Sample records for cellular ofdm networks

  1. OFDM

    Rohling, Hermann


    (Preliminary): The Orthogonal Frequency Division Multiplexing (OFDM) digital transmission technique has several advantages in broadcast and mobile communications applications. The main objective of this book is to give a good insight into these efforts, and provide the reader with a comprehensive overview of the scientific progress which was achieved in the last decade. Besides topics of the physical layer, such as coding, modulation and non-linearities, a special emphasis is put on system aspects and concepts, in particular regarding cellular networks and using multiple antenna techniques. Th

  2. Optical OFDM-based Data Center Networks

    Christoforos Kachris


    Full Text Available Cloud computing and web emerging application has created the need for more powerful data centers with high performance interconnection networks.Current data center networks,based on electronic packet switches,will not be able to satisfy the required communication bandwidth of emerging applications without consuming excessive power.Optical interconnercts have gained attention recently as a promising solution offering high throughput,low latency and reduced energy cosumption compared to current networks based in commidity switches.This paper presents a novel architecture for data center networks based on optical OFDM using Wavelength Selective Swithces(WSS. The OFDM-based solution provides high throughput,reduced latency and fine grain bandwidth allocation. A heuristic algorithm for the bandwidth allocation is presented and evaluated in terms of utilization. The power analysis shows that the proposed scheme is almost 60% more energy efficient compared to the current networks based on eommodity switches.

  3. Novel Spectrum Sensing Algorithms for OFDM Cognitive Radio Networks.

    Shi, Zhenguo; Wu, Zhilu; Yin, Zhendong; Cheng, Qingqing


    Spectrum sensing technology plays an increasingly important role in cognitive radio networks. Consequently, several spectrum sensing algorithms have been proposed in the literature. In this paper, we present a new spectrum sensing algorithm "Differential Characteristics-Based OFDM (DC-OFDM)" for detecting OFDM signal on account of differential characteristics. We put the primary value on channel gain θ around zero to detect the presence of primary user. Furthermore, utilizing the same method of differential operation, we improve two traditional OFDM sensing algorithms (cyclic prefix and pilot tones detecting algorithms), and propose a "Differential Characteristics-Based Cyclic Prefix (DC-CP)" detector and a "Differential Characteristics-Based Pilot Tones (DC-PT)" detector, respectively. DC-CP detector is based on auto-correlation vector to sense the spectrum, while the DC-PT detector takes the frequency-domain cross-correlation of PT as the test statistic to detect the primary user. Moreover, the distributions of the test statistics of the three proposed methods have been derived. Simulation results illustrate that all of the three proposed methods can achieve good performance under low signal to noise ratio (SNR) with the presence of timing delay. Specifically, the DC-OFDM detector gets the best performance among the presented detectors. Moreover, both of the DC-CP and DC-PT detector achieve significant improvements compared with their corresponding original detectors. PMID:26083226

  4. OFDM AF Variable Gain Relay System for the Next Generation Mobile Cellular

    E. Kocan


    Full Text Available In this paper we present analytical performance evaluation of a dual-hop OFDM amplify-andforward (AF variable gain (VG relay system implementing ordered subcarrier mapping (SCM at the relay station (R, considered to be a very interesting solution for the next generation mobile cellular networks. A scenario with no direct communication between the source of information (S and destination terminal (D, with the Rayleigh fading statistics on both hops is assumed. A closed form analytical expression for the bit error rate (BER performance of the considered system with DPSK modulation is derived, while for its ergodic capacity performance, a tight upper bound expression is obtained. The accuracy of the undertaken analytical approach is confirmed through comparison with simulation results. It is shown that significant capacity enhancement can be achieved through SCM implementation at R, for all the signal-to-noise ratio (SNR values on both hops, but especially in the region of small SNRs on hops. BER analysis reveals that in the region of small and medium average SNRs on both hops BER performance may also be improved with SCM at R station.

  5. On Multiple-Input Multiple-Output OFDM with Index Modulation for Next Generation Wireless Networks

    Basar, Ertugrul


    Multiple-input multiple-output orthogonal frequency division multiplexing with index modulation (MIMO-OFDM-IM) is a novel multicarrier transmission technique which has been proposed recently as an alternative to classical MIMO-OFDM. In this scheme, OFDM with index modulation (OFDM-IM) concept is combined with MIMO transmission to take advantage of the benefits of these two techniques. In this paper, we shed light on the implementation and error performance analysis of the MIMO-OFDM-IM scheme for next generation 5G wireless networks. Maximum likelihood (ML), near-ML, simple minimum mean square error (MMSE) and ordered successive interference cancellation (OSIC) based MMSE detectors of MIMO-OFDM-IM are proposed and their theoretical performance is investigated. It has been shown via extensive computer simulations that MIMO-OFDM-IM scheme provides an interesting trade-off between error performance and spectral efficiency as well as it achieves considerably better error performance than classical MIMO-OFDM using different type detectors and under realistic conditions.

  6. Heterogeneous cellular networks

    Hu, Rose Qingyang


    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  7. Power Efficiency Improvement in CE-OFDM System With 0 dB IBO for Transmission over PLC Network

    El Ghzaoui Mohammed, Belkadid Jamal, Benbassou Ali & EL Bekkali Moulhim


    Full Text Available Orthogonal frequency division multiplexing (OFDM OFDM has been adopted for high speeddata transmission of multimedia traffic such as HomePlug A/V and Mobile WiMax. However,OFDM also has a drawback of a high PAPR (peak-to-average-power-ratio. Due to this highPAPR amplifier usually does not act in dynamic range. One potential solution for reducing thepeak-to-average power ratio (PAPR in an OFDM system is to utilize a constant envelopeOFDM (CE-OFDM system. Furthermore, by utilizing continuous phase modulation (CPM ina CE-OFDM system, the PAPR can be effectively reduced to 0 dB, allowing for the signal tobe amplified with a power efficient non-linear power amplifier with Input Back-Off (IBO of 0dB. This paper describes a CE-OFDM based modem for Power Line Communications (PLCover the low voltage distribution network. Relying on a preliminary characterization of a PLCnetwork, a complete description of the modem is given. Also CE-OFDM is compared withconventional OFDM under HomePlug 1.0 in the presence of power amplifier nonlinearities,considering different values of IBO.

  8. Interaction of Frequency Allocation Schemes and Beam Forming on the Performance of Cellular Communication Systems Based on OFDM

    R. Gholami


    Full Text Available In this study, the interaction of Beam Forming and frequency allocation schemes on an OFDM-based system such as LTE or WiMAX is investigated in order to support the maximum capacity and minimum outage probability. The results of simulation show that rank1 precode scheme based on MISO channel, according to what considered in LTE standard, along with the cell region division in order to allocate OFDM frequency carriers lead to a Considerable interest in the total capacity of the network in different traffics.


    Yu Guanding; Zhang Zhaoyang; Qiu Peiliang


    This paper presents an efficient Radio Resource Management (RRM) strategy for adaptive Orthogonal Frequency Division Multiplexing (OFDM) cellular systems. In the proposed strategy, only those users who have the same distance from their base stations can reuse a same subcarrier. This can guarantee the received Carrier-to-Interference ratio (C/I) of each subcarrier to be acceptable as required by system planning. Then by employing different modulation scheme on each subcarrier according to its received C/I, system spectral efficiency can be gracefully increased. Analytical and simulation results show that the spectral efficiency is improved by 40% without sacrificing the Bit Error Rate (BER) performance and call blocking probability and system capacity of the proposed strategy is better than conventional systems.

  10. A Three-Dimensional OFDM System with PAPR Reduction Method for Wireless Sensor Networks

    Chen, Zhenxing; Kang, Seog Geun


    A three-dimensional (3D) orthogonal frequency division multiplexing (OFDM) system with peak-to-average power ratio (PAPR) reduction method for the wireless sensor networks (WSNs) is presented. The transmit power of wireless nodes in an ad hoc network is strictly limited. Thus, high PAPR of the 3D OFDM system is a possible drawback when it is considered as a physical layer transmission scheme for the WSNs. Here, we propose an improved partial transmit sequence (PTS) technique to reduce PAPR of...

  11. Environment Aware Cellular Networks

    Ghazzai, Hakim


    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  12. All-optical OFDM network coding scheme for all-optical virtual private communication in PON

    Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong


    A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.

  13. Photonic layer security in fiber-optic networks and optical OFDM transmission

    Wang, Zhenxing

    Currently the Internet is experiencing an explosive growth in the world. Such growth leads to an increased data transmission rate demand in fiber-optical networks. Optical orthogonal frequency multiplexing (OFDM) is considered as a promising solution to achieve data rate beyond 100Gb/s per wavelength channel. In the meanwhile, because of extensive data transmission and sharing, data security has become an important problem and receives considerable attention in current research literature. This thesis focuses on data security issues at the physical layer of optical networks involving code-division multiple access (CDMA) systems and steganography methods. The thesis also covers several implementation issues in optical OFDM transmission. Optical CDMA is regarded as a good candidate to provide photonic layer security in multi-access channels. In this thesis we provide a systematic analysis of the security performance of incoherent optical CDMA codes. Based on the analysis, we proposed and experimentally demonstrated several methods to improve the security performance of the optical CDMA systems, such as applying all-optical encryption, and code hopping using nonlinear wavelength conversion. Moreover, we demonstrate that the use of wireless CDMA codes in optical systems can enhance the security in one single-user end-to-end optical channel. Optical steganography is another method to provide photonic data security and involves hiding the existence of data transmissions. In the thesis, we demonstrate that an optical steganography channel can exist in phase modulated public channels as well as traditional on-off-keying (OOK) modulated channels, without data synchronization. We also demonstrate an optical steganography system with enhanced security by utilizing temporal phase modulation techniques. Additionally, as one type of an overlay channel, the optical steganography technology can carry the sensor data collected by wireless sensor network on top of public optical

  14. Novel coherent optical OFDM-based transponder for optical slot switched networks

    Mestre, Miquel A.; Estaran, Jose M.; Jenneve, Philippe; Mardoyan, Haik; Tafur Monroy, Idelfonso; Zibar, Darko; Bigo, Sebastien


    We report a novel coherent optical OFDM transponder approach capable of recovering microsecond-scale data-burst while adapting to tight filtering constraints present in optical slot switched intradatacenter networks. Filtering effects in such large node-count environments are reviewed. The CO...

  15. Adaptive coded spreading OFDM signal for dynamic-λ optical access network

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun


    This paper proposes and experimentally demonstrates a novel adaptive coded spreading (ACS) orthogonal frequency division multiplexing (OFDM) signal for dynamic distributed optical ring-based access network. The wavelength can be assigned to different remote nodes (RNs) according to the traffic demand of optical network unit (ONU). The ACS can provide dynamic spreading gain to different signals according to the split ratio or transmission length, which offers flexible power budget for the network. A 10×13.12 Gb/s OFDM access with ACS is successfully demonstrated over two RNs and 120 km transmission in the experiment. The demonstrated method may be viewed as one promising for future optical metro access network.

  16. All-optical virtual private network and ONUs communication in optical OFDM-based PON system.

    Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun


    We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible. PMID:22109510

  17. On the Outage Behavior of Asynchronous OFDM DF and AF Cooperative Networks

    Torbatian, Mehdi


    The outage behavior of various relaying protocols over a general one hop asynchronous cooperative network is examined when orthogonal frequency division multiplexing (OFDM) is used to combat synchronization error among the relays. We consider non-orthogonal selection decode-and-forward (NSDF), orthogonal selection decode-and-forward (OSDF), non-orthogonal amplify-and-forward (NAF), and orthogonal amplify-and-forward (OAF) relaying protocols and analyze the diversity multiplexing gain tradeoff (DMT) in all scenarios. The transmitting nodes cooperatively construct an asynchronous OFDM space-time code by re-sending the source messages over a common time interval and a common frequency bandwidth. It is shown that in decode-and-forward (DF) type protocols, the asynchronous network provides a diversity gain greater than or equal to the one of the corresponding synchronous network in the limit of code word length and throughout the range of multiplexing gain. In amplify-and-forward (AF) type protocols, in which the ...

  18. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Rie Saotome


    Full Text Available In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles, AUV (autonomous underwater vehicle, divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3 and 93.750 Hz (MODE2 OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%.

  19. Multiuser Cellular Network

    Bao, Yi; Chen, Ming


    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  20. Game-Theoretic Deployment Design of Small-Cell OFDM Networks

    Gaoning, He; Betz, Sharon; Debbah, Merouane


    International audience We present a non-cooperative game-theoretic approach for the distributed resource allocation problem in the context of multiple transmitters communicating with multiple receivers through parallel independent fading channels, which is closely related with small-cell multi-user orthogonal frequency division multiplexing (OFDM) networks, e.g., Wi-Fi hotspots. We assume that all the transmitters are rational, selfish, and each one carries the objective of maximizing its ...

  1. MIMO Communication for Cellular Networks

    Huang, Howard; Venkatesan, Sivarama


    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  2. Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission.

    Liu, Lei; Peng, Wei-Ren; Casellas, Ramon; Tsuritani, Takehiro; Morita, Itsuro; Martínez, Ricardo; Muñoz, Raül; Yoo, S J B


    Optical Orthogonal Frequency Division Multiplexing (O-OFDM), which transmits high speed optical signals using multiple spectrally overlapped lower-speed subcarriers, is a promising candidate for supporting future elastic optical networks. In contrast to previous works which focus on Coherent Optical OFDM (CO-OFDM), in this paper, we consider the direct-detection optical OFDM (DDO-OFDM) as the transport technique, which leads to simpler hardware and software realizations, potentially offering a low-cost solution for elastic optical networks, especially in metro networks, and short or medium distance core networks. Based on this network scenario, we design and deploy a software-defined networking (SDN) control plane enabled by extending OpenFlow, detailing the network architecture, the routing and spectrum assignment algorithm, OpenFlow protocol extensions and the experimental validation. To the best of our knowledge, it is the first time that an OpenFlow-based control plane is reported and its performance is quantitatively measured in an elastic optical network with DDO-OFDM transmission. PMID:24514962

  3. Electrical Spreading Code-Based OFDM Optical Access Networks for Budget Enhancement and Reduced System Bandwidth Requirement

    Kumar, Pravindra; Srivastava, Anand


    Passive optical networks based on orthogonal frequency division multiplexing (OFDM-PON) give better performance in high-speed optical access networks. For further improvement in performance, a new architecture of OFDM-PON based on spreading code in electrical domain is proposed and analytically analyzed in this paper. This approach is referred as hybrid multi-carrier code division multiple access-passive optical network (MC-CDMA-PON). Analytical results show that at bit error rate (BER) of 10-3, there is 9.4 dB and 14.2 dB improvement in optical power budget for downstream and upstream, respectively, with MC-CDMA-PON system as compared to conventional OFDM-PON system for the same number of optical network units (ONUs).

  4. Utility function based fair data scheduling algorithm for OFDM wireless network

    Guo Kunqi; Sun Lixin; Jia Shilou


    A system model is formulated as the maximization of a total utility function to achieve fair downlink data scheduling in multiuser orthogonal frequency division multiplexing (OFDM) wireless networks. A dynamic subcarrier allocation algorithm (DSAA) is proposed, to optimize the system model. The subcarrier allocation decision is made by the proposed DSAA according to the maximum value of total utility function with respect to the queue mean waiting time. Simulation results demonstrate that compared to the conventional algorithms, the proposed algorithm has better delay performance and can provide fairness under different loads by using different utility functions.

  5. Computationally Efficient Power Allocation Algorithm in Multicarrier-Based Cognitive Radio Networks: OFDM and FBMC Systems

    Shaat Musbah


    Full Text Available Cognitive Radio (CR systems have been proposed to increase the spectrum utilization by opportunistically access the unused spectrum. Multicarrier communication systems are promising candidates for CR systems. Due to its high spectral efficiency, filter bank multicarrier (FBMC can be considered as an alternative to conventional orthogonal frequency division multiplexing (OFDM for transmission over the CR networks. This paper addresses the problem of resource allocation in multicarrier-based CR networks. The objective is to maximize the downlink capacity of the network under both total power and interference introduced to the primary users (PUs constraints. The optimal solution has high computational complexity which makes it unsuitable for practical applications and hence a low complexity suboptimal solution is proposed. The proposed algorithm utilizes the spectrum holes in PUs bands as well as active PU bands. The performance of the proposed algorithm is investigated for OFDM and FBMC based CR systems. Simulation results illustrate that the proposed resource allocation algorithm with low computational complexity achieves near optimal performance and proves the efficiency of using FBMC in CR context.

  6. An Enhanced OFDM Resource Allocation Algorithm in C-RAN Based 5G Public Safety Network

    Lei Feng


    Full Text Available Public Safety Network (PSN is the network for critical communication when disaster occurs. As a key technology in 5G, Cloud-Radio Access Network (C-RAN can play an important role in PSN instead of LTE-based RAN. This paper firstly introduces C-RAN based PSN architecture and models the OFDM resource allocation problem in C-RAN based PSN as an integer quadratic programming, which allows the trade-off between expected bitrates and allocating fairness of PSN Service User (PSU. However, C-RAN based PSN needs to improve the efficiency of allocating algorithm because of a mass of PSU-RRH associations when disaster occurs. To deal with it, the resources allocating problem with integer variables is relaxed into one with continuous variables in the first step and an algorithm based on Generalized Bender’s Decomposition (GBD is proposed to solve it. Then we use Feasible Pump (FP method to get a feasible integer solution on the original OFDM resources allocation problem. The final experiments show the total throughput achieved by C-RAN based PSN is at most higher by 19.17% than the LTE-based one. And the average computational time of the proposed GBD and FP algorithm is at most lower than Barrier by 51.5% and GBD with no relaxation by 30.1%, respectively.

  7. Designing Underwater Cellular Networks Parameters

    Pejman Khadivi


    Full Text Available Oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance are some of the applications of underwater networks. Underwater networks should send the gathered information to other users or an offshore station via a base station in the sea. Since the available bandwidth in underwater is severely limited, frequency reuse and cellular networks concepts are very important. In this paper, after driving the ratio of signal to interference for underwater acoustic channels, the constraints for the cell radius are determined. One of the important results of this work is that, for special parameters like bandwidth, it may be impossible to provide the required signal to interference ratio and bandwidth for the network users. Furthermore, in this paper, number of supportable users, per-user bandwidth, and the user capacity for a cellular underwater network are determined.

  8. Throughput Enhancement Using Multiple Antennas in OFDM-based Ad Hoc Networks under Transceiver Impairments

    Zhao, Pengkai


    Transceiver impairments, including phase noise, residual frequency offset, and imperfect channel estimation, significantly affect the performance of Multiple-Input Multiple-Output (MIMO) system. However, these impairments are not well addressed when analyzing the throughput performance of MIMO Ad Hoc networks. In this paper, we present an analytical framework to evaluate the throughput of MIMO OFDM system under the impairments of phase noise, residual frequency offset, and imperfect channel estimation. Using this framework, we evaluate the Maximum Sum Throughput (MST) in Ad Hoc networks by optimizing the power and modulation schemes of each user. Simulations are conducted to demonstrate not only the improvement in the MST from using multiple antennas, but also the loss in the MST due to the transceiver impairments. The proposed analytical framework is further applied for the distributed implementation of MST in Ad Hoc networks, where the loss caused by impairments is also evaluated.

  9. Improving Spectral Capacity and Wireless Network Coverage by Cognitive Radio Technology and Relay Nodes in Cellular Systems

    Frederiksen, Flemming Bjerge


    Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context have been presented and discussed in this paper. Ideas to improve the wireless transmission by orthogonal OFDM-based communication and to increase the...... coverage of cellular systems by future wireless networks, relay channels, relay stations and collaborate radio have been presented as well. A revised hierarchical deployment of the future wireless and wired networks are shortly discussed....

  10. High speed OFDM-CDMA optical access network.

    Guo, X; Wang, Q; Zhou, L; Fang, L; Wonfor, A; Penty, R V; White, I H


    We demonstrate the feasibility of a 16×3.75  Gb/s (60 Gb/s aggregate) Orthogonal frequency division multiplexing-code division multiple access passive optical network for next-generation access applications. 3.75 Gb/s PON channel transmission over 25 km single-mode fiber shows 0.1 dB dispersion and 0.9 dB crosstalk penalties. Advantages of the system include high capacity, enhanced spectral efficiency, coding gain, and networking functions such as increased security and single-wavelength operation. PMID:27082351

  11. Fair data scheduling in OFDM wireless networks based on maximizing utility


    This paper proposes a joint layer scheme for fair downlink data scheduling in multiuser OFDM wireless networks. Based on the optimization model formulated as the maximization of total utility function with respect to the mean waiting time of user queue, we present an algorithm with low complexity for dynamic subcarrier allocation (DSA). The decision for subcarrier allocation was made according to delay utility function obtained by the algorithm that instantaneously estimated both channel condition and queue length using an exponentially weighted low-pass time window and pilot signals respectively. The complexity of algorithm was reduced by varying the length of the time window to make use of time diversity, which provided higher throughput ratio.Simulation results demonstrate that compared with the conventional approach, the proposed scheme achieves better performance and can significantly improve fairness among users, with very limited delay performance degradation by using a decreasing concave utility function when the traffic load increases.

  12. Effect of Modulation Schemes on Performance of OFDM based Wireless Network using Smart Antenna

    Mr.Balaji G.Hogade


    Full Text Available In this paper we have presented the effect of different modulation Techniques (QPSK, 16QAM and 64QAM and number of antenna elements at the receiver (Smart Antenna on the performance of beamforming in OFDM based Wireless network. The performance of the proposedtechnique is tested for adaptive beam forming algorithm, Least Mean Square (LMS, improved LMS and conventional beamforming for different number of antenna elements. Proposed system not only has goodability of suppressing interference, but also significantly improves the bit-error rate (BERperformance of the system. Simulation results show that an adaptive beam forming gives the optimum performance on urban channels. SNR vs. BER, are compared using same set of parameters.

  13. Dynamic properties of cellular neural networks

    Angela Slavova


    Full Text Available Dynamic behavior of a new class of information-processing systems called Cellular Neural Networks is investigated. In this paper we introduce a small parameter in the state equation of a cellular neural network and we seek for periodic phenomena. New approach is used for proving stability of a cellular neural network by constructing Lyapunov's majorizing equations. This algorithm is helpful for finding a map from initial continuous state space of a cellular neural network into discrete output. A comparison between cellular neural networks and cellular automata is made.

  14. A Novel Medium Access Control for Ad hoc Networks Based on OFDM System

    YU Yi-fan; YIN Chang-chuan; YUE Guang-xin


    Recently, hosts of Medium Access Control (MAC) protocols for Ad hoc radio networks have been proposed to solve the hidden terminal problem and exposed terminal problem. However most of them take into no account the interactions between physical (PHY) system and MAC protocol. Therefore, the current MAC protocols are either inefficient in the networks with mobile nodes and fading channel or difficult in hardware implementation. In this paper, we present a novel media access control for Ad hoc networks that integrates a media access control protocol termed as Dual Busy Tone Multiple Access (DBTMA) into Orthogonal Frequency Division Multiplexing (OFDM) system proposed in IEEE 802.11a standard. The analysis presented in the paper indicates that the proposed MAC scheme achieves performance improvement over IEEE 802.11 protocol about 25%~80% especially in the environment with high mobility and deep fading. The complexity of the proposed scheme is also lower than other implementation of similar busy tone solution. Furthermore, it is compatible with IEEE 802.11a networks.

  15. On-the-field performance of quintuple-play long-reach OFDM-based WDM-PON optical access networks.

    Llorente, Roberto; Morant, Maria; Pellicer, Eloy; Herman, Milan; Nagy, Zsolt; Alves, Tiago; Cartaxo, Adolfo; Herrera, Javier; Correcher, Jose; Quinlan, Terence; Walker, Stuart; Rodrigues, Cláudio; Cluzeaud, Pierre; Schmidt, Axel; Piesiewicz, Radoslaw; Sambaraju, Rakesh


    In this paper the on-the-field performance of a WDM-PON optical access providing quintuple-play services using orthogonal frequency division multiplexing (OFDM) modulation is evaluated in a real fiber-to-the-home (FTTH) network deployed by Towercom operator in Bratislava (Slovakia). A bundle of quintuple-play services comprising full-standard OFDM-based signals (LTE, WiMAX, UWB and DVB-T) and an ad-hoc OFDM-GbE signal is transmitted in coexistence per single user. Both downstream and upstream transmission performances are evaluated in different on-the-field long-reach optical link distance configurations. Four wavelength multi-user transmission of quintuple-play OFDM services is demonstrated exceeding 60.8 km reach in standard single mode fiber. PMID:24663968

  16. Using single side-band modulation for colorless OFDM-WDM access network to alleviate Rayleigh backscattering effects.

    Yeh, Chien-Hung; Chow, Chi-Wai


    In this investigation, we demonstrate a new colorless orthogonal-frequency-division-multiplexing (OFDM) wavelength-division-multiplexing passive optical network (WDM-PON) system with Rayleigh backscattering (RB) noise mitigation. Here, only a single laser source at the central office (CO) is needed to produce the downstream signal and distributed continuous-wave (CW) carrier, which will then be modulated at the optical networking unit (ONU) to produce the upstream signal. Single side-band (SSB) modulation is used to wavelength-shift the distributed CW carrier, which will be launched into a reflective semiconductor optical amplifier (RSOA) based ONU for directly modulation of 5.15 Gbps OFDM upstream signal. To avoid the radio-frequency (RF) power fading and chromatic fiber dispersion, the four-band OFDM modulation is proposed to generate a 40 Gbps downstream when a Mach-Zehnder modulator (MZM) with -0.7 chirp parameter is used. Hence, the RB circumvention can be centralized in the CO. Moreover, the signal performances of downstream and upstream are also studied and discussed in this measurement. PMID:27409910

  17. Utilization of OFDM for efficient packet forwarding in wireless sensor networks

    Bader, Ahmed


    Beaconless position-based forwarding protocols have recently evolved as a promising solution for packet forwarding in wireless sensor networks. However, as the network density grows, the overhead incurred grows significantly. As such, end-to-end energy and delay performance is adversely impacted. Motivated by the need for a forwarding mechanism that is more tolerant to growth in node density, an alternative position-based protocol is proposed in this paper. The protocol is designed such that it completely eliminates the need for potential relays to undergo a relay election process. Rather, any eligible relay may decide to forward the packet ahead, thus significantly reducing the overhead. The operation of the proposed protocol is empowered by exploiting favorable features of orthogonal frequency division multiplexing (OFDM) at the physical layer. End-to-end performance is evaluated here against existing beaconless protocols. It is demonstrated that the proposed protocol is more efficient since it is able to offer lower end-to-end delay for the same amount of energy consumption. © 2011 IEEE.

  18. Interworking of Wireless LANs and Cellular Networks

    Song, Wei


    The next-generation of wireless communications are envisioned to be supported by heterogeneous networks by using various wireless access technologies. The popular cellular networks and wireless local area networks (WLANs) present perfectly complementary characteristics in terms of service capacity, mobility support, and quality-of-service (QoS) provisioning. The cellular/WLAN interworking is an effective way to promote the evolution of wireless networks. "Interworking of Wireless LANs and Cellular Networks" focuses on three aspects, namely access selection, call admission control and

  19. Software-Defined Cellular Mobile Network Solutions

    Jiandong Li; Peng Liu; Hongyan Li


    The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, pro-vides new possibilities for innovating on network design. Researchers have started to extend SDN to cellular networks. Such new programmable architecture is beneficial to the evolution of mobile networks and allows operators to provide better services. The typical cellular network comprises radio access network (RAN) and core network (CN); hence, the technique roadmap diverges in two ways. In this paper, we investigate SoftRAN, the latest SDN solution for RAN, and SoftCell and MobileFlow, the latest solu-tions for CN. We also define a series of control functions for CROWD. Unlike in the other literature, we emphasize only software-defined cellular network solutions and specifications in order to provide possible research directions.

  20. OFDM for underwater acoustic communications

    Zhou, Shengli


    A blend of introductory material and advanced signal processing and communication techniques, of critical importance to underwater system and network development This book, which is the first to describe the processing techniques central to underwater OFDM, is arranged into four distinct sections: First, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels. Then it goes over the basics of OFDM and channel coding. The second part starts with an overview of the OFDM receiver, and develops various modules for the receiver des

  1. Estimating cellular network performance during hurricanes

    Cellular networks serve a critical role during and immediately after a hurricane, allowing citizens to contact emergency services when land-line communication is lost and serving as a backup communication channel for emergency responders. However, due to their ubiquitous deployment and limited design for extreme loading events, basic network elements, such as cellular towers and antennas are prone to failures during adverse weather conditions such as hurricanes. Accordingly, a systematic and computationally feasible approach is required for assessing and improving the reliability of cellular networks during hurricanes. In this paper we develop a new multi-disciplinary approach to efficiently and accurately assess cellular network reliability during hurricanes. We show how the performance of a cellular network during and immediately after future hurricanes can be estimated based on a combination of hurricane wind field models, structural reliability analysis, Monte Carlo simulation, and cellular network models and simulation tools. We then demonstrate the use of this approach for assessing the improvement in system reliability that can be achieved with discrete topological changes in the system. Our results suggest that adding redundancy, particularly through a mesh topology or through the addition of an optical fiber ring around the perimeter of the system can be an effective way to significantly increase the reliability of some cellular systems during hurricanes.

  2. On the potential of zero-tail DFT-spread-OFDM in 5G networks

    Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão; Sørensen, Troels Bundgaard;


    envisioned 5th generation (5G) radio access technology, characterized by an ultra-dense deployment of small cells and the support of novel paradigms such as Device-to-Device (D2D). We address the benefits of ZT DFT-s-OFDM in terms of coexistence among devices operating over adjacent frequency chunks...

  3. Aging cellular networks: chaperones as major participants

    Soti, Csaba; Csermely, Peter


    We increasingly rely on the network approach to understand the complexity of cellular functions. Chaperones (heat shock proteins) are key "networkers", which have among their functions to sequester and repair damaged protein. In order to link the network approach and chaperones with the aging process, we first summarize the properties of aging networks suggesting a "weak link theory of aging". This theory suggests that age-related random damage primarily affects the overwhelming majority of t...

  4. Exponential Stability for Delayed Cellular Neural Networks

    YANG Jin-xiang; ZHONG Shou-ming; YAN Ke-yu


    The exponential stability of the delayed cellular neural networks (DCNN's) is investigated. By dividing the network state variables into some parts according to the characters of the neural networks, some new sufficient conditions of exponential stability are derived via constructing a Liapunov function. It is shown that the conditions differ from previous ones. The new conditions, which are associated with some initial value, are represented by some blocks of the interconnection matrix.

  5. Stability of Stochastic Neutral Cellular Neural Networks

    Chen, Ling; Zhao, Hongyong

    In this paper, we study a class of stochastic neutral cellular neural networks. By constructing a suitable Lyapunov functional and employing the nonnegative semi-martingale convergence theorem we give some sufficient conditions ensuring the almost sure exponential stability of the networks. The results obtained are helpful to design stability of networks when stochastic noise is taken into consideration. Finally, two examples are provided to show the correctness of our analysis.

  6. Heterogeneous Force Chains in Cellularized Biopolymer Network

    Liang, Long; Jones, Christopher; Sun, Bo; Jiao, Yang


    Biopolymer Networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the mechanical response of a model biopolymer network due to the active contraction of embedded cells. Specifically, a graph (bond-node) model derived from confocal microscopy data is used to represent the network microstructure, and cell contraction is modeled by applying correlated displacements at specific nodes, representing the fo...

  7. Study and Optimization of Cooperative Spectrum Sensing in OFDM Cognitive Radio Networks

    Yingxue Li


    Full Text Available In this paper, a cooperative sensing algorithm for OFDM is proposed in this paper based on the performance analysis of ONPD algorithm, then the system weight vector is optimized and the closed form expression of optimal weight vector is obtained using the maximum improved deflection coefficient. Theoretical analysis and simulation results demonstrate the remarkable improvement of proposed algorithm on detection performance compared with the classical cooperation detection algorithm.

  8. Study and Optimization of Cooperative Spectrum Sensing in OFDM Cognitive Radio Networks

    Yingxue Li; Shuqun Shen; Qiucai Wang


    In this paper, a cooperative sensing algorithm for OFDM is proposed in this paper based on the performance analysis of ONPD algorithm, then the system weight vector is optimized and the closed form expression of optimal weight vector is obtained using the maximum improved deflection coefficient. Theoretical analysis and simulation results demonstrate the remarkable improvement of proposed algorithm on detection performance compared with the classical cooperation detection algorithm.

  9. All-optical virtual private network system in OFDM based long-reach PON using RSOA re-modulation technique

    Kim, Chang-Hun; Jung, Sang-Min; Kang, Su-Min; Han, Sang-Kook


    We propose an all-optical virtual private network (VPN) system in an orthogonal frequency division multiplexing (OFDM) based long reach PON (LR-PON). In the optical access network field, technologies based on fundamental upstream (U/S) and downstream (D/S) have been actively researched to accommodate explosion of data capacity. However, data transmission among the end users which is arisen from cloud computing, file-sharing and interactive game takes a large weight inside of internet traffic. Moreover, this traffic is predicted to increase more if Internet of Things (IoT) services are activated. In a conventional PON, VPN data is transmitted through ONU-OLT-ONU via U/S and D/S carriers. It leads to waste of bandwidth and energy due to O-E-O conversion in the OLT and round-trip propagation between OLT and remote node (RN). Also, it causes inevitable load to the OLT for electrical buffer, scheduling and routing. The network inefficiency becomes more critical in a LR-PON which has been researched as an effort to reduce CAPEX and OPEX through metro-access consolidation. In the proposed system, the VPN data is separated from conventional U/S and re-modulated on the D/S carrier by using RSOA in the ONUs to avoid bandwidth consumption of U/S and D/S unlike in previously reported system. Moreover, the transmitted VPN data is re-directed to the ONUs by wavelength selective reflector device in the RN without passing through the OLT. Experimental demonstration for the VPN communication system in an OFDM based LR-PON has been verified.

  10. Investigation of Doppler Effects on high mobility OFDM-MIMO systems with the support of High Altitude Platforms (HAPs)

    The merging of Orthogonal Frequency Division Multiplexing (OFDM) with Multiple-input multiple-output (MIMO) is a promising mobile air interface solution for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. This paper details the design of a highly robust and efficient OFDM-MIMO system to support permanent accessibility and higher data rates to users moving at high speeds, such as users travelling on trains. It has high relevance for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. The paper begins with a comprehensive literature review focused on both technologies. This is followed by the modelling of the OFDM-MIMO physical layer based on Simulink/Matlab that takes into consideration high vehicular mobility. Then the entire system is simulated and analysed under different encoding and channel estimation algorithms. The use of High Altitude Platform system (HAPs) technology is considered and analysed.

  11. Tension and robustness in multitasking cellular networks.

    Jeffrey V Wong

    Full Text Available Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.

  12. Investigating the Impact of Hybrid/SPREAD MIMO-OFDM System for Spectral-Efficient Wireless Networks

    Nirmalendu Bikas Sinha


    Full Text Available This research proposes a novel signal scheme called Hybrid spread MIMO-OFDM system which interface OFDM with CDMA and integrate this CDMA-OFDM to MIMO to generate a system functionally superior to MIMO-OFDM systems are considered as candidates for future broadband wireless service. OFDM may be combined with antenna arrays at the transmitter and receiver to increase the diversity gain and/or to enhance the system capacity on time-variant and frequency-selective channels, resulting in a Multiple-Input Multiple-Output (MIMO configuration. The multiplexing technique proposed here is the Code Division Multiple Accesses (CDMA scheme which is considered the solution for eliminating the distortion caused by fast fading and provides the inherent advantage of DS-CDMA systems incorporating a spreading signal based on PN code sequence, by providing user discrimination based on coding at the same carrier frequency and simultaneously. The OFDM component provides resistance to multipath effects making it unnecessary to use RAKE receivers for CDMA and thus avoid hardware complexity. In order to compare their performances, the effects of multipath signal propagation on the capacity, under both single and multi user channel, are examined. The Inter Symbol Interference (ISI is used as a suitable measure of multipath effect. The obtained results show that the multipath has more influence on the capacity of MIMO than MIMO-OFDM and spread MIMO-OFDM. In addition, spread MIMO-OFDM offers more average capacity than MIMO under both single and multi user channel. In comparison with MIMO-OFDM, the capacity of spread MIMO-OFDM is higher under the condition of the multi user channel scenario. MIMO-OFDM spread system is being implemented using AWG and VSA. Thus making it possible to implement 4G using hardware and MATLAB/SIMULINK.

  13. Mapping functional connectivity in cellular networks

    Buibas, Marius


    My thesis is a collection of theoretical and practical techniques for mapping functional or effective connectivity in cellular neuronal networks, at the cell scale. This is a challenging scale to work with, primarily because of the difficulty in labeling and measuring the activities of networks of cells. It is also important as it underlies behavior, function, and complex diseases. I present methods to measure and quantify the dynamic activities of cells using the optical flow technique, whic...

  14. Cognitive resource management for heterogeneous cellular networks

    Liu, Yongkang


    This Springer Brief focuses on cognitive resource management in heterogeneous cellular networks (Het Net) with small cell deployment for the LTE-Advanced system. It introduces the Het Net features, presents practical approaches using cognitive radio technology in accommodating small cell data relay and optimizing resource allocation and examines the effectiveness of resource management among small cells given limited coordination bandwidth and wireless channel uncertainty. The authors introduce different network characteristics of small cell, investigate the mesh of small cell access points in

  15. Image processing with a cellular nonlinear network

    A cellular nonlinear network (CNN) based on uncoupled nonlinear oscillators is proposed for image processing purposes. It is shown theoretically and numerically that the contrast of an image loaded at the nodes of the CNN is strongly enhanced, even if this one is initially weak. An image inversion can be also obtained without reconfiguration of the network whereas a gray levels extraction can be performed with an additional threshold filtering. Lastly, an electronic implementation of this CNN is presented

  16. Performance Evaluation of CE-OFDM in PLC Channel

    El Ghzaoui Mohammed


    Full Text Available One major drawback associated with an OFDM system is that the transmitter’s output signal may have a high peak-to-average ratio (PAPR. High levels of PAR may be a limiting factor for power line communication (PLC where regulatory bodies have fixed the maximum amount of transmit power. To overcome this problem, many approaches have been presented in the literature. One potential solution for reducing the peak-to-average power ratio (PAPR in an OFDM system is to utilize a constant envelope OFDM (CE-OFDM system. This paper describes a CE-OFDM based modem for Power Line Communications (PLC over the low voltage distribution network. The impact of the electrical appliances on the signal transmission is investigated. The good performances of the BER have been checked by the simulation platform of real PLC channel using Matlab. Finally, CE-OFDM-CPM is compared with conventional OFDM under HomePlug AV.

  17. Wireless traffic steering for green cellular networks

    Zhang, Shan; Zhou, Sheng; Niu, Zhisheng; Shen, Xuemin (Sherman)


    This book introduces wireless traffic steering as a paradigm to realize green communication in multi-tier heterogeneous cellular networks. By matching network resources and dynamic mobile traffic demand, traffic steering helps to reduce on-grid power consumption with on-demand services provided. This book reviews existing solutions from the perspectives of energy consumption reduction and renewable energy harvesting. Specifically, it explains how traffic steering can improve energy efficiency through intelligent traffic-resource matching. Several promising traffic steering approaches for dynamic network planning and renewable energy demand-supply balancing are discussed. This book presents an energy-aware traffic steering method for networks with energy harvesting, which optimizes the traffic allocated to each cell based on the renewable energy status. Renewable energy demand-supply balancing is a key factor in energy dynamics, aimed at enhancing renewable energy sustainability to reduce on-grid energy consum...

  18. Mobile Node Localization in Cellular Networks

    Yasir Malik


    Full Text Available Location information is the major component in location based applications. This information is used in different safety and service oriented applications to provide users with services according to their Geolocation. There are many approaches to locate mobile nodes in indoor and outdoor environments. In thispaper, we are interested in outdoor localization particularly in cellular networks of mobile nodes andpresented a localization method based on cell and user location information. Our localization method is based on hello message delay (sending and receiving time and coordinate information of Base Transceiver Station (BTSs. To validate our method across cellular network, we implemented and simulated our method in two scenarios i.e. maintaining database of base stations in centralize and distributed system. Simulation results show the effectiveness of our approach and its implementation applicability in telecommunication systems.

  19. Virtualized cognitive network architecture for 5G cellular networks

    Elsawy, Hesham


    Cellular networks have preserved an application agnostic and base station (BS) centric architecture1 for decades. Network functionalities (e.g. user association) are decided and performed regardless of the underlying application (e.g. automation, tactile Internet, online gaming, multimedia). Such an ossified architecture imposes several hurdles against achieving the ambitious metrics of next generation cellular systems. This article first highlights the features and drawbacks of such architectural ossification. Then the article proposes a virtualized and cognitive network architecture, wherein network functionalities are implemented via software instances in the cloud, and the underlying architecture can adapt to the application of interest as well as to changes in channels and traffic conditions. The adaptation is done in terms of the network topology by manipulating connectivities and steering traffic via different paths, so as to attain the applications\\' requirements and network design objectives. The article presents cognitive strategies to implement some of the classical network functionalities, along with their related implementation challenges. The article further presents a case study illustrating the performance improvement of the proposed architecture as compared to conventional cellular networks, both in terms of outage probability and handover rate.

  20. Empirical multiscale networks of cellular regulation.

    Benjamin de Bivort


    Full Text Available Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS murine B-lymphocyte database which tracks the response of approximately 15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1 Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2 Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules reveal principles of assembly of high-level behaviors from smaller components. (3 Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4 Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an "extracellular interaction" division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure that activate and repress other divisions in specific ways consistent with cell cycle control.

  1. Cellular automata modelling of biomolecular networks dynamics.

    Bonchev, D; Thomas, S; Apte, A; Kier, L B


    The modelling of biological systems dynamics is traditionally performed by ordinary differential equations (ODEs). When dealing with intracellular networks of genes, proteins and metabolites, however, this approach is hindered by network complexity and the lack of experimental kinetic parameters. This opened the field for other modelling techniques, such as cellular automata (CA) and agent-based modelling (ABM). This article reviews this emerging field of studies on network dynamics in molecular biology. The basics of the CA technique are discussed along with an extensive list of related software and websites. The application of CA to networks of biochemical reactions is exemplified in detail by the case studies of the mitogen-activated protein kinase (MAPK) signalling pathway, the FAS-ligand (FASL)-induced and Bcl-2-related apoptosis. The potential of the CA method to model basic pathways patterns, to identify ways to control pathway dynamics and to help in generating strategies to fight with cancer is demonstrated. The different line of CA applications presented includes the search for the best-performing network motifs, an analysis of importance for effective intracellular signalling and pathway cross-talk. PMID:20373215

  2. Cellular recurrent deep network for image registration

    Alam, M.; Vidyaratne, L.; Iftekharuddin, Khan M.


    Image registration using Artificial Neural Network (ANN) remains a challenging learning task. Registration can be posed as a two-step problem: parameter estimation and actual alignment/transformation using the estimated parameters. To date ANN based image registration techniques only perform the parameter estimation, while affine equations are used to perform the actual transformation. In this paper, we propose a novel deep ANN based image rigid registration that combines parameter estimation and transformation as a simultaneous learning task. Our previous work shows that a complex universal approximator known as Cellular Simultaneous Recurrent Network (CSRN) can successfully approximate affine transformations with known transformation parameters. This study introduces a deep ANN that combines a feed forward network with a CSRN to perform full rigid registration. Layer wise training is used to pre-train feed forward network for parameter estimation and followed by a CSRN for image transformation respectively. The deep network is then fine-tuned to perform the final registration task. Our result shows that the proposed deep ANN architecture achieves comparable registration accuracy to that of image affine transformation using CSRN with known parameters. We also demonstrate the efficacy of our novel deep architecture by a performance comparison with a deep clustered MLP.

  3. Heterogeneous Force Chains in Cellularized Biopolymer Network

    Liang, Long; Jones, Christopher Allen Rucksack; Sun, Bo; Jiao, Yang

    Biopolymer Networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the mechanical response of a model biopolymer network due to the active contraction of embedded cells. Specifically, a graph (bond-node) model derived from confocal microscopy data is used to represent the network microstructure, and cell contraction is modeled by applying correlated displacements at specific nodes, representing the focal adhesion sites. A force-based stochastic relaxation method is employed to obtain force-balanced network under cell contraction. We find that the majority of the forces are carried by a small number of heterogeneous force chains emerged from the contracting cells. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to the reorientation induced by cell contraction. Large fluctuations of the forces along different force chains are observed. Importantly, the decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure could support long-range mechanical signaling between cells.

  4. Environment Aware Location Estimation in Cellular Networks

    Tuna Tugcu


    Full Text Available We propose a novel mobile positioning algorithm for cellular networks based on the estimation of the radio propagation environment. Since radio propagation characteristics vary in different environments, knowing the environment of the mobile user is essential for accurate Received Signal Strength- (RSS- based location estimation. The key feature of our method is its capability to estimate the environment of the mobile user using machine learning techniques and to utilize this information for enhancing RSS-based distance calculations. The proposed algorithm, namely, EARBALE, has been evaluated using field measurements collected from a GSM network in diverse geographic locations. Our approach turns out to be significantly beneficial, enhancing estimation accuracy, and thereby enabling high-performance mobile positioning in a practical and cost-effective manner. Additionally, it is computationally light-wei

  5. Call Admission Control in Mobile Cellular Networks

    Ghosh, Sanchita


    Call Admission Control (CAC) and Dynamic Channel Assignments (DCA) are important decision-making problems in mobile cellular communication systems. Current research in mobile communication considers them as two independent problems, although the former greatly depends on the resulting free channels obtained as the outcome of the latter. This book provides a solution to the CAC problem, considering DCA as an integral part of decision-making for call admission. Further, current technical resources ignore movement issues of mobile stations and fluctuation in network load (incoming calls) in the control strategy used for call admission. In addition, the present techniques on call admission offers solution globally for the entire network, instead of considering the cells independently.      CAC here has been formulated by two alternative approaches. The first approach aimed at handling the uncertainty in the CAC problem by employing fuzzy comparators.  The second approach is concerned with formulation of CAC ...

  6. Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Hasan, Ziaul; Bhargava, Vijay K


    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogenous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative rela...

  7. Implementation of a Novel Concatenated FEC by RS and Irregular Turbo Codes on OFDM Systems

    A. Shanmugam


    Full Text Available Code Division Multiple Access (CDMA performs well in a multi-cellular environment where a single frequency is used in all cells. Code Division Multiple Access (CDMA has severe problems associated with multipath and Channel news. One possible problem is that the receiver may require a very large dynamic range in order to handle the large signal strength variation among users. Due to that the Bit Error Rate (BER is getting increased. Moreover due to the addition of uncontrollable random channel noise degrade the performance of the receiver. The multipath problems give inter symbol interference. This can be reduced by Orthogonal Frequency Division Multiplexing (OFDM technique. More work could be done on investigating suitable techniques for doing OFDM promises to be a suitable modulation technique for high capacity wireless communications and will become increasing important in the future as wireless networks become more relied on. In order to increase the wireless network performance, this study has concentrated on OFDM with a novel forward error correction by data transmission with Quadrature Phase Shift Keying (QPSK as modulation techniques. Here an FEC scheme by concatenation of Reed Solomon (RS and the Irregular Turbo code is implemented in OFDM. The simulation results show that the system BER performance is decreased with this technique, when compared to the system having Forward Error Correction (FEC by RS code alone and irregular turbo code alone.

  8. Optimal flux patterns in cellular metabolic networks

    Almaas, E


    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  9. Performance Evaluation of CE-OFDM in PLC Channel

    El ghzaoui Mohammed, Belkadid Jamal, Benbassou Ali


    Full Text Available One major drawback associated with an OFDM system is that the transmitter’soutput signal may have a high peak-to-average ratio (PAPR. High levels of PARmay be a limiting factor for power line communication (PLC where regulatorybodies have fixed the maximum amount of transmit power. To overcome thisproblem, many approaches have been presented in the literature. One potentialsolution for reducing the peak-to-average power ratio (PAPR in an OFDMsystem is to utilize a constant envelope OFDM (CE-OFDM system. This paperdescribes a CE-OFDM based modem for Power Line Communications (PLCover the low voltage distribution network. The impact of the electrical applianceson the signal transmission is investigated. The good performances of the BERhave been checked by the simulation platform of real PLC channel using Matlab.Finally, CE-OFDM-CPM is compared with conventional OFDM under HomePlugAV..

  10. Simulated Annealing for Location Area Planning in Cellular networks

    N. B. Prajapati


    Full Text Available LA planning in cellular network is useful for minimizing location management cost in GSM network. Infact, size of LA can be optimized to create a balance between the LA update rate and expected pagingrate within LA. To get optimal result for LA planning in cellular network simulated annealing algorithmis used. Simulated annealing give optimal results in acceptable run-time.

  11. A Wireless Communications Laboratory on Cellular Network Planning

    Dawy, Z.; Husseini, A.; Yaacoub, E.; Al-Kanj, L.


    The field of radio network planning and optimization (RNPO) is central for wireless cellular network design, deployment, and enhancement. Wireless cellular operators invest huge sums of capital on deploying, launching, and maintaining their networks in order to ensure competitive performance and high user satisfaction. This work presents a lab…

  12. Simulated Annealing for Location Area Planning in Cellular networks

    Prajapati, N. B.; R. R. Agravat; Hasan, M I


    LA planning in cellular network is useful for minimizing location management cost in GSM network. In fact, size of LA can be optimized to create a balance between the LA update rate and expected paging rate within LA. To get optimal result for LA planning in cellular network simulated annealing algorithm is used. Simulated annealing give optimal results in acceptable run-time.

  13. Energy efficiency analysis for flexible-grid OFDM-based optical networks

    Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso


    As the Internet traffic grows, the energy efficiency gains more attention as a design factor for the planning and operation of telecommunication networks. This paper is devoted to the study of energy efficiency in optical transport networks, comparing the performance of an innovative flexible...

  14. Connectivity-driven Attachment in Mobile Cellular Ad Hoc Networks

    Boite, Julien; Leguay, Jérémie


    International audience Cellular wireless technologies (e.g. LTE) can be used to build cellular ad hoc networks. In this new class of ad hoc networks, nodes are equipped with two radio interfaces: one being a terminal, the other one being an access point. In this context, attachment decisions based on traditional criteria (e.g. signal quality) may lead to network partitions or suboptimal path lengths, thus making access point selection critical to ensure efficient network connectivity. This...

  15. Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communication System

    Shikha Nema


    Full Text Available Dense wavelength-division multiplexing (DWDM technique is a very promising data transmission technology for utilizing the capacity of the fiber. By DWDM, multiple signals (video, audio, data etc staggered in wavelength domain can be multiplexed and transmitted down the same fiber. The Multiple-input multiple-output (MIMO wireless technology in combination with orthogonal frequency division multiplexing (MIMO-OFDM is an attractive air-interface solution for next-generation wireless local area networks (WLANs and fourth-generation mobile cellular wireless systems. This article provides an overview of the integrated DWDM MIMO-OFDM technology and focuses on DWDM transmitter design with adequate dispersion compensation for high data rate of 10Gbps ,MIMO-OFDM system design, space-time coded signaling, receiver design and performance analysis in terms of bit error rate for Integrated system. The simulation is carried out using powerful software tools Optisystem and MATLAB . In this paper a 64 channel DWDM system is simulated for transmission of baseband NRZ signal over fiber. Each of the transmission is at bit rate of 10 Gbps leading to high data rate transmission of 640 Gbps.The resultant Bit Error Rate(BER is in the range 10-12 for DWDM system which is given as input to MIMO-OFDM system..This system performance is analyzed in terms of BER with SNR for Rayleigh, and AWGN channels and BER of 10-4 is achieved at SNR of 10dbs

  16. Analytical Modeling of Uplink Cellular Networks

    Novlan, Thomas D; Andrews, Jeffrey G


    Cellular uplink analysis has typically been undertaken by either a simple approach that lumps all interference into a single deterministic or random parameter in a Wyner-type model, or via complex system level simulations that often do not provide insight into why various trends are observed. This paper proposes a novel middle way that is both accurate and also results in easy-to-evaluate integral expressions based on the Laplace transform of the interference. We assume mobiles and base stations are randomly placed in the network with each mobile pairing up to its closest base station. The model requires two important changes compared to related recent work on the downlink. First, dependence is introduced between the user and base station point processes to make sure each base station serves a single mobile in the given resource block. Second, per-mobile power control is included, which further couples the locations of the mobiles and their receiving base stations. Nevertheless, we succeed in deriving the cov...

  17. Autocatalytic closure and the evolution of cellular information processing networks

    Decraene, James


    Cellular Information Processing Networks (CIPNs) are chemical networks of interacting molecules occurring in living cells. Through complex molecular interactions, CIPNs are able to coordinate critical cellular activities in response to internal and external stimuli. We hypothesise that CIPNs may be abstractly regarded as subsets of collectively autocatalytic (i.e., organisationally closed) reaction networks. These closure properties would subsequently interact with the evolution and adaptatio...

  18. SoftCell: Taking Control of Cellular Core Networks

    Jin, Xin; Li, Li Erran; Vanbever, Laurent; Rexford, Jennifer


    Existing cellular networks suffer from inflexible and expensive equipment, and complex control-plane protocols. To address these challenges, we present SoftCell, a scalable architecture for supporting fine-grained policies for mobile devices in cellular core networks. The SoftCell controller realizes high-level service polices by directing traffic over paths that traverse a sequence of middleboxes, optimized to the network conditions and user locations. To ensure scalability, the core switche...

  19. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning

    Sohn, Insoo; Liu, Huaping; Ansari, Nirwan


    An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction. PMID:26167934

  20. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.

    Insoo Sohn

    Full Text Available An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction.

  1. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.

    Sohn, Insoo; Liu, Huaping; Ansari, Nirwan


    An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction. PMID:26167934

  2. Boltzmann learning of parameters in cellular neural networks

    Hansen, Lars Kai


    The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified ...... unsupervised adaptation of an image segmentation cellular network. The learning rule is applied to adaptive segmentation of satellite imagery......The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified by...


    Yhya A. Lafta


    Full Text Available Digital wireless communication has become one of the most exciting research topics in the electrical and electronic engineering field due to the explosive demands for high-speed wireless services, such as cellular video conferencing. Digital video broadcasting-terrestrial-second generation (DVB-T2 has been demonstrated to provide services with very high spectral efficiency and improved performance. Also, OFDM systems have been deployed in mobile networks for their spectral efficiency and optimum bit error rate. Among the OFDM systems, wavelet based systems have been demonstrated to have improved bandwidth and channel performance. In this paper the authors demonstrate that very high spectral efficiency, BER and PAPR can be achieved by employing DWT-DAPSK scheme with the DVTB-T2 system. It is demonstrated in this paper that including companding with this system results in further reduction of PAPR.


    Md. Humayun Kabir


    Full Text Available In this paper, we propose a novel SDN-based cellular network architecture that will be able to utilize the opportunities of centralized administration of today’s emerging mobile network. Our proposed architecture would not depend on a single controller, rather it divides the whole cellular area into clusters, and each cluster is controlled by a separate controller. A number of controller services are provided on top of each controller to manage all the major functionalities of the network and help to make the network programmable and more agile, and create opportunities for policy-driven supervision and more automation.

  5. Uncovering the footprints of malicious traffic in cellular data networks

    Raghuramu, A; Zang, H.; Chuah, CN


    © Springer International Publishing Switzerland 2015. In this paper, we present a comprehensive characterization of malicious traffic generated by mobile devices using Deep Packet Inspection (DPI) records and security event logs from a large US based cellular provider network. Our analysis reveals that 0.17% of mobile devices in the cellular network are affected by security threats. This proportion, while small, is orders of magnitude higher than the last reported (in 2013) infection rate of ...

  6. Achievable rate maximization for decode-and-forward MIMO-OFDM networks with an energy harvesting relay.

    Du, Guanyao; Yu, Jianjun


    This paper investigates the system achievable rate for the multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system with an energy harvesting (EH) relay. Firstly we propose two protocols, time switching-based decode-and-forward relaying (TSDFR) and a flexible power splitting-based DF relaying (PSDFR) protocol by considering two practical receiver architectures, to enable the simultaneous information processing and energy harvesting at the relay. In PSDFR protocol, we introduce a temporal parameter to describe the time division pattern between the two phases which makes the protocol more flexible and general. In order to explore the system performance limit, we discuss the system achievable rate theoretically and formulate two optimization problems for the proposed protocols to maximize the system achievable rate. Since the problems are non-convex and difficult to solve, we first analyze them theoretically and get some explicit results, then design an augmented Lagrangian penalty function (ALPF) based algorithm for them. Numerical results are provided to validate the accuracy of our analytical results and the effectiveness of the proposed ALPF algorithm. It is shown that, PSDFR outperforms TSDFR to achieve higher achievable rate in such a MIMO-OFDM relaying system. Besides, we also investigate the impacts of the relay location, the number of antennas and the number of subcarriers on the system performance. Specifically, it is shown that, the relay position greatly affects the system performance of both protocols, and relatively worse achievable rate is achieved when the relay is placed in the middle of the source and the destination. This is different from the MIMO-OFDM DF relaying system without EH. Moreover, the optimal factor which indicates the time division pattern between the two phases in the PSDFR protocol is always above 0.8, which means that, the common division of the total transmission time into two equal phases in

  7. Summarizing cellular responses as biological process networks

    Lasher, Christopher D; Rajagopalan, Padmavathy; Murali, T.M.


    Abstract Background Microarray experiments can simultaneously identify thousands of genes that show significant perturbation in expression between two experimental conditions. Response networks, computed through the integration of gene interaction networks with expression perturbation data, may themselves contain tens of thousands of interactions. Gene set enrichment has become standard for summarizing the results of these analyses in te...

  8. Fundamental Tradeoffs among Reliability, Latency and Throughput in Cellular Networks

    Soret, Beatriz; Mogensen, Preben; Pedersen, Klaus I.;


    We address the fundamental tradeoffs among latency, reliability and throughput in a cellular network. The most important elements influencing the KPIs in a 4G network are identified, and the inter-relationships among them is discussed. We use the effective bandwidth and the effective capacity the...

  9. Cellular and synaptic network defects in autism

    Peça, João; Feng, Guoping


    Many candidate genes are now thought to confer susceptibility to autism spectrum disorders (ASDs). Here we review four interrelated complexes, each composed of multiple families of genes that functionally coalesce on common cellular pathways. We illustrate a common thread in the organization of glutamatergic synapses and suggest a link between genes involved in Tuberous Sclerosis Complex, Fragile X syndrome, Angelman syndrome and several synaptic ASD candidate genes. When viewed in this conte...

  10. Energy management in wireless cellular and ad-hoc networks

    Imran, Muhammad; Qaraqe, Khalid; Alouini, Mohamed-Slim; Vasilakos, Athanasios


    This book investigates energy management approaches for energy efficient or energy-centric system design and architecture and presents end-to-end energy management in the recent heterogeneous-type wireless network medium. It also considers energy management in wireless sensor and mesh networks by exploiting energy efficient transmission techniques and protocols. and explores energy management in emerging applications, services and engineering to be facilitated with 5G networks such as WBANs, VANETS and Cognitive networks. A special focus of the book is on the examination of the energy management practices in emerging wireless cellular and ad hoc networks. Considering the broad scope of energy management in wireless cellular and ad hoc networks, this book is organized into six sections covering range of Energy efficient systems and architectures; Energy efficient transmission and techniques; Energy efficient applications and services. .

  11. Error performance analysis in downlink cellular networks with interference management

    Afify, Laila H.


    Modeling aggregate network interference in cellular networks has recently gained immense attention both in academia and industry. While stochastic geometry based models have succeeded to account for the cellular network geometry, they mostly abstract many important wireless communication system aspects (e.g., modulation techniques, signal recovery techniques). Recently, a novel stochastic geometry model, based on the Equivalent-in-Distribution (EiD) approach, succeeded to capture the aforementioned communication system aspects and extend the analysis to averaged error performance, however, on the expense of increasing the modeling complexity. Inspired by the EiD approach, the analysis developed in [1] takes into consideration the key system parameters, while providing a simple tractable analysis. In this paper, we extend this framework to study the effect of different interference management techniques in downlink cellular network. The accuracy of the proposed analysis is verified via Monte Carlo simulations.

  12. A new small-world network created by Cellular Automata

    Ruan, Yuhong; Li, Anwei


    In this paper, we generate small-world networks by the Cellular Automaton based on starting with one-dimensional regular networks. Besides the common properties of small-world networks with small average shortest path length and large clustering coefficient, the small-world networks generated in this way have other properties: (i) The edges which are cut in the regular network can be controlled that whether the edges are reconnected or not, and (ii) the number of the edges of the small-world network model equals the number of the edges of the original regular network. In other words, the average degree of the small-world network model equals to the average degree of the original regular network.

  13. Block transceivers OFDM and beyond

    Diniz, Paulo S R


    The demand for data traffic over mobile communication networks has substantially increased during the last decade. As a result, these mobilebroadband devices spend the available spectrum fiercely, requiring the search for new technologies. In transmissions where the channel presents a frequency selective behavior, multicarrier modulation (MCM) schemes have proven to be more efficient, in terms of spectral usage, than conventional modulations and spread spectrum techniques.The orthogonal frequency-division multiplexing (OFDM) and its related singlecarrier SC-FD) scheme are the most notorious MC

  14. Microfabricated platforms for the study of neuronal and cellular networks

    Berdondini, L; Generelli, S; Kraus, T; Guenat, O T; Koster, S; Linder, V; Koudelka-Hep, M; Rooij, N F de [SAMLAB, Institute of Microtechnology, University of Neuchatel (Switzerland)


    In this contribution we present the development of three microfabricated devices for the study of neuronal and cellular networks. Together, these devices form an attractive toolbox, which is useful to stimulate and record signals of both electrical and chemical nature. One approach consist of microelectrode arrays for the study of neuronal networks, and allow for the electrical stimulation of individual cells in the network, while the other electrodes of the array record the electrical activity of the remaining cells of the network. We also present the use of micropipettes that can measure the extra- and intracellular concentrations of ions in cells cultures. A third approach exploits the laminar flows in a microfluidic device, to deliver minute amounts of drug to some cells in a cellular network. These three illustrations show that microfabricated platforms are appealing analytical tools in the context of cell biology.

  15. TRANSWESD : inferring cellular networks with transitive reduction

    Klamt, S; Flassig, R.; Sundmacher, K.


    Motivation: Distinguishing direct from indirect influences is a central issue in reverse engineering of biological networks because it facilitates detection and removal of false positive edges. Transitive reduction is one approach for eliminating edges reflecting indirect effects but its use in reconstructing cyclic interaction graphs with true redundant structures is problematic. Results: We present TRANSWESD, an elaborated variant of TRANSitive reduction for WEighted Signed Digraphs that ov...

  16. Incorporating scale invariance into the cellular associative neural network

    Burles, Nathan; O'Keefe, Simon; Austin, James


    This paper describes an improvement to the Cellular Associative Neural Network, an architecture based on the distributed model of a cellular automaton, allowing it to perform scale invariant pattern matching. The use of tensor products and superposition of patterns allows the system to recall patterns at multiple resolutions simultaneously. Our experimental results show that the architecture is capable of scale invariant pattern matching, but that further investigation is needed to reduce the...

  17. Green Cellular Network Deployment To Reduce RF Pollution

    Katiyar, Sumit; Agrawal, N K


    As the mobile telecommunication systems are growing tremendously all over the world, the numbers of handheld and base stations are also rapidly growing and it became very popular to see these base stations distributed everywhere in the neighborhood and on roof tops which has caused a considerable amount of panic to the public in Palestine concerning wither the radiated electromagnetic fields from these base stations may cause any health effect or hazard. Recently UP High Court in India ordered for removal of BTS towers from residential area, it has created panic among cellular communication network designers too. Green cellular networks could be a solution for the above problem. This paper deals with green cellular networks with the help of multi-layer overlaid hierarchical structure (macro / micro / pico / femto cells). Macrocell for area coverage, micro for pedestrian and a slow moving traffic while pico for indoor use and femto for individual high capacity users. This could be the answer of the problem of ...

  18. Flip-OFDM for Optical Wireless Communications

    Fernando, Nirmal; Hong, Yi; Viterbo, Emanuele


    We consider two uniploar OFDM techniques for optical wireless communications: asymmetric clipped optical OFDM (ACO-OFDM) and Flip-OFDM. Both techniques can be used to compensate multipath distortion effects in optical wireless channels. However, ACO-OFDM has been widely studied in the literature, while the performance of Flip-OFDM has never been investigated. In this paper, we conduct the performance analysis of Flip-OFDM and propose additional modification to the original scheme in order to ...

  19. Analysis of OFDM Applied to Powerline High Speed Digital Communication

    ZHUANG Jian; YANG Gong-xu


    The low voltage powerline is becoming a powerful solution to home network, building automation, and internet access as a result of its wide distribution, easy access and little maintenance. The character of powerline channel is very complicated because it is an open net. This article analysed the character of the powerline channel,introduced the basics of OFDM(Orthogonal Frequency Division Multiplexing), and studied the OFDM applied into powerline high speed digital communication.

  20. Optimising base station location for UMTS cellular networks

    Rapid development of universal mobile telecommunication systems put demands on tools for assisting planning of cellular network infrastructure. The tools need to focus on critical issues in modern cellular networks and techniques used for previous generation system no longer serve useful. In this paper, an algorithm based on Branch and Bound approach is proposed for solving base station location problem, covering interference levels, traffic demands and power control mechanism. The efficiency of the algorithm is evaluated with respect to existing approaches for solving this problem – using the designed and implemented experimentation system

  1. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  2. Solar Energy Empowered 5G Cognitive Metro-Cellular Networks

    Zaidi, SAR; Afzal, A; M. Hafeez; Ghogho, M.; McLernon, DC; Swami, A


    Harvesting energy from natural (solar, wind, vibration, etc.) and synthesized (microwave power transfer) sources is envisioned as a key enabler for realizing green wireless networks. Energy efficient scheduling is one of the prime objectives in emerging cognitive radio platforms. To that end, in this article we present a comprehensive framework to characterize the performance of a cognitive metro-cellular network empowered by solar energy harvesting. The proposed model allows designers to cap...

  3. Cellular Underwater Wireless Optical CDMA Network: Potentials and Challenges

    Akhoundi, Farhad; Jamali, Mohammad Vahid; Banihassan, Navid; Beyranvand, Hamzeh; Minoofar, Amir; Salehi, Jawad A.


    Underwater wireless optical communications is an emerging solution to the expanding demand for broadband links in oceans and seas. In this paper, a cellular underwater wireless optical code division multiple-access (UW-OCDMA) network is proposed to provide broadband links for commercial and military applications. The optical orthogonal codes (OOC) are employed as signature codes of underwater mobile users. Fundamental key aspects of the network such as its backhaul architecture, its potential...

  4. Performance methods for mobility management in cellular networks

    Liu, LQ; Munro, ATD; Barton, MH; McGeehan, JP


    This paper presents performance methods for mobility management in cellular networks. A queueing analysis is first undertaken, in which the system is modelled as an open Jackson network, consisting of M M/M/1 queues. Given environmental parameters, the corresponding probability matrix is obtained, and hence the traffic matrix equations. From these equations, the traffic load in each cell is evaluated. Secondly, a BONeS DESIGNER simulation model is created and applied to the evaluation of mobi...

  5. Cellular neural networks for the stereo matching problem

    Taraglio, S. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione; Zanela, A. [Rome Univ. `La Sapienza` (Italy). Dipt. di Fisica


    The applicability of the Cellular Neural Network (CNN) paradigm to the problem of recovering information on the tridimensional structure of the environment is investigated. The approach proposed is the stereo matching of video images. The starting point of this work is the Zhou-Chellappa neural network implementation for the same problem. The CNN based system we present here yields the same results as the previous approach, but without the many existing drawbacks.

  6. Cellular neural networks for the stereo matching problem

    The applicability of the Cellular Neural Network (CNN) paradigm to the problem of recovering information on the tridimensional structure of the environment is investigated. The approach proposed is the stereo matching of video images. The starting point of this work is the Zhou-Chellappa neural network implementation for the same problem. The CNN based system we present here yields the same results as the previous approach, but without the many existing drawbacks

  7. On Hardware Implementation of Discrete-Time Cellular Neural Networks

    Malki, Suleyman


    Cellular Neural Networks are characterized by simplicity of operation. The network consists of a large number of nonlinear processing units; called cells; that are equally spread in the space. Each cell has a simple function (sequence of multiply-add followed by a single discrimination) that takes an element of a topographic map and then interacts with all cells within a specified sphere of interest through direct connections. Due to their intrinsic parallel computing power, CNNs have attract...

  8. Almost sure exponential stability of delayed cellular neural networks

    Chuangxia Huang


    Full Text Available The stability of stochastic delayed Cellular Neural Networks (DCNN is investigated in this paper. Using suitable Lyapunov functional and the semimartingale convergence theorem, we obtain some sufficient conditions for checking the almost sure exponential stability of the DCNN.

  9. Multi-robot Coordination by using Cellular Neural Networks

    A. Gacsadi


    Full Text Available Vision-based algorithms for multi-robot coordination,are presented in this paper. Cellular Neural Networks (CNNsprocessing techniques are used for real time motion planning ofthe robots. The CNN methods are considered an advantageoussolution for image processing in autonomous mobile robotsguidance.

  10. Millimeter-Wave Evolution for 5G Cellular Networks

    Sakaguchi, Kei; Tran, Gia Khanh; Shimodaira, Hidekazu; Nanba, Shinobu; Sakurai, Toshiaki; Takinami, Koji; Siaud, Isabelle; Strinati, Emilio Calvanese; Capone, Antonio; Karls, Ingolf; Arefi, Reza; Haustein, Thomas

    Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.

  11. Gateway Deployment optimization in Cellular Wi-Fi Mesh Networks

    Rajesh Prasad


    Full Text Available With the standardization of IEEE 802.11, there has been an explosive growth of wireless local area networks (WLAN. Recently, this cost effective technology is being developed aggressively for establishing metro-scale “cellular Wi-Fi” network to support seamless Internet access in the urban area. We envision a large scale WLAN system in the future where Access Points (APs will be scattered over an entire city enabling people to use their mobile devices ubiquitously. The problem addressed in this paper involves finding the minimum number of gateways and their optimal placement so as to minimize the network installation costs while maintaining reliability, flexibility and an acceptable grade of service. The problem is modeled taking a network graph, where the nodes represents either the Access Points of IEEE 802.11 or wired backbone gateways. In this paper, we present two methods (1 an innovative approach using integer linear programming (ILP for gateway selection in the cellular Wi-Fi network, and (2 a completely new heuristic (OPEN/CLOSE to solve the gateway selection problem. In the ILP model, we developed a set of linear inequalities based on various constraints. The ILP model is solved by using lp-solve, a simplex-based software for linear and integer programming problems. The second approach is an OPEN/CLOSE heuristic, tailored for cellular Wi-Fi, which arrives at a sub-optimal solution. Java programming language is used for simulation in OPEN/CLOSE heuristic. Extensive simulations are carried out for performance evaluation. Simulation results show that the proposed approaches can effectively identify a set of gateways at optimal locations in a cellular Wi-Fi network, resulting in an overall cost reduction of up to 50%. The technique presented in this paper is generalized and can be used for gateway selection for other networks as well.

  12. Global stability analysis on a class of cellular neural networks


    The existence, uniqueness, globally exponential stability andspeed of exponential convergence for a class of cellular neural networks are investigated. The existence of a unique equilibrium is proved under very concise conditions, and theorems for estimating the global convergence speed approaching the equilibrium and criteria for its globally exponential stability are derived, Considering synapse time delay, by constructing appropriate Lyapunov functional, the existence of a unique equilibrium and its global stability for the delayed network are also proved. The results, which do not require the cloning template to be symmetric, are easy to use in network design.

  13. Coverage and Economy of Cellular Networks with Many Base Stations

    Lee, Seunghyun


    The performance of a cellular network can be significantly improved by employing many base stations (BSs), which shortens transmission distances. However, there exist no known results on quantifying the performance gains from deploying many BSs. To address this issue, we adopt a stochastic-geometry model of the downlink cellular network and analyze the mobile outage probability. Specifically, given Poisson distributed BSs, the outage probability is shown to diminish inversely with the increasing ratio between the BS and mobile densities. Furthermore, we analyze the optimal tradeoff between the performance gain from increasing the BS density and the resultant network cost accounting for energy consumption, BS hardware and backhaul cables. The optimal BS density is proved to be proportional to the square root of the mobile density and the inverse of the square root of the cost factors considered.

  14. Area Green Efficiency (AGE) of Two Tier Heterogeneous Cellular Networks

    Tabassum, Hina


    Small cell networks are becoming standard part of the future heterogeneous networks. In this paper, we consider a two tier heterogeneous network which promises energy savings by integrating the femto and macro cellular networks and thereby reducing CO2 emissions, operational and capital expenditures (OPEX and CAPEX) whilst enhancing the area spectral efficiency (ASE) of the network. In this context, we define a performance metric which characterize the aggregate energy savings per unit macrocell area and is referred to as area green efficiency (AGE) of the two tier heterogeneous network where the femto base stations are arranged around the edge of the reference macrocell such that the configuration is referred to as femto-on-edge (FOE). The mobile users in macro and femto cellular networks are transmitting with the adaptive power while maintaining the desired link quality such that the energy aware FOE configuration mandates to (i) save energy, and (ii) reduce the co-channel interference. We present a mathematical analysis to incorporate the uplink power control mechanism adopted by the mobile users and calibrate the uplink ASE and AGE of the energy aware FOE configuration. Next, we derive analytical expressions to compute the bounds on the uplink ASE of energy aware FOE configuration and demonstrate that the derived bounds are useful in evaluating the ASE under worst and best case interference scenarios. Simulation results are produced to demonstrate the ASE and AGE improvements in comparison to macro-only and macro-femto configuration with uniformly distributed femtocells.

  15. The role of actin networks in cellular mechanosensing

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant

  16. Mobile Agents in Wireless LAN and Cellular Data Networks

    R. B. Patel


    Full Text Available Advancing technology in wireless communication offers users anytime, anywhere access to information and network resources without restricting them to the fixed network infrastructure. Mobile computing represents a shift in the distributed systems paradigm. The potential of decoupled and disconnected operation, location-dependent computation and communication and powerful portable computing devices gives rise to opportunities for new patterns of distributed computation that require a revised view of distributed systems. Mobile environment brings different challenges to users and service providers when compared to fixed, wired networks. Mobility brings uncertainties, as well as opportunities to provide new services and supplementary information to users in the locations where they find themselves. A mobile user is one who, on occasion, disconnects from his/her home network to change location and then reconnects, possibly using a different access technology. A necessary feature of mobility management is the ability to continue to provide system and network services to mobile users seamlessly, regardless of their location and the form of their connection. In general, most application software, operating systems and network infrastructures are intended for more conventional environments and so the mobile user has great difficulty in exploiting the computational infrastructure as fully as he/she might. The Internet Roaming solution for corporate wireless data users integrates mobile networking across private wireless local area networks (WLANs, public WLANs and cellular data networks. In this study we have developed an infrastructure using mobile agent for integrating the Wireless LAN and cellular data called Internet Roaming System (IRS. It is implemented on PMADE mobile agent system developed at IIT Roorkee.

  17. Molecular chaperones: The modular evolution of cellular networks

    Tamás Korcsmáros; István A Kovács; Máté S Szalay; Péter Csermely


    Molecular chaperones play a prominent role in signaling and transcriptional regulatory networks of the cell. Recent advances uncovered that chaperones act as genetic buffers stabilizing the phenotype of various cells and organisms and may serve as potential regulators of evolvability. Chaperones have weak links, connect hubs, are in the overlaps of network modules and may uncouple these modules during stress, which gives an additional protection for the cell at the network-level. Moreover, after stress chaperones are essential to re-build inter-modular contacts by their low affinity sampling of the potential interaction partners in different modules. This opens the way to the chaperone-regulated modular evolution of cellular networks, and helps us to design novel therapeutic and anti-aging strategies.

  18. Integration of Neural Networks and Cellular Automata for Urban Planning

    Anthony Gar-on Yeh; LI Xia


    This paper presents a new type of cellular automata (CA) model for the simulation of alternative land development using neural networks for urban planning. CA models can be regarded as a planning tool because they can generate alternative urban growth. Alternative development patterns can be formed by using different sets of parameter values in CA simulation. A critical issue is how to define parameter values for realistic and idealized simulation. This paper demonstrates that neural networks can simplify CA models but generate more plausible results. The simulation is based on a simple three-layer network with an output neuron to generate conversion probability. No transition rules are required for the simulation. Parameter values are automatically obtained from the training of network by using satellite remote sensing data. Original training data can be assessed and modified according to planning objectives. Alternative urban patterns can be easily formulated by using the modified training data sets rather than changing the model.

  19. Performance evaluation of cellular phone network based portable ECG device.

    Hong, Joo-Hyun; Cha, Eun-Jong; Lee, Tae-Soo


    In this study, cellular phone network based portable ECG device was developed and three experiments were performed to evaluate the accuracy, reliability and operability, applicability during daily life of the developed device. First, ECG signals were measured using the developed device and Biopac device (reference device) during sitting and marking time and compared to verify the accuracy of R-R intervals. Second, the reliable data transmission to remote server was verified on two types of simulated emergency event using patient simulator. Third, during daily life with five types of motion, accuracy of data transmission to remote server was verified on two types of event occurring. By acquiring and comparing subject's biomedical signal and motion signal, the accuracy, reliability and operability, applicability during daily life of the developed device were verified. Therefore, cellular phone network based portable ECG device can monitor patient with inobtrusive manner. PMID:19162767

  20. Using Cellular Communication Networks To Detect Air Pollution.

    David, Noam; Gao, H Oliver


    Accurate real time monitoring of atmospheric conditions at ground level is vital for hazard warning, meteorological forecasting, and various environmental applications required for public health and safety. However, conventional monitoring facilities are costly and often insufficient, for example, since they are not representative of the larger space and are not deployed densely enough in the field. There have been numerous scientific works showing the ability of commercial microwave links that comprise the data transmission infrastructure in cellular communication networks to monitor hydrometeors as a potential complementary solution. However, despite the large volume of research carried out in this emerging field during the past decade, no study has shown the ability of the system to provide critical information regarding air quality. Here we reveal the potential for identifying atmospheric conditions prone to air pollution by detecting temperature inversions that trap pollutants at ground level. The technique is based on utilizing standard signal measurements from an existing cellular network during routine operation. PMID:27490182

  1. Distributed Velocity-Dependent Protocol for Multihop Cellular Sensor Networks

    Jagyasi Bhushan


    Full Text Available Abstract Cell phones are embedded with sensors form a Cellular Sensor Network which can be used to localize a moving event. The inherent mobility of the application and of the cell phone users warrants distributed structure-free data aggregation and on-the-fly routing. We propose a Distributed Velocity-Dependent (DVD protocol to localize a moving event using a Multihop Cellular Sensor Network (MCSN. DVD is based on a novel form of connectivity determined by the waiting time of nodes for a Random Waypoint (RWP distribution of cell phone users. This paper analyzes the time-stationary and spatial distribution of the proposed waiting time to explain the superior event localization and delay performances of DVD over the existing Randomized Waiting (RW protocol. A sensitivity analysis is also performed to compare the performance of DVD with RW and the existing Centralized approach.

  2. Distributed Velocity-Dependent Protocol for Multihop Cellular Sensor Networks

    Deepthi Chander


    Full Text Available Cell phones are embedded with sensors form a Cellular Sensor Network which can be used to localize a moving event. The inherent mobility of the application and of the cell phone users warrants distributed structure-free data aggregation and on-the-fly routing. We propose a Distributed Velocity-Dependent (DVD protocol to localize a moving event using a Multihop Cellular Sensor Network (MCSN. DVD is based on a novel form of connectivity determined by the waiting time of nodes for a Random Waypoint (RWP distribution of cell phone users. This paper analyzes the time-stationary and spatial distribution of the proposed waiting time to explain the superior event localization and delay performances of DVD over the existing Randomized Waiting (RW protocol. A sensitivity analysis is also performed to compare the performance of DVD with RW and the existing Centralized approach.

  3. A Fluid Model for Performance Analysis in Cellular Networks

    Coupechoux Marceau


    Full Text Available We propose a new framework to study the performance of cellular networks using a fluid model and we derive from this model analytical formulas for interference, outage probability, and spatial outage probability. The key idea of the fluid model is to consider the discrete base station (BS entities as a continuum of transmitters that are spatially distributed in the network. This model allows us to obtain simple analytical expressions to reveal main characteristics of the network. In this paper, we focus on the downlink other-cell interference factor (OCIF, which is defined for a given user as the ratio of its outer cell received power to its inner cell received power. A closed-form formula of the OCIF is provided in this paper. From this formula, we are able to obtain the global outage probability as well as the spatial outage probability, which depends on the location of a mobile station (MS initiating a new call. Our analytical results are compared to Monte Carlo simulations performed in a traditional hexagonal network. Furthermore, we demonstrate an application of the outage probability related to cell breathing and densification of cellular networks.

  4. Neural networks and cellular automata in experimental high energy physics

    Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature. Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition and high combinatorial complexity since many combinations of hits or cells must be considered in order to arrive at the final tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of experimental high physics. It is found that such problems as track and cluster finding adapt naturally to these approaches. When large scale hardwired connective networks become available, it will be possible to realize solutions to such problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast trigger decisions

  5. Ion beam analysis based on cellular nonlinear networks

    Senger, V.; R. Tetzlaff; H. Reichau; Ratzinger, U.


    The development of a non- destructive measurement method for ion beam parameters has been treated in various projects. Although results are promising, the high complexity of beam dynamics has made it impossible to implement a real time process control up to now. In this paper we will propose analysing methods based on the dynamics of Cellular Nonlinear Networks (CNN) that can be implemented on pixel parallel CNN based architectures and yield satisfying results even at low re...

  6. A Tractable Approach to Coverage and Rate in Cellular Networks

    Andrews, Jeffrey G.; Baccelli, Francois; Ganti, Radha Krishna


    Cellular networks are usually modeled by placing the base stations on a grid, with mobile users either randomly scattered or placed deterministically. These models have been used extensively but suffer from being both highly idealized and not very tractable, so complex system-level simulations are used to evaluate coverage/outage probability and rate. More tractable models have long been desirable. We develop new general models for the multi-cell signal-to-interference-plus-noise ratio (SINR)...

  7. Traffic Convexity Aware Cellular Networks: A Vehicular Heavy User Perspective

    Shim, Taehyoung; Park, Jihong; Ko, Seung-Woo; Kim, Seong-Lyun; Lee, Beom Hee; Choi, Jin Gu


    Rampant mobile traffic increase in modern cellular networks is mostly caused by large-sized multimedia contents. Recent advancements in smart devices as well as radio access technologies promote the consumption of bulky content, even for people in moving vehicles, referred to as vehicular heavy users. In this article the emergence of vehicular heavy user traffic is observed by field experiments conducted in 2012 and 2015 in Seoul, Korea. The experiments reveal that such traffic is becoming do...

  8. Ion beam analysis based on cellular nonlinear networks

    Senger, V.; Tetzlaff, R.; Reichau, H.; Ratzinger, U.


    The development of a non- destructive measurement method for ion beam parameters has been treated in various projects. Although results are promising, the high complexity of beam dynamics has made it impossible to implement a real time process control up to now. In this paper we will propose analysing methods based on the dynamics of Cellular Nonlinear Networks (CNN) that can be implemented on pixel parallel CNN based architectures and yield satisfying results even at low resolutions.

  9. Application of neural networks and cellular automata to calorimetric problems

    Brenton, V.; Fonvieille, H.; Guicheney, C.; Jousset, J.; Roblin, Y.; Tamin, F.; Grenier, P.


    Computing techniques based on parallel processing have been used to treat the information from the electromagnetic calorimeters in SLAC experiments E142/E143. Cluster finding and separation of overlapping showers are performed by a cellular automaton, pion and electron identification is done by using a multilayered neural network. Both applications are presented and their resulting performances are shown to be improved compared to more standard approaches. (author). 9 refs.; Submitted to Nuclear Instruments and Methods (NL).

  10. Cellular Neural Networks for NP-Hard Optimization

    Mária Ercsey-Ravasz; Tamás Roska; Zoltán Néda


    Nowadays, Cellular Neural Networks (CNN) are practically implemented in parallel, analog computers, showing a fast developing trend. Physicist must be aware that such computers are appropriate for solving in an elegant manner practically important problems, which are extremely slow on the classical digital architecture. Here, CNN is used for solving NP-hard optimization problems on lattices. It is proved, that a CNN in which the parameters of all cells can be separately controlled, is the ana...

  11. Hybrid Spectral Efficient Cellular Network Deployment to Reduce RF Pollution

    Katiyar, Sumit; K. Jain, R.; K. Agrawal, N.


    As the mobile telecommunication systems are growing tremendously all over the world, the numbers of handheld and base stations are also rapidly growing and it became very popular to see these base stations distributed everywhere in the neighborhood and on roof tops which has caused a considerable amount of panic to the public in Palestine concerning wither the radiated electromagnetic fields from these base stations may cause any health effect or hazard. Recently UP High Court in India ordered for removal of BTS towers from residential area, it has created panic among cellular communication network designers too. Green cellular networks could be a solution for the above problem. This paper deals with green cellular networks with the help of multi-layer overlaid hierarchical structure (macro / micro / pico / femto cells). Macrocell for area coverage, micro for pedestrian and a slow moving traffic while pico for indoor use and femto for individual high capacity users. This could be the answer of the problem of energy conservation and enhancement of spectral density also.

  12. Dynamic Topology Re-Configuration in Multihop Cellular Networks Using Sequential Genetic Algorithm

    B.Shantha Kumari; Mr. Mohammed Ali Shaik Asst. Prof


    Cellular communications has experienced explosive growth in the past two decades. Today millions of people around the world use cellular phones. Cellular phones allow a person to make or receive a call from almost anywhere. Likewise, a person is allowed to continue the phone conversation while on the move. Cellular communications is supported by an infrastructure called a cellular network, which integrates cellular phones into the public switched telephone network. The cellula...

  13. Joint reduction of PAPR for OFDM-PON%OFDM-PON中PAPR的联合抑制方法

    冯敏; 罗清龙; 白成林; 张帅


    在采用正交频分复用(OFDM)技术的光无源接入网(PON)中,由于所产生的光OFDM信号具有较高的峰值平均功率比(PAPR),从而会对器件提出较高的要求,同时在其高速传输过程中也易导致非线性效应.通过联合使用限幅和信号预失真的方法降低了OFDM-PON中信号PAPR的影响,使得50km单波长下行5Gb/s的OFDM-PON实验系统的光信噪比大约有4dB的提升.%In passive optical access network (PON) using orthogonal frequency division multiplexing (OFDM) technology,optical OFDM signal has a high peak to average power ratio (PAPR),so it has very high requirements for devices,and easily leads to nonlinear effects in the high-speed propagation.In this paper,the joint use of clipping and the signal pre-distortion reduces the influence of the PAPR, 4dB improvement of the optical SNR is obtained in the OFDM-PON experimental system,and 5Gb/s in downlink can be achieved using each wavelength in single mode fiber of 50km.

  14. Modeling and Performance Analyses of Hybrid Cellular and Broadcasting Networks

    Peter Unger


    Full Text Available Mobile communication services are getting more and more important and, in particular, multimedia services have attracted the interest of the users. Mobile TV is one of the most demanded candidates. Powerful and efficient communication systems are needed, which provide high capacities, especially at the downlink. Furthermore, interactivity is essential for supporting the user needs and to extend the service offering. As one possible solution to meet the mentioned requirements, we consider the combination of the cellular network UMTS and the mobile broadcast network DVB-H, which form a hybrid network. We investigate the performance of hybrid networks and develop a system model, which describes the hybrid network and the load switching between both networks. One of the contributions is the definition of the switching bound concept, which represents an efficient tool to assess the necessity and the feasibility of hybrid networks and the amount of load switching. The performance indicators cell load and grade of service are analyzed by using theoretical and realistic scenarios.

  15. Topological Decoupled Group Key Management for Cellular Networks

    Jorge E. Ramirez


    Full Text Available Problem statement: The continuous increasing capacity of the cellular networks motivates the development of multiparty applications, such as interactive mobile TV and mobile social networks. For these environments, security group services are required. A practical way to provide security services is by using cryptographic methods. However, the key management needed for these methods, which considers a dynamic group membership, introduces a high communication and storage overheads. Approach: In this study we propose an efficient group key management scheme suitable for cellular networks. Results: Our scheme reduces the number of keys to be transmitted and to be stored at a mobile host in the presence of membership changes. The scheme is based on a two tier structure to organize the cells in areas and the mobile hosts in clusters within an area. The main objective of the two tier structure is to dissociate, in an advantageous manner, the mobile hosts’ distribution from the topological network. Conclusion: Our approach offers security services to a large number of mobile hosts by using lower cryptographic resources, thus providing us a more efficient key updating process.

  16. Reverse Engineering Cellular Networks with Information Theoretic Methods

    Julio R. Banga


    Full Text Available Building mathematical models of cellular networks lies at the core of systems biology. It involves, among other tasks, the reconstruction of the structure of interactions between molecular components, which is known as network inference or reverse engineering. Information theory can help in the goal of extracting as much information as possible from the available data. A large number of methods founded on these concepts have been proposed in the literature, not only in biology journals, but in a wide range of areas. Their critical comparison is difficult due to the different focuses and the adoption of different terminologies. Here we attempt to review some of the existing information theoretic methodologies for network inference, and clarify their differences. While some of these methods have achieved notable success, many challenges remain, among which we can mention dealing with incomplete measurements, noisy data, counterintuitive behaviour emerging from nonlinear relations or feedback loops, and computational burden of dealing with large data sets.

  17. Robust network topologies for generating switch-like cellular responses.

    Najaf A Shah


    Full Text Available Signaling networks that convert graded stimuli into binary, all-or-none cellular responses are critical in processes ranging from cell-cycle control to lineage commitment. To exhaustively enumerate topologies that exhibit this switch-like behavior, we simulated all possible two- and three-component networks on random parameter sets, and assessed the resulting response profiles for both steepness (ultrasensitivity and extent of memory (bistability. Simulations were used to study purely enzymatic networks, purely transcriptional networks, and hybrid enzymatic/transcriptional networks, and the topologies in each class were rank ordered by parametric robustness (i.e., the percentage of applied parameter sets exhibiting ultrasensitivity or bistability. Results reveal that the distribution of network robustness is highly skewed, with the most robust topologies clustering into a small number of motifs. Hybrid networks are the most robust in generating ultrasensitivity (up to 28% and bistability (up to 18%; strikingly, a purely transcriptional framework is the most fragile in generating either ultrasensitive (up to 3% or bistable (up to 1% responses. The disparity in robustness among the network classes is due in part to zero-order ultrasensitivity, an enzyme-specific phenomenon, which repeatedly emerges as a particularly robust mechanism for generating nonlinearity and can act as a building block for switch-like responses. We also highlight experimentally studied examples of topologies enabling switching behavior, in both native and synthetic systems, that rank highly in our simulations. This unbiased approach for identifying topologies capable of a given response may be useful in discovering new natural motifs and in designing robust synthetic gene networks.

  18. OFDM systems for wireless communications

    Narasimhamurthy, Adarsh


    Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in the standards for digital audio/video broadcasting, WiFi and WiMax. Being a frequency-domain approach to communications, OFDM has important advantages in dealing with the frequency-selective nature of high data rate wireless communication channels. As the needs for operating with higher data rates become more pressing, OFDM systems have emerged as an effective physical-layer solution.This short monograph is intended as a tutorial which highlights the deleterious aspects of the wireless channel and presents why OFDM is

  19. Assessing the weather monitoring capabilities of cellular microwave link networks

    Fencl, Martin; Vrzba, Miroslav; Rieckermann, Jörg; Bareš, Vojtěch


    Using of microwave links for rainfall monitoring was suggested already by (Atlas and Ulbrich, 1977). However, this technique attracted broader attention of scientific community only in the recent decade, with the extensive growth of cellular microwave link (CML) networks, which form the backbone of today's cellular telecommunication infrastructure. Several studies have already shown that CMLs can be conveniently used as weather sensors and have potential to provide near-ground path-integrated observations of rainfall but also humidity or fog. However, although research is still focusing on algorithms to improve the weather sensing capabilities (Fencl et al., 2015), it is not clear how to convince cellular operators to provide the power levels of their network. One step in this direction is to show in which regions or municipalities the networks are sufficiently dense to provide/develop good services. In this contribution we suggest a standardized approach to evaluate CML networks in terms of rainfall observation and to identify suitable regions for CML rainfall monitoring. We estimate precision of single CML based on its sensitivity to rainfall, i.e. as a function of frequency, polarization and path length. Capability of a network to capture rainfall spatial patterns is estimated from the CML coverage and path lengths considering that single CML provides path-integrated rain rates. We also search for suitable predictors for regions where no network topologies are available. We test our approach on several European networks and discuss the results. Our results show that CMLs are very dense in urban areas (> 1 CML/km2), but less in rural areas (evaluate the suitability of their region for CML weather monitoring and estimate the credible spatial-resolution of a CML weather monitoring product. Atlas, D. and Ulbrich, C. W. (1977) Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1-3 cm Band. Journal of Applied Meteorology, 16(12), 1322

  20. Energy Efficient Resource Allocation for Phantom Cellular Networks

    Abdelhady, Amr


    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE. First, we consider sparsely deployed cells experiencing negligible interference and assume perfect channel state information (CSI). For this setting, we propose an algorithm that finds the SE and EE resource allocation strategies. Then, we compare the performance of both design strategies versus number of users, and phantom cells share of the total available resource units (RUs). We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It is found that increasing phantom cells share of RUs decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. Second, we consider the densely deployed phantom cellular networks and model the EE optimization problem having into consideration the inevitable interference and imperfect channel estimation. To this end, we propose three resource allocation strategies aiming at optimizing the EE performance metric of this network. Furthermore, we investigate the effect of changing some of the system parameters on the performance of the proposed strategies, such as phantom cells share of RUs, number of deployed phantom cells within a macro cell coverage, number of pilots and the maximum power available for transmission by the phantom cells BSs. It is found that increasing the number of pilots deteriorates the EE performance of the whole setup, while increasing maximum power available for phantom cells transmissions reduces the EE of the whole setup in a

  1. Cooperative Sequential Spectrum Sensing Algorithms for OFDM

    Jayaprakasam, ArunKumar; Murthy, Chandra R; Narayanan, Prashant


    This paper considers the problem of spectrum sensing in cognitive radio networks when the primary user employs Orthogonal Frequency Division Multiplexing (OFDM). We develop cooperative sequential detection algorithms based on energy detectors and the autocorrelation property of cyclic prefix (CP) used in OFDM systems and compare their performances. We show that sequential detection provides much better performance than the traditional fixed sample size (snapshot) based detectors. We also study the effect of model uncertainties such as timing and frequency offset, IQ-imbalance and uncertainty in noise and transmit power on the performance of the detectors. We modify the detectors to mitigate the effects of these impairments. The performance of the proposed algorithms are studied via simulations. It is shown that energy detector performs significantly better than the CP-based detector, except in case of a snapshot detector with noise power uncertainty. Also, unlike for the CP-based detector, most of the above m...

  2. Location Estimation and Mobility Prediction Using Neuro-fuzzy Networks In Cellular Networks

    Maryam Borna; Mohammad Soleimani


    In this paper an approach is proposed for location estimation, tracking and mobility prediction in cellular networks in dense urban areas using neural and neuro-fuzzy networks. In urban areas with high buildings, due to the effects of multipath fading and Non-Line-of-Sight conditions, the accuracy of positioning methods based on direction finding and ranging degrades significantly. Also in these areas, due to high user traffic there's a need for network resources management. Knowing the next ...

  3. Study and Simulation of Traffic Behavior in Cellular Network

    Madhup, D. K.; Shrestha, C. L.; Sharma, R. K.


    Cellular radio systems accommodate a large number of users with a limited radio spectrum. The concept of trunking allows a large number of users to share the relatively small number of channels in a cell by providing access to each user, on demand, from a pool of available channels. Traffic engineering deals with provisioning of communication circuits in a given area for a number of subscribers with a required grade of service. Traffic in any cell depends upon the number of users, the average request rate and average call duration. Certain number of channels is required for the required GOS. To design an optimum capacity cellular system, traffic behavior on that system is important. The number of channel required can be estimated by using Erlang formula and Erlang table. Erlang table is not always useful to calculate the probability of blocking in various complex scenarios such as channel borrowing strategies. When the total number of channel available in a given cell are divided to serve partly for newly generated calls and partly for handover calls, and if they use dynamic channel assignment strategies like channel borrowing, then the probability of blocking can't be calculated from Erlang table. Simulation model of the behavior help us to determine the blocking and the channel utilization while using various channel assignment strategies. The title "Study and Simulation of Traffic Behavior in Cellular Network" entail the study of the blocking probability of traffic in cellular network for static channel assignment strategies and dynamic channel borrowing strategies through MATLAB programming language and graphic user interface (GUI). The result shows that the dynamic scheme can perform better than static maximizing the overall utilization of the circuits and minimizing the overall blocking.

  4. Emulating fire propagation by using cellular nonlinear networks

    Buscarino, A.; Fortuna, L.; Frasca, M.; Xibilia, M. G.


    In this paper a new approach based on Cellular Nonlinear Networks (CNNs) for modeling the diffusion of forest fires is presented. Based on a model relying on an hyperbolic reaction-diffusion equation, the proposed approach exploits the peculiarity of CNNs allowing the investigation of different types of forest fires, also considering specific morphological characteristics of the terrain and the presence of external perturbations like wind flows. Results show the emergence of particular phenomena really observed in wildfires, allowing to assess the validity of the approach.

  5. Chaotic phenomena in Josephson circuits coupled quantum cellular neural networks

    Wang Sen; Cai Li; Li Qin; Wu Gang


    In this paper the nonlinear dynamical behaviour of a quantum cellular neural network (QCNN) by coupling Josephson circuits was investigated and it was shown that the QCNN using only two of them can cause the onset of chaotic oscillation. The theoretical analysis and simulation for the two Josephson-circuits-coupled QCNN have been done by using the amplitude and phase as state variables. The complex chaotic behaviours can be observed and then proved by calculating Lyapunov exponents. The study provides valuable information about QCNNs for future application in high-parallel signal processing and novel chaotic generators.

  6. Controllability of time-varying cellular neural networks

    Wadie Aziz


    Full Text Available In this work, we consider the model of Cellular Neural Network (CNN introduced by Chua and Yang in 1988, but with the cloning templates $omega$-periodic in time. By imposing periodic boundary conditions the matrices involved in the system become circulant and $omega$-periodic. We show some results on the controllability of the linear model using a Theorem by Brunovsky for the case of linear and $omega$-periodic system. Also we use this approach in image detection, specifically foreground, background and contours of figures in different scales of grey.

  7. Edge Detection in Satellite Image Using Cellular Neural Network

    Osama Basil Gazi


    Full Text Available The present paper proposes a novel approach for edge detection in satellite images based on cellular neural networks. CNN based edge detector in used conjunction with image enhancement and noise removal techniques, in order to deliver accurate edge detection results, compared with state of the art approaches. Thus, considering the obtained results, a comparison with optimal Canny edge detector is performed. The proposed image processing chain deliver more details regarding edges than canny edge detector. The proposed method aims to preserve salient information, due to its importance in all satellite image processing applications.

  8. GPM ground validation via commercial cellular networks: an exploratory approach

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Brasjen, Noud; Uijlenhoet, Remko


    The suitability of commercial microwave link networks for ground validation of GPM (Global Precipitation Measurement) data is evaluated here. Two state-of-the-art rainfall products are compared over the land surface of the Netherlands for a period of 7 months, i.e., rainfall maps from commercial cellular communication networks and Integrated Multi-satellite Retrievals for GPM (IMERG). Commercial microwave link networks are nowadays the core component in telecommunications worldwide. Rainfall rates can be retrieved from measurements of attenuation between transmitting and receiving antennas. If adequately set up, these networks enable rainfall monitoring tens of meters above the ground at high spatiotemporal resolutions (temporal sampling of seconds to tens of minutes, and spatial sampling of hundreds of meters to tens of kilometers). The GPM mission is the successor of TRMM (Tropical Rainfall Measurement Mission). For two years now, IMERG offers rainfall estimates across the globe (180°W - 180°E and 60°N - 60°S) at spatiotemporal resolutions of 0.1° x 0.1° every 30 min. These two data sets are compared against a Dutch gauge-adjusted radar data set, considered to be the ground truth given its accuracy, spatiotemporal resolution and availability. The suitability of microwave link networks in satellite rainfall evaluation is of special interest, given the independent character of this technique, its high spatiotemporal resolutions and availability. These are valuable assets for water management and modeling of floods, landslides, and weather extremes; especially in places where rain gauge networks are scarce or poorly maintained, or where weather radar networks are too expensive to acquire and/or maintain.

  9. Sources of Uncertainty in Rainfall Maps from Cellular Communication Networks

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko


    and quantify the sources of uncertainty in such rainfall maps, but also to test the actual and optimal performance of one commercial microwave network from one of the cellular providers in The Netherlands.

  10. Cellular telephone-based wide-area radiation detection network

    Craig, William W.; Labov, Simon E.


    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  11. Joint Uplink and Downlink Relay Selection in Cooperative Cellular Networks

    Yang, Wei; Wu, Gang; Wang, Haifeng; Wang, Ying


    We consider relay selection technique in a cooperative cellular network where user terminals act as mobile relays to help the communications between base station (BS) and mobile station (MS). A novel relay selection scheme, called Joint Uplink and Downlink Relay Selection (JUDRS), is proposed in this paper. Specifically, we generalize JUDRS in two key aspects: (i) relay is selected jointly for uplink and downlink, so that the relay selection overhead can be reduced, and (ii) we consider to minimize the weighted total energy consumption of MS, relay and BS by taking into account channel quality and traffic load condition of uplink and downlink. Information theoretic analysis of the diversity-multiplexing tradeoff demonstrates that the proposed scheme achieves full spatial diversity in the quantity of cooperating terminals in this network. And numerical results are provided to further confirm a significant energy efficiency gain of the proposed algorithm comparing to the previous best worse channel selection an...

  12. Area Spectral and Energy Efficiency Analysis of Cellular Networks with Cell DTX

    Chang, Peiliang; Miao, Guowang


    Cell discontinuous transmission (DTX) has been proposed as an effective solution to reduce energy consumption of cellular networks. In this paper, we investigate the impact of network traffic load on area spectral efficiency (ASE) and energy efficiency (EE) of cellular networks with cell DTX. Closedform expressions of ASE and EE as functions of traffic load for cellular networks with cell DTX are derived. It is shown that ASE increases monotonically in traffic load, while EE depends on the po...

  13. Trend Analysis of Key Cellular Network Quality Performance Metrics

    Patrick O. Olabisi


    Full Text Available Assessment and analysis of key quality performance indicators of a cellular network is better done over a period of time like days or months in order to have a proper perspective of the reliability of performance of the network or of its base stations (BSs as had been done in this work than to do so over hourly periods of the day or in isolated manner. This normally helps to consider investigating various social and environmental factors that may be affecting the functionality, reliability, and capacity of the network systems. The effect on one key performance indicator is proved to be more likely to affect all other performance indicators of the network or its base stations as was discovered for majorly the fourth day of our measurements. With the highest total traffic occurring on the fourth day other indicators were also worsen, thereby affecting the service quality experienced by the users. KPIs considered were Total Traffic, CSSR, CDR, HoSR, SDCCH Cong, SDR, TCH Cong and TCHA BH.

  14. Analysis of Synchronization Impairments for Cooperative Base Stations Using OFDM

    Konstantinos Manolakis


    Full Text Available Base station cooperation is envisioned as a key technology for future cellular networks, as it has the potential to eliminate intercell interference and to enhance spectral efficiency. To date, there is still lack of understanding of how imperfect carrier and sampling frequency synchronization between transmitters and receivers limit the potential gains and what the actual system requirements are. In this paper, OFDM signal model is established for multiuser multicellular networks, describing the joint effect of multiple carrier and sampling frequency offsets. It is shown that the impact of sampling offsets is much smaller than the impact of carrier frequency offsets. The model is extended to the downlink of base-coordinated networks and closed-form expressions are derived for the mean power of users’ self-signal, interuser, and intercarrier interference, whereas it is shown that interuser interference is the main source of degradation. The SIR is inverse to the base stations’ carrier frequency variance and to the square of time since the last precoder update, whereas it grows with the number of base stations and drops with the number of users. Through user selection, the derived SIR upper bound can be approached. Finally, system design recommendations for meeting synchronization requirements are provided.

  15. Dynamic Topology Re-Configuration in Multihop Cellular Networks Using Sequential Genetic Algorithm

    B.Shantha Kumari


    Full Text Available Cellular communications has experienced explosive growth in the past two decades. Today millions of people around the world use cellular phones. Cellular phones allow a person to make or receive a call from almost anywhere. Likewise, a person is allowed to continue the phone conversation while on the move. Cellular communications is supported by an infrastructure called a cellular network, which integrates cellular phones into the public switched telephone network. The cellular network has gone through three generations.The first generation of cellular networks is analog in nature. To accommodate more cellular phone subscribers, digital TDMA (time division multiple access and CDMA (code division multiple access technologies are used in the second generation (2G to increase the network capacity. With digital technologies, digitized voice can be coded and encrypted. Therefore, the 2G cellular network is also more secure. The third generation (3G integrates cellular phones into the Internet world by providing highspeed packet-switching data transmission in addition to circuit-switching voice transmission. The 3G cellular networks have been deployed in some parts of Asia, Europe, and the United States since 2002 and will be widely deployed in the coming years. The high increase in traffic and data rate for future generations of mobile communication systems, with simultaneous requirement for reduced power consumption, makes Multihop Cellular Networks (MCNs an attractive technology. To exploit the potentials of MCNs a new network paradigm is proposed in this paper. In addition, a novel sequential genetic algorithm (SGA is proposed as a heuristic approximation to reconfigure the optimum relaying topology as the network traffic changes. Network coding is used to combine the uplink and downlink transmissions, and incorporate it into the optimum bidirectional relaying with ICI awareness. Numerical results have shown that the algorithms suggested in this

  16. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    Moubayed, Abdallah


    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other\\'s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network\\'s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network\\'s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. © 2015 IEEE.

  17. Efficient Load Forecasting Optimized by Fuzzy Programming and OFDM Transmission

    Sandeep Sachdeva


    reduce the error of load forecasting, fuzzy method has been used with Artificial Neural Network (ANN and OFDM transmission is used to get data from outer world and send outputs to outer world accurately and quickly. The error has been reduced to a considerable level in the range of 2-3%. For further reducing the error, Orthogonal Frequency Division Multiplexing (OFDM can be used with Reed-Solomon (RS encoding. Further studies are going on with Fuzzy Regression methods to reduce the error more.

  18. Load-Aware Modeling and Analysis of Heterogeneous Cellular Networks

    Dhillon, Harpreet S; Andrews, Jeffrey G


    Random spatial models are attractive for modeling heterogeneous cellular networks (HCNs) due to their realism, tractability, and scalability. A major limitation of such models to date in the context of HCNs is the neglect of network traffic and load: all base stations (BSs) have typically been assumed to always be transmitting. Small cells in particular will have a lighter load than macrocells, and so their contribution to the network interference may be significantly overstated in a fully loaded model. This paper incorporates a flexible notion of BS load by introducing a new idea of conditionally thinning the interference field. For a $K$-tier HCN where BSs across tiers differ in terms of transmit power, supported data rate, deployment density, and now load, we derive the coverage probability for a typical mobile, which connects to the strongest BS signal. Conditioned on this connection, the interfering BSs of the $i^{th}$ tier are assumed to transmit independently with probability $p_i$, which models the lo...


    Falade A. J


    Full Text Available Cellular wireless systems like GSM suffer from congestion resulting in overall system degradation and poor service delivery. When the traffic demand in a geographical area is high, the input traffic rate will exceed thecapacity of the output lines. This work focused on homogenous wireless network (the network traffic and resource dimensioning that are statistically identical such that the network performance evaluation can be reduced to a system with single cell and a single traffic type. Such system can employa queuing model to evaluate the performance metric of a cell in terms of blocking probability. Five congestion control models were compared in the work to ascertain their peculiarities, they are Erlang B, Erlang C, Engset (cleared, Engset (buffered, and Bernoulli. To analyze the system, an aggregate onedimensional Markov chain wasderived, such that it describes a call arrival process under the assumption that it is Poisson distributed. The models were simulated and their results show varying performances, however the Bernoulli model (Pb5 tends to show a situation that allows more users access to the system and the congestion level remain unaffected despite increase in the number of users and the offered traffic into the system.

  20. Cellular Neural Networks for NP-Hard Optimization

    Mária Ercsey-Ravasz


    Full Text Available A cellular neural/nonlinear network (CNN is used for NP-hard optimization. We prove that a CNN in which the parameters of all cells can be separately controlled is the analog correspondent of a two-dimensional Ising-type (Edwards-Anderson spin-glass system. Using the properties of CNN, we show that one single operation (template always yields a local minimum of the spin-glass energy function. This way, a very fast optimization method, similar to simulated annealing, can be built. Estimating the simulation time needed on CNN-based computers, and comparing it with the time needed on normal digital computers using the simulated annealing algorithm, the results are astonishing. CNN computers could be faster than digital computers already at 10×10 lattice sizes. The local control of the template parameters was already partially realized on some of the hardwares, we think this study could further motivate their development in this direction.

  1. Location Management Technique to Reduce Complexity in Cellular Networks

    C. Selvan


    Full Text Available An important issue in the design of mobile computing is how to manage the location information of mobile nodes in wireless cellular networks. The existing system has two approaches. First approach is spatial quantization technique in which location update takes place only when the mobile terminal move from one location area to other and second approach is temporal quantization in which location update takes place only after a specific time threshold. In this paper, we introduce Intelligent Agent Quantization(IAQ which is based on prediction of movements and distance between node and Base Station Controller(BSC to locate the mobile nodes. The main idea of using IAQ is reduce the update cost considerably with slight increase in paging cost.

  2. Global Network Model based on Earth Grid and Cellular

    Dongqi Lu


    Full Text Available We aim to understand the current health state of the Earth and find how human activities influence it. Based on the theory of Earth’s Grid and Cellular Automata, we define and test a global network model, analyze the mutual interactions and feedbacks of ecosystem, hydrologic circle and atmosphere. In addition, we consult a lot of data to find a benchmark for the “Earth Health Map”, with the ecosystem distribution on it, which can be helpful for making a strategic decision for policy makers and prediction. Our model can be extended to other similar fields. In the end, we discuss the sensitivity of parameters selection, and the superiorities and weaknesses of our model.

  3. Spatio-Temporal Dynamics in Cellular Neural Networks

    Liviu GORAS


    Full Text Available Analog Parallel Architectures like Cellular Neural Networks (CNN’s have been thoroughly studied not only for their potential in high-speed image processing applications but also for their rich and exciting spatio-temporal dynamics. An interesting behavior such architectures can exhibit is spatio-temporal filtering and pattern formation, aspects that will be discussed in this work for a general structure consisting of linear cells locally and homogeneously connected within a specified neighborhood. The results are generalizations of those regarding Turing pattern formation in CNN’s. Using linear cells (or piecewise linear cells working in the central linear part of their characteristic allows the use of the decoupling technique – a powerful technique that gives significant insight into the dynamics of the CNN. The roles of the cell structure as well as that of the connection template are discussed and models for the spatial modes dynamics are made as well.

  4. Cellular Neural Network for Real Time Image Processing

    Since their introduction in 1988, Cellular Nonlinear Networks (CNNs) have found a key role as image processing instruments. Thanks to their structure they are able of processing individual pixels in a parallel way providing fast image processing capabilities that has been applied to a wide range of field among which nuclear fusion. In the last years, indeed, visible and infrared video cameras have become more and more important in tokamak fusion experiments for the twofold aim of understanding the physics and monitoring the safety of the operation. Examining the output of these cameras in real-time can provide significant information for plasma control and safety of the machines. The potentiality of CNNs can be exploited to this aim. To demonstrate the feasibility of the approach, CNN image processing has been applied to several tasks both at the Frascati Tokamak Upgrade (FTU) and the Joint European Torus (JET)

  5. Edge detection of noisy images based on cellular neural networks

    Li, Huaqing; Liao, Xiaofeng; Li, Chuandong; Huang, Hongyu; Li, Chaojie


    This paper studies a technique employing both cellular neural networks (CNNs) and linear matrix inequality (LMI) for edge detection of noisy images. Our main work focuses on training templates of noise reduction and edge detection CNNs. Based on the Lyapunov stability theorem, we derive a criterion for global asymptotical stability of a unique equilibrium of the noise reduction CNN. Then we design an approach to train edge detection templates, and this approach can detect the edge precisely and efficiently, i.e., by only one iteration. Finally, we illustrate performance of the proposed methodology from the aspect of peak signal to noise ratio (PSNR) through computer simulations. Moreover, some comparisons are also given to prove that our method outperforms classical operators in gray image edge detection.

  6. Country-wide rainfall maps from cellular communication networks

    Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko


    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information and the number of rain gauges is even severely declining in Europe, South-America, and Africa. This calls for alternative sources of rainfall information. Various studies have shown that microwave links from operational cellular telecommunication networks may be employed for rainfall monitoring. Such networks cover 20% of the land surface of the earth and have a high density, especially in urban areas. The basic principle of rainfall monitoring using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. Here we show how one cellular telecommunication network can be used to retrieve the space-time dynamics of rainfall for an entire country. A dataset from a commercial microwave link network over the Netherlands is analyzed, containing data from an unprecedented number of links (2400) covering the land surface of the Netherlands (35500 km2). This dataset consists of 24 days with substantial rainfall in June - September 2011. A rainfall retrieval algorithm is presented to derive rainfall intensities from the microwave link data, which have a temporal resolution of 15 min. Rainfall maps (1 km spatial resolution) are generated from these rainfall intensities using Kriging. This algorithm is suited for real-time application, and is calibrated on a subset (12 days) of the dataset. The other 12 days in the dataset are used to validate the algorithm. Both

  7. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    Shah Imran


    Full Text Available Abstract Background With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data. Results We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor α - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature. Conclusion A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our

  8. Full-Duplex Communications in Large-Scale Cellular Networks

    AlAmmouri, Ahmad


    In-band full-duplex (FD) communications have been optimistically promoted to improve the spectrum utilization and efficiency. However, the penetration of FD communications to the cellular networks domain is challenging due to the imposed uplink/downlink interference. This thesis presents a tractable framework, based on stochastic geometry, to study FD communications in multi-tier cellular networks. Particularly, we assess the FD communications effect on the network performance and quantify the associated gains. The study proves the vulnerability of the uplink to the downlink interference and shows that the improved FD rate gains harvested in the downlink (up to 97%) comes at the expense of a significant degradation in the uplink rate (up to 94%). Therefore, we propose a novel fine-grained duplexing scheme, denoted as α-duplex scheme, which allows a partial overlap between the uplink and the downlink frequency bands. We derive the required conditions to harvest rate gains from the α-duplex scheme and show its superiority to both the FD and half-duplex (HD) schemes. In particular, we show that the α-duplex scheme provides a simultaneous improvement of 28% for the downlink rate and 56% for the uplink rate. We also show that the amount of the overlap can be optimized based on the network design objective. Moreover, backward compatibility is an essential ingredient for the success of new technologies. In the context of in-band FD communication, FD base stations (BSs) should support HD users\\' equipment (UEs) without sacrificing the foreseen FD gains. The results show that FD-UEs are not necessarily required to harvest rate gains from FD-BSs. In particular, the results show that adding FD-UEs to FD-BSs offers a maximum of 5% rate gain over FD-BSs and HD-UEs case, which is a marginal gain compared to the burden required to implement FD transceivers at the UEs\\' side. To this end, we shed light on practical scenarios where HD-UEs operation with FD-BSs outperforms the

  9. AdCell: Ad Allocation in Cellular Networks

    Alaei, Saeed; Liaghat, Vahid; Pei, Dan; Saha, Barna


    With more than four billion usage of cellular phones worldwide, mobile advertising has become an attractive alternative to online advertisements. In this paper, we propose a new targeted advertising policy for Wireless Service Providers (WSPs) via SMS or MMS- namely {\\em AdCell}. In our model, a WSP charges the advertisers for showing their ads. Each advertiser has a valuation for specific types of customers in various times and locations and has a limit on the maximum available budget. Each query is in the form of time and location and is associated with one individual customer. In order to achieve a non-intrusive delivery, only a limited number of ads can be sent to each customer. Recently, new services have been introduced that offer location-based advertising over cellular network that fit in our model (e.g., ShopAlerts by AT&T) . We consider both online and offline version of the AdCell problem and develop approximation algorithms with constant competitive ratio. For the online version, we assume tha...

  10. Collaborative Multi-Layer Network Coding For Hybrid Cellular Cognitive Radio Networks

    Moubayed, Abdallah J.


    In this thesis, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other’s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network’s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network’s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. Furthermore, with the use of fractional cooperation, the average recovery overhead is further reduced by around 5% for the primary network and around 10% for the secondary network when a high fractional cooperation probability is used.

  11. Hybrid Communication System Based on OFDM


    Full Text Available A Hybrid architecture between terrestrial and satellite networks based on Orthogonal Frequency Division Multiplexing (OFDM is employed here. In hybrid architecture, the users will be able to avail the services through the terrestrial networks as well as the satellite networks. The users located in urban areas will be served by the existing terrestrial mobile networks and similarly the one located in rural areas will be provided services through the satellite networks. The technique which is used to achieve this objective is called Pre-FFT adaptive beamforming also called time domain beamforming. When the data is received at the satellite end, the Pre-FFT adaptive beamforming extracts the desired user data from the interferer user by applying the complex weights to the received symbol. The weight for the next symbol is then updated by Least Mean Square (LMS algorithm and then is applied to it. This process is carried out till all the desired user data is extracted.

  12. User Association for Load Balancing in Heterogeneous Cellular Networks

    Ye, Qiaoyang; Chen, Yudong; Al-Shalash, Mazin; Caramanis, Constantine; Andrews, Jeffrey G


    For small cell technology to significantly increase the capacity of tower-based cellular networks, mobile users will need to be actively pushed onto the more lightly loaded tiers (corresponding to, e.g., pico and femtocells), even if they offer a lower instantaneous SINR than the macrocell base station (BS). Optimizing a function of the long-term rates for each user requires (in general) a massive utility maximization problem over all the SINRs and BS loads. On the other hand, an actual implementation will likely resort to a simple biasing approach where a BS in tier j is treated as having its SINR multiplied by a factor A_j>=1, which makes it appear more attractive than the heavily-loaded macrocell. This paper bridges the gap between these approaches through several physical relaxations of the network-wide optimal association problem, whose solution is NP hard. We provide a low-complexity distributed algorithm that converges to a near-optimal solution with a theoretical performance guarantee, and we observe ...

  13. Collaborative multi-layer network coding for cellular cognitive radio networks

    Sorour, Sameh


    In this paper, we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in underlay cellular cognitive radio networks. This scheme allows the collocated primary and cognitive radio base-stations to collaborate with each other, in order to minimize their own and each other\\'s packet recovery overheads, and thus improve their throughput, without any coordination between them. This non-coordinated collaboration is done using a novel multi-layer instantly decodable network coding scheme, which guarantees that each network\\'s help to the other network does not result in any degradation in its own performance. It also does not cause any violation to the primary networks interference thresholds in the same and adjacent cells. Yet, our proposed scheme both guarantees the reduction of the recovery overhead in collocated primary and cognitive radio networks, and allows early recovery of their packets compared to non-collaborative schemes. Simulation results show that a recovery overhead reduction of 15% and 40% can be achieved by our proposed scheme in the primary and cognitive radio networks, respectively, compared to the corresponding non-collaborative scheme. © 2013 IEEE.

  14. Modeling and Analysis of Cellular Networks using Stochastic Geometry: A Tutorial

    ElSawy, Hesham


    This paper presents a tutorial on stochastic geometry (SG) based analysis for cellular networks. This tutorial is distinguished by its depth with respect to wireless communication details and its focus on cellular networks. The paper starts by modeling and analyzing the baseband interference in a basic cellular network model. Then, it characterizes signal-tointerference- plus-noise-ratio (SINR) and its related performance metrics. In particular, a unified approach to conduct error probability, outage probability, and rate analysis is presented. Although the main focus of the paper is on cellular networks, the presented unified approach applies for other types of wireless networks that impose interference protection around receivers. The paper then extends the baseline unified approach to capture cellular network characteristics (e.g., frequency reuse, multiple antenna, power control, etc.). It also presents numerical examples associated with demonstrations and discussions. Finally, we point out future research directions.

  15. Two-tier cellular random network planning for minimum deployment cost

    Mekikis, Prodromos Vasileios; KARTSAKLI, Elli; Antonopoulos, Angelos; Lalos, Aris S.; Alonso Zárate, Luis Gonzaga; Verikoukis, Christos


    Random dense deployment of heterogeneous networks (HetNets), consisting of macro base stations (BS) and small cells (SC), can provide higher quality of service (QoS) while increasing the energy efficiency of the cellular network. In addition, it is possible to achieve lower deployment cost and, therefore, maximize the benefits for the network providers. In this paper, we propose a novel method to determine the minimum deployment cost of a two-tier heterogeneous cellular network using random d...

  16. An efficient user scheduling scheme for downlink Multiuser MIMO-OFDM systems with Block Diagonalization

    Mounir Esslaoui


    Full Text Available The combination of multiuser multiple-input multiple-output (MU-MIMO technology with orthogonal frequency division multiplexing (OFDM is an attractive solution for next generation of wireless local area networks (WLANs, currently standardized within IEEE 802.11ac, and the fourth-generation (4G mobile cellular wireless systems to achieve a very high system throughput while satisfying quality of service (QoS constraints. In particular, Block Diagonalization (BD scheme is a low-complexity precoding technique for MU-MIMO downlink channels, which completely pre-cancels the multiuser interference. The major issue of the BD scheme is that the number of users that can be simultaneously supported is limited by the ratio of the number of base station transmit antennas to the number of user receive antennas. When the number of users is large, a subset of users must be selected, and selection algorithms should be designed to maximize the total system throughput. In this paper, the BD technique is extended to MU-MIMO-OFDM systems and a low complexity user scheduling algorithm is proposed to find the optimal subset of users that should transmit simultaneously, in light of the instantaneous channel state information (CSI, such that the total system sum-rate capacity is maximized. Simulation results show that the proposed scheduling algorithm achieves a good trade-off between sum-rate capacity performance and computational complexity.

  17. Synchronization technics for OFDM systems

    Fusco, Tilde


    [ENGLISH] The thesis deals with the problem of synchronization in Orthogonal Frequency Division Multiplexing (OFDM) systems. This modulation technique has been in existence since 1960, however, in the last years OFDM modulation is emerged as a key modulation technique of commercial high speed communication systems. The principal reason of this increasing interest is due to its capability to provide high-speed data rate transmissions with low complexity and to counteract the intersymbol inter...

  18. A double data rate (DDR) architecture for OFDM based wireless consumer devices

    Sherratt, R. S.; Cadenas, O.


    The creation of OFDM based Wireless Personal Area Networks (WPANs) has allowed high bit-rate wireless communication devices suitable for streaming High Definition video between consumer products as demonstrated in Wireless- USB. However, these devices need high clock rates, particularly for the OFDM sections resulting in high silicon cost and high electrical power. Acknowledging that electrical power in wireless consumer devices is more critical than the number of impl...

  19. Synchronous networks for bio-environmental surveillance based on cellular automata

    Bao Hoai Lam; Hiep Xuan Huynh; Bernard Pottier


    The paper proposes a new approach to model a bio-environmental surveillance network as synchronous network systems, systems consist of components running simultaneously. In the network, bio-environmental factors compose a physical system of which executions proceed concurrently in synchronous rounds. This system is synchronized with a synchronous wireless sensor network, the observation network. Topology of the surveillance network is based on cellular automata to depict its concurrent charac...

  20. Cellular neural networks for motion estimation and obstacle detection

    D. Feiden


    Full Text Available Obstacle detection is an important part of Video Processing because it is indispensable for a collision prevention of autonomously navigating moving objects. For example, vehicles driving without human guidance need a robust prediction of potential obstacles, like other vehicles or pedestrians. Most of the common approaches of obstacle detection so far use analytical and statistical methods like motion estimation or generation of maps. In the first part of this contribution a statistical algorithm for obstacle detection in monocular video sequences is presented. The proposed procedure is based on a motion estimation and a planar world model which is appropriate to traffic scenes. The different processing steps of the statistical procedure are a feature extraction, a subsequent displacement vector estimation and a robust estimation of the motion parameters. Since the proposed procedure is composed of several processing steps, the error propagation of the successive steps often leads to inaccurate results. In the second part of this contribution it is demonstrated, that the above mentioned problems can be efficiently overcome by using Cellular Neural Networks (CNN. It will be shown, that a direct obstacle detection algorithm can be easily performed, based only on CNN processing of the input images. Beside the enormous computing power of programmable CNN based devices, the proposed method is also very robust in comparison to the statistical method, because is shows much less sensibility to noisy inputs. Using the proposed approach of obstacle detection in planar worlds, a real time processing of large input images has been made possible.

  1. Modelling lava flows by Cellular Nonlinear Networks (CNN: preliminary results

    C. Del Negro


    Full Text Available The forecasting of lava flow paths is a complex problem in which temperature, rheology and flux-rate all vary with space and time. The problem is more difficult to solve when lava runs down a real topography, considering that the relations between characteristic parameters of flow are typically nonlinear. An alternative approach to this problem that does not use standard differential equation methods is Cellular Nonlinear Networks (CNNs. The CNN paradigm is a natural and flexible framework for describing locally interconnected, simple, dynamic systems that have a lattice-like structure. They consist of arrays of essentially simple, nonlinearly coupled dynamic circuits containing linear and non-linear elements able to process large amounts of information in real time. Two different approaches have been implemented in simulating some lava flows. Firstly, a typical technique of the CNNs to analyze spatio-temporal phenomena (as Autowaves in 2-D and in 3-D has been utilized. Secondly, the CNNs have been used as solvers of partial differential equations of the Navier-Stokes treatment of Newtonian flow.

  2. Optimal Channel Allocation with Dynamic Power Control in Cellular Networks

    Xin Wu


    Full Text Available Techniques for channel allocation in cellular networks have been an area of intense research interest formany years. An efficient channel allocation scheme can significantly reduce call-blocking and calldroppingprobabilities. Another important issue is to effectively manage the power requirements forcommunication. An efficient power control strategy leads to reduced power consumption and improvedsignal quality. In this paper, we present a novel integer linear program (ILP formulation that jointlyoptimizes channel allocation and power control for incoming calls, based on the carrier-to-interferenceratio (CIR. In our approach we use a hybrid channel assignment scheme, where an incoming call isadmitted only if a suitable channel is found such that the CIR of all ongoing calls on that channel, as wellas that of the new call, will be above a specified value. Our formulation also guarantees that the overallpower requirement for the selected channel will be minimized as much as possible and that no ongoingcalls will be dropped as a result of admitting the new call. We have run simulations on a benchmark 49cell environment with 70 channels to investigate the effect of different parameters such as the desiredCIR. The results indicate that our approach leads to significant improvements over existing techniques.

  3. Cellular nonlinear networks for strike-point localization at JET

    At JET, the potential of fast image processing for real-time purposes is thoroughly investigated. Particular attention is devoted to smart sensors based on system on chip technology. The data of the infrared cameras were processed with a chip implementing a cellular nonlinear network (CNN) structure so as to support and complement the magnetic diagnostics in the real-time localization of the strike-point position in the divertor. The circuit consists of two layers of complementary metal-oxide semiconductor components, the first being the sensor and the second implementing the actual CNN. This innovative hardware has made it possible to determine the position of the maximum thermal load with a time resolution of the order of 30 ms. Good congruency has been found with the measurement from the thermocouples in the divertor, proving the potential of the infrared data in locating the region of the maximum thermal load. The results are also confirmed by JET magnetic codes, both those used for the equilibrium reconstructions and those devoted to the identification of the plasma boundary

  4. Dispersion and nonlinear effects in OFDM-RoF system

    Alhasson, Bader H.; Bloul, Albe M.; Matin, M.


    The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.

  5. Network signatures of cellular immortalization in human lymphoblastoid cell lines

    Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of); Jeon, Jae-Pil, E-mail: [Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)


    Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

  6. Bit Loading Algorithms for Cooperative OFDM Systems

    Gui Bo


    Full Text Available Abstract We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.

  7. Coherent optical OFDM: theory and design.

    Shieh, W; Bao, H; Tang, Y


    Coherent optical OFDM (CO-OFDM) has recently been proposed and the proof-of-concept transmission experiments have shown its extreme robustness against chromatic dispersion and polarization mode dispersion. In this paper, we first review the theoretical fundamentals for CO-OFDM and its channel model in a 2x2 MIMO-OFDM representation. We then present various design choices for CO-OFDM systems and perform the nonlinearity analysis for RF-to-optical up-converter. We also show the receiver-based digital signal processing to mitigate self-phase-modulation (SPM) and Gordon-Mollenauer phase noise, which is equivalent to the midspan phase conjugation. PMID:18542158

  8. Adaptive scheduling in cellular access, wireless mesh and IP networks

    Nieminen, Johanna


    Networking scenarios in the future will be complex and will include fixed networks and hybrid Fourth Generation (4G) networks, consisting of both infrastructure-based and infrastructureless, wireless parts. In such scenarios, adaptive provisioning and management of network resources becomes of critical importance. Adaptive mechanisms are desirable since they enable a self-configurable network that is able to adjust itself to varying traffic and channel conditions. The operation of adaptive me...

  9. Design mobile satellite system architecture as an integral part of the cellular access digital network

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.


    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  10. Analysis of blocking rate and bandwidth usage of mobile IPTV services in wireless cellular networks.

    Li, Mingfu


    Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes. PMID:25379521

  11. Integrated cellular network of transcription regulations and protein-protein interactions

    Chen Bor-Sen


    Full Text Available Abstract Background With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. Results In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. Conclusions We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology.

  12. A cellular network model with Ginibre configured base stations

    Miyoshi, Naoto; Shirai, Tomoyuki


    Stochastic geometry models for wireless communication networks have recently attracted much attention. This is because the performance of such networks critically depends on the spatial configuration of wireless nodes and the irregularity of the node configuration in a real network can be captured by a spatial point process. However, most analysis of such stochastic geometry models for wireless networks assumes, owing to its tractability, that the wireless nodes are deployed...

  13. Traffic Driven Analysis of Cellular and WiFi Networks

    Paul, Utpal Kumar


    Since the days Internet traffic proliferated, measurement, monitoring and analysis of network traffic have been critical to not only the basic understanding of large networks, but also to seek improvements in resource management, traffic engineering and security. At the current times traffic in wireless local and wide area networks are facing…

  14. Radio Access Sharing Strategies for Multiple Operators in Cellular Networks

    Popovska Avramova, Andrijana; Iversen, Villy Bæk


    Mobile operators are moving towards sharing network capacity in order to reduce capital and operational expenditures, while meeting the increasing demand for mobile broadband data services. Radio access network sharing is a promising technique that leads to reduced number of physical base station....... The model used to assess the sharing strategies is based on multidimensional loss systems, and blocking probability is considered as performance metrics....... deployments (required for coverage enhancement), increased base station utilization, and reduced overall power consumption. Today, network sharing in the radio access part is passive and limited to cell sites. With the introduction of Cloud Radio Access Network and Software Defined Networking adoption to the...

  15. A Review on - Comparative Study of Issues in Cellular, Sensor and Adhoc Networks

    Jayashree V. Shiral


    Full Text Available A cellular network is an asymmetric radio network which is made up of fixed transceivers or nodes, maintain the signal while the mobile transceiver which is using the network is in the vicinity of the node. An ad-hoc network is a local area network (LAN that is built spontaneously as devices connect. Instead of relying on a base station to coordinate the flow of messages to each node in the network, the individual network nodes forward packets to and from each other. This paper focuses on various issues in cellular, adhoc and sensor network. As issues proves helpful for forthcoming research, this paper work as a backbone to elaborate the various research areas.

  16. On the Global Dissipativity of a Class of Cellular Neural Networks with Multipantograph Delays

    Liqun Zhou


    Full Text Available For the first time the global dissipativity of a class of cellular neural networks with multipantograph delays is studied. On the one hand, some delay-dependent sufficient conditions are obtained by directly constructing suitable Lyapunov functionals; on the other hand, firstly the transformation transforms the cellular neural networks with multipantograph delays into the cellular neural networks with constant delays and variable coefficients, and then constructing Lyapunov functionals, some delay-independent sufficient conditions are given. These new sufficient conditions can ensure global dissipativity together with their sets of attraction and can be applied to design global dissipative cellular neural networks with multipantograph delays and easily checked in practice by simple algebraic methods. An example is given to illustrate the correctness of the results.

  17. Methods for the Analysis of Protein Phosphorylation–Mediated Cellular Signaling Networks

    White, Forest M.; Wolf-Yadlin, Alejandro


    Protein phosphorylation–mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  18. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks.

    White, Forest M; Wolf-Yadlin, Alejandro


    Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks. PMID:27049636

  19. A Lyapunov Optimization Approach for Green Cellular Networks with Hybrid Energy Supplies

    Mao, Yuyi; Zhang, Jun; Letaief, Khaled B.


    Powering cellular networks with renewable energy sources via energy harvesting (EH) has recently been proposed as a promising solution for green networking. However, with intermittent and random energy arrivals, it is challenging to provide satisfactory quality of service (QoS) in EH networks. To enjoy the greenness brought by EH while overcoming the instability of the renewable energy sources, hybrid energy supply (HES) networks that are powered by both EH and the electric grid have emerged ...

  20. Boundedness and exponential stability for nonautonomous cellular neural networks with reaction-diffusion terms

    Lou Xuyang [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Road, Wuxi, Jiangsu 214122 (China); Cui Baotong [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Road, Wuxi, Jiangsu 214122 (China)]. E-mail:


    Employing Lyapunov functional method, we analyze the ultimate boundedness and global exponential stability of a class of reaction-diffusion cellular neural networks with time-varying delays. Some new criteria are obtained to ensure ultimate boundedness and global exponential stability of delayed reaction-diffusion cellular neural networks (DRCNNs). Without assuming that the activation functions f {sub ijl}(.) are bounded, the results extend and improve the earlier publications.

  1. Energy Efficiency Evaluation of Cellular Networks Based on Spatial Distributions of Traffic Load and Power Consumption

    Xiang, Lin; Ge, Xiaohu; Wang, Cheng-Xiang; Li, Frank Y.; Reichert, Frank


    Energy efficiency has gained its significance when service providers' operational costs burden with the rapidly growing data traffic demand in cellular networks. In this paper, we propose an energy efficiency model for Poisson-Voronoi tessellation (PVT) cellular networks considering spatial distributions of traffic load and power consumption. The spatial distributions of traffic load and power consumption are derived for a typical PVT cell, and can be directly extended to the whole PVT cellul...

  2. Analysis of Blocking Probability in a Relay-based Cellular OFDMA Network

    Mehta, Mahima; Jain, Ranjan Bala; Karandikar, Abhay


    Relay deployment in Orthogonal Frequency Division Multiple Access (OFDMA) based cellular networks helps in coverage extension and or capacity improvement. In OFDMA system, each user requires different number of subcarriers to meet its rate requirement. This resource requirement depends on the Signal to Interference Ratio (SIR) experienced by a user. Traditional methods to compute blocking probability cannot be used in relay based cellular OFDMA networks. In this paper, we present an approach ...

  3. Existence and Global Stability of a Periodic Solution for Discrete-Time Cellular Neural Networks

    Haijian Shao


    Full Text Available A novel sufficient condition is developed to obtain the discrete-time analogues of cellular neural network (CNN with periodic coefficients in the three-dimensional space. Existence and global stability of a periodic solution for the discrete-time cellular neural network (DT-CNN are analysed by utilizing continuation theorem of coincidence degree theory and Lyapunov stability theory, respectively. In addition, an illustrative numerical example is presented to verify the effectiveness of the proposed results.

  4. CCABC: Cyclic Cellular Automata Based Clustering For Energy Conservation in Sensor Networks

    Banerjee, Indrajit; Rahaman, Hafizur


    Sensor network has been recognized as the most significant technology for next century. Despites of its potential application, wireless sensor network encounters resource restriction such as low power, reduced bandwidth and specially limited power sources. This work proposes an efficient technique for the conservation of energy in a wireless sensor network (WSN) by forming an effective cluster of the network nodes distributed over a wide range of geographical area. The clustering scheme is developed around a specified class of cellular automata (CA) referred to as the modified cyclic cellular automata (mCCA). It sets a number of nodes in stand-by mode at an instance of time without compromising the area of network coverage and thereby conserves the battery power. The proposed scheme also determines an effective cluster size where the inter-cluster and intra-cluster communication cost is minimum. The simulation results establish that the cyclic cellular automata based clustering for energy conservation in sens...

  5. Participatory sensing as an enabler for self-organisation in future cellular networks

    In this short review paper we summarise the emerging challenges in the field of participatory sensing for the self-organisation of the next generation of wireless cellular networks. We identify the potential of participatory sensing in enabling the self-organisation, deployment optimisation and radio resource management of wireless cellular networks. We also highlight how this approach can meet the future goals for the next generation of cellular system in terms of infrastructure sharing, management of multiple radio access techniques, flexible usage of spectrum and efficient management of very small data cells

  6. Dynamic modeling of cellular response to DNA damage based on p53 stress response networks

    Jinpeng Qi; Yongsheng Ding; Shihuang Shao


    Under acute perturbations from the outside, cells can trigger self-defensive mechanisms to fight against genome stress. To investigate the cellular response to continuous ion radiation (IR), a dynamic model for p53 stress response networks at the cellular level is proposed. The model can successfully be used to simulate the dynamic processes of double-strand breaks (DSBs) generation and their repair, switch-like ataxia telangiectasia mutated (ATM) activation, oscillations occurring in the p53-MDM2 feedback loop, as well as toxins elimination triggered by p53 stress response networks. Especially, the model can predict the plausible outcomes of cellular response under different IR dose regimes.

  7. Cellular automata with majority rule on evolving network

    Makowiec, Danuta


    The cellular automata discrete dynamical system is considered as the two-stage process: the majority rule for the change in the automata state and the rule for the change in topological relations between automata. The influence of changing topology to the cooperative phenomena, namely zero-temperature ferromagnetic phase transition, is observed.

  8. Tools and Models for Integrating Multiple Cellular Networks

    Gerstein, Mark [Yale Univ., New Haven, CT (United States). Gerstein Lab.


    In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novel algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed

  9. Origin of Mobile Cellular Network Technologies and Markets in Germany and China

    Mingtao Shi


    The inventive foundation of mobile cellular technologies was laid about 100 years ago. Wireless voice service was Bundespost in the late 1950s and the first analogue cellular network called C-Netz emerged in the mid-1980s. In China, the first mobile cellular networks called TACS-A and TACS-B were installed by Ministry of Post and Telecommunication in the late 1980s. While describing the events in Germany and China, this paper concentrates on discussing the related technologies and their impacts in the marketplace. A comparison summarises some important findings. Japan and Europe's Nordic countries were the first nations to commercialise the I st generation analogous cellular technologies. There existed A-and B-Network in Germany and China, but the network nature of them is quite different. The market development in Germany and China was similar. The enlarged network capacity accommodated gradually more subscribers and prices related to the cellular services fell continuously. However, China's fee system was more complicated and has adopted the RPP regime, while Germany has been using the CPP billing. The article concludes that implications such as the relationship between science and technology, time lag between scientific discovery and technological applications and technology spillover from military to civilian area are the economic lessons learnt from the story of cellular origin.

  10. Pulse Shaped OFDM for 5G Systems

    Zhao, Zhao; Schellmann, Malte; Gong, Xitao; Wang, Qi; Böhnke, Ronald; Guo, Yan


    OFDM-based waveforms with filtering or windowing functionalities are considered key enablers for a flexible air-interface design for multi-service support in future 5G systems. One candidate from this category of waveforms is pulse shaped OFDM, which follows the idea of subcarrier filtering and aims at fully maintaining the advantages of standard OFDM systems while addressing their drawbacks. In this paper, we elaborate on several pulse shaping design methods, and show how pulse shapes can be...

  11. C. elegans Metabolic Gene Regulatory Networks Govern the Cellular Economy

    Watson, Emma; Walhout, Albertha J.M.


    Diet greatly impacts metabolism in health and disease. In response to the presence or absence of specific nutrients, metabolic gene regulatory networks sense the metabolic state of the cell and regulate metabolic flux accordingly, for instance by the transcriptional control of metabolic enzymes. Here we discuss recent insights regarding metazoan metabolic regulatory networks using the nematode Caenorhabditis elegans as a model, including the modular organization of metabolic gene regulatory networks, the prominent impact of diet on the transcriptome and metabolome, specialized roles of nuclear hormone receptors in responding to dietary conditions, regulation of metabolic genes and metabolic regulators by microRNAs, and feedback between metabolic genes and their regulators. PMID:24731597

  12. Cellular Neural Network-Based Methods for Distributed Network Intrusion Detection

    Kang Xie


    Full Text Available According to the problems of current distributed architecture intrusion detection systems (DIDS, a new online distributed intrusion detection model based on cellular neural network (CNN was proposed, in which discrete-time CNN (DTCNN was used as weak classifier in each local node and state-controlled CNN (SCCNN was used as global detection method, respectively. We further proposed a new method for design template parameters of SCCNN via solving Linear Matrix Inequality. Experimental results based on KDD CUP 99 dataset show its feasibility and effectiveness. Emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation which allows the distributed intrusion detection to be performed better.

  13. Robust OFDM Timing Synchronisation in Multipath Channels

    McLaughlin S


    Full Text Available Abstract This paper addresses pre-FFT synchronisation for orthogonal frequency division multiplex (OFDM under varying multipath conditions. To ensure the most efficient data transmission possible, there should be no constraints on how much of the cyclic prefix (CP is occupied by intersymbol interference (ISI. Here a solution for timing synchronisation is proposed, that is, robust even when the strongest multipath components are delayed relative to the first arriving paths. In this situation, existing methods perform poorly, whereas the solution proposed uses the derivative of the correlation function and is less sensitive to the channel impulse response. In this paper, synchronisation of a DVB single-frequency network is investigated. A refinement is proposed that uses heuristic rules based on the maxima of the correlation and derivative functions to further reduce the estimate variance. The technique has relevance to broadcast, OFDMA, and WLAN applications, and simulations are presented which compare the method with existing approaches.

  14. Robust OFDM Timing Synchronisation in Multipath Channels

    M. A. Beach


    Full Text Available This paper addresses pre-FFT synchronisation for orthogonal frequency division multiplex (OFDM under varying multipath conditions. To ensure the most efficient data transmission possible, there should be no constraints on how much of the cyclic prefix (CP is occupied by intersymbol interference (ISI. Here a solution for timing synchronisation is proposed, that is, robust even when the strongest multipath components are delayed relative to the first arriving paths. In this situation, existing methods perform poorly, whereas the solution proposed uses the derivative of the correlation function and is less sensitive to the channel impulse response. In this paper, synchronisation of a DVB single-frequency network is investigated. A refinement is proposed that uses heuristic rules based on the maxima of the correlation and derivative functions to further reduce the estimate variance. The technique has relevance to broadcast, OFDMA, and WLAN applications, and simulations are presented which compare the method with existing approaches.

  15. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M


    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers. PMID:26097169

  16. Radio resource management in multi-tier cellular wireless networks

    Hossain, Ekram; Niyato, Dusit


    Providing an extensive overview of the radio resource management problem in femtocell networks, this invaluable book considers both code division multiple access femtocells and orthogonal frequency-division multiple access femtocells. In addition to incorporating current research on this topic, the book also covers technical challenges in femtocell deployment, provides readers with a variety of approaches to resource allocation and a comparison of their effectiveness, explains how to model various networks using Stochastic geometry and shot noise theory, and much more.

  17. Guard zone based D2D underlaid cellular networks with two-tier dependence

    Chen, Zheng; Kountouris, Marios


    International audience Device-to-device (D2D) communication is under active investigation and may be a key feature in 5G networks for its great potential in improving network spectral and energy efficiency. Underlaying proximity-based D2D communication links in current cellular networks allows D2D users to opportunistically access the cellular spectrum, thus causing interference not only in the D2D tier but also between D2D and macrocell tiers. In this paper, we consider a D2D underlaid ce...

  18. Device-Relaying in Cellular D2D Networks: A Fairness Perspective

    Chaaban, Anas; Sezgin, Aydin


    Device-to-Device (D2D) communication is envisioned to be an integral component of 5G networks, and a technique for meeting the demand for high data rates. In a cellular network, D2D allows not only direct communication between users, but also device relaying. In this paper, a simple instance of device-relaying is investigated, and the impact of D2D on fairness among users is studied. Namely, a cellular network consisting of two D2D-enabled users and a base-station (BS) is considered. Thus, th...

  19. Evaluation of CSSR with Direct TCH Assignment in Cellular Networks

    Paula Aninyie


    Full Text Available Global System for Mobile communication (GSM operators make use of Key Performance Indicators (KPIs to appreciate the network performance and evaluate the Quality of Service (QoS regarding end user perceived quality. KPIs are therefore becoming increasingly important in the context of network rollouts as well as within mature network optimization cycles. The performance of the mobile network is measured based on several counters describing the most important events over a measurement period. The KPIs are derived with the help of these counters using different formulations. Call Setup Success Rate (CSSR is one of the most important KPIs used by all mobile operators. In Ouagadougou, Burkina-Faso, most of the active workers and remote area farmers rely largely on mobile communication services; the GPRS as data services remain highly competitive with GSM voice services. This paper presents a comparative evaluation of theoretically estimated CSSR to measured CSSR data on a real network with regard to GPRS services. The measured data was obtained from the Nokia Siemens Network (NSN statistical tool. The results obtained showed significant improvements in areas where sharp drops in CSSR values were recorded for the measured CSSR. Significantly high R square values of close to 1 representing a high predictive ability from the regression analysis of the estimated CSSR were also recorded. It was concluded that the implementation of the CSSR formulation be extended to CSSR measurements to ensure increased subscriber satisfaction.

  20. Millimeter Wave Cellular Wireless Networks: Potentials and Challenges

    Rangan, Sundeep; Rappaport, Theodore S.; Erkip, Elza


    Millimeter wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multi-element antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and ...

  1. Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network

    Overeem, Aart; Uijlenhoet, Remko; Leijnse, Hidde


    Microwave links in commercial cellular communication networks hold a promise for areal rainfall monitoring and could complement rainfall estimates from ground-based weather radars, rain gauges, and satellites. It has been shown that country-wide rainfall maps can be derived from the signal attenuations of microwave links in such a network. We present a rainfall retrieval algorithm, which is employed to obtain rainfall maps from microwave links in a cellular communication network. We compare these rainfall maps to gauge-adjusted radar rainfall maps. The microwave link data set, as well as the developed code, a package in the open source scripting language "R", are freely available at GitHub ( The purpose of this presentation is to promote rainfall mapping utilizing microwave links from cellular communication networks as an alternative or complementary means for continental-scale rainfall monitoring.

  2. Comparative Study of CDMA and OFDM in WI-FI

    N. Larbi


    Full Text Available There have been extensive research efforts on simulating Wireless Local Area Networks. Many papers have studied the performance of IEEE 802.11 WLANs by using simulation under different channels and for different modulations. In this paper we first simulate a simplified IEEE 802.11a standard based on Orthogonal Frequency Division Multiplexing (OFDM with the cyclic prefix and IEEE 802.11b standard based on Direct-Sequence Code Division Multiple Accesses (DS-CDMA. Then a comparative study will be performed to evaluate them in Additive White Gaussian Noise (AWGN channel with Rayleigh fading to resemble the real world scenario. We investigated their physical layer performances on the basis of Bit Error Rate (BER and Signal-to-Noise Ratio (SNR. These parameters are discussed and compared in the two models. It has been demonstrated that OFDM system provides better performance in noisy conditions.

  3. Bootstrap Percolation in Cellular Automata on Small-World Directed Network

    Effects of network topology are studied in a system of cellular automata driven by a totalistic rule. In particular, propagation of a signal is considered in the directed network obtained from a flat (square) lattice by adding directed connections. The model is motivated by features found in human neural system. Cooperation between local dynamics and network organization results in fast stabilization of the system. Simple model of neural pyramidal cell is proposed to stabilize the automata in the oscillating firing patterns form. (author)

  4. Network-Coded Content Delivery in Femtocaching-Assisted Cellular Networks

    Shnaiwer, Yousef N.


    Next-generation cellular networks are expected to be assisted by femtocaches (FCs), which collectively store the most popular files for the clients. Given any arbitrary non-fragmented placement of such files, a strict no-latency constraint, and clients\\' prior knowledge, new file download requests could be efficiently handled by both the FCs and the macrocell base station (MBS) using opportunistic network coding (ONC). In this paper, we aim to find the best allocation of coded file downloads to the FCs so as to minimize the MBS involvement in this download process. We first formulate this optimization problem over an ONC graph, and show that it is NP-hard. We then propose a greedy approach that maximizes the number of files downloaded by the FCs, with the goal to reduce the download share of the MBS. This allocation is performed using a dual conflict ONC graph to avoid conflicts among the FC downloads. Simulations show that our proposed scheme almost achieves the optimal performance and significantly saves on the MBS bandwidth.

  5. Millimeter Wave Communication for Cellular and Cellular-802.11 Hybrid Networks


    The demand for wireless data has been driving network capacity to double about every two years for the past 50 years, if not 100 years, and this has come to be known as Cooper's Law. In recent years, this trend has accelerated as a greater proportion of the population adopts wireless devices with ever greater capabilities, including tablets that support HD video and other advanced capabilities.

  6. Comparative Analysis of Packet Scheduling Schemes for HSDPA Cellular Networks

    T. Janevski


    Full Text Available In this paper we present comparison analysis for packet scheduling algorithms for HSDPA (High Speed Downlink Packet Networks. In particular, we analyze the round robin, max C/I and FCDS packet scheduling algorithms in HSDPA by comparing the average throughput, delay and fairness of the users, changing the number of the users in pedestrian and vehicular environment. The results have showed that the number of the users in a given coverage area is very important when choosing which packet scheduling algorithm for HSDPA networks. These results will be very useful for choosing the adequate scheduling algorithm in HSDPA network with aim to satisfy the desired quality of service for the mobile users.

  7. From cellular information networks to digital molecular medicine

    Rafael Rangel-Aldao


    participation or even that of healthy individuals in their own care. This so-called P4 medicine (predictive, preventative, personalised and participatory essentially reflects people’s social life in informational biological molecules which are arranged in complex networks following a power law by which very few nodes or hubs made of either genes or their transcription and translation products dominate the entire network through unequal distribution of links or edges. Around one dozen publications of genome-wide association studies (GWAS have shown how the genomic variations of some of these hubs can be applied to predicting the risk of contracting multigenic and common diseases. Moreover, combining GWAS with clinical and metabolic indices of risk significantly improves the power of such techniques for personalised medicine. Key words: Proteome; systems; networks; biotechnology; medicine

  8. Coping with handover effects in video streaming over cellular networks



    The 3rd generation partnership project (3GPP) has defined the protocols and codecs for implementing media streaming services over packet-switched 3G mobile networks. The specification is based on IETF RFCs on audio/video transport.It also adds new features to achieve better adaptation to the mobile network environment. In this paper, we propose an algorithm for handover detection and fast buffer refill that is based on the existing feedback and signaling mechanisms. The proposed algorithm refills the receiver buffer at a faster pace during a limited time frame after a hard handover is detected in order to achieve higher video quality.

  9. On Optimizing Radio Resource Usage in Cellular Networks

    Bogdan Ciobanu


    Full Text Available The control of the interference between mobile terminals and radio access points inside the network represented since always a challenge for all mobile telecommunications service providers. The present paper represents a study regarding the optimum utilization of radio resources in order to obtain a system with as high a capacity as possible for a certain available bandwidth.

  10. Periodic solutions of nonautonomous cellular neural networks with impulses

    Sufficient conditions are obtained for the existence and global exponential stability of a unique periodic solution of a class of neural networks with impulses by using Mawhin's continuation theorem of coincidence degree theory and constructing Lyapunov functions. An illustrative example is given to demonstrate the effectiveness of the obtained results

  11. Resource Management in QoS-Aware Wireless Cellular Networks

    Zhang, Zhi


    Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study…

  12. Frequency-dependent micromechanics of cellularized biopolymer networks

    Jones, Chris; Kim, Jihan; McIntyre, David; Sun, Bo

    Mechanical interactions between cells and the extracellular matrix (ECM) influence many cellular behaviors such as growth, differentiation, and migration. These are dynamic processes in which the cells actively remodel the ECM. Reconstituted collagen gel is a common model ECM for studying cell-ECM interactions in vitro because collagen is the most abundant component of mammalian ECM and gives the ECM its material stiffness. We embed micron-sized particles in collagen and use holographic optical tweezers to apply forces to the particles in multiple directions and over a range of frequencies up to 10 Hz. We calculate the local compliance and show that it is dependent on both the direction and frequency of the applied force. Performing the same measurement on many particles allows us to characterize the spatial inhomogeneity of the mechanical properties and shows that the compliance decreases at higher frequencies. Performing these measurements on cell-populated collagen gels shows that cellular remodeling of the ECM changes the mechanical properties of the collagen and we investigate whether this change is dependent on the local strain and distance from nearby cells.

  13. On the area spectral efficiency improvement of heterogeneous network by exploiting the integration of macro-femto cellular networks

    Shakir, Muhammad


    Heterogeneous networks are an attractive means of expanding mobile network capacity. A heterogeneous network is typically composed of multiple radio access technologies (RATs) where the base stations are transmitting with variable power. In this paper, we consider a Heterogeneous network where we complement the macrocell network with low-power low-cost user deployed nodes, such as femtocell base stations to increase the mean achievable capacity of the system. In this context, we integrate macro-femto cellular networks and derive the area spectral efficiency of the proposed two tier Heterogeneous network. We consider the deployment of femtocell base stations around the edge of the macrocell such that this configuration is referred to as femto-on-edge (FOE) configuration. Moreover, FOE configuration mandates reduction in intercell interference due to the mobile users which are located around the edge of the macrocell since these femtocell base stations are low-power nodes which has significantly lower transmission power than macrocell base stations. We present a mathematical analysis to calculate the instantaneous carrier to interference ratio (CIR) of the desired mobile user in macro and femto cellular networks and determine the total area spectral efficiency of the Heterogeneous network. Details of the simulation processes are included to support the analysis and show the efficacy of the proposed deployment. It has been shown that the proposed setup of the Heterogeneous network offers higher area spectral efficiency which aims to fulfill the expected demand of the future mobile users. © 2012 IEEE.

  14. Comparative Analysis of Packet Scheduling Schemes for HSDPA Cellular Networks

    T. Janevski; K. Jakimoski


    In this paper we present comparison analysis for packet scheduling algorithms for HSDPA (High Speed Downlink Packet Networks). In particular, we analyze the round robin, max C/I and FCDS packet scheduling algorithms in HSDPA by comparing the average throughput, delay and fairness of the users, changing the number of the users in pedestrian and vehicular environment. The results have showed that the number of the users in a given coverage area is very important when choosing which packet sched...

  15. The Economic and Sustainability Future of Cellular Networks

    Zafar, Salman


    Global data traffic is expected to grow exponentially in the next few years with video and smartphone applications driving data growth. Many mobile network providers in the UK have either deployed or planning to deploy 4th generation Long-Term-Evolution (LTE) mobile technology as the solution to meet capacity demands. This study evaluates the technological improvements in 4G LTE in comparison to 3G High Speed Packet Access (HSPA) and further conducts a techno-economic analysis using primary r...

  16. Perturbation Biology: inferring signaling networks in cellular systems

    Molinelli, Evan J.; Korkut, Anil; Wang, Weiqing; Miller, Martin L; Gauthier, Nicholas P.; Jing, Xiaohong; Kaushik, Poorvi; He, Qin; Mills, Gordon; Solit, David B.; Pratilas, Christine A.; Weigt, Martin; Braunstein, Alfredo; Pagnani, Andrea; Zecchina, Riccardo


    Author Summary Drugs that target specific effects of signaling proteins are promising agents for treating cancer. One of the many obstacles facing optimal drug design is inadequate quantitative understanding of the coordinated interactions between signaling proteins. De novo model inference of network or pathway models refers to the algorithmic construction of mathematical predictive models from experimental data without dependence on prior knowledge. De novo inference is difficult because of...

  17. Cellular Metabolic Network Analysis: Discovering Important Reactions in Treponema pallidum

    Xueying Chen; Min Zhao; Hong Qu


    T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pall...

  18. On Modeling Coverage and Rate of Random Cellular Networks under Generic Channel Fading

    Al-Hourani, Akram; Kandeepan, Sithamparanathan


    In this paper we provide an analytic framework for computing the expected downlink coverage probability, and the associated data rate of cellular networks, where base stations are distributed in a random manner. The provided expressions are in computable integral forms that accommodate generic channel fading conditions. We develop these expressions by modelling the cellular interference using stochastic geometry analysis, then we employ them for comparing the coverage resulting from various c...

  19. Cellular metabolic network analysis: discovering important reactions in Treponema pallidum.

    Chen, Xueying; Zhao, Min; Qu, Hong


    T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis. PMID:26495292

  20. Variance based OFDM frame synchronization

    Z. Fedra


    Full Text Available The paper deals with a new frame synchronization scheme for OFDM systems and calculates the complexity of this scheme. The scheme is based on the computing of the detection window variance. The variance is computed in two delayed times, so a modified Early-Late loop is used for the frame position detection. The proposed algorithm deals with different variants of OFDM parameters including guard interval, cyclic prefix, and has good properties regarding the choice of the algorithm's parameters since the parameters may be chosen within a wide range without having a high influence on system performance. The verification of the proposed algorithm functionality has been performed on a development environment using universal software radio peripheral (USRP hardware.

  1. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    Lilburn Timothy G


    Full Text Available Abstract Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome in the malaria parasite Plasmodium falciparum and its sibling species 123, providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database 4, and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H system 5, blood stage microarray experiments 678, proteomics 9101112, literature text mining, and sequence homology analysis. Seventy-seven (77 out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs. These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins, range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide

  2. Cooperative device-to-device communication in cognitive radio cellular networks

    Li, Peng


    This brief examines current research on cooperative device-to-device (D2D) communication as an enhanced offloading technology to improve the performance of cognitive radio cellular networks. By providing an extensive review of recent advances in D2D communication, the authors demonstrate that the quality of D2D links significantly affects offloading performance in cellular networks, which motivates the design of cooperative D2D communication. After presenting the architecture of cooperative D2D communication, the challenges of capacity maximization and energy efficiency are addressed by optimi

  3. Coherent Optical DFT-Spread OFDM

    Wang, Fanggang


    We consider application of the discrete Fourier transform-spread orthogonal frequency-division multiplexing (DFT-spread OFDM) technique to high-speed fiber optic communications. The DFT-spread OFDM is a form of single-carrier technique that possesses almost all advantages of the multicarrier OFDM technique (such as high spectral efficiency, flexible bandwidth allocation, low sampling rate and low-complexity equalization). In particular, we consider the optical DFT-spread OFDM system with polarization division multiplexing (PDM) that employs a tone-by-tone linear minimum mean square error (MMSE) equalizer. We show that such a system offers a much lower peak-to-average power ratio (PAPR) performance as well as better bit error rate (BER) performance compared with the optical OFDM system that employs amplitude clipping.

  4. [Construction and structural analysis of integrated cellular network of Corynebacterium glutamicum].

    Jiang, Jinguo; Song, Lifu; Zheng, Ping; Jia, Shiru; Sun, Jibin


    Corynebacterium glutamicum is one of the most important traditional industrial microorganisms and receiving more and more attention towards a novel cellular factory due to the recently rapid development in genomics and genetic operation toolboxes for Corynebacterium. However, compared to other model organisms such as Escherichia coli, there were few studies on its metabolic regulation, especially a genome-scale integrated cellular network model currently missing for Corynebacterium, which hindered the systematic study of Corynebacterium glutamicum and large-scale rational design and optimization for strains. Here, by gathering relevant information from a number of public databases, we successfully constructed an integrated cellular network, which was composed of 1384 reactions, 1276 metabolites, 88 transcriptional factors and 999 pairs of transcriptional regulatory relationships. The transcriptional regulatory sub-network could be arranged into five layers and the metabolic sub-network presented a clear bow-tie structure. We proposed a new method to extract complex metabolic and regulatory sub-network for product-orientated study taking lysine biosynthesis as an example. The metabolic and regulatory sub-network extracted by our method was more close to the real functional network than the simplex biochemical pathways. The results would be greatly helpful for understanding the high-yielding biomechanism for amino acids and the re-design of the industrial strains. PMID:22916496


    Arjun Kondur


    Full Text Available In this paper, we discuss the evolution of the mobile communication systems from GSM to LTE (2G to 4G and the trends in the mobile communication industry. The Global System for Mobile Communication (GSM is a well established cellular system targeted here due to its engineering success and the large number of users currently using the services. The flexibility of wireless networks over voice and data transmission makes it one of the most popular modes of communication. Evolution to next generation services depends on an addition of new services and new features to the existing networks or even an integration of different communication technologies. With the invention of the devices such as tablets and smart phones the need to improve the data transmission rates and transmission efficiency has increased to higher than ever before. In this paper, we focus at some of the important issues pertaining to the evolution of mobile communication networks and predict the future of the networks based on the analysis of the cellular market in India. Since GSM networks accounts for more than 75% of the world wide cellular network, only the evolution of GSM network has been discussed in this paper.

  6. Cellular origins of type IV collagen networks in developing glomeruli.

    Abrahamson, Dale R; Hudson, Billy G; Stroganova, Larysa; Borza, Dorin-Bogdan; St John, Patricia L


    Laminin and type IV collagen composition of the glomerular basement membrane changes during glomerular development and maturation. Although it is known that both glomerular endothelial cells and podocytes produce different laminin isoforms at the appropriate stages of development, the cellular origins for the different type IV collagen heterotrimers that appear during development are unknown. Here, immunoelectron microscopy demonstrated that endothelial cells, mesangial cells, and podocytes of immature glomeruli synthesize collagen alpha 1 alpha 2 alpha1(IV). However, intracellular labeling revealed that podocytes, but not endothelial or mesangial cells, contain collagen alpha 3 alpha 4 alpha 5(IV). To evaluate the origins of collagen IV further, we transplanted embryonic kidneys from Col4a3-null mutants (Alport mice) into kidneys of newborn, wildtype mice. Hybrid glomeruli within grafts containing numerous host-derived, wildtype endothelial cells never expressed collagen alpha 3 alpha 4 alpha 5(IV). Finally, confocal microscopy of glomeruli from infant Alport mice that had been dually labeled with anti-collagen alpha 5(IV) and the podocyte marker anti-GLEPP1 showed immunolabeling exclusively within podocytes. Together, these results indicate that collagen alpha 3 alpha 4 alpha 5(IV) originates solely from podocytes; therefore, glomerular Alport disease is a genetic defect that manifests specifically within this cell type. PMID:19423686

  7. Efficient Resource Scheduling by Exploiting Relay Cache for Cellular Networks

    Chun He


    Full Text Available In relay-enhanced cellular systems, throughput of User Equipment (UE is constrained by the bottleneck of the two-hop link, backhaul link (or the first hop link, and access link (the second hop link. To maximize the throughput, resource allocation should be coordinated between these two hops. A common resource scheduling algorithm, Adaptive Distributed Proportional Fair, only ensures that the throughput of the first hop is greater than or equal to that of the second hop. But it cannot guarantee a good balance of the throughput and fairness between the two hops. In this paper, we propose a Two-Hop Balanced Distributed Scheduling (TBS algorithm by exploiting relay cache for non-real-time data traffic. The evolved Node Basestation (eNB adaptively adjusts the number of Resource Blocks (RBs allocated to the backhaul link and direct links based on the cache information of relays. Each relay allocates RBs for relay UEs based on the size of the relay UE’s Transport Block. We also design a relay UE’s ACK feedback mechanism to update the data at relay cache. Simulation results show that the proposed TBS can effectively improve resource utilization and achieve a good trade-off between system throughput and fairness by balancing the throughput of backhaul and access link.

  8. Multi-operator collaboration for green cellular networks under roaming price consideration

    Ghazzai, Hakim


    This paper investigates the collaboration between multiple mobile operators to optimize the energy efficiency of cellular networks. Our framework studies the case of LTE-Advanced networks deployed in the same area and owning renewable energy generators. The objective is to reduce the CO2 emissions of cellular networks via collaborative techniques and using base station sleeping strategy while respecting the network quality of service. Low complexity and practical algorithm is employed to achieve green goals during low traffic periods. Cooperation decision criteria are also established basing on derived roaming prices and profit gains of competitive mobile operators. Our numerical results show a significant save in terms of CO2 compared to the non-collaboration case and that cooperative mobile operator exploiting renewables are more awarded than traditional operators.

  9. Spinal cellular and network properties modulate pain perception

    Darbon Pascal


    Previously, it has been shown that high levels of plasma glucocorticoids give rise to analgesia. However to our knowledge nothing has been reported regarding a direct non genomic modulation of neuronal spinal activity by peripheral CORT. In the present study, we used combined in vivo and in vitro electrophysiology approaches, associated with the measure of nociceptive mechanical sensitivity and plasma corticosterone level measurement to assess the impact of circulating CORT on rat nociception. We showed that CORT plasma level elevation produced analgesia via the reduction of nociceptive fiber mediated spinal responses. CORT is spinally reduced in the neuroactive metabolite THDOC that specifically enhances lamina II GABAergic synaptic transmission. The main consequence is a reduction of lamina II network excitability reflecting a selective decrease in processing of nociceptive inputs. The depressed neuronal activity at the spinal level then in turn leads to a weaker nociceptive message transmission to supraspinal structures and hence to an alleviation of pain.

  10. Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks

    Ramoni Marco F


    Full Text Available Abstract Background Reverse engineering cellular networks is currently one of the most challenging problems in systems biology. Dynamic Bayesian networks (DBNs seem to be particularly suitable for inferring relationships between cellular variables from the analysis of time series measurements of mRNA or protein concentrations. As evaluating inference results on a real dataset is controversial, the use of simulated data has been proposed. However, DBN approaches that use continuous variables, thus avoiding the information loss associated with discretization, have not yet been extensively assessed, and most of the proposed approaches have dealt with linear Gaussian models. Results We propose a generalization of dynamic Gaussian networks to accommodate nonlinear dependencies between variables. As a benchmark dataset to test the new approach, we used data from a mathematical model of cell cycle control in budding yeast that realistically reproduces the complexity of a cellular system. We evaluated the ability of the networks to describe the dynamics of cellular systems and their precision in reconstructing the true underlying causal relationships between variables. We also tested the robustness of the results by analyzing the effect of noise on the data, and the impact of a different sampling time. Conclusion The results confirmed that DBNs with Gaussian models can be effectively exploited for a first level analysis of data from complex cellular systems. The inferred models are parsimonious and have a satisfying goodness of fit. Furthermore, the networks not only offer a phenomenological description of the dynamics of cellular systems, but are also able to suggest hypotheses concerning the causal interactions between variables. The proposed nonlinear generalization of Gaussian models yielded models characterized by a slightly lower goodness of fit than the linear model, but a better ability to recover the true underlying connections between