitted in coexistence per single user. Both downstream and upstream transmission performances are evaluated in different on-the-field long-reach optical link distance configurations. Four wavelength multi-user transmission of quintuple-play OFDM services is demonstrated exceeding 60.8 km reach in standard single mode fiber.

  3. OFDM AF Variable Gain Relay System for the Next Generation Mobile Cellular

    Directory of Open Access Journals (Sweden)

    E. Kocan

    2012-06-01

    Full Text Available In this paper we present analytical performance evaluation of a dual-hop OFDM amplify-andforward (AF variable gain (VG relay system implementing ordered subcarrier mapping (SCM at the relay station (R, considered to be a very interesting solution for the next generation mobile cellular networks. A scenario with no direct communication between the source of information (S and destination terminal (D, with the Rayleigh fading statistics on both hops is assumed. A closed form analytical expression for the bit error rate (BER performance of the considered system with DPSK modulation is derived, while for its ergodic capacity performance, a tight upper bound expression is obtained. The accuracy of the undertaken analytical approach is confirmed through comparison with simulation results. It is shown that significant capacity enhancement can be achieved through SCM implementation at R, for all the signal-to-noise ratio (SNR values on both hops, but especially in the region of small SNRs on hops. BER analysis reveals that in the region of small and medium average SNRs on both hops BER performance may also be improved with SCM at R station.

  4. Coding for MIMO-OFDM in future wireless systems

    CERN Document Server

    Ahmed, Bannour

    2015-01-01

    This book introduces the reader to the MIMO-OFDM system, in Rayleigh frequency selective-channels. Orthogonal frequency division multiplexing (OFDM) has been adopted in the wireless local-area network standards IEEE 802.11a due to its high spectral efficiency and ability to deal with frequency selective fading. The combination of OFDM with spectral efficient multiple antenna techniques makes the OFDM a good candidate to overcome the frequency selective problems.

  5. Improving Spectral Capacity and Wireless Network Coverage by Cognitive Radio Technology and Relay Nodes in Cellular Systems

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge

    2008-01-01

    Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context have been presented and discussed in this paper. Ideas to improve the wireless transmission by orthogonal OFDM-based communication and to increase the...... the coverage of cellular systems by future wireless networks, relay channels, relay stations and collaborate radio have been presented as well. A revised hierarchical deployment of the future wireless and wired networks are shortly discussed....

  6. OFDM for underwater acoustic communications

    CERN Document Server

    Zhou, Shengli

    2014-01-01

    A blend of introductory material and advanced signal processing and communication techniques, of critical importance to underwater system and network development This book, which is the first to describe the processing techniques central to underwater OFDM, is arranged into four distinct sections: First, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels. Then it goes over the basics of OFDM and channel coding. The second part starts with an overview of the OFDM receiver, and develops various modules for the receiver des

  7. MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey

    Science.gov (United States)

    Han, Ruisong; Yang, Wei; You, Kaiming

    2016-01-01

    Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed. PMID:27999258

  8. MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey.

    Science.gov (United States)

    Han, Ruisong; Yang, Wei; You, Kaiming

    2016-12-16

    Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed.

  9. Experimental study of coexistence of multi-band OFDM-UWB and OFDM-baseband signals in long-reach PONs using directly modulated lasers.

    Science.gov (United States)

    Morgado, José A P; Fonseca, Daniel; Cartaxo, Adolfo V T

    2011-11-07

    Transmission of coexisting Orthogonal Frequency Division Multiplexing (OFDM)-baseband (BB) and multi-band OFDM-ultra-wideband (UWB) signals along long-reach passive optical networks using directly modulated lasers (DML) is experimentally demonstrated.When optimized modulation indexes are used, bit error ratios not exceeding 5 × 10⁻⁴ can be achieved by all (OFDM-BB and three OFDM-UWB sub-bands) signals for a reach of 100 km of standard single-mode fiber (SSMF) and optical signal-to-noise ratios not lower than 25dB@0.1 nm. It is experimentally shown that, for the SSMF reach of 100km, the optimized performance of coexisting OFDM-BB and OFDM-UWB signals is mainly imposed by the combination of two effects: the SSMF dispersion-induced nonlinear distortion of the OFDM-UWB signals caused by the OFDM-BB and OFDM-UWB signals, and the further degradation of the OFDM-UWB signals with higher frequency, due to the reduced DML bandwidth.

  10. Increase in Multicast OFDM Data Rate in PLC Network using Adaptive LP-OFDM

    OpenAIRE

    Maiga , Ali; Baudais , Jean-Yves; Hélard , Jean-François

    2009-01-01

    ISBN: 978-1-4244-3523-4; International audience; Linear precoding (LP) technique applied to OFDM systems has already proved its ability to significantly increase the system throughput in a powerline communication (PLC) context. In this paper, we propose resource allocation algorithms based on the LP technique to increase the multicast OFDM systems bit rate. The conventional multicast capacity is limited by the user which experiences the worst channel conditions. To increase the multicast bit ...

  11. Wavelet networks for reducing the envelope fluctuations in WirelessMan–OFDM systems

    Directory of Open Access Journals (Sweden)

    Radouane Iqdour

    2016-05-01

    Full Text Available The IEEE 802.16d standard specified Orthogonal Frequency Division Multiplexing (OFDM modulation for the Worldwide Interoperability for Microwave Access (WiMAX physical layer. However, the main weakness of OFDM is the high Peak-to-Average Power Ratio (PAPR. In this paper, we present two new approaches based on Wavelet Networks (WNs for reducing the PAPR in the fixed WiMAX system. The training data is obtained from the ACE-AGP algorithm. The results of the simulations show the effectiveness of the proposed schemes even for high order modulation such as 64-QAM. Furthermore, the proposals allow reduction in the complexity and convergence time in comparison with other methods.

  12. Performance Analysis of Long-Reach Coherent Detection OFDM-PON Downstream Transmission Using m-QAM-Mapped OFDM Signal

    Science.gov (United States)

    Pandey, Gaurav; Goel, Aditya

    2017-12-01

    In this paper, orthogonal frequency division multiplexing (OFDM)-passive optical network (PON) downstream transmission is demonstrated over different lengths of fiber at remote node (RN) for different m-QAM (quadrature amplitude modulation)-mapped OFDM signal (m=4, 16, 32 and 64) transmission from the central office (CO) for different data rates (10, 20 30 and 40 Gbps) using coherent detection at the user end or optical network unit (ONU). Investigation is performed with different number of subcarriers (32, 64, 128, 512 and 1,024), back-to-back optical signal-to-noise ratio (OSNR) along with transmitted and received constellation diagrams for m-QAM-mapped coherent OFDM downstream transmission at different speeds over different transmission distances. Received optical power is calculated for different bit error rates (BERs) at different speeds using m-QAM-mapped coherent detection OFDM downstream transmission. No dispersion compensation is utilized in between the fiber span. Simulation results suggest the different lengths and data rates that can be used for different m-QAM-mapped coherent detection OFDM downstream transmission, and the proposed system may be implemented in next-generation high-speed PONs (NG-PONs).

  13. All-optical virtual private network and ONUs communication in optical OFDM-based PON system.

    Science.gov (United States)

    Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun

    2011-11-21

    We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible. © 2011 Optical Society of America

  14. All optical OFDM transmission for passive optical networks

    Science.gov (United States)

    Kachare, Nitin; Ashik T., J.; Bai, K. Kalyani; Kumar, D. Sriram

    2017-06-01

    This paper demonstrates the idea of data transmission at a very higher rate (Tbits/s) through optical fibers in a passive optical network using the most efficient data transmission technique widely used in wireless communication that is orthogonal frequency division multiplexing. With an increase in internet users, data traffic has also increased significantly and the current dense wavelength division multiplexing (DWDM) systems may not support the next generation passive optical networks (PONs) requirements. The approach discussed in this paper allows to increase the downstream data rate per user and extend the standard single-mode fiber reach for future long-haul applications. All-optical OFDM is a promising solution for terabit per second capable single wavelength transmission, with high spectral efficiency and high tolerance to chromatic dispersion.

  15. Energy reduction using multi-channels optical wireless communication based OFDM

    Science.gov (United States)

    Darwesh, Laialy; Arnon, Shlomi

    2017-10-01

    In recent years, an increasing number of data center networks (DCNs) have been built to provide various cloud applications. Major challenges in the design of next generation DC networks include reduction of the energy consumption, high flexibility and scalability, high data rates, minimum latency and high cyber security. Use of optical wireless communication (OWC) to augment the DC network could help to confront some of these challenges. In this paper we present an OWC multi channels communication method that could lead to significant energy reduction of the communication equipment. The method is to convert a high speed serial data stream to many slower and parallel streams and vies versa at the receiver. We implement this concept of multi channels using optical orthogonal frequency division multiplexing (O-OFDM) method. In our scheme, we use asymmetrically clipped optical OFDM (ACO-OFDM). Our results show that the realization of multi channels OFDM (ACO-OFDM) methods reduces the total energy consumption exponentially, as the number of channels transmitted through them rises.

  16. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Science.gov (United States)

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%. PMID:26351656

  17. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network.

    Science.gov (United States)

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.

  18. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Directory of Open Access Journals (Sweden)

    Rie Saotome

    2015-01-01

    Full Text Available In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles, AUV (autonomous underwater vehicle, divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3 and 93.750 Hz (MODE2 OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%.

  19. Reverse polarity optical-OFDM (RPO-OFDM): dimming compatible OFDM for gigabit VLC links.

    Science.gov (United States)

    Elgala, Hany; Little, Thomas D C

    2013-10-07

    Visible light communications (VLC) technology permits the exploitation of light-emitting diode (LED) luminaries for simultaneous illumination and broadband wireless communication. Optical orthogonal frequency-division multiplexing (O-OFDM) is a promising modulation technique for VLC systems, in which the real-valued O-OFDM baseband signal is used to modulate the instantaneous power of the optical carrier to achieve gigabit data rates. However, a major design challenge that limits the commercialization of VLC is how to incorporate the industry-preferred pulse-width modulation (PWM) light dimming technique while maintaining a broadband and reliable communication link. In this work, a novel signal format, reverse polarity O-OFDM (RPO-OFDM), is proposed to combine the fast O-OFDM communication signal with the relatively slow PWM dimming signal, where both signals contribute to the effective LED brightness. The advantages of using RPO-OFDM include, (1) the data rate is not limited by the frequency of the PWM signal, (2) the LED dynamic range is fully utilized to minimize the nonlinear distortion of the O-OFDM communication signal, and (3) the bit-error performance is sustained over a large fraction of the luminaire dimming range. In addition, RPO-OFDM offers a practical approach to utilize off-the-shelf LED drivers. We show results of numerical simulations to study the trade-offs between the PWM duty cycle, average electrical O-OFDM signal power, radiated optical flux as well as human perceived light.

  20. Computationally Efficient Power Allocation Algorithm in Multicarrier-Based Cognitive Radio Networks: OFDM and FBMC Systems

    Directory of Open Access Journals (Sweden)

    Shaat Musbah

    2010-01-01

    Full Text Available Cognitive Radio (CR systems have been proposed to increase the spectrum utilization by opportunistically access the unused spectrum. Multicarrier communication systems are promising candidates for CR systems. Due to its high spectral efficiency, filter bank multicarrier (FBMC can be considered as an alternative to conventional orthogonal frequency division multiplexing (OFDM for transmission over the CR networks. This paper addresses the problem of resource allocation in multicarrier-based CR networks. The objective is to maximize the downlink capacity of the network under both total power and interference introduced to the primary users (PUs constraints. The optimal solution has high computational complexity which makes it unsuitable for practical applications and hence a low complexity suboptimal solution is proposed. The proposed algorithm utilizes the spectrum holes in PUs bands as well as active PU bands. The performance of the proposed algorithm is investigated for OFDM and FBMC based CR systems. Simulation results illustrate that the proposed resource allocation algorithm with low computational complexity achieves near optimal performance and proves the efficiency of using FBMC in CR context.

  1. Spectrally and Energy Efficient OFDM (SEE-OFDM) for Intensity Modulated Optical Wireless Systems

    OpenAIRE

    Lam, Emily; Wilson, Sarah Kate; Elgala, Hany; Little, Thomas D. C.

    2015-01-01

    Spectrally and energy efficient orthogonal frequency division multiplexing (SEE-OFDM) is an optical OFDM technique based on combining multiple asymmetrically clipped optical OFDM (ACO-OFDM) signals into one OFDM signal. By summing different components together, SEE-OFDM can achieve the same spectral efficiency as DC-biased optical OFDM (DCO-OFDM) without an energy-inefficient DC-bias. This paper introduces multiple methods for decoding a SEE-OFDM symbol and shows that an iterative decoder wit...

  2. Multi-Hop Link Capacity of Multi-Route Multi-Hop MRC Diversity for a Virtual Cellular Network

    Science.gov (United States)

    Daou, Imane; Kudoh, Eisuke; Adachi, Fumiyuki

    In virtual cellular network (VCN), proposed for high-speed mobile communications, the signal transmitted from a mobile terminal is received by some wireless ports distributed in each virtual cell and relayed to the central port that acts as a gateway to the core network. In this paper, we apply the multi-route MHMRC diversity in order to decrease the transmit power and increase the multi-hop link capacity. The transmit power, the interference power and the link capacity are evaluated for DS-CDMA multi-hop VCN by computer simulation. The multi-route MHMRC diversity can be applied to not only DS-CDMA but also other access schemes (i. e. MC-CDMA, OFDM, etc.).

  3. On the potential of zero-tail DFT-spread-OFDM in 5G networks

    DEFF Research Database (Denmark)

    Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão; Sørensen, Troels Bundgaard

    2014-01-01

    Zero-tail Discrete Fourier Transform -spread OFDM (ZT DFT-s-OFDM) modulation allows to dynamically cope with the delay spread of the multipath channel, thus avoiding the limitations of hard-coded Cyclic Prefix (CP). In this paper, we discuss the potential of ZT DFT-s-OFDM modulation for the envis......, possibility of adopting unified radio numerology among different cells, reduced latency and support of agile link direction switching. The robustness of ZT DFT-s-OFDM towards non-idealities such as phase noise and non-linear power amplifier is also discussed....

  4. Dispersion and nonlinear effects in OFDM-RoF system

    Science.gov (United States)

    Alhasson, Bader H.; Bloul, Albe M.; Matin, M.

    2010-08-01

    The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.

  5. Extended reach OFDM-PON using super-Nyquist image induced aliasing.

    Science.gov (United States)

    Guo, Changjian; Liang, Jiawei; Liu, Jie; Liu, Liu

    2015-08-24

    We investigate a novel dispersion compensating technique in double sideband (DSB) modulated and directed-detected (DD) passive optical network (PON) systems using super-Nyquist image induced aliasing. We show that diversity is introduced to the higher frequency components by deliberate aliasing using the super-Nyquist images. We then propose to use fractional sampling and per-subcarrier maximum ratio combining (MRC) to harvest this diversity. We evaluate the performance of conventional orthogonal frequency division multiplexing (OFDM) signals along with discrete Fourier transform spread (DFT-S) OFDM and code-division multiplexing OFDM (CDM-OFDM) signals using the proposed scheme. The results show that the DFT-S OFDM signal has the best performance due to spectrum spreading and its superior peak-to-average power ratio (PAPR). By using the proposed scheme, the reach of a 10-GHz bandwidth QPSK modulated OFDM-PON can be extended to around 90 km. We also experimentally show that the achievable data rate of the OFDM signals can be effectively increased using the proposed scheme when adaptive bit loading is applied, depending on the transmission distance. A 10.5% and 5.2% increase in the achievable bit rate can be obtained for DSB modulated OFDM-PONs in 48.3-km and 83.2-km standard single mode fiber (SSMF) transmission cases, respectively, without any modification on the transmitter. A 40-Gb/s OFDM transmission over 83.2-km SSMF is successfully demonstrated.

  6. Power Efficiency Improvement in CE-OFDM System With 0 dB IBO for Transmission over PLC Network

    OpenAIRE

    El Ghzaoui Mohammed, Belkadid Jamal, Benbassou Ali & EL Bekkali Moulhim

    2011-01-01

    Orthogonal frequency division multiplexing (OFDM) OFDM has been adopted for high speeddata transmission of multimedia traffic such as HomePlug A/V and Mobile WiMax. However,OFDM also has a drawback of a high PAPR (peak-to-average-power-ratio). Due to this highPAPR amplifier usually does not act in dynamic range. One potential solution for reducing thepeak-to-average power ratio (PAPR) in an OFDM system is to utilize a constant envelopeOFDM (CE-OFDM) system. Furthermore, by utilizing continuou...

  7. Sparse Representation Based Range-Doppler Processing for Integrated OFDM Radar-Communication Networks

    Directory of Open Access Journals (Sweden)

    Bo Kong

    2017-01-01

    Full Text Available In an integrated radar-communication network, multiuser access techniques with minimal performance degradation and without range-Doppler ambiguities are required, especially in a dense user environment. In this paper, a multiuser access scheme with random subcarrier allocation mechanism is proposed for orthogonal frequency division multiplexing (OFDM based integrated radar-communication networks. The expression of modulation Symbol-Domain method combined with sparse representation (SR for range-Doppler estimation is introduced and a parallel reconstruction algorithm is employed. The radar target detection performance is improved with less spectrum occupation. Additionally, a Doppler frequency detector is exploited to decrease the computational complexity. Numerical simulations show that the proposed method outperforms the traditional modulation Symbol-Domain method under ideal and realistic nonideal scenarios.

  8. An Enhanced OFDM Resource Allocation Algorithm in C-RAN Based 5G Public Safety Network

    Directory of Open Access Journals (Sweden)

    Lei Feng

    2016-01-01

    Full Text Available Public Safety Network (PSN is the network for critical communication when disaster occurs. As a key technology in 5G, Cloud-Radio Access Network (C-RAN can play an important role in PSN instead of LTE-based RAN. This paper firstly introduces C-RAN based PSN architecture and models the OFDM resource allocation problem in C-RAN based PSN as an integer quadratic programming, which allows the trade-off between expected bitrates and allocating fairness of PSN Service User (PSU. However, C-RAN based PSN needs to improve the efficiency of allocating algorithm because of a mass of PSU-RRH associations when disaster occurs. To deal with it, the resources allocating problem with integer variables is relaxed into one with continuous variables in the first step and an algorithm based on Generalized Bender’s Decomposition (GBD is proposed to solve it. Then we use Feasible Pump (FP method to get a feasible integer solution on the original OFDM resources allocation problem. The final experiments show the total throughput achieved by C-RAN based PSN is at most higher by 19.17% than the LTE-based one. And the average computational time of the proposed GBD and FP algorithm is at most lower than Barrier by 51.5% and GBD with no relaxation by 30.1%, respectively.

  9. PERFORMANCE ANALYSIS OF PILOT BASED CHANNEL ESTIMATION TECHNIQUES IN MB OFDM SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2011-12-01

    Full Text Available Ultra wideband (UWB communication is mainly used for short range of communication in wireless personal area networks. Orthogonal Frequency Division Multiplexing (OFDM is being used as a key physical layer technology for Fourth Generation (4G wireless communication. OFDM based communication gives high spectral efficiency and mitigates Inter-symbol Interference (ISI in a wireless medium. In this paper the IEEE 802.15.3a based Multiband OFDM (MB OFDM system is considered. The pilot based channel estimation techniques are considered to analyze the performance of MB OFDM systems over Liner Time Invariant (LTI Channel models. In this paper, pilot based Least Square (LS and Least Minimum Mean Square Error (LMMSE channel estimation technique has been considered for UWB OFDM system. In the proposed method, the estimated Channel Impulse Responses (CIRs are filtered in the time domain for the consideration of the channel delay spread. Also the performance of proposed system has been analyzed for different modulation techniques for various pilot density patterns.

  10. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  11. Information Guided Precoding for OFDM

    KAUST Repository

    Li, Qiang

    2017-08-09

    In the conventional orthogonal frequency division multiplexing with index modulation (OFDM-IM), the M-ary modulated symbols are transmitted on a subset of subcarriers under the guidance of information bits. In this paper, a novel information guided precoding, called precoding aided (P-)OFDMIM, is proposed to improve the spectral efficiency (SE) of OFDMIM. In P-OFDM-IM, the information bits are jointly conveyed through the conventional M-ary modulated symbols and the indices of precoding matrices and vectors. Then, the principle of P-OFDM-IM is embodied in two different implementation types, including P-OFDM-IM-I and P-OFDM-IM-II. Specifically, P-OFDM-IM-I divides all subcarriers into L groups and modulates them by L distinguishable constellations. P-OFDM-IM-II partitions the total subcarriers into L overlapped layers and performs IM layer by layer, where distinguishable constellations are employed across layers. A practical precoding strategy is designed for P-OFDM-IM under the phase shift keying/quadrature amplitude modulation constraint. A low-complexity log-likelihood ratio detector is proposed to ease the computational burden on the receiver. To evaluate the performance of P-OFDM-IM theoretically, an upper bound on the bit error rate and the achievable rate are studied. Computer simulation results show that P-OFDM-IM-I outperforms the existing OFDM-IM related schemes at high SE, while P-OFDM-IM-II performs the best at low SE.

  12. OLT-centralized sampling frequency offset compensation scheme for OFDM-PON.

    Science.gov (United States)

    Chen, Ming; Zhou, Hui; Zheng, Zhiwei; Deng, Rui; Chen, Qinghui; Peng, Miao; Liu, Cuiwei; He, Jing; Chen, Lin; Tang, Xionggui

    2017-08-07

    We propose an optical line terminal (OLT)-centralized sampling frequency offset (SFO) compensation scheme for adaptively-modulated OFDM-PON systems. By using the proposed SFO scheme, the phase rotation and inter-symbol interference (ISI) caused by SFOs between OLT and multiple optical network units (ONUs) can be centrally compensated in the OLT, which reduces the complexity of ONUs. Firstly, the optimal fast Fourier transform (FFT) size is identified in the intensity-modulated and direct-detection (IMDD) OFDM system in the presence of SFO. Then, the proposed SFO compensation scheme including phase rotation modulation (PRM) and length-adaptive OFDM frame has been experimentally demonstrated in the downlink transmission of an adaptively modulated optical OFDM with the optimal FFT size. The experimental results show that up to ± 300 ppm SFO can be successfully compensated without introducing any receiver performance penalties.

  13. Chaos-based CAZAC scheme for secure transmission in OFDM-PON

    Science.gov (United States)

    Fu, Xiaosong; Bi, Meihua; Zhou, Xuefang; Yang, Guowei; Lu, Yang; Hu, Miao

    2018-01-01

    To effectively resist malicious eavesdropping and performance deterioration, a novel chaos-based secure transmission scheme is proposed to enhance the physical layer security and reduce peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing passive optical network (OFDM-PON). By the randomly extracting operation of common CAZAC values, the specially-designed constant amplitude zero autocorrelation (CAZAC) is created for system encryption and PAPR reduction enhancing the transmission security. This method is verified in {10-Gb/s encrypted OFDM-PON with 20-km fiber transmission. Results show that, compared to common OFDM-PON, our scheme achieves {3-dB PAPR reduction and {1-dB receiver sensitivity improvement.

  14. Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing.

    Science.gov (United States)

    Zhang, Chongfu; Chen, Chen; Feng, Yuan; Qiu, Kun

    2012-03-12

    We propose and experimentally demonstrate a novel cost-effective optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system, wherein all optical network units (ONUs) are source-free not only in the optical domain but also in the electric domain, by utilizing polarization multiplexing (PolMUX) in the downlink transmission. Two pure optical bands with a frequency interval of 10 GHz and downlink up-converted 10 GHz OFDM signal are carried in two orthogonal states of polarization (SOPs), respectively. 10 GHz radio frequency (RF) source can be generated by a heterodyne of two pure optical bands after polarization beam splitting in each ONU, therefore it can be used to down-convert the downlink OFDM signal and up-convert the uplink OFDM signal. In the whole bidirectional up-converted OFDM-PON system, only one single RF source is employed in the optical line terminal (OLT). Experimental results successfully verify the feasibility of our proposed cost-effective optical OFDM-PON system.

  15. Channel capacity of TDD-OFDM-MIMO for multiple access points in a wireless single-frequency-network

    DEFF Research Database (Denmark)

    Takatori, Y.; Fitzek, Frank; Tsunekawa, K.

    2005-01-01

    MIMO data transmission scheme, which combines Single-Frequency-Network (SFN) with TDD-OFDM-MIMO applied for wireless LAN networks. In our proposal, we advocate to use SFN for multiple access points (MAP) MIMO data transmission. The goal of this approach is to achieve very high channel capacity in both......The multiple-input-multiple-output (MIMO) technique is the most attractive candidate to improve the spectrum efficiency in the next generation wireless communication systems. However, the efficiency of MIMO techniques reduces in the line of sight (LOS) environments. In this paper, we propose a new...

  16. A Novel Fractional Fourier Transform-Based ASK-OFDM System for Underwater Acoustic Communications

    Directory of Open Access Journals (Sweden)

    Rami Ashri

    2017-12-01

    Full Text Available A key research area in wireless transmission is underwater communications. It has a vital role in applications such as underwater sensor networks (UWSNs and disaster detection. The underwater channel is very unique as compared to other alternatives of transmission channels. It is characterized by path loss, multipath fading, Doppler spread and ambient noise. Thus, the bit error rate (BER is increased to a large extent when compared to its counterpart of cellular communications. Acoustic signals are the current best solution for underwater communications. The use of electromagnetic or optical waves obviously entails a much higher data rate. However, they suffer from high attenuation, absorption or scattering. This paper proposes a novel fractional fast Fourier transform (FrFT—orthogonal frequency division multiplexing (FrFT-OFDM system for underwater acoustic (UWA communication—which employs the amplitude shift keying (ASK modulation technique (FrFT-ASK-OFDM. Specifically, ASK achieves a better bandwidth efficiency as compared to other commonly used modulation techniques, such as quadrature amplitude modulation (QAM and phase shift keying (PSK. In particular, the system proposed in this article can achieve a very promising BER performance, and can reach higher data rates when compared to other systems proposed in the literature. The BER performance of the proposed system is evaluated numerically, and is compared to the corresponding M-ary QAM system in the UWA channel for the same channel conditions. Moreover, the performance of the proposed system is compared to the conventional fast Fourier transform (FFT-OFDM (FFT-OFDM system in the absence and presence of the effect of carrier frequency offset (CFO. Numerical results show that the proposed system outperforms the conventional FFT-based systems for UWA channels, even in channels dominated by CFO. Moreover, the spectral efficiency and data rate of the proposed system are approximately double

  17. OFDM and MC-CDMA for broadband multi-user communications WLANs and broadcasting

    CERN Document Server

    2003-01-01

    "OFDM systems have experienced increased attention in recent years and have found applications in a number of diverse areas including telephone-line based ADSL links, digital audio and video broadcasting systems, and wireless local area networks. OFDM is being considered for the next-generation of wireless systems both with and without direct sequence spreading and the resultant spreading-based multi-carrier CDMA systems have numerous attractive properties. This volume provides the reader with a broad overview of the research on OFDM systems during their 40-year history. Part I commences with an easy to read conceptual, rather than mathematical, treatment of the basic design issues of OFDM systems. The discussions gradually deepen to include adaptive single and multi-user OFDM systems invoking adaptive turbo coding. Part II introduces the taxonomy of multi-carrier CDMA systems and deals with the design of their spreading codes and the objective of minimising their crest factors. This part also compares the be...

  18. PAPR analysis for OFDM visible light communication.

    Science.gov (United States)

    Wang, Jiaheng; Xu, Yang; Ling, Xintong; Zhang, Rong; Ding, Zhi; Zhao, Chunming

    2016-11-28

    Orthogonal frequency-division multiplexing (OFDM) is a practical technology in visible light communication (VLC) for high-speed transmissions. However, one of its operational limitations is the peak-to-average power ratio (PAPR) of the transmitted signal. In this paper, we analyze the PAPR distributions of four VLC OFDM schemes, namely DC-biased optical OFDM (DCO-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM), pulse amplitude modulated discrete multitone (PAM-DMT), and Flip-OFDM. Both lower and upper clippings are considered. We analytically derive the complementary cumulative distribution functions (CCDFs) of the PAPRs of the clipped VLC OFDM signals, and investigate the impact of lower and upper clippings on PAPR distributions. Our analytical results, as verified by numerical simulations, provide useful insights and guidelines for VLC OFDM system designs.

  19. Performance evaluation of an IMDD optical OFDM-CDMA system.

    Science.gov (United States)

    Mhatli, Sofien; Mrabet, Hichem; Giacoumidis, Elias; Dayoub, Iyad

    2018-03-01

    In this paper, we propose a modulation technique for passive optical networks that harnesses two-dimensional prime hop system optical code division multiplexing access (OCDMA) and optical orthogonal frequency-division multiplexing (OFDM) for intensity modulation with direct-detection (IMDD) to enhance users' signal capacity in a cost-effective manner. The theoretical analysis is built from an analytical formula that takes into account both multiple-access interference and photodetector noise. Results show that OFDM-OCDMA with multiple users has similar performance to single-user conventional OOFDM for low transmitted powers.

  20. Efficient Load Forecasting Optimized by Fuzzy Programming and OFDM Transmission

    Directory of Open Access Journals (Sweden)

    Sandeep Sachdeva

    2011-01-01

    reduce the error of load forecasting, fuzzy method has been used with Artificial Neural Network (ANN and OFDM transmission is used to get data from outer world and send outputs to outer world accurately and quickly. The error has been reduced to a considerable level in the range of 2-3%. For further reducing the error, Orthogonal Frequency Division Multiplexing (OFDM can be used with Reed-Solomon (RS encoding. Further studies are going on with Fuzzy Regression methods to reduce the error more.

  1. Image Transmission through OFDM System under the Influence of AWGN Channel

    Science.gov (United States)

    Krishna, Dharavathu; Anuradha, M. S., Dr.

    2017-08-01

    OFDM system is one among the modern techniques which is most abundantly used in next generation wireless communication networks for transmitting many forms of digital data in efficient manner than compared with other existing traditional techniques. In this paper, one such kind of a digital data corresponding to a two dimensional (2D) gray-scale image is used to evaluate the functionality and overall performance of an OFDM system under the influence of modeled AWGN channel in MATLAB simulation environment. Within the OFDM system, different configurations of notable modulation techniques such as M-PSK and M-QAM are considered for evaluation of the system and necessary valid conclusions are made from the comparison of several observed MATLAB simulation results.

  2. Adaptively loaded SP-offset-QAM OFDM for IM/DD communication systems.

    Science.gov (United States)

    Zhao, Jian; Chan, Chun-Kit

    2017-09-04

    In this paper, we propose adaptively loaded set-partitioned offset quadrature amplitude modulation (SP-offset-QAM) orthogonal frequency division multiplexing (OFDM) for low-cost intensity-modulation direct-detection (IM/DD) communication systems. We compare this scheme with multi-band carrier-less amplitude phase modulation (CAP) and conventional OFDM, and demonstrate >40 Gbit/s transmission over 50-km single-mode fiber. It is shown that the use of SP-QAM formats, together with the adaptive loading algorithm specifically designed to this group of formats, results in significant performance improvement for all these three schemes. SP-offset-QAM OFDM exhibits greatly reduced complexity compared to SP-QAM based multi-band CAP, via parallelized implementation and minimized memory length for spectral shaping. On the other hand, this scheme shows better performance than SP-QAM based conventional OFDM at both back-to-back and after transmission. We also characterize the proposed scheme in terms of enhanced tolerance to fiber intra-channel nonlinearity and the potential to increase the communication security. The studies show that adaptive SP-offset-QAM OFDM is a promising IM/DD solution for medium- and long-reach optical access networks and data center connections.

  3. Robotic Mobile System's Performance-Based MIMO-OFDM Technology

    Directory of Open Access Journals (Sweden)

    Omar Alani

    2009-10-01

    Full Text Available In this paper, a predistortion neural network (PDNN architecture has been imposed to the Sniffer Mobile Robot (SNFRbot that is based on spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM transmission technology. This proposal is used to improve the system performance by combating one of the main drawbacks that is encountered by OFDM technology; Peak-to-Average Power Ratio (PAPR. Simulation results show that using PDNN resulted in better PAPR performance than the previously published work that is based on linear coding, such as Low Density Parity Check (LDPC codes and turbo encoding whether using flat fading channel or a Doppler spread channel.

  4. A Novel Medium Access Control for Ad hoc Networks Based on OFDM System

    Institute of Scientific and Technical Information of China (English)

    YU Yi-fan; YIN Chang-chuan; YUE Guang-xin

    2005-01-01

    Recently, hosts of Medium Access Control (MAC) protocols for Ad hoc radio networks have been proposed to solve the hidden terminal problem and exposed terminal problem. However most of them take into no account the interactions between physical (PHY) system and MAC protocol. Therefore, the current MAC protocols are either inefficient in the networks with mobile nodes and fading channel or difficult in hardware implementation. In this paper, we present a novel media access control for Ad hoc networks that integrates a media access control protocol termed as Dual Busy Tone Multiple Access (DBTMA) into Orthogonal Frequency Division Multiplexing (OFDM) system proposed in IEEE 802.11a standard. The analysis presented in the paper indicates that the proposed MAC scheme achieves performance improvement over IEEE 802.11 protocol about 25%~80% especially in the environment with high mobility and deep fading. The complexity of the proposed scheme is also lower than other implementation of similar busy tone solution. Furthermore, it is compatible with IEEE 802.11a networks.

  5. Multiple-Input Multiple-Output OFDM with Index Modulation

    OpenAIRE

    Basar, Ertugrul

    2015-01-01

    Orthogonal frequency division multiplexing with index modulation (OFDM-IM) is a novel multicarrier transmission technique which has been proposed as an alternative to classical OFDM. The main idea of OFDM-IM is the use of the indices of the active subcarriers in an OFDM system as an additional source of information. In this work, we propose multiple-input multiple-output OFDM-IM (MIMO-OFDM-IM) scheme by combining OFDM-IM and MIMO transmission techniques. The low complexity transceiver structu...

  6. OFDM systems for wireless communications

    CERN Document Server

    Narasimhamurthy, Adarsh

    2010-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in the standards for digital audio/video broadcasting, WiFi and WiMax. Being a frequency-domain approach to communications, OFDM has important advantages in dealing with the frequency-selective nature of high data rate wireless communication channels. As the needs for operating with higher data rates become more pressing, OFDM systems have emerged as an effective physical-layer solution.This short monograph is intended as a tutorial which highlights the deleterious aspects of the wireless channel and presents why OFDM is

  7. On Coding of Scheduling Information in OFDM

    OpenAIRE

    Gunnarsson, Fredrik; Moosavi, Reza; Eriksson, Jonas; Larsson, Erik G.; Wiberg, Niklas; Frenger, Pål

    2009-01-01

    Control signaling strategies for scheduling information in cellular OFDM systems are studied. A single-cell multiuser system model is formulated that provides system capacity estimates accounting for the signaling overhead. Different scheduling granularities are considered, including the one used in the specifications for the 3G Long Term Evolution (LTE). A greedy scheduling method is assumed, where each resource is assigned to the user for which it can support the highest number of bits. The...

  8. Utilization of OFDM for efficient packet forwarding in wireless sensor networks

    KAUST Repository

    Bader, Ahmed

    2011-12-01

    Beaconless position-based forwarding protocols have recently evolved as a promising solution for packet forwarding in wireless sensor networks. However, as the network density grows, the overhead incurred grows significantly. As such, end-to-end energy and delay performance is adversely impacted. Motivated by the need for a forwarding mechanism that is more tolerant to growth in node density, an alternative position-based protocol is proposed in this paper. The protocol is designed such that it completely eliminates the need for potential relays to undergo a relay election process. Rather, any eligible relay may decide to forward the packet ahead, thus significantly reducing the overhead. The operation of the proposed protocol is empowered by exploiting favorable features of orthogonal frequency division multiplexing (OFDM) at the physical layer. End-to-end performance is evaluated here against existing beaconless protocols. It is demonstrated that the proposed protocol is more efficient since it is able to offer lower end-to-end delay for the same amount of energy consumption. © 2011 IEEE.

  9. Throughput of a MIMO OFDM based WLAN system

    NARCIS (Netherlands)

    Schenk, T.C.W.; Dolmans, G.; Modonesi, I.

    2004-01-01

    In this paper, the system throughput of a wireless local-area-network (WLAN) based on multiple-input multipleoutput orthogonal frequency division multiplexing (MIMO OFDM) is studied. A broadband channel model is derived from indoor channel measurements. This model is used in simulations to evaluate

  10. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  11. GFDM performance in terms of BER, PAPR and OOB and comparison to OFDM system

    Energy Technology Data Exchange (ETDEWEB)

    Antapurkar, Shwetal K., E-mail: h2014077@pilani.bits-pilani.ac.in; Pandey, Avinash, E-mail: h2014083@pilani.bits-pilani.ac.in [P G student, Dept. of EEE, Birla Institute of Technology and Science, Pilani, Rajasthan, India-333031 (India); Gupta, K. K., E-mail: kgupta@pilani.bits-pilani.ac.in [Asst Prof, Dept. of EEE, Birla Institute of Technology and Science, Pilani, Rajasthan, India-333031 (India)

    2016-03-09

    Generalized frequency division multiplexing is a multicarrier modulation technique which can be foreseen as a potential alternative for upcoming wireless networks. GFDM attractive features include reduced out-of-band radiation(OOB) and low peak-to-average ratio(PAPR), which are the crucial shortcomings of OFDM used in present day wireless communication networks. This paper gives detailed description of GFDM system model and further studies and validates through simulations, the performance of GFDM in terms of OOB, PAPR and Bit Error Rate (BER) and compares the results obtained with OFDM system.

  12. GFDM performance in terms of BER, PAPR and OOB and comparison to OFDM system

    International Nuclear Information System (INIS)

    Antapurkar, Shwetal K.; Pandey, Avinash; Gupta, K. K.

    2016-01-01

    Generalized frequency division multiplexing is a multicarrier modulation technique which can be foreseen as a potential alternative for upcoming wireless networks. GFDM attractive features include reduced out-of-band radiation(OOB) and low peak-to-average ratio(PAPR), which are the crucial shortcomings of OFDM used in present day wireless communication networks. This paper gives detailed description of GFDM system model and further studies and validates through simulations, the performance of GFDM in terms of OOB, PAPR and Bit Error Rate (BER) and compares the results obtained with OFDM system.

  13. Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks.

    Science.gov (United States)

    Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng

    2017-07-04

    In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement.

  14. The application of cost-effective lasers in coherent UDWDM-OFDM-PON aided by effective phase noise suppression methods.

    Science.gov (United States)

    Liu, Yue; Yang, Chuanchuan; Yang, Feng; Li, Hongbin

    2014-03-24

    Digital coherent passive optical network (PON), especially the coherent orthogonal frequency division multiplexing PON (OFDM-PON), is a strong candidate for the 2nd-stage-next-generation PON (NG-PON2). As is known, OFDM is very sensitive to the laser phase noise which severely limits the application of the cost-effective distributed feedback (DFB) lasers and more energy-efficient vertical cavity surface emitting lasers (VCSEL) in the coherent OFDM-PON. The current long-reach coherent OFDM-PON experiments always choose the expensive external cavity laser (ECL) as the optical source for its narrow linewidth (usuallyOFDM-PON and study the possibility of the application of the DFB lasers and VCSEL in coherent OFDM-PON. A typical long-reach coherent ultra dense wavelength division multiplexing (UDWDM) OFDM-PON has been set up. The numerical results prove that the OBE method can stand severe phase noise of the lasers in this architecture and the DFB lasers as well as VCSEL can be used in coherent OFDM-PON. In this paper, we have also analyzed the performance of the RF-pilot-aided (RFP) phase noise suppression method in coherent OFDM-PON.

  15. Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems.

    Science.gov (United States)

    Lowery, Arthur James

    2016-02-22

    Asymmetrically clipped optical orthogonal frequency-division multiplexing (ACO-OFDM) is a technique that sacrifices spectral efficiency in order to transmit an orthogonally frequency-division multiplexed signal over a unipolar channel, such as a directly modulated direct-detection fiber or free-space channel. Several methods have been proposed to regain this spectral efficiency, including: asymmetrically clipped DC-biased optical OFDM (ADO-OFDM), enhanced U-OFDM (EU-OFDM), spectral and energy efficient OFDM (SEE-OFDM), Hybrid-ACO-OFDM and Layered-ACO-OFDM. This paper presents simulations up to high-order constellation sizes to show that Layered-ACO-OFDM offers the highest receiver sensitivity for a given optical power at spectral efficiencies above 3 bit/s/Hz. For comparison purposes, white Gaussian noise is added at the receiver, component nonlinearities are not considered, and the fiber is considered to be linear and dispersion-less. The simulations show that LACO-OFDM has a 7-dB sensitivity advantage over DC-biased OFDM (DCO-OFDM) for 1024-QAM at 87.5% of DCO-OFDM's spectral efficiency, at the same bit rate and optical power. This is approximately equivalent to a 4.4-dB advantage at the same spectral efficiency of 87.7% if 896-QAM were to be used for DCO-OFDM.

  16. Constant envelope OFDM scheme for 6PolSK-QPSK

    Science.gov (United States)

    Li, Yupeng; Ding, Ding

    2018-03-01

    A constant envelope OFDM scheme with phase modulator (PM-CE-OFDM) for 6PolSK-QPSK modulation was demonstrated. Performance under large fiber launch power is measured to check its advantages in counteracting fiber nonlinear impairments. In our simulation, PM-CE-OFDM, RF-assisted constant envelope OFDM (RF-CE-OFDM) and conventional OFDM (Con-OFDM) are transmitted through 80 km standard single mode fiber (SSMF) single channel and WDM system. Simulation results confirm that PM-CE-OFDM has best performance in resisting fiber nonlinearity. In addition, benefiting from the simple system structure, the complexity and cost of PM-CE-OFDM system could be reduced effectively.

  17. A combined spectrum sensing and OFDM demodulation scheme

    NARCIS (Netherlands)

    Heskamp, M.; Slump, Cornelis H.

    2009-01-01

    In this paper we propose a combined signaling and spectrum sensing scheme for cognitive radio that can detect in-band primary users while the networks own signal is active. The signaling scheme uses OFDM with phase shift keying modulated sub-carriers, and the detection scheme measures the deviation

  18. Blind CP-OFDM and ZP-OFDM Parameter Estimation in Frequency Selective Channels

    Directory of Open Access Journals (Sweden)

    Vincent Le Nir

    2009-01-01

    Full Text Available A cognitive radio system needs accurate knowledge of the radio spectrum it operates in. Blind modulation recognition techniques have been proposed to discriminate between single-carrier and multicarrier modulations and to estimate their parameters. Some powerful techniques use autocorrelation- and cyclic autocorrelation-based features of the transmitted signal applying to OFDM signals using a Cyclic Prefix time guard interval (CP-OFDM. In this paper, we propose a blind parameter estimation technique based on a power autocorrelation feature applying to OFDM signals using a Zero Padding time guard interval (ZP-OFDM which in particular excludes the use of the autocorrelation- and cyclic autocorrelation-based techniques. The proposed technique leads to an efficient estimation of the symbol duration and zero padding duration in frequency selective channels, and is insensitive to receiver phase and frequency offsets. Simulation results are given for WiMAX and WiMedia signals using realistic Stanford University Interim (SUI and Ultra-Wideband (UWB IEEE 802.15.4a channel models, respectively.

  19. All-optical virtual private network system in OFDM based long-reach PON using RSOA re-modulation technique

    Science.gov (United States)

    Kim, Chang-Hun; Jung, Sang-Min; Kang, Su-Min; Han, Sang-Kook

    2015-01-01

    We propose an all-optical virtual private network (VPN) system in an orthogonal frequency division multiplexing (OFDM) based long reach PON (LR-PON). In the optical access network field, technologies based on fundamental upstream (U/S) and downstream (D/S) have been actively researched to accommodate explosion of data capacity. However, data transmission among the end users which is arisen from cloud computing, file-sharing and interactive game takes a large weight inside of internet traffic. Moreover, this traffic is predicted to increase more if Internet of Things (IoT) services are activated. In a conventional PON, VPN data is transmitted through ONU-OLT-ONU via U/S and D/S carriers. It leads to waste of bandwidth and energy due to O-E-O conversion in the OLT and round-trip propagation between OLT and remote node (RN). Also, it causes inevitable load to the OLT for electrical buffer, scheduling and routing. The network inefficiency becomes more critical in a LR-PON which has been researched as an effort to reduce CAPEX and OPEX through metro-access consolidation. In the proposed system, the VPN data is separated from conventional U/S and re-modulated on the D/S carrier by using RSOA in the ONUs to avoid bandwidth consumption of U/S and D/S unlike in previously reported system. Moreover, the transmitted VPN data is re-directed to the ONUs by wavelength selective reflector device in the RN without passing through the OLT. Experimental demonstration for the VPN communication system in an OFDM based LR-PON has been verified.

  20. DFT-based offset-QAM OFDM for optical communications.

    Science.gov (United States)

    Zhao, Jian

    2014-01-13

    We experimentally demonstrate and numerically investigate a discrete-Fourier-transform (DFT) based offset quadrature-amplitude-modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) system. We investigate the scheme using a set of square-root-raised-cosine functions and a set of super-Gaussian functions as signal spectra. It is shown that offset-QAM OFDM exhibits negligible penalty for all investigated spectra, in contrast to rectangular-function based Nyquist FDM (N-FDM) and sinc-function based conventional OFDM (C-OFDM). The required guard interval (GI) length for dispersion compensation in offset-QAM OFDM is analyzed and shown to scale with twice the subcarrier spacing rather than the full OFDM bandwidth. Experimental results show that 38-Gb/s offset-16QAM OFDM supports 600-km fiber transmission with negligible penalty in the absence of GI while a GI length of eight is required in C-OFDM. Further numerical simulations show that by avoiding the GI, 112-Gb/s polarization multiplexed offset-4QAM OFDM can achieve 23% increase in net data rate over C-OFDM under the same transmission reach. We also discuss the design of the pulse-shaping filter in the DFT-based implementation and show that when compared to N-FDM, the required memory length of the filter for pulse shaping can be reduced from 60 to 2 in offset-QAM OFDM regardless of the fiber length.

  1. Pilot Signal Design and Direct Ranging Methods for Radio Localization Using OFDM Systems

    DEFF Research Database (Denmark)

    Jing, Lishuai

    Having accurate localization capability is becoming important for existing and future terrestrial wireless communication systems, in particular for orthogonal frequency-division multiplexing (OFDM) systems, such as WiMAX, wireless local area network, long-term evolution (LTE) and its extension LTE......-Advanced. To obtain accurate position estimates, not only advanced estimation algorithms are needed but also the transmitted signals should be scrutinized. In this dissertation, we investigate how to design OFDM pilot signals and propose and evaluate high accuracy ranging techniques with tractable computational....... For scenarios where the number of path components is unknown and these components are not necessary separable, we propose a direct ranging technique using the received frequency-domain OFDM pilot signals. Compared to conventional (two-step) ranging methods, which estimate intermediate parameters...

  2. Study on a resource allocation scheme in multi-hop MIMO-OFDM systems over lognormal-rayleigh compound channels

    Directory of Open Access Journals (Sweden)

    LIU Jun

    2015-10-01

    Full Text Available For new generation wireless communication networks,this paper studies the optimization of the capacity and end-to-end throughput of the MIMO-OFDM based multi-hop relay systems.A water-filling power allocation method is proposed to improve the channel capacity and the throughput of the MIMO-OFDM system based multi-hop relay system in the Lognormal-Rayleigh shadowing compound channels.Simulations on the capacity and throughput show that the water-filling algorithm can improve the system throughput effectively in the MIMO-OFDM multi-hop relay system.

  3. Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system.

    Science.gov (United States)

    He, Jiale; Li, Borui; Deng, Lei; Tang, Ming; Gan, Lin; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2016-06-13

    In this paper, the feasibility of space division multiplexing for optical wireless fronthaul systems is experimentally demonstrated by implementing high speed MIMO-OFDM/OQAM radio signals over 20km 7-core fiber and 0.4m wireless link. Moreover, the impact of optical inter-core crosstalk in multicore fibers on the proposed MIMO-OFDM/OQAM radio over fiber system is experimentally evaluated in both SISO and MIMO configurations for comparison. The experimental results show that the inter-core crosstalk tolerance of the proposed radio over fiber system can be relaxed to -10 dB by using the proposed MIMO-OFDM/OQAM processing. These results could guide high density multicore fiber design to support a large number of antenna modules and a higher density of radio-access points for potential applications in 5G cellular system.

  4. Implementace OFDM demodulátoru v obvodu FPGA

    OpenAIRE

    Solar, Pavel

    2010-01-01

    Diplomová práce stručně rozebírá princip OFDM modulace, možnosti synchronizace a odhadu frekvenční charakteristiky kanálu v OFDM. Je vytvořen jednoduchý model OFDM systému v programu MATLAB. Kombinací schématického popisu a popisu v jazyce VHDL je vytvořen ve vývojovém prostředí ISE behaviorální popis OFDM demodulátoru pro implementaci do FPGA. The master's thesis briefly analyses the principle of OFDM modulation, possibilities of the synchronization and channel estimation in OFDM. The sim...

  5. Experimental demonstration of MIMO-OFDM underwater wireless optical communication

    Science.gov (United States)

    Song, Yuhang; Lu, Weichao; Sun, Bin; Hong, Yang; Qu, Fengzhong; Han, Jun; Zhang, Wei; Xu, Jing

    2017-11-01

    In this paper, we propose and experimentally demonstrate a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) underwater wireless optical communication (UWOC) system, with a gross bit rate of 33.691 Mb/s over a 2-m water channel using low-cost blue light-emitting-diodes (LEDs) and 10-MHz PIN photodiodes. The system is capable of realizing robust data transmission within a relatively large reception area, leading to relaxed alignment requirement for UWOC. In addition, we have compared the system performance of repetition coding OFDM (RC-OFDM), Alamouti-OFDM and multiple-input single-output OFDM (MISO-OFDM) in turbid water. Results show that the Alamouti-OFDM UWOC is more resistant to delay than the RC-OFDM-based system.

  6. OFDM RF power-fading circumvention for long-reach WDM-PON.

    Science.gov (United States)

    Chow, C W; Yeh, C H; Sung, J Y

    2014-10-06

    We propose and demonstrate an orthogonal frequency division multiplexing (OFDM) radio-frequency (RF) power-fading circumvention scheme for long-reach wavelength-division-multiplexed passive-optical-network (LR-WDM-PON); hence the same capacity of 40 Gb/s can be provided to all the optical-networking-units (ONUs) in the LR-WDM-PON. Numerical analysis and proof-of-concept experiment are performed.

  7. Security scheme in IMDD-OFDM-PON system with the chaotic pilot interval and scrambling

    Science.gov (United States)

    Chen, Qianghua; Bi, Meihua; Fu, Xiaosong; Lu, Yang; Zeng, Ran; Yang, Guowei; Yang, Xuelin; Xiao, Shilin

    2018-01-01

    In this paper, a random chaotic pilot interval and permutations scheme without any requirement of redundant sideband information is firstly proposed for the physical layer security-enhanced intensity modulation direct detection orthogonal frequency division multiplexing passive optical network (IMDD-OFDM-PON) system. With the help of the position feature of inserting the pilot, a simple logistic chaos map is used to generate the random pilot interval and scramble the chaotic subcarrier allocation of each column pilot data for improving the physical layer confidentiality. Due to the dynamic chaotic permutations of pilot data, the enhanced key space of ∼103303 is achieved in OFDM-PON. Moreover, the transmission experiment of 10-Gb/s 16-QAM encrypted OFDM data is successfully demonstrated over 20-km single-mode fiber, which indicates that the proposed scheme not only improves the system security, but also can achieve the same performance as in the common IMDD-OFDM-PON system without encryption scheme.

  8. Estimating cellular network performance during hurricanes

    International Nuclear Information System (INIS)

    Booker, Graham; Torres, Jacob; Guikema, Seth; Sprintson, Alex; Brumbelow, Kelly

    2010-01-01

    Cellular networks serve a critical role during and immediately after a hurricane, allowing citizens to contact emergency services when land-line communication is lost and serving as a backup communication channel for emergency responders. However, due to their ubiquitous deployment and limited design for extreme loading events, basic network elements, such as cellular towers and antennas are prone to failures during adverse weather conditions such as hurricanes. Accordingly, a systematic and computationally feasible approach is required for assessing and improving the reliability of cellular networks during hurricanes. In this paper we develop a new multi-disciplinary approach to efficiently and accurately assess cellular network reliability during hurricanes. We show how the performance of a cellular network during and immediately after future hurricanes can be estimated based on a combination of hurricane wind field models, structural reliability analysis, Monte Carlo simulation, and cellular network models and simulation tools. We then demonstrate the use of this approach for assessing the improvement in system reliability that can be achieved with discrete topological changes in the system. Our results suggest that adding redundancy, particularly through a mesh topology or through the addition of an optical fiber ring around the perimeter of the system can be an effective way to significantly increase the reliability of some cellular systems during hurricanes.

  9. An analytical study of the improved nonlinear tolerance of DFT-spread OFDM and its unitary-spread OFDM generalization.

    Science.gov (United States)

    Shulkind, Gal; Nazarathy, Moshe

    2012-11-05

    DFT-spread (DFT-S) coherent optical OFDM was numerically and experimentally shown to provide improved nonlinear tolerance over an optically amplified dispersion uncompensated fiber link, relative to both conventional coherent OFDM and single-carrier transmission. Here we provide an analytic model rigorously accounting for this numerical result and precisely predicting the optimal bandwidth per DFT-S sub-band (or equivalently the optimal number of sub-bands per optical channel) required in order to maximize the link non-linear tolerance (NLT). The NLT advantage of DFT-S OFDM is traced to the particular statistical dependency introduced among the OFDM sub-carriers by means of the DFT spreading operation. We further extend DFT-S to a unitary-spread generalized modulation format which includes as special cases the DFT-S scheme as well as a new format which we refer to as wavelet-spread (WAV-S) OFDM, replacing the spreading DFTs by Hadamard matrices which have elements +/-1 hence are multiplier-free. The extra complexity incurred in the spreading operation is almost negligible, however the performance improvement with WAV-S relative to plain OFDM is more modest than that achieved by DFT-S, which remains the preferred format for nonlinear tolerance improvement, outperforming both plain OFDM and single-carrier schemes.

  10. Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing.

    Science.gov (United States)

    Yang, Qi; He, Zhixue; Yang, Zhu; Yu, Shaohua; Yi, Xingwen; Shieh, William

    2012-01-30

    Coherent optical OFDM (CO-OFDM) combined with orthogonal band multiplexing provides a scalable and flexible solution for achieving ultra high-speed rate. Among many CO-OFDM implementations, digital Fourier transform spread (DFT-S) CO-OFDM is proposed to mitigate fiber nonlinearity in long-haul transmission. In this paper, we first illustrate the principle of DFT-S OFDM. We then experimentally evaluate the performance of coherent optical DFT-S OFDM in a band-multiplexed transmission system. Compared with conventional clipping methods, DFT-S OFDM can reduce the OFDM peak-to-average power ratio (PAPR) value without suffering from the interference of the neighboring bands. With the benefit of much reduced PAPR, we successfully demonstrate 1.45 Tb/s DFT-S OFDM over 480 km SSMF transmission.

  11. Direct Ranging in Multi-path Channels Using OFDM Pilot Signals

    DEFF Research Database (Denmark)

    Jing, Lishuai; Pedersen, Troels; Fleury, Bernard Henri

    2014-01-01

    OFDM ranging is becoming important for positioning using terrestrial wireless networks. Conventional ranging methods rely on a two-step approach: range related parameters, such as the time of arrival (TOA), the bias induced by non-line-of-sight (NLOS) propagations etc., are first estimated, based...

  12. Analysis of Synchronization Impairments for Cooperative Base Stations Using OFDM

    Directory of Open Access Journals (Sweden)

    Konstantinos Manolakis

    2015-01-01

    Full Text Available Base station cooperation is envisioned as a key technology for future cellular networks, as it has the potential to eliminate intercell interference and to enhance spectral efficiency. To date, there is still lack of understanding of how imperfect carrier and sampling frequency synchronization between transmitters and receivers limit the potential gains and what the actual system requirements are. In this paper, OFDM signal model is established for multiuser multicellular networks, describing the joint effect of multiple carrier and sampling frequency offsets. It is shown that the impact of sampling offsets is much smaller than the impact of carrier frequency offsets. The model is extended to the downlink of base-coordinated networks and closed-form expressions are derived for the mean power of users’ self-signal, interuser, and intercarrier interference, whereas it is shown that interuser interference is the main source of degradation. The SIR is inverse to the base stations’ carrier frequency variance and to the square of time since the last precoder update, whereas it grows with the number of base stations and drops with the number of users. Through user selection, the derived SIR upper bound can be approached. Finally, system design recommendations for meeting synchronization requirements are provided.

  13. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  14. Quantization Effects in OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2008-01-01

    The advantage of using orthogonal frequency division multiplexing (OFDM) over the single-carrier modulation is its ability to mitigate interference and fading without complex equalization filters in the receiver. OFDM systems have a high peak-to-average ratio (PAPR) which results in a high

  15. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.

    Science.gov (United States)

    Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna

    2014-03-01

    This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.

  16. All-VCSEL Transmitters With Remote Optical Injection for WDM-OFDM-PON

    DEFF Research Database (Denmark)

    Deng, Lei; Zhao, Ying; Pang, Xiaodan

    2014-01-01

    We report on a novel scheme that uses vertical cavity surface emitting lasers (VCSELs) and remote optical injection technique in the hybrid wavelength division multiplexing orthogonal frequency division multiplexing (OFDM) passive optical network. In the proposed scheme, 1.55-$\\mu{\\rm m}$ VCSELs ...

  17. Investigation of PMD in direct-detection optical OFDM with zero padding.

    Science.gov (United States)

    Li, Xiang; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan

    2013-09-09

    We investigate the polarization-mode dispersion (PMD) effect of zero padding OFDM (ZP-OFDM) in direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) systems. We first study the conventional equalization method for ZP-OFDM. Then an equalization method based on sorted QR decomposition is proposed to further improve the performance. It is found that the performance improvement of ZP-OFDM is due to the frequency domain oversampling (FDO) induced inter-carrier interference (ICI). Numerical simulation results show that compared with cyclic prefix OFDM (CP-OFDM), ZP-OFDM has a significantly higher tolerance to PMD in DDO-OFDM systems when the channel spectral nulls occur at certain differential group delay (DGD) values.

  18. BER ANALYSIS OF MIMO-OFDM SYSTEM

    OpenAIRE

    Devarsh Patel*

    2016-01-01

    MIMO is a system where a number of antennas are used at the transmitter and receiver side. A MIMO system takes advantage of the spatial diversity that is obtained by spatially separated antennas in a dense multipath scattering environment. The combination of OFDM systems with MIMO technology has provided us with increase in link reliability and an improvement in spectral efficiency. For 4G communication MIMO-OFDM is one of the most competitive technologies. The combination of OFDM and MIMO se...

  19. High performance mixed optical CDMA system using ZCC code and multiband OFDM

    Directory of Open Access Journals (Sweden)

    Nawawi N. M.

    2017-01-01

    Full Text Available In this paper, we have proposed a high performance network design, which is based on mixed optical Code Division Multiple Access (CDMA system using Zero Cross Correlation (ZCC code and multiband Orthogonal Frequency Division Multiplexing (OFDM called catenated OFDM. In addition, we also investigate the related changing parameters such as; effective power, number of user, number of band, code length and code weight. Then we theoretically analyzed the system performance comprehensively while considering up to five OFDM bands. The feasibility of the proposed system architecture is verified via the numerical analysis. The research results demonstrated that our developed modulation solution can significantly enhanced the total number of user; improving up to 80% for five catenated bands compared to traditional optical CDMA system, with the code length equals to 80, transmitted at 622 Mbps. It is also demonstrated that the BER performance strongly depends on number of weight, especially with less number of users. As the number of weight increases, the BER performance is better.

  20. High performance mixed optical CDMA system using ZCC code and multiband OFDM

    Science.gov (United States)

    Nawawi, N. M.; Anuar, M. S.; Junita, M. N.; Rashidi, C. B. M.

    2017-11-01

    In this paper, we have proposed a high performance network design, which is based on mixed optical Code Division Multiple Access (CDMA) system using Zero Cross Correlation (ZCC) code and multiband Orthogonal Frequency Division Multiplexing (OFDM) called catenated OFDM. In addition, we also investigate the related changing parameters such as; effective power, number of user, number of band, code length and code weight. Then we theoretically analyzed the system performance comprehensively while considering up to five OFDM bands. The feasibility of the proposed system architecture is verified via the numerical analysis. The research results demonstrated that our developed modulation solution can significantly enhanced the total number of user; improving up to 80% for five catenated bands compared to traditional optical CDMA system, with the code length equals to 80, transmitted at 622 Mbps. It is also demonstrated that the BER performance strongly depends on number of weight, especially with less number of users. As the number of weight increases, the BER performance is better.

  1. Weighted OFDM for wireless multipath channels

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Nikookar, H.

    2000-01-01

    In this paper the novel method of "weighted OFDM" is addressed. Different types of weighting factors (including Rectangular, Bartlett, Gaussian. Raised cosine, Half-sin and Shanon) are considered. The impact of weighting of OFDM on the peak-to-average power ratio (PAPR) is investigated by means...... of simulation and is compared for the above mentioned weighting factors. Results show that by weighting of the OFDM signal the PAPR reduces. Bit error performance of weighted multicarrier transmission over a multipath channel is also investigated. Results indicate that there is a trade off between PAPR...

  2. Power Line Communication Experiment using Wavelet OFDM in U.S..

    Science.gov (United States)

    Koga, Hisao; Kodama, Nobutaka

    Recently, the demand of high speed network in home is increasing, and PLC is expected as one of the solutions. We can see related researches on the high speed PLC system using a frequency band 2 MHz to 30 MHz. In this paper, we propose a wavelet based OFDM as a suitable method for realizing the high speed PLC system. The proposed wavelet OFDM method is composed of the M-band transmultiplexer which consists of the perfect reconstruction cosine-modulated filter bank. And the attenuation of the first side-lobe is above 35dB, which is a characteristic of the proposed method. As a result, we show that the proposed method has the inter-carrier interference characteristic which is superior to FFT-OFDM, and it also provides the flexible notch filter function which can reduce the influence on other communication systems existing in the communication band which the PLC uses. Finally, we describe that the simulation results about the BER characteristic of the proposed method in AWGN were almost the same as the theory, and that transmission rates which were measured by using prototype modems in a field test house in U.S. were above 35Mbps.

  3. A chaotic modified-DFT encryption scheme for physical layer security and PAPR reduction in OFDM-PON

    Science.gov (United States)

    Fu, Xiaosong; Bi, Meihua; Zhou, Xuefang; Yang, Guowei; Li, Qiliang; Zhou, Zhao; Yang, Xuelin

    2018-05-01

    This letter proposes a modified discrete Fourier transform (DFT) encryption scheme with multi-dimensional chaos for the physical layer security and peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing passive optical network (OFDM-PON) system. This multiple-fold encryption algorithm is mainly composed by using the column vectors permutation and the random phase encryption in the standard DFT matrix, which can create ∼10551 key space. The transmission of ∼10 Gb/s encrypted OFDM signal is verified over 20-km standard single mode fiber (SMF). Moreover, experimental results show that, the proposed scheme can achieve ∼2.6-dB PAPR reduction and ∼1-dB improvement of receiver sensitivity if compared with the common OFDM-PON.

  4. High-speed real-time OFDM transmission based on FPGA

    Science.gov (United States)

    Xiao, Xin; Li, Fan; Yu, Jianjun

    2016-02-01

    In this paper, we review our recent research progresses on real-time orthogonal frequency division multiplexing (OFDM) transmission based on FPGA. We successfully demonstrated four-channel wavelength-division multiplexing (WDM) 256.51Gb/s 16-ary quadrature amplitude modulation (16QAM)-OFDM signal transmission system for short-reach optical amplifier free inter-connection with real-time reception. Four optical carriers are modulated by four different 16QAM-OFDM signals via 10G-class direct modulation lasers (DMLs). We achieved highest capacity real-time reception optical OFDM signal transmission over 2.4-km SMF with the bit-error ratio (BER) under soft-decision forward error correction (SD-FEC) limitation of 2.4×10-2. In order to achieve higher spectrum efficiency (SE), we demonstrate 4-channel high level QAM-OFDM transmission over 20-km SMF-28 with real-time reception. 58.72-Gb/s 256QAM-OFDM and 56.4-Gb/s 128QAM-OFDM signal transmission within 25-GHz grid is achieved with the BER under 2.4×10-2 and real-time reception.

  5. Channel estimation in DFT-based offset-QAM OFDM systems.

    Science.gov (United States)

    Zhao, Jian

    2014-10-20

    Offset quadrature amplitude modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) exhibits enhanced net data rates compared to conventional OFDM, and reduced complexity compared to Nyquist FDM (N-FDM). However, channel estimation in discrete-Fourier-transform (DFT) based offset-QAM OFDM is different from that in conventional OFDM and requires particular study. In this paper, we derive a closed-form expression for the demultiplexed signal in DFT-based offset-QAM systems and show that although the residual crosstalk is orthogonal to the decoded signal, its existence degrades the channel estimation performance when the conventional least-square method is applied. We propose and investigate four channel estimation algorithms for offset-QAM OFDM that vary in terms of performance, complexity, and tolerance to system parameters. It is theoretically and experimentally shown that simple channel estimation can be realized in offset-QAM OFDM with the achieved performance close to the theoretical limit. This, together with the existing advantages over conventional OFDM and N-FDM, makes this technology very promising for optical communication systems.

  6. Investigation of spectrally shaped DFTS-OFDM for long haul transmission.

    Science.gov (United States)

    Adhikari, Susmita; Jansen, Sander; Kuschnerov, Maxim; Inan, Beril; Bohn, Marc; Rosenkranz, Werner

    2012-12-10

    DFTS-OFDM has been proposed recently as an alternative to coherent optical OFDM due to its improved transmission performance. This paper proposes spectral shaping for DFTS-OFDM which reduces the PAPR leading to further improvement in nonlinear tolerance. It is shown that for both SSMF and LEAF, the optimized spectrally shaped DFTS-OFDM outperforms DFTS-OFDM for dispersion managed and unmanaged links by ~10.8% and ~6.8%, respectively. The number of bands and the excess bandwidth parameters are also investigated to optimize the transmission performance.

  7. Evaluation of optical ZP-OFDM transmission performance in multimode fiber links.

    Science.gov (United States)

    Medina, Pau; Almenar, Vicenç; Corral, Juan L

    2014-01-13

    In this paper, the performance of Zero Padding Orthogonal Frequency Division Multiplexing (ZP-OFDM) on intensity modulation-direct detection (IM-DD) multimode fiber (MMF) links is assessed by means of numerical simulations. The performance of ZP-OFDM is compared to classical Cyclic Prefixed form of OFDM (CP-OFDM) which is known to offer a limited performance in terms of symbol recovery in subcarriers suffering severe fading. Simulations results show that ZP-OFDM is able to reach 29 Gbps in 99.5% of all installed MMF links up to 600 meters compared to 14 Gbps for CP-OFDM when a 64 points fast Fourier transform (FFT) size is used. The use of ZP-OFDM makes it possible to increase the link length up to 1200 and 2400 m with a 25 Gbps data rate if the FFT sizes are increased to 128 and 256 points, respectively; whereas the CP-OFDM scheme will offer a maximum data rate of 10 Gbps in both cases. ZP-OFDM can be an alternative to adaptive loading OFDM schemes without the need of a negotiation between transmitter and receiver, reducing the system deployment complexity and increasing the flexibility in scenarios with multiple receivers.

  8. Downlink Linear Precoders Based on Statistical CSI for Multicell MIMO-OFDM

    Directory of Open Access Journals (Sweden)

    Ebrahim Baktash

    2017-01-01

    Full Text Available With 5G communication systems on the horizon, efficient interference management in heterogeneous multicell networks is more vital than ever. This paper investigates the linear precoder design for downlink multicell multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM systems, where base stations (BSs coordinate to reduce the interference across space and frequency. In order to minimize the overall feedback overhead in next-generation systems, we consider precoding schemes that require statistical channel state information (CSI only. We apply the random matrix theory to approximate the ergodic weighted sum rate of the system with a closed form expression. After formulating the approximation for general channels, we reduce the results to a more compact form using the Kronecker channel model for which several multicarrier concepts such as frequency selectivity, channel tap correlations, and intercarrier interference (ICI are rigorously represented. We find the local optimal solution for the maximization of the approximate rate using a gradient method that requires only the covariance structure of the MIMO-OFDM channels. Within this covariance structure are the channel tap correlations and ICI information, both of which are taken into consideration in the precoder design. Simulation results show that the rate approximation is very accurate even for very small MIMO-OFDM systems and the proposed method converges rapidly to a near-optimal solution that competes with networked MIMO and precoders based on instantaneous full CSI.

  9. A Processing Technique for OFDM-Modulated Wideband Radar Signals

    NARCIS (Netherlands)

    Tigrek, R.F.

    2010-01-01

    The orthogonal frequency division multiplexing (OFDM) is a multicarrier spread-spectrum technique which finds wide-spread use in communications. The OFDM pulse compression method that utilizes an OFDM communication signal for radar tasks has been developed and reported in this dissertation. Using

  10. Design and analysis of UW-OFDM signals.

    Science.gov (United States)

    Huemer, Mario; Hofbauer, Christian; Onic, Alexander; Huber, Johannes B

    2014-10-01

    Unique word-orthogonal frequency division multiplexing (UW-OFDM) is a novel signaling concept where the guard interval is implemented as a deterministic sequence, the so-called unique word. The UW is generated by introducing a certain level of redundancy in the frequency domain. Different data estimation strategies and the favourable bit error ratio (BER) performance of UW-OFDM, as well as comparisons to competing concepts have already extensively been discussed in previous papers. This work focuses on the different possibilities on how to generate UW-OFDM signals. The optimality of the two-step over the direct approach in systematic UW-OFDM is proved analytically, we present a heuristic algorithm that allows a fast numerical optimization of the redundant subcarrier positions, and we show that our original intuitive approach of spreading the redundant subcarriers in systematically encoded UW-OFDM by minimizing the mean redundant energy is practically also optimum w.r.t. transceiver based cost functions. Finally, we derive closed form approximations of the statistical symbol distributions on individual subcarriers as well as the redundant energy distribution and compare them with numerically found results.

  11. Virtualized cognitive network architecture for 5G cellular networks

    KAUST Repository

    Elsawy, Hesham

    2015-07-17

    Cellular networks have preserved an application agnostic and base station (BS) centric architecture1 for decades. Network functionalities (e.g. user association) are decided and performed regardless of the underlying application (e.g. automation, tactile Internet, online gaming, multimedia). Such an ossified architecture imposes several hurdles against achieving the ambitious metrics of next generation cellular systems. This article first highlights the features and drawbacks of such architectural ossification. Then the article proposes a virtualized and cognitive network architecture, wherein network functionalities are implemented via software instances in the cloud, and the underlying architecture can adapt to the application of interest as well as to changes in channels and traffic conditions. The adaptation is done in terms of the network topology by manipulating connectivities and steering traffic via different paths, so as to attain the applications\\' requirements and network design objectives. The article presents cognitive strategies to implement some of the classical network functionalities, along with their related implementation challenges. The article further presents a case study illustrating the performance improvement of the proposed architecture as compared to conventional cellular networks, both in terms of outage probability and handover rate.

  12. Multifrequency OFDM SAR in Presence of Deception Jamming

    Directory of Open Access Journals (Sweden)

    Schuerger Jonathan

    2010-01-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM is considered in this paper from the perspective of usage in imaging radar scenarios with deception jamming. OFDM radar signals are inherently multifrequency waveforms, composed of a number of subbands which are orthogonal to each other. While being employed extensively in communications, OFDM has not found comparatively wide use in radar, and, particularly, in synthetic aperture radar (SAR applications. In this paper, we aim to show the advantages of OFDM-coded radar signals with random subband composition when used in deception jamming scenarios. Two approaches to create a radar signal by the jammer are considered: instantaneous frequency (IF estimator and digital-RF-memory- (DRFM- based reproducer. In both cases, the jammer aims to create a copy of a valid target image via resending the radar signal at prescribed time intervals. Jammer signals are derived and used in SAR simulations with three types of signal models: OFDM, linear frequency modulated (LFM, and frequency-hopped (FH. Presented results include simulated peak side lobe (PSL and peak cross-correlation values for random OFDM signals, as well as simulated SAR imagery with IF and DRFM jammers'-induced false targets.

  13. Fairness-Aware and Energy Efficiency Resource Allocation in Multiuser OFDM Relaying System

    Directory of Open Access Journals (Sweden)

    Guangjun Liang

    2016-01-01

    Full Text Available A fairness-aware resource allocation scheme in a cooperative orthogonal frequency division multiple (OFDM network is proposed based on jointly optimizing the subcarrier pairing, power allocation, and channel-user assignment. Compared with traditional OFDM relaying networks, the source is permitted to retransfer the same data transmitted by it in the first time slot, further improving the system capacity performance. The problem which maximizes the energy efficiency (EE of the system with total power constraint and minimal spectral efficiency constraint is formulated into a mixed-integer nonlinear programming (MINLP problem which has an intractable complexity in general. The optimization model is simplified into a typical fractional programming problem which is testified to be quasiconcave. Thus we can adopt Dinkelbach method to deal with MINLP problem proposed to achieve the optimal solution. The simulation results show that the joint resource allocation method proposed can achieve an optimal EE performance under the minimum system service rate requirement with a good global convergence.

  14. Discrete Multiwavelet Critical-Sampling Transform-Based OFDM System over Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    Sameer A. Dawood

    2015-01-01

    Full Text Available Discrete multiwavelet critical-sampling transform (DMWCST has been proposed instead of fast Fourier transform (FFT in the realization of the orthogonal frequency division multiplexing (OFDM system. The proposed structure further reduces the level of interference and improves the bandwidth efficiency through the elimination of the cyclic prefix due to the good orthogonality and time-frequency localization properties of the multiwavelet transform. The proposed system was simulated using MATLAB to allow various parameters of the system to be varied and tested. The performance of DMWCST-based OFDM (DMWCST-OFDM was compared with that of the discrete wavelet transform-based OFDM (DWT-OFDM and the traditional FFT-based OFDM (FFT-OFDM over flat fading and frequency-selective fading channels. Results obtained indicate that the performance of the proposed DMWCST-OFDM system achieves significant improvement compared to those of DWT-OFDM and FFT-OFDM systems. DMWCST improves the performance of the OFDM system by a factor of 1.5–2.5 dB and 13–15.5 dB compared with the DWT and FFT, respectively. Therefore the proposed system offers higher data rate in wireless mobile communications.

  15. Zero-guard-interval coherent optical OFDM with overlapped frequency-domain CD and PMD equalization.

    Science.gov (United States)

    Chen, Chen; Zhuge, Qunbi; Plant, David V

    2011-04-11

    This paper presents a new channel estimation/equalization algorithm for coherent OFDM (CO-OFDM) digital receivers, which enables the elimination of the cyclic prefix (CP) for OFDM transmission. We term this new system as the zero-guard-interval (ZGI)-CO-OFDM. ZGI-CO-OFDM employs an overlapped frequency-domain equalizer (OFDE) to compensate both chromatic dispersion (CD) and polarization mode dispersion (PMD) before the OFDM demodulation. Despite the zero CP overhead, ZGI-CO-OFDM demonstrates a superior PMD tolerance than the previous reduced-GI (RGI)-CO-OFDM, which is verified under several different PMD conditions. Additionally, ZGI-CO-OFDM can improve the channel estimation accuracy under high PMD conditions by using a larger intra-symbol frequency-averaging (ISFA) length as compared to RGI-CO-OFDM. ZGI-CO-OFDM also enables the use of ever smaller fast Fourier transform (FFT) sizes (i.e. OFDM. We show that ZGI-CO-OFDM requires reasonably small additional computation effort (~13.6%) compared to RGI-CO-OFDM for 112-Gb/s transmission over a 1600-km dispersion-uncompensated optical link. © 2011 Optical Society of America

  16. Outage Performance of Flexible OFDM Schemes in Packet-Switched Transmissions

    Directory of Open Access Journals (Sweden)

    Romain Couillet

    2009-01-01

    Full Text Available α-OFDM, a generalization of the OFDM modulation, is proposed. This new modulation enhances the outage capacity performance of bursty communications. The α-OFDM scheme is easily implementable as it only requires an additional time symbol rotation after the IDFT stage and a subsequent phase rotation of the cyclic prefix. The physical effect of the induced rotation is to slide the DFT window over the frequency spectrum. When successively used with different angles α at the symbol rate, α-OFDM provides frequency diversity in block fading channels. Interestingly, simulation results show a substantial gain in terms of outage capacity and outage BER in comparison with classical OFDM modulation schemes. The framework is extended to multiantenna and multicellular OFDM-based standards. Practical simulations, in the context of 3GPP-LTE, called hereafter α-LTE, sustain our theoretical claims.

  17. Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers

    Science.gov (United States)

    Guan, Rui; Xu, Wei; Yang, Zhaohui; Huang, Nuo; Wang, Jin-Yuan; Chen, Ming

    2017-11-01

    In this paper, we propose a subcarrier-index modulation-based asymmetrically clipped optical orthogonal frequency division multiplexing (SACO-OFDM) scheme for optical wireless communication (OWC) systems, which benefits from the subcarrier-index modulation (SIM) and asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) techniques. SACO-OFDM conveys additional information via the subcarrier indexing, and the error rate of the bit transmitted by the subcarrier indexing is much lower than that of the conventional M-ary modulation scheme. On the other hand, as the signal constellation in M-ary modulation is relieved, SACO-OFDM has simple transceiver structure and low detection complexity. Moreover, considering the spectral, an enhanced SACO-OFDM (ESACO-OFDM) using even subcarriers is proposed. In this technique, the odd subcarriers are activated for SACO-OFDM, and the imaginary part of even subcarriers are activated for pulse-amplitude-modulated discrete multitone (PAM-DMT). Clearly, ESACO-OFDM achieves better spectral efficiency than the conventional optical OFDM, since all subcarriers are used for data transmission. Simulation results verify the significant bit error rate (BER) and peak-to-average power ratio (PAPR) improvement by the proposed ESACO-OFDM, especially for the medium-to-high signal-to-noise ratio (SNR) regime.

  18. Performance Evaluation Of Mobile Cellular Networks In Nigeria

    OpenAIRE

    Shoewu, O.O

    2018-01-01

    The aim of this paper is to evaluate the performance of mobile networks such as MTN, GLO, and ETISALAT in Nigeria and suggest ways the performance of digital cellular networks can improve to minimize some of its present short comings or limitations. This paper discusses the performance improvement of digital cellular networks. A non- CDMA cellular network is use in an overall wireless environment for the purpose of this paper. This paper also discusses the performance assessment of three mobi...

  19. Simulasi Teknik Modulasi Ofdm Qpsk Dengan Menggunakan Matlab

    OpenAIRE

    Subrata, Rosalia H; Gozali, Ferrianto

    2015-01-01

    This paper provides a brief explanation of the processing steps involved in Orthogonal Frequency Division Multiplexing (OFDM) with Quadrature Phase Shift Keying (QPSK) modulation technique implemented as a simulation program in MatLab. Input data of the simulation program in the form of random bit stream or text can be selected by users. The process conducted in the simulation is divided into three consecutive steps, processes in the OFDM transmitter, in transmission channel and in the OFDM r...

  20. BER Performance of Stratified ACO-OFDM for Optical Wireless Communications over Multipath Channel

    OpenAIRE

    Gebeyehu, Zelalem Hailu; Langat, Philip Kibet; Maina, Ciira Wa

    2018-01-01

    In intensity modulation/direct detection- (IM/DD-) based optical OFDM systems, the requirement of the input signal to be real and positive unipolar imposes a reduction of system performances. Among previously proposed unipolar optical OFDM schemes for optical wireless communications (OWC), asymmetrically clipped optical OFDM (ACO-OFDM) and direct current biased optical OFDM (DCO-OFDM) are the most accepted ones. But those proposed schemes experience either spectral efficiency loss or energy e...

  1. WiMAX OFDM system simulation and sub-system FPGA implementation

    International Nuclear Information System (INIS)

    Elaskary, A.M.F.

    2009-01-01

    Orthogonal frequency division multiplexing (OFDM) has been used in many wireless communication systems also it is gaining a lot of attention for the next generations of mobile communication systems. OFDM is considered a good candidate for wireless systems because it has high bandwidth efficiency and can transmit at very high data rate in multi path, interference , and fading environment. in general OFDM has widely been studied and implemented to combat transmission channel impairments, but some challenges still facing OFDM in transmission system implementation especially for recent and future applications. One of these important applications is the worldwide interoperability for microwave access (WiMAX) system. According to the IEEE 802.16 standards, WiMAX is considered as a good solution for last mile connection at crowded areas and a high-speed internet connection to mobile vehicles with speed of up to 300 km/h. This thesis studies OFDM system in details and proposes simulink models for simulating OFDM impairments and its effects on system performance. This study has been used for building up system level and end to end WiMAX OFDM transmitter/receiver which follows published specifications in IEEE 802.16 standards using mat lab/simulink.

  2. Polarization demultiplexing in stokes space for coherent optical PDM-OFDM.

    Science.gov (United States)

    Yu, Zhenming; Yi, Xingwen; Yang, Qi; Luo, Ming; Zhang, Jing; Chen, Lei; Qiu, Kun

    2013-02-11

    We propose a polarization demultiplexing method for coherent optical PDM-OFDM based on Stokes space, without inserting training symbols. The proposed approach performs well for different modulation formats of OFDM subcarrier, and shows comparable performances with that of conventional methods, but with a fast convergence speed and reduced overhead. The OFDM signal in the time domain cannot satisfy the conditions of SS-PDM accurately. Therefore, we first digitally convert the received OFDM signals to the frequency domain using fast Fourier transform (FFT). Each subcarrier of the OFDM signal has a much lower speed and narrower bandwidth, the polarization effects that it experiences can be treated as flat. Consequently, we can apply the polarization demultiplexing in Stokes space (SS-PDM) on per subcarrier basis. We verify this method in experiment by transmitting 66.6-Gb/s PDM-OFDM signal with 4QAM subcarrier modulation over 5440km SSMF and 133.3-Gb/s PDM-OFDM signal with 16QAM subcarrier modulation over 960km SSMF respectively. We also compare the results with those of training symbols. Finally, we analyze of the convergence speed of this method.

  3. Evaluation of PLC Channel Capacity and ABER Performances for OFDM-Based Two-Hop Relaying Transmission

    Directory of Open Access Journals (Sweden)

    Sana Ezzine

    2017-01-01

    Full Text Available Powerline network is recognized as a favorable infrastructure for Smart Grid to transmit information in the network thanks to its broad coverage and low cost deployment. The existing works are trying to improve and adapt transmission techniques to reduce Powerline Communication (PLC channel attenuation and exploit the limited bandwidth to support high data rate over long distances. Two-hop relaying BroadBand PLC (BB-PLC system, in which Orthogonal Frequency Division Multiplexing (OFDM is used, is considered in this paper. We derive and compare the PLC channel capacity and the end-to-end Average BER (ABER for OFDM-based direct link (DL BB-PLC system and for OFDM-based two-hop relaying BB-PLC system for Amplify and Forward (AF and Decode and Forward (DF protocols. We analyze the improvements when we consider the direct link in a cooperative communication when the relay node only transmits the correctly decoded signal. Maximum ratio combining is employed at the destination node to detect the transmitted signal. In addition, in this paper, we highlight the impact of the relay location on the channel capacity and ABER for AF and DF transmission protocols. Moreover, an efficient use of the direct link was also investigated in this paper.

  4. Golay sequences coded coherent optical OFDM for long-haul transmission

    Science.gov (United States)

    Qin, Cui; Ma, Xiangrong; Hua, Tao; Zhao, Jing; Yu, Huilong; Zhang, Jian

    2017-09-01

    We propose to use binary Golay sequences in coherent optical orthogonal frequency division multiplexing (CO-OFDM) to improve the long-haul transmission performance. The Golay sequences are generated by binary Reed-Muller codes, which have low peak-to-average power ratio and certain error correction capability. A low-complexity decoding algorithm for the Golay sequences is then proposed to recover the signal. Under same spectral efficiency, the QPSK modulated OFDM with binary Golay sequences coding with and without discrete Fourier transform (DFT) spreading (DFTS-QPSK-GOFDM and QPSK-GOFDM) are compared with the normal BPSK modulated OFDM with and without DFT spreading (DFTS-BPSK-OFDM and BPSK-OFDM) after long-haul transmission. At a 7% forward error correction code threshold (Q2 factor of 8.5 dB), it is shown that DFTS-QPSK-GOFDM outperforms DFTS-BPSK-OFDM by extending the transmission distance by 29% and 18%, in non-dispersion managed and dispersion managed links, respectively.

  5. 428-Gb/s single-channel coherent optical OFDM transmission over 960-km SSMF with constellation expansion and LDPC coding.

    Science.gov (United States)

    Yang, Qi; Al Amin, Abdullah; Chen, Xi; Ma, Yiran; Chen, Simin; Shieh, William

    2010-08-02

    High-order modulation formats and advanced error correcting codes (ECC) are two promising techniques for improving the performance of ultrahigh-speed optical transport networks. In this paper, we present record receiver sensitivity for 107 Gb/s CO-OFDM transmission via constellation expansion to 16-QAM and rate-1/2 LDPC coding. We also show the single-channel transmission of a 428-Gb/s CO-OFDM signal over 960-km standard-single-mode-fiber (SSMF) without Raman amplification.

  6. Phase noise estimation and mitigation for DCT-based coherent optical OFDM systems.

    Science.gov (United States)

    Yang, Chuanchuan; Yang, Feng; Wang, Ziyu

    2009-09-14

    In this paper, as an attractive alternative to the conventional discrete Fourier transform (DFT) based orthogonal frequency division multiplexing (OFDM), discrete cosine transform (DCT) based OFDM which has certain advantages over its counterpart is studied for optical fiber communications. As is known, laser phase noise is a major impairment to the performance of coherent optical OFDM (CO-OFDM) systems. However, to our knowledge, detailed analysis of phase noise and the corresponding mitigation methods for DCT-based CO-OFDM systems have not been reported yet. To address these issues, we analyze the laser phase noise in the DCT-based CO-OFDM systems, and propose phase noise estimation and mitigation schemes. Numerical results show that the proposal is very effective in suppressing phase noise and could significantly improve the performance of DCT-based CO-OFDM systems.

  7. All-optical ultra-high-speed OFDM to Nyquist-WDM conversion

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2015-01-01

    We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER <10−9 performance for all channels.......We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER

  8. Phase noise effects in synchronized wireless networks for mimo-ofdm

    International Nuclear Information System (INIS)

    Kiyani, M.K.

    2014-01-01

    Channel impairments effects are evaluated by inclusion of phase noise in a synchronization error correction algorithm for MIMO (Multiple Input Multiple Output) OFDM (Orthogonal Frequency Division Multiplexing) systems. The original synchronization error correction algorithm applicable to AWGN (Additive White Gaussian Noise) channel pertaining to SISO (Single Input Single Output) system is modified in the presence of SUI (Stanford University Interim) channel models and then applied to MIMO systems. Then the performance of this modified algorithm is verified through simulations under the effects of channel impairments. (author)

  9. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.

    Science.gov (United States)

    Sohn, Insoo; Liu, Huaping; Ansari, Nirwan

    2015-01-01

    An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction.

  10. Exploiting Redundancy in an OFDM SDR Receiver

    Directory of Open Access Journals (Sweden)

    Tomas Palenik

    2009-01-01

    Full Text Available Common OFDM system contains redundancy necessary to mitigate interblock interference and allows computationally effective single-tap frequency domain equalization in receiver. Assuming the system implements an outer error correcting code and channel state information is available in the receiver, we show that it is possible to understand the cyclic prefix insertion as a weak inner ECC encoding and exploit the introduced redundancy to slightly improve error performance of such a system. In this paper, an easy way to implement modification to an existing SDR OFDM receiver is presented. This modification enables the utilization of prefix redundancy, while preserving full compatibility with existing OFDM-based communication standards.

  11. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission.

    Science.gov (United States)

    Wang, Qi; Qian, Chen; Guo, Xuhan; Wang, Zhaocheng; Cunningham, David G; White, Ian H

    2015-05-04

    Layered asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with high spectral efficiency is proposed in this paper for optical wireless transmission employing intensity modulation with direct detection. In contrast to the conventional ACO-OFDM, which only utilizes odd subcarriers for modulation, leading to an obvious spectral efficiency loss, in layered ACO-OFDM, the subcarriers are divided into different layers and modulated by different kinds of ACO-OFDM, which are combined for simultaneous transmission. In this way, more subcarriers are used for data transmission and the spectral efficiency is improved. An iterative receiver is also proposed for layered ACO-OFDM, where the negative clipping distortion of each layer is subtracted once it is detected so that the signals from different layers can be recovered. Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order. Meanwhile, simulation results confirm a considerable signal-to-noise ratio gain over ACO-OFDM at the same spectral efficiency.

  12. Characterization of spectral compression of OFDM symbols using optical time lenses

    DEFF Research Database (Denmark)

    Røge, Kasper Meldgaard; Guan, Pengyu; Kjøller, Niels-Kristian

    2015-01-01

    We present a detailed investigation of a double-time-lens subsystem for spectral compression of OFDM symbols. We derive optimized parameter settings by simulations and experimental characterization. The required chirp for OFDM spectral compression is very large.......We present a detailed investigation of a double-time-lens subsystem for spectral compression of OFDM symbols. We derive optimized parameter settings by simulations and experimental characterization. The required chirp for OFDM spectral compression is very large....

  13. All-optical OFDM demultiplexing by spectral magnification and band-pass filtering.

    Science.gov (United States)

    Palushani, E; Mulvad, H C Hansen; Kong, D; Guan, P; Galili, M; Oxenløwe, L K

    2014-01-13

    We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spectral magnification.

  14. Localization with OFDM signals in 5G systems

    OpenAIRE

    Shahmansoori, Arash

    2017-01-01

    Bibliografia Un aspecto fundamental para el diseño de un sistema OFDM con capacidad para proporcionar posicionamiento y comunicaciones a alta velocidad es encontrar una estrategia óptima para asignar la potencia de las señales de datos y las señales pilotos utilizadas en un sistema OFDM. Previamente, diseños para maximizar la capacidad de transmisión de datos del sistema OFDM se han investigado para el caso de canales de comunicación estáticos. Sin embargo, es lógico considerar variaciones...

  15. Synchronization of OFDM at low SNR over an AWGN channel

    NARCIS (Netherlands)

    Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria; Dimitrova, D.C.; Blom, K.C.H.; Meratnia, Nirvana

    2011-01-01

    This paper is based on Extended Symbol OFDM (ES-OFDM) where symbols are extended in time. This way ES-OFDM can operate at low SNR. Each doubling of the symbol length improves the SNR performance by 3 dB in case of a coherent receiver. One of the basic questions is how to synchronize to signals far

  16. Performance analysis of super-orthogonal space-frequency trellis coded OFDM system

    CSIR Research Space (South Africa)

    Sokoya, O

    2009-08-01

    Full Text Available that is used with OFDM. SOSFTC-OFDM utilizes the diversities in frequency and space domain by assuming that coding is done along adjacent subcarrier in an OFDM environment. This paper evaluates the exact pairwise error probability (PEP) of the SOSFTC...

  17. Blind equalization for dual-polarization two-subcarrier coherent QPSK-OFDM signals.

    Science.gov (United States)

    Li, Fan; Zhang, Junwen; Yu, Jianjun; Li, Xinying

    2014-01-15

    Dual-polarization two-subcarrier coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission and reception is successfully demonstrated with blind equalization. A two-subcarrier quadrature phase shift keyed OFDM (QPSK-OFDM) signal can be equalized as a 9-ary quadrature amplitude modulation signal in the time domain with the cascaded multimodulus algorithm equalization method. The nonlinear effect resistance and transmission distance can be enhanced compared with the traditional CO-OFDM transmission system based on frequency equalization with training sequence.

  18. Transmission over UWB channels with OFDM system using LDPC coding

    Science.gov (United States)

    Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech

    2009-06-01

    Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.

  19. All-optical OFDM demultiplexing by spectral magnification and band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2014-01-01

    We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter-carrier-interference...

  20. Impact of Cyclic Prefix length on OFDM system Capacity

    DEFF Research Database (Denmark)

    Rom, Christian; Sørensen, Troels Bundgaard; Mogensen, Preben Elgaard

    2005-01-01

    This paper is a study on the impact of the Cyclic Prefix (CP) length on the downlink Capacity in a base-band synchronized SISO-OFDM context. To measure this impact, the capacity, measured in bits per second per hertz, is chosen as quality parameter. The study shows how the lengthening of the CP......) the useful OFDM symbol duration, 2) the Signal to Noise Ratio (SNR) at the receiver and 3) the channel Power Delay Profile (PDP). Depending on the values of these parameters different optimum CP lengths are obtained. For a system using only one value of CP length we suggest an optimum value to be 4us...... for an OFDM symbol length of 40us and 6us for an OFDM symbol length of 80us....

  1. Dynamic spectrum management in green cognitive radio cellular networks

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we propose a new cellular network operation scheme fulfilling the 5G requirements related to spectrum management and green communications. We focus on cognitive radio cellular networks in which both the primary network (PN

  2. Banded all-optical OFDM super-channels with low-bandwidth receivers.

    Science.gov (United States)

    Song, Binhuang; Zhu, Chen; Corcoran, Bill; Zhuang, Leimeng; Lowery, Arthur James

    2016-08-08

    We propose a banded all-optical orthogonal frequency division multiplexing (AO-OFDM) transmission system based on synthesising a number of truncated sinc-shaped subcarriers for each sub-band. This approach enables sub-band by sub-band reception and therefore each receiver's electrical bandwidth can be significantly reduced compared with a conventional AO-OFDM system. As a proof-of-concept experiment, we synthesise 6 × 10-Gbaud subcarriers in both conventional and banded AO-OFDM systems. With a limited receiver electrical bandwidth, the experimental banded AO-OFDM system shows 2-dB optical signal to noise ratio (OSNR) benefit over conventional AO-OFDM at the 7%-overhead forward error correction (FEC) threshold. After transmission over 800-km of single-mode fiber, ≈3-dB improvement in Q-factor can be achieved at the optimal launch power at a cost of increasing the spectral width by 14%.

  3. Information Fields Navigation with Piece-Wise Polynomial Approximation for High-Performance OFDM in WSNs

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2013-01-01

    Full Text Available Since Wireless sensor networks (WSNs are dramatically being arranged in mission-critical applications,it changes into necessary that we consider application requirements in Internet of Things. We try to use WSNs to assist information query and navigation within a practical parking spaces environment. Integrated with high-performance OFDM by piece-wise polynomial approximation, we present a new method that is based on a diffusion equation and a position equation to accomplish the navigation process conveniently and efficiently. From the point of view of theoretical analysis, our jobs hold the lower constraint condition and several inappropriate navigation can be amended. Information diffusion and potential field are introduced to reach the goal of accurate navigation and gradient descent method is applied in the algorithm. Formula derivations and simulations manifest that the method facilitates the solution of typical sensor network configuration information navigation. Concurrently, we also treat channel estimation and ICI mitigation for very high mobility OFDM systems, and the communication is between a BS and mobile target at a terrible scenario. The scheme proposed here combines the piece-wise polynomial expansion to approximate timevariations of multipath channels. Two near symbols are applied to estimate the first-and second-order parameters. So as to improve the estimation accuracy and mitigate the ICI caused by pilot-aided estimation, the multipath channel parameters were reestimated in timedomain employing the decided OFDM symbol. Simulation results show that this method would improve system performance in a complex environment.

  4. MSAT and cellular hybrid networking

    Science.gov (United States)

    Baranowsky, Patrick W., II

    Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.

  5. Low overhead and nonlinear-tolerant adaptive zero-guard-interval CO-OFDM.

    Science.gov (United States)

    Wang, Wei; Zhuge, Qunbi; Gao, Yuliang; Qiu, Meng; Morsy-Osman, Mohamed; Chagnon, Mathieu; Xu, Xian; Plant, David V

    2014-07-28

    We propose an adaptive channel estimation (CE) method for zero-guard-interval (ZGI) coherent optical (CO)-OFDM systems, and demonstrate its performance in a single channel 28 Gbaud polarization-division multiplexed ZGI CO-OFDM experiment with only 1% OFDM processing overhead. We systematically investigate its robustness against various transmission impairments including residual chromatic dispersion, polarization-mode dispersion, state of polarization rotation, sampling frequency offset and fiber nonlinearity. Both experimental and numerical results show that the adaptive CE-aided ZGI CO-OFDM is highly robust against these transmission impairments in fiber optical transmission systems.

  6. Bit Loading Algorithms for Cooperative OFDM Systems

    Directory of Open Access Journals (Sweden)

    Gui Bo

    2008-01-01

    Full Text Available Abstract We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.

  7. Bit Loading Algorithms for Cooperative OFDM Systems

    Directory of Open Access Journals (Sweden)

    Bo Gui

    2007-12-01

    Full Text Available We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.

  8. OFDM techniques for narrow-band power line communications; OFDM-Verfahren fuer die schmalbandige Datenuebertragung im elektrischen Energieversorgungsnetz

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, Martin

    2012-07-01

    In Power Line Communications (PLC) the power distribution grid is modelled by a frequency-selective time-variant channel. Therefore, OFDM techniques are suited very well for this application since they equalize the frequency-selective behaviour in a simple fashion. For narrow-band PLC, where only little amounts of data are to be transmitted, it is advantageous to employ a non-coherent system that does not need a training sequence for channel estimation. Such type of system can be brought up with CyclicPrefix OFDM in combination with Differential Phase-Shift Keying (DPSK). In an alternative, Unique-Word OFDM, the guard interval is not filled by a cyclic prefix, but a ''unique word'', which can be deployed for channel estimation. However, there is a loss in signal-to-noise power ratio due to the special type of signal generation. This loss can be more than regained in principle, but only by applying expensive detection. Another interesting technique is Wavelet-OFDM as its transmit spectrum can be formed outstandingly because of extended transmit pulses. This implies a large overhead when short packets of data are transmitted - additionally to a training sequence, for non-coherent detection is not possible. Cyclic-Prefix OFDM and DPSK are the basis of the Physical Layers of the PLC systems ''PLC G3'' and ''PRIME''. Comparing their specifications and analyzing simulation results ''PLC G3'' turns out to be the more reliable system. In order to equalize the time-variant behaviour of the power line channel, linear equalization and Multiple Symbol Differential Detection is studied as well as algorithms to estimate the time-variant envelope. (orig.)

  9. Experimental demonstration of improved fiber nonlinearity tolerance for unique-word DFT-spread OFDM systems.

    Science.gov (United States)

    Chen, Xi; Li, An; Gao, Guanjun; Shieh, William

    2011-12-19

    In this paper we experimentally demonstrate transmission performance of optical DFT-spread OFDM systems in comparison with conventional OFDM systems. A 440.8-Gb/s superchannel consisting of 8 x 55.1-Gb/s densely-spaced DFT-S OFDM signal is successfully received after 1120-km transmission with a spectral efficiency of 3.5 b/s/Hz. It is shown that DFT-S OFDM can achieve an improvement of 1 dB in Q factor and 1 dB in launch power over conventional OFDM. Additionally, unique word aided phase estimation algorithm is proposed and demonstrated enabling extremely long OFDM symbol transmission.

  10. Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-mode colorless FPLD pair.

    Science.gov (United States)

    Chen, Hsiang-Yu; Chi, Yu-Chieh; Lin, Gong-Ru

    2015-08-24

    A remote heterodyne millimeter-wave (MMW) carrier at 47.7 GHz over fiber synthesized with the master-to-slave injected dual-mode colorless FPLD pair is proposed, which enables the future connection between the wired fiber-optic 64-QAM OFDM-PON at 24 Gb/s with the MMW 4-QAM OFDM wireless network at 2 Gb/s. Both the single- and dual-mode master-to-slave injection-locked colorless FPLD pairs are compared to optimize the proposed 64-QAM OFDM-PON. For the unamplified single-mode master, the slave colorless FPLD successfully performs the 64-QAM OFDM data at 24 Gb/s with EVM, SNR and BER of 8.5%, 21.5 dB and 2.9 × 10(-3), respectively. In contrast, the dual-mode master-to-slave injection-locked colorless FPLD pair with amplified and unfiltered master can transmit 64-QAM OFDM data at 18 Gb/s over 25-km SMF to provide EVM, SNR and BER of 8.2%, 21.8 dB and 2.2 × 10(-3), respectively. For the dual-mode master-to-slave injection-locked colorless FPLD pair, even though the modal dispersion occurred during 25-km SMF transmission makes it sacrifice the usable OFDM bandwidth by only 1 GHz, which guarantees the sufficient encoding bitrate for the optically generated MMW carrier to implement the fusion of MMW wireless LAN and DWDM-PON with cost-effective and compact architecture. As a result, the 47.7-GHz MMW carrier remotely beat from the dual-mode master-to-slave injection-locked colorless FPLD pair exhibits an extremely narrow bandwidth of only 0.48 MHz. After frequency down-conversion operation, the 47.7-GHz MMW carrier successfully delivers 4-QAM OFDM data up to 2 Gb/s with EVM, SNR and BER of 33.5%, 9.51 dB and 1.4 × 10(-3), respectively.

  11. Frequency offset estimation in OFDM systems using Bayesian filtering

    Science.gov (United States)

    Yu, Yihua

    2011-10-01

    Orthogonal frequency division multiplexing (OFDM) is sensitive to carrier frequency offset (CFO) that causes inter-carrier interference (ICI). In this paper, we present two schemes for the CFO estimation, which are based on rejection sampling (RS) and a form of particle filtering (PF) called kernel smoothing technique, respectively. The first scheme is offline estimation, where the observations contained in the OFDM training symbol are treated in the batch mode. The second scheme is online estimation, where the observations in the OFDM training symbol are treated in the sequential manner. Simulations are provided to illustrate the performances of the schemes. Performance comparisons of the two schemes and with other Bayesian methods are provided. Simulation results show that the two schemes are effective when estimating the CFO and can effectively combat the effect of ICI in OFDM systems.

  12. Four-dimensional optical multiband-OFDM for beyond 1.4 Tb/s serial optical transmission.

    Science.gov (United States)

    Djordjevic, Ivan; Batshon, Hussam G; Xu, Lei; Wang, Ting

    2011-01-17

    We propose a four-dimensional (4D) coded multiband-OFDM scheme suitable for beyond 1.4 Tb/s serial optical transport. The proposed scheme organizes the N-dimensional (ND) signal constellation points in the form of signal matrix; employs 2D-inverse FFT and 2D-FFT to perform modulation and demodulation, respectively; and exploits both orthogonal polarizations. This scheme can fully exploit advantages of OFDM to deal with chromatic dispersion, PMD and PDL effects; and multidimensional signal constellations to improve OSNR sensitivity of conventional optical OFDM. The improvement of 4D-OFDM over corresponding polarization-multiplexed QAM (with the same number of constellation points) ranges from 1.79 dB for 16 signal constellation point-four-dimensional-OFDM (16-4D-OFDM) up to 4.53 dB for 128-4D-OFDM.

  13. The robustness of subcarrier-index modulation in 16-QAM CO-OFDM system with 1024-point FFT.

    Science.gov (United States)

    Jan, Omar H A; Sandel, David; Puntsri, Kidsanapong; Al-Bermani, Ali; El-Darawy, Mohamed; Noé, Reinhold

    2012-12-17

    We present in numerical simulations the robustness of subcarrier index modulation (SIM) OFDM to combat laser phase noise. The ability of using DFB lasers with SIM-OFDM in 16-QAM CO-OFDM system with 1024-point FFT has been verified. Although SIM-OFDM has lower spectral efficiency compared to the conventional CO-OFDM system, it is a good candidate for 16-QAM CO-OFDM system with 1024-point FFT which uses a DFB laser of 1 MHz linewidth. In addition, we show the tolerance of SIM-OFDM for mitigation of fiber nonlinearities in long-haul CO-OFDM system. The simulation results show a significant penalty reduction, essentially that due to SPM.

  14. Handover management in dense cellular networks: A stochastic geometry approach

    KAUST Repository

    Arshad, Rabe; Elsawy, Hesham; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2016-01-01

    Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios. © 2016 IEEE.

  15. Handover management in dense cellular networks: A stochastic geometry approach

    KAUST Repository

    Arshad, Rabe

    2016-07-26

    Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations\\' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users\\' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios. © 2016 IEEE.

  16. Error performance analysis in downlink cellular networks with interference management

    KAUST Repository

    Afify, Laila H.; Elsawy, Hesham; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    Modeling aggregate network interference in cellular networks has recently gained immense attention both in academia and industry. While stochastic geometry based models have succeeded to account for the cellular network geometry, they mostly

  17. Interference Robust Transmission for the Downlink of an OFDM-Based Mobile Communications System

    Directory of Open Access Journals (Sweden)

    Markus Konrad

    2008-01-01

    Full Text Available Radio networks for future mobile communications systems, for example, 3GPP Long-Term Evolution (LTE, are likely to use an orthogonal frequency division multiplexing- (OFDM- based air interface in the downlink with a frequency reuse factor of one to avoid frequency planning. Therefore, system capacity is limited by interference, which is particularly crucial for mobile terminals with a single receive antenna. Nevertheless, next generation mobile communications systems aim at increasing downlink throughput. In this paper, a single antenna interference cancellation (SAIC algorithm is introduced for amplitude-shift keying (ASK modulation schemes in combination with bit-interleaved coded OFDM. By using such a transmission strategy, high gains in comparison to a conventional OFDM transmission with quadrature amplitude modulation (QAM can be achieved. The superior performance of the novel scheme is confirmed by an analytical bit-error probability (BEP analysis of the SAIC receiver for a single interferer, Rayleigh fading, and uncoded transmission. For the practically more relevant multiple interferer case we present an adaptive least-mean-square (LMS and an adaptive recursive least-squares (RLS SAIC algorithm. We show that in particular the RLS approach enables a good tradeoff between performance and complexity and is robust even to multiple interferers.

  18. Evaluation of PLC Channel Capacity and ABER Performances for OFDM-Based Two-Hop Relaying Transmission

    OpenAIRE

    Ezzine, Sana; Abdelkefi, Fatma; Cances, Jean Pierre; Meghdadi, Vahid; Bouallégue, Ammar

    2017-01-01

    Powerline network is recognized as a favorable infrastructure for Smart Grid to transmit information in the network thanks to its broad coverage and low cost deployment. The existing works are trying to improve and adapt transmission techniques to reduce Powerline Communication (PLC) channel attenuation and exploit the limited bandwidth to support high data rate over long distances. Two-hop relaying BroadBand PLC (BB-PLC) system, in which Orthogonal Frequency Division Multiplexing (OFDM) is u...

  19. Performance Analysis of OFDM 60GHz System and SC-FDE 60GHz System

    Directory of Open Access Journals (Sweden)

    Han Xueyan

    2016-01-01

    Full Text Available In this paper, the performance of 60GHz wireless communication system with SC and OFDM is studied, the models of OFDM 60GHz system and SC 60GHz frequency domain equalization (SC-FDE system are established, and the bit error rate (BER performance of OFDM 60GHz system and SC-FDE 60GHz system in 802.15.3c channels is compared. The simulation results show that SC-FDE 60GHz system has a slight advantage over OFDM system in line-of-sight (LOS channels, while OFDM 60GHz system has a slight advantage over SC-FDE system in non-line-of-sight (NLOS channels. For 60GHz system, OFDM 60GHz system has a slight advantage over SC-FDE system in overcoming multipath fading, but the performance of both is close whether in the LOS or NLOS case.

  20. Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM.

    Science.gov (United States)

    Zhuge, Qunbi; Morsy-Osman, Mohamed; Mousa-Pasandi, Mohammad E; Xu, Xian; Chagnon, Mathieu; El-Sahn, Ziad A; Chen, Chen; Plant, David V

    2012-12-10

    We report on the experimental demonstration of single channel 28 Gbaud QPSK and 16-QAM zero-guard-interval (ZGI) CO-OFDM transmission with only 1.34% overhead for OFDM processing. The achieved transmission distance is 5120 km for QPSK assuming a 7% forward error correction (FEC) overhead, and 1280 km for 16-QAM assuming a 20% FEC overhead. We also demonstrate the improved tolerance of ZGI CO-OFDM to residual inter-symbol interference compared to reduced-guard-interval (RGI) CO-OFDM. In addition, we report an 8-channel wavelength-division multiplexing (WDM) transmission of 28 Gbaud QPSK ZGI CO-OFDM signals over 4160 km.

  1. Experimental demonstration of OFDM/OQAM transmission with DFT-based channel estimation for visible laser light communications

    Science.gov (United States)

    He, Jing; Shi, Jin; Deng, Rui; Chen, Lin

    2017-08-01

    Recently, visible light communication (VLC) based on light-emitting diodes (LEDs) is considered as a candidate technology for fifth-generation (5G) communications, VLC is free of electromagnetic interference and it can simplify the integration of VLC into heterogeneous wireless networks. Due to the data rates of VLC system limited by the low pumping efficiency, small output power and narrow modulation bandwidth, visible laser light communication (VLLC) system with laser diode (LD) has paid more attention. In addition, orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) is currently attracting attention in optical communications. Due to the non-requirement of cyclic prefix (CP) and time-frequency domain well-localized pulse shapes, it can achieve high spectral efficiency. Moreover, OFDM/OQAM has lower out-of-band power leakage so that it increases the system robustness against inter-carrier interference (ICI) and frequency offset. In this paper, a Discrete Fourier Transform (DFT)-based channel estimation scheme combined with the interference approximation method (IAM) is proposed and experimentally demonstrated for VLLC OFDM/OQAM system. The performance of VLLC OFDM/OQAM system with and without DFT-based channel estimation is investigated. Moreover, the proposed DFT-based channel estimation scheme and the intra-symbol frequency-domain averaging (ISFA)-based method are also compared for the VLLC OFDM/OQAM system. The experimental results show that, the performance of EVM using the DFT-based channel estimation scheme is improved about 3dB compared with the conventional IAM method. In addition, the DFT-based channel estimation scheme can resist the channel noise effectively than that of the ISFA-based method.

  2. Implementasi dan Analisis Teknik Reduksi PAPR OFDM Menggunakan Metode PTS pada WARP

    Directory of Open Access Journals (Sweden)

    Rizkha Ajeng Rochmatika

    2017-01-01

    Full Text Available Sistem OFDM cocok digunakan sebagai solusi yang dapat memenuhi layanan komunikasi data kecepatan tinggi karena memiliki efisiensi bandwidth dengan performansi terbaik. Namun dalam implementasinya, sistem OFDM memiliki kelemahan yang disebabkan oleh tingginya nilai Peak to Average Power Ratio (PAPR sehingga sinyal OFDM rentan terkena distorsi nonlinear yang disebabkan oleh adanya komponen RF power amplifier yang menyebabkan kompleksitas komponen Analog to Digital Converter (ADC yang terdapat pada Wireless Open Access Research Platform (WARP. Nilai PAPR yang besar pada OFDM membutuhkan power amplifier dengan dynamic range yang lebar untuk mengakomodasi sinyal, apabila hal tersebut tidak terpenuhi maka menyebabkan distorsi nonlinear dan pada akhirnya menurunkan performansi OFDM. Oleh karena itu, untuk mengatasinya dibutuhkan suatu metode yang dapat mereduksi nilai PAPR salah satunya menggunakan metode PTS. Guna melihat unjuk kerja teknik PTS, maka pada penelitian ini dibandingkan dua skema antara sistem OFDM tanpa dan dengan teknik PTS menggunakan analisa pada bit error rate dan nilai CCDF. Dari hasil pengukuran menunjukkan bahwa implementasi kinerja teknik PTS mampu meningkatkan kinerja sistem OFDM saat terkena distorsi nonlinear, terlihat pada pengukuran dengan modulasi 16-QAM untuk gain 56 didapatkan peningkatan BER sebesar 95.98%. Sedangkan pada grafik CCDF terjadi penurunan nilai PAPR sebesar 34.17% untuk M=4.

  3. Image Encryption and Chaotic Cellular Neural Network

    Science.gov (United States)

    Peng, Jun; Zhang, Du

    Machine learning has been playing an increasingly important role in information security and assurance. One of the areas of new applications is to design cryptographic systems by using chaotic neural network due to the fact that chaotic systems have several appealing features for information security applications. In this chapter, we describe a novel image encryption algorithm that is based on a chaotic cellular neural network. We start by giving an introduction to the concept of image encryption and its main technologies, and an overview of the chaotic cellular neural network. We then discuss the proposed image encryption algorithm in details, which is followed by a number of security analyses (key space analysis, sensitivity analysis, information entropy analysis and statistical analysis). The comparison with the most recently reported chaos-based image encryption algorithms indicates that the algorithm proposed in this chapter has a better security performance. Finally, we conclude the chapter with possible future work and application prospects of the chaotic cellular neural network in other information assurance and security areas.

  4. Energy efficiency in elastic-bandwidth optical networks

    DEFF Research Database (Denmark)

    Vizcaino, Jorge Lopez; Ye, Yabin; Tafur Monroy, Idelfonso

    2011-01-01

    of elastic bandwidth allocation, opens new horizons in the operation of optical networks. In this paper, we compare the network planning problem in an elastic bandwidth CO-OFDM-based network and a fixed-grid WDM network. We highlight the benefits that bandwidth elasticity and the selection of different......The forecasted growth in the Internet traffic has made the operators and industry to be concerned about the power consumption of the networks, and to become interested in alternatives to plan and operate the networks in a more energy efficient manner. The introduction of OFDM, and its property...

  5. Efficient Closed-Loop Schemes for MIMO-OFDM-Based WLANs

    Directory of Open Access Journals (Sweden)

    Jiang Yi

    2006-01-01

    Full Text Available The single-input single-output (SISO orthogonal frequency-division multiplexing (OFDM systems for wireless local area networks (WLAN defined by the IEEE 802.11a standard can support data rates up to 54 Mbps. In this paper, we consider deploying two transmit and two receive antennas to increase the data rate up to 108 Mbps. Applying our recent multiple-input multiple-output (MIMO transceiver designs, that is, the geometric mean decomposition (GMD and the uniform channel decomposition (UCD schemes, we propose simple and efficient closed-loop MIMO-OFDM designs for much improved performance, compared to the standard singular value decomposition (SVD based schemes as well as the open-loop V-BLAST (vertical Bell Labs layered space-time based counterparts. In the explicit feedback mode, precoder feedback is needed for the proposed schemes. We show that the overhead of feedback can be made very moderate by using a vector quantization method. In the time-division duplex (TDD mode where the channel reciprocity is exploited, our schemes turn out to be robust against the mismatch between the uplink and downlink channels. The advantages of our schemes are demonstrated via extensive numerical examples.

  6. MAI-free performance of PMU-OFDM transceiver in time-variant environment

    Science.gov (United States)

    Tadjpour, Layla; Tsai, Shang-Ho; Kuo, C.-C. J.

    2005-06-01

    An approximately multi-user OFDM transceiver was introduced to reduce the multi-access interference (MAI ) due to the carrier frequency offset (CFO) to a negligible amount via precoding by Tsai, Lin and Kuo. In this work, we investigate the performance of this precoded multi-user (PMU) OFDM system in a time-variant channel environment. We analyze and compare the MAI effect caused by time-variant channels in the PMU-OFDM and the OFDMA systems. Generally speaking, the MAI effect consists of two parts. The first part is due to the loss of orthogonality among subchannels for all users while the second part is due to the CFO effect caused by the Doppler shift. Simulation results show that, although OFDMA outperforms the PMU-OFDM transceiver in a fast time-variant environment without CFO, PMU-OFDM outperforms OFDMA in a slow time-variant channel via the use of M/2 symmetric or anti-symmetric codewords of M Hadamard-Walsh codes.

  7. Spectrally efficient polarization multiplexed direct-detection OFDM system without frequency gap.

    Science.gov (United States)

    Wei, Chia-Chien; Zeng, Wei-Siang; Lin, Chun-Ting

    2016-01-25

    We experimentally demonstrate a spectrally efficient direct-detection orthogonal frequency-division multiplexing (DD-OFDM) system. In addition to polarization-division multiplexing, removing the frequency gap further improves the spectral efficiency of the OFDM system. The frequency gap between a reference carrier and OFDM subcarriers avoids subcarrier-to-subcarrier beating interference (SSBI) in traditional DD-OFDM systems. Without dynamic polarization control, the resulting interference after square-law direct detection in the proposed gap-less system is polarization-dependent and composed of linear inter-carrier interference (ICI) and nonlinear SSBI. Thus, this work proposes an iterative multiple-input multiple-output detection scheme to remove the mixed polarization-dependent interference. Compared to the previous scheme, which only removes ICI, the proposed scheme can further eliminate SSBI to achieve the improvement of ∼ 7 dB in signal-to-noise ratio. Without the need for polarization control, we successfully utilize 7-GHz bandwidth to transmit a 39.5-Gbps polarization multiplexed OFDM signal over 100 km.

  8. Circle-16QAM for a zero-guard-interval CO-OFDM system

    Science.gov (United States)

    Kong, Lingyu; Yang, Aiying; Guo, Peng; Lu, Yueming; Qiao, Yaojun

    2018-01-01

    In this paper, we introduce circle 16 quadrature amplitude modulation (C-16QAM) modulation format in a high spectral efficiency zero-guard-interval (ZGI) coherent optical (CO) orthogonal frequency-division multiplexing (OFDM) system. At transmitter, the C-16QAM has advantages over the conventional square 16QAM in terms of transmission distance and tolerance to laser linewidth and fiber nonlinearities. ZGI CO-OFDM enables to take away the cyclic prefix (CP), so it has the benefit of higher spectral efficiency compared with the conventional CO-OFDM system. At receiver, in order to compensate chromatic dispersion (CD) and phase noise in a single channel ZGI CO-OFDM system, we studied the overlapped frequency domain equalizer (OFDE) and two carrier phase recovery (CPR) algorithms. We simulate the above systems and the results demonstrate that with the C-16QAM, a 28GBaud ZGI CO-OFDM system can have the longer transmission distance, the higher tolerance to laser linewidth and fiber nonlinearities with contrast to the conventional square 16QAM.

  9. Novel toggle-rate based energy-efficient scheme for heavy load real-time IM-DD OFDM-PON with ONU LLID identification in time-domain using amplitude decision.

    Science.gov (United States)

    Qin, Youxiang; Zhang, Junjie

    2017-07-10

    A novel low complexity and energy-efficient scheme by controlling the toggle-rate of ONU with time-domain amplitude identification is proposed for a heavy load downlink in an intensity-modulation and direct-detection orthogonal frequency division multiplexing passive optical network (IM-DD OFDM-PON). In a conventional OFDM-PON downlink, all ONUs have to perform demodulation for all the OFDM frames in a broadcast way no matter whether the frames are targeted to or not, which causes a huge energy waste. However, in our scheme, the optical network unit (ONU) logical link identifications (LLIDs) are inserted into each downlink OFDM frame in time-domain at the optical line terminal (OLT) side. At the ONU side, the LLID is obtained with a low complexity and high precision amplitude identification method. The ONU sets the toggle-rate of demodulation module to zero when the frames are not targeted to, which avoids unnecessary digital signal processing (DSP) energy consumption. Compared with the sleep-mode methods consisting of clock recovery and synchronization, toggle-rate shows its advantage in fast changing, which is more suitable for the heavy load scenarios. Moreover, for the first time to our knowledge, the characteristics of the proposed scheme are investigated in a real-time IM-DD OFDM system, which performs well at the received optical power as low as -21dBm. The experimental results show that 25.1% energy consumption can be saved in the receiver compared to the conventional configurations.

  10. Link adaptation performance evaluation for a MIMO-OFDM physical layer in a realistic outdoor environment

    OpenAIRE

    Han, C; Armour, SMD; Doufexi, A; Ng, KH; McGeehan, JP

    2006-01-01

    This paper presents a downlink performance analysis of a link adaptation (LA) algorithm applied to a MIMO-OFDM Physical Layer (PHY) which is a popular candidate for future generation cellular communication systems. The new LA algorithm attempts to maximize throughput and adaptation between various modulation and coding schemes in combination with both space-time block codes (STBC) and spatial multiplexing (SM) is based on knowledge of SNR and H matrix determinant; the parameters which are fou...

  11. Impulse noise estimation and removal for OFDM systems

    KAUST Repository

    Al-Naffouri, Tareq Y.

    2014-03-01

    Orthogonal Frequency Division Multiplexing (OFDM) is a modulation scheme that is widely used in wired and wireless communication systems. While OFDM is ideally suited to deal with frequency selective channels and AWGN, its performance may be dramatically impacted by the presence of impulse noise. In fact, very strong noise impulses in the time domain might result in the erasure of whole OFDM blocks of symbols at the receiver. Impulse noise can be mitigated by considering it as a sparse signal in time, and using recently developed algorithms for sparse signal reconstruction. We propose an algorithm that utilizes the guard band subcarriers for the impulse noise estimation and cancellation. Instead of relying on ℓ1 minimization as done in some popular general-purpose compressive sensing schemes, the proposed method jointly exploits the specific structure of this problem and the available a priori information for sparse signal recovery. The computational complexity of the proposed algorithm is very competitive with respect to sparse signal reconstruction schemes based on ℓ1 minimization. The proposed method is compared with respect to other state-of-the-art methods in terms of achievable rates for an OFDM system with impulse noise and AWGN. © 2014 IEEE.

  12. Impulse noise estimation and removal for OFDM systems

    KAUST Repository

    Al-Naffouri, Tareq Y.; Quadeer, Ahmed Abdul; Caire, Giuseppe

    2014-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) is a modulation scheme that is widely used in wired and wireless communication systems. While OFDM is ideally suited to deal with frequency selective channels and AWGN, its performance may be dramatically impacted by the presence of impulse noise. In fact, very strong noise impulses in the time domain might result in the erasure of whole OFDM blocks of symbols at the receiver. Impulse noise can be mitigated by considering it as a sparse signal in time, and using recently developed algorithms for sparse signal reconstruction. We propose an algorithm that utilizes the guard band subcarriers for the impulse noise estimation and cancellation. Instead of relying on ℓ1 minimization as done in some popular general-purpose compressive sensing schemes, the proposed method jointly exploits the specific structure of this problem and the available a priori information for sparse signal recovery. The computational complexity of the proposed algorithm is very competitive with respect to sparse signal reconstruction schemes based on ℓ1 minimization. The proposed method is compared with respect to other state-of-the-art methods in terms of achievable rates for an OFDM system with impulse noise and AWGN. © 2014 IEEE.

  13. Dispersion tolerance enhancement using an improved offset-QAM OFDM scheme.

    Science.gov (United States)

    Zhao, Jian; Townsend, Paul D

    2015-06-29

    Discrete-Fourier transform (DFT) based offset quadrature amplitude modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) without cyclic prefix (CP) was shown to offer a dispersion tolerance the same as that of conventional OFDM with ~20% CP overhead. In this paper, we analytically study the fundamental mechanism limiting the dispersion tolerance of this conventional scheme. It is found that the signal and the crosstalk from adjacent subcarriers, which are orthogonal with π/2 phase difference at back to back, can be in-phase when the dispersion increases to a certain value. We propose a novel scheme to overcome this limitation and significantly improve the dispersion tolerance to that of one subcarrier. Simulations show that the proposed scheme can support a 224-Gb/s polarization-division-multiplexed offset-4QAM OFDM signal over 160,000 ps/nm without any CP under 128 subcarriers, and this tolerance scales with the square of the number of subcarriers. It is also shown that this scheme exhibits advantages of greatly enhanced spectral efficiency, larger dispersion tolerance, and/or reduced complexity compared to the conventional CP-OFDM and reduced-guard-interval OFDM using frequency domain equalization.

  14. Frequency Adaptability and Waveform Design for OFDM Radar Space-Time Adaptive Processing

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL; Glover, Charles Wayne [ORNL

    2012-01-01

    We propose an adaptive waveform design technique for an orthogonal frequency division multiplexing (OFDM) radar signal employing a space-time adaptive processing (STAP) technique. We observe that there are inherent variabilities of the target and interference responses in the frequency domain. Therefore, the use of an OFDM signal can not only increase the frequency diversity of our system, but also improve the target detectability by adaptively modifying the OFDM coefficients in order to exploit the frequency-variabilities of the scenario. First, we formulate a realistic OFDM-STAP measurement model considering the sparse nature of the target and interference spectra in the spatio-temporal domain. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. With numerical examples we demonstrate that the resultant OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.

  15. Phase Noise Effect on MIMO-OFDM Systems with Common and Independent Oscillators

    Directory of Open Access Journals (Sweden)

    Xiaoming Chen

    2017-01-01

    Full Text Available The effects of oscillator phase noises (PNs on multiple-input multiple-output (MIMO orthogonal frequency division multiplexing (OFDM systems are studied. It is shown that PNs of common oscillators at the transmitter and at the receiver have the same influence on the performance of (single-stream beamforming MIMO-OFDM systems, yet different influences on spatial multiplexing MIMO-OFDM systems with singular value decomposition (SVD based precoding/decoding. When each antenna is equipped with an independent oscillator, the PNs at the transmitter and at the receiver have different influences on beamforming MIMO-OFDM systems as well as spatial multiplexing MIMO-OFDM systems. Specifically, the PN effect on the transmitter (receiver can be alleviated by having more transmit (receive antennas for the case of independent oscillators. It is found that the independent oscillator case outperforms the common oscillator case in terms of error vector magnitude (EVM.

  16. Equation-Method for correcting clipping errors in OFDM signals.

    Science.gov (United States)

    Bibi, Nargis; Kleerekoper, Anthony; Muhammad, Nazeer; Cheetham, Barry

    2016-01-01

    Orthogonal frequency division multiplexing (OFDM) is the digital modulation technique used by 4G and many other wireless communication systems. OFDM signals have significant amplitude fluctuations resulting in high peak to average power ratios which can make an OFDM transmitter susceptible to non-linear distortion produced by its high power amplifiers (HPA). A simple and popular solution to this problem is to clip the peaks before an OFDM signal is applied to the HPA but this causes in-band distortion and introduces bit-errors at the receiver. In this paper we discuss a novel technique, which we call the Equation-Method, for correcting these errors. The Equation-Method uses the Fast Fourier Transform to create a set of simultaneous equations which, when solved, return the amplitudes of the peaks before they were clipped. We show analytically and through simulations that this method can, correct all clipping errors over a wide range of clipping thresholds. We show that numerical instability can be avoided and new techniques are needed to enable the receiver to differentiate between correctly and incorrectly received frequency-domain constellation symbols.

  17. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated

  18. Collaborative Multi-Layer Network Coding For Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2014-01-01

    In this thesis, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated

  19. Analysis of Intercarrier Interference Cancellation Scheme in OFDM Systems

    Directory of Open Access Journals (Sweden)

    Nasir Salh Almisbah

    2012-06-01

    Full Text Available Abstract: Orthogonal Frequency Division Multiplexing (OFDM is an emerging multi-carrier modulation scheme, which has been adopted for several wireless standards such as IEEE 802.11a and HiperLAN2. In OFDM systems, the performance is very sensitive to subcarrier frequency errors (offset. This paper shows the analysis and derivations of intercarrier interference (ICI complex gain that used in self-cancellation scheme and its dependence on subcarrier frequency offset. Simulation shows that better improvement in performance is achieved for systems that use this cancellation scheme. Moreover, analysis and simulation show that theoretical carrier-to-interference ratio (CIR for OFDM with cancellation scheme is greater than conventional one by more than 14dB.

  20. Mixing chaos modulations for secure communications in OFDM systems

    Science.gov (United States)

    Seneviratne, Chatura; Leung, Henry

    2017-12-01

    In this paper, we consider a novel chaotic OFDM communication scheme is to improve the physical layer security. By secure communication we refer to physical layer security that provides low probability of detection (LPD)/low probability of intercept (LPI) transmission. A mixture of chaotic modulation schemes is used to generate chaotically modulated symbols for each subcarrier of the OFDM transmitter. At the receiver, different demodulators are combined together for the different modulation schemes for enhanced security. Time domain, frequency domain and statistical randomness tests show that transmit signals are indistinguishable from background noise. BER performance comparison shows that the physical layer security of the proposed scheme comes with a slight performance degradation compared to conventional OFDM communication systems.

  1. Variance based OFDM frame synchronization

    Directory of Open Access Journals (Sweden)

    Z. Fedra

    2012-04-01

    Full Text Available The paper deals with a new frame synchronization scheme for OFDM systems and calculates the complexity of this scheme. The scheme is based on the computing of the detection window variance. The variance is computed in two delayed times, so a modified Early-Late loop is used for the frame position detection. The proposed algorithm deals with different variants of OFDM parameters including guard interval, cyclic prefix, and has good properties regarding the choice of the algorithm's parameters since the parameters may be chosen within a wide range without having a high influence on system performance. The verification of the proposed algorithm functionality has been performed on a development environment using universal software radio peripheral (USRP hardware.

  2. Analog fourier transform channelizer and OFDM receiver

    OpenAIRE

    2007-01-01

    An OFDM receiver having an analog multiplier based I-Q channelizing filter, samples and holds consecutive analog I-Q samples of an I-Q baseband, the I-Q basebands having OFDM sub-channels. A lattice of analog I-Q multipliers and analog I-Q summers concurrently receives the held analog I-Q samples, performs analog I-Q multiplications and analog I-Q additions to concurrently generate a plurality of analog I-Q output signals, representing an N-point discrete Fourier transform of the held analog ...

  3. PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2014-01-01

    We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratio (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.

  4. Hardware-efficient signal generation of layered/enhanced ACO-OFDM for short-haul fiber-optic links.

    Science.gov (United States)

    Wang, Qibing; Song, Binhuang; Corcoran, Bill; Boland, David; Zhu, Chen; Zhuang, Leimeng; Lowery, Arthur J

    2017-06-12

    Layered/enhanced ACO-OFDM is a promising candidate for intensity modulation and direct-detection based short-haul fiber-optic links due to its both power and spectral efficiency. In this paper, we firstly demonstrate a hardware-efficient real-time 9.375 Gb/s QPSK-encoded layered/enhanced asymmetrical clipped optical OFDM (L/E-ACO-OFDM) transmitter using a Virtex-6 FPGA. This L/E-ACO-OFDM signal is successfully transmitted over 20-km uncompensated standard single-mode fiber (S-SMF) using a directly modulated laser. Several methods are explored to reduce the FPGA's logic resource utilization by taking advantage of the L/E-ACO-OFDM's signal characteristics. We show that the logic resource occupation of L/E-ACO-OFDM transmitter is almost the same as that of DC-biased OFDM transmitter when they achieve the same spectral efficiency, proving its great potential to be used in a real-time short-haul optical transmission link.

  5. ON THE PAPR REDUCTION IN OFDM SYSTEMS: A NOVEL ZCT PRECODING BASED SLM TECHNIQUE

    Directory of Open Access Journals (Sweden)

    VARUN JEOTI

    2011-06-01

    Full Text Available High Peak to Average Power Ratio (PAPR reduction is still an important challenge in Orthogonal Frequency Division Multiplexing (OFDM systems. In this paper, we propose a novel Zadoff-Chu matrix Transform (ZCT precoding based Selected Mapping (SLM technique for PAPR reduction in OFDM systems. This technique is based on precoding the constellation symbols with ZCT precoder after the multiplication of phase rotation factor and before the Inverse Fast Fourier Transform (IFFT in the SLM based OFDM (SLM-OFDM Systems. Computer simulation results show that, the proposed technique can reduce PAPR up to 5.2 dB for N=64 (System subcarriers and V=16 (Dissimilar phase sequences, at clip rate of 10-3. Additionally, ZCT based SLM-OFDM (ZCT-SLM-OFDM systems also take advantage of frequency variations of the communication channel and can also offer substantial performance gain in fading multipath channels.

  6. An Implementation of Error Minimization Data Transmission in OFDM using Modified Convolutional Code

    Directory of Open Access Journals (Sweden)

    Hendy Briantoro

    2016-04-01

    Full Text Available This paper presents about error minimization in OFDM system. In conventional system, usually using channel coding such as BCH Code or Convolutional Code. But, performance BCH Code or Convolutional Code is not good in implementation of OFDM System. Error bits of OFDM system without channel coding is 5.77%. Then, we used convolutional code with code rate 1/2, it can reduce error bitsonly up to 3.85%. So, we proposed OFDM system with Modified Convolutional Code. In this implementation, we used Software Define Radio (SDR, namely Universal Software Radio Peripheral (USRP NI 2920 as the transmitter and receiver. The result of OFDM system using Modified Convolutional Code with code rate is able recover all character received so can decrease until 0% error bit. Increasing performance of Modified Convolutional Code is about 1 dB in BER of 10-4 from BCH Code and Convolutional Code. So, performance of Modified Convolutional better than BCH Code or Convolutional Code. Keywords: OFDM, BCH Code, Convolutional Code, Modified Convolutional Code, SDR, USRP

  7. Direct-detection optical OFDM superchannel for long-reach PON using pilot regeneration.

    Science.gov (United States)

    Hu, Rong; Yang, Qi; Xiao, Xiao; Gui, Tao; Li, Zhaohui; Luo, Ming; Yu, Shaohua; You, Shanhong

    2013-11-04

    We demonstrate a novel long-reach PON downstream scheme based on the regenerated pilot assisted direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) superchannel transmission. We use the optical comb source to form DDO-OFDM superchannel, and reserve the center carrier as a seed pilot. The seed pilot is further tracked and reused to generate multiple optical carriers at the local exchange. Each regenerated pilot carrier is selected to beat with an adjacent OFDM sub-band at ONU, so that the electrical bandwidth limitation can be much released compared to the conventional DDO-OFDM superchannel detection. With the proposed proof-of-concept architecture, we experimentally demonstrated a 116.7 Gb/s superchannel OFDM-PON system with transmission reach of 100 km, and 1:64 splitting ratio. We analyze the impact of carrier-to-sideband power ratio (CSPR) on system performance. The experiment result shows that, 5 dB power margin is still remained at ONU using such technique.

  8. Derivation of GFDM Based on OFDM Principles

    Energy Technology Data Exchange (ETDEWEB)

    Hussein Moradi; Behrouz Farhang-Boroujeny

    2015-06-01

    This paper starts with discussing the principle based on which the celebrated orthogonal frequency division multiplexing (OFDM) signals are constructed. It then extends the same principle to construct the newly introduced generalized frequency division multiplexing (GFDM) signals. This novel derivation sheds light on some interesting properties of GFDM. In particular, our derivation seamlessly leads to an implementation of GFDM transmitter which has significantly lower complexity than what has been reported so far. Our derivation also facilitates a trivial understanding of how GFDM (similar to OFDM) can be applied in MIMO channels.

  9. MIMO-OFDM WDM PON with DM-VCSEL for femtocells application

    DEFF Research Database (Denmark)

    Binti Othman, Maisara; Deng, Lei; Pang, Xiaodan

    2011-01-01

    We report on experimental demonstration of 2x2 MIMO-OFDM 5.6-GHz radio over fiber signaling over 20 km WDM-PON with directly modulated (DM) VCSELs for femtocells application. MIMO-OFDM algorithms effectively compensate for impairments in the wireless link. Error-free signal demodulation of 64...

  10. Modeling and Analysis of Cellular Networks using Stochastic Geometry: A Tutorial

    KAUST Repository

    Elsawy, Hesham; Salem, Ahmed Sultan; Alouini, Mohamed-Slim; Win, Moe Z.

    2016-01-01

    This paper presents a tutorial on stochastic geometry (SG) based analysis for cellular networks. This tutorial is distinguished by its depth with respect to wireless communication details and its focus on cellular networks. The paper starts by modeling and analyzing the baseband interference in a baseline single-tier downlink cellular network with single antenna base stations and universal frequency reuse. Then, it characterizes signal-to-interference-plus-noise-ratio (SINR) and its related performance metrics. In particular, a unified approach to conduct error probability, outage probability, and transmission rate analysis is presented. Although the main focus of the paper is on cellular networks, the presented unified approach applies for other types of wireless networks that impose interference protection around receivers. The paper then extends the unified approach to capture cellular network characteristics (e.g., frequency reuse, multiple antenna, power control, etc.). It also presents numerical examples associated with demonstrations and discussions. To this end, the paper highlights the state-of-the- art research and points out future research directions.

  11. Modeling and Analysis of Cellular Networks using Stochastic Geometry: A Tutorial

    KAUST Repository

    Elsawy, Hesham

    2016-11-03

    This paper presents a tutorial on stochastic geometry (SG) based analysis for cellular networks. This tutorial is distinguished by its depth with respect to wireless communication details and its focus on cellular networks. The paper starts by modeling and analyzing the baseband interference in a baseline single-tier downlink cellular network with single antenna base stations and universal frequency reuse. Then, it characterizes signal-to-interference-plus-noise-ratio (SINR) and its related performance metrics. In particular, a unified approach to conduct error probability, outage probability, and transmission rate analysis is presented. Although the main focus of the paper is on cellular networks, the presented unified approach applies for other types of wireless networks that impose interference protection around receivers. The paper then extends the unified approach to capture cellular network characteristics (e.g., frequency reuse, multiple antenna, power control, etc.). It also presents numerical examples associated with demonstrations and discussions. To this end, the paper highlights the state-of-the- art research and points out future research directions.

  12. On Channel Estimation for OFDM/TDM Using MMSE-FDE in a Fast Fading Channel

    Directory of Open Access Journals (Sweden)

    Gacanin Haris

    2009-01-01

    Full Text Available Abstract MMSE-FDE can improve the transmission performance of OFDM combined with time division multiplexing (OFDM/TDM, but knowledge of the channel state information and the noise variance is required to compute the MMSE weight. In this paper, a performance evaluation of OFDM/TDM using MMSE-FDE with pilot-assisted channel estimation over a fast fading channel is presented. To improve the tracking ability against fast fading a robust pilot-assisted channel estimation is presented that uses time-domain filtering on a slot-by-slot basis and frequency-domain interpolation. We derive the mean square error (MSE of the channel estimator and then discuss a tradeoff between improving the tracking ability against fading and the noise reduction. The achievable bit error rate (BER performance is evaluated by computer simulation and compared with conventional OFDM. It is shown that the OFDM/TDM using MMSE-FDE achieves a lower BER and a better tracking ability against fast fading in comparison with conventional OFDM.

  13. Demostration of 520 Gb/s/λ pre-equalized DFT-spread PDM-16QAM-OFDM signal transmission.

    Science.gov (United States)

    Li, Fan; Yu, Jianjun; Cao, Zizheng; Chen, Ming; Zhang, Junwen; Li, Xinying

    2016-02-08

    In this paper, we successfully transmit 8 × 520 Gb/s pre-equalized DFT-spread PDM-16QAM orthogonal frequency-division multiplexing (OFDM) signal over 840 km SMF with BER under 2.4 × 10(-2). We discuss how to obtain accurate tranceivers' response during pre-equalization for DFT-spread OFDM with coherent detection and we find conventional OFDM symbols training sequences (TSs) outperform DFT-spread OFDM symbols TSs in obtaining channel response for pre-equalization and equalization. Additionally, the optimal IFFT/FFT size is explored for the pre-equalized DFT-spread PDM-16QAM-OFDM transmission systems. It is the first time to realize 400 Gb/s/λ net rate OFDM signal transmission.

  14. Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach

    KAUST Repository

    Sohail, Muhammad Sadiq

    2012-06-01

    This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous with the frequency grid of the ZP-OFDM system. The proposed structure based technique uses the fact that the NBI signal is sparse as compared to the ZP-OFDM signal in the frequency domain. The structure is also useful in reducing the computational complexity of the proposed method. The paper also presents a data aided approach for improved NBI estimation. The suitability of the proposed method is demonstrated through simulations. © 2012 IEEE.

  15. Channel estimation for space-time trellis coded-OFDM systems based on nonoverlapping pilot structure

    CSIR Research Space (South Africa)

    Sokoya, O

    2008-09-01

    Full Text Available . Through the analysis, two extreme conditions that produce the largest minimum determinant for a STTC-OFDM over multiple-tap channels were pointed out. The analysis show that the performance of the STTC-OFDM under various channel condition is based on...: 1) the minimum determinant tap delay of the channel and 2) the memory order of the STTC. New STTC-OFDM schemes were later designed in [2] taking into account some of the designed criteria shown in [1]. The STTC-OFDM schemes are capable...

  16. Tension and robustness in multitasking cellular networks.

    Directory of Open Access Journals (Sweden)

    Jeffrey V Wong

    Full Text Available Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.

  17. Performance Evaluation of CE-OFDM in PLC Channel

    OpenAIRE

    El ghzaoui Mohammed, Belkadid Jamal, Benbassou Ali

    2011-01-01

    One major drawback associated with an OFDM system is that the transmitter’soutput signal may have a high peak-to-average ratio (PAPR). High levels of PARmay be a limiting factor for power line communication (PLC) where regulatorybodies have fixed the maximum amount of transmit power. To overcome thisproblem, many approaches have been presented in the literature. One potentialsolution for reducing the peak-to-average power ratio (PAPR) in an OFDMsystem is to utilize a constant envelope OFDM (C...

  18. Enhanced noise tolerance for 10 Gb/s Bi-directional cross-wavelength reuse colorless WDM-PON by using spectrally shaped OFDM signals

    Science.gov (United States)

    Choudhury, Pallab K.

    2018-05-01

    Spectrally shaped orthogonal frequency division multiplexing (OFDM) signal for symmetric 10 Gb/s cross-wavelength reuse reflective semiconductor optical amplifier (RSOA) based colorless wavelength division multiplexed passive optical network (WDM-PON) is proposed and further analyzed to support broadband services of next generation high speed optical access networks. The generated OFDM signal has subcarriers in separate frequency ranges for downstream and upstream, such that the re-modulation noise can be effectively minimized in upstream data receiver. Moreover, the cross wavelength reuse approach improves the tolerance against Rayleigh backscattering noise due to the propagation of different wavelengths in the same feeder fiber. The proposed WDM-PON is successfully demonstrated for 25 km fiber with 16-QAM (quadrature amplitude modulation) OFDM signal having bandwidth of 2.5 GHz for 10 Gb/s operation and subcarrier frequencies in 3-5.5 GHz and DC-2.5 GHz for downstream (DS) and upstream (US) transmission respectively. The result shows that the proposed scheme maintains a good bit error rate (BER) performance below the forward error correction (FEC) limit of 3.8 × 10-3 at acceptable receiver sensitivity and provides a high resilience against re-modulation and Rayleigh backscattering noises as well as chromatic dispersion.

  19. The impact of FFT size on the performance of a combined OFDM-equalization radio modem

    OpenAIRE

    Armour, SMD; Nix, AR; Bull, DR

    1999-01-01

    Conventional OFDM systems employ a guard interval to combat delay spread distortion of transmitted data. This reduces the efficiency of the OFDM transmission. A combined OFDM-equalization transmission strategy is presented in this paper. This strategy employs an adaptive equalizer to combat delay spread distortion instead of a guard interval. This facilitates the use of very short guard intervals and thus the efficiency of the OFDM transmission is improved. This paper presents the combined OF...

  20. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  1. Increasing cellular coverage within integrated terrestrial/satellite mobile networks

    Science.gov (United States)

    Castro, Jonathan P.

    1995-01-01

    When applying the hierarchical cellular concept, the satellite acts as giant umbrella cell covering a region with some terrestrial cells. If a mobile terminal traversing the region arrives to the border-line or limits of a regular cellular ground service, network transition occurs and the satellite system continues the mobile coverage. To adequately assess the boundaries of service of a mobile satellite system an a cellular network within an integrated environment, this paper provides an optimized scheme to predict when a network transition may be necessary. Under the assumption of a classified propagation phenomenon and Lognormal shadowing, the study applies an analytical approach to estimate the location of a mobile terminal based on a reception of the signal strength emitted by a base station.

  2. Phase Noise Compensation for OFDM Systems

    Science.gov (United States)

    Leshem, Amir; Yemini, Michal

    2017-11-01

    We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo\\'{e}ve representation of the phase noise process to estimate the phase noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.

  3. A low complexity VBLAST OFDM detection algorithm for wireless LAN systems

    NARCIS (Netherlands)

    Wu, Y.; Lei, Zhongding; Sun, Sumei

    2004-01-01

    A low complexity detection algorithm for VBLAST OFDM system is presented. Using the fact that the correlation among neighboring subcarriers is high for wireless LAN channels, this algorithm significantly reduces the complexity of VBLAST OFDM detection. The performance degradation of the proposed

  4. Adaptive OFDM Radar Waveform Design for Improved Micro-Doppler Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Engineering Science Advanced Research, Computer Science and Mathematics Division

    2014-07-01

    Here we analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a rotating target having multiple scattering centers. The use of a frequency-diverse OFDM signal enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. We characterize the accuracy of micro-Doppler frequency estimation by computing the Cramer-Rao bound (CRB) on the angular-velocity estimate of the target. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations with respect to the signal-to-noise ratios, number of temporal samples, and number of OFDM subcarriers. We also analysed numerically the improvement in estimation accuracy due to the adaptive waveform design. A grid-based maximum likelihood estimation technique is applied to evaluate the corresponding mean-squared error performance.

  5. W-band OFDM photonic vector signal generation employing a single Mach-Zehnder modulator and precoding.

    Science.gov (United States)

    Xiao, Jiangnan; Li, Xinying; Xu, Yuming; Zhang, Ziran; Chen, Long; Yu, Jianjun

    2015-09-07

    We present a simple radio-over-fiber (RoF) link architecture for millimeter-wave orthogonal frequency division multiplexing (OFDM) transmission using only one Mach-Zehnder modulator (MZM) and precoding technique. In the transmission system, the amplitudes and the phase of the driving radio-frequency (RF) OFDM signal on each sub-carrier are precoded, to ensure that the OFDM signal after photodetector (PD) can be restored to original OFDM signal. The experimental results show that the bit-error ratios (BERs) of the transmission system are less than the forward-error-correction (FEC) threshold of 3.8 × 10(-3), which demonstrates that the generation of OFDM vector signal based on our proposed scheme can be employed in our system architecture.

  6. A MIMO-OFDM Testbed for Wireless Local Area Networks

    Directory of Open Access Journals (Sweden)

    Conrat Jean-Marc

    2006-01-01

    Full Text Available We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally, we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system.

  7. All-optical generation of DFT-S-OFDM superchannels using periodic sinc pulses.

    Science.gov (United States)

    Lowery, Arthur James; Zhu, Chen; Viterbo, Emanuele; Corcoran, Bill

    2014-11-03

    Discrete-Fourier-transform spread (DFT-S) optical Orthogonal Frequency Division Multiplexed (OFDM) signals offer improved nonlinearity performance in long haul optical communications systems, and can be used to form superchannels. In this paper we propose how DFT-S-OFDM superchannels can be generated and demultiplexed using all-optical techniques, and demonstrate the feasibility using numerical simulations. We also discuss how each wavelength channel is similar to recently proposed Orthogonally Time-Division Multiplexed (OrthTDM) systems using periodic-sinc pulses from, for example, a Nyquist laser. The key difference between OrthTDM and DFT-S-OFDM is the synchronization of the symbol boundaries of every modulation tributary; because of this we show that OrthTDM cannot be formed into superchannels that can be demultiplexed without penalties, but DFT-S-OFDM can be.

  8. Energy Efficiency Analysis for Dynamic Routing in Optical Transport Networks

    DEFF Research Database (Denmark)

    Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso

    2012-01-01

    The energy efficiency in telecommunication networks is gaining more relevance as the Internet traffic is growing. The introduction of OFDM and dynamic operation opens new horizons in the operation of optical networks, improving the network flexibility and its efficiency. In this paper, we compare...... the performance in terms of energy efficiency of a flexible-grid OFDM-based solution with a fixed-grid WDM network in a dynamic scenario with time-varying connections. We highlight the benefits that the bandwidth elasticity and the flexibility of selecting different modulation formats can offer compared...

  9. Information Guided Precoding for OFDM

    KAUST Repository

    Li, Qiang; Wen, Miaowen; Poor, H. Vincent; Chen, Fangjiong

    2017-01-01

    precoding, called precoding aided (P-)OFDMIM, is proposed to improve the spectral efficiency (SE) of OFDMIM. In P-OFDM-IM, the information bits are jointly conveyed through the conventional M-ary modulated symbols and the indices of precoding matrices

  10. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks

    Science.gov (United States)

    White, Forest M.; Wolf-Yadlin, Alejandro

    2016-06-01

    Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  11. System-Level Model for OFDM WiMAX Transceiver in Radiation Environment

    International Nuclear Information System (INIS)

    Abdel Alim, O.; Elboghdadly, N.; Ashour, M.M.; Elaskary, A.M.

    2008-01-01

    WiMAX (Worldwide Inter operability for Microwave Access), an evolving standard for point-to-multipoint wireless networking, works for the l ast mile c onnections for replacing optical fiber technology network but with no need for adding more infra structure within crowded areas. Optical fiber technology is seriously considered for communication and monitoring applications in space and around nuclear reactors. Space and nuclear environments are characterized, in particular, by the presence of ionizing radiation fields. Therefore the influence of radiation on such networks needs to be investigated. This paper has the objective of building a System level model for a WiMAX OFDM (Orthogonal Frequency Division Multiplexing) based transceiver. Modeling irradiation noise as an external effect added to the Additive White Gaussian noise (AWGN). Then analyze, discuss the results based on qualitatively performance evaluation using BER calculations for radiation environment

  12. Performance Evaluation of CE-OFDM in PLC Channel

    OpenAIRE

    El Ghzaoui Mohammed; Belkadid Jamal; Benbassou Ali

    2011-01-01

    One major drawback associated with an OFDM system is that the transmitter’s output signal may have a high peak-to-average ratio (PAPR). High levels of PAR may be a limiting factor for power line communication (PLC) where regulatory bodies have fixed the maximum amount of transmit power. To overcome this problem, many approaches have been presented in the literature. One potential solution for reducing the peak-to-average power ratio (PAPR) in an OFDM system is to utilize a constant envelope O...

  13. OFDM versus Single Carrier: A Realistic Multi-Antenna Comparison

    Directory of Open Access Journals (Sweden)

    Moonen Marc

    2004-01-01

    Full Text Available There is an ongoing discussion in the broadband wireless world about the respective benefits of orthogonal frequency division multiplexing (OFDM and single carrier with frequency domain equalization (SC-FD. SC-FD allows for more relaxed front-end requirements, of which the power amplifier efficiency is very important for battery-driven terminals. OFDM, on the other hand, can yield improved BER performance at low complexity. Both schemes have extensions to multiple antennas to enhance the spectral efficiency and/or the link reliability. Moreover, both schemes have nonlinear versions using decision feedback equalization (DFE to further improve performance of the linear equalizers. In this paper, we compare these high-performance OFDM and SC-FD schemes using multiple antennas and DFE, while also accounting for the power amplifier efficiency. To make a realistic comparison, we also consider most important digital imperfections, such as channel and noise estimation, transmit and receive filtering, clipping and quantization, as well as link layer impact. Our analysis shows that for frequency-selective channels the relative performance impact of the power amplifier is negligible compared to the frequency diversity impact. The higher frequency diversity exploitation of SC-FD allows it to outperform OFDM in most cases. Therefore, SC-FD is a suitable candidate for broadband wireless communication.

  14. Full-Duplex Communications in Large-Scale Cellular Networks

    KAUST Repository

    Alammouri, Ahmad

    2016-01-01

    /downlink interference. This thesis presents a tractable framework, based on stochastic geometry, to study FD communications in multi-tier cellular networks. Particularly, we assess the FD communications effect on the network performance and quantify the associated gains

  15. On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide.

    Science.gov (United States)

    Li, Chao; Gui, Chengcheng; Xiao, Xi; Yang, Qi; Yu, Shaohua; Wang, Jian

    2014-08-01

    We report on-chip all-optical wavelength conversion of multicarrier multilevel modulation signals in a silicon waveguide. Using orthogonal frequency-division multiplexing (OFDM) combined with advanced multilevel quadrature amplitude modulation (QAM) signals (i.e., OFDM m-QAM), we experimentally demonstrate all-optical wavelength conversions of 3.2 Gbaud/s OFDM 16/32/64/128-QAM signals based on the degenerate four-wave mixing (FWM) nonlinear effect in a silicon waveguide. The measured optical signal-to-noise ratio (OSNR) penalties of wavelength conversion are ∼3  dB for OFDM 16-QAM and ∼4  dB for OFDM 32-QAM at 7% forward error correction (FEC) threshold and ∼3.5  dB for OFDM 64-QAM and ∼4.5  dB for OFDM 128-QAM at 20% FEC threshold. The observed clear constellations of converted idlers imply favorable performance obtained for silicon-waveguide-based OFDM 16/32/64/128-QAM wavelength conversions.

  16. Channel Equalization and Phase Estimation for Reduced-Guard-Interval CO-OFDM Systems

    Science.gov (United States)

    Zhuge, Qunbi

    Reduced-guard-interval (RGI) coherent optical (CO) orthogonal frequency-division multiplexing (OFDM) is a potential candidate for next generation 100G beyond optical transports, attributed to its advantages such as high spectral efficiency and high tolerance to optical channel impairments. First of all, we review the coherent optical systems with an emphasis on CO-OFDM systems as well as the optical channel impairments and the general digital signal processing techniques to combat them. This work focuses on the channel equalization and phase estimation of RGI CO-OFDM systems. We first propose a novel equalization scheme based on the equalization structure of RGI CO-OFDM to reduce the cyclic prefix overhead to zero. Then we show that intra-channel nonlinearities should be considered when designing the training symbols for channel estimation. Afterwards, we propose and analyze the phenomenon of dispersion-enhanced phase noise (DEPN) caused by the interaction between the laser phase noise and the chromatic dispersion in RGI CO-OFDM transmissions. DEPN induces a non-negligible performance degradation and limits the tolerant laser linewidth. However, it can be compensated by the grouped maximum-likelihood phase estimation proposed in this work.

  17. Adaptive OFDM Waveform Design for Spatio-Temporal-Sparsity Exploited STAP Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2017-11-01

    In this chapter, we describe a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly moving target using an orthogonal frequency division multiplexing (OFDM) radar. The motivation of employing an OFDM signal is that it improves the target-detectability from the interfering signals by increasing the frequency diversity of the system. However, due to the addition of one extra dimension in terms of frequency, the adaptive degrees-of-freedom in an OFDM-STAP also increases. Therefore, to avoid the construction a fully adaptive OFDM-STAP, we develop a sparsity-based STAP algorithm. We observe that the interference spectrum is inherently sparse in the spatio-temporal domain, as the clutter responses occupy only a diagonal ridge on the spatio-temporal plane and the jammer signals interfere only from a few spatial directions. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data compared to the other existing STAP techniques, and produces nearly optimum STAP performance. In addition to designing the STAP filter, we optimally design the transmit OFDM signals by maximizing the output signal-to-interference-plus-noise ratio (SINR) in order to improve the STAP performance. The computation of output SINR depends on the estimated value of the interference covariance matrix, which we obtain by applying the sparse recovery algorithm. Therefore, we analytically assess the effects of the synthesized OFDM coefficients on the sparse recovery of the interference covariance matrix by computing the coherence measure of the sparse measurement matrix. Our numerical examples demonstrate the achieved STAP-performance due to sparsity-based technique and adaptive waveform design.

  18. PAPR Reduction in All-optical OFDM Systems Based on Phase Pre-emphasis

    Energy Technology Data Exchange (ETDEWEB)

    He Zhou; Li, Wei; Shao Jing; Liang Xiaojun; Huang Dexiu [Wuhan National Lab for Optoelectronics, Department of Optoelectronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Tao Zhiyong [State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications, Wuhan 430074 (China); Deng Zhuanhua, E-mail: hezhou@wri.com.cn, E-mail: weilee@mail.hust.edu.cn [School of Computer Science and Technology, Hubei University of Economics, Wuhan 430205 (China)

    2011-02-01

    This paper investigates the peak-to-average power ratio (PAPR) theory in all-optical orthogonal frequency division multiplexing (OFDM) optical fibre communication systems. We find out that phase pre-emphasis could effectively reduce PAPR in all-optical OFDM communication systems which employ intensity modulation-direct detection (IM-DD) method. An equation is developed and proposed to calculate suitable phasing values for pre-emphasis. Furthermore, we find out that phase pre-emphasis cannot reduce PAPR effectively in all-optical OFDM systems that employ Phase Shift Keying (PSK) or Quadracture Amplitude Modulation (QAM) method.

  19. PAPR Reduction in All-optical OFDM Systems Based on Phase Pre-emphasis

    International Nuclear Information System (INIS)

    He Zhou; Li, Wei; Shao Jing; Liang Xiaojun; Huang Dexiu; Tao Zhiyong; Deng Zhuanhua

    2011-01-01

    This paper investigates the peak-to-average power ratio (PAPR) theory in all-optical orthogonal frequency division multiplexing (OFDM) optical fibre communication systems. We find out that phase pre-emphasis could effectively reduce PAPR in all-optical OFDM communication systems which employ intensity modulation-direct detection (IM-DD) method. An equation is developed and proposed to calculate suitable phasing values for pre-emphasis. Furthermore, we find out that phase pre-emphasis cannot reduce PAPR effectively in all-optical OFDM systems that employ Phase Shift Keying (PSK) or Quadracture Amplitude Modulation (QAM) method.

  20. Energy management in wireless cellular and ad-hoc networks

    CERN Document Server

    Imran, Muhammad; Qaraqe, Khalid; Alouini, Mohamed-Slim; Vasilakos, Athanasios

    2016-01-01

    This book investigates energy management approaches for energy efficient or energy-centric system design and architecture and presents end-to-end energy management in the recent heterogeneous-type wireless network medium. It also considers energy management in wireless sensor and mesh networks by exploiting energy efficient transmission techniques and protocols. and explores energy management in emerging applications, services and engineering to be facilitated with 5G networks such as WBANs, VANETS and Cognitive networks. A special focus of the book is on the examination of the energy management practices in emerging wireless cellular and ad hoc networks. Considering the broad scope of energy management in wireless cellular and ad hoc networks, this book is organized into six sections covering range of Energy efficient systems and architectures; Energy efficient transmission and techniques; Energy efficient applications and services. .

  1. Discrete dynamic modeling of cellular signaling networks.

    Science.gov (United States)

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  2. Achievable rate maximization for decode-and-forward MIMO-OFDM networks with an energy harvesting relay.

    Science.gov (United States)

    Du, Guanyao; Yu, Jianjun

    2016-01-01

    This paper investigates the system achievable rate for the multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system with an energy harvesting (EH) relay. Firstly we propose two protocols, time switching-based decode-and-forward relaying (TSDFR) and a flexible power splitting-based DF relaying (PSDFR) protocol by considering two practical receiver architectures, to enable the simultaneous information processing and energy harvesting at the relay. In PSDFR protocol, we introduce a temporal parameter to describe the time division pattern between the two phases which makes the protocol more flexible and general. In order to explore the system performance limit, we discuss the system achievable rate theoretically and formulate two optimization problems for the proposed protocols to maximize the system achievable rate. Since the problems are non-convex and difficult to solve, we first analyze them theoretically and get some explicit results, then design an augmented Lagrangian penalty function (ALPF) based algorithm for them. Numerical results are provided to validate the accuracy of our analytical results and the effectiveness of the proposed ALPF algorithm. It is shown that, PSDFR outperforms TSDFR to achieve higher achievable rate in such a MIMO-OFDM relaying system. Besides, we also investigate the impacts of the relay location, the number of antennas and the number of subcarriers on the system performance. Specifically, it is shown that, the relay position greatly affects the system performance of both protocols, and relatively worse achievable rate is achieved when the relay is placed in the middle of the source and the destination. This is different from the MIMO-OFDM DF relaying system without EH. Moreover, the optimal factor which indicates the time division pattern between the two phases in the PSDFR protocol is always above 0.8, which means that, the common division of the total transmission time into two equal phases in

  3. Optimized Energy Procurement for Cellular Networks with Uncertain Renewable Energy Generation

    KAUST Repository

    Rached, Nadhir B.; Ghazzai, Hakim; Kadri, Abdullah; Alouini, Mohamed-Slim

    2017-01-01

    Renewable energy (RE) is an emerging solution for reducing carbon dioxide (CO2) emissions from cellular networks. One of the challenges of using RE sources is to handle its inherent uncertainty. In this paper, a RE powered cellular network

  4. Velocity-Aware Handover Management in Two-Tier Cellular Networks

    KAUST Repository

    Arshad, Rabe; Elsawy, Hesham; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    by network densification. Hence, user mobility imposes a nontrivial challenge to harvest capacity gains via network densification. In this paper, we propose a velocity-aware HO management scheme for two-tier downlink cellular network to mitigate the HO effect

  5. Time domain reshuffling for OFDM based indoor visible light communication systems.

    Science.gov (United States)

    You, Xiaodi; Chen, Jian; Yu, Changyuan; Zheng, Huanhuan

    2017-05-15

    For orthogonal frequency division multiplexing (OFDM) based indoor visible light communication (VLC) systems, partial non-ideal transmission conditions such as insufficient guard intervals and a dispersive channel can result in severe inter-symbol crosstalk (ISC). By deriving from the inverse Fourier transform, we present a novel time domain reshuffling (TDR) concept for both DC-biased optical (DCO-) and asymmetrically clipped optical (ACO-) OFDM VLC systems. By using only simple operations in the frequency domain, potential high peaks can be relocated within each OFDM symbol to alleviate ISC. To simplify the system, we also propose an effective unified design of the TDR schemes for both DCO- and ACO-OFDM. Based on Monte-Carlo simulations, we demonstrate the statistical distribution of the signal high peak values and the complementary cumulative distribution function of the peak-to-average power ratio under different cases for comparison. Simulation results indicate improved bit error rate (BER) performance by adopting TDR to counteract ISC deterioration. For example, for binary phase shift keying at a BER of 10 -3 , the signal to noise ratio gains are ~1.6 dB and ~6.6 dB for DCO- and ACO-OFDM, respectively, with ISC of 1/64. We also show a reliable transmission by adopting TDR for rectangle 8-quadrature amplitude modulation with ISC of < 1/64.

  6. OFDM Radar Space-Time Adaptive Processing by Exploiting Spatio-Temporal Sparsity

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2013-01-01

    We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. We observe that the target and interference spectra are inherently sparse in the spatio-temporal domain. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data and produces an equivalent performance as the other existing STAP techniques. In addition, the use of an OFDM signal increases the frequency diversity of our system, as different scattering centers of a target resonate at different frequencies, and thus improves the target detectability. First, we formulate a realistic sparse-measurement model for an OFDM radar considering both the clutter and jammer as the interfering sources. Then, we apply a residual sparse-recovery technique based on the LASSO estimator to estimate the target and interference covariance matrices, and subsequently compute the optimal STAP-filter weights. Our numerical results demonstrate a comparative performance analysis of the proposed sparse-STAP algorithm with four other existing STAP methods. Furthermore, we discover that the OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.

  7. Error performance analysis in downlink cellular networks with interference management

    KAUST Repository

    Afify, Laila H.

    2015-05-01

    Modeling aggregate network interference in cellular networks has recently gained immense attention both in academia and industry. While stochastic geometry based models have succeeded to account for the cellular network geometry, they mostly abstract many important wireless communication system aspects (e.g., modulation techniques, signal recovery techniques). Recently, a novel stochastic geometry model, based on the Equivalent-in-Distribution (EiD) approach, succeeded to capture the aforementioned communication system aspects and extend the analysis to averaged error performance, however, on the expense of increasing the modeling complexity. Inspired by the EiD approach, the analysis developed in [1] takes into consideration the key system parameters, while providing a simple tractable analysis. In this paper, we extend this framework to study the effect of different interference management techniques in downlink cellular network. The accuracy of the proposed analysis is verified via Monte Carlo simulations.

  8. Experimental research of adaptive OFDM and OCT precoding with a high SE for VLLC system

    Science.gov (United States)

    Liu, Shuang-ao; He, Jing; Chen, Qinghui; Deng, Rui; Zhou, Zhihua; Chen, Shenghai; Chen, Lin

    2017-09-01

    In this paper, an adaptive orthogonal frequency division multiplexing (OFDM) modulation scheme with 128/64/32/16-quadrature amplitude modulation (QAM) and orthogonal circulant matrix transform (OCT) precoding is proposed and experimentally demonstrated for a visible laser light communication (VLLC) system with a cost-effective 450-nm blue-light laser diode (LD). The performance of OCT precoding is compared with conventional the adaptive Discrete Fourier Transform-spread (DFT-spread) OFDM scheme, 32 QAM OCT precoding OFDM scheme, 64 QAM OCT precoding OFDM scheme and adaptive OCT precoding OFDM scheme. The experimental results show that OCT precoding can achieve a relatively flat signal-to-noise ratio (SNR) curve, and it can provide performance improvement in bit error rate (BER). Furthermore, the BER of the proposed OFDM signal with a raw bit rate 5.04 Gb/s after 5-m free space transmission is less than 20% of soft-decision forward error correlation (SD-FEC) threshold of 2.4 × 10-2, and the spectral efficiency (SE) of 4.2 bit/s/Hz can be successfully achieved.

  9. OFDM concepts for future communication systems

    CERN Document Server

    Rohling, Hermann

    2011-01-01

    The Orthogonal Frequency Division Multiplexing (OFDM) digital transmission technique has advantages in broadcast and mobile communications applications. This book gives a good insight into these, and provides an overview of the scientific progress.

  10. Assessing the implications of cellular network performance on mobile content access

    DEFF Research Database (Denmark)

    Kaup, Fabian; Michelinakis, Foivos; Bui, Nicola

    2016-01-01

    Mobile applications such as VoIP, (live) gaming, or video streaming have diverse QoS requirements ranging from low delay to high throughput. The optimization of the network quality experienced by end-users requires detailed knowledge of the expected network performance. Also, the achieved service...... of cellular network measurements, focused on analyzing root causes of mobile network performance variability. Measurements conducted on a 4G cellular network in Germany show that management and configuration decisions have a substantial impact on the performance. Specifically, it is observed...

  11. Spectral and Energy Efficiencies in mmWave Cellular Networks for Optimal Utilization

    Directory of Open Access Journals (Sweden)

    Abdulbaset M. Hamed

    2018-01-01

    Full Text Available Millimeter wave (mmWave spectrum has been proposed for use in commercial cellular networks to relieve the already severely congested microwave spectrum. Thus, the design of an efficient mmWave cellular network has gained considerable importance and has to take into account regulations imposed by government agencies with regard to global warming and sustainable development. In this paper, a dense mmWave hexagonal cellular network with each cell consisting of a number of smaller cells with their own Base Stations (BSs is presented as a solution to meet the increasing demand for a variety of high data rate services and growing number of users of cellular networks. Since spectrum and power are critical resources in the design of such a network, a framework is presented that addresses efficient utilization of these resources in mmWave cellular networks in the 28 and 73 GHz bands. These bands are already an integral part of well-known standards such as IEEE 802.15.3c, IEEE 802.11ad, and IEEE 802.16.1. In the analysis, a well-known accurate mmWave channel model for Line of Sight (LOS and Non-Line of Sight (NLOS links is used. The cellular network is analyzed in terms of spectral efficiency, bit/s, energy efficiency, bit/J, area spectral efficiency, bit/s/m2, area energy efficiency, bit/J/m2, and network latency, s/bit. These efficiency metrics are illustrated, using Monte Carlo simulation, as a function of Signal-to-Noise Ratio (SNR, channel model parameters, user distance from BS, and BS transmission power. The efficiency metrics for optimum deployment of cellular networks in 28 and 73 GHz bands are identified. Results show that 73 GHz band achieves better spectrum efficiency and the 28 GHz band is superior in terms of energy efficiency. It is observed that while the latter band is expedient for indoor networks, the former band is appropriate for outdoor networks.

  12. Covert Communication in MIMO-OFDM System Using Pseudo Random Location of Fake Subcarriers

    Directory of Open Access Journals (Sweden)

    Rizky Pratama Hudhajanto

    2016-08-01

    Full Text Available Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM is the most used wireless transmission scheme in the world. However, its security is the interesting problem to discuss if we want to use this scheme to transmit a sensitive data, such as in the military and commercial communication systems. In this paper, we propose a new method to increase the security of MIMO-OFDM system using the change of location of fake subcarrier. The fake subcarriers’ location is generated per packet of data using Pseudo Random sequence generator. The simulation results show that the proposed scheme does not decrease the performance of conventional MIMO-OFDM. The attacker or eavesdropper gets worse Bit Error Rate (BER than the legal receiver compared to the conventional MIMO-OFDM system.

  13. All-optical OFDM demultiplexing by spectral magnification and optical band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2013-01-01

    We propose spectral magnification of optical-OFDM super-channels using time-lenses, enabling reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spe...

  14. Power-efficient method for IM-DD optical transmission of multiple OFDM signals.

    Science.gov (United States)

    Effenberger, Frank; Liu, Xiang

    2015-05-18

    We propose a power-efficient method for transmitting multiple frequency-division multiplexed (FDM) orthogonal frequency-division multiplexing (OFDM) signals in intensity-modulation direct-detection (IM-DD) optical systems. This method is based on quadratic soft clipping in combination with odd-only channel mapping. We show, both analytically and experimentally, that the proposed approach is capable of improving the power efficiency by about 3 dB as compared to conventional FDM OFDM signals under practical bias conditions, making it a viable solution in applications such as optical fiber-wireless integrated systems where both IM-DD optical transmission and OFDM signaling are important.

  15. A hybrid CATV/16-QAM-OFDM visible laser light communication system

    International Nuclear Information System (INIS)

    Lin, Chun-Yu; Li, Chung-Yi; Lu, Hai-Han; Chen, Chia-Yi; Jhang, Tai-Wei; Ruan, Sheng-Siang; Wu, Kuan-Hung

    2014-01-01

    A visible laser light communication (VLLC) system employing a vertical cavity surface emitting laser and spatial light modulator with hybrid CATV/16-QAM-OFDM modulating signals over a 5 m free-space link is proposed and demonstrated. With the assistance of a push-pull scheme, low-noise amplifier, and equalizer, good performances of composite second-order and composite triple beat are obtained, accompanied by an acceptable carrier-to-noise ratio performance for a CATV signal, and a low bit error rate value and clear constellation map are achieved for a 16-QAM-OFDM signal. Such a hybrid CATV/16-QAM-OFDM VLLC system would be attractive for providing services including CATV, Internet and telecommunication services. (paper)

  16. A New-Trend Model-Based to Solve the Peak Power Problems in OFDM Systems

    Directory of Open Access Journals (Sweden)

    Ashraf A. Eltholth

    2008-01-01

    Full Text Available The high peak to average power ration (PAR levels of orthogonal frequency division multiplexing (OFDM signals attract the attention of many researchers during the past decade. Existing approaches that attack this PAR issue are abundant, but no systematic framework or comparison between them exists to date. They sometimes even differ in the problem definition itself and consequently in the basic approach to follow. In this paper, we propose a new trend in mitigating the peak power problem in OFDM system based on modeling the effects of clipping and amplifier nonlinearities in an OFDM system. We showed that the distortion due to these effects is highly related to the dynamic range itself rather than the clipping level or the saturation level of the nonlinear amplifier, and thus we propose two criteria to reduce the dynamic range of the OFDM, namely, the use of MSK modulation and the use of Hadamard transform. Computer simulations of the OFDM system using Matlab are completely matched with the deduced model in terms of OFDM signal quality metrics such as BER, ACPR, and EVM. Also simulation results show that even the reduction of PAR using the two proposed criteria is not significat, and the reduction in the amount of distortion due to HPA is truley delightful.

  17. Iterative equalization for OFDM systems over wideband Multi-Scale Multi-Lag channels

    NARCIS (Netherlands)

    Xu, T.; Tang, Z.; Remis, R.; Leus, G.

    2012-01-01

    OFDM suffers from inter-carrier interference (ICI) when the channel is time varying. This article seeks to quantify the amount of interference resulting from wideband OFDM channels, which are assumed to follow the multi-scale multi-lag (MSML) model. The MSML channel model results in full channel

  18. Selfish cellular networks and the evolution of complex organisms.

    Science.gov (United States)

    Kourilsky, Philippe

    2012-03-01

    Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  19. Various cellular stress components change as the rat ages: An insight into the putative overall age-related cellular stress network.

    Science.gov (United States)

    Cueno, Marni E; Imai, Kenichi

    2018-02-01

    Cellular stress is mainly comprised of oxidative, nitrosative, and endoplasmic reticulum stresses and has long been correlated to the ageing process. Surprisingly, the age-related difference among the various components in each independent stress pathway and the possible significance of these components in relation to the overall cellular stress network remain to be clearly elucidated. In this study, we obtained blood from ageing rats upon reaching 20-, 40-, and 72-wk.-old. Subsequently, we measured representative cellular stress-linked biomolecules (H 2 O 2 , glutathione reductase, heme, NADPH, NADP, nitric oxide, GADD153) and cell signals [substance P (SP), free fatty acid, calcium, NF-κB] in either or both blood serum and cytosol. Subsequently, network analysis of the overall cellular stress network was performed. Our results show that there are changes affecting stress-linked biomolecules and cell signals as the rat ages. Additionally, based on our network analysis data, we postulate that NADPH, H 2 O 2 , GADD153, and SP are the key components and the interactions between these components are central to the overall age-related cellular stress network in the rat blood. Thus, we propose that the main pathway affecting the overall age-related cellular stress network in the rat blood would entail NADPH-related oxidative stress (involving H 2 O 2 ) triggering GADD153 activation leading to SP induction which in-turn affects other cell signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Path searching in switching networks using cellular algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Koczy, L T; Langer, J; Legendi, T

    1981-01-01

    After a survey of the important statements in the paper A Mathematical Model of Path Searching in General Type Switching Networks (see IBID., vol.25, no.1, p.31-43, 1981) the authors consider the possible implementation for cellular automata of the algorithm introduced there. The cellular field used consists of 5 neighbour 8 state cells. Running times required by a traditional serial processor and by the cellular field, respectively, are compared. By parallel processing this running time can be reduced. 5 references.

  1. A novel optical transmission link with DHT-based constant envelope optical OFDM signal

    Science.gov (United States)

    Ma, Jianxin; Liang, Hao

    2013-07-01

    In this paper, we have proposed a novel optical OFDM transmission link that takes advantages of discrete Hartley Transform (DHT) and constant envelope (CE) modulation, obtaining DHT-based constant envelope optical OFDM. The numerical results show that this design achieves better performance when compared with conventional O-OFDM in terms of bit error rate (BER) and peak-to-average power ratio (PAPR). The impact of phase modulation index (PMI) on both PAPR and noise tolerance is investigated. Since the scheme has simplified design, it is believed to be a cost-effective in the practical implement.

  2. All-Optical Ultra-High-Speed OFDM to Nyquist-WDM Conversion Based on Complete Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2016-01-01

    We propose a novel all-optical ultra-high-speed orthogonal frequency-division multiplexing (OFDM) to Nyquist wavelength-division multiplexing (Nyquist-WDM) conversion scheme, achieved by exchanging the temporal and spectral profiles using a complete optical Fourier transformation (OFT). This scheme...... enables high-speed OFDM to Nyquist-WDM conversion without complex optical/electrical/optical conversion. The all-optical OFDM transmitter is based on the generation of OFDM symbols with a low duty cycle by rectangular temporal gating, which in combination with optical time-division multiplexing yields...... a higher symbol-rate OFDM signal. In the receiver, the converted Nyquist-WDM super-channel is WDM demultiplexed into individual Nyquist-WDM channels using a rectangular optical bandpass filter, followed by optical sampling at the intersymbol-interference free point. In the experimental demonstration...

  3. Modeling virtualized downlink cellular networks with ultra-dense small cells

    KAUST Repository

    Ibrahim, Hazem

    2015-09-11

    The unrelenting increase in the mobile users\\' populations and traffic demand drive cellular network operators to densify their infrastructure. Network densification increases the spatial frequency reuse efficiency while maintaining the signal-to-interference-plus-noise-ratio (SINR) performance, hence, increases the spatial spectral efficiency and improves the overall network performance. However, control signaling in such dense networks consumes considerable bandwidth and limits the densification gain. Radio access network (RAN) virtualization via control plane (C-plane) and user plane (U-plane) splitting has been recently proposed to lighten the control signaling burden and improve the network throughput. In this paper, we present a tractable analytical model for virtualized downlink cellular networks, using tools from stochastic geometry. We then apply the developed modeling framework to obtain design insights for virtualized RANs and quantify associated performance improvement. © 2015 IEEE.

  4. Spectrally-Precoded OFDM for 5G Wideband Operation in Fragmented sub-6GHz Spectrum

    OpenAIRE

    Pitaval, Renaud-Alexandre; Popović, Branislav M.; Mohamad, Medhat; Nilsson, Rickard; van de Beek, Jaap

    2016-01-01

    We consider spectrally-precoded OFDM waveforms for 5G wideband transmission in sub-6GHz band. In this densely packed spectrum, a low out-of-band (OOB) waveform is a critical 5G component to achieve the promised high spectral efficiency. By precoding data symbols before OFDM modulation, it is possible to achieve extremely low out-of-band emission with very sharp spectrum transition enabling an efficient and flexible usage of frequency resources. Spectrally-precoded OFDM shows promising results...

  5. Prediction Based Energy Balancing Forwarding in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Yang Jian-Jun

    2017-01-01

    Full Text Available In the recent cellular network technologies, relay stations extend cell coverage and enhance signal strength for mobile users. However, busy traffic makes the relay stations in hot area run out of energy quickly. Energy is a very important factor in the forwarding of cellular network since mobile users(cell phones in hot cells often suffer from low throughput due to energy lack problems. In many situations, the energy lack problems take place because the energy loading is not balanced. In this paper, we present a prediction based forwarding algorithm to let a mobile node dynamically select the next relay station with highest potential energy capacity to resume communication. Key to this strategy is that a relay station only maintains three past status, and then it is able to predict the potential energy capacity. Then, the node selects the next hop with potential maximal energy. Moreover, a location based algorithm is developed to let the mobile node figure out the target region in order to avoid flooding. Simulations demonstrate that our approach significantly increase the aggregate throughput and decrease the delay in cellular network environment.

  6. Cellular network entropy as the energy potential in Waddington's differentiation landscape

    Science.gov (United States)

    Banerji, Christopher R. S.; Miranda-Saavedra, Diego; Severini, Simone; Widschwendter, Martin; Enver, Tariq; Zhou, Joseph X.; Teschendorff, Andrew E.

    2013-01-01

    Differentiation is a key cellular process in normal tissue development that is significantly altered in cancer. Although molecular signatures characterising pluripotency and multipotency exist, there is, as yet, no single quantitative mark of a cellular sample's position in the global differentiation hierarchy. Here we adopt a systems view and consider the sample's network entropy, a measure of signaling pathway promiscuity, computable from a sample's genome-wide expression profile. We demonstrate that network entropy provides a quantitative, in-silico, readout of the average undifferentiated state of the profiled cells, recapitulating the known hierarchy of pluripotent, multipotent and differentiated cell types. Network entropy further exhibits dynamic changes in time course differentiation data, and in line with a sample's differentiation stage. In disease, network entropy predicts a higher level of cellular plasticity in cancer stem cell populations compared to ordinary cancer cells. Importantly, network entropy also allows identification of key differentiation pathways. Our results are consistent with the view that pluripotency is a statistical property defined at the cellular population level, correlating with intra-sample heterogeneity, and driven by the degree of signaling promiscuity in cells. In summary, network entropy provides a quantitative measure of a cell's undifferentiated state, defining its elevation in Waddington's landscape. PMID:24154593

  7. Performance analysis of a finite radon transform in OFDM system under different channel models

    Energy Technology Data Exchange (ETDEWEB)

    Dawood, Sameer A.; Anuar, M. S.; Fayadh, Rashid A. [School of Computer and Communication Engineering, Universiti Malaysia Perlis (UniMAP) Pauh Putra, 02000 Arau, Parlis (Malaysia); Malek, F.; Abdullah, Farrah Salwani [School of Electrical System Engineering, Universiti Malaysia Perlis (UniMAP) Pauh Putra, 02000 Arau, Parlis (Malaysia)

    2015-05-15

    In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resulted in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system.

  8. Performance analysis of a finite radon transform in OFDM system under different channel models

    International Nuclear Information System (INIS)

    Dawood, Sameer A.; Anuar, M. S.; Fayadh, Rashid A.; Malek, F.; Abdullah, Farrah Salwani

    2015-01-01

    In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resulted in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system

  9. Efficacy analysis of LDPC coded APSK modulated differential space-time-frequency coded for wireless body area network using MB-pulsed OFDM UWB technology.

    Science.gov (United States)

    Manimegalai, C T; Gauni, Sabitha; Kalimuthu, K

    2017-12-04

    Wireless body area network (WBAN) is a breakthrough technology in healthcare areas such as hospital and telemedicine. The human body has a complex mixture of different tissues. It is expected that the nature of propagation of electromagnetic signals is distinct in each of these tissues. This forms the base for the WBAN, which is different from other environments. In this paper, the knowledge of Ultra Wide Band (UWB) channel is explored in the WBAN (IEEE 802.15.6) system. The measurements of parameters in frequency range from 3.1-10.6 GHz are taken. The proposed system, transmits data up to 480 Mbps by using LDPC coded APSK Modulated Differential Space-Time-Frequency Coded MB-OFDM to increase the throughput and power efficiency.

  10. Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation.

    Science.gov (United States)

    Yi, Xingwen; Chen, Xuemei; Sharma, Dinesh; Li, Chao; Luo, Ming; Yang, Qi; Li, Zhaohui; Qiu, Kun

    2014-06-02

    Digital coherent superposition (DCS) provides an approach to combat fiber nonlinearities by trading off the spectrum efficiency. In analogy, we extend the concept of DCS to the optical OFDM subcarrier pairs with Hermitian symmetry to combat the linear and nonlinear phase noise. At the transmitter, we simply use a real-valued OFDM signal to drive a Mach-Zehnder (MZ) intensity modulator biased at the null point and the so-generated OFDM signal is Hermitian in the frequency domain. At receiver, after the conventional OFDM signal processing, we conduct DCS of the optical OFDM subcarrier pairs, which requires only conjugation and summation. We show that the inter-carrier-interference (ICI) due to phase noise can be reduced because of the Hermitain symmetry. In a simulation, this method improves the tolerance to the laser phase noise. In a nonlinear WDM transmission experiment, this method also achieves better performance under the influence of cross phase modulation (XPM).

  11. Worst-case residual clipping noise power model for bit loading in LACO-OFDM

    KAUST Repository

    Zhang, Zhenyu; Chaaban, Anas; Shen, Chao; Elgala, Hany; Ng, Tien Khee; Ooi, Boon S.; Alouini, Mohamed-Slim

    2018-01-01

    Layered ACO-OFDM enjoys better spectral efficiency than ACO-OFDM, but its performance is challenged by residual clipping noise (RCN). In this paper, the power of RCN of LACO-OFDM is analyzed and modeled. As RCN is data-dependent, the worst-case situation is considered. A worst-case indicator is defined for relating the power of RCN and the power of noise at the receiver, wherein a linear relation is shown to be a practical approximation. An LACO-OFDM bit-loading experiment is performed to examine the proposed RCN power model for data rates of 6 to 7 Gbps. The experiment's results show that accounting for RCN has two advantages. First, it leads to better bit loading and achieves up to 59% lower overall bit-error rate (BER) than when the RCN is ignored. Second, it balances the BER across layers, which is a desired property from a channel coding perspective.

  12. Performance of FSO-OFDM based on BCH code

    Directory of Open Access Journals (Sweden)

    Jiao Xiao-lu

    2016-01-01

    Full Text Available As contrasted with the traditional OOK (on-off key system, FSO-OFDM system can resist the atmospheric scattering and improve the spectrum utilization rate effectively. Due to the instability of the atmospheric channel, the system will be affected by various factors, and resulting in a high BER. BCH code has a good error correcting ability, particularly in the short-length and medium-length code, and its performance is close to the theoretical value. It not only can check the burst errors but also can correct the random errors. Therefore, the BCH code is applied to the system to reduce the system BER. At last, the semi-physical simulation has been conducted with MATLAB. The simulation results show that when the BER is 10-2, the performance of OFDM is superior 4dB compared with OOK. In different weather conditions (extension rain, advection fog, dust days, when the BER is 10-5, the performance of BCH (255,191 channel coding is superior 4~5dB compared with uncoded system. All in all, OFDM technology and BCH code can reduce the system BER.

  13. The application of LDPC code in MIMO-OFDM system

    Science.gov (United States)

    Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao

    2018-03-01

    The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.

  14. Performance bounds on micro-Doppler estimation and adaptive waveform design using OFDM signals

    Science.gov (United States)

    Sen, Satyabrata; Barhen, Jacob; Glover, Charles W.

    2014-05-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Craḿer-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  15. Performance Bounds on Micro-Doppler Estimation and Adaptive Waveform Design Using OFDM Signals

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL; Barhen, Jacob [ORNL; Glover, Charles Wayne [ORNL

    2014-01-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Cram er-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  16. LDPC coded OFDM over the atmospheric turbulence channel.

    Science.gov (United States)

    Djordjevic, Ivan B; Vasic, Bane; Neifeld, Mark A

    2007-05-14

    Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10(-5), the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2 dB for quadrature-phase-shift keying (QPSK) and by 23.4 dB for binary-phase-shift keying (BPSK).

  17. Admission Control Threshold in Cellular Relay Networks with Power Adjustment

    Directory of Open Access Journals (Sweden)

    Lee Ki-Dong

    2009-01-01

    Full Text Available Abstract In the cellular network with relays, the mobile station can benefit from both coverage extension and capacity enhancement. However, the operation complexity increases as the number of relays grows up. Furthermore, in the cellular network with cooperative relays, it is even more complex because of an increased dimension of signal-to-noise ratios (SNRs formed in the cooperative wireless transmission links. In this paper, we propose a new method for admission capacity planning in a cellular network using a cooperative relaying mechanism called decode-and-forward. We mathematically formulate the dropping ratio using the randomness of "channel gain." With this, we formulate an admission threshold planning problem as a simple optimization problem, where we maximize the accommodation capacity (in number of connections subject to two types of constraints. (1 A constraint that the sum of the transmit powers of the source node and relay node is upper-bounded where both nodes can jointly adjust the transmit power. (2 A constraint that the dropping ratio is upper-bounded by a certain threshold value. The simplicity of the problem formulation facilitates its solution in real-time. We believe that the proposed planning method can provide an attractive guideline for dimensioning a cellular relay network with cooperative relays.

  18. Resource allocation for phantom cellular networks: Energy efficiency vs spectral efficiency

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz; Amin, Osama; Alouini, Mohamed-Slim

    2016-01-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Mean-while, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that finds the SE and EE resource allocation strategies for phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and phantom cells share of the total number of available resource blocks. We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It was found that increasing phantom cells share of resource blocks decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. © 2016 IEEE.

  19. Resource allocation for phantom cellular networks: Energy efficiency vs spectral efficiency

    KAUST Repository

    Abdelhady, Amr M.

    2016-07-26

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Mean-while, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that finds the SE and EE resource allocation strategies for phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and phantom cells share of the total number of available resource blocks. We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It was found that increasing phantom cells share of resource blocks decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. © 2016 IEEE.

  20. Uncovering the footprints of malicious traffic in cellular data networks

    OpenAIRE

    Raghuramu, A; Zang, H; Chuah, CN

    2015-01-01

    © Springer International Publishing Switzerland 2015. In this paper, we present a comprehensive characterization of malicious traffic generated by mobile devices using Deep Packet Inspection (DPI) records and security event logs from a large US based cellular provider network. Our analysis reveals that 0.17% of mobile devices in the cellular network are affected by security threats. This proportion, while small, is orders of magnitude higher than the last reported (in 2013) infection rate of ...

  1. Influence of Inter Carrier Interference on Link Adaptation Algorithms in OFDM Systems

    DEFF Research Database (Denmark)

    Das, Suvra S.; Rahman, Muhammad Imadur; Wang, Yuanye

    2007-01-01

    The performance of Link Adaptation (LA) under the influence of inter carrier interference (ICI), which is cause by carrier frequency offset (CFO) and Doppler frequency spread due to mobility, in orthogonal frequency division multiplexing (OFDM) based wireless systems is analyzed in this work. LA...... maximizes throughput while maintaining a target bit error rate (BER)or Block Error Rate (BLER) at the receiver using the signal to noise ratio (SNR) fed back from the receiver to the transmitter. Since ICI power is proportional to the signal strength, the implications of such an impairment on LA OFDM...... can over the problem. It is also noted that ICI severely reduces the spectral efficiency of OFDM systems even when LA is used....

  2. Worst-case residual clipping noise power model for bit loading in LACO-OFDM

    KAUST Repository

    Zhang, Zhenyu

    2018-03-19

    Layered ACO-OFDM enjoys better spectral efficiency than ACO-OFDM, but its performance is challenged by residual clipping noise (RCN). In this paper, the power of RCN of LACO-OFDM is analyzed and modeled. As RCN is data-dependent, the worst-case situation is considered. A worst-case indicator is defined for relating the power of RCN and the power of noise at the receiver, wherein a linear relation is shown to be a practical approximation. An LACO-OFDM bit-loading experiment is performed to examine the proposed RCN power model for data rates of 6 to 7 Gbps. The experiment\\'s results show that accounting for RCN has two advantages. First, it leads to better bit loading and achieves up to 59% lower overall bit-error rate (BER) than when the RCN is ignored. Second, it balances the BER across layers, which is a desired property from a channel coding perspective.

  3. Blind Decoding of Multiple Description Codes over OFDM Systems via Sequential Monte Carlo

    Directory of Open Access Journals (Sweden)

    Guo Dong

    2005-01-01

    Full Text Available We consider the problem of transmitting a continuous source through an OFDM system. Multiple description scalar quantization (MDSQ is applied to the source signal, resulting in two correlated source descriptions. The two descriptions are then OFDM modulated and transmitted through two parallel frequency-selective fading channels. At the receiver, a blind turbo receiver is developed for joint OFDM demodulation and MDSQ decoding. Transformation of the extrinsic information of the two descriptions are exchanged between each other to improve system performance. A blind soft-input soft-output OFDM detector is developed, which is based on the techniques of importance sampling and resampling. Such a detector is capable of exchanging the so-called extrinsic information with the other component in the above turbo receiver, and successively improving the overall receiver performance. Finally, we also treat channel-coded systems, and a novel blind turbo receiver is developed for joint demodulation, channel decoding, and MDSQ source decoding.

  4. Blind polarization demultiplexing by constructing a cost function for coherent optical PDM-OFDM.

    Science.gov (United States)

    Yu, Zhenming; Chen, Minghua; Chen, Hongwei; Yi, Xingwen; Yang, Sigang; Xie, Shizhong

    2015-07-13

    We propose a training symbols-free polarization demultiplexing method by constructing a cost function (CCF-PDM) for coherent optical PDM-OFDM. This method is applicable for high-speed, wide-bandwidth OFDM signals, different subcarrier modulation formats and long-haul transmission. It shows comparable performance with that of conventional method but without overhead and converges fast. Since the neighboring subcarriers experience similar polarization effects, we set the initial matrix parameters by the neighboring subcarrier to reduce the number of iteration for the gradient algorithm and prevent swapping the data of the two orthogonal polarizations. We verify this method in experiment by transmitting 66.6-Gb/s PDM-OFDM signal with 4QAM subcarrier modulation over 5440 km SSMF and 133.3-Gb/s PDM-OFDM signal with 16QAM subcarrier modulation over 960 km SSMF respectively. We compare its performance with that of training symbols. We also analyze the convergence speed of this method.

  5. An adaptive scaling and biasing scheme for OFDM-based visible light communication systems.

    Science.gov (United States)

    Wang, Zhaocheng; Wang, Qi; Chen, Sheng; Hanzo, Lajos

    2014-05-19

    Orthogonal frequency-division multiplexing (OFDM) has been widely used in visible light communication systems to achieve high-rate data transmission. Due to the nonlinear transfer characteristics of light emitting diodes (LEDs) and owing the high peak-to-average-power ratio of OFDM signals, the transmitted signal has to be scaled and biased before modulating the LEDs. In this contribution, an adaptive scaling and biasing scheme is proposed for OFDM-based visible light communication systems, which fully exploits the dynamic range of the LEDs and improves the achievable system performance. Specifically, the proposed scheme calculates near-optimal scaling and biasing factors for each specific OFDM symbol according to the distribution of the signals, which strikes an attractive trade-off between the effective signal power and the clipping-distortion power. Our simulation results demonstrate that the proposed scheme significantly improves the performance without changing the LED's emitted power, while maintaining the same receiver structure.

  6. OFDM and PAM comparison using a high baudrate low resolution IM/DD interface for 400G Ethernet access.

    Science.gov (United States)

    André, Nuno Sequeira; Louchet, Hadrien; Filsinger, Volker; Hansen, Erik; Richter, André

    2016-05-30

    We compare OFDM and PAM for 400G Ethernet based on a 3-bit high baudrate IM/DD interface at 1550nm. We demonstrate 27Gb/s and 32Gb/s transmission over 10km SSMF using OFDM and PAM respectively. We show that capacity can be improved through adaptation/equalization to achieve 42Gb/s and 64Gb/s for OFDM and PAM respectively. Experimental results are used to create realistic simulations to extrapolate the performance of both modulation formats under varied conditions. For the considered interface we found that PAM has the best performance, OFDM is impaired by quantization noise. When the resolution limitation is relaxed, OFDM shows better performance.

  7. Real-time all-optical OFDM transmission system based on time-domain optical fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Kong, Deming; Røge, Kasper Meldgaard

    2014-01-01

    We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km....

  8. Design mobile satellite system architecture as an integral part of the cellular access digital network

    Science.gov (United States)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  9. Evaluation of multiple-channel OFDM based airborne ultrasonic communications.

    Science.gov (United States)

    Jiang, Wentao; Wright, William M D

    2016-09-01

    Orthogonal frequency division multiplexing (OFDM) modulation has been extensively used in both wired and wireless communication systems. The use of OFDM technology allows very high spectral efficiency data transmission without using complex equalizers to correct the effect of a frequency-selective channel. This work investigated OFDM methods in an airborne ultrasonic communication system, using commercially available capacitive ultrasonic transducers operating at 50kHz to transmit information through the air. Conventional modulation schemes such as binary phase shift keying (BPSK) and quadrature amplitude modulation (QAM) were used to modulate sub-carrier signals, and the performances were evaluated in an indoor laboratory environment. Line-of-sight (LOS) transmission range up to 11m with no measurable errors was achieved using BPSK at a data rate of 45kb/s and a spectral efficiency of 1b/s/Hz. By implementing a higher order modulation scheme (16-QAM), the system data transfer rate was increased to 180kb/s with a spectral efficiency of 4b/s/Hz at attainable transmission distances up to 6m. Diffraction effects were incorporated into a model of the ultrasonic channel that also accounted for beam spread and attenuation in air. The simulations were a good match to the measured signals and non-LOS signals could be demodulated successfully. The effects of multipath interference were also studied in this work. By adding cyclic prefix (CP) to the OFDM symbols, the bit error rate (BER) performance was significantly improved in a multipath environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Capacity Enhancement of Uni‐directional In‐band Full‐Duplex Cellular Networks through Co‐channel Interference Cancellation

    Directory of Open Access Journals (Sweden)

    Hyungsik Ju

    2018-03-01

    Full Text Available As implementation of the in‐band full duplex (IFD transceiver becomes feasible, research interest is growing with respect to using IFD communication with cellular networks. However, the cellular network in which the IFD communication is applied inevitably suffers from an increase of the co‐channel interference (CCI due to IFD simultaneous transmission and reception. In this paper, we analyze the performance of a cellular network based on uni‐directional IFD (UD‐IFD communication, wherein an IFD base station simultaneously supports downlink and uplink transmissions of half‐duplex (HD users. In addition, a multi‐pair CCI cancellation (MP‐CCIC method combining CCIC and user pairing is proposed to improve the performance of the UD‐IFD network. Simulation results showed that, compared to a conventional HD cellular network without using CCIC, capacity gain was not obtained in the UD‐IFD cellular network. On the other hand, when applying the proposed MP‐CCIC, the capacity of the UD‐IFD cellular network greatly improved compared to that of an HD cellular network.

  11. A HYBRID TECHNIQUE FOR PAPR REDUCTION OF OFDM USING DHT PRECODING WITH PIECEWISE LINEAR COMPANDING

    Directory of Open Access Journals (Sweden)

    Thammana Ajay

    2016-06-01

    Full Text Available Orthogonal Frequency Division Multiplexing (OFDM is a fascinating approach for wireless communication applications which require huge amount of data rates. However, OFDM signal suffers from its large Peak-to-Average Power Ratio (PAPR, which results in significant distortion while passing through a nonlinear device, such as a transmitter high power amplifier (HPA. Due to this high PAPR, the complexity of HPA as well as DAC also increases. For the reduction of PAPR in OFDM many techniques are available. Among them companding is an attractive low complexity technique for the OFDM signal’s PAPR reduction. Recently, a piecewise linear companding technique is recommended aiming at minimizing companding distortion. In this paper, a collective piecewise linear companding approach with Discrete Hartley Transform (DHT method is expected to reduce peak-to-average of OFDM to a great extent. Simulation results shows that this new proposed method obtains significant PAPR reduction while maintaining improved performance in the Bit Error Rate (BER and Power Spectral Density (PSD compared to piecewise linear companding method.

  12. Dual-Level Game-Based Energy Efficiency and Fairness for Green Cellular Networks

    Directory of Open Access Journals (Sweden)

    Sungwook Kim

    2016-01-01

    Full Text Available In the recent decades, cellular networks have revolutionized the way of next generation communication networks. However, due to the global climate change, reducing the energy consumption of cellular infrastructures is an important and urgent problem. In this study, we propose a novel two-level cooperative game framework for improving the energy efficiency and fairness in cellular networks. For the energy efficiency, base stations (BSs constantly monitor the current traffic load and cooperate with each other to maximize the energy saving. For the energy fairness, renewable energy can be shared dynamically while ensuring the fairness among BSs. To achieve an excellent cellular network performance, the concepts of the Raiffa Bargaining Solution and Jain’s fairness are extended and practically applied to our dual-level cooperative game model. Through system level simulations, the proposed scheme is evaluated and compared with other existing schemes. The simulation results show that our two-level game approach outperforms the existing schemes in providing a better fair-efficient system performance.

  13. Optimal Superimposed Training Sequences for Channel Estimation in MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Ratnam V. Raja Kumar

    2010-01-01

    Full Text Available In this work an iterative time domain Least Squares (LS based channel estimation method using superimposed training (ST for a Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM system over time varying frequency selective fading channels is proposed. The performance of the channel estimator is analyzed in terms of the Mean Square Estimation Error (MSEE and its impact on the uncoded Bit Error Rate (BER of the MIMO-OFDM system is studied. A new selection criterion for the training sequences that jointly optimizes the MSEE and the BER of the OFDM system is proposed. Chirp based sequences are proposed and shown to satisfy the same. These are compared with the other sequences proposed in the literature and are found to yield a superior performance. The sequences, one for each transmitting antenna, offers fairness through providing equal interference in all the data carriers unlike earlier proposals. The effectiveness of the mathematical analysis presented is demonstrated through a comparison with the simulation studies. Experimental studies are carried out to study and validate the improved performance of the proposed scheme. The scheme is applied to the IEEE 802.16e OFDM standard and a case is made with the required design of the sequence.

  14. Spatiotemporal Stochastic Modeling of IoT Enabled Cellular Networks: Scalability and Stability Analysis

    KAUST Repository

    Gharbieh, Mohammad; Elsawy, Hesham; Bader, Ahmed; Alouini, Mohamed-Slim

    2017-01-01

    The Internet of Things (IoT) is large-scale by nature, which is manifested by the massive number of connected devices as well as their vast spatial existence. Cellular networks, which provide ubiquitous, reliable, and efficient wireless access, will play fundamental rule in delivering the first-mile access for the data tsunami to be generated by the IoT. However, cellular networks may have scalability problems to provide uplink connectivity to massive numbers of connected things. To characterize the scalability of cellular uplink in the context of IoT networks, this paper develops a traffic-aware spatiotemporal mathematical model for IoT devices supported by cellular uplink connectivity. The developed model is based on stochastic geometry and queueing theory to account for the traffic requirement per IoT device, the different transmission strategies, and the mutual interference between the IoT devices. To this end, the developed model is utilized to characterize the extent to which cellular networks can accommodate IoT traffic as well as to assess and compare three different transmission strategies that incorporate a combination of transmission persistency, backoff, and power-ramping. The analysis and the results clearly illustrate the scalability problem imposed by IoT on cellular network and offer insights into effective scenarios for each transmission strategy.

  15. Spatiotemporal Stochastic Modeling of IoT Enabled Cellular Networks: Scalability and Stability Analysis

    KAUST Repository

    Gharbieh, Mohammad

    2017-05-02

    The Internet of Things (IoT) is large-scale by nature, which is manifested by the massive number of connected devices as well as their vast spatial existence. Cellular networks, which provide ubiquitous, reliable, and efficient wireless access, will play fundamental rule in delivering the first-mile access for the data tsunami to be generated by the IoT. However, cellular networks may have scalability problems to provide uplink connectivity to massive numbers of connected things. To characterize the scalability of cellular uplink in the context of IoT networks, this paper develops a traffic-aware spatiotemporal mathematical model for IoT devices supported by cellular uplink connectivity. The developed model is based on stochastic geometry and queueing theory to account for the traffic requirement per IoT device, the different transmission strategies, and the mutual interference between the IoT devices. To this end, the developed model is utilized to characterize the extent to which cellular networks can accommodate IoT traffic as well as to assess and compare three different transmission strategies that incorporate a combination of transmission persistency, backoff, and power-ramping. The analysis and the results clearly illustrate the scalability problem imposed by IoT on cellular network and offer insights into effective scenarios for each transmission strategy.

  16. Receiver sensitivity improvement in spectrally-efficient guard-band twin-SSB-OFDM using an optical IQ modulator

    Science.gov (United States)

    Chen, Ming; Peng, Miao; Zhou, Hui; Zheng, Zhiwei; Tang, Xionggui; Maivan, Lap

    2017-12-01

    To further improve receiver sensitivity of spectrally-efficient guard-band direct-detection optical orthogonal frequency-division multiplexing (OFDM) with twin single-side-band (SSB) modulation technique, an optical IQ modulator (IQM) is employed to optimize optical carrier-to-signal power ratio (CSPR). The CSPRs for the guard-band twin-SSB-OFDM signal generated by using dual-drive Mach-Zehnder modulator (DD-MZM) and optical IQM are theoretically analyzed and supported by simulations. The optimal CSPR for the two types of guard-band twin-SSB-OFDM are identified. The simulations exhibit that the error vector magnitude (EVM) performance of the IQM-enabled guard-band twin-SSB-OFDM is improved by more than 4-dB compared to that of the twin-SSB-OFDM enabled by DD-MZM after 80-km single-mode fiber (SMF) transmission. In addition, more than 3-dB and 10 dB receiver sensitivity improvements in terms of received optical power (ROP) and optical signal-to-noise ratio (OSNR) are also achieved, respectively.

  17. Analysis of different sub-carrier allocation of M-ary QAM-OFDM downlink in RoF system

    Science.gov (United States)

    Shao, Yu-feng; Chen, Luo; Wang, An-rong; Zhao, Yun-jie; Long, Ying; Ji, Xing-ping

    2018-01-01

    In this paper, the performance of a 60 GHz radio over fiber (RoF) system with 4/16/64 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) downstream signals is studied. Delivery of 10 Gbit/s M-ary QAM (MQAM) OFDM signals through the 20-km-long single-mode fiber (SMF) is complicated in terms of intensity modulation and direct detection (IM/DD). Using self-homodyne method, the beating of two independent light waves generating the millimeter-wave at the photodetector can be down-converted to baseband in the electrical domain. Meanwhile, three kinds of sub-carrier arrangement schemes are compared and discussed, and the simulation results show that lower peak-to-average power ratio ( PAPR) can be obtained adopting the adjacent scheme. At bit error rate ( BER) of 10-3, the receiver sensitivity using 4QAM-OFDM sub-carrier signal is almost enhanced by 4 dB and 9 dB compared with those of 16QAM-OFDM signal and 64QAM-OFDM signal.

  18. A Comparative Analysis of Techniques for PAPR Reduction of OFDM Signals

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2014-06-01

    Full Text Available In this paper the problem of high Peak-to-Average Power Ratio (PAPR in Orthogonal Frequency-Division Multiplexing (OFDM signals is studied. Besides describing three techniques for PAPR reduction, SeLective Mapping (SLM, Partial Transmit Sequence (PTS and Interleaving, a detailed analysis of the performances of these techniques for various values of relevant parameters (number of phase sequences, number of interleavers, number of phase factors, number of subblocks depending on applied technique, is carried out. Simulation of these techniques is run in Matlab software. Results are presented in the form of Complementary Cumulative Distribution Function (CCDF curves for PAPR of 30000 randomly generated OFDM symbols. Simulations are performed for OFDM signals with 32 and 256 subcarriers, oversampled by a factor of 4. A detailed comparison of these techniques is made based on Matlab simulation results.

  19. Image processing with a cellular nonlinear network

    International Nuclear Information System (INIS)

    Morfu, S.

    2005-01-01

    A cellular nonlinear network (CNN) based on uncoupled nonlinear oscillators is proposed for image processing purposes. It is shown theoretically and numerically that the contrast of an image loaded at the nodes of the CNN is strongly enhanced, even if this one is initially weak. An image inversion can be also obtained without reconfiguration of the network whereas a gray levels extraction can be performed with an additional threshold filtering. Lastly, an electronic implementation of this CNN is presented

  20. Bit rate maximization for multicast LP-OFDM systems in PLC context

    OpenAIRE

    Maiga , Ali; Baudais , Jean-Yves; Hélard , Jean-François

    2009-01-01

    ISBN: 978-88-900984-8-2.; International audience; In this paper, we propose a new resource allocation algorithm based on linear precoding technique for multicast OFDM systems. Linear precoding technique applied to OFDM systems has already proved its ability to significantly increase the system throughput in a powerline communication (PLC) context. Simulations through PLC channels show that this algorithm outperforms the classical multicast method (up to 7.3% bit rate gain) and gives better pe...

  1. PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications.

    Science.gov (United States)

    Bai, Jurong; Li, Yong; Yi, Yang; Cheng, Wei; Du, Huimin

    2017-10-02

    High peak-to-average power ratio (PAPR) leads to out-of-band power and in-band distortion in the direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM) systems. In order to effectively reduce the PAPR with faster convergence and lower complexity, this paper proposes a tone reservation based scheme, which is the combination of the signal-to-clipping noise ratio (SCR) procedure and the least squares approximation (LSA) procedure. In the proposed scheme, the transmitter of the DCO-OFDM indoor visible light communication (VLC) system is designed to transform the PAPR reduced signal into real-valued positive OFDM signal without doubling the transmission bandwidth. Moreover, the communication distance and the light emitting diode (LED) irradiance angle are taking into consideration in the evaluation of the system bit error rate (BER). The PAPR reduction efficiency of the proposed scheme is remarkable for DCO-OFDM indoor VLC systems.

  2. Collaborative multi-layer network coding for cellular cognitive radio networks

    KAUST Repository

    Sorour, Sameh

    2013-06-01

    In this paper, we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in underlay cellular cognitive radio networks. This scheme allows the collocated primary and cognitive radio base-stations to collaborate with each other, in order to minimize their own and each other\\'s packet recovery overheads, and thus improve their throughput, without any coordination between them. This non-coordinated collaboration is done using a novel multi-layer instantly decodable network coding scheme, which guarantees that each network\\'s help to the other network does not result in any degradation in its own performance. It also does not cause any violation to the primary networks interference thresholds in the same and adjacent cells. Yet, our proposed scheme both guarantees the reduction of the recovery overhead in collocated primary and cognitive radio networks, and allows early recovery of their packets compared to non-collaborative schemes. Simulation results show that a recovery overhead reduction of 15% and 40% can be achieved by our proposed scheme in the primary and cognitive radio networks, respectively, compared to the corresponding non-collaborative scheme. © 2013 IEEE.

  3. Cognitive resource management for heterogeneous cellular networks

    CERN Document Server

    Liu, Yongkang

    2014-01-01

    This Springer Brief focuses on cognitive resource management in heterogeneous cellular networks (Het Net) with small cell deployment for the LTE-Advanced system. It introduces the Het Net features, presents practical approaches using cognitive radio technology in accommodating small cell data relay and optimizing resource allocation and examines the effectiveness of resource management among small cells given limited coordination bandwidth and wireless channel uncertainty. The authors introduce different network characteristics of small cell, investigate the mesh of small cell access points in

  4. Radio Channel Modelling for UAV Communication over Cellular Networks

    DEFF Research Database (Denmark)

    Amorim, Rafhael Medeiros de; Nguyen, Huan Cong; Mogensen, Preben Elgaard

    2017-01-01

    The main goal of this paper is to obtain models for path loss exponents and shadowing for the radio channel between airborne Unmanned Aerial Vehicles (UAVs) and cellular networks. In this pursuit, field measurements were conducted in live LTE networks at the 800 MHz frequency band, using a commer...

  5. Optimal Design of Gravitational Sewer Networks with General Cellular Automata

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Afshar

    2014-05-01

    Full Text Available In this paper, a Cellular Automata method is applied for the optimal design of sewer networks. The solution of sewer network optimization problems requires the determination of pipe diameters and average pipe cover depths, minimizing the total cost of the sewer network subject to operational constraints. In this paper, the network nodes and upstream and downstream pipe cover depths are considered as CA cells and cell states, respectively, and the links around each cell are taken into account as neighborhood. The proposed method is a general and flexible method for the optimization of sewer networks as it can be used to optimally design both gravity and pumped network due to the use of pipe nodal cover depths as the decision variables. The proposed method is tested against two  gravitational sewer networks and the  comparison of results with other methods such as  Genetic algorithm, Cellular Automata, Ant Colony Optimization Algorithm and Particle Swarm Optimization show the efficiency and effectiveness of the proposed method.

  6. On the potential of OFDM enhancements as 5G waveforms

    DEFF Research Database (Denmark)

    Berardinelli, Gilberto; Pajukoski, Kari; Lähetkangas, Eeva

    2014-01-01

    The ideal radio waveform for an upcoming 5th Generation (5G) radio access technology should cope with a set of requirements such as limited complexity, good time/frequency localization and simple extension to multi-antenna technologies. This paper discusses the suitability of Orthogonal Frequency...... Division Multiplexing (OFDM) and its recently proposed enhancements as 5G waveforms, mainly focusing on their capability to cope with our requirements. Significant focus is given to the novel zero-tail paradigm, which allows boosting the OFDM flexibility while circumventing demerits such as poor spectral...

  7. Network-Centric Maritime Radiation Awareness and Interdiction Experiments

    National Research Council Canada - National Science Library

    Bordetsky, Alex; Dougan, Arden D; Nekoogar, Faranak

    2006-01-01

    .... This joint NPS-LLNL project is based on the NPS Tactical Network Topology (TNT) comprised of long-haul OFDM networks combined with self-forming wireless mesh links to air, surface, ground, and underwater unmanned vehicles...

  8. Massive MIMO-OFDM indoor visible light communication system downlink architecture design

    Science.gov (United States)

    Lang, Tian; Li, Zening; Chen, Gang

    2014-10-01

    Multiple-input multiple-output (MIMO) technique is now used in most new broadband communication system, and orthogonal frequency division multiplexing (OFDM) is also utilized within current 4th generation (4G) of mobile telecommunication technology. With MIMO and OFDM combined, visible light communication (VLC) system's diversity gain is increase, yet system capacity for dispersive channels is also enhanced. Moreover, with the emerging massive MIMO-OFDM VLC system, there are significant advantages than smaller systems' such as channel hardening, further increasing of energy efficiency (EE) and spectral efficiency (SE) based on law of large number. This paper addresses one of the major technological challenges, system architecture design, which was solved by semispherical beehive structure (SBS) receiver and so that diversity gain can be identified and applied in Massive MIMO VLC system. Simulation results shows that the proposed design clearly presents a spatial diversity over conventional VLC systems.

  9. Crest Factor Reduction for OFDM Using Selective Subcarrier Degradation

    Institute of Scientific and Technical Information of China (English)

    R. Neil Braithwaite

    2011-01-01

    This paper describes a crest factor reduction (CFR) method that reduces peaks in the time domain by modifying selected data subcarriers within an OFDM signal. The data subcarriers selected for modification vary with each symbol interval and are limited to those subcarriers whose aata elements are mapped onto the outer boundary of the constellation. In the proposed method, a set of peaks are identified within an OFDM symbol interval. Data subcarriers whose data element has a positive or negative correlation with the set peak are selected. For a subcarrier with an outer element and a significant positive correlation, a bit error (reversal) is intentionally introduced. This moves the data element to the opposite side of the constellation. Outer elements on negatively-correlatea subcarriers are increased in magnitude along the real or imaginary axis. Experimental results show that selecting the correct subcarriers for bit reversals and outward enhancements reduces the peak-to-average power ratio (PAPR) of the OFDM signal to a target value and limits in-band degradation measured by bit error rate (BER) and error vector magnitude (EVM).

  10. Sparsity-Based Space-Time Adaptive Processing Using OFDM Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2012-01-01

    We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. We observe that the target and interference spectra are inherently sparse in the spatio-temporal domain, and hence we exploit that sparsity to develop an efficient STAP technique. In addition, the use of an OFDM signal increases the frequency diversity of our system, as different scattering centers of a target resonate at different frequencies, and thus improves the target detectability. First, we formulate a realistic sparse-measurement model for an OFDM radar considering both the clutter and jammer as the interfering sources. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. To estimate the target and interference covariance matrices, we apply a residual sparse-recovery technique that enables us to incorporate the partially known support of the sparse vector. Our numerical results demonstrate that the sparsity-based STAP algorithm, with considerably lesser number of secondary data, produces an equivalent performance as the other existing STAP techniques.

  11. Experimental demonstration of the transmission performance for LDPC-coded multiband OFDM ultra-wideband over fiber system

    Science.gov (United States)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu

    2015-01-01

    To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.

  12. Robust OFDM Timing Synchronisation in Multipath Channels

    Directory of Open Access Journals (Sweden)

    McLaughlin S

    2008-01-01

    Full Text Available Abstract This paper addresses pre-FFT synchronisation for orthogonal frequency division multiplex (OFDM under varying multipath conditions. To ensure the most efficient data transmission possible, there should be no constraints on how much of the cyclic prefix (CP is occupied by intersymbol interference (ISI. Here a solution for timing synchronisation is proposed, that is, robust even when the strongest multipath components are delayed relative to the first arriving paths. In this situation, existing methods perform poorly, whereas the solution proposed uses the derivative of the correlation function and is less sensitive to the channel impulse response. In this paper, synchronisation of a DVB single-frequency network is investigated. A refinement is proposed that uses heuristic rules based on the maxima of the correlation and derivative functions to further reduce the estimate variance. The technique has relevance to broadcast, OFDMA, and WLAN applications, and simulations are presented which compare the method with existing approaches.

  13. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC.

    Science.gov (United States)

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang

    2015-01-26

    To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed.

  14. Suppression of laser phase noise in direct-detection optical OFDM transmission using phase-conjugated pilots

    Science.gov (United States)

    Zhang, Lu; Ming, Yi; Li, Jin

    2017-11-01

    Due to the unique phase noise (PN) characteristics in direct-detection optical OFDM (DDO-OFDM) systems, the design of PN compensator is considered as a difficult task. In this paper, a laser PN suppression scheme with low complexity for DDO-OFDM based on coherent superposition of data carrying subcarriers and their phase conjugates is proposed. Through theoretical derivation, the obvious PN suppression is observed. The effectiveness of this technique is demonstrated by simulation of a 4-QAM DDO-OFDM system over 1000 km transmission length at different laser line-width and subcarrier frequency spacing. The results show that the proposed scheme can significantly suppress both varied phase rotation term (PTR) and inter-carrier interference (ICI), and the laser line-width can be relaxed with up to 9 dB OSNR saving or even breakthrough of performance floor.

  15. Energy-Efficient Resource Allocation for Phantom Cellular Networks with Imperfect CSI

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz

    2017-03-28

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for a two-tier phantom cellular network, The optimization framework includes both EE and SE. We consider densely deployed phantom cellular networks and model the EE optimization problem taking into consideration the inevitable interference in this setup and imperfect channel estimation impairments. To this end, we propose three resource allocation strategies aiming at optimizing this network EE performance metric. Furthermore, we investigate the effect of changing some system parameters on the performance of these strategies, such as phantom cells resource units share, number of deployed phantom cells within a macro cell , number of pilots, and the phantom cells transmission power budget. It is found that increasing the number of pilots will deteriorate the EE performance of the whole setup, while increasing phantom cells transmission power budget will not affect the EE of the whole setup significantly. In addition, we observed that it is always useful to allocate most of the network resource units to the phantom cells tier.

  16. Energy-Efficient Resource Allocation for Phantom Cellular Networks with Imperfect CSI

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz; Amin, Osama; Alouini, Mohamed-Slim

    2017-01-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for a two-tier phantom cellular network, The optimization framework includes both EE and SE. We consider densely deployed phantom cellular networks and model the EE optimization problem taking into consideration the inevitable interference in this setup and imperfect channel estimation impairments. To this end, we propose three resource allocation strategies aiming at optimizing this network EE performance metric. Furthermore, we investigate the effect of changing some system parameters on the performance of these strategies, such as phantom cells resource units share, number of deployed phantom cells within a macro cell , number of pilots, and the phantom cells transmission power budget. It is found that increasing the number of pilots will deteriorate the EE performance of the whole setup, while increasing phantom cells transmission power budget will not affect the EE of the whole setup significantly. In addition, we observed that it is always useful to allocate most of the network resource units to the phantom cells tier.

  17. FPGA BASED ASYNCHRONOUS PIPELINED MB-OFDM UWB TRANSMITTER BACKEND MODULES

    Directory of Open Access Journals (Sweden)

    M. Santhi

    2010-03-01

    Full Text Available In this paper, a novel scheme is proposed which comprises the advantages of asynchronous pipelining techniques and the advantages of FPGAs for implementing a 200Mbps MB-OFDM UWB transmitter digital backend modules. In asynchronous pipelined system, registers are used as in synchronous system. But they are controlled by handshaking signals. Since FPGAs are rich in registers, design and implementation of asynchronous pipelined MBOFDM UWB transmitter on FPGA using four-phase bundled-data protocol is considered in this paper. Novel ideas have also been proposed for designing asynchronous OFDM using Modified Radix-24 SDF and asynchronous interleaver using two RAM banks. Implementation has been performed on ALTERA STRATIX II EP2S60F1020C4 FPGA and it is operating at a speed of 350MHz. It is assured that the proposed MB-OFDM UWB system can be made to work on STRATIX III device with the operating frequency of 528MHz in compliance to the ECMA-368 standard. The proposed scheme is also applicable for FPGA from other vendors and ASIC.

  18. Energy Efficient Resource Allocation for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr

    2016-04-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE. First, we consider sparsely deployed cells experiencing negligible interference and assume perfect channel state information (CSI). For this setting, we propose an algorithm that finds the SE and EE resource allocation strategies. Then, we compare the performance of both design strategies versus number of users, and phantom cells share of the total available resource units (RUs). We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It is found that increasing phantom cells share of RUs decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. Second, we consider the densely deployed phantom cellular networks and model the EE optimization problem having into consideration the inevitable interference and imperfect channel estimation. To this end, we propose three resource allocation strategies aiming at optimizing the EE performance metric of this network. Furthermore, we investigate the effect of changing some of the system parameters on the performance of the proposed strategies, such as phantom cells share of RUs, number of deployed phantom cells within a macro cell coverage, number of pilots and the maximum power available for transmission by the phantom cells BSs. It is found that increasing the number of pilots deteriorates the EE performance of the whole setup, while increasing maximum power available for phantom cells transmissions reduces the EE of the whole setup in a

  19. Physical-layer Network Coding in Two-Way Heterogeneous Cellular Networks with Power Imbalance

    OpenAIRE

    Thampi, Ajay K; Liew, Soung Chang; Armour, Simon M D; Fan, Zhong; You, Lizhao; Kaleshi, Dritan

    2016-01-01

    The growing demand for high-speed data, quality of service (QoS) assurance and energy efficiency has triggered the evolution of 4G LTE-A networks to 5G and beyond. Interference is still a major performance bottleneck. This paper studies the application of physical-layer network coding (PNC), a technique that exploits interference, in heterogeneous cellular networks. In particular, we propose a rate-maximising relay selection algorithm for a single cell with multiple relays assuming the decode...

  20. Self-homodyne optical OFDM for broadband WDM-PONs with crosstalk-free remodulation and enhanced tolerance to Rayleigh noise

    Science.gov (United States)

    Lyu, WeiChao; Wang, Andong; Xie, Dequan; Zhu, Long; Guan, Xun; Wang, Jian; Xu, Jing

    2018-05-01

    We propose a novel architecture for wavelength-division-multiplexed passive optical network (WDM-PON) that can simultaneously circumvent both remodulation crosstalk and Rayleigh noise, based on self-homodyne detection and optical orthogonal frequency-division multiplexing (OFDM) remodulation. The proposed self-homodyne detection at optical network unit (ONU) requires neither frequency offset compensation nor phase noise compensation, and thus can significantly reduce system complexity and power consumption. Bidirectional transmission of 12.5 Gb/s down- and up-stream signals, via single 25 km single-mode fiber without dispersion compensation, is demonstrated in a proof-of-concept experiment.

  1. Network reliability assessment using a cellular automata approach

    International Nuclear Information System (INIS)

    Rocco S, Claudio M.; Moreno, Jose Ali

    2002-01-01

    Two cellular automata (CA) models that evaluate the s-t connectedness and shortest path in a network are presented. CA based algorithms enhance the performance of classical algorithms, since they allow a more reliable and straightforward parallel implementation resulting in a dynamic network evaluation, where changes in the connectivity and/or link costs can readily be incorporated avoiding recalculation from scratch. The paper also demonstrates how these algorithms can be applied for network reliability evaluation (based on Monte-Carlo approach) and for finding s-t path with maximal reliability

  2. A Fluid Model for Performance Analysis in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Coupechoux Marceau

    2010-01-01

    Full Text Available We propose a new framework to study the performance of cellular networks using a fluid model and we derive from this model analytical formulas for interference, outage probability, and spatial outage probability. The key idea of the fluid model is to consider the discrete base station (BS entities as a continuum of transmitters that are spatially distributed in the network. This model allows us to obtain simple analytical expressions to reveal main characteristics of the network. In this paper, we focus on the downlink other-cell interference factor (OCIF, which is defined for a given user as the ratio of its outer cell received power to its inner cell received power. A closed-form formula of the OCIF is provided in this paper. From this formula, we are able to obtain the global outage probability as well as the spatial outage probability, which depends on the location of a mobile station (MS initiating a new call. Our analytical results are compared to Monte Carlo simulations performed in a traditional hexagonal network. Furthermore, we demonstrate an application of the outage probability related to cell breathing and densification of cellular networks.

  3. Comparison of neural network applications for channel assignment in cellular TDMA networks and dynamically sectored PCS networks

    Science.gov (United States)

    Hortos, William S.

    1997-04-01

    The use of artificial neural networks (NNs) to address the channel assignment problem (CAP) for cellular time-division multiple access and code-division multiple access networks has previously been investigated by this author and many others. The investigations to date have been based on a hexagonal cell structure established by omnidirectional antennas at the base stations. No account was taken of the use of spatial isolation enabled by directional antennas to reduce interference between mobiles. Any reduction in interference translates into increased capacity and consequently alters the performance of the NNs. Previous studies have sought to improve the performance of Hopfield- Tank network algorithms and self-organizing feature map algorithms applied primarily to static channel assignment (SCA) for cellular networks that handle uniformly distributed, stationary traffic in each cell for a single type of service. The resulting algorithms minimize energy functions representing interference constraint and ad hoc conditions that promote convergence to optimal solutions. While the structures of the derived neural network algorithms (NNAs) offer the potential advantages of inherent parallelism and adaptability to changing system conditions, this potential has yet to be fulfilled the CAP for emerging mobile networks. The next-generation communication infrastructures must accommodate dynamic operating conditions. Macrocell topologies are being refined to microcells and picocells that can be dynamically sectored by adaptively controlled, directional antennas and programmable transceivers. These networks must support the time-varying demands for personal communication services (PCS) that simultaneously carry voice, data and video and, thus, require new dynamic channel assignment (DCA) algorithms. This paper examines the impact of dynamic cell sectoring and geometric conditioning on NNAs developed for SCA in omnicell networks with stationary traffic to improve the metrics

  4. Chaotic reconfigurable ZCMT precoder for OFDM data encryption and PAPR reduction

    Science.gov (United States)

    Chen, Han; Yang, Xuelin; Hu, Weisheng

    2017-12-01

    A secure orthogonal frequency division multiplexing (OFDM) transmission scheme precoded by chaotic Zadoff-Chu matrix transform (ZCMT) is proposed and demonstrated. It is proved that the reconfigurable ZCMT matrices after row/column permutations can be applied as an alternative precoder for peak-to-average power ratio (PAPR) reduction. The permutations and the reconfigurable parameters in ZCMT matrix are generated by a hyper digital chaos, in which a huge key space of ∼ 10800 is created for physical-layer OFDM data encryption. An encrypted data transmission of 8.9 Gb/s optical OFDM signals is successfully demonstrated over 20 km standard single-mode fiber (SSMF) for 16-QAM. The BER performance of the encrypted signals is improved by ∼ 2 dB (BER@ 10-3), which is mainly attributed to the effective reduction of PAPR via chaotic ZCMT precoding. Moreover, the chaotic ZCMT precoding scheme requires no sideband information, thus the spectrum efficiency is enhanced during transmission.

  5. Participatory sensing as an enabler for self-organisation in future cellular networks

    International Nuclear Information System (INIS)

    Imran, Muhammad Ali; Onireti, Oluwakayode; Imran, Ali

    2013-01-01

    In this short review paper we summarise the emerging challenges in the field of participatory sensing for the self-organisation of the next generation of wireless cellular networks. We identify the potential of participatory sensing in enabling the self-organisation, deployment optimisation and radio resource management of wireless cellular networks. We also highlight how this approach can meet the future goals for the next generation of cellular system in terms of infrastructure sharing, management of multiple radio access techniques, flexible usage of spectrum and efficient management of very small data cells

  6. Dynamic spectrum management in green cognitive radio cellular networks

    KAUST Repository

    Sboui, Lokman

    2018-02-15

    In this paper, we propose a new cellular network operation scheme fulfilling the 5G requirements related to spectrum management and green communications. We focus on cognitive radio cellular networks in which both the primary network (PN) and the secondary network (SN) are maximizing their operational profits. The PN and the SN are required to respect a CO emissions threshold by switching off one or more lightly loaded base stations (BSs). In addition, the PN accepts to cooperate with the SN by leasing its spectrum in the cells where the PN is turned off. In return, the corresponding SN BSs host the PN users and impose extra roaming fees to the PN. We propose a low-complexity algorithm that maximizes the profit per CO emissions metric while switching on/off the BSs. In the simulations, we show that our proposed algorithm achieves performances close to the exhaustive search method. In addition, we find that the roaming price is a key parameter that affects both PN and SN profits.

  7. Frequency domain based LS channel estimation in OFDM based Power line communications

    OpenAIRE

    Bogdanović, Mario

    2015-01-01

    This paper is focused on low voltage power line communication (PLC) realization with an emphasis on channel estimation techniques. The Orthogonal Frequency Division Multiplexing (OFDM) scheme is preferred technology in PLC systems because of its effective combat with frequency selective fading properties of PLC channel. As the channel estimation is one of the crucial problems in OFDM based PLC system because of a problematic area of PLC signal attenuation and interference, the improved LS est...

  8. Unified Stochastic Geometry Model for MIMO Cellular Networks with Retransmissions

    KAUST Repository

    Afify, Laila H.

    2016-10-11

    This paper presents a unified mathematical paradigm, based on stochastic geometry, for downlink cellular networks with multiple-input-multiple-output (MIMO) base stations (BSs). The developed paradigm accounts for signal retransmission upon decoding errors, in which the temporal correlation among the signal-to-interference-plus-noise-ratio (SINR) of the original and retransmitted signals is captured. In addition to modeling the effect of retransmission on the network performance, the developed mathematical model presents twofold analysis unification for MIMO cellular networks literature. First, it integrates the tangible decoding error probability and the abstracted (i.e., modulation scheme and receiver type agnostic) outage probability analysis, which are largely disjoint in the literature. Second, it unifies the analysis for different MIMO configurations. The unified MIMO analysis is achieved by abstracting unnecessary information conveyed within the interfering signals by Gaussian signaling approximation along with an equivalent SISO representation for the per-data stream SINR in MIMO cellular networks. We show that the proposed unification simplifies the analysis without sacrificing the model accuracy. To this end, we discuss the diversity-multiplexing tradeoff imposed by different MIMO schemes and shed light on the diversity loss due to the temporal correlation among the SINRs of the original and retransmitted signals. Finally, several design insights are highlighted.

  9. Unified Stochastic Geometry Model for MIMO Cellular Networks with Retransmissions

    KAUST Repository

    Afify, Laila H.; Elsawy, Hesham; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2016-01-01

    This paper presents a unified mathematical paradigm, based on stochastic geometry, for downlink cellular networks with multiple-input-multiple-output (MIMO) base stations (BSs). The developed paradigm accounts for signal retransmission upon decoding errors, in which the temporal correlation among the signal-to-interference-plus-noise-ratio (SINR) of the original and retransmitted signals is captured. In addition to modeling the effect of retransmission on the network performance, the developed mathematical model presents twofold analysis unification for MIMO cellular networks literature. First, it integrates the tangible decoding error probability and the abstracted (i.e., modulation scheme and receiver type agnostic) outage probability analysis, which are largely disjoint in the literature. Second, it unifies the analysis for different MIMO configurations. The unified MIMO analysis is achieved by abstracting unnecessary information conveyed within the interfering signals by Gaussian signaling approximation along with an equivalent SISO representation for the per-data stream SINR in MIMO cellular networks. We show that the proposed unification simplifies the analysis without sacrificing the model accuracy. To this end, we discuss the diversity-multiplexing tradeoff imposed by different MIMO schemes and shed light on the diversity loss due to the temporal correlation among the SINRs of the original and retransmitted signals. Finally, several design insights are highlighted.

  10. Analytic discrete cosine harmonic wavelet transform based OFDM ...

    Indian Academy of Sciences (India)

    in improving Bit Error Rate (BER) and Peak to Average Power Ratio (PAPR) per- ... as an alternative to Fourier basis has been suggested for multicarrier transmission ..... Ramjee Prasad 2004 OFDM for Wireless Communications Systems.

  11. Network-Assisted Distributed Fairness-Aware Interference Coordination for Device-to-Device Communication Underlaid Cellular Networks

    Directory of Open Access Journals (Sweden)

    Francis Boabang

    2017-01-01

    Full Text Available Device-to-device (D2D communication underlaid cellular network is considered a key integration feature in future cellular network. However, without properly designed interference management, the interference from D2D transmission tends to degrade the performance of cellular users and D2D pairs. In this work, we proposed a network-assisted distributed interference mitigation scheme to address this issue. Specifically, the base station (BS acts as a control agent that coordinates the cross-tier interference from D2D transmission through a taxation scheme. The cotier interference is controlled by noncooperative game amongst D2D pairs. In general, the outcome of noncooperative game is inefficient due to the selfishness of each player. In our game formulation, reference user who is the victim of cotier interference is factored into the payoff function of each player to obtain fair and efficient outcome. The existence, uniqueness of the Nash Equilibrium (NE, and the convergence of the proposed algorithm are characterized using Variational Inequality theory. Finally, we provide simulation results to evaluate the efficiency of the proposed algorithm.

  12. QoE-Driven D2D Media Services Distribution Scheme in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Mingkai Chen

    2017-01-01

    Full Text Available Device-to-device (D2D communication has been widely studied to improve network performance and considered as a potential technological component for the next generation communication. Considering the diverse users’ demand, Quality of Experience (QoE is recognized as a new degree of user’s satisfaction for media service transmissions in the wireless communication. Furthermore, we aim at promoting user’s Mean of Score (MOS value to quantify and analyze user’s QoE in the dynamic cellular networks. In this paper, we explore the heterogeneous media service distribution in D2D communications underlaying cellular networks to improve the total users’ QoE. We propose a novel media service scheme based on different QoE models that jointly solve the massive media content dissemination issue for cellular networks. Moreover, we also investigate the so-called Media Service Adaptive Update Scheme (MSAUS framework to maximize users’ QoE satisfaction and we derive the popularity and priority function of different media service QoE expression. Then, we further design Media Service Resource Allocation (MSRA algorithm to schedule limited cellular networks resource, which is based on the popularity function to optimize the total users’ QoE satisfaction and avoid D2D interference. In addition, numerical simulation results indicate that the proposed scheme is more effective in cellular network content delivery, which makes it suitable for various media service propagation.

  13. Leakage based precoding for multi-user MIMO-OFDM systems

    KAUST Repository

    Sadek, Mirette

    2011-08-01

    In downlink multi-user multiple-input multiple-output (MIMO) transmissions, several precoding schemes have been proposed to decrease interference among users. Notable among these precoding schemes is one that uses the signal-to-leakage-plus-noise ratio (SLNR) as an optimization criterion. In this paper, leveraging the efficiency of the SLNR optimization, we generalize this precoding scheme to MIMO orthogonal frequency division multiplexing (OFDM) multi-user systems where the OFDM is used to overcome the inter-symbol- interference (ISI) introduced by multipath channels. We also introduce a channel compensation technique that reconstructs the channel at the transmitter for every time instant given a significantly lower channel feedback rate by the receiver. © 2006 IEEE.

  14. Adaptive OFDM System Design For Cognitive Radio

    NARCIS (Netherlands)

    Zhang, Q.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2006-01-01

    Recently, Cognitive Radio has been proposed as a promising technology to improve spectrum utilization. A highly flexible OFDM system is considered to be a good candidate for the Cognitive Radio baseband processing where individual carriers can be switched off for frequencies occupied by a licensed

  15. Analysis of Blocking Rate and Bandwidth Usage of Mobile IPTV Services in Wireless Cellular Networks

    Directory of Open Access Journals (Sweden)

    Mingfu Li

    2014-01-01

    Full Text Available Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes.

  16. Analysis of blocking rate and bandwidth usage of mobile IPTV services in wireless cellular networks.

    Science.gov (United States)

    Li, Mingfu

    2014-01-01

    Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes.

  17. Cellular neural networks for the stereo matching problem

    International Nuclear Information System (INIS)

    Taraglio, S.; Zanela, A.

    1997-03-01

    The applicability of the Cellular Neural Network (CNN) paradigm to the problem of recovering information on the tridimensional structure of the environment is investigated. The approach proposed is the stereo matching of video images. The starting point of this work is the Zhou-Chellappa neural network implementation for the same problem. The CNN based system we present here yields the same results as the previous approach, but without the many existing drawbacks

  18. Channel Access and Power Control for Mobile Crowdsourcing in Device-to-Device Underlaid Cellular Networks

    Directory of Open Access Journals (Sweden)

    Yue Ma

    2018-01-01

    Full Text Available With the access of a myriad of smart handheld devices in cellular networks, mobile crowdsourcing becomes increasingly popular, which can leverage omnipresent mobile devices to promote the complicated crowdsourcing tasks. Device-to-device (D2D communication is highly desired in mobile crowdsourcing when cellular communications are costly. The D2D cellular network is more preferable for mobile crowdsourcing than conventional cellular network. Therefore, this paper addresses the channel access and power control problem in the D2D underlaid cellular networks. We propose a novel semidistributed network-assisted power and a channel access control scheme for D2D user equipment (DUE pieces. It can control the interference from DUE pieces to the cellular user accurately and has low information feedback overhead. For the proposed scheme, the stochastic geometry tool is employed and analytic expressions are derived for the coverage probabilities of both the cellular link and D2D links. We analyze the impact of key system parameters on the proposed scheme. The Pareto optimal access threshold maximizing the total area spectral efficiency is obtained. Unlike the existing works, the performances of the cellular link and D2D links are both considered. Simulation results show that the proposed method can improve the total area spectral efficiency significantly compared to existing schemes.

  19. Wireless traffic steering for green cellular networks

    CERN Document Server

    Zhang, Shan; Zhou, Sheng; Niu, Zhisheng; Shen, Xuemin (Sherman)

    2016-01-01

    This book introduces wireless traffic steering as a paradigm to realize green communication in multi-tier heterogeneous cellular networks. By matching network resources and dynamic mobile traffic demand, traffic steering helps to reduce on-grid power consumption with on-demand services provided. This book reviews existing solutions from the perspectives of energy consumption reduction and renewable energy harvesting. Specifically, it explains how traffic steering can improve energy efficiency through intelligent traffic-resource matching. Several promising traffic steering approaches for dynamic network planning and renewable energy demand-supply balancing are discussed. This book presents an energy-aware traffic steering method for networks with energy harvesting, which optimizes the traffic allocated to each cell based on the renewable energy status. Renewable energy demand-supply balancing is a key factor in energy dynamics, aimed at enhancing renewable energy sustainability to reduce on-grid energy consum...

  20. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2015-05-01

    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other\\'s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network\\'s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network\\'s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. © 2015 IEEE.

  1. Performance analysis of OFDM modulation on indoor broadband PLC channels

    Science.gov (United States)

    Antonio Cortés, José; Díez, Luis; Cañete, Francisco Javier; Sánchez-Martínez, Juan José; Entrambasaguas, José Tomás

    2011-12-01

    Indoor broadband power-line communications is a suitable technology for home networking applications. In this context, orthogonal frequency-division multiplexing (OFDM) is the most widespread modulation technique. It has recently been adopted by the ITU-T Recommendation G.9960 and is also used by most of the commercial systems, whose number of carriers has gone from about 100 to a few thousands in less than a decade. However, indoor power-line channels are frequency-selective and exhibit periodic time variations. Hence, increasing the number of carriers does not always improves the performance, since it reduces the distortion because of the frequency selectivity, but increases the one caused by the channel time variation. In addition, the long impulse response of power-line channels obliges to use an insufficient cyclic prefix. Increasing its value reduces the distortion, but also the symbol rate. Therefore, there are optimum values for both modulation parameters. This article evaluates the performance of an OFDM system as a function of the number of carriers and the cyclic prefix length, determining their most appropriate values for the indoor power-line scenario. This task must be accomplished by means of time-consuming simulations employing a linear time-varying filtering, since no consensus on a tractable statistical channel model has been reached yet. However, this study presents a simpler procedure in which the distortion because of the frequency selectivity is computed using a time-invariant channel response, and an analytical expression is derived for the one caused by the channel time variation.

  2. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    Science.gov (United States)

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M

    2016-04-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers. © 2015 Wiley Periodicals, Inc.

  3. CHANNEL ESTIMATION FOR ZT DFT-s-OFDM

    DEFF Research Database (Denmark)

    2018-01-01

    A signal modulated according to zero-tail discrete Fourier transform spread orthogonal frequency division multiplexing (ZT DFT-s-OFDM) is received over a channel. The signal is down-sampled into a first sequence comprising N samples, N corresponding to the number of used subcarriers. The first Nh...

  4. Energy Cost Minimization in Heterogeneous Cellular Networks with Hybrid Energy Supplies

    Directory of Open Access Journals (Sweden)

    Bang Wang

    2016-01-01

    Full Text Available The ever increasing data demand has led to the significant increase of energy consumption in cellular mobile networks. Recent advancements in heterogeneous cellular networks and green energy supplied base stations provide promising solutions for cellular communications industry. In this article, we first review the motivations and challenges as well as approaches to address the energy cost minimization problem for such green heterogeneous networks. Owing to the diversities of mobile traffic and renewable energy, the energy cost minimization problem involves both temporal and spatial optimization of resource allocation. We next present a new solution to illustrate how to combine the optimization of the temporal green energy allocation and spatial mobile traffic distribution. The whole optimization problem is decomposed into four subproblems, and correspondingly our proposed solution is divided into four parts: energy consumption estimation, green energy allocation, user association, and green energy reallocation. Simulation results demonstrate that our proposed algorithm can significantly reduce the total energy cost.

  5. Optimized Energy Procurement for Cellular Networks with Uncertain Renewable Energy Generation

    KAUST Repository

    Rached, Nadhir B.

    2017-02-07

    Renewable energy (RE) is an emerging solution for reducing carbon dioxide (CO2) emissions from cellular networks. One of the challenges of using RE sources is to handle its inherent uncertainty. In this paper, a RE powered cellular network is investigated. For a one-day operation cycle, the cellular network aims to reduce energy procurement costs from the smart grid by optimizing the amounts of energy procured from their locally deployed RE sources as well as from the smart grid. In addition to that, it aims to determine the extra amount of energy to be sold to the electrical grid at each time period. Chance constrained optimization is first proposed to deal with the randomness in the RE generation. Then, to make the optimization problem tractable, two well- know convex approximation methods, namely; Chernoff and Chebyshev based-approaches, are analyzed in details. Numerical results investigate the optimized energy procurement for various daily scenarios and compare between the performances of the employed convex approximation approaches.

  6. On Optimal Geographical Caching in Heterogeneous Cellular Networks

    NARCIS (Netherlands)

    Serbetci, Berksan; Goseling, Jasper

    2017-01-01

    In this work we investigate optimal geographical caching in heterogeneous cellular networks where different types of base stations (BSs) have different cache capacities. Users request files from a content library according to a known probability distribution. The performance metric is the total hit

  7. Multi-operator collaboration for green cellular networks under roaming price consideration

    KAUST Repository

    Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim

    2014-01-01

    This paper investigates the collaboration between multiple mobile operators to optimize the energy efficiency of cellular networks. Our framework studies the case of LTE-Advanced networks deployed in the same area and owning renewable energy generators. The objective is to reduce the CO2 emissions of cellular networks via collaborative techniques and using base station sleeping strategy while respecting the network quality of service. Low complexity and practical algorithm is employed to achieve green goals during low traffic periods. Cooperation decision criteria are also established basing on derived roaming prices and profit gains of competitive mobile operators. Our numerical results show a significant save in terms of CO2 compared to the non-collaboration case and that cooperative mobile operator exploiting renewables are more awarded than traditional operators.

  8. Multi-operator collaboration for green cellular networks under roaming price consideration

    KAUST Repository

    Ghazzai, Hakim

    2014-09-01

    This paper investigates the collaboration between multiple mobile operators to optimize the energy efficiency of cellular networks. Our framework studies the case of LTE-Advanced networks deployed in the same area and owning renewable energy generators. The objective is to reduce the CO2 emissions of cellular networks via collaborative techniques and using base station sleeping strategy while respecting the network quality of service. Low complexity and practical algorithm is employed to achieve green goals during low traffic periods. Cooperation decision criteria are also established basing on derived roaming prices and profit gains of competitive mobile operators. Our numerical results show a significant save in terms of CO2 compared to the non-collaboration case and that cooperative mobile operator exploiting renewables are more awarded than traditional operators.

  9. VLSI Design of a Variable-Length FFT/IFFT Processor for OFDM-Based Communication Systems

    Directory of Open Access Journals (Sweden)

    Jen-Chih Kuo

    2003-12-01

    Full Text Available The technique of {orthogonal frequency division multiplexing (OFDM} is famous for its robustness against frequency-selective fading channel. This technique has been widely used in many wired and wireless communication systems. In general, the {fast Fourier transform (FFT} and {inverse FFT (IFFT} operations are used as the modulation/demodulation kernel in the OFDM systems, and the sizes of FFT/IFFT operations are varied in different applications of OFDM systems. In this paper, we design and implement a variable-length prototype FFT/IFFT processor to cover different specifications of OFDM applications. The cached-memory FFT architecture is our suggested VLSI system architecture to design the prototype FFT/IFFT processor for the consideration of low-power consumption. We also implement the twiddle factor butterfly {processing element (PE} based on the {{coordinate} rotation digital computer (CORDIC} algorithm, which avoids the use of conventional multiplication-and-accumulation unit, but evaluates the trigonometric functions using only add-and-shift operations. Finally, we implement a variable-length prototype FFT/IFFT processor with TSMC 0.35 μm 1P4M CMOS technology. The simulations results show that the chip can perform (64-2048-point FFT/IFFT operations up to 80 MHz operating frequency which can meet the speed requirement of most OFDM standards such as WLAN, ADSL, VDSL (256∼2K, DAB, and 2K-mode DVB.

  10. Velocity-Aware Handover Management in Two-Tier Cellular Networks

    KAUST Repository

    Arshad, Rabe

    2017-01-19

    While network densification is considered an important solution to cater the ever-increasing capacity demand, its effect on the handover (HO) rate is overlooked. In dense 5G networks, HO delays may neutralize or even negate the gains offered by network densification. Hence, user mobility imposes a nontrivial challenge to harvest capacity gains via network densification. In this paper, we propose a velocity-aware HO management scheme for two-tier downlink cellular network to mitigate the HO effect on the foreseen densification throughput gains. The proposed HO scheme sacrifices the best base station (BS) connectivity, by skipping HO to some BSs along the user trajectory, to maintain longer connection durations and reduce HO rates. Furthermore, the proposed scheme enables cooperative BS service and strongest interference cancellation to compensate for skipping the best connectivity. To this end, we consider different HO skipping scenarios and develop a velocity-aware mathematical model, via stochastic geometry, to quantify the performance of the proposed HO schemes in terms of the coverage probability and user throughput. The results highlight the HO rate problem in dense cellular environments and show the importance of the proposed HO schemes. Finally, the value of BS cooperation along with handover skipping is quantified for different user mobility profiles.

  11. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Science.gov (United States)

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  12. A Pilot-Pattern Based Algorithm for MIMO-OFDM Channel Estimation

    Directory of Open Access Journals (Sweden)

    Guomin Li

    2016-12-01

    Full Text Available An improved pilot pattern algorithm for facilitating the channel estimation in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM systems is proposed in this paper. The presented algorithm reconfigures the parameter in the least square (LS algorithm, which belongs to the space-time block-coded (STBC category for channel estimation in pilot-based MIMO-OFDM system. Simulation results show that the algorithm has better performance in contrast to the classical single symbol scheme. In contrast to the double symbols scheme, the proposed algorithm can achieve nearly the same performance with only half of the complexity of the double symbols scheme.

  13. Boltzmann learning of parameters in cellular neural networks

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    1992-01-01

    The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...

  14. Analytic discrete cosine harmonic wavelet transform based OFDM ...

    Indian Academy of Sciences (India)

    ADCHWT_OFDM) has been proposed in this paper. Analytic DCHWT has been realized by applying DCHWT to the original signal and to its Hilbert transform. ADCHWT has been found to be computationally efficient and very effective in improving ...

  15. Turbo Decision Aided Receivers for Clipping Noise Mitigation in Coded OFDM

    Directory of Open Access Journals (Sweden)

    Declercq David

    2008-01-01

    Full Text Available Abstract Orthogonal frequency division multiplexing (OFDM is the modulation technique used in most of the high-rate communication standards. However, OFDM signals exhibit high peak average to power ratio (PAPR that makes them particularly sensitive to nonlinear distortions caused by high-power amplifiers. Hence, the amplifier needs to operate at large output backoff, thereby decreasing the average efficiency of the transmitter. One way to reduce PAPR consists in clipping the amplitude of the OFDM signal introducing an additional noise that degrades the overall system performance. In that case, the receiver needs to set up an algorithm that compensates this clipping noise. In this paper, we propose three new iterative receivers with growing complexity and performance that operate at severe clipping: the first and simplest receiver uses a Viterbi algorithm as channel decoder whereas the other two implement a soft-input soft-output (SISO decoder. Each soft receiver is analyzed through EXIT charts for different mappings. Finally, the performances of the receivers are simulated on both short time-varying channel and AWGN channel.

  16. Turbo Decision Aided Receivers for Clipping Noise Mitigation in Coded OFDM

    Directory of Open Access Journals (Sweden)

    Maxime Colas

    2008-02-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM is the modulation technique used in most of the high-rate communication standards. However, OFDM signals exhibit high peak average to power ratio (PAPR that makes them particularly sensitive to nonlinear distortions caused by high-power amplifiers. Hence, the amplifier needs to operate at large output backoff, thereby decreasing the average efficiency of the transmitter. One way to reduce PAPR consists in clipping the amplitude of the OFDM signal introducing an additional noise that degrades the overall system performance. In that case, the receiver needs to set up an algorithm that compensates this clipping noise. In this paper, we propose three new iterative receivers with growing complexity and performance that operate at severe clipping: the first and simplest receiver uses a Viterbi algorithm as channel decoder whereas the other two implement a soft-input soft-output (SISO decoder. Each soft receiver is analyzed through EXIT charts for different mappings. Finally, the performances of the receivers are simulated on both short time-varying channel and AWGN channel.

  17. Power Control for D2D Underlay Cellular Networks With Channel Uncertainty

    KAUST Repository

    Memmi, Amen; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    Device-to-device (D2D) communications underlying the cellular infrastructure are a technology that have been proposed recently as a promising solution to enhance cellular network capabilities. It improves spectrum utilization, overall throughput

  18. Stability analysis for cellular neural networks with variable delays

    International Nuclear Information System (INIS)

    Zhang Qiang; Wei Xiaopeng; Xu Jin

    2006-01-01

    Some sufficient conditions for the global exponential stability of cellular neural networks with variable delay are obtained by means of a method based on delay differential inequality. The method, which does not make use of Lyapunov functionals, is simple and effective for the stability analysis of neural networks with delay. Some previously established results in the literature are shown to be special cases of the presented result

  19. A Correlating Receiver for OFDM at Low SNR

    NARCIS (Netherlands)

    Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    By extending OFDM symbols, acceptable BER performance can be achieved at low SNRs. Two alternative differential receiver architectures are presented, a receiver based on a FX correlator (Fourier transformation before correlation) and based on an XF correlator (correlation before Fourier

  20. 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation.

    Science.gov (United States)

    Sun, Xiaobin; Zhang, Zhenyu; Chaaban, Anas; Ng, Tien Khee; Shen, Chao; Chen, Rui; Yan, Jianchang; Sun, Haiding; Li, Xiaohang; Wang, Junxi; Li, Jinmin; Alouini, Mohamed-Slim; Ooi, Boon S

    2017-09-18

    A demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm and light output power of 190 μW, at 7 V, with a special silica gel lens on top of it. A -3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment. 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing directions of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link. The measured bit-error rate (BER) of 2.8 ×10 -4 and 2.4 ×10 -4 , respectively, are well below the forward error correction (FEC) criterion of 3.8 ×10 -3 . The demonstrated high data-rate OFDM-based UVB communication link paves the way for realizing high-speed non-line-of-sight free-space optical communications.

  1. Two-level modulation scheme to reduce latency for optical mobile fronthaul networks.

    Science.gov (United States)

    Sung, Jiun-Yu; Chow, Chi-Wai; Yeh, Chien-Hung; Chang, Gee-Kung

    2016-10-31

    A system using optical two-level orthogonal-frequency-division-multiplexing (OFDM) - amplitude-shift-keying (ASK) modulation is proposed and demonstrated to reduce the processing latency for the optical mobile fronthaul networks. At the proposed remote-radio-head (RRH), the high data rate OFDM signal does not need to be processed, but is directly launched into a high speed photodiode (HSPD) and subsequently emitted by an antenna. Only a low bandwidth PD is needed to recover the low data rate ASK control signal. Hence, it is simple and provides low-latency. Furthermore, transporting the proposed system over the already deployed optical-distribution-networks (ODNs) of passive-optical-networks (PONs) is also demonstrated with 256 ODN split-ratios.

  2. All-optical signal processing of OTDM and OFDM signals based on time-domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Clausen, Anders; Guan, Pengyu; Mulvad, Hans Christian Hansen

    2014-01-01

    All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented.......All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented....

  3. Interference Cancellation Using Replica Signal for HTRCI-MIMO/OFDM in Time-Variant Large Delay Spread Longer Than Guard Interval

    Directory of Open Access Journals (Sweden)

    Yuta Ida

    2012-01-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM and multiple-input multiple-output (MIMO are generally known as the effective techniques for high data rate services. In MIMO/OFDM systems, the channel estimation (CE is very important to obtain an accurate channel state information (CSI. However, since the orthogonal pilot-based CE requires the large number of pilot symbols, the total transmission rate is degraded. To mitigate this problem, a high time resolution carrier interferometry (HTRCI for MIMO/OFDM has been proposed. In wireless communication systems, if the maximum delay spread is longer than the guard interval (GI, the system performance is significantly degraded due to the intersymbol interference (ISI and intercarrier interference (ICI. However, the conventional HTRCI-MIMO/OFDM does not consider the case with the time-variant large delay spread longer than the GI. In this paper, we propose the ISI and ICI compensation methods for a HTRCI-MIMO/OFDM in the time-variant large delay spread longer than the GI.

  4. Optimal power allocation for SM-OFDM systems with imperfect channel estimation

    International Nuclear Information System (INIS)

    Yu, Feng; Song, Lijun; Lei, Xia; Xiao, Yue; Jiang, Zhao Xiang; Jin, Maozhu

    2016-01-01

    This paper analyses the bit error rate (BER) of the spatial modulation orthogonal frequency division multiplex (SM-OFDM) system and derives the optimal power allocation between the data and the pilot symbols by minimizing the upper bound for the BER operating with imperfect channel estimation. Furthermore, we prove the proposed optimal power allocation scheme applies to all generalized linear interpolation techniques with the minimum mean square error (MMSE) channel estimation . Simulation results show that employing the proposed optimal power allocation provides a substantial gain in terms of the average BER performance for the SM-OFDM system compared to its equal-power-allocation counterpart.

  5. Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser.

    Science.gov (United States)

    Li, Fan; Yu, Jianjun; Fang, Yuan; Dong, Ze; Li, Xinying; Chen, Lin

    2014-04-07

    We experimentally demonstrated a 256-ary quadrature amplitude modulation (256QAM) direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) transmission system utilizing a cost-effective directly modulated laser (DML). Intra-symbol frequency-domain averaging (ISFA) is applied to suppress in-band noise while the channel response estimation and Discrete Fourier Transform-spread (DFT-spread) is used to reduce the peak-to-average power ratio (PAPR) of the transmitted OFDM signal. The bit-error ratio (BER) of 15-Gbit/s 256QAM-OFDM signal has been measured after 20-km SSMF transmission that is less than 7% forward-error-correction (FEC) threshold of 3.8 × 10(-3) as the launch power into fiber is set at 6dBm. For 11.85-Gbit/s 256QAM-OFDM signal, with the aid of ISFA-based channel estimation and PAPR reduction enabled by DFT-spread, the BER after 20-km SSMF transmission can be improved from 6.4 × 10(-3) to 6.8 × 10(-4) when the received optical power is -6dBm.

  6. Closed-Form Algorithm for 3-D Near-Field OFDM Signal Localization under Uniform Circular Array.

    Science.gov (United States)

    Su, Xiaolong; Liu, Zhen; Chen, Xin; Wei, Xizhang

    2018-01-14

    Due to its widespread application in communications, radar, etc., the orthogonal frequency division multiplexing (OFDM) signal has become increasingly urgent in the field of localization. Under uniform circular array (UCA) and near-field conditions, this paper presents a closed-form algorithm based on phase difference for estimating the three-dimensional (3-D) location (azimuth angle, elevation angle, and range) of the OFDM signal. In the algorithm, considering that it is difficult to distinguish the frequency of the OFDM signal's subcarriers and the phase-based method is always affected by errors of the frequency estimation, this paper employs sparse representation (SR) to obtain the super-resolution frequencies and the corresponding phases of subcarriers. Further, as the phase differences of the adjacent sensors including azimuth angle, elevation angle and range parameters can be expressed as indefinite equations, the near-field OFDM signal's 3-D location is obtained by employing the least square method, where the phase differences are based on the average of the estimated subcarriers. Finally, the performance of the proposed algorithm is demonstrated by several simulations.

  7. A two layer chaotic encryption scheme of secure image transmission for DCT precoded OFDM-VLC transmission

    Science.gov (United States)

    Wang, Zhongpeng; Chen, Fangni; Qiu, Weiwei; Chen, Shoufa; Ren, Dongxiao

    2018-03-01

    In this paper, a two-layer image encryption scheme for a discrete cosine transform (DCT) precoded orthogonal frequency division multiplexing (OFDM) visible light communication (VLC) system is proposed. Firstly, in the proposed scheme the transmitted image is first encrypted by a chaos scrambling sequence,which is generated from the hybrid 4-D hyper- and Arnold map in the upper-layer. After that, the encrypted image is converted into digital QAM modulation signal, which is re-encrypted by chaos scrambling sequence based on Arnold map in physical layer to further enhance the security of the transmitted image. Moreover, DCT precoding is employed to improve BER performance of the proposed system and reduce the PAPR of OFDM signal. The BER and PAPR performances of the proposed system are evaluated by simulation experiments. The experiment results show that the proposed two-layer chaos scrambling schemes achieve image secure transmission for image-based OFDM VLC. Furthermore, DCT precoding can reduce the PAPR and improve the BER performance of OFDM-based VLC.

  8. EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation.

    Science.gov (United States)

    Chen, Hsing-Yu; Wei, Chia-Chien; Lu, I-Cheng; Chen, Yu-Chao; Chu, Hsuan-Hao; Chen, Jyehong

    2014-06-16

    In this study, a technique was developed to compensate for nonlinear distortion through cancelling subcarrier-to-subcarrier intermixing interference (SSII) in an electroabsorption modulator (EAM)-based orthogonal frequency-division multiplexing (OFDM) transmission system. The nonlinear distortion to be compensated for is induced by both EAM nonlinearity and fiber dispersion. Because an OFDM signal features an inherently high peak-to-average power ratio, a trade-off exists between the optical modulation index (OMI) and modulator nonlinearity. Therefore, the nonlinear distortion limits the operational tolerance of the bias voltage and the driving power to a small region. After applying the proposed SSII cancellation, the OMI of an OFDM signal was increased yielding only a small increment of nonlinear distortion, and the tolerance region of the operational conditions was also increased. By employing the proposed scheme, this study successfully demonstrates 50-Gbps OFDM transmission over 100-km dispersion-uncompensated single-mode fiber based on a single 10-GHz EAM.

  9. Two orthogonal carriers assisted 101-Gb/s dual-band DDO-OFDM transmission over 320-km SSMF.

    Science.gov (United States)

    Chen, Yiqin; Hu, Rong; Yang, Qi; Luo, Ming; Yu, Shaohua; Li, Wei

    2015-05-04

    We propose a novel fading-free direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) scheme for 100-Gb/s medium-reach transmission. In the proposed scheme, we adopts two bands spaced at 100-GHz to accommodate the same complex-valued OFDM signal. However, the signals are coupled with a pair of orthogonal optical carriers. By doing so, real and imaginary parts of the complex-valued OFDM signal can be recovered from the two bands, respectively. We also propose a cost-effective scheme to generate such DDO-OFDM signal using an optical 90-degree hybrid and an optical I/Q modulator. The advantage of the proposed method is that it is fading-free, and the electrical spectral efficiency (SE) is doubled compared to traditional direct-detection method. Finally, we experimentally demonstrated a 101-Gb/s dual-band transmission over 320-km SSMF within only 30-GHz electrical bandwidth, which is highly competitive in both capacity and cost.

  10. D-BLAST OFDM with Channel Estimation

    Directory of Open Access Journals (Sweden)

    Du Jianxuan

    2004-01-01

    Full Text Available Multiple-input and multiple-output (MIMO systems formed by multiple transmit and receive antennas can improve performance and increase capacity of wireless communication systems. Diagonal Bell Laboratories Layered Space-Time (D-BLAST structure offers a low-complexity solution for realizing the attractive capacity of MIMO systems. However, for broadband wireless communications, channel is frequency-selective and orthogonal frequency division multiplexing (OFDM has to be used with MIMO techniques to reduce system complexity. In this paper, we investigate D-BLAST for MIMO-OFDM systems. We develop a layerwise channel estimation algorithm which is robust to channel variation by exploiting the characteristic of the D-BLAST structure. Further improvement is made by subspace tracking to considerably reduce the error floor. Simulation results show that the layerwise estimators require 1 dB less signal-to-noise ratio (SNR than the traditional blockwise estimator for a word error rate (WER of when Doppler frequency is 40 Hz. Among the layerwise estimators, the subspace-tracking estimator provides a 0.8 dB gain for WER with 200 Hz Doppler frequency compared with the DFT-based estimator.

  11. Subcarrier-based Processing for Clutter Rejection in CP-OFDM Signal-based Passive Radar Using SFN Configuration (in English

    Directory of Open Access Journals (Sweden)

    Yi Jian-xin

    2013-03-01

    Full Text Available Clutter rejection is a key technique used by passive radars for target detection. Especially when using Single Frequency Network (SFN configuration, the multipath clutter and ground clutter increase several times more than during a single illuminator situation, which means that the clutter extends in both the spatial and temporal dimensions. The high amount of clutter occupies numerous degrees of freedom when conventional spatial or temporal processing is used, leading to a large array requirement, a huge computational cost, or even a complete failure. This paper investigates a novel subcarrier-based processing technique that is tailored for Orthogonal Frequency Division Multiplex (OFDM modulation with a Cyclic Prefix (CP-OFDM to avoid the abovementioned predicament. The algorithm principle is initially illustrated and followed by a discussion about the unique characteristics of Subcarrier-based Spatial Adaptive Processing (SSAP, which include the Doppler response and its unusual main-lobe clutter case. Then, the robustness is researched by evaluating the performance under relaxed basic assumptions. The conclusions are demonstrated by conducting test using simulated and real data sets.

  12. Throughput of Type II HARQ-OFDM/TDM Using MMSE-FDE in a Multipath Channel

    Directory of Open Access Journals (Sweden)

    Haris Gacanin

    2009-01-01

    Full Text Available In type II hybrid ARQ (HARQ schemes, the uncoded information bits are transmitted first, while the error correction parity bits are sent upon request. Consequently, frequency diversity cannot be exploited during the first transmission. In this paper, we present the use of OFDM/TDM with MMSE-FDE and type II HARQ to increase throughput of OFDM due to frequency diversity gain.

  13. A Biologically-Inspired Power Control Algorithm for Energy-Efficient Cellular Networks

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Choi

    2016-03-01

    Full Text Available Most of the energy used to operate a cellular network is consumed by a base station (BS, and reducing the transmission power of a BS can therefore afford a substantial reduction in the amount of energy used in a network. In this paper, we propose a distributed transmit power control (TPC algorithm inspired by bird flocking behavior as a means of improving the energy efficiency of a cellular network. Just as each bird in a flock attempts to match its velocity with the average velocity of adjacent birds, in the proposed algorithm, each mobile station (MS in a cell matches its rate with the average rate of the co-channel MSs in adjacent cells by controlling the transmit power of its serving BS. We verify that this bio-inspired TPC algorithm using a local rate-average process achieves an exponential convergence and maximizes the minimum rate of the MSs concerned. Simulation results show that the proposed TPC algorithm follows the same convergence properties as the flocking algorithm and also effectively reduces the power consumption at the BSs while maintaining a low outage probability as the inter-cell interference increases; in so doing, it significantly improves the energy efficiency of a cellular network.

  14. Design and performance investigation of LDPC-coded upstream transmission systems in IM/DD OFDM-PONs

    Science.gov (United States)

    Gong, Xiaoxue; Guo, Lei; Wu, Jingjing; Ning, Zhaolong

    2016-12-01

    In Intensity-Modulation Direct-Detection (IM/DD) Orthogonal Frequency Division Multiplexing Passive Optical Networks (OFDM-PONs), aside from Subcarrier-to-Subcarrier Intermixing Interferences (SSII) induced by square-law detection, the same laser frequency for data sending from Optical Network Units (ONUs) results in ONU-to-ONU Beating Interferences (OOBI) at the receiver. To mitigate those interferences, we design a Low-Density Parity Check (LDPC)-coded and spectrum-efficient upstream transmission system. A theoretical channel model is also derived, in order to analyze the detrimental factors influencing system performances. Simulation results demonstrate that the receiver sensitivity is improved 3.4 dB and 2.5 dB under QPSK and 8QAM, respectively, after 100 km Standard Single-Mode Fiber (SSMF) transmission. Furthermore, the spectrum efficiency can be improved by about 50%.

  15. Analysis of Paper reduction schemes to develop selection criteria for ofdm signals

    International Nuclear Information System (INIS)

    Abro, F.R.

    2015-01-01

    This paper presents a review of different PAPR (Peak to Average Power Ratio) reduction schemes of OFDM (Orthogonal Frequency Division Multiplexing) signals. The schemes that have been considered include Clipping and Filtering, Coding, ACE (Active Contstellation Extension), SLM (Selected Mapping), PTS (Partial Transmit Sequence), TI (Tone Injection) and TR (Tone Reservation). A comparative analysis has been carried out qualitatively. It has been demonstrated how these schemes can be combined with MIMO (Multiple Input Multiple Output) technologies. Finally, criteria for selection of PAPR reduction schemes of OFDM systems are discussed. (author)

  16. Analytical modeling of mode selection and power control for underlay D2D communication in cellular networks

    KAUST Repository

    Elsawy, Hesham

    2014-11-01

    Device-to-device (D2D) communication enables the user equipments (UEs) located in close proximity to bypass the cellular base stations (BSs) and directly connect to each other, and thereby, offload traffic from the cellular infrastructure. D2D communication can improve spatial frequency reuse and energy efficiency in cellular networks. This paper presents a comprehensive and tractable analytical framework for D2D-enabled uplink cellular networks with a flexible mode selection scheme along with truncated channel inversion power control. The developed framework is used to analyze and understand how the underlaying D2D communication affects the cellular network performance. Through comprehensive numerical analysis, we investigate the expected performance gains and provide guidelines for selecting the network parameters.

  17. Global exponential stability for nonautonomous cellular neural networks with delays

    International Nuclear Information System (INIS)

    Zhang Qiang; Wei Xiaopeng; Xu Jin

    2006-01-01

    In this Letter, by utilizing Lyapunov functional method and Halanay inequalities, we analyze global exponential stability of nonautonomous cellular neural networks with delay. Several new sufficient conditions ensuring global exponential stability of the network are obtained. The results given here extend and improve the earlier publications. An example is given to demonstrate the effectiveness of the obtained results

  18. Fundamental Tradeoffs among Reliability, Latency and Throughput in Cellular Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Mogensen, Preben; Pedersen, Klaus I.

    2014-01-01

    We address the fundamental tradeoffs among latency, reliability and throughput in a cellular network. The most important elements influencing the KPIs in a 4G network are identified, and the inter-relationships among them is discussed. We use the effective bandwidth and the effective capacity......, in which latency and reliability will be two of the principal KPIs....

  19. Opportunistic error correction for OFDM-based DVB systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2013-01-01

    DVB-T2 (second generation terrestrial digital video broadcasting) employs LDPC (Low Density Parity Check) codes combined with BCH (Bose-Chaudhuri-Hocquengham) codes, which has a better performance in comparison to convolutional and Reed-Solomon codes used in other OFDM-based DVB systems. However,

  20. A Robust Cross Coding Scheme for OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2010-01-01

    In wireless OFDM-based systems, coding jointly over all the sub-carriers simultaneously performs better than coding separately per sub-carrier. However, the joint coding is not always optimal because its achievable channel capacity (i.e. the maximum data rate) is inversely proportional to the

  1. Distributed Velocity-Dependent Protocol for Multihop Cellular Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deepthi Chander

    2009-01-01

    Full Text Available Cell phones are embedded with sensors form a Cellular Sensor Network which can be used to localize a moving event. The inherent mobility of the application and of the cell phone users warrants distributed structure-free data aggregation and on-the-fly routing. We propose a Distributed Velocity-Dependent (DVD protocol to localize a moving event using a Multihop Cellular Sensor Network (MCSN. DVD is based on a novel form of connectivity determined by the waiting time of nodes for a Random Waypoint (RWP distribution of cell phone users. This paper analyzes the time-stationary and spatial distribution of the proposed waiting time to explain the superior event localization and delay performances of DVD over the existing Randomized Waiting (RW protocol. A sensitivity analysis is also performed to compare the performance of DVD with RW and the existing Centralized approach.

  2. Optimized Energy Efficiency and Spectral Efficiency Resource Allocation Strategies for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr, M.; Amin, Osama; Alouini, Mohamed-Slim

    2016-01-01

    Multi-teir hetrogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-teir architecture known as Phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that computes the SE and EE resource allocation for Phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and the ration of Phantom cellresource blocks to the total number or resource blocks. We aim to investigate the effect of some system parameters to acheive improved SE or EE performance at a non-significant loss in EE or SE performance, respectively. It was found that the system parameters can be tuned so that the EE solution does not yield a significant loss in the SE performance.

  3. Optimized Energy Efficiency and Spectral Efficiency Resource Allocation Strategies for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr, M.

    2016-01-06

    Multi-teir hetrogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-teir architecture known as Phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that computes the SE and EE resource allocation for Phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and the ration of Phantom cellresource blocks to the total number or resource blocks. We aim to investigate the effect of some system parameters to acheive improved SE or EE performance at a non-significant loss in EE or SE performance, respectively. It was found that the system parameters can be tuned so that the EE solution does not yield a significant loss in the SE performance.

  4. Radio resource management for mobile traffic offloading in heterogeneous cellular networks

    CERN Document Server

    Wu, Yuan; Huang, Jianwei; Shen, Xuemin (Sherman)

    2017-01-01

    This SpringerBrief offers two concrete design examples for traffic offloading. The first is an optimal resource allocation for small-cell based traffic offloading that aims at minimizing mobile users’ data cost. The second is an optimal resource allocation for device-to-device assisted traffic offloading that also minimizes the total energy consumption and cellular link usage (while providing an overview of the challenging issues). Both examples illustrate the importance of proper resource allocation to the success of traffic offloading, show the consequent performance advantages of executing optimal resource allocation, and present the methodologies to achieve the corresponding optimal offloading solution for traffic offloading in heterogeneous cellular networks. The authors also include an overview of heterogeneous cellular networks and explain different traffic offloading paradigms ranging from uplink traffic offloading through small cells to downlink traffic offloading via mobile device-to-device cooper...

  5. Performance of adaptive DD-OFDM multicore fiber links and its relation with intercore crosstalk.

    Science.gov (United States)

    Alves, Tiago M F; Luís, Ruben S; Puttnam, Benjamin J; Cartaxo, Adolfo V T; Awaji, Yoshinari; Wada, Naoya

    2017-07-10

    Adaptive direct-detection (DD) orthogonal frequency-division multiplexing (OFDM) is proposed to guarantee signal quality over time in weakly-coupled homogenous multicore fiber (MCFs) links impaired by stochastic intercore crosstalk (ICXT). For the first time, the received electrical power of the ICXT and the performance of the adaptive DD-OFDM MCF link are experimentally monitored quasi-simultaneously over a 210 hour period. Experimental results show that the time evolution of the error vector magnitude due to the ICXT can be suitably estimated from the normalized power of the detected crosstalk. The detected crosstalk results from the beating between the carrier in the test core and ICXT originating from the carrier and modulated signal from interfering core. The results show that the operation of DD-OFDM systems employing fixed modulation can be severely impaired by the presence of ICXT that may unpredictable vary in both power and frequency. The system may suffer from deleterious impact of moderate ICXT levels over a time duration of several hours or from peak ICXT levels occurring over a number of minutes. Such power fluctuations can lead to large variations in bit error ratio (BER) for static modulation schemes. Here, we show that BER fluctuations may be minimized by the use of adaptive modulation techniques and that in particular, the adaptive OFDM is a viable solution to guarantee link quality in MCF-based systems. An experimental model of an adaptive DD-OFDM MCF link shows an average throughput of 12 Gb/s that represents a reduction of only 9% compared to the maximum throughput measured without ICXT and an improvement of 23% relative to throughput obtained with static modulation.

  6. 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation

    KAUST Repository

    Sun, Xiaobin

    2017-09-14

    A demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm and light output power of 190 μW, at 7 V, with a special silica gel lens on top of it. A −3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment. 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing directions of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link. The measured bit-error rate (BER) of 2.8 × 10−4 and 2.4 × 10−4, respectively, are well below the forward error correction (FEC) criterion of 3.8 × 10−3. The demonstrated high data-rate OFDM-based UVB communication link paves the way for realizing high-speed non-line-of-sight free-space optical communications.

  7. 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation

    KAUST Repository

    Sun, Xiaobin; Zhang, Zhenyu; Chaaban, Anas; Ng, Tien Khee; Shen, Chao; Chen, Rui; Yan, Jianchang; Sun, Haiding; Li, Xiaohang; Wang, Junxi; Li, Jinmin; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    A demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm and light output power of 190 μW, at 7 V, with a special silica gel lens on top of it. A −3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment. 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing directions of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link. The measured bit-error rate (BER) of 2.8 × 10−4 and 2.4 × 10−4, respectively, are well below the forward error correction (FEC) criterion of 3.8 × 10−3. The demonstrated high data-rate OFDM-based UVB communication link paves the way for realizing high-speed non-line-of-sight free-space optical communications.

  8. Experimental demonstration of high spectral efficient 4 × 4 MIMO SCMA-OFDM/OQAM radio over multi-core fiber system.

    Science.gov (United States)

    Liu, Chang; Deng, Lei; He, Jiale; Li, Di; Fu, Songnian; Tang, Ming; Cheng, Mengfan; Liu, Deming

    2017-07-24

    In this paper, 4 × 4 multiple-input multiple-output (MIMO) radio over 7-core fiber system based on sparse code multiple access (SCMA) and OFDM/OQAM techniques is proposed. No cyclic prefix (CP) is required by properly designing the prototype filters in OFDM/OQAM modulator, and non-orthogonally overlaid codewords by using SCMA is help to serve more users simultaneously under the condition of using equal number of time and frequency resources compared with OFDMA, resulting in the increase of spectral efficiency (SE) and system capacity. In our experiment, 11.04 Gb/s 4 × 4 MIMO SCMA-OFDM/OQAM signal is successfully transmitted over 20 km 7-core fiber and 0.4 m air distance in both uplink and downlink. As a comparison, 6.681 Gb/s traditional MIMO-OFDM signal with the same occupied bandwidth has been evaluated for both uplink and downlink transmission. The experimental results show that SE could be increased by 65.2% with no bit error rate (BER) performance degradation compared with the traditional MIMO-OFDM technique.

  9. TNF-α inhibits trophoblast integration into endothelial cellular networks.

    Science.gov (United States)

    Xu, B; Nakhla, S; Makris, A; Hennessy, A

    2011-03-01

    Preeclampsia has been linked to shallow trophoblast invasion and failure of uterine spiral artery transformation. Interaction between trophoblast cells and maternal uterine endothelium is critically important for this remodelling. The aim of our study was to investigate the effect of TNF-α on the interactions of trophoblast-derived JEG-3 cells into capillary-like cellular networks. We have employed an in vitro trophoblast-endothelial cell co-culture model to quantify trophoblast integration into endothelial cellular networks and to investigate the effects of TNF-α. Controlled co-cultures were also treated with anti-TNF-α antibody (5 μg/ml) to specifically block the effect of TNF-α. The invasion was evaluated by performing quantitative PCR (Q-PCR) to analyse gene expression of matrix metalloproteinases-2 (MMP-2), MMP-9, tissue inhibitor of matrix metalloproteinase (TIMP)-1, integrins (α(1)β(1) and α(6)β(4)), plasminogen activator inhibitor (PAI)-1, E-cadherin and VE-cadherin. JEG-3 cell integration into endothelial networks was significantly inhibited by exogenous TNF-α. The inhibition was observed in the range of 0.2-5 ng/ml, to a maximum 56% inhibition at the highest concentration. This inhibition was reversed by anti-TNF-α antibody. Q-PCR analysis showed that mRNA expression of integrins α(1)β(1) and MMP-2 was significantly decreased. VE-cadherin mRNA expression was significantly up-regulated (32-80%, p integration into maternal endothelial cellular networks, and this process involves the inhibition of MMP-2 and a failure of integrins switch from α(6)β(4) to α(1)β(1.) These molecular correlations reflect the changes identified in human preeclampsia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Next-Generation Environment-Aware Cellular Networks: Modern Green Techniques and Implementation Challenges

    KAUST Repository

    Ghazzai, Hakim

    2016-09-16

    Over the last decade, mobile communications have been witnessing a noteworthy increase of data traffic demand that is causing an enormous energy consumption in cellular networks. The reduction of their fossil fuel consumption in addition to the huge energy bills paid by mobile operators is considered as the most important challenges for the next-generation cellular networks. Although most of the proposed studies were focusing on individual physical layer power optimizations, there is a growing necessity to meet the green objective of fifth-generation cellular networks while respecting the user\\'s quality of service. This paper investigates four important techniques that could be exploited separately or together in order to enable wireless operators achieve significant economic benefits and environmental savings: 1) the base station sleeping strategy; 2) the optimized energy procurement from the smart grid; 3) the base station energy sharing; and 4) the green networking collaboration between competitive mobile operators. The presented simulation results measure the gain that could be obtained using these techniques compared with that of traditional scenarios. Finally, this paper discusses the issues and challenges related to the implementations of these techniques in real environments. © 2016 IEEE.

  11. Operation of Long-Haul Non-LOS Wireless Tactical Networks

    National Research Council Canada - National Science Library

    Zachariadis, Christoforos

    2006-01-01

    .... Proof of concept for this capability is the NPS OFDM testbed for the research and support of the communications and collaborative processes between tactical operators within a wireless network...

  12. Neural networks and cellular automata in experimental high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B

    1988-06-01

    Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature. Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition and high combinatorial complexity since many combinations of hits or cells must be considered in order to arrive at the final tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of experimental high energy physics. It is found that such problems as track and cluster finding adapt naturally to these approaches. When large scale hard-wired connective networks become available, it will be possible to realize solutions to such problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast trigger decisions.

  13. Neural networks and cellular automata in experimental high energy physics

    International Nuclear Information System (INIS)

    Denby, B.

    1987-11-01

    Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature. Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition and high combinatorial complexity since many combinations of hits or cells must be considered in order to arrive at the final tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of experimental high physics. It is found that such problems as track and cluster finding adapt naturally to these approaches. When large scale hardwired connective networks become available, it will be possible to realize solutions to such problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast trigger decisions

  14. Neural networks and cellular automata in experimental high energy physics

    International Nuclear Information System (INIS)

    Denby, B.

    1988-01-01

    Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature. Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition and high combinatorial complexity since many combinations of hits or cells must be considered in order to arrive at the final tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of experimental high energy physics. It is found that such problems as track and cluster finding adapt naturally to these approaches. When large scale hard-wired connective networks become available, it will be possible to realize solutions to such problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast trigger decisions. (orig.)

  15. Limits on the Capacity of In-Band Full Duplex Communication in Uplink Cellular Networks

    KAUST Repository

    Randrianantenaina, Itsikiantsoa

    2016-02-26

    Simultaneous co-channel transmission and reception, denoted as in-band full duplex (FD) communication, has been promoted as an attractive solution to improve the spectral efficiency of cellular networks. However, in addition to the selfinterference problem, cross-mode interference (i.e., between uplink and downlink) imposes a major obstacle for the deployment of FD communication in cellular networks. More specifically, the downlink to uplink interference represents the performance bottleneck for FD operation due to the uplink limited transmission power and venerable operation when compared to the downlink counterpart. While the positive impact of FD communication to the downlink performance has been proved in the literature, its effect on the uplink transmission has been neglected. This paper focuses on the effect of downlink interference on the uplink transmission in FD cellular networks in order to see whether FD communication is beneficial for the uplink transmission or not, and if yes for which type of network. To quantify the expected performance gains, we derive a closed form expression of the maximum achievable uplink capacity in FD cellular networks. In contrast to the downlink capacity which always improves with FD communication, our results show that the uplink performance may improves or degrades depending on the associated network parameters. Particularly, we show that the intensity of base stations (BSs) has a more prominent effect on the uplink performance than their transmission power.

  16. Limits on the Capacity of In-Band Full Duplex Communication in Uplink Cellular Networks

    KAUST Repository

    Randrianantenaina, Itsikiantsoa; Elsawy, Hesham; Alouini, Mohamed-Slim

    2016-01-01

    Simultaneous co-channel transmission and reception, denoted as in-band full duplex (FD) communication, has been promoted as an attractive solution to improve the spectral efficiency of cellular networks. However, in addition to the selfinterference problem, cross-mode interference (i.e., between uplink and downlink) imposes a major obstacle for the deployment of FD communication in cellular networks. More specifically, the downlink to uplink interference represents the performance bottleneck for FD operation due to the uplink limited transmission power and venerable operation when compared to the downlink counterpart. While the positive impact of FD communication to the downlink performance has been proved in the literature, its effect on the uplink transmission has been neglected. This paper focuses on the effect of downlink interference on the uplink transmission in FD cellular networks in order to see whether FD communication is beneficial for the uplink transmission or not, and if yes for which type of network. To quantify the expected performance gains, we derive a closed form expression of the maximum achievable uplink capacity in FD cellular networks. In contrast to the downlink capacity which always improves with FD communication, our results show that the uplink performance may improves or degrades depending on the associated network parameters. Particularly, we show that the intensity of base stations (BSs) has a more prominent effect on the uplink performance than their transmission power.

  17. 160 Gb/s OFDM transmission utilizing an all-optical symbol generator based on PLC

    Science.gov (United States)

    Liang, Xiaojun; Qiao, Yaojun; Li, Wei; Mei, Junyao; Qin, Yi

    2009-11-01

    We demonstrate a 160 Gb/s orthogonal frequency division multiplexing (OFDM) system using an all-optical symbol generator based on planar light circuit (PLC) technology. Excellent bit error rate (BER) is observed after long-distance transmission. The proposed symbol generator fundamentally eliminates the processing speed limits introduced by electronics and is suitable for high integration, making it physically realizable to build high-speed all-optical OFDM systems with a large number of subcarriers.

  18. Collaborative Multi-Layer Network Coding For Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2014-05-01

    In this thesis, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other’s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network’s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network’s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. Furthermore, with the use of fractional cooperation, the average recovery overhead is further reduced by around 5% for the primary network and around 10% for the secondary network when a high fractional cooperation probability is used.

  19. Area Green Efficiency (AGE) of Two Tier Heterogeneous Cellular Networks

    KAUST Repository

    Tabassum, Hina

    2012-10-03

    Small cell networks are becoming standard part of the future heterogeneous networks. In this paper, we consider a two tier heterogeneous network which promises energy savings by integrating the femto and macro cellular networks and thereby reducing CO2 emissions, operational and capital expenditures (OPEX and CAPEX) whilst enhancing the area spectral efficiency (ASE) of the network. In this context, we define a performance metric which characterize the aggregate energy savings per unit macrocell area and is referred to as area green efficiency (AGE) of the two tier heterogeneous network where the femto base stations are arranged around the edge of the reference macrocell such that the configuration is referred to as femto-on-edge (FOE). The mobile users in macro and femto cellular networks are transmitting with the adaptive power while maintaining the desired link quality such that the energy aware FOE configuration mandates to (i) save energy, and (ii) reduce the co-channel interference. We present a mathematical analysis to incorporate the uplink power control mechanism adopted by the mobile users and calibrate the uplink ASE and AGE of the energy aware FOE configuration. Next, we derive analytical expressions to compute the bounds on the uplink ASE of energy aware FOE configuration and demonstrate that the derived bounds are useful in evaluating the ASE under worst and best case interference scenarios. Simulation results are produced to demonstrate the ASE and AGE improvements in comparison to macro-only and macro-femto configuration with uniformly distributed femtocells.

  20. Distributed Velocity-Dependent Protocol for Multihop Cellular Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jagyasi Bhushan

    2009-01-01

    Full Text Available Abstract Cell phones are embedded with sensors form a Cellular Sensor Network which can be used to localize a moving event. The inherent mobility of the application and of the cell phone users warrants distributed structure-free data aggregation and on-the-fly routing. We propose a Distributed Velocity-Dependent (DVD protocol to localize a moving event using a Multihop Cellular Sensor Network (MCSN. DVD is based on a novel form of connectivity determined by the waiting time of nodes for a Random Waypoint (RWP distribution of cell phone users. This paper analyzes the time-stationary and spatial distribution of the proposed waiting time to explain the superior event localization and delay performances of DVD over the existing Randomized Waiting (RW protocol. A sensitivity analysis is also performed to compare the performance of DVD with RW and the existing Centralized approach.

  1. Evolution of Positioning Techniques in Cellular Networks, from 2G to 4G

    Directory of Open Access Journals (Sweden)

    Rafael Saraiva Campos

    2017-01-01

    Full Text Available This review paper presents within a common framework the mobile station positioning methods applied in 2G, 3G, and 4G cellular networks, as well as the structure of the related 3GPP technical specifications. The evolution path through the generations is explored in three steps at each level: first, the new network elements supporting localization features are introduced; then, the standard localization methods are described; finally, the protocols providing specific support to mobile station positioning are studied. To allow a better understanding, this paper also brings a brief review of the cellular networks evolution paths.

  2. All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver

    DEFF Research Database (Denmark)

    Guan, Pengyu; Lefrancois, S.; Lillieholm, Mads

    2014-01-01

    We demonstrate an AO-OFDM system with a WSS-based transmitter and time-lens based receiver for spectral magnification, achieving BER~10-9 for a 28×10 Gbit/s DPSK AO-OFDM signal. Furthermore, the receiver performance for DPSK and DQPSK is investigated using Monte Carlo simulations....

  3. Enhancement of Localization Accuracy in Cellular Networks via Cooperative AdHoc Links

    DEFF Research Database (Denmark)

    Lhomme, Edouard; Frattasi, Simone; Figueiras, Joao

    2006-01-01

    Positioning information enables new applications for cellular phones, personal communication systems, and specialized mobile radios. The network heterogeneity emerging in the fourth generation (4G) of mobile networks can be utilized for enhancements of the location estimation accuracy...

  4. Green collaboration in cognitive radio cellular networks with roaming and spectrum trading

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2015-01-01

    In this paper, we propose a new cognitive cellular network architecture based on the coexistence of primary and secondary networks, (PN) and (SN), respectively. The PN aims to minimize its energy consumption by switching off the maximum number

  5. Impact of Nonlinear Power Amplifier on Link Adaptation Algorithm of OFDM Systems

    DEFF Research Database (Denmark)

    Das, Suvra S.; Tariq, Faisal; Rahman, Muhammad Imadur

    2007-01-01

    The impact of non linear distortion due to High Power Amplifier (HPA) on the performance of Link Adaptation (LA) - Orthogonal Frequency Division Multiplexing (OFDM) based wireless system is analyzed. The performance of both Forward Error Control Coding (FEC) en-coded and uncoded system is evaluated....... LA maximizes the throughput while maintaining a required Block Error Rate (BLER). It is found that when OFDM signal, which has high PAPR, suffers non linear distortion due to non ideal HPA, the LA fails to meet the target BLER. Detailed analysis of the distortion and effects on LA are presented...

  6. Performance Evaluation of Wavelet-Coded OFDM on a 4.9 Gbps W-Band Radio-over-Fiber Link

    DEFF Research Database (Denmark)

    Cavalcante, Lucas Costa Pereira; Rommel, Simon; Dinis, Rui

    2017-01-01

    Future generation mobile communications running on mm-wave frequencies will require great robustness against frequency selective channels. In this work we evaluate the transmission performance of 4.9 Gbps Wavelet-Coded OFDM signals on a 10 km fiber plus 58 m wireless Radio-over-Fiber link using...... a mm-wave radio frequency carrier. The results show that a 2×128 Wavelet-Coded OFDM system achieves a bit-error rate of 1e-4 with nearly 2.5 dB less signal-to-noise ratio than a convolutional coded OFDM system with equivalent spectral efficiency for 8 GHz-wide signals with 512 sub-carriers on a carrier...

  7. Experimental demonstration of 30 Gb/s direct-detection optical OFDM transmission with blind symbol synchronisation using virtual subcarriers.

    Science.gov (United States)

    Bouziane, R; Milder, P A; Erkılınç, S; Galdino, L; Kilmurray, S; Thomsen, B C; Bayvel, P; Killey, R I

    2014-02-24

    The paper investigates the performance of a blind symbol synchronisation technique for optical OFDM systems based on virtual subcarriers. The test-bed includes a real-time 16-QAM OFDM transmitter operating at a net data rate of 30.65 Gb/s using a single OFDM band with a single FPGA-DAC subsystem and demonstrates transmission over 23.3 km SSMF with direct detection at a BER of 10(-3). By comparing the performance of the proposed synchronisation scheme with that of the Schmidl and Cox algorithm, it was found that the two approaches achieve similar performance for large numbers of averaging symbols, but the performance of the proposed scheme degrades as the number of averaging symbols is reduced. The proposed technique has lower complexity and bandwidth overhead as it does not rely on training sequences. Consequently, it is suitable for implementation in high speed optical OFDM transceivers.

  8. NB-PLC channel modelling with cyclostationary noise addition & OFDM implementation for smart grid

    Science.gov (United States)

    Thomas, Togis; Gupta, K. K.

    2016-03-01

    Power line communication (PLC) technology can be a viable solution for the future ubiquitous networks because it provides a cheaper alternative to other wired technology currently being used for communication. In smart grid Power Line Communication (PLC) is used to support communication with low rate on low voltage (LV) distribution network. In this paper, we propose the channel modelling of narrowband (NB) PLC in the frequency range 5 KHz to 500 KHz by using ABCD parameter with cyclostationary noise addition. Behaviour of the channel was studied by the addition of 11KV/230V transformer, by varying load location and load. Bit error rate (BER) Vs signal to noise ratio SNR) was plotted for the proposed model by employing OFDM. Our simulation results based on the proposed channel model show an acceptable performance in terms of bit error rate versus signal to noise ratio, which enables communication required for smart grid applications.

  9. PV-Powered CoMP-Based Green Cellular Networks with a Standby Grid Supply

    Directory of Open Access Journals (Sweden)

    Abu Jahid

    2017-01-01

    Full Text Available This paper proposes a novel framework for PV-powered cellular networks with a standby grid supply and an essential energy management technique for achieving envisaged green networks. The proposal considers an emerging cellular network architecture employing two types of coordinated multipoint (CoMP transmission techniques for serving the subscribers. Under the proposed framework, each base station (BS is powered by an individual PV solar energy module having an independent storage device. BSs are also connected to the conventional grid supply for meeting additional energy demand. We also propose a dynamic inter-BS solar energy sharing policy through a transmission line for further greening the proposed network by minimizing the consumption from the grid supply. An extensive simulation-based study in the downlink of a Long-Term Evolution (LTE cellular system is carried out for evaluating the energy efficiency performance of the proposed framework. System performance is also investigated for identifying the impact of various system parameters including storage factor, storage capacity, solar generation capacity, transmission line loss, and different CoMP techniques.

  10. Complexity evaluation for the implementation of a pre-FFT equalizer in an OFDM receiver

    OpenAIRE

    Armour, SMD; Nix, AR

    2000-01-01

    A pre-FFT equalizer (PFE) has been shown to offer a significant throughput efficiency improvement when applied to an OFDM receiver. Alternatively, the PFE can be used to increase the maximum delay spread conditions under which the OFDM system can operate effectively. Due to the manner of its operation, the PFE requires the use of modified adaptation algorithms if iterative, decision directed, adaptation is required. The computational complexity required to implement a PFE and a suitable adapt...

  11. Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission.

    Science.gov (United States)

    Kao, Hsuan-Yun; Tsai, Cheng-Ting; Leong, Shan-Fong; Peng, Chun-Yen; Chi, Yu-Chieh; Huang, Jian Jang; Kuo, Hao-Chung; Shih, Tien-Tsorng; Jou, Jau-Ji; Cheng, Wood-Hi; Wu, Chao-Hsin; Lin, Gong-Ru

    2017-07-10

    For high-speed optical OFDM transmission applications, a comprehensive comparison of the homemade multi-/few-/single-transverse mode (MM/FM/SM) vertical cavity surface emitting laser (VCSEL) chips is performed. With microwave probe, the direct encoding of pre-leveled 16-QAM OFDM data and transmission over 100-m-long OM4 multi-mode-fiber (MMF) are demonstrated for intra-datacenter applications. The MM VCSEL chip with the largest emission aperture of 11 μm reveals the highest differential quantum efficiency which provides the highest optical power of 8.67 mW but exhibits the lowest encodable bandwidth of 21 GHz. In contrast, the SM VCSEL chip fabricated with the smallest emission aperture of only 3 μm provides the highest 3-dB encoding bandwidth up to 23 GHz at a cost of slight heat accumulation. After optimization, with the trade-off set between the receiving signal-to-noise ratio (SNR) and bandwidth, the FM VCSEL chip guarantees the highest optical OFDM transmission bit rate of 96 Gbit/s under back-to-back case with its strongest throughput. Among three VCSEL chips, the SM VCSEL chip with nearly modal-dispersion free feature is treated as the best candidate for carrying the pre-leveled 16-QAM OFDM data over 100-m OM4-MMF with same material structure but exhibits different oxide-layer confined gain cross-sections with one another at 80-Gbit/s with the smallest receiving power penalty of 1.77 dB.

  12. Another Approach to Save Energy in OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2010-01-01

    In this paper, we propose an energy-efficient error correction scheme to lower the power consumption of the ADCs in the OFDM system. The proposed opportunistic error correction scheme is based on resolution adaptive ADCs and fountain codes. The key idea is to reduce the dynamic range of the channel

  13. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    NARCIS (Netherlands)

    Hjorth, J.J.J.; Dawitz, J.; Kroon, T.; da Silva Dias Pires, J.H.; Dassen, V.J.; Berkhout, J.A.; Emperador Melero, J.; Nadadhur, A.G.; Alevra, M.; Toonen, R.F.G.; Heine, V.M.; Mansvelder, H.D.; Meredith, R.M.

    2016-01-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell

  14. Bayesian Recovery of Clipped OFDM Signals: A Receiver-based Approach

    KAUST Repository

    Al-Rabah, Abdullatif R.

    2013-05-01

    Recently, orthogonal frequency-division multiplexing (OFDM) has been adopted for high-speed wireless communications due to its robustness against multipath fading. However, one of the main fundamental drawbacks of OFDM systems is the high peak-to-average-power ratio (PAPR). Several techniques have been proposed for PAPR reduction. Most of these techniques require transmitter-based (pre-compensated) processing. On the other hand, receiver-based alternatives would save the power and reduce the transmitter complexity. By keeping this in mind, a possible approach is to limit the amplitude of the OFDM signal to a predetermined threshold and equivalently a sparse clipping signal is added. Then, estimating this clipping signal at the receiver to recover the original signal. In this work, we propose a Bayesian receiver-based low-complexity clipping signal recovery method for PAPR reduction. The method is able to i) effectively reduce the PAPR via simple clipping scheme at the transmitter side, ii) use Bayesian recovery algorithm to reconstruct the clipping signal at the receiver side by measuring part of subcarriers, iii) perform well in the absence of statistical information about the signal (e.g. clipping level) and the noise (e.g. noise variance), and at the same time iv is energy efficient due to its low complexity. Specifically, the proposed recovery technique is implemented in data-aided based. The data-aided method collects clipping information by measuring reliable 
data subcarriers, thus makes full use of spectrum for data transmission without the need for tone reservation. The study is extended further to discuss how to improve the recovery of the clipping signal utilizing some features of practical OFDM systems i.e., the oversampling and the presence of multiple receivers. Simulation results demonstrate the superiority of the proposed technique over other recovery algorithms. The overall objective is to show that the receiver-based Bayesian technique is highly

  15. On Low-Pass Phase Noise Mitigation in OFDM System for mmWave Communications

    DEFF Research Database (Denmark)

    Chen, Xiaoming; Fan, Wei; Zhang, Anxue

    2017-01-01

    A phase noise (PN) mitigation scheme was proposed for orthogonal frequency division multiplexing (OFDM) in a previous work. The proposed scheme does not require detailed knowledge of PN statistics and can eectively compensate the PN with sucient number of unknowns. In this paper, we analyze....... It is also shown that the PN spectral shape of the phase-lockedloop (PLL) based oscillator also aects the PN mitigation and that a larger PN may not necessarily degrade the performance of the OFDM system with PN mitigation. Simulations with realistic millimeter-wave (mmWave) PN and channel models...

  16. Low-complexity blind equalization for OFDM systems with general constellations

    KAUST Repository

    Al-Naffouri, Tareq Y.; Dahman, Ala A.; Sohail, Muhammad Sadiq; Xu, Weiyu; Hassibi, Babak

    2012-01-01

    This paper proposes a low-complexity algorithm for blind equalization of data in orthogonal frequency division multiplexing (OFDM)-based wireless systems with general constellations. The proposed algorithm is able to recover the transmitted data

  17. A simple carrier frequency offset synchronization strategy for multiple relay cooperative diversity ofdm system

    International Nuclear Information System (INIS)

    Mudassar, I.; Cheema, A.; Shoab, A.

    2014-01-01

    Cooperative Diversity Orthogonal Frequency Division Modulation (CD-OFDM) systems are very sensitive to synchronization errors. In CD-OFDM, synchronization is more complex because all cooperative nodes (CNs) have their own frequency oscillator and different channel path which results in different timing and carrier frequency offset (CFO) for each node. Consequently, each node has to be synchronized separately without affecting the synchronization process of other nodes. All CNs transmit simultaneously during cooperation phase (C-phase) and their aggregate signal is received at the destination node. A unique frequency domain (FD) preamble is proposed for each CN during C-phase that will allow simple separation of cooperative nodes. These FD multiplexed preambles make the synchronization problem identical to OFDMA uplink. OFDMA system typically uses highly complex iterative CFO estimators for uplink synchronization. However, a simple one-shot CFO estimator is proposed that uses repeated preamble of two OFDM symbol duration. The proposed method is computationally efficient because it relies on FFT operation for user separation and interference mitigation. Subsequently, time domain (TD) multiplication is used for CFO correction of each CN. Furthermore, a CD-OFDM protocol for data transmission is presented that suites the proposed estimator and harnesses spatial diversity. The proposed estimator shows good statistical results during simulations in AWGN and Rayleigh environments. During evaluation, estimator variance, mean square error and symbol error rate are used as performance measure. (author)

  18. Degenerated-Inverse-Matrix-Based Channel Estimation for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Makoto Yoshida

    2009-01-01

    Full Text Available This paper addresses time-domain channel estimation for pilot-symbol-aided orthogonal frequency division multiplexing (OFDM systems. By using a cyclic sinc-function matrix uniquely determined by Nc transmitted subcarriers, the performance of our proposed scheme approaches perfect channel state information (CSI, within a maximum of 0.4 dB degradation, regardless of the delay spread of the channel, Doppler frequency, and subcarrier modulation. Furthermore, reducing the matrix size by splitting the dispersive channel impulse response into clusters means that the degenerated inverse matrix estimator (DIME is feasible for broadband, high-quality OFDM transmission systems. In addition to theoretical analysis on normalized mean squared error (NMSE performance of DIME, computer simulations over realistic nonsample spaced channels also showed that the DIME is robust for intersymbol interference (ISI channels and fast time-invariant channels where a minimum mean squared error (MMSE estimator does not work well.

  19. Efficient Feedforward Linearization Technique Using Genetic Algorithms for OFDM Systems

    Directory of Open Access Journals (Sweden)

    García Paloma

    2010-01-01

    Full Text Available Feedforward is a linearization method that simultaneously offers wide bandwidth and good intermodulation distortion suppression; so it is a good choice for Orthogonal Frequency Division Multiplexing (OFDM systems. Feedforward structure consists of two loops, being necessary an accurate adjustment between them along the time, and when temperature, environmental, or operating changes are produced. Amplitude and phase imbalances of the circuit elements in both loops produce mismatched effects that lead to degrade its performance. A method is proposed to compensate these mismatches, introducing two complex coefficients calculated by means of a genetic algorithm. A full study is carried out to choose the optimal parameters of the genetic algorithm applied to wideband systems based on OFDM technologies, which are very sensitive to nonlinear distortions. The method functionality has been verified by means of simulation.

  20. On the holistic approach in cellular and cancer biology: nonlinearity, complexity, and quasi-determinism of the dynamic cellular network.

    Science.gov (United States)

    Waliszewski, P; Molski, M; Konarski, J

    1998-06-01

    A keystone of the molecular reductionist approach to cellular biology is a specific deductive strategy relating genotype to phenotype-two distinct categories. This relationship is based on the assumption that the intermediary cellular network of actively transcribed genes and their regulatory elements is deterministic (i.e., a link between expression of a gene and a phenotypic trait can always be identified, and evolution of the network in time is predetermined). However, experimental data suggest that the relationship between genotype and phenotype is nonbijective (i.e., a gene can contribute to the emergence of more than just one phenotypic trait or a phenotypic trait can be determined by expression of several genes). This implies nonlinearity (i.e., lack of the proportional relationship between input and the outcome), complexity (i.e. emergence of the hierarchical network of multiple cross-interacting elements that is sensitive to initial conditions, possesses multiple equilibria, organizes spontaneously into different morphological patterns, and is controlled in dispersed rather than centralized manner), and quasi-determinism (i.e., coexistence of deterministic and nondeterministic events) of the network. Nonlinearity within the space of the cellular molecular events underlies the existence of a fractal structure within a number of metabolic processes, and patterns of tissue growth, which is measured experimentally as a fractal dimension. Because of its complexity, the same phenotype can be associated with a number of alternative sequences of cellular events. Moreover, the primary cause initiating phenotypic evolution of cells such as malignant transformation can be favored probabilistically, but not identified unequivocally. Thermodynamic fluctuations of energy rather than gene mutations, the material traits of the fluctuations alter both the molecular and informational structure of the network. Then, the interplay between deterministic chaos, complexity, self

  1. An Opportunistic Error Correction Layer for OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Schiphorst, Roelof; Slump, Cornelis H.

    2009-01-01

    In this paper, we propose a novel cross layer scheme to lower power consumption of ADCs in OFDM systems, which is based on resolution adaptive ADCs and Fountain codes. The key part in the new proposed system is that the dynamic range of ADCs can be reduced by discarding the packets which are

  2. Cellular Controlled Short-Range Communication for Cooperative P2P Networking

    DEFF Research Database (Denmark)

    Fitzek, Frank H. P.; Katz, Marcos; Zhang, Qi

    2009-01-01

    -range communication network among cooperating mobile and wireless devices. The role of the mobile device will change, from being an agnostic entity in respect to the surrounding world to a cognitive device. This cognitive device is capable of being aware of the neighboring devices as well as on the possibility......This article advocates a novel communication architecture and associated collaborative framework for future wireless communication systems. In contrast to the dominating cellular architecture and the upcoming peer-to-peer architecture, the new approach envisions a cellular controlled short...... to establish cooperation with them. The novel architecture together with several possible cooperative strategies will bring clear benefits for the network and service providers, mobile device manufacturers and also end users....

  3. Photonic microwave carrier recovery using period-one nonlinear dynamics of semiconductor lasers for OFDM-RoF coherent detection.

    Science.gov (United States)

    Hung, Yu-Han; Yan, Jhih-Heng; Feng, Kai-Ming; Hwang, Sheng-Kwang

    2017-06-15

    This study investigates an all-optical scheme based on period-one (P1) nonlinear dynamics of semiconductor lasers, which regenerates the microwave carrier of an orthogonal frequency division multiplexing radio-over-fiber (OFDM-RoF) signal and uses it as a microwave local oscillator for coherent detection. Through the injection locking established between the OFDM-RoF signal and the P1 dynamics, frequency synchronization with highly preserved phase quality is inherently achieved between the recovered microwave carrier and the microwave carrier of the OFDM-RoF signal. A bit-error ratio down to 1.9×10-9 is achieved accordingly using the proposed scheme for coherent detection of a 32-GHz OFDM-RoF signal carrying 4  Gb/s 16-quadrature amplitude modulation data. No electronic microwave generators or electronic phase-locked loops are thus required. The proposed system can be operated up to at least 100 GHz and can be self-adapted to certain changes in the operating microwave frequency.

  4. Exponential stability of delayed fuzzy cellular neural networks with diffusion

    International Nuclear Information System (INIS)

    Huang Tingwen

    2007-01-01

    The exponential stability of delayed fuzzy cellular neural networks (FCNN) with diffusion is investigated. Exponential stability, significant for applications of neural networks, is obtained under conditions that are easily verified by a new approach. Earlier results on the exponential stability of FCNN with time-dependent delay, a special case of the model studied in this paper, are improved without using the time-varying term condition: dτ(t)/dt < μ

  5. Performance Analysis of OFDM in Frequency Selective, Slowly Fading Nakagami Channels

    National Research Council Canada - National Science Library

    Count, Patrick

    2001-01-01

    In an effort to offer faster, more reliable wireless communications services to the public, many wireless standardization committees have, in recent years, adopted Orthogonal Frequency Division Multiplexing (OFDM...

  6. Design of Optical I/Q Modulator Using Dual-drive Mach-Zehnder Modulators in Coherent Optical-OFDM System

    Science.gov (United States)

    Nehra, Monika; Kedia, Deepak

    2018-04-01

    A CO-OFDM system combines the advantages of both coherent detection and OFDM modulation for future high speed fiber transmission. In this paper, we propose an I/Q modulation technique using dual-drive MZMs for high rate 10 Gb/s CO-OFDM system. The proposed modulator provides 10.63 dBm improved optical spectra compared to a single dual-drive MZM. The simulation results in terms of BER and Q factor are quite satisfactory upto a transmission reach of 3,000 km and that to without making use of any dispersion compensation. A BER of about 8.03×10-10 and 15.06 dB Q factor have been achieved at -10.43 dBm received optical power.

  7. Transceiver Design for Multiband OFDM UWB

    Directory of Open Access Journals (Sweden)

    Leenaerts DMW

    2006-01-01

    Full Text Available Ultra-wideband (UWB is an emerging broadband wireless technology enabling data rates up to Mbps. This paper provides an overview of recent design approaches for several circuit functions that are required for the implementation of multiband OFDM UWB transceivers. A number of transceiver and synthesizer architectures that have been proposed in literature will be reviewed. Although the technology focus will be on CMOS, also some design techniques implemented in BiCMOS technologies will be presented.

  8. Receiver-based recovery of clipped ofdm signals for papr reduction: A bayesian approach

    KAUST Repository

    Ali, Anum

    2014-01-01

    Clipping is one of the simplest peak-to-average power ratio reduction schemes for orthogonal frequency division multiplexing (OFDM). Deliberately clipping the transmission signal degrades system performance, and clipping mitigation is required at the receiver for information restoration. In this paper, we acknowledge the sparse nature of the clipping signal and propose a low-complexity Bayesian clipping estimation scheme. The proposed scheme utilizes a priori information about the sparsity rate and noise variance for enhanced recovery. At the same time, the proposed scheme is robust against inaccurate estimates of the clipping signal statistics. The undistorted phase property of the clipped signal, as well as the clipping likelihood, is utilized for enhanced reconstruction. Furthermore, motivated by the nature of modern OFDM-based communication systems, we extend our clipping reconstruction approach to multiple antenna receivers and multi-user OFDM.We also address the problem of channel estimation from pilots contaminated by the clipping distortion. Numerical findings are presented that depict favorable results for the proposed scheme compared to the established sparse reconstruction schemes.

  9. LTE-A cellular networks multi-hop relay for coverage, capacity and performance enhancement

    CERN Document Server

    Yahya, Abid

    2017-01-01

    In this book, three different methods are presented to enhance the capacity and coverage area in LTE-A cellular networks. The scope involves the evaluation of the effect of the RN location in terms of capacity and the determination of the optimum location of the relay that provides maximum achievable data rate for users with limited interference at the cell boundaries. This book presents a new model to enhance both capacity and coverage area in LTE-A cellular network by determining the optimum location for the RN with limited interference. The new model is designed to enhance the capacity of the relay link by employing two antennas in RN. This design enables the relay link to absorb more users at cell edge regions. An algorithm called the Balance Power Algorithm (BPA) is developed to reduce MR power consumption. The book pertains to postgraduate students and researchers in wireless & mobile communications. Provides a variety of methods for enhancing capacity and coverage in LTE-A cellular networks Develop...

  10. Channel Estimation and Optimal Power Allocation for a Multiple-Antenna OFDM System

    Directory of Open Access Journals (Sweden)

    Yao Kung

    2002-01-01

    Full Text Available We propose combining channel estimation and optimal power allocation approaches for a multiple-antenna orthogonal frequency division multiplexing (OFDM system in high-speed transmission applications. We develop a least-square channel estimation approach, derive the performance bound of the estimator, and investigate the optimal training sequences for initial channel acquisition. Based on the channel estimates, the optimal power allocation solution which maximizes the bandwidth efficiency is derived under power and quality of service (Qos (symbol error rate constraints. It is shown that combining channel tracking and adaptive power allocation can dramatically enhance the outage capacity of an OFDM multiple-antenna system when severing fading occurs.

  11. A learning algorithm for oscillatory cellular neural networks.

    Science.gov (United States)

    Ho, C Y.; Kurokawa, H

    1999-07-01

    We present a cellular type oscillatory neural network for temporal segregation of stationary input patterns. The model comprises an array of locally connected neural oscillators with connections limited to a 4-connected neighborhood. The architecture is reminiscent of the well-known cellular neural network that consists of local connection for feature extraction. By means of a novel learning rule and an initialization scheme, global synchronization can be accomplished without incurring any erroneous synchrony among uncorrelated objects. Each oscillator comprises two mutually coupled neurons, and neurons share a piecewise-linear activation function characteristic. The dynamics of traditional oscillatory models is simplified by using only one plastic synapse, and the overall complexity for hardware implementation is reduced. Based on the connectedness of image segments, it is shown that global synchronization and desynchronization can be achieved by means of locally connected synapses, and this opens up a tremendous application potential for the proposed architecture. Furthermore, by using special grouping synapses it is demonstrated that temporal segregation of overlapping gray-level and color segments can also be achieved. Finally, simulation results show that the learning rule proposed circumvents the problem of component mismatches, and hence facilitates a large-scale integration.

  12. On mode selection and power control for uplink D2D communication in cellular networks

    KAUST Repository

    Ali, Konpal S.

    2015-06-08

    Device-to-device (D2D) communication enables users lying in close proximity to bypass the cellular base station (BS) and transmit to one another directly. This offloads traffic from the cellular network, improves spatial frequency reuse and energy efficiency in the network. We present a comprehensive and tractable analytical framework for D2D-enabled uplink cellular networks with two different flexible mode-selection schemes. The power-control cutoff thresholds of the two communication modes have been decoupled unlike past work on the subject. We find that for a given network, an optimal value exists not only for the biased mode selection criterion, but also for r, the ratio of the power-control cutoff thresholds of the two communication modes, which maximizes spatial spectral efficiency. Also, r turns out to be a more robust parameter for optimizing network performance. Further, it is shown that the second scheme, which prioritizes spatial frequency reuse over the per-user achievable performance compared to the first scheme, achieves almost the same overall network performance; thereby trading per user performance to serve a larger number of users.

  13. On mode selection and power control for uplink D2D communication in cellular networks

    KAUST Repository

    Ali, Konpal S.; Elsawy, Hesham; Alouini, Mohamed-Slim

    2015-01-01

    Device-to-device (D2D) communication enables users lying in close proximity to bypass the cellular base station (BS) and transmit to one another directly. This offloads traffic from the cellular network, improves spatial frequency reuse and energy efficiency in the network. We present a comprehensive and tractable analytical framework for D2D-enabled uplink cellular networks with two different flexible mode-selection schemes. The power-control cutoff thresholds of the two communication modes have been decoupled unlike past work on the subject. We find that for a given network, an optimal value exists not only for the biased mode selection criterion, but also for r, the ratio of the power-control cutoff thresholds of the two communication modes, which maximizes spatial spectral efficiency. Also, r turns out to be a more robust parameter for optimizing network performance. Further, it is shown that the second scheme, which prioritizes spatial frequency reuse over the per-user achievable performance compared to the first scheme, achieves almost the same overall network performance; thereby trading per user performance to serve a larger number of users.

  14. Forward and correctional OFDM-based visible light positioning

    Science.gov (United States)

    Li, Wei; Huang, Zhitong; Zhao, Runmei; He, Peixuan; Ji, Yuefeng

    2017-09-01

    Visible light positioning (VLP) has attracted much attention in both academic and industrial areas due to the extensive deployment of light-emitting diodes (LEDs) as next-generation green lighting. Generally, the coverage of a single LED lamp is limited, so LED arrays are always utilized to achieve uniform illumination within the large-scale indoor environment. However, in such dense LED deployment scenario, the superposition of the light signals becomes an important challenge for accurate VLP. To solve this problem, we propose a forward and correctional orthogonal frequency division multiplexing (OFDM)-based VLP (FCO-VLP) scheme with low complexity in generating and processing of signals. In the first forward procedure of FCO-VLP, an initial position is obtained by the trilateration method based on OFDM-subcarriers. The positioning accuracy will be further improved in the second correctional procedure based on the database of reference points. As demonstrated in our experiments, our approach yields an improved average positioning error of 4.65 cm and an enhanced positioning accuracy by 24.2% compared with trilateration method.

  15. Near-Optimal Resource Allocation in Cooperative Cellular Networks Using Genetic Algorithms

    OpenAIRE

    Luo, Zihan; Armour, Simon; McGeehan, Joe

    2015-01-01

    This paper shows how a genetic algorithm can be used as a method of obtaining the near-optimal solution of the resource block scheduling problem in a cooperative cellular network. An exhaustive search is initially implementedto guarantee that the optimal result, in terms of maximizing the bandwidth efficiency of the overall network, is found, and then the genetic algorithm with the properly selected termination conditions is used in the same network. The simulation results show that the genet...

  16. HRR Profiling on Integrated Radar-Communication Systems Using OFDM-PCSF Signals

    Directory of Open Access Journals (Sweden)

    Xuanxuan Tian

    2017-01-01

    Full Text Available In order to improve both the transmission data rate and the range resolution simultaneously in integrated radar-communication (RadCom systems, orthogonal frequency-division multiplexing with phase-coded and stepped-frequency (OFDM-PCSF waveform is proposed. A corresponding high resolution range (HRR profile generation method is also presented. We first perform OFDM-PCSF waveform design by combining the intrapulse phase coding with the interpulse stepped-frequency modulation. We then give the ambiguity function (AF based on the presented waveforms. Then, the synthetic range profile (SRP processing to achieve HRR performance is analyzed. Theoretical analysis and simulation results show that the proposed methods can achieve HRR profiles of the targets and high data rate transmissions, while a relative low computational complexity can be achieved.

  17. A mean-field approach for an intercarrier interference canceller for OFDM

    International Nuclear Information System (INIS)

    Sakata, A; Kabashima, Y; Peleg, Y

    2012-01-01

    The similarity of the mathematical description of random-field spin systems to the orthogonal frequency-division multiplexing (OFDM) scheme for wireless communication is exploited in an intercarrier interference (ICI) canceller used in the demodulation of OFDM. The translational symmetry in the Fourier domain generically concentrates the major contribution of ICI from each subcarrier in the subcarrier’s neighbourhood. This observation in conjunction with the mean-field approach leads to the development of an ICI canceller whose necessary cost of computation scales linearly with respect to the number of subcarriers. It is also shown that the dynamics of the mean-field canceller are well captured by a discrete map of a single macroscopic variable, without taking the spatial and time correlations of estimated variables into account. (paper)

  18. Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach

    KAUST Repository

    Sohail, Muhammad Sadiq; Al-Naffouri, Tareq Y.; Al-Ghadhban, Samir N.

    2012-01-01

    This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous

  19. Strategies for improvement of spectrum capacity for WiMax cellular systems by Cognitive Radio Technology supported by Relay Stations

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge; Prasad, Ramjee

    2007-01-01

    Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context will be presented and discussed in this paper. Ideas to improve the wireless transmission by orthogonal OFDM-based communication and to increase...... the coverage of cellular systems by relay stations will be presented as well.   ...

  20. Modeling cellular networks in fading environments with dominant specular components

    KAUST Repository

    Alammouri, Ahmad; Elsawy, Hesham; Salem, Ahmed Sultan; Di Renzo, Marco; Alouini, Mohamed-Slim

    2016-01-01

    to the Nakagami-m fading in some special cases. However, neither the Rayleigh nor the Nakagami-m accounts for dominant specular components (DSCs) which may appear in realistic fading channels. In this paper, we present a tractable model for cellular networks

  1. Global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Wang Jian; Lu Junguo

    2008-01-01

    In this paper, we study the global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms. By constructing a suitable Lyapunov functional and utilizing some inequality techniques, we obtain a sufficient condition for the uniqueness and global exponential stability of the equilibrium solution for a class of fuzzy cellular neural networks with delays and reaction-diffusion terms. The result imposes constraint conditions on the network parameters independently of the delay parameter. The result is also easy to check and plays an important role in the design and application of globally exponentially stable fuzzy neural circuits

  2. New hybrid technique for impulsive noise suppression in OFDM systems

    International Nuclear Information System (INIS)

    Mirza, A.; Zeb, A.; Sheikh, S.A.

    2017-01-01

    In this paper, a new hybrid technique employing RS (Reed Solomon) coding and adaptive filter for impulsive noise suppression in OFDM (Orthogonal Frequency Division Multiplexing) systems is presented. Adaptive filter creates a more accurate estimate of the original OFDM signal after impulsive noise cancellation. The residual impulsive noise is further mitigated by RS decoder in the second stage of proposed technique. Three members of adaptive filters family i.e. NLMS (Normalized Least Mean Square) algorithm, RLS (Recursive Least Square) algorithm and Bhagyashri algorithm are tested with RS decoder in the proposed hybrid technique. Furthermore, the results in terms of steady state MSE (Mean Square Error) reduction, BER (Bit Error Rate) improvement and SNR (Signal to Noise Ratio) enhancement confirm the effectiveness of the proposed dual faceted technique when compared with the recently reported techniques in literature. (author)

  3. Device-to-Device Underlay Cellular Networks with Uncertain Channel State Information

    KAUST Repository

    Memmi, Amen

    2016-01-06

    Device-to-Device (D2D) communications underlying the cellular infrastructure is a technology that has recently been proposed as a promising solution to enhance cellular network capabilities: It improves spectrum utilization, overall throughput and energy efficiency while enabling new peer-to-peer and location-based applications and services. However, interference is the major challenge since the same resources are shared by both systems. Therefore, interference management techniques are required to keep the interference under control. In this work, in order to mitigate interference, we consider centralized and distributed power control algorithms in a one-cell random network model. Differently from previous works, we are assuming that the channel state information (CSI) may be imperfect and include estimation errors. We evaluate how this uncertainty impacts performances.

  4. Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission.

    Science.gov (United States)

    Cheng, Min-Chi; Chi, Yu-Chieh; Li, Yi-Cheng; Tsai, Cheng-Ting; Lin, Gong-Ru

    2014-06-30

    By up-shifting the relaxation oscillation peak and suppressing its relative intensity noise in a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) under intense injection-locking, the directly modulated transmission of optical 16 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data-stream is demonstrated. The total bit rate of up to 20 Gbit/s within 5-GHz bandwidth is achieved by using the OFDM subcarrier pre-leveling technique. With increasing the injection-locking power from -12 to -3 dBm, the effective reduction on threshold current of the WRC-FPLD significantly shifts its relaxation oscillation frequency from 5 to 7.5 GHz. This concurrently induces an up-shift of the peak relative intensity noise (RIN) of the WRC-FPLD, and effectively suppresses the background RIN level to -104 dBc/Hz within the OFDM band between 3 and 6 GHz. The enhanced signal-to-noise ratio from 16 to 20 dB leads to a significant reduction of bit-error-rate (BER) of the back-to-back transmitted 16-QAM-OFDM data from 1.3 × 10(-3) to 5 × 10(-5), which slightly degrades to 1.1 × 10(-4) after 25-km single-mode fiber (SMF) transmission. However, the enlarged injection-locking power from -12 to -3 dBm inevitably declines the modulation throughput and increases its negative throughput slope from -0.8 to -1.9 dBm/GHz. After pre-leveling the peak amplitude of the OFDM subcarriers to compensate the throughput degradation of the directly modulated WRC-FPLD, the BER under 25-km SMF transmission can be further improved to 3 × 10(-5) under a receiving power of -3 dBm.

  5. Analyzing the impact of relay station characteristics on uplink performance in cellular network

    NARCIS (Netherlands)

    Dimitrova, D.C.; van den Berg, Hans Leo; Heijenk, Geert

    2009-01-01

    Uplink users in cellular networks, such as UMTS/ HSPA, located at the edge of the cell generally suffer from poor channel conditions. Deploying intermediate relay nodes is seen as a promising approach towards extending cell coverage. This paper focuses on the role of packet scheduling in cellular

  6. Energy-efficient orthogonal frequency division multiplexing-based passive optical network based on adaptive sleep-mode control and dynamic bandwidth allocation

    Science.gov (United States)

    Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun

    2016-02-01

    We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.

  7. Power Control for D2D Underlay Cellular Networks with Imperfect CSI

    KAUST Repository

    Memmi, Amen

    2017-02-09

    Device-to-Device communications underlying the cellular infrastructure is a technology that has recently been proposed as a promising solution to enhance cellular network capabilities. However, interference is the major challenge since the same resources are shared by both systems. Therefore, interference management techniques are required to keep the interference under control. In this work, in order to mitigate interference, we consider centralized and distributed power control algorithms in a one-cell random network model. Differently from previous works, we are assuming that the channel state information may be imperfect and include estimation errors. We evaluate how this uncertainty impacts performances. In the centralized approach, we derive the optimal powers that maximize the coverage probability and the rate of the cellular user while scheduling as many D2D links as possible. These powers are computed at the base station (BS) and then delivered to the users, and hence the name

  8. An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities.

    Science.gov (United States)

    Matsubara, Takashi; Torikai, Hiroyuki

    2016-04-01

    Modeling and implementation approaches for the reproduction of input-output relationships in biological nervous tissues contribute to the development of engineering and clinical applications. However, because of high nonlinearity, the traditional modeling and implementation approaches encounter difficulties in terms of generalization ability (i.e., performance when reproducing an unknown data set) and computational resources (i.e., computation time and circuit elements). To overcome these difficulties, asynchronous cellular automaton-based neuron (ACAN) models, which are described as special kinds of cellular automata that can be implemented as small asynchronous sequential logic circuits have been proposed. This paper presents a novel type of such ACAN and a theoretical analysis of its excitability. This paper also presents a novel network of such neurons, which can mimic input-output relationships of biological and nonlinear ordinary differential equation model neural networks. Numerical analyses confirm that the presented network has a higher generalization ability than other major modeling and implementation approaches. In addition, Field-Programmable Gate Array-implementations confirm that the presented network requires lower computational resources.

  9. Network-Coded Content Delivery in Femtocaching-Assisted Cellular Networks

    KAUST Repository

    Shnaiwer, Yousef N.; Sorour, Sameh; Aboutorab, Neda; Sadeghi, Parastoo; Al-Naffouri, Tareq Y.

    2015-01-01

    Next-generation cellular networks are expected to be assisted by femtocaches (FCs), which collectively store the most popular files for the clients. Given any arbitrary non-fragmented placement of such files, a strict no-latency constraint, and clients' prior knowledge, new file download requests could be efficiently handled by both the FCs and the macrocell base station (MBS) using opportunistic network coding (ONC). In this paper, we aim to find the best allocation of coded file downloads to the FCs so as to minimize the MBS involvement in this download process. We first formulate this optimization problem over an ONC graph, and show that it is NP-hard. We then propose a greedy approach that maximizes the number of files downloaded by the FCs, with the goal to reduce the download share of the MBS. This allocation is performed using a dual conflict ONC graph to avoid conflicts among the FC downloads. Simulations show that our proposed scheme almost achieves the optimal performance and significantly saves on the MBS bandwidth.

  10. Network-Coded Content Delivery in Femtocaching-Assisted Cellular Networks

    KAUST Repository

    Shnaiwer, Yousef N.

    2015-12-06

    Next-generation cellular networks are expected to be assisted by femtocaches (FCs), which collectively store the most popular files for the clients. Given any arbitrary non-fragmented placement of such files, a strict no-latency constraint, and clients\\' prior knowledge, new file download requests could be efficiently handled by both the FCs and the macrocell base station (MBS) using opportunistic network coding (ONC). In this paper, we aim to find the best allocation of coded file downloads to the FCs so as to minimize the MBS involvement in this download process. We first formulate this optimization problem over an ONC graph, and show that it is NP-hard. We then propose a greedy approach that maximizes the number of files downloaded by the FCs, with the goal to reduce the download share of the MBS. This allocation is performed using a dual conflict ONC graph to avoid conflicts among the FC downloads. Simulations show that our proposed scheme almost achieves the optimal performance and significantly saves on the MBS bandwidth.

  11. PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM.

    Science.gov (United States)

    Djordjevic, Ivan B

    2007-04-02

    The possibility of polarization-mode dispersion (PMD) compensation in fiber-optic communication systems with direct detection using a simple channel estimation technique and low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is demonstrated. It is shown that even for differential group delay (DGD) of 4/BW (BW is the OFDM signal bandwidth), the degradation due to the first-order PMD can be completely compensated for. Two classes of LDPC codes designed based on two different combinatorial objects (difference systems and product of combinatorial designs) suitable for use in PMD compensation are introduced.

  12. Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.

    Science.gov (United States)

    Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H

    2015-02-23

    The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.

  13. Interference-Aware OFDM Receiver for Channels with Sparse Common Supports

    DEFF Research Database (Denmark)

    Barbu, Oana-Elena; Manchón, Carles Navarro; Badiu, Mihai Alin

    2017-01-01

    We design an algorithm for OFDM receivers operating in co-channel interference conditions, where the serving and interfering transmitters are synchronized in time. The channel estimation problem is formulated as one of sparse signal reconstruction using multiple measurement vectors. The proposed...

  14. Modeling cellular networks in fading environments with dominant specular components

    KAUST Repository

    AlAmmouri, Ahmad

    2016-07-26

    Stochastic geometry (SG) has been widely accepted as a fundamental tool for modeling and analyzing cellular networks. However, the fading models used with SG analysis are mainly confined to the simplistic Rayleigh fading, which is extended to the Nakagami-m fading in some special cases. However, neither the Rayleigh nor the Nakagami-m accounts for dominant specular components (DSCs) which may appear in realistic fading channels. In this paper, we present a tractable model for cellular networks with generalized two-ray (GTR) fading channel. The GTR fading explicitly accounts for two DSCs in addition to the diffuse components and offers high flexibility to capture diverse fading channels that appear in realistic outdoor/indoor wireless communication scenarios. It also encompasses the famous Rayleigh and Rician fading as special cases. To this end, the prominent effect of DSCs is highlighted in terms of average spectral efficiency. © 2016 IEEE.

  15. Universal Intelligent Small Cell (UnISCell for next generation cellular networks

    Directory of Open Access Journals (Sweden)

    Mohammad Patwary

    2016-11-01

    Full Text Available Exploring innovative cellular architectures to achieve enhanced system capacity and good coverage has become a critical issue towards realizing the next generation of wireless communications. In this context, this paper proposes a novel concept of Universal Intelligent Small Cell (UnISCell for enabling the densification of the next generation of cellular networks. The proposed novel concept envisions an integrated platform of providing a strong linkage between different stakeholders such as street lighting networks, landline telephone networks and future wireless networks, and is universal in nature being independent of the operating frequency bands and traffic types. The main motivating factors for the proposed small cell concept are the need of public infrastructure re-engineering, and the recent advances in several enabling technologies. First, we highlight the main concepts of the proposed UnISCell platform. Subsequently, we present two deployment scenarios for the proposed UnISCell concept considering infrastructure sharing and service sharing as important aspects. We then describe the key future technologies for enabling the proposed UnISCell concept and present a use case example with the help of numerical results. Finally, we conclude this article by providing some interesting future recommendations.

  16. Adaptively loaded IM/DD optical OFDM based on set-partitioned QAM formats.

    Science.gov (United States)

    Zhao, Jian; Chen, Lian-Kuan

    2017-04-17

    We investigate the constellation design and symbol error rate (SER) of set-partitioned (SP) quadrature amplitude modulation (QAM) formats. Based on the SER analysis, we derive the adaptive bit and power loading algorithm for SP QAM based intensity-modulation direct-detection (IM/DD) orthogonal frequency division multiplexing (OFDM). We experimentally show that the proposed system significantly outperforms the conventional adaptively-loaded IM/DD OFDM and can increase the data rate from 36 Gbit/s to 42 Gbit/s in the presence of severe dispersion-induced spectral nulls after 40-km single-mode fiber. It is also shown that the adaptive algorithm greatly enhances the tolerance to fiber nonlinearity and allows for more power budget.

  17. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information

    Directory of Open Access Journals (Sweden)

    Lemke Ney

    2009-09-01

    Full Text Available Abstract Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing

  18. Almost sure exponential stability of stochastic fuzzy cellular neural networks with delays

    International Nuclear Information System (INIS)

    Zhao Hongyong; Ding Nan; Chen Ling

    2009-01-01

    This paper is concerned with the problem of exponential stability analysis for fuzzy cellular neural network with delays. By constructing suitable Lyapunov functional and using stochastic analysis we present some sufficient conditions ensuring almost sure exponential stability for the network. Moreover, an example is given to demonstrate the advantages of our method.

  19. Wavelet-Coded OFDM for Next Generation Mobile Communications

    DEFF Research Database (Denmark)

    Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2016-01-01

    In this work, we evaluate the performance of Wavelet-Coding into offering robustness for OFDM signals against the combined effects of varying fading and noise bursts. Wavelet-Code enables high diversity gains with a low complex receiver, and, most notably, without compromising the system’s spectr......-wave frequencies in future generation mobile communication due to its robustness against multipath fading....

  20. Joint optimization of CQI calculation and interference mitigation for user scheduling in MIMO-OFDM systems

    KAUST Repository

    Sadek, Mirette; Aï ssa, Sonia

    2011-01-01

    In MIMO-OFDM multiuser systems, user scheduling is employed as a means of multiple access. In a downlink scenario, users that share the same subcarriers of an OFDM symbol are separated through precoding in order to achieve space division multiple access (SDMA). User scheduling techniques rely on channel knowledge at the transmitter, namely, the so-called channel quality indicator (CQI). In this paper, we implement a leakage-based precoding algorithm whose purpose is twofold. First, it is used to compute a reliable CQI based on a group of precoding vectors that are adapted to the channel. Then, it implements user scheduling through using the optimum vectors for precoding, thus minimizing interference among users. We also introduce the concept of resource block size adaptivity. The resource block (RB) is defined as the least unit in an OFDM symbol that a user can be assigned to. We propose a variable RB size that adapts to the channel conditions. © 2011 IEEE.

  1. Joint optimization of CQI calculation and interference mitigation for user scheduling in MIMO-OFDM systems

    KAUST Repository

    Sadek, Mirette

    2011-05-01

    In MIMO-OFDM multiuser systems, user scheduling is employed as a means of multiple access. In a downlink scenario, users that share the same subcarriers of an OFDM symbol are separated through precoding in order to achieve space division multiple access (SDMA). User scheduling techniques rely on channel knowledge at the transmitter, namely, the so-called channel quality indicator (CQI). In this paper, we implement a leakage-based precoding algorithm whose purpose is twofold. First, it is used to compute a reliable CQI based on a group of precoding vectors that are adapted to the channel. Then, it implements user scheduling through using the optimum vectors for precoding, thus minimizing interference among users. We also introduce the concept of resource block size adaptivity. The resource block (RB) is defined as the least unit in an OFDM symbol that a user can be assigned to. We propose a variable RB size that adapts to the channel conditions. © 2011 IEEE.

  2. Performance analysis of visible light communication using the STBC-OFDM technique for intelligent transportation systems

    Science.gov (United States)

    Li, Changping; Yi, Ying; Lee, Kyujin; Lee, Kyesan

    2014-08-01

    Visible light communication (VLC) applied in an intelligent transportation system (ITS) has attracted growing attentions, but it also faces challenges, for example deep path loss and optical multi-path dispersion. In this work, we modelled an actual outdoor optical channel as a Rician channel and further proposed space-time block coding (STBC) orthogonal frequency-division multiplexing (OFDM) technology to reduce the influence of severe optical multi-path dispersion associated with such a mock channel for achieving the effective BER of 10-6 even at a low signal-to-noise ratio (SNR). In this case, the optical signals transmission distance can be extended as long as possible. Through the simulation results of STBC-OFDM and single-input-single-output (SISO) counterparts in bit error rate (BER) performance comparison, we can distinctly observe that the VLC-ITS system using STBC-OFDM technique can obtain a strongly improved BER performance due to multi-path dispersion alleviation.

  3. On the area spectral efficiency improvement of heterogeneous network by exploiting the integration of macro-femto cellular networks

    KAUST Repository

    Shakir, Muhammad

    2012-06-01

    Heterogeneous networks are an attractive means of expanding mobile network capacity. A heterogeneous network is typically composed of multiple radio access technologies (RATs) where the base stations are transmitting with variable power. In this paper, we consider a Heterogeneous network where we complement the macrocell network with low-power low-cost user deployed nodes, such as femtocell base stations to increase the mean achievable capacity of the system. In this context, we integrate macro-femto cellular networks and derive the area spectral efficiency of the proposed two tier Heterogeneous network. We consider the deployment of femtocell base stations around the edge of the macrocell such that this configuration is referred to as femto-on-edge (FOE) configuration. Moreover, FOE configuration mandates reduction in intercell interference due to the mobile users which are located around the edge of the macrocell since these femtocell base stations are low-power nodes which has significantly lower transmission power than macrocell base stations. We present a mathematical analysis to calculate the instantaneous carrier to interference ratio (CIR) of the desired mobile user in macro and femto cellular networks and determine the total area spectral efficiency of the Heterogeneous network. Details of the simulation processes are included to support the analysis and show the efficacy of the proposed deployment. It has been shown that the proposed setup of the Heterogeneous network offers higher area spectral efficiency which aims to fulfill the expected demand of the future mobile users. © 2012 IEEE.

  4. An in-building network based on community access television integration with quadrature phase-shift keying orthogonal frequency-division multiplexing

    International Nuclear Information System (INIS)

    Chen, Chia-Yi; Lin, Ying-Pyng; Lu, Hai-Han; Wu, Po-Yi; Lin, Huang-Chang; Wu, Hsiao-Wen

    2012-01-01

    An in-building network based on cable television (CATV) integration with quadrature phase-shift keying (QPSK) orthogonal frequency-division multiplexing (OFDM) transport over a combination of single-mode fibers (SMF) and perfluorinated graded-index plastic optical fibers (GI-POF) is proposed and experimentally demonstrated. In this system, a 1558.5 nm optical signal is directly transmitted along two fiber spans (20 km SMF + 25 m GI-POF). An optimum guard band is carefully established to ensure that no very substantial signal interference is induced between the CATV and QPSK OFDM bands. Error free transmission with sufficiently low bit error rate values was achieved for 1.25 Gbps/771.5 MHz QPSK OFDM signals; also, acceptable carrier-to-noise ratio, composite second-order, and composite triple-beat performances were obtained for CATV signals. This proposed network is significant because it is economical and convenient to install. (paper)

  5. A performance improvement and cost-efficient ACO-OFDM scheme for visible light communications

    Science.gov (United States)

    Zhang, Tiantian; Zhou, Ji; Zhang, Zhenshan; Qiao, Yaojun; Su, Fei; Yang, Aiying

    2017-11-01

    In this paper, we propose a performance improvement and cost-efficient discrete Hartley transform (DHT)-based asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) scheme for visible light communications (VLC). The simple one-dimensional modulation constellation and simplified encoding structure reduce the complexity of system considerably. The DHT-spreading technique is employed to reduce peak-to-average power ratio (PAPR) of ACO-OFDM signals. Moreover, the intra-symbol frequency-domain averaging (ISFA) technique is used to increase the accuracy of channel estimation by removing the effect of ambient noise in the VLC channel effectively. To verify the feasibility of the proposed scheme, we study its performance via simulation. This scheme reduces the requirement to the resolution of DAC and increases the tolerance to the nonlinear characteristics of LED, both of which are cost-efficient. At forward error correction (FEC) limit (BER = 1 × 10-3), simulation results illustrate that compared with DHT-based ACO-OFDM without the ISFA technique, our scheme has 3.2 dB and 2.7 dB improvement of the required Eb /N0 when BPSK and 4-PAM are modulated, respectively.

  6. Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays

    International Nuclear Information System (INIS)

    Balasubramaniam, P.; Kalpana, M.; Rakkiyappan, R.

    2012-01-01

    Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov—Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method. (interdisciplinary physics and related areas of science and technology)

  7. Performance evaluation of a real time OFDM radio over fiber system at 2.5 GHz using software defined radio SDR

    DEFF Research Database (Denmark)

    David Cepeda, Juan; Rodriguez, Santiago Isaac; Rico-Martinez, Monica

    2017-01-01

    This paper presents the implementation of an OFDM radio over fiber (RoF) system at 2.5 GHz using software defined radio (SDR). In this work, first we present an introduction of the main concepts about radio over fiber and an orthogonal frequency-division multiplexing (OFDM) system at 2.5 GHz......, then we present a comparison of an OFDM RoF system in three scenarios, modifying the wireless distances and the optical fiber distance in order to evaluate the performance of the system taking into account the symbol error rate (SER) vs signal to noise ratio (SNR) curves....

  8. Assessing the weather monitoring capabilities of cellular microwave link networks

    Science.gov (United States)

    Fencl, Martin; Vrzba, Miroslav; Rieckermann, Jörg; Bareš, Vojtěch

    2016-04-01

    Using of microwave links for rainfall monitoring was suggested already by (Atlas and Ulbrich, 1977). However, this technique attracted broader attention of scientific community only in the recent decade, with the extensive growth of cellular microwave link (CML) networks, which form the backbone of today's cellular telecommunication infrastructure. Several studies have already shown that CMLs can be conveniently used as weather sensors and have potential to provide near-ground path-integrated observations of rainfall but also humidity or fog. However, although research is still focusing on algorithms to improve the weather sensing capabilities (Fencl et al., 2015), it is not clear how to convince cellular operators to provide the power levels of their network. One step in this direction is to show in which regions or municipalities the networks are sufficiently dense to provide/develop good services. In this contribution we suggest a standardized approach to evaluate CML networks in terms of rainfall observation and to identify suitable regions for CML rainfall monitoring. We estimate precision of single CML based on its sensitivity to rainfall, i.e. as a function of frequency, polarization and path length. Capability of a network to capture rainfall spatial patterns is estimated from the CML coverage and path lengths considering that single CML provides path-integrated rain rates. We also search for suitable predictors for regions where no network topologies are available. We test our approach on several European networks and discuss the results. Our results show that CMLs are very dense in urban areas (> 1 CML/km2), but less in rural areas (online tool. In summary, our results demonstrate that CML represent promising environmental observation network, suitable especially for urban rainfall monitoring. The developed approach integrated into an open source online tool can be conveniently used e.g. by local operators or authorities to evaluate the suitability of

  9. Theoretical calculation on ICI reduction using digital coherent superposition of optical OFDM subcarrier pairs in the presence of laser phase noise.

    Science.gov (United States)

    Yi, Xingwen; Xu, Bo; Zhang, Jing; Lin, Yun; Qiu, Kun

    2014-12-15

    Digital coherent superposition (DCS) of optical OFDM subcarrier pairs with Hermitian symmetry can reduce the inter-carrier-interference (ICI) noise resulted from phase noise. In this paper, we show two different implementations of DCS-OFDM that have the same performance in the presence of laser phase noise. We complete the theoretical calculation on ICI reduction by using the model of pure Wiener phase noise. By Taylor expansion of the ICI, we show that the ICI power is cancelled to the second order by DCS. The fourth order term is further derived out and only decided by the ratio of laser linewidth to OFDM subcarrier symbol rate, which can greatly simplify the system design. Finally, we verify our theoretical calculations in simulations and use the analytical results to predict the system performance. DCS-OFDM is expected to be beneficial to certain optical fiber transmissions.

  10. Mobility-Aware Modeling and Analysis of Dense Cellular Networks With $C$ -Plane/ $U$ -Plane Split Architecture

    KAUST Repository

    Ibrahim, Hazem

    2016-09-19

    The unrelenting increase in the population of mobile users and their traffic demands drive cellular network operators to densify their network infrastructure. Network densification shrinks the footprint of base stations (BSs) and reduces the number of users associated with each BS, leading to an improved spatial frequency reuse and spectral efficiency, and thus, higher network capacity. However, the densification gain comes at the expense of higher handover rates and network control overhead. Hence, user’s mobility can diminish or even nullifies the foreseen densification gain. In this context, splitting the control plane ( C -plane) and user plane ( U -plane) is proposed as a potential solution to harvest densification gain with reduced cost in terms of handover rate and network control overhead. In this paper, we use stochastic geometry to develop a tractable mobility-aware model for a two-tier downlink cellular network with ultra-dense small cells and C -plane/ U -plane split architecture. The developed model is then used to quantify the effect of mobility on the foreseen densification gain with and without C -plane/ U -plane split. To this end, we shed light on the handover problem in dense cellular environments, show scenarios where the network fails to support certain mobility profiles, and obtain network design insights.

  11. The Influence of Gaussian Signaling Approximation on Error Performance in Cellular Networks

    KAUST Repository

    Afify, Laila H.; Elsawy, Hesham; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    Stochastic geometry analysis for cellular networks is mostly limited to outage probability and ergodic rate, which abstracts many important wireless communication aspects. Recently, a novel technique based on the Equivalent-in-Distribution (EiD) approach is proposed to extend the analysis to capture these metrics and analyze bit error probability (BEP) and symbol error probability (SEP). However, the EiD approach considerably increases the complexity of the analysis. In this paper, we propose an approximate yet accurate framework, that is also able to capture fine wireless communication details similar to the EiD approach, but with simpler analysis. The proposed methodology is verified against the exact EiD analysis in both downlink and uplink cellular networks scenarios.

  12. The Influence of Gaussian Signaling Approximation on Error Performance in Cellular Networks

    KAUST Repository

    Afify, Laila H.

    2015-08-18

    Stochastic geometry analysis for cellular networks is mostly limited to outage probability and ergodic rate, which abstracts many important wireless communication aspects. Recently, a novel technique based on the Equivalent-in-Distribution (EiD) approach is proposed to extend the analysis to capture these metrics and analyze bit error probability (BEP) and symbol error probability (SEP). However, the EiD approach considerably increases the complexity of the analysis. In this paper, we propose an approximate yet accurate framework, that is also able to capture fine wireless communication details similar to the EiD approach, but with simpler analysis. The proposed methodology is verified against the exact EiD analysis in both downlink and uplink cellular networks scenarios.

  13. A Novel Method for Performance Analysis of OFDM Polarization Diversity System in Ricean Fading Environment

    DEFF Research Database (Denmark)

    Ilic-Delibasic, M.; Pejanovic-Djurisic, M.; Prasad, R.

    2012-01-01

    OFDM (Orthogonal Frequency Division Multiplexing) is proven to be a very effective modulation and multiple access technique that enables high data rate transmission. Due to its good performance it is already implemented in several standardized technologies, and it is very promising technique...... conditions. In order to calculate BER (Bit Error Rate) for the considered OFDM polarization diversity system with a certain level of the received signals correlation, we propose a novel analytical method. The obtained results are compared with the ones attained by simulation....

  14. 5G and Cellular Networks in the Smart Grid

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Jorguseski, Ljupco; Zhang, Haibin

    2018-01-01

    grid. In the present chapter, we present the main features of both the non-3GPP technologies, IEEE 802.11ah, SigFox and LoRa, and the main features of past, current and future 3GPP technologies, namely releases High rate), 12-14 (IoT extensions) and 15-16 (5G). Additionally, we present......Wireless cellular networks will help Distribution System Operators (DSOs) to achieve observability below the substation level, which is needed to ensure stable operation in the smart grid. Both existing and upcoming cellular technologies are considered as candidates for helping to enable the smart...... the challenges and possible solutions for ensuring end-to-end security in smart grid systems....

  15. Device-Relaying in Cellular D2D Networks: A Fairness Perspective

    KAUST Repository

    Chaaban, Anas

    2015-10-24

    Device-to-Device (D2D) communication is envisioned to play a key role in 5G networks as a technique for meeting the demand for high data rates. In a cellular network, D2D allows not only direct communication between users, but also device relaying. In this paper, a simple instance of device-relaying is investigated, and its impact on fairness among users is studied. Namely, a cellular network consisting of two D2D-enabled users and a base-station (BS) is considered. Thus, the users who want to establish communication with the BS can act as relays for each other’s signals. While this problem is traditionally considered in the literature as a multiple-access channel with cooperation in the uplink, and a broadcast channel with cooperation in the downlink, we propose a different treatment of the problem as a multi-way channel. A simple communication scheme is proposed, and is shown to achieve significant gain in terms of fairness (measured by the symmetric rate supported) in comparison to the aforementioned traditional treatment.

  16. Device-Relaying in Cellular D2D Networks: A Fairness Perspective

    KAUST Repository

    Chaaban, Anas; Sezgin, Aydin

    2015-01-01

    Device-to-Device (D2D) communication is envisioned to play a key role in 5G networks as a technique for meeting the demand for high data rates. In a cellular network, D2D allows not only direct communication between users, but also device relaying. In this paper, a simple instance of device-relaying is investigated, and its impact on fairness among users is studied. Namely, a cellular network consisting of two D2D-enabled users and a base-station (BS) is considered. Thus, the users who want to establish communication with the BS can act as relays for each other’s signals. While this problem is traditionally considered in the literature as a multiple-access channel with cooperation in the uplink, and a broadcast channel with cooperation in the downlink, we propose a different treatment of the problem as a multi-way channel. A simple communication scheme is proposed, and is shown to achieve significant gain in terms of fairness (measured by the symmetric rate supported) in comparison to the aforementioned traditional treatment.

  17. Identification of driving network of cellular differentiation from single sample time course gene expression data

    Science.gov (United States)

    Chen, Ye; Wolanyk, Nathaniel; Ilker, Tunc; Gao, Shouguo; Wang, Xujing

    Methods developed based on bifurcation theory have demonstrated their potential in driving network identification for complex human diseases, including the work by Chen, et al. Recently bifurcation theory has been successfully applied to model cellular differentiation. However, there one often faces a technical challenge in driving network prediction: time course cellular differentiation study often only contains one sample at each time point, while driving network prediction typically require multiple samples at each time point to infer the variation and interaction structures of candidate genes for the driving network. In this study, we investigate several methods to identify both the critical time point and the driving network through examination of how each time point affects the autocorrelation and phase locking. We apply these methods to a high-throughput sequencing (RNA-Seq) dataset of 42 subsets of thymocytes and mature peripheral T cells at multiple time points during their differentiation (GSE48138 from GEO). We compare the predicted driving genes with known transcription regulators of cellular differentiation. We will discuss the advantages and limitations of our proposed methods, as well as potential further improvements of our methods.

  18. Practical Approaches to Adaptive Resource Allocation in OFDM Systems

    Directory of Open Access Journals (Sweden)

    N. Y. Ermolova

    2007-11-01

    Full Text Available Whenever a communication system operates in a time-frequency dispersive radio channel, the link adaptation provides a benefit in terms of any system performance metric by employing time, frequency, and, in case of multiple users, multiuser diversities. With respect to an orthogonal frequency division multiplexing (OFDM system, link adaptation includes bit, power, and subcarrier allocations. While the well-known water-filling principle provides the optimal solution for both margin-maximization and rate-maximization problems, implementation complexity often makes difficult its application in practical systems. This paper presents a few suboptimal (low-complexity adaptive loading algorithms for both single- and multiuser OFDM systems. We show that the single-user system performance can be improved by suitable power loading and an algorithm based on the incomplete channel state information is derived. At the same time, the power loading in a multiuser system only slightly affects performance while the initial subcarrier allocation has a rather big impact. A number of subcarrier allocation algorithms are discussed and the best one is derived on the basis of the order statistics theory.

  19. 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM.

    Science.gov (United States)

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Tsai, Cheng-Ting; Chen, Hsiang-Yu; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-05-18

    A TO-38-can packaged Gallium nitride (GaN) blue laser diode (LD) based free-space visible light communication (VLC) with 64-quadrature amplitude modulation (QAM) and 32-subcarrier orthogonal frequency division multiplexing (OFDM) transmission at 9 Gbps is preliminarily demonstrated over a 5-m free-space link. The 3-dB analog modulation bandwidth of the TO-38-can packaged GaN blue LD biased at 65 mA and controlled at 25°C is only 900 MHz, which can be extended to 1.5 GHz for OFDM encoding after throughput intensity optimization. When delivering the 4-Gbps 16-QAM OFDM data within 1-GHz bandwidth, the error vector magnitude (EVM), signal-to-noise ratio (SNR) and bit-error-rate (BER) of the received data are observed as 8.4%, 22.4 dB and 3.5 × 10(-8), respectively. By increasing the encoded bandwidth to 1.5 GHz, the TO-38-can packaged GaN blue LD enlarges its transmission capacity to 6 Gbps but degrades its transmitted BER to 1.7 × 10(-3). The same transmission capacity of 6 Gbps can also be achieved with a BER of 1 × 10(-6) by encoding 64-QAM OFDM data within 1-GHz bandwidth. Using the 1.5-GHz full bandwidth of the TO-38-can packaged GaN blue LD provides the 64-QAM OFDM transmission up to 9 Gbps, which successfully delivers data with an EVM of 5.1%, an SNR of 22 dB and a BER of 3.6 × 10(-3) passed the forward error correction (FEC) criterion.

  20. Valuing spectrum at mm wavelengths for cellular networks

    OpenAIRE

    Shaw, B. A.; Beltrán, H. F.; Sowerby, K. W.

    2017-01-01

    This paper investigates the economic value of spectrum at mm wavelengths. The analysis uses four techniques to value spectrum, namely a benchmarking comparison, a discounted cash flow analysis, a real options approach and a deprival method. The methods to calculate spectrum value presented in this paper can be used for any spectrum band and in any country. However, to determine the value of mm wavelengths for cellular networks, we have used data from New Zealand, specifically for the existing...

  1. MIMO-OFDM System's Performance Using LDPC Codes for a Mobile Robot

    Science.gov (United States)

    Daoud, Omar; Alani, Omar

    This work deals with the performance of a Sniffer Mobile Robot (SNFRbot)-based spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM) transmission technology. The use of Multi-Input Multi-Output (MIMO)-OFDM technology increases the wireless transmission rate without increasing transmission power or bandwidth. A generic multilayer architecture of the SNFRbot is proposed with low power and low cost. Some experimental results are presented and show the efficiency of sniffing deadly gazes, sensing high temperatures and sending live videos of the monitored situation. Moreover, simulation results show the achieved performance by tackling the Peak-to-Average Power Ratio (PAPR) problem of the used technology using Low Density Parity Check (LDPC) codes; and the effect of combating the PAPR on the bit error rate (BER) and the signal to noise ratio (SNR) over a Doppler spread channel.

  2. An approach enabling adaptive FEC for OFDM in fiber-VLLC system

    Science.gov (United States)

    Wei, Yiran; He, Jing; Deng, Rui; Shi, Jin; Chen, Shenghai; Chen, Lin

    2017-12-01

    In this paper, we propose an orthogonal circulant matrix transform (OCT)-based adaptive frame-level-forward error correction (FEC) scheme for fiber-visible laser light communication (VLLC) system and experimentally demonstrate by Reed-Solomon (RS) Code. In this method, no extra bits are spent for adaptive message, except training sequence (TS), which is simultaneously used for synchronization and channel estimation. Therefore, RS-coding can be adaptively performed frames by frames via the last received codeword-error-rate (CER) feedback estimated by the TSs of the previous few OFDM frames. In addition, the experimental results exhibit that over 20 km standard single-mode fiber (SSMF) and 8 m visible light transmission, the costs of RS codewords are at most 14.12% lower than those of conventional adaptive subcarrier-RS-code based 16-QAM OFDM at bit error rate (BER) of 10-5.

  3. OFDM Signal Detector Based on Cyclic Autocorrelation Function and its Properties

    Directory of Open Access Journals (Sweden)

    Z. Fedra

    2011-12-01

    Full Text Available This paper is devoted to research of the general and particular properties of the OFDM signal detector based on the cyclic autocorrelation function. The cyclic autocorrelation function is estimated using DFT. The parameters of the testing signal have been chosen according to 802.11g WLAN. Some properties are described analytically; all events are examined via computer simulations. It is shown that the detector is able to detect an OFDM signal in the case of multipath propagation, inexact frequency synchronization and without time synchronization. The sensitivity of the detector could be decreased in the above cases. An important condition for proper value of the detector sampling interval was derived. Three types of the channels were studied and compared. Detection threshold SNR=-9 dB was found for the signal under consideration and for two-way propagation.

  4. Performance enhanced DDO-OFDM system with adaptively partitioned precoding and single sideband modulation.

    Science.gov (United States)

    Chen, Xi; Feng, Zhenhua; Tang, Ming; Fu, Songnian; Liu, Deming

    2017-09-18

    As a promising solution for short-to-medium transmission systems, direct detection optical orthogonal frequency division multiplexing (DDO-OFDM) or discrete multi-tone (DMT) has been intensively investigated in last decade. Benefitting from the advantages of peak-to-average power (PAPR) reduction and signal-to-noise ratio (SNR) equalization, precoding techniques are widely applied to enhance the performance of DDO-OFDM systems. However, the conventional method of partitioning precoding sets limits the ability of precoding schemes to optimize the SNR variation and the allocation of modulation formats. Thus, the precoding transmission systems are hard to reach the capacity that traditional bit-power loading (BPL) techniques, like the Levin-Campello (LC) algorithm, can achieve. In this paper, we investigate the principle of SNR variation for precoded DDO-OFDM systems and theoretically demonstrate that the SNR equalization effect of precoding techniques is actually determined by the noise equalization process. Based on this fact, we propose an adaptively partitioned precoding (APP) algorithm to unlock the ability to control the SNR of each subcarrier. As demonstrated by the simulation and experimental results, the proposed APP algorithm achieves the transmission capacity as high as the LC algorithm and has nearly 1 dB PAPR reduction. Besides, the look-up table (LUT) operation ensures low complexity of the proposed APP algorithm compared with LC algorithm. To avoid severe chromatic dispersion (CD) induced spectral fading, single sideband (SSB) modulation is also implemented. We find that SSB modulation can reach the capacity of double sideband (DSB) modulation in optical back-to-back (OB2B) configuration by optimizing the modulation index. Therefore, the APP based SSB-DDO-OFDM scheme can sufficiently enhance the performance of cost-sensitive short-to-medium reach optical fiber communication systems.

  5. Experimental demonstration of an OFDM receiver based on a silicon-nanophot onic discrete Fourier transform filter

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Nolle, Markus; Meuer, C.

    2014-01-01

    We experimentally demonstrate the demultiplexing of 8×13.4 Gbaud OFDM-QPSK subcarriers using a silicon nanophotonic-based discrete Fourier transform (DFT) filter. All eight subcarriers showed less than 1.5 dB OSNR penalty compared to the theoretical limit.......We experimentally demonstrate the demultiplexing of 8×13.4 Gbaud OFDM-QPSK subcarriers using a silicon nanophotonic-based discrete Fourier transform (DFT) filter. All eight subcarriers showed less than 1.5 dB OSNR penalty compared to the theoretical limit....

  6. Stochastic Geometric Coverage Analysis in mmWave Cellular Networks with a Realistic Channel Model

    DEFF Research Database (Denmark)

    Rebato, Mattia; Park, Jihong; Popovski, Petar

    2017-01-01

    Millimeter-wave (mmWave) bands have been attracting growing attention as a possible candidate for next-generation cellular networks, since the available spectrum is orders of magnitude larger than in current cellular allocations. To precisely design mmWave systems, it is important to examine mmWa...

  7. Time lens based optical fourier transformation for advanced processing of spectrally-efficient OFDM and N-WDM signals

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Morioka, Toshio

    2016-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals.......We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals....

  8. Experimental Demonstration of Nonlinearity and Phase Noise Tolerant 16-QAM OFDM W-Band (75–110 GHz) Signal Over Fiber System

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Tafur Monroy, Idelfonso

    2014-01-01

    We propose a nonlinearity and phase noise tolerant orthogonal frequency division multiplexing (OFDM) W-band signal over fiber system based on phase modulation and photonic heterodyne up-conversion techniques. By heterodyne mixing the phase-modulated optical OFDM signal with a free-running laser i...

  9. Flexible Design for α-Duplex Communications in Multi-Tier Cellular Networks

    KAUST Repository

    Alammouri, Ahmad; Elsawy, Hesham; Alouini, Mohamed-Slim

    2016-01-01

    the foreseen FD gains. This paper presents flexible and tractable modeling framework for multi-tier cellular networks with FD BSs and FD/HD UEs. The presented model is based on stochastic geometry and accounts for the intrinsic vulnerability of uplink

  10. Improvement of the chromatic dispersion tolerance in coherent optical OFDM systems using shifted DFT windows for ultra-long-haul optical transmission systems.

    Science.gov (United States)

    Sung, Minkyu; Kim, Hoon; Lee, Jaehoon; Jeong, Jichai

    2014-09-22

    In a high-capacity ultra-long-haul optical coherent orthogonal frequency-division multiplexing (CO-OFDM) system, the dispersion tolerance is determined by the length of cyclic extension (CE). In this paper, we propose a novel scheme to substantially improve the dispersion tolerance of CO-OFDM systems without increasing the CE length. Multiple time-shifted discrete Fourier transform (DFT) windows are exploited at the receiver, each demodulating only a part of the subcarriers. Effectively, the proposed scheme reduces the bandwidth of the OFDM signals under demodulation. Numerical simulations are performed to show the improved dispersion tolerance of the proposed scheme in comparison with the conventional CO-OFDM system. We show that the dispersion tolerance improves by a factor equal to the number of DFT windows. The tradeoff between the improved dispersion tolerance and increased receiver complexity is also presented.

  11. PAPR Reduction in OFDM-based Visible Light Communication Systems Using a Combination of Novel Peak-value Feedback Algorithm and Genetic Algorithm

    Science.gov (United States)

    Deng, Honggui; Liu, Yan; Ren, Shuang; He, Hailang; Tang, Chengying

    2017-10-01

    We propose an enhanced partial transmit sequence technique based on novel peak-value feedback algorithm and genetic algorithm (GAPFA-PTS) to reduce peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals in visible light communication (VLC) systems(VLC-OFDM). To demonstrate the advantages of our proposed algorithm, we analyze the flow of proposed technique and compare the performances with other techniques through MATLAB simulation. The results show that GAPFA-PTS technique achieves a significant improvement in PAPR reduction while maintaining low bit error rate (BER) and low complexity in VLC-OFDM systems.

  12. An OFDM receiver implemented on the coarse-grain reconfigurable Montium processor

    NARCIS (Netherlands)

    Rauwerda, G.K.; Heysters, P.M.; Smit, Gerardus Johannes Maria

    Future mobile terminals become multimode communication systems. In order to handle different standards, we propose to perform baseband processing in heterogeneous reconfigurable hardware. OFDM is one of the techniques that exists in multimode communication systems. As an example, we present the

  13. Extension of the ITU Channel Models for Wideband (OFDM) Systems

    DEFF Research Database (Denmark)

    Sørensen, Troels Bundgaard; Frederiksen, Frank

    2005-01-01

    for the evaluation of wideband system concepts with frequency dependent characteristics, e.g. frequency domain link adaptation and packet scheduling, both of which are likely to be part of future wideband systems such as based on OFDM. With the suggested procedure the frequency correlation can be kept approximately...

  14. Low complexity variational bayes iterative reviver for MIMO-OFDM systems

    DEFF Research Database (Denmark)

    Xiong, Chunlin; Wang, Hua; Zhang, Xiaoying

    2009-01-01

    A low complexity iterative receiver is proposed in this paper for MIMO-OFDM systems in time-varying multi-path channel based on the variational Bayes (VB) method. According to the VB method, the estimation algorithms of the signal distribution and the channel distribution are derived for the rece...

  15. The Research on Improved Companding Transformation for Reducing PAPR in Underwater Acoustic OFDM Communication System

    Directory of Open Access Journals (Sweden)

    Jinqiu Wu

    2016-01-01

    Full Text Available To solve the problem of the high peak-to-average power ratio (PAPR in Orthogonal Frequency Division Multiplexing (OFDM for the underwater acoustic communication system, the paper offers a method of reducing PAPR which combines the amplitude limiting and the improved nonlinear transformation. Traditional amplitude limiting technique can reduce PAPR in OFDM system effectively, at the cost of reducing the bit error rate (BER. However the companding transformation has far less computation complexity than SLM or PTS technologies and can improve the BER performance compared to the amplitude limiting technique simultaneously. The paper combines these two kinds of techniques, takes full use of advantages of the two method, and puts forward a low-complexity scheme choosing parameters that are more appropriate to the underwater acoustic field, with the result of improved BER performance even in lower SNR. Both simulation and experiment results show that the new method which combines clipping and companding transformation can effectively reduce the PAPR in the underwater acoustic OFDM communication system and improve the BER performance simultaneously.

  16. Resource Allocation with Adaptive Spread Spectrum OFDM Using 2D Spreading for Power Line Communications

    Science.gov (United States)

    Baudais, Jean-Yves; Crussière, Matthieu

    2007-12-01

    Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM) are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM) waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT) system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC) channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR) is low.

  17. Base Station Ordering for Emergency Call Localization in Ultra-dense Cellular Networks

    KAUST Repository

    Elsawy, Hesham

    2017-10-04

    This paper proposes the base station ordering localization technique (BoLT) for emergency call localization in cellular networks. Exploiting the foreseen ultra-densification of the next-generation (5G and beyond) cellular networks, we utilize higher-order Voronoi tessellations to provide ubiquitous localization services that are in compliance to the public safety standards in cellular networks. The proposed localization algorithm runs at the base stations (BSs) and requires minimal operation from agents (i.e., mobile users). Particularly, BoLT requires each agent to feedback a neighbor cell list (NCL) that contains the order of neighboring BSs based on the received signal power in the pilots sent from these BSs. Moreover, this paper utilizes stochastic geometry to develop a tractable mathematical model to assess the performance of BoLT in a general network setting. The goal of this paper is to answer the following two fundamental questions: i) how many BSs should be ordered and reported by the agent to achieve a desirable localization accuracy? and ii) what is the localization error probability given that the pilot signals are subject to shadowing? Assuming that the BSs are deployed according to a Poisson point process (PPP), we answer these two questions via characterizing the tradeoff between the area of location region (ALR) and the localization error probability in terms of the number of BSs ordered by the agent. The results show that reporting the order of six neighboring BSs is sufficient to localize the agent within 10% of the cell area. Increasing the number of reported BSs to ten confines the location region to 1% of the cell area. This would translate to the range of a few meters to decimeters in the foreseen ultra-dense 5G networks.

  18. Base Station Ordering for Emergency Call Localization in Ultra-dense Cellular Networks

    KAUST Repository

    Elsawy, Hesham; Dai, Wenhan; Alouini, Mohamed-Slim; Win, Moe Z.

    2017-01-01

    This paper proposes the base station ordering localization technique (BoLT) for emergency call localization in cellular networks. Exploiting the foreseen ultra-densification of the next-generation (5G and beyond) cellular networks, we utilize higher-order Voronoi tessellations to provide ubiquitous localization services that are in compliance to the public safety standards in cellular networks. The proposed localization algorithm runs at the base stations (BSs) and requires minimal operation from agents (i.e., mobile users). Particularly, BoLT requires each agent to feedback a neighbor cell list (NCL) that contains the order of neighboring BSs based on the received signal power in the pilots sent from these BSs. Moreover, this paper utilizes stochastic geometry to develop a tractable mathematical model to assess the performance of BoLT in a general network setting. The goal of this paper is to answer the following two fundamental questions: i) how many BSs should be ordered and reported by the agent to achieve a desirable localization accuracy? and ii) what is the localization error probability given that the pilot signals are subject to shadowing? Assuming that the BSs are deployed according to a Poisson point process (PPP), we answer these two questions via characterizing the tradeoff between the area of location region (ALR) and the localization error probability in terms of the number of BSs ordered by the agent. The results show that reporting the order of six neighboring BSs is sufficient to localize the agent within 10% of the cell area. Increasing the number of reported BSs to ten confines the location region to 1% of the cell area. This would translate to the range of a few meters to decimeters in the foreseen ultra-dense 5G networks.

  19. Mobility-Aware User Association in Uplink Cellular Networks

    KAUST Repository

    Arshad, Rabe; Elsawy, Hesham; Sorour, Sameh; Alouini, Mohamed-Slim; Al-Naffouri, Tareq Y.

    2017-01-01

    This letter studies the mobility aware user-to-BS association policies, within a stochastic geometry framework, in two tier uplink cellular networks with fractional channel inversion power control. Particularly, we model the base stations’ locations using the widely accepted poisson point process and obtain the coverage probability and handover cost expressions for the coupled and decoupled uplink and downlink associations. To this end, we compute the average throughput for the mobile users and study the merits and demerits of each association strategy.

  20. Mobility-Aware User Association in Uplink Cellular Networks

    KAUST Repository

    Arshad, Rabe

    2017-07-20

    This letter studies the mobility aware user-to-BS association policies, within a stochastic geometry framework, in two tier uplink cellular networks with fractional channel inversion power control. Particularly, we model the base stations’ locations using the widely accepted poisson point process and obtain the coverage probability and handover cost expressions for the coupled and decoupled uplink and downlink associations. To this end, we compute the average throughput for the mobile users and study the merits and demerits of each association strategy.

  1. Cellular telephone-based wide-area radiation detection network

    Science.gov (United States)

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2009-06-09

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  2. Mobility-Aware Modeling and Analysis of Dense Cellular Networks With $C$ -Plane/ $U$ -Plane Split Architecture

    KAUST Repository

    Ibrahim, Hazem; Elsawy, Hesham; Nguyen, Uyen Trang; Alouini, Mohamed-Slim

    2016-01-01

    The unrelenting increase in the population of mobile users and their traffic demands drive cellular network operators to densify their network infrastructure. Network densification shrinks the footprint of base stations (BSs) and reduces the number

  3. Comparison of delay-interferometer and time-lens-based all-optical OFDM demultiplexers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Galili, Michael

    2015-01-01

    ) based on time lenses. In the former scheme, cascaded delay-interferometers (DIs) are used to perform the O-DFT, with subsequent active optical gating to remove the intercarrier interference (ICI). Here a reduced-complexity partial O-DFT, realized by replacing a number of DIs with optical bandpass......In this paper we present the first detailed numerical comparison of two promising all-optical schemes to demultiplex orthogonal frequency-division multiplexing (OFDM) signals. The investigated schemes are the optical discrete Fourier transformation (O-DFT) and the optical spectral magnification (SM...... filters, is investigated. In the latter scheme the OFDM spectrum is magnified, allowing for simple optical bandpass filtering of the individual subcarriers with reduced ICI. Ideally only a single unit consisting of two time lenses is needed, reducing the complexity and potentially the energy consumption...

  4. Comparison of Delay-Interferometer and Time- Lens-Based All-Optical OFDM Demultiplexers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Galili, Michael

    2015-01-01

    (SM) based on time lenses. In the former scheme, cascaded delay-interferometers (DIs) are used to perform the O-DFT, with subsequent active optical gating to remove the intercarrier interference (ICI). Here, a reduced-complexity partial O-DFT, realized by replacing a number of DIs with optical......In this letter, we present the first detailed numerical comparison of two promising all-optical schemes to demultiplex orthogonal frequency-division multiplexing (OFDM) signals. The investigated schemes are the optical discrete Fourier transformation (O-DFT) and the optical spectral magnification...... bandpass filters, is investigated. In the latter scheme, the OFDM spectrum is magnified, allowing for simple optical bandpass filtering of the individual subcarriers with reduced ICI. Ideally, only a single unit consisting of two time lenses is needed, reducing the complexity and potentially the energy...

  5. Opportunistic error correction: when does it work best for OFDM systems?

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2013-01-01

    The water-filling algorithm enables an energy-efficient OFDM-based transmitter by maximizing the capacity of a frequency selective fading channel. However, this optimal strategy requires the perfect channel state information at the transmitter that is not realistic in wireless applications. In this

  6. A Neural Network based Approach for Predicting Customer Churn in Cellular Network Services

    OpenAIRE

    Sharma, Anuj; Panigrahi, Dr. Prabin Kumar

    2013-01-01

    Marketing literature states that it is more costly to engage a new customer than to retain an existing loyal customer. Churn prediction models are developed by academics and practitioners to effectively manage and control customer churn in order to retain existing customers. As churn management is an important activity for companies to retain loyal customers, the ability to correctly predict customer churn is necessary. As the cellular network services market becoming more competitive, custom...

  7. Exponential convergence for a class of delayed cellular neural networks with time-varying coefficients

    International Nuclear Information System (INIS)

    Liu Bingwen

    2008-01-01

    In this Letter, we consider a class of delayed cellular neural networks with time-varying coefficients. By applying Lyapunov functional method and differential inequality techniques, we establish new results to ensure that all solutions of the networks converge exponentially to zero point

  8. Interference Mitigation Technique for Coexistence of Pulse-Based UWB and OFDM

    Directory of Open Access Journals (Sweden)

    Ohno Kohei

    2008-01-01

    Full Text Available Abstract Ultra-wideband (UWB is a useful radio technique for sharing frequency bands between radio systems. It uses very short pulses to spread spectrum. However, there is a potential for interference between systems using the same frequency bands at close range. In some regulatory systems, interference detection and avoidance (DAA techniques are required to prevent interference with existing radio systems. In this paper, the effect of interference on orthogonal frequency division multiplexing (OFDM signals from pulse-based UWB is discussed, and an interference mitigation technique is proposed. This technique focuses on the pulse repetition cycle of UWB. The pulse repetition interval is set the same or half the period of the OFDM symbol excluding the guard interval to mitigate interference. These proposals are also made for direct sequence (DS-UWB. Bit error rate (BER performance is illustrated through both simulation and theoretical approximations.

  9. Cellular Neural Network-Based Methods for Distributed Network Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2015-01-01

    Full Text Available According to the problems of current distributed architecture intrusion detection systems (DIDS, a new online distributed intrusion detection model based on cellular neural network (CNN was proposed, in which discrete-time CNN (DTCNN was used as weak classifier in each local node and state-controlled CNN (SCCNN was used as global detection method, respectively. We further proposed a new method for design template parameters of SCCNN via solving Linear Matrix Inequality. Experimental results based on KDD CUP 99 dataset show its feasibility and effectiveness. Emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation which allows the distributed intrusion detection to be performed better.

  10. Modulación por multiportadoras tipo OFDM, las bases de la nueva generación de transmisión de información

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Ramírez Behaine

    2006-07-01

    Full Text Available Las proyecciones de demanda del servicio de banda ancha muestran un crecimiento vertiginoso en las próximas décadas. El esquema de modulación que soporta el nivel físico de tales servicios es el de multiplexión por división de frecuencias ortogonales (OFDM que, gracias a sus características ortogonales, logran sobrepasar las barreras de transmisión impuestas por los canales de comunicaciones. Después de ilustrar los fundamentos del porqué OFDM logra su cometido, detallando el mapeamiento y modelo de comunicaciones en banda base, las aplicaciones potenciales actuales y futuras de OFDM son indicadas. Se prevé que surja un modelo para las nuevas generaciones, propuestas en espacios concurrentes en tiempo, frecuencia y código.The projections of the demand of broadband services show a vertiginous growth in the next decades. The modulation scheme that supports the physical level of such services is the Orthogonal Frequency-Division Multiplexing (OFDM that thanks to their orthogonal characteristics, overcome the transmission barriers imposed by the communication channels. After illustrating the fundamentals of why OFDM achieves its objective and detailing the mapping and model of communications in base band, the present and future of potential applications of OFDM are indicated. It is likely that a model for the new generations, in which time, frequency and code concur in space, will arise

  11. In-Band α-Duplex Scheme for Cellular Networks: A Stochastic Geometry Approach

    KAUST Repository

    Alammouri, Ahmad; Elsawy, Hesham; Amin, Osama; Alouini, Mohamed-Slim

    2016-01-01

    In-band full-duplex (FD) communications have been optimistically promoted to improve the spectrum utilization and efficiency. However, the penetration of FD communications to the cellular networks domain is challenging due to the imposed uplink

  12. Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode.

    Science.gov (United States)

    Chi, Yu-Chieh; Li, Yi-Cheng; Wang, Huai-Yung; Peng, Peng-Chun; Lu, Hai-Han; Lin, Gong-Ru

    2012-08-27

    Coherently injection-locked and directly modulated weak-resonant-cavity laser diode (WRC-FPLD) for back-to-back optical 16-quadrature-amplitude-modulation (QAM) and 52-subcarrier orthogonal frequency division multiplexing (OFDM) transmission with maximum bit rate up to 4 Gbit/s at carrier frequency of 2.5 GHz is demonstrated. The WRC-FPLD transmitter source is a specific design with very weak-resonant longitudinal modes to preserve its broadband gain spectral characteristics for serving as a colorless WDM-PON transmitter. Under coherent injection-locking, the relative-intensity noise (RIN) of the injection-locked WRC-FPLD can be suppressed to ?105 dBc/Hz and the error vector magnitude of the received optical OFDM data is greatly reduced with the amplitude error suppressed down 5.5%. Such a coherently injection-locked single-mode WRC-FPLD can perform both the back-to-back and the 25-km-SMF 16-QAM-52-OFDM transmissions with a symbol rate of 20-MSa/s in each OFDM subcarrier. After coherent injection locking, the BER of the back-to-back transmitted 16-QAM-52-OFDM data is reduced to 2.5 × 10(-5) at receiving power of ?10 dBm. After propagating along a 25-km-long SMF, a receiving power sensitivity of ?7.5 dBm is required to obtain a lowest BER of 2.5 × 10(-5), and a power penalty of 2.7 dB is observed when comparing with the back-to-back transmission.

  13. Dual-polarization multi-band optical OFDM transmission and transceiver limitations for up to 500 Gb/s uncompensated long-haul links.

    Science.gov (United States)

    Giacoumidis, E; Jarajreh, M A; Sygletos, S; Le, S T; Farjady, F; Tsokanos, A; Hamié, A; Pincemin, E; Jaouën, Y; Ellis, A D; Doran, N J

    2014-05-05

    A number of critical issues for dual-polarization single- and multi-band optical orthogonal-frequency division multiplexing (DP-SB/MB-OFDM) signals are analyzed in dispersion compensation fiber (DCF)-free long-haul links. For the first time, different DP crosstalk removal techniques are compared, the maximum transmission-reach is investigated, and the impact of subcarrier number and high-level modulation formats are explored thoroughly. It is shown, for a bit-error-rate (BER) of 10(-3), 2000 km of quaternary phase-shift keying (QPSK) DP-MB-OFDM transmission is feasible. At high launched optical powers (LOP), maximum-likelihood decoding can extend the LOP of 40 Gb/s QPSK DP-SB-OFDM at 2000 km by 1.5 dB compared to zero-forcing. For a 100 Gb/s DP-MB-OFDM system, a high number of subcarriers contribute to improved BER but at the cost of digital signal processing computational complexity, whilst by adapting the cyclic prefix length the BER can be improved for a low number of subcarriers. In addition, when 16-quadrature amplitude modulation (16QAM) is employed the digital-to-analogue/analogue-to-digital converter (DAC/ADC) bandwidth is relaxed with a degraded BER; while the 'circular' 8QAM is slightly superior to its 'rectangular' form. Finally, the transmission of wavelength-division multiplexing DP-MB-OFDM and single-carrier DP-QPSK is experimentally compared for up to 500 Gb/s showing great potential and similar performance at 1000 km DCF-free G.652 line.

  14. Implementasi dan Evaluasi Kinerja Multi Input SingleOutput Orthogonal Frequency Division Multiplexing (MISO OFDM Menggunakan Wireless Open Access Research Platform (WARP

    Directory of Open Access Journals (Sweden)

    Galih Permana Putra

    2017-01-01

    Full Text Available Teknologi komunikasi nirkabel terus berkembang untuk memenuhi kebutuhan manusia akan koneksi informasi yang cepat, pengiriman data yang berkapasitas besar dan dapat diandalkan. Di dalam proses tersebut banyak sekali gangguan yang dapat mempengaruhi penurunan kinerja komunikasi diantaranya adalah multipath fading [1]. Multi Input Single Output (MISO merupakan salah satu teknik space diversity yang menggunakan banyak antena dengan tujuan untuk mengatasi multipath fading. Adapun pada proses transmisi digunakan teknik Orthogonal Frequency-Division Multiplexing (OFDM yang bertujuan memberikan keuntungan dalam hal efisiensi pada saat transmisi data dan mampu menghindari Inter Simbol Interference (ISI. Pada penelitian ini akan dibandingkan kinerja sistem MISO OFDM dan SISO OFDM yang akan disimulasikan dan di implementasikan pada modul Wireless Open Access Penelitian Platform (WARP untuk mengevaluasi kinerja BER sebagai fungsi dari daya pancar dan jarak variasi. Parameter yang digunakan di dalam pengukuran berdasarkan IEEE 802.11 a/g karena menggunakan frekuensi 2,4 Ghz. Terdapat dua skema pengukuran yaitu SISO OFDM dan MISO OFDM dengan variasi jarak 4,6 dan 8 meter dengan variasi daya pancar -35 s/d -4 dBm dengan peningkatan gain 5 kali secara berkala. Dari dua skema yang dilaksanakan dapat disimpulkan bahwa semakin jauh jarak antara pemancar dan penerima maka dibutuhkan penambahan gain untuk menjaga kualitas data yang dikirimkan. Disamping itu, terdapat perbedaan nilai gain untuk mencapai nilai BER = dibutuhkan penambahan gain = - 33 sedangkan pada SISO OFM dibutuhkan penambahan gain = -18.

  15. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    Science.gov (United States)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  16. Network-Coded Macrocell Offloading in Femtocaching-Assisted Cellular Networks

    KAUST Repository

    Shnaiwer, Yousef; Sorour, Sameh; Sadeghi, Parastoo; Aboutorab, Neda; Al-Naffouri, Tareq Y.

    2017-01-01

    Opportunistic network coding (ONC) has shown high potential in enhancing the quality-of-experience (QoE) for the clients of cellular networks using their previously downloaded files. In this paper, we study the problem of offloading clients from the macrocell base station (MBS) with the help of femtocaches (FCs) and ONC. We formulate this MBS offloading problem as an optimization problem over an ONC graph, and prove that it is non-deterministic polynomial-time (NP)-hard. Thus, we propose an ONC-broadcast offloading scheme, which utilizes separate ONC graphs at the MBS and FCs in addition to uncoded broadcasting, to offload the clients from the MBS. We analyze the performance of the ONC-broadcast offloading scheme and show that it is asymptotically optimal using random graph theory. Since even this ONC-broadcast offloading scheme is still NP-hard to implement, we devise an efficient heuristic to simplify the implementation. We show that the proposed heuristic reduces the worst-case complexity of implementing the ONC-broadcast offloading scheme from an exponential to a quadratic function of the total number of vertices in the FC ONC graph. Simulation results show that, despite its low complexity, the proposed heuristic achieves similar MBS offloading performance to the ONC-broadcast offloading scheme.

  17. Network-Coded Macrocell Offloading in Femtocaching-Assisted Cellular Networks

    KAUST Repository

    Shnaiwer, Yousef

    2017-11-08

    Opportunistic network coding (ONC) has shown high potential in enhancing the quality-of-experience (QoE) for the clients of cellular networks using their previously downloaded files. In this paper, we study the problem of offloading clients from the macrocell base station (MBS) with the help of femtocaches (FCs) and ONC. We formulate this MBS offloading problem as an optimization problem over an ONC graph, and prove that it is non-deterministic polynomial-time (NP)-hard. Thus, we propose an ONC-broadcast offloading scheme, which utilizes separate ONC graphs at the MBS and FCs in addition to uncoded broadcasting, to offload the clients from the MBS. We analyze the performance of the ONC-broadcast offloading scheme and show that it is asymptotically optimal using random graph theory. Since even this ONC-broadcast offloading scheme is still NP-hard to implement, we devise an efficient heuristic to simplify the implementation. We show that the proposed heuristic reduces the worst-case complexity of implementing the ONC-broadcast offloading scheme from an exponential to a quadratic function of the total number of vertices in the FC ONC graph. Simulation results show that, despite its low complexity, the proposed heuristic achieves similar MBS offloading performance to the ONC-broadcast offloading scheme.

  18. A Cognitive Radio based Solution to Coexistence of FH and OFDM Signals Implemented on USRP N210 Platform

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2017-06-01

    Full Text Available A new concept development and practical implementation of an OFDM based secondary cognitive link are presented in this paper. Coexistence of a secondary user employing Orthogonal Frequency Division Multiplexing (OFDM and a primary user employing Frequency Hopping (FH is achieved. Secondary and primary links are realized using Universal Software Radio Peripheral (USRP N210 platforms. Cognitive features of spectrum sensing and changing transmission parameters are implemented. Some experimental results are presented.

  19. Power Control for D2D Underlay Cellular Networks With Channel Uncertainty

    KAUST Repository

    Memmi, Amen

    2016-12-26

    Device-to-device (D2D) communications underlying the cellular infrastructure are a technology that have been proposed recently as a promising solution to enhance cellular network capabilities. It improves spectrum utilization, overall throughput, and energy efficiency while enabling new peer-to-peer and location-based applications and services. However, interference is the major challenge, since the same resources are shared by both systems. Therefore, interference management techniques are required to keep the interference under control. In this paper, in order to mitigate interference, we consider centralized and distributed power control algorithms in a one-cell random network model. Existing results on D2D underlay networks assume perfect channel state information (CSI). This assumption is usually unrealistic in practice due to the dynamic nature of wireless channels. Thus, it is of great interest to study and evaluate achievable performances under channel uncertainty. Differently from previous works, we are assuming that the CSI may be imperfect and include estimation errors. In the centralized approach, we derive the optimal powers that maximize the coverage probability and the rate of the cellular user while scheduling as many D2D links as possible. These powers are computed at the base station (BS) and then delivered to the users, and hence the name “centralized”. For the distributed method, the ON–OFF power control and the truncated channel inversion are proposed. Expressions of coverage probabilities are established in the function of D2D links intensity, pathloss exponent, and estimation error variance. Results show the important influence of CSI error on achievable performances and thus how crucial it is to consider it while designing networks and evaluating performances.

  20. Channel Asymmetry in Cellular OFDMA-TDD Networks

    Directory of Open Access Journals (Sweden)

    Agyapong Patrick

    2008-01-01

    Full Text Available Abstract This paper studies time division duplex- (TDD- specific interference issues in orthogonal frequency division multiple access- (OFDMA- TDD cellular networks arising from various uplink (UL/downlink (DL traffic asymmetries, considering both line-of-sight (LOS and non-LOS (NLOS conditions among base stations (BSs. The study explores aspects both of channel allocation and user scheduling. In particular, a comparison is drawn between the fixed slot allocation (FSA technique and a dynamic channel allocation (DCA technique for different UL/DL loads. For the latter, random time slot opposing (RTSO is assumed due to its simplicity and its low signaling overhead. Both channel allocation techniques do not obviate the need for user scheduling algorithms, therefore, a greedy and a fair scheduling approach are applied to both the RTSO and the FSA. The systems are evaluated based on spectral efficiency, subcarrier utilization, and user outage. The results show that RTSO networks with DL-favored traffic asymmetries outperform FSA networks for all considered metrics and are robust to LOS between BSs. In addition, it is demonstrated that the greedy scheduling algorithm only offers a marginal increase in spectral efficiency as compared to the fair scheduling algorithm, while the latter exhibits up to 20% lower outage.