A Modified Sensitive Driving Cellular Automaton Model
GE Hong-Xia; DAI Shi-Qiang; DONG Li-Yun; LEI Li
2005-01-01
A modified cellular automaton model for traffic flow on highway is proposed with a novel concept about the variable security gap. The concept is first introduced into the original Nagel-Schreckenberg model, which is called the non-sensitive driving cellular automaton model. And then it is incorporated with a sensitive driving NaSch model,in which the randomization brake is arranged before the deterministic deceleration. A parameter related to the variable security gap is determined through simulation. Comparison of the simulation results indicates that the variable security gap has different influence on the two models. The fundamental diagram obtained by simulation with the modified sensitive driving NaSch model shows that the maximumflow are in good agreement with the observed data, indicating that the presented model is more reasonable and realistic.
Spatial game in cellular automaton evacuation model
von Schantz, Anton; Ehtamo, Harri
2015-11-01
For numerical simulations of crowd dynamics in an evacuation we need a computationally light environment, such as the cellular automaton model (CA). By choosing the right model parameters, different types of crowd behavior and collective effects can be produced. But the CA does not answer why, when, and how these different behaviors and collective effects occur. In this article, we present a model, where we couple a spatial evacuation game to the CA. In the game, an agent chooses its strategy by observing its neighbors' strategies. The game matrix changes with the distance to the exit as the evacuation conditions develop. In the resulting model, an agent's strategy choice alters the parameters that govern its behavior in the CA. Thus, with our model, we are able to simulate how evacuation conditions affect the behavior of the crowd. Also, we show that some of the collective effects observed in evacuations are a result of the simple game the agents play.
A Modified Cellular Automaton Model for Traffic Flow
葛红霞; 董力耘; 雷丽; 戴世强
2004-01-01
A modified cellular automaton model for traffic flow was proposed. A novel concept about the changeable security gap was introduced and a parameter related to the variable security gap was determined. The fundamental diagram obtained by simulation shows that the maximum flow more approaches to the observed data than that of the NaSch model, indicating that the presented model is more reasonable and realistic.
Fire Spread Model for Old Towns Based on Cellular Automaton
GAO Nan; WENG Wenguo; MA Wei; NI Shunjiang; HUANG Quanyi; YUAN Hongyong
2008-01-01
Old towns like Lijiang have enormous historic,artistic,and architectural value.The buildings in such old towns are usually made of highly combustible materials,such as wood and grass.If a fire breaks out,it will spread to multiple buildings,so fire spreading and controlling in old towns need to be studied.This paper presents a fire spread model for old towns based on cellular automaton.The cellular automaton rules were set according to historical fire data in empirical formulas.The model also considered the effects of climate.The simulation results were visualized in a geography information system.An example of a fire spread in Lijiang was investigated with the results showing that this model provides a realistic tool for predicting fire spread in old towns.Fire brigades can use this tool to predict when and how a fire spreads to minimize the losses.
Mathematical model for flood routing based on cellular automaton
Xin CAI
2014-04-01
Full Text Available Increasing frequency and severity of flooding have caused tremendous damage in China, requiring more essential countermeasures to alleviate the damage. In this study, the dynamic simulation property of a cellular automaton was used to make further progress in flood routing. In consideration of terrain’s influence on flood routing, we regarded the terrain elevation as an auxiliary attribute of a two-dimensional cellular automaton in path selection for flood routing and developed a mathematical model based on a cellular automaton. A numerical case of propagation of an outburst flood in an area of the lower Yangtze River was analyzed with both the fixed-step and variable-step models. The results show that the flood does not spread simultaneously in all directions, but flows into the lower place first, and that the submerged area grows quickly at the beginning, but slowly later on. The final submerged areas obtained from the two different models are consistent, and the flood volume balance test shows that the flood volume meets the requirement of the total volume balance. The analysis of the case shows that the proposed model can be a valuable tool for flood routing.
Cellular automaton for realistic modelling of landslides
E. Segre
1995-01-01
Full Text Available A numerical model is developed for the simulation of debris flow in landslides over a complex three dimensional topography. The model is then validated by comparing a simulation with reported field data. Our model is in fact a realistic elaboration of simpler "sandpile automata", which have in recent years been studied as supposedly paradigmatic of "self-organized criticality". Statistics and scaling properties of the simulation are examined, and show that the model has an intermittent behaviour.
A cellular automaton model for tumor growth in heterogeneous environment
Jiao, Yang; Torquato, Sal
2011-03-01
Cancer is not a single disease: it exhibits heterogeneity on different spatial and temporal scales and strongly interacts with its host environment. Most mathematical modeling of malignant tumor growth has assumed a homogeneous host environment. We have developed a cellular automaton model for tumor growth that explicitly incorporates the structural heterogeneity of the host environment such as tumor stroma. We show that these structural heterogeneities have non-trivial effects on the tumor growth dynamics and prognosis. Y. J. is supported by PSOC, NCI.
A Realistic Cellular Automaton Model for Synchronized Traffic Flow
ZHAO Bo-Han; HU Mao-Bin; JIANG Rui; WU Qing-Song
2009-01-01
A cellular automaton model is proposed to consider the anticipation effect in drivers' behavior. It is shown that the anticipation effect can be one of the origins of synchronized traffic flow. With anticipation effect, the congested traffic flow simulated by the model exhibits the features of synchronized flow. The spatiotemporal patterns induced by an on-ramp are also consistent with the three-phaee traffic theory. Since the origin of synchronized flow is still controversial, our work can shed some light on the mechanism of synchronized flow.
Cellular automaton model of cell response to targeted radiation
It has been shown that the response of cells to low doses of radiation is not linear and cannot be accurately extrapolated from the high dose response. To investigate possible mechanisms involved in the behaviour of cells under very low doses of radiation, a cellular automaton (CA) model was created. The diffusion and consumption of glucose in the culture dish were computed in parallel to the growth of cells. A new model for calculating survival probability was introduced; the communication between targeted and non-targeted cells was also included. Early results on the response of non-confluent cells to targeted irradiation showed the capability of the model to take account for the non-linear response in the low-dose domain
Cellular automaton model of coupled mass transport and chemical reactions
Mass transport, coupled with chemical reactions, is modelled as a cellular automaton in which solute molecules perform a random walk on a lattice and react according to a local probabilistic rule. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. The model is applied to the reactions a + b ↔c and a + b →c, where we observe interesting macroscopic effects resulting from microscopic fluctuations and spatial correlations between molecules. We also simulate autocatalytic reaction schemes displaying spontaneous formation of spatial concentration patterns. Finally, we propose and discuss the limitations of a simple model for mineral-solute interaction. (author) 5 figs., 20 refs
Motor Schema-Based Cellular Automaton Model for Pedestrian Dynamics
Weng, Wenguo; Hasemi, Yuji; Fan, Weicheng
A new cellular automaton model for pedestrian dynamics based on motor schema is presented. Each pedestrian is treated as an intelligent mobile robot, and motor schemas including move-to-goal, avoid-away and avoid-around drive pedestrians to interact with their environment. We investigate the phenomenon of many pedestrians with different move velocities escaping from a room. The results show that the pedestrian with high velocity have predominance in competitive evacuation, if we only consider repulsion from or avoiding around other pedestrians, and interaction with each other leads to disordered evacuation, i.e., decreased evacuation efficiency. Extensions of the model using learning algorithms for controlling pedestrians, i.e., reinforcement learning, neural network and genetic algorithms, etc. are noted.
A cellular automaton model for neurogenesis in Drosophila
Luthi, Pascal O.; Chopard, Bastien; Preiss, Anette; Ramsden, Jeremy J.
1998-07-01
A cellular automaton (CA) is constructed for the formation of the central nervous system of the Drosophila embryo. This is an experimentally well-studied system in which complex interactions between neighbouring cells appear to drive their differentiation into different types. It appears that all the cells initially have the potential to become neuroblasts, and all strive to this end, but those which differentiate first block their as yet undifferentiated neighbours from doing so. The CA makes use of observational evidence for a lateral inhibition mechanism involving signalling products S of the ‘proneural’ or neuralizing genes. The key concept of the model is that cells are continuously producing S, but the production rate is lowered by inhibitory signals received from neighbouring cells which have advanced further along the developmental pathway. Comparison with experimental data shows that it well accounts for the observed proportion of neuroectodermal cells delaminating as neuroblasts.
Cellular automaton model considering headway-distance effect
Hu, Shou-Xin; Gao, Kun; Wang, Bing-Hong; Lu, Yu-Feng
2008-05-01
This paper presents a cellular automaton model for single-lane traffic flow. On the basis of the Nagel-Schreckenberg (NS) model, it further considers the effect of headway-distance between two successive cars on the randomization of the latter one. In numerical simulations, this model shows the following characteristics. (1) With a simple structure, this model succeeds in reproducing the hysteresis effect, which is absent in the NS model. (2) Compared with the slow-to-start models, this model exhibits a local fundamental diagram which is more consistent to empirical observations. (3) This model has much higher efficiency in dissolving congestions compared with the so-called NS model with velocity-dependent randomization (VDR model). (4) This model is more robust when facing traffic obstructions. It can resist much longer shock times and has much shorter relaxation times on the other hand. To summarize, compared with the existing models, this model is quite simple in structure, but has good characteristics.
Cellular automaton model of mass transport with chemical reactions
The transport and chemical reactions of solutes are modelled as a cellular automaton in which molecules of different species perform a random walk on a regular lattice and react according to a local probabilistic rule. The model describes advection and diffusion in a simple way, and as no restriction is placed on the number of particles at a lattice site, it is also able to describe a wide variety of chemical reactions. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. Simulations on one-and two-dimensional lattices show that the discrete model can be used to approximate the solutions of the continuum equations. We discuss discrepancies which arise from correlations between molecules and how these discrepancies disappear as the continuum limit is approached. Of particular interest are simulations displaying long-time behaviour which depends on long-wavelength statistical fluctuations not accounted for by the standard equations. The model is applied to the reactions a + b ↔ c and a + b → c with homogeneous and inhomogeneous initial conditions as well as to systems subject to autocatalytic reactions and displaying spontaneous formation of spatial concentration patterns. (author) 9 figs., 34 refs
Cellular automaton for chimera states
García-Morales, Vladimir
2016-01-01
A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the...
Cellular automaton for chimera states
García-Morales, Vladimir
2016-04-01
A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the system spontaneously splitting into stable domains separated by static boundaries, some synchronously oscillating and the others incoherent. When the coupling range is local, nontrivial coherent structures with different periodicities are formed.
ZHANG Lin; ZHANG Cai-bei
2006-01-01
Two-dimensional cellular automaton(CA) simulations of phase transformations of binary alloys during solidification were reported. The modelling incorporates local concentration and heat changes into a nucleation or growth function, which is utilized by the automaton in a probabilistic fashion. These simulations may provide an efficient method of discovering how the physical processes involved in solidification processes dynamically progress and how they interact with each other during solidification. The simulated results show that the final morphology during solidification is related with the cooling conditions. The established model can be used to evaluate the phase transformation of binary alloys during solidification.
Cellular Automaton Model for Immunology of Tumor Growth
Voitikova, M
1998-01-01
The stochastic discrete space-time model of an immune response on tumor spreading in a two-dimensional square lattice has been developed. The immunity-tumor interactions are described at the cellular level and then transferred into the setting of cellular automata (CA). The multistate CA model for system, in which all statesoflattice sites, composing of both immune and tumor cells populations, are the functions of the states of the 12 nearest neighbors. The CA model incorporates the essential featuresof the immunity-tumor system. Three regimes of neoplastic evolution including metastatic tumor growth and screen effect by inactive immune cells surrounding a tumor have been predicted.
Kirchner, Ansgar; Schadschneider, Andreas
2002-01-01
We present simulations of evacuation processes using a recently introduced cellular automaton model for pedestrian dynamics. This model applies a bionics approach to describe the interaction between the pedestrians using ideas from chemotaxis. Here we study a rather simple situation, namely the evacuation from a large room with one or two doors. It is shown that the variation of the model parameters allows to describe different types of behaviour, from regular to panic. We find a non-monotoni...
A Modified Cellular Automaton Approach for Mixed Bicycle Traffic Flow Modeling
Xiaonian Shan; Zhibin Li; Xiaohong Chen; Jianhong Ye
2015-01-01
Several previous studies have used the Cellular Automaton (CA) for the modeling of bicycle traffic flow. However, previous CA models have several limitations, resulting in differences between the simulated and the observed traffic flow features. The primary objective of this study is to propose a modified CA model for simulating the characteristics of mixed bicycle traffic flow. Field data were collected on physically separated bicycle path in Shanghai, China, and were used to calibrate the C...
Modeling of solidification grain structure for Ti-45%Al alloy ingot by cellular automaton
WU Shi-ping; LIU Dong-rong; GUO Jing-jie; FU Heng-zhi
2005-01-01
A cellular automaton model for simulating grain structure formation during solidification processes of Ti45%Al(mole fraction) alloy ingot was developed, based on finite differential method for macroscopic modeling of heat transfer and a cellular automaton technique for microscopic modeling of nucleation, growth, solute redistribution and solute diffusion. The relation between the growth velocity of a dendrite tip and the local undercooling,which consists of constitutional, thermal, curvature and attachment kinetics undercooling is calculated according to the Kurz-Giovanola-Trivedi model. The effect of solidification contraction is taken into consideration. The influence of process variables upon the resultant grain structures was investigated. Special moving allocation technique was designed to minimize the computation time and memory size associated with a large number of cells. The predicted grain structures are in good agreement with the experimental results.
An Extended Cellular Automaton Model for Train Traffic Flow on the Dedicated Passenger Lines
Wenbo Zhao
2014-01-01
Full Text Available As one of the key components for the railway transportation system, the Train Operation Diagram can be greatly influenced by many extrinsic and intrinsic factors. Therefore, the railway train flow has shown the strong nonlinear characteristics, which makes it quite difficult to take further relative studies. Fortunately, the cellular automaton model has its own advantages in solving nonlinear problems and traffic flow simulation. Considering the mixed features of multispeed running trains on the passenger dedicated lines, this paper presents a new train model under the moving block system with different types of trains running with the cellular automaton idea. By analyzing such key factors as the maintenance skylight, the proportion of the multispeed running trains, and the distance between adjacent stations and departure intervals, the corresponding running rules for the cellular automaton model are reestablished herewith. By means of this CA model, the program of train running system is designed to analyze the potential impact on railway carrying capacity by various factors; the model can also be implemented to simulate the actual train running process and to draw the train operation diagram by computers. Basically the theory can be applied to organize the train operation on the dedicated passenger lines.
Transfer-matrix DMRG for stochastic models: The Domany-Kinzel cellular automaton
Kemper, A.; Schadschneider, A.; Zittartz, J.
2001-01-01
We apply the transfer-matrix DMRG (TMRG) to a stochastic model, the Domany-Kinzel cellular automaton, which exhibits a non-equilibrium phase transition in the directed percolation universality class. Estimates for the stochastic time evolution, phase boundaries and critical exponents can be obtained with high precision. This is possible using only modest numerical effort since the thermodynamic limit can be taken analytically in our approach. We also point out further advantages of the TMRG o...
Cellular automaton model of crowd evacuation inspired by slime mould
Kalogeiton, V. S.; Papadopoulos, D. P.; Georgilas, I. P.; Sirakoulis, G. Ch.; Adamatzky, A. I.
2015-04-01
In all the living organisms, the self-preservation behaviour is almost universal. Even the most simple of living organisms, like slime mould, is typically under intense selective pressure to evolve a response to ensure their evolution and safety in the best possible way. On the other hand, evacuation of a place can be easily characterized as one of the most stressful situations for the individuals taking part on it. Taking inspiration from the slime mould behaviour, we are introducing a computational bio-inspired model crowd evacuation model. Cellular Automata (CA) were selected as a fully parallel advanced computation tool able to mimic the Physarum's behaviour. In particular, the proposed CA model takes into account while mimicking the Physarum foraging process, the food diffusion, the organism's growth, the creation of tubes for each organism, the selection of optimum tube for each human in correspondence to the crowd evacuation under study and finally, the movement of all humans at each time step towards near exit. To test the model's efficiency and robustness, several simulation scenarios were proposed both in virtual and real-life indoor environments (namely, the first floor of office building B of the Department of Electrical and Computer Engineering of Democritus University of Thrace). The proposed model is further evaluated in a purely quantitative way by comparing the simulation results with the corresponding ones from the bibliography taken by real data. The examined fundamental diagrams of velocity-density and flow-density are found in full agreement with many of the already published corresponding results proving the adequacy, the fitness and the resulting dynamics of the model. Finally, several real Physarum experiments were conducted in an archetype of the aforementioned real-life environment proving at last that the proposed model succeeded in reproducing sufficiently the Physarum's recorded behaviour derived from observation of the aforementioned
A Stochastic Cellular Automaton Model of Non-linear Diffusion and Diffusion with Reaction
Brieger, Leesa M.; Bonomi, Ernesto
1991-06-01
This article presents a stochastic cellular automaton model of diffusion and diffusion with reaction. The master equations for the model are examined, and we assess the difference between the implementation in which a single particle at a time moves (asynchronous dynamics) and one implementation in which all particles move simultaneously (synchronous dynamics). Biasing locally each particle's random walk, we alter the diffusion coefficients of the system. By appropriately choosing the biasing function, we can impose a desired non-linear diffusive behaviour in the model. We present an application of this model, adapted to include two diffusing species, two static species, and a chemical reaction in a prototypical simulation of carbonation in concrete.
Cellular automatons applied to gas dynamic problems
Long, Lyle N.; Coopersmith, Robert M.; McLachlan, B. G.
1987-06-01
This paper compares the results of a relatively new computational fluid dynamics method, cellular automatons, with experimental data and analytical results. This technique has been shown to qualitatively predict fluidlike behavior; however, there have been few published comparisons with experiment or other theories. Comparisons are made for a one-dimensional supersonic piston problem, Stokes first problem, and the flow past a normal flat plate. These comparisons are used to assess the ability of the method to accurately model fluid dynamic behavior and to point out its limitations. Reasonable results were obtained for all three test cases, but the fundamental limitations of cellular automatons are numerous. It may be misleading, at this time, to say that cellular automatons are a computationally efficient technique. Other methods, based on continuum or kinetic theory, would also be very efficient if as little of the physics were included.
Cellular automatons applied to gas dynamic problems
Long, Lyle N.; Coopersmith, Robert M.; Mclachlan, B. G.
1987-01-01
This paper compares the results of a relatively new computational fluid dynamics method, cellular automatons, with experimental data and analytical results. This technique has been shown to qualitatively predict fluidlike behavior; however, there have been few published comparisons with experiment or other theories. Comparisons are made for a one-dimensional supersonic piston problem, Stokes first problem, and the flow past a normal flat plate. These comparisons are used to assess the ability of the method to accurately model fluid dynamic behavior and to point out its limitations. Reasonable results were obtained for all three test cases, but the fundamental limitations of cellular automatons are numerous. It may be misleading, at this time, to say that cellular automatons are a computationally efficient technique. Other methods, based on continuum or kinetic theory, would also be very efficient if as little of the physics were included.
Bit-Vectorized GPU Implementation of a Stochastic Cellular Automaton Model for Surface Growth
Kelling, Jeffrey; Gemming, Sibylle
2016-01-01
Stochastic surface growth models aid in studying properties of universality classes like the Kardar--Paris--Zhang class. High precision results obtained from large scale computational studies can be transferred to many physical systems. Many properties, such as roughening and some two-time functions can be studied using stochastic cellular automaton (SCA) variants of stochastic models. Here we present a highly efficient SCA implementation of a surface growth model capable of simulating billions of lattice sites on a single GPU. We also provide insight into cases requiring arbitrary random probabilities which are not accessible through bit-vectorization.
ZHU Ming-fang; CAO Wei-sheng; CHEN Shuang-lin; XIE Fan-you; HONG Chunpyo; CHANG Y. Austin
2006-01-01
A modified cellular automaton (MCA) model has been extended to the ternary alloy system by coupling thermodynamic and phase equilibrium calculation engine PanEngine. In the present model the dendrite growth is driven by the difference between the local equilibrium liquidus temperature and local actual temperature, incorporating the effect of curvature. The local equilibrium liquidus temperature is calculated with PanEngine according to the local liquid concentrations of two solutes, which are determined by numerically solving the species transport equation in the domain. Model validation was carried out through the comparison of the simulated values to the prediction of the Scheil model for solute profiles in the primary dendrites. The simulated data with zero solid diffusivity and limited liquid diffusivity were increasingly close to the Scheil profiles as the solidification rate decreased. The simulated microstructure and microsegregation in an Al-Cu-Mg ternary alloy were compared with those obtained experimentally.
A Cellular Automaton Model for Heterogeneous and Incosistent Driver Behavior in Urban Traffic
Liu, Ming-Zhe; Zhao, Shi-Bo; Wang, Rui-Li
2012-11-01
In this paper a cellular automaton model is proposed to describe driver behavior at a single-lane urban roundabout. Driver behavior has been considered as heterogeneous and inconsistent. Most traffic papers in the literature just discussed heterogeneous driver behavior, to our best knowledge. Two truncated Gaussian distributions are used to model heterogeneous and inconsistent driver behavior, respectively. The physical meanings of two truncated distributions are indicated. This method may help enhance a better understanding of driver behavior at roundabout traffic, and even possibly provide references for roundabout design and management.
A Cellular Automaton Model for Heterogeneous and Incosistent Driver Behavior in Urban Traffic
LIUMing-Zhe; ZHAO Shi-Bo; WANG Rui-Li
2012-01-01
In this paper a cellular automaton model is proposed to describe driver behavior at a single-lane urban roundabout. Driver behavior has been considered as heterogeneous and inconsistent. Most traffic papers in the literature just discussed heterogeneous driver behavior, to our best knowledge. Two truncated Caussian distributions are used to model heterogeneous and inconsistent driver behavior, respectively. The physical meanings of two truncated distributions are indicated. This method may help enhance a better understanding of driver behavior at roundabout traffic, and even possibly provide references for roundabout design and management.
Van De Wiel, Marco J.; Coulthard, Tom J.; Macklin, Mark G.; Lewin, John
2007-10-01
We introduce a new computational model designed to simulate and investigate reach-scale alluvial dynamics within a landscape evolution model. The model is based on the cellular automaton concept, whereby the continued iteration of a series of local process 'rules' governs the behaviour of the entire system. The model is a modified version of the CAESAR landscape evolution model, which applies a suite of physically based rules to simulate the entrainment, transport and deposition of sediments. The CAESAR model has been altered to improve the representation of hydraulic and geomorphic processes in an alluvial environment. In-channel and overbank flow, sediment entrainment and deposition, suspended load and bed load transport, lateral erosion and bank failure have all been represented as local cellular automaton rules. Although these rules are relatively simple and straightforward, their combined and repeatedly iterated effect is such that complex, non-linear geomorphological response can be simulated within the model. Examples of such larger-scale, emergent responses include channel incision and aggradation, terrace formation, channel migration and river meandering, formation of meander cutoffs, and transitions between braided and single-thread channel patterns. In the current study, the model is illustrated on a reach of the River Teifi, near Lampeter, Wales, UK.
Driver’s Awareness and Lane Changing Maneuver in Traffic Flow based on Cellular Automaton Model
Kohei Arai; Steven Ray Sentinuwo
2015-01-01
Effect of driver’s awareness (e.g., to estimate the speed and arrival time of another vehicle) on the lane changing maneuver is discussed. “Scope awareness” is defined as the visibility which is required for the driver to make a visual perception about road condition and the speed of vehicle that appears in the target lane for lane changing in the road. Cellular automaton based simulation model is created and applied to simulation studies for driver awareness behavior. This study clarifies re...
Simulation of emotional contagion using modified SIR model: A cellular automaton approach
Fu, Libi; Song, Weiguo; Lv, Wei; Lo, Siuming
2014-07-01
Emotion plays an important role in the decision-making of individuals in some emergency situations. The contagion of emotion may induce either normal or abnormal consolidated crowd behavior. This paper aims to simulate the dynamics of emotional contagion among crowds by modifying the epidemiological SIR model to a cellular automaton approach. This new cellular automaton model, entitled the “CA-SIRS model”, captures the dynamic process ‘susceptible-infected-recovered-susceptible', which is based on SIRS contagion in epidemiological theory. Moreover, in this new model, the process is integrated with individual movement. The simulation results of this model show that multiple waves and dynamical stability around a mean value will appear during emotion spreading. It was found that the proportion of initial infected individuals had little influence on the final stable proportion of infected population in a given system, and that infection frequency increased with an increase in the average crowd density. Our results further suggest that individual movement accelerates the spread speed of emotion and increases the stable proportion of infected population. Furthermore, decreasing the duration of an infection and the probability of reinfection can markedly reduce the number of infected individuals. It is hoped that this study will be helpful in crowd management and evacuation organization.
Non-linearity and spatial resolution in a cellular automaton model of a small upland basin
T. J. Coulthard
1998-01-01
Full Text Available The continuing development of computational fluid dynamics is allowing the high resolution study of hydraulic and sediment transport processes but, due to computational complexities, these are rarely applied to areas larger than a reach. Existing approaches, based upon linked cross sections, can give a quasi two-dimensional view, effectively simulating sediment transport for a single river reach. However, a basin represents a whole discrete dynamic system within which channel, floodplain and slope processes operate over a wide range of space and time scales. Here, a cellular automaton (CA approach has been used to overcome some of these difficulties, in which the landscape is represented as a series of fixed size cells. For every model iteration, each cell acts only in relation to the influence of its immediate neighbours in accordance with appropriate rules. The model presented here takes approximations of existing flow and sediment transport equations, and integrates them, together with slope and floodplain approximations, within a cellular automaton framework. This method has been applied to the basin of Cam Gill Beck (4.2 km2 above Starbotton, upper Wharfedale, a tributary of the River Wharfe, North Yorkshire, UK. This approach provides, for the first time, a workable model of the whole basin at a 1 m resolution. Preliminary results show the evolution of bars, braids, terraces and alluvial fans which are similar to those observed in the field, and examples of large and small scale non-linear behaviour which may have considerable implications for future models.
An implementation of cellular automaton model for single-line train working diagram
Hua Wei; Liu Jun
2006-01-01
According to the railway transportation system's characteristics,a new cellular automaton model for the singleline railway system is presented in this paper.Based on this model,several simulations were done to imitate the train operation under three working diagrams.From a different angle the results show how the organization of train operation impacts on the railway carrying capacity.By using the non-parallel train working diagram the influence of fast-train on slow-train is found to be the strongest.Many slow-trains have to wait in-between neighbouring stations to let the fast-train(s) pass through first.So the slow-train will advance like a wave propagating from the departure station to the arrival station.This also resembles the situation of a highway jammed traffic flow.Furthermore,the nonuniformity of travel times between the sections also greatly limits the railway carrying capacity.After converting the nonuniform sections into the sections with uniform travel times while the total travel time is kept unchanged,all three carrying capacities are improved greatly as shown by simulation.It also shows that the cellular automaton model is an effective and feasible way to investigate the railway transDortation system.
A Cellular Automaton Model for Tumor Dormancy: Emergence of a Proliferative Switch
Chen, Duyu; Torquato, Salvatore
2014-01-01
Malignant cancers that lead to fatal outcomes for patients may remain dormant for very long periods of time. Although individual mechanisms such as cellular dormancy, angiogenic dormancy and immunosurveillance have been proposed, a comprehensive understanding of cancer dormancy and the "switch" from a dormant to a proliferative state still needs to be strengthened from both a basic and clinical point of view. Computational modeling enables one to explore a variety of scenarios for possible but realistic microscopic dormancy mechanisms and their predicted outcomes. The aim of this paper is to devise such a predictive computational model of dormancy with an emergent "switch" behavior. Specifically, we generalize a previous cellular automaton (CA) model for proliferative growth of solid tumor that now incorporates a variety of cell-level tumor-host interactions and different mechanisms for tumor dormancy, for example the effects of the immune system. Our new CA rules induce a natural "competition" between the tu...
Satoh, Kazuhiro
1989-10-01
Numerical studies are made on the complex behavior of a cellular automaton which serves as a phenomenological model for an ecosystem. The ecosystem is assumed to contain only three populations, i.e., a population of plants, of herbivores, and of carnivores. A two-dimensional region where organisms live is divided into square cells and the population density in each cell is regarded as a discrete variable. The influence of the physical environment and the interactions between organisms are reduced to a simple rule of cellular automaton evolution. It is found that the time dependent spatial distribution of organisms is, in general, very random and complex. However, under certain conditions, the self-organization of ordered patterns such as rotating spirals or concentric circles takes place. The relevance of the cellular automaton as a model for the ecosystem is discussed.
Random walk theory of jamming in a cellular automaton model for traffic flow
Barlovic, Robert; Schadschneider, Andreas; Schreckenberg, Michael
2001-05-01
The jamming behavior of a single lane traffic model based on a cellular automaton approach is studied. Our investigations concentrate on the so-called VDR model which is a simple generalization of the well-known Nagel-Schreckenberg model. In the VDR model one finds a separation between a free flow phase and jammed vehicles. This phase separation allows to use random walk like arguments to predict the resolving probabilities and lifetimes of jam clusters or disturbances. These predictions are in good agreement with the results of computer simulations and even become exact for a special case of the model. Our findings allow a deeper insight into the dynamics of wide jams occuring in the model.
2D cellular automaton model for the evolution of active region coronal plasmas
Fuentes, Marcelo López
2016-01-01
We study a 2D cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops (EBTEL) model to compute the response of the plasma to the heating events. Using the known response of the XRT telescope on board Hinode we also obtain synthetic data. The model obeys easy to understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of -2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in t...
A traffic flow cellular automaton model to considering drivers' learning and forgetting behaviour
Ding Jian-Xun; Huang Hai-Jun; Tian Qiong
2011-01-01
It is known that the commonly used NaSch cellular automaton (CA) model and its modifications can help explain the internal causes of the macro phenomena of traffic flow. However, the randomization probability of vehicle velocity used in these models is assumed to be an exogenous constant or a conditional constant, which cannot reflect the learning and forgetting behaviour of drivers with historical experiences. This paper further modifies the NaSch model by enabling the randomization probability to be adjusted on the bases of drivers' memory. The Markov properties of this modified model are discussed. Analytical and simulation results show that the traffic fundamental diagrams can be indeed improved when considering drivers' intelligent behaviour. Some new features of traffic are revealed by differently combining the model parameters representing learning and forgetting behaviour.
A new three-step cellular automaton model considering a realistic driving decision
Most cellular automaton (CA) traffic flow models include four steps and take the velocity as the driver’s main concern. To better understand traffic behaviors, a new three-step CA model is studied, in which a realistic driving decision is divided into three stages: decision-making, action and result. The new model is novel in using the acceleration as a decision variable. It considers the deceleration limitation and proposes the maximum deceleration to be 2 cells per time step, based on real experimental data. Simulation results show that the model can reproduce the synchronized flow effectively and describe the phase transition well. Moreover, it can exhibit metastability and hysteresis if the slow-to-start effect is involved. Finally, a realistic application to systematic flow optimization is analyzed and an interesting result is obtained that a restriction of the inflow can lead to an improvement of the total flow through a bottleneck. (paper)
Steady state speed distribution analysis for a combined cellular automaton traffic model
Wang Jun-Feng; Chen Gui-Sheng; Liu Jin
2008-01-01
Cellular Automaton (CA) baaed traffic flow models have been extensively studied due to their effectiveness and simplicity in recent years. This paper develops a discrete time Markov chain (DTMC) analytical framework for a Nagel-Schreckenberg and Fukui-Ishibashi combined CA model (W2H traffic flow model) from microscopic point of view to capture the macroscopic steady state speed distributions. The inter-vehicle spacing Markov chain and the steady state speed Markov chain are proved to be irreducible and ergodie. The theoretical speed probability distributions depending on the traffic density and stochastic delay probability are in good accordance with numerical simulations. The derived fundamental diagram of the average speed from theoretical speed distributions is equivalent to the results in the previous work.
Driver’s Awareness and Lane Changing Maneuver in Traffic Flow based on Cellular Automaton Model
Kohei Arai
2015-08-01
Full Text Available Effect of driver’s awareness (e.g., to estimate the speed and arrival time of another vehicle on the lane changing maneuver is discussed. “Scope awareness” is defined as the visibility which is required for the driver to make a visual perception about road condition and the speed of vehicle that appears in the target lane for lane changing in the road. Cellular automaton based simulation model is created and applied to simulation studies for driver awareness behavior. This study clarifies relations between the lane changing behavior and the scope awareness parameter that reflects driver behavior. Simulation results show that the proposed model is valid for investigation of the important features of lane changing maneuver.
An improved cellular automaton model considering the effect of traffic lights and driving behaviour
He, Hong-Di; Lu, Wei-Zhen; Dong, Li-Yun
2011-04-01
This paper proposes an improved cellular automaton model to describe the urban traffic flow with the consideration of traffic light and driving behaviour effects. Based on the model, the characteristics of the urban traffic flow on a single-lane road are investigated under three different control strategies, i.e., the synchronized, the green wave and the random strategies. The fundamental diagrams and time-space patterns of the traffic flows are provided for these strategies respectively. It finds that the dynamical transition to the congested flow appears when the vehicle density is higher than a critical level. The saturated flow is less dependent on the cycle time and the strategies of the traffic light control, while the critical vehicle density varies with the cycle time and the strategies. Simulated results indicate that the green wave strategy is proven to be the most effective one among the above three control strategies.
Jiao, Yang
2011-01-01
Understanding tumor invasion and metastasis is of crucial importance for both fundamental cancer research and clinical practice. In vitro experiments have established that the invasive growth of malignant tumors is characterized by the dendritic invasive branches composed of chains of tumor cells emanating from the primary tumor mass. The preponderance of previous tumor simulations focused on non-invasive (or proliferative) growth. The formation of the invasive cell chains and their interactions with the primary tumor mass and host microenvironment are not well understood. Here, we present a novel cellular automaton (CA) model that enables one to efficiently simulate invasive tumor growth in a heterogeneous host microenvironment. By taking into account a variety of microscopic-scale tumor-host interactions, including the short-range mechanical interactions between tumor cells and tumor stroma, degradation of extracellular matrix by the invasive cells and oxygen/nutrient gradient driven cell motions, our CA mo...
Phase transitions in a cellular automaton model of a highway on-ramp
Belitsky, Vladimir; Maric, Nevena; Schütz, Gunter M.
2007-09-01
We introduce a lattice gas model for the merging of two single-lane automobile highways. The merging rules for traffic on the two lanes are deterministic, but the inflow on both lanes is stochastic. Analysing the stationary distribution of this stochastic cellular automaton, we find a discontinuous phase transition from a free-flow phase which depends on the initial state of the road to a jammed phase where all memory of the initial state is lost. Inside the jammed phase we identify dynamical phase transitions in the approach to stationarity. Each dynamical phase is characterized by a fixed number of relaxation cycles which is decreasing as one moves deeper into the jammed phase. In each cycle step, the number of 'desperate' drivers who force their way onto the main road when they reach the end of the on-ramp increases until stationarity.
Phase transitions in a cellular automaton model of a highway on-ramp
We introduce a lattice gas model for the merging of two single-lane automobile highways. The merging rules for traffic on the two lanes are deterministic, but the inflow on both lanes is stochastic. Analysing the stationary distribution of this stochastic cellular automaton, we find a discontinuous phase transition from a free-flow phase which depends on the initial state of the road to a jammed phase where all memory of the initial state is lost. Inside the jammed phase we identify dynamical phase transitions in the approach to stationarity. Each dynamical phase is characterized by a fixed number of relaxation cycles which is decreasing as one moves deeper into the jammed phase. In each cycle step, the number of 'desperate' drivers who force their way onto the main road when they reach the end of the on-ramp increases until stationarity
Modeling of aluminum-silicon irregular eutectic growth by cellular automaton model
Rui Chen
2016-03-01
Full Text Available Due to the extensive application of Al-Si alloys in the automotive and aerospace industries as structural components, an understanding of their microstructural formation, such as dendrite and (Al+Si eutectic, is of great importance to control the desirable microstructure, so as to modify the performance of castings. Since previous major themes of microstructural simulation are dendrite and regular eutectic growth, few efforts have been paid to simulate the irregular eutectic growth. Therefore, a multiphase cellular automaton (CA model is developed and applied to simulate the time-dependent Al-Si irregular eutectic growth. Prior to model establishment, related experiments were carried out to investigate the influence of cooling rate and Sr modification on the growth of eutectic Si. This CA model incorporates several aspects, including growth algorithms and nucleation criterion, to achieve the competitive and cooperative growth mechanism for nonfaceted-faceted Al-Si irregular eutectic. The growth kinetics considers thermal undercooling, constitutional undercooling, and curvature undercooling, as well as the anisotropic characteristic of eutectic Si growth. The capturing rule takes into account the effects of modification on the silicon growth behaviors. The simulated results indicate that for unmodified alloy, the higher eutectic undercooling results in the higher eutectic growth velocity, and a more refined eutectic microstructure as well as narrower eutectic lamellar spacing. For modified alloy, the eutectic silicon tends to be obvious fibrous morphology and the morphology of eutectic Si is determined by both chemical modifier and cooling rate. The predicted microstructure of Al-7Si alloy under different solidification conditions shows that this proposed model can successfully reproduce both dendrite and eutectic microstructures.
Transition between immune and disease states in a cellular automaton model of clonal immune response
Bezzi, M; Ruffo, S; Seiden, P E; Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.
1997-01-01
In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infectious virus and cytotoxic T lymphocytes (cellular response). The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connect...
A Modified Cellular Automaton Approach for Mixed Bicycle Traffic Flow Modeling
Xiaonian Shan
2015-01-01
Full Text Available Several previous studies have used the Cellular Automaton (CA for the modeling of bicycle traffic flow. However, previous CA models have several limitations, resulting in differences between the simulated and the observed traffic flow features. The primary objective of this study is to propose a modified CA model for simulating the characteristics of mixed bicycle traffic flow. Field data were collected on physically separated bicycle path in Shanghai, China, and were used to calibrate the CA model using the genetic algorithm. Traffic flow features between simulations of several CA models and field observations were compared. The results showed that our modified CA model produced more accurate simulation for the fundamental diagram and the passing events in mixed bicycle traffic flow. Based on our model, the bicycle traffic flow features, including the fundamental diagram, the number of passing events, and the number of lane changes, were analyzed. We also analyzed the traffic flow features with different traffic densities, traffic components on different travel lanes. Results of the study can provide important information for understanding and simulating the operations of mixed bicycle traffic flow.
Large-scale parallel lattice Boltzmann-cellular automaton model of two-dimensional dendritic growth
Jelinek, Bohumir; Eshraghi, Mohsen; Felicelli, Sergio; Peters, John F.
2014-03-01
An extremely scalable lattice Boltzmann (LB)-cellular automaton (CA) model for simulations of two-dimensional (2D) dendritic solidification under forced convection is presented. The model incorporates effects of phase change, solute diffusion, melt convection, and heat transport. The LB model represents the diffusion, convection, and heat transfer phenomena. The dendrite growth is driven by a difference between actual and equilibrium liquid composition at the solid-liquid interface. The CA technique is deployed to track the new interface cells. The computer program was parallelized using the Message Passing Interface (MPI) technique. Parallel scaling of the algorithm was studied and major scalability bottlenecks were identified. Efficiency loss attributable to the high memory bandwidth requirement of the algorithm was observed when using multiple cores per processor. Parallel writing of the output variables of interest was implemented in the binary Hierarchical Data Format 5 (HDF5) to improve the output performance, and to simplify visualization. Calculations were carried out in single precision arithmetic without significant loss in accuracy, resulting in 50% reduction of memory and computational time requirements. The presented solidification model shows a very good scalability up to centimeter size domains, including more than ten million of dendrites. Catalogue identifier: AEQZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEQZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 29,767 No. of bytes in distributed program, including test data, etc.: 3131,367 Distribution format: tar.gz Programming language: Fortran 90. Computer: Linux PC and clusters. Operating system: Linux. Has the code been vectorized or parallelized?: Yes. Program is parallelized using MPI
A nanoflare based cellular automaton model and the observed properties of the coronal plasma
Fuentes, Marcelo López
2016-01-01
We use the cellular automaton model described in L\\'opez Fuentes \\& Klimchuk (2015, ApJ, 799, 128) to study the evolution of coronal loop plasmas. The model, based on the idea of a critical misalignment angle in tangled magnetic fields, produces nanoflares of varying frequency with respect to the plasma cooling time. We compare the results of the model with active region (AR) observations obtained with the Hinode/XRT and SDO/AIA instruments. The comparison is based on the statistical properties of synthetic and observed loop lightcurves. Our results show that the model reproduces the main observational characteristics of the evolution of the plasma in AR coronal loops. The typical intensity fluctuations have an amplitude of 10 to 15\\% both for the model and the observations. The sign of the skewness of the intensity distributions indicates the presence of cooling plasma in the loops. We also study the emission measure (EM) distribution predicted by the model and obtain slopes in log(EM) versus log(T) betw...
CellLab-CTS 2015: continuous-time stochastic cellular automaton modeling using Landlab
Tucker, Gregory E.; Hobley, Daniel E. J.; Hutton, Eric; Gasparini, Nicole M.; Istanbulluoglu, Erkan; Adams, Jordan M.; Siddartha Nudurupati, Sai
2016-02-01
CellLab-CTS 2015 is a Python-language software library for creating two-dimensional, continuous-time stochastic (CTS) cellular automaton models. The model domain consists of a set of grid nodes, with each node assigned an integer state code that represents its condition or composition. Adjacent pairs of nodes may undergo transitions to different states, according to a user-defined average transition rate. A model is created by writing a Python code that defines the possible states, the transitions, and the rates of those transitions. The code instantiates, initializes, and runs one of four object classes that represent different types of CTS models. CellLab-CTS provides the option of using either square or hexagonal grid cells. The software provides the ability to treat particular grid-node states as moving particles, and to track their position over time. Grid nodes may also be assigned user-defined properties, which the user can update after each transition through the use of a callback function. As a component of the Landlab modeling framework, CellLab-CTS models take advantage of a suite of Landlab's tools and capabilities, such as support for standardized input and output.
Open boundaries in a cellular automaton model for traffic flow with metastable states
Barlovic, Robert; Huisinga, Torsten; Schadschneider, Andreas; Schreckenberg, Michael
2002-10-01
The effects of open boundaries in the velocity-dependent randomization (VDR) model, a modified version of the well-known Nagel-Schreckenberg (NaSch) cellular automaton model for traffic flow, are investigated. In contrast to the NaSch model, the VDR model exhibits metastable states and phase separation in a certain density regime. A proper insertion strategy allows us to investigate the whole spectrum of possible system states and the structure of the phase diagram by Monte Carlo simulations. We observe an interesting microscopic structure of the jammed phases, which is different from the one of the NaSch model. For finite systems, the existence of high flow states in a certain parameter regime leads to a special structure of the fundamental diagram measured in the open system. Apart from that, the results are in agreement with an extremal principle for the flow, which has been introduced for models with a unique flow-density relation. Finally, we discuss the application of our findings for a systematic flow optimization. Here some surprising results are obtained, e.g., a restriction of the inflow can lead to an improvement of the total flow through a bottleneck.
Yao Xiao; Jing Shi
2015-01-01
This paper aimed to analyze the influence of drivers’ behavior of phone use while driving on traffic flow, including both traffic efficiency and traffic safety. An improved cellular automaton model was proposed to simulate traffic flow with distracted drivers based on the Nagel-Schreckenberg model. The driving characters of drivers using a phone were first discussed and a value representing the probability to use a phone while driving was put into the CA model. Simulation results showed that ...
We present a two-dimensional continuous cellular automaton that is equivalent to a driven spring-block model. Both the conservation and the anisotropy in the model are controllable quantities. Above a critical level of conservation, the model exhibits self-organized criticality. The self-organization of this system and hence the critical exponents depend on the conservation and the boundary conditions. In the critical isotropic nonconservative phase, the exponents change continuously as a function of conservation. Furthermore, the exponents vary continuously when changing the boundary conditions smoothly. Consequently, there is no universality of the critical exponents. We discuss the relevance of this for earthquakes. Introducing anisotropy changes the scaling of the distribution function, but not the power-law exponent. We explore the phase diagram of this model. We find that at low conservation levels a localization transition occurs. We see two additional phase transitions. The first is seen when moving from the conservative into the nonconservative model. The second appears when passing from the anisotropic two-dimensional system to the purely one-dimensional system
Stability Analysis of a Hybrid Cellular Automaton Model of Cell Colony Growth
Gerlee, P
2007-01-01
Cell colonies of bacteria, tumour cells and fungi, under nutrient limited growth conditions, exhibit complex branched growth patterns. In order to investigate this phenomenon we present a simple hybrid cellular automaton model of cell colony growth. In the model the growth of the colony is limited by a nutrient that is consumed by the cells and which inhibits cell division if it falls below a certain threshold. Using this model we have investigated how the nutrient consumption rate of the cells affects the growth dynamics of the colony. We found that for low consumption rates the colony takes on a Eden-like morphology, while for higher consumption rates the morphology of the colony is branched with a fractal geometry. These findings are in agreement with previous results, but the simplicity of the model presented here allows for a linear stability analysis of the system. By observing that the local growth of the colony is proportional to the flux of the nutrient we derive an approximate dispersion relation fo...
A.Yu. SMOLIN; E.V. SHILKO; S.V. ASTAFUROV; I.S. KONOVALENKO; S.P. BUYAKOVA; S.G. PSAKHIE
2015-01-01
Two classes of composite materials are considered: classical metaleceramic composites with reinforcing hard inclusions as well as hard ceramics matrix with soft gel inclusions. Movable cellular automaton method is used for modeling the mechanical behaviors of such different heterogeneous materials. The method is based on particle approach and may be considered as a kind of discrete element method. The main feature of the method is the use of many-body forces of inter-element interaction within the formalism of simply deformable element approximation. It was shown that the strength of reinforcing particles and the width of particle-binder interphase boundaries had determining influence on the service characteristics of metaleceramic composite. In particular, the increasing of strength of carbide inclusions may lead to significant increase in the strength and ultimate strain of composite material. On the example of porous zirconia ceramics it was shown that the change in the mechanical properties of pore surface leads to the corresponding change in effective elastic modulus and strength limit of the ceramic sample. The less is the pore size, the more is this effect. The increase in the elastic properties of pore surface of ceramics may reduce its fracture energy.
Danila, Bogdan; Mocanu, Gabriela
2015-01-01
We investigate the transition to Self Organized Criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a Self Organized Critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one dimensional signatures in the magnetic two dimensional system, once the Self Organized Critical regime is established. The applications of the model for the study of Gamma Ray Bursts is briefly considered, and it is shown that some astrophysical paramet...
Mobile Robot Motion Using Cellular Automaton Model to Avoid Transient Obstacles
Kohei Arai
2013-10-01
Full Text Available The obstacle avoidance is currently treated by methods that fall into two broad categories: global and local approach. This paper considers the obstacles whose velocity and direction cannot be easily predicted. Such obstacle is called transient obstacle. To avoid such kind of obstacle, we introduce a local path planning method for a robotics by using cellular automaton approach. The cellular automaton was combined with Dijkstra shortest path algorithm as global path planning to obtain a path for mobile robot to be able to avoid transient obstacle along the path. Using the proposed method, a scene in a typical corridor has been created. Moreover, this paper also evaluated two kinds of obstacle avoidance motion. First, the robot uses the “stop and go” method, which is the robot decreases its speed while encounter a transient obstacle. The second one is detour method, in which the robot makes a detour motion to avoid a transient obstacle. To coupe the drawbacks of local path planning, this paper also propose the enhancement of detour method. The simulation results show that in dynamic environment with transient obstacles, the “stop and go” method produces minimal collision with shortest-distance path. While, using the detour method generates minimal collision with time-minimal navigation path.
fA cellular automaton model of crystalline cellulose hydrolysis by cellulases
Little Bryce A
2011-10-01
Full Text Available Abstract Background Cellulose from plant biomass is an abundant, renewable material which could be a major feedstock for low emissions transport fuels such as cellulosic ethanol. Cellulase enzymes that break down cellulose into fermentable sugars are composed of different types - cellobiohydrolases I and II, endoglucanase and β-glucosidase - with separate functions. They form a complex interacting network between themselves, soluble hydrolysis product molecules, solution and solid phase substrates and inhibitors. There have been many models proposed for enzymatic saccharification however none have yet employed a cellular automaton approach, which allows important phenomena, such as enzyme crowding on the surface of solid substrates, denaturation and substrate inhibition, to be considered in the model. Results The Cellulase 4D model was developed de novo taking into account the size and composition of the substrate and surface-acting enzymes were ascribed behaviors based on their movements, catalytic activities and rates, affinity for, and potential for crowding of, the cellulose surface, substrates and inhibitors, and denaturation rates. A basic case modeled on literature-derived parameters obtained from Trichoderma reesei cellulases resulted in cellulose hydrolysis curves that closely matched curves obtained from published experimental data. Scenarios were tested in the model, which included variation of enzyme loadings, adsorption strengths of surface acting enzymes and reaction periods, and the effect on saccharide production over time was assessed. The model simulations indicated an optimal enzyme loading of between 0.5 and 2 of the base case concentrations where a balance was obtained between enzyme crowding on the cellulose crystal, and that the affinities of enzymes for the cellulose surface had a large effect on cellulose hydrolysis. In addition, improvements to the cellobiohydrolase I activity period substantially improved overall
Recurrence time statistics of landslide events simulated by a cellular automaton model
Piegari, Ester; Di Maio, Rosa; Avella, Adolfo
2014-05-01
The recurrence time statistics of a cellular automaton modelling landslide events is analyzed by performing a numerical analysis in the parameter space and estimating Fano factor behaviors. The model is an extended version of the OFC model, which is a paradigm for SOC in non-conserved systems, but it works differently from the original OFC model as a finite value of the driving rate is applied. By driving the system to instability with different rates, the model exhibits a smooth transition from a correlated to an uncorrelated regime as the effect of a change in predominant mechanisms to propagate instability. If the rate at which instability is approached is small, chain processes dominate the landslide dynamics, and power laws govern probability distributions. However, the power-law regime typical of SOC-like systems is found in a range of return intervals that becomes shorter and shorter by increasing the values of the driving rates. Indeed, if the rates at which instability is approached are large, domino processes are no longer active in propagating instability, and large events simply occur because a large number of cells simultaneously reach instability. Such a gradual loss of the effectiveness of the chain propagation mechanism causes the system gradually enter to an uncorrelated regime where recurrence time distributions are characterized by Weibull behaviors. Simulation results are qualitatively compared with those from a recent analysis performed by Witt et al.(Earth Surf. Process. Landforms, 35, 1138, 2010) for the first complete databases of landslide occurrences over a period as large as fifty years. From the comparison with the extensive landslide data set, the numerical analysis suggests that statistics of such landslide data seem to be described by a crossover region between a correlated regime and an uncorrelated regime, where recurrence time distributions are characterized by power-law and Weibull behaviors for short and long return times
Properties of a Finite Stochastic Cellular Automaton Toy Model of Earthquakes
Białecki Mariusz
2015-08-01
Full Text Available Finite version of Random Domino Automaton - a recently proposed toy model of earthquakes - is investigated in detail. Respective set of equations describing stationary state of the FRDA is derived and compared with infinite case. It is shown that for a system of large size, these equations are coincident with RDA equations. We demonstrate a non-existence of exact equations for size N ≥ 5 and propose appropriate approximations, the quality of which is studied in examples obtained within the framework of Markov chains.
Kemper, A. [Institut fuer Theoretische Physik, Universitaet zu Koeln, Cologne (Germany). E-mail: kemper@thp.uni-koeln.de; Schadschneider, A. [Institut fuer Theoretische Physik, Universitaet zu Koeln, Cologne (Germany). E-mail: as@thp.uni-koeln.de; Zittartz, J. [Institut fuer Theoretische Physik, Universitaet zu Koeln, Cologne (Germany)
2001-05-18
We apply the transfer-matrix density-matrix renormalization group (TMRG) to a stochastic model, the Domany-Kinzel cellular automaton, which exhibits a non-equilibrium phase transition in the directed percolation universality class. Estimates for the stochastic time evolution, phase boundaries and critical exponents can be obtained with high precision. This is possible using only modest numerical effort since the thermodynamic limit can be taken analytically in our approach. We also point out further advantages of the TMRG over other numerical approaches, such as classical DMRG or Monte Carlo simulations. (author). Letter-to-the-editor.
We apply the transfer-matrix density-matrix renormalization group (TMRG) to a stochastic model, the Domany-Kinzel cellular automaton, which exhibits a non-equilibrium phase transition in the directed percolation universality class. Estimates for the stochastic time evolution, phase boundaries and critical exponents can be obtained with high precision. This is possible using only modest numerical effort since the thermodynamic limit can be taken analytically in our approach. We also point out further advantages of the TMRG over other numerical approaches, such as classical DMRG or Monte Carlo simulations. (author). Letter-to-the-editor
Maerivoet, S; Immers, B; De Moor, B; Maerivoet, Sven; Logghe, Steven; Immers, Ben; Moor, Bart De
2005-01-01
In this paper, we describe a relation between a microscopic traffic cellular automaton (TCA) model (i.e., the stochastic TCA model of Nagel and Schreckenberg) and the macroscopic first-order hydrodynamic model of Lighthill, Whitham, and Richards (LWR). The innovative aspect of our approach, is that we explicitly derive the LWR's fundamental diagram directly from the STCA's rule set, by assuming a stationarity condition that converts the STCA's rules into a set of linear inequalities. In turn, these constraints define the shape of the fundamental diagram, which is then specified to the LWR model. Application of our methodology to a simulation case study, allows us to compare the tempo-spatial behavior of both models. Our results indicate that, in the presence of noise, the capacity flows in the derived fundamental diagram are overestimations of those of the STCA model. Directly specifying the STCA's capacity flows to the LWR fundamental diagram, effectively remedies most of the mismatches between both approach...
Dănilă, B.; Harko, T.; Mocanu, G.
2015-11-01
We investigate the transition to self-organized criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two-dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations, we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a self-organized critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one-dimensional signatures in the magnetic two-dimensional system, once the self-organized critical regime is established. The applications of the model for the study of gamma-ray bursts (GRBs) is briefly considered, and it is shown that some astrophysical parameters of the bursts, like the light curves, the maximum released energy and the number of peaks in the light curve can be reproduced and explained, at least on a qualitative level, by working in a framework in which the systems settles in a self-organized critical state via magnetic reconnection processes in the magnetized GRB fireball.
Yao Xiao
2015-01-01
Full Text Available This paper aimed to analyze the influence of drivers’ behavior of phone use while driving on traffic flow, including both traffic efficiency and traffic safety. An improved cellular automaton model was proposed to simulate traffic flow with distracted drivers based on the Nagel-Schreckenberg model. The driving characters of drivers using a phone were first discussed and a value representing the probability to use a phone while driving was put into the CA model. Simulation results showed that traffic flow rate was significantly reduced if some drivers used a phone compared to no phone use. The flow rate and velocity decreased as the proportion of drivers using a phone increased. While, under low density, the risk of traffic decreased first and then increased as the distracted drivers increased, the distracted behavior of drivers, like using a phone, could reduce the flow rate by 5 percent according to the simulation.
Nakazato, Ken'ichiro
2014-01-01
A new cellular automaton (CA) model is presented for the self-organized criticality (SOC) in recurrent bursts of soft gamma repeaters (SGRs), which are interpreted as avalanches of reconnection in the magnetosphere of neutron stars. The nodes of a regular dodecahedron and a truncated icosahedron are adopted as spherically closed grids enclosing a neutron star. It is found that the system enters the SOC state if there are sites where the expectation value of the added perturbation is nonzero. The energy distributions of SOC avalanches in CA simulations are described by a power law with a cutoff, which is consistent with the observations of SGR 1806-20 and SGR 1900+14. The power-law index is not universal and depends on the amplitude of the perturbation. This result shows that the SOC of SGRs can be illustrated not only by the crust quake model but also by the magnetic reconnection model.
Metastable Congested States in Multisegment Traffic Cellular Automaton
Nishimura, Yutaka; Cheon, Taksu; Seba, Petr
2005-01-01
We investigate a simple multisegment cellular automaton model of traffic flow. With the introduction of segment-dependent deceleration probability, metastable congested states in the intermediate density region emerge, and the initial state dependence of the flow is observed. The essential feature of three-phased structure empirically found in real-world traffic flow is reproduced without elaborate assumptions.
Multidimensional traveling waves in the Allen–Cahn cellular automaton
Ultradiscretization is a limiting procedure transforming a given difference equation into a cellular automaton. The cellular automaton constructed by this procedure preserves the essential properties of the original equation, such as the structure of exact solutions for integrable equations. In this article, a cellular automaton analog of the multidimensional Allen–Cahn equation which is not an integrable system is constructed by the ultradiscretization. Moreover, the traveling wave solutions for the resulting cellular automaton are given. The shape, behavior and stability of the solutions in ultradiscrete systems are similar to those in continuous systems. (paper)
Optimal traffic states in a cellular automaton for city traffic
Barlovic, Robert; Brockfeld, Elmar; Schreckenberg, Michael; Schadschneider, Andreas
2003-01-01
The impact of global traffic light control strategies for city networks is analyzed in a recently proposed cellular automaton model. The model combines basic ideas of the Biham-Middleton-Levine model for city traffic and the Nage-Schreckenberg model for highway traffic. The city network has a simple square lattice geometry. All streets and intersections are treated equally, i.e., there are no dominant streets.
Cellular automaton-based position sensitive detector equalization
Ferrando, Nestor [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)], E-mail: nesferjo@upvnet.upv.es; Herrero, V.; Cerda, J.; Lerche, C.W.; Colom, R.J.; Gadea, R.; Martinez, J.D.; Monzo, J.M.; Mateo, F.; Sebastia, A.; Benlloch, J.M. [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)
2009-06-01
Indirect position detectors based on scintillator crystals lack of spacial uniformity in their response. This happens due to crystal inhomogeneities and gain differences among the photomultiplier anodes. In order to solve this, PESIC, an integrated front-end for multianode photomultiplier based nuclear imaging devices was created. One of its main features is the digitally programmable gain adjustment for every photomultiplier output. On another front, cellular automata have been proved to be a useful method for dynamic system modeling. In this paper, a cellular automaton which emulates the behavior of the scintillator crystal, the photomultiplier and the front-end is introduced. Thanks to this model, an automatic energy-based calibration of the detector can be done by configuring the cellular automaton with experimental data and making it evolve up to an stable state. This can be useful as a precalibration method of the detector.
Investigating CTL mediated killing with a 3D cellular automaton.
Frederik Graw
2009-08-01
Full Text Available Cytotoxic T lymphocytes (CTLs are important immune effectors against intra-cellular pathogens. These cells search for infected cells and kill them. Recently developed experimental methods in combination with mathematical models allow for the quantification of the efficacy of CTL killing in vivo and, hence, for the estimation of parameters that characterize the effect of CTL killing on the target cell populations. It is not known how these population-level parameters relate to single-cell properties. To address this question, we developed a three-dimensional cellular automaton model of the region of the spleen where CTL killing takes place. The cellular automaton model describes the movement of different cell populations and their interactions. Cell movement patterns in our cellular automaton model agree with observations from two-photon microscopy. We find that, despite the strong spatial nature of the kinetics in our cellular automaton model, the killing of target cells by CTLs can be described by a term which is linear in the target cell frequency and saturates with respect to the CTL levels. Further, we find that the parameters describing CTL killing on the population level are most strongly impacted by the time a CTL needs to kill a target cell. This suggests that the killing of target cells, rather than their localization, is the limiting step in CTL killing dynamics given reasonable frequencies of CTL. Our analysis identifies additional experimental directions which are of particular importance to interpret estimates of killing rates and could advance our quantitative understanding of CTL killing.
Tucker, G. E.; Hobley, D. E. J.; Hutton, E.; Gasparini, N. M.; Istanbulluoglu, E.; Adams, J. M.; Nudurupati, S. S.
2015-11-01
CellLab-CTS 2015 is a Python-language software library for creating two-dimensional, continuous-time stochastic (CTS) cellular automaton models. The model domain consists of a set of grid nodes, with each node assigned an integer state-code that represents its condition or composition. Adjacent pairs of nodes may undergo transitions to different states, according to a user-defined average transition rate. A model is created by writing a Python code that defines the possible states, the transitions, and the rates of those transitions. The code instantiates, initializes, and runs one of four object classes that represent different types of CTS model. CellLab-CTS provides the option of using either square or hexagonal grid cells. The software provides the ability to treat particular grid-node states as moving particles, and to track their position over time. Grid nodes may also be assigned user-defined properties, which the user can update after each transition through the use of a callback function. As a component of the Landlab modeling framework, CellLab-CTS models take advantage of a suite of Landlab's tools and capabilities, such as support for standardized input and output.
Tian, Junfang; Ma, Shoufeng; Zhu, Chenqiang; Jiang, Rui; Ding, YaoXian
2015-01-01
This paper proposes an improved cellular automaton traffic flow model based on the brake light model, which takes into account that the desired time gap of vehicles is remarkably larger than one second. Although the hypothetical steady state of vehicles in the deterministic limit corresponds to a unique relationship between speeds and gaps in the proposed model, the traffic states of vehicles dynamically span a two-dimensional region in the plane of speed versus gap, due to the various randomizations. It is shown that the model is able to well reproduce (i) the free flow, synchronized flow, jam as well as the transitions among the three phases; (ii) the evolution features of disturbances and the spatiotemporal patterns in a car-following platoon; (iii) the empirical time series of traffic speed obtained from NGSIM data. Therefore, we argue that a model can potentially reproduce the empirical and experimental features of traffic flow, provided that the traffic states are able to dynamically span a 2D speed-gap...
This paper presents a three-dimensional frontal cellular automaton (FCA)-based model for modelling of microstructure evolution during technological processes. It is a hierarchical system. The first level is the FCAs, the second level contains modules of microstructural phenomena and the third level is presented by the models of technological processes. The module of the initial microstructure (IM) is one of the components of the second level. The IM allows one to obtain a digital material representation of given parameters, which can be used by other modules for further simulation. The parameters that must be assured by the IM module are the following: shape of the grains and distributions of the grain size, crystallographic orientation and boundary disorientation angles. To obtain the required parameters, the FCAs are first used as a tool for the creation of the basic microstructure characterized by the shape of the grains. The grain size distribution is obtained by the method, which changes nucleation and grain growth conditions. After the creation of the microstructure, crystallographic parameters are established. Distribution of the crystallographic orientation and boundary disorientation angles can be obtained independently or as associated parameters. Some examples of microstructures obtained by the IM module are presented in this paper. (paper)
An Option Pricing Model Based on Cellular Automaton%基于元胞自动机的期权定价模型
李捷
2011-01-01
Option pricing is one of the most difficult problems in financial research. The key to the problem is how to simulate the randomness of the underlying asset price. This paper designs and implements an option pricing model based on the cellular automaton, which treats market participants as the cells in the cellular automaton. The model uses cellular automaton rules to simulate the interactions between traders and the changes of underlying asset prices. The paper compares the output data of the model with the calculation results of the Black-Scholes model, tests the normality of the model＇s output data, and finds that the option pricing model based on the cellular automaton is not only feasible, but also more effective than the Black-Scholes model.%针对期权定价难于模拟基础资产价格波动随机性的问题，设计了基于元胞自动机的期权定价模型．该模型将市场参与者看作一个个的元胞，使用元胞规则来模拟金融市场中交易者之间的交互行为。从而在总体上模拟出基础资产价格的变化．比较了模型产出的数据和Black-Scholes模型的计算结果，检验了模型产出数据的正态性，发现基于元胞自动机的期权定价模型不仅具有可行性，而且比Black-Scholes模型更有效．
Merdan, Ziya [Dept. of Physics, Kirikkale Univ. (Turkey); Bayirli, Mehmet [Dept. of Physics, Balikesir Univ. (Turkey); Ozturk, Mustafa Kemal [Dept. of Mineral Analysis and Technology, MTA, Ankara (Turkey)
2010-08-15
The fractals are obtained by using the model of diffusion-limited aggregation (DLA) for the lattice with L = 80, 120, and 160. The values of the fractal dimensions are compared with the results of former studies. As increasing the linear dimensions they are in good agreement with those. The fractals obtained by using the model of DLA are simulated on the Creutz cellular automaton by using a two-bit demon. The values computed for the critical temperature and the static critical exponents within the framework of the finite-size scaling theory are in agreement with the results of other simulations and theoretical values. (orig.)
Effect of Driver Scope Awareness in the Lane Changing Maneuvers Using Cellular Automaton Model
Kohei Arai
2013-07-01
Full Text Available This paper investigated the effect of drivers’ visibility and their perception (e.g., to estimate the speed and arrival time of another vehicle on the lane changing maneuver. The term of scope awareness was used to describe the visibility required by the driver to make a perception about road condition and the speed of vehicle that exist in that road. A computer simulation model was conducted to show this driver awareness behavior. This studying attempt to precisely catching the lane changing behavior and illustrate the scope awareness parameter that reflects driver behavior. This paper proposes a simple cellular automata model for studying driver visibility effects of lane changing maneuver and driver perception of estimated speed. Different values of scope awareness were examined to capture its effect on the traffic flow. Simulation results show the ability of this model to capture the important features of lane changing maneuver and revealed the appearance of the short-thin solid line jam and the wide solid line jam in the traffic flow as the consequences of lane changing maneuver.
Lateral Drift Behavior Analysis in Mixed Bicycle Traffic: A Cellular Automaton Model Approach
Xue Feng
2016-01-01
Full Text Available Bicycle movements are always associated with lateral drifts. However, the impacts of lateral drift behavior, as well as variable lateral clearance maintaining behavior due to the variation of drift intensity, on mixed bicycle flow are not clear. This paper establishes a new cellular automata model to study typical characteristics of mixed bicycle traffic induced by lateral drift and its accompanying behavior. Based on derived positive correlation between passing speed and drift speed through survey, the occurrence probability of lateral drift and the degree of maintained lateral clearance are both introduced in accordance with the variance of passing speed. Then, in whole density region, firm conformity between simulation results and actual survey data is reached, which has seldom been achieved in previous studies. It is further verified that speed distortions in intermediate and high density region induced by assumption of constant lateral clearance requirements can be revised by introducing its variability characteristics. In addition, two contrastive impacts of lateral drift behavior are observed. That is, it causes speed fluctuation in low density while alleviating the speed fluctuation in relatively high density. These results are expected to be helpful to improve the simulation performance of mixed bicycle flow as well as depict more realistic vehicle-bicycle conflicts and so on.
A Programmable Hardware Cellular Automaton: Example of Data Flow Transformation
Samuel Charbouillot; Annie Pérez; Daniele Fronte
2008-01-01
We present an IP-core called PHCA which stands for programmable hardware cellular automaton. PHCA is a hardware implementation of a general purpose cellular automaton (CA) entirely programmable. The heart of this structure is a PE array with reconfigurable side links allowing the implementation of a 2D CA or a 1D CA. As an illustration of a PHCA program, we present the implementation of a symmetric cryptography algorithm called ISEA for Ising spin encryption algorithm. Indeed ISEA is based on...
Simulation of Dynamic Recrystallization Using Cellular Automaton Method
XIAO Hong; XIE Hong-biao; YAN Yan-hong; Jun YANAGIMOTO
2004-01-01
A new modeling approach that couples fundamental metallurgical principles of dynamical recrystallization with the cellular automaton method was developed to simulate the microstructural evolution linking with the plastic flow behavior during thermomechanical processing. The driving force for the nucleation and growth of dynamically recrystallized grain is the volume free energy due to the stored dislocation density of a deformation matrix. The growth terminates the impingement. The model is capable of simulating kinetics, microstructure and texture evolution during recrystallization. The predictions of microstructural evolution agree with the experimental results.
Effect of Driver Scope Awareness in the Lane Changing Maneuvers Using Cellular Automaton Model
Kohei Arai; Steven Ray Sentinuwo
2013-01-01
This paper investigated the effect of drivers’ visibility and their perception (e.g., to estimate the speed and arrival time of another vehicle) on the lane changing maneuver. The term of scope awareness was used to describe the visibility required by the driver to make a perception about road condition and the speed of vehicle that exist in that road. A computer simulation model was conducted to show this driver awareness behavior. This studying attempt to precisely catching the lane changin...
Kemper, A.; Schadschneider, A.; Zittartz, J.
2001-05-01
We apply the transfer-matrix density-matrix renormalization group (TMRG) to a stochastic model, the Domany-Kinzel cellular automaton, which exhibits a non-equilibrium phase transition in the directed percolation universality class. Estimates for the stochastic time evolution, phase boundaries and critical exponents can be obtained with high precision. This is possible using only modest numerical effort since the thermodynamic limit can be taken analytically in our approach. We also point out further advantages of the TMRG over other numerical approaches, such as classical DMRG or Monte Carlo simulations.
Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension
We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound with experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be efficiently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of a hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics. - Highlights: • The free Dirac field in one space dimension as a quantum cellular automaton. • Large scale limit of the automaton and the emergence of the Dirac equation. • Dispersive differential equation for the evolution of smooth states on the automaton. • Optimal discrimination between the
考虑驾驶愤怒的元胞自动机交通流模型%Cellular Automaton Model for Urban Traffic Flow Considering Driving Anger
郑华荣; 吴超仲; 马晓凤
2013-01-01
Driving behaviors of the angry drivers are quite different from those of the normal drivers.Because of these behavioral differences,driving speed,driving track etc.can be influenced,resulting in a different state of the road traffic flow.This paper re-defined the typical cellular automaton updating rules in mainly three aspects,i.e.,speed,lane change conditions as well as the safe distance and established the periodic boundary two-lane cellular automata traffic flow model considering the characteristics of angry driving behaviors based on NaSch cellular automaton traffic flow model.Both the model constructed and the classical NaSch traffic flow model were simulated in MATLAB and the comparison show that the variance in speed caused by driving anger had the most significant impact on traffic flow.The research can provide as the guidance on establishing models for cellular automaton traffic flow with consideration of driving anger and studying the influence of it to the urban traffic flow; the influence on traffic flow of other driver concerned factors,e.g.,driving fatigue,driving distraction need further research following this method.%驾驶员在愤怒时的驾驶行为表现与正常驾驶时存在较大的差异,这些行为差异会影响车辆的运行速度、运行轨迹等,进而对道路交通流产生影响.文中在NaSch元胞自动机交通流模型的基础上,考虑愤怒驾驶行为的特点,从运行速度、换道条件和安全距离3个方面重新确定元胞更新规则,构建考虑驾驶愤怒情绪的周期边界条件下双车道元胞自动机交通流模型.在MATLAB环境下,对所建模型与普通NaSch交通流模型进行对比仿真分析.结果表明,驾驶愤怒所引起的行驶速度变化对交通流影响明显.
Crossover scaling in the Domany-Kinzel cellular automaton
Lubeck, S.
2006-01-01
We consider numerically the crossover scaling behavior from the directed percolation universality class to the compact directed percolation universality class within the one-dimensional Domany-Kinzel cellular automaton. Our results are compared to those of a recently performed field theoretical approach. In particular, the value of the crossover exponent phi=2 is confirmed.
Prediction of useful casting structure applying Cellular Automaton method
Z. Ignaszak
2009-07-01
Full Text Available The results of simulation investigations of primary casting’s structure made of hypoeutectic Al-Si alloy using the Calcosoft system with CAFE 3D (Cellular Automaton Finite Element module are presented. CAFE 3-D module let to predict the structure formation of complete castings indicating the spatial distribution of columnar and equiaxed grains. That simplified model concerns only hypoeutectic phase. Simulation investigations of structure concern the useful casting of camshaft which solidified in high-insulation mould with properly chills distribution. These conditions let to apply the expedient locally different simplified the grains blocs geometry which are called by the authors as pseudo-crystals. The mechanical properties in selected cross-sections of casing are estimated.
N. Sefero(g)lu; B. Kutlu
2007-01-01
The critical behaviour of the three-dimensional Blume-Emery-Grifiiths (BEG) model is investigated at D / J = 0, -0.25 and -1 in the range of-1 ≤ K/J ≤ 0 for J = 100. The simulations are carried out on a simple cubic lattice using the heating algorithm improved from the Creutz cellular automaton (CCA) under periodic boundary conditions. The universality of the model are obtained for re-entrant and double re-entrant phase transitions which occur at certain D/J and K/J parameters, with J and K representing the nearest-neighbour bilinear and biquadratic interactions, and D being the single-ion anisotropy parameter. The values of static critical exponents β, γand v are estimated within the framework of the finite-size scaling theory. The results are compatible with the universal Ising critical behaviour for all continuous phase transitions in these ranges.
Modeling Hydraulic Failure Process Using Elasto-Plastic Cellular Automaton%水压致裂过程的弹塑性细胞自动机模拟
潘鹏志; 冯夏庭; 吴红晓; 孙峰; 周辉
2011-01-01
A self-developed numerical tool, i.e.an elasto-plastic cellular automaton (EPCA) was used to simulate the hydraulic fracturing process of rocks.The modeling method of hydraulic fracturing process of heterogeneous rocks with cellular automaton was developed.With the increase of fluid load, fluid will go into the new cracks.The new fluid seepage boundaries will be formed and the tensile stress induced by fluid will be applied on the crack boundaries.In this process, the mechanical properties and boundary conditions will be updated dynamically.The cellular automaton, which is based on the localization theory,makes this operation more conveniently.With this method, the failure process of wellbore rock specimen under hydraulic pressure was simulated, by considering different heterogeneity and different inner radius of the wellbore.It is concluded that, in hydraulic fracturing process, the critical fluid pressure, crack propagation and final failure patterns etc.are greatly influenced by the heterogeneity of the rock, the boundary geometry etc.%利用自行研发的弹塑性细胞自动机模型和模拟系统,建立了非均质岩石水压致裂过程的细胞自动机模拟方法.该方法能够反映流体在水力梯度作用下进入新生微裂隙、形成新的流体渗流边界而对该边界产生张拉效应,并引起微裂隙的进一步扩展、贯通,最终形成宏观裂纹的过程,可以方便地进行水压致裂过程中边界条件和水力参数的动态更新.同时,研究了不同均质度和井筒内径对水压致裂行为的影响.结果表明,随着井筒内径增加,极限水压力降低,而破裂模式基本相似,模拟结果与典型实验现象吻合较好.
EVOLUTION COMPLEXITY OF THEELEMENTARY CELLULAR AUTOMATON OF RULE 22
WangYi; JiangZhisong
2002-01-01
Cellular automata are the discrete dynamical systems of simple construction but with complex and varied behaviors. In this paper, the elementary cellular automaton of rule 22 is studied by the tools of formal language theory and symbolic dynamics. Its temporal evolution orbits are coarse-grained into evolution sequences and the evolution languages are defined. It is proved that for every n≥2 its width n evolution language is not regular.
Dirac Quantum Cellular Automaton from Split-step Quantum Walk
Mallick, Arindam
2015-01-01
Simulations of one quantum system by an other has an implications in realization of quantum machine that can imitate any quantum systems and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using different set of conditions which are not uniquely defined. The form of the operators in these model are not always in implementable configuration on an other system. Here, starting from a split-step discrete-time quantum walk (DTQW) which are uniquely defined for experimental implementation, we recover the Dirac quantum cellular automaton (DQCA). This will bridge the connection between Dirac equation(DE)-DQCA-DTQW and eliminate the explicit use of invariance, symmetries and limiting range of parameter to establish the connections. For a combination of par...
A Programmable Hardware Cellular Automaton: Example of Data Flow Transformation
Samuel Charbouillot
2008-01-01
Full Text Available We present an IP-core called PHCA which stands for programmable hardware cellular automaton. PHCA is a hardware implementation of a general purpose cellular automaton (CA entirely programmable. The heart of this structure is a PE array with reconfigurable side links allowing the implementation of a 2D CA or a 1D CA. As an illustration of a PHCA program, we present the implementation of a symmetric cryptography algorithm called ISEA for Ising spin encryption algorithm. Indeed ISEA is based on a 2D Ising spin lattice presenting random series of disordered spin configurations. The main idea of ISEA is to use this disorder to encrypt data. Efficiency of ISEA and PHCA implementation results are given.
A virtual front tracking modified cellular automaton (CA) method is applied to simulate solid phase transformation with a specific crystallographic preferred orientation in a TA15 alloy, to eliminate the dependence of the traditional CA method on space meshing. Simulation results demonstrate the capabilities of the new model in growth anisotropy modeling at large space and time scales, as well as quantitative analysis and description of the precipitated new phase morphology relates to the solute diffusion space by comparison with the diagonal modeling method and rotation of cell sites technique. The isothermal phase transformation kinetics is analysed, which exhibits the desired agreement with the prediction result of the Johnson–Mehl–Avrami analytical equation, thereby a time–temperature-transformation curve is predicted. The crystallography characteristics are consistent with electron backscattered diffraction analysis data. Using the established model, microstructure evolution during the isothermal heat treatment of the TA15 alloy is simulated so that the microstructure heredity with thermal cycling is vividly reflected. (paper)
Integrability of a deterministic cellular automaton driven by stochastic boundaries
Prosen, Tomaž; Mejía-Monasterio, Carlos
2016-05-01
We propose an interacting many-body space–time-discrete Markov chain model, which is composed of an integrable deterministic and reversible cellular automaton (rule 54 of Bobenko et al 1993 Commun. Math. Phys. 158 127) on a finite one-dimensional lattice {({{{Z}}}2)}× n, and local stochastic Markov chains at the two lattice boundaries which provide chemical baths for absorbing or emitting the solitons. Ergodicity and mixing of this many-body Markov chain is proven for generic values of bath parameters, implying the existence of a unique nonequilibrium steady state. The latter is constructed exactly and explicitly in terms of a particularly simple form of matrix product ansatz which is termed a patch ansatz. This gives rise to an explicit computation of observables and k-point correlations in the steady state as well as the construction of a nontrivial set of local conservation laws. The feasibility of an exact solution for the full spectrum and eigenvectors (decay modes) of the Markov matrix is suggested as well. We conjecture that our ideas can pave the road towards a theory of integrability of boundary driven classical deterministic lattice systems.
The cellular automaton (CA) method coupling fundamental metallurgical principles was used to simulate the initial microstructure and dynamic recrystallization (DRX) of 30Cr2Ni4MoV rotor steel. For the initial microstructure generation, reasonable transformation rules were established based on the thermodynamic mechanism, the activation energy and the curvature-driven mechanism. For the purposes of obtaining the material constants which were used in the CA model for DRX, including initial grain size, nucleation rate, softening parameter and activation energy, the hot deformation characteristics of 30Cr2Ni4MoV rotor steel were investigated by uniaxial hot compression tests on Gleeble-3500 machine. The effect of a wide range of thermomechanical processing parameters (temperature and strain rate) on the nucleation rate, the percentage of DRX and the final grain size were investigated. By comparison of the flow stress–strain curves and the metallographs, it was shown that the CA model coupling fundamental metallurgical principles can accurately simulate the microstructural evolution and the plastic flow behavior for 30Cr2Ni4MoV rotor steel at various deformation parameters
Interval maps associated to the cellular automaton rule 184
We associate to the cellular automaton elementary rule 184 an interval map defined in [0,1]. We show that this interval map is characterized by a functional equation which depends directly on the local rule and also depends on the choice to represent numbers in base 2. The functional equation is the analytical expression of the interval map self-similarity. We also compute a family of transition matrices which characterizes the effect of the interval map on a family of partitions of the interval [0,1]. We show how the family of matrices can be built with a recursive algorithm which depends on the local rule.
Cellular Automaton Simulation of Evacuation Process in Story
MA Chang-Qun; ZHENG Rong-Sen; GAO Chun-Yuan; QIU Bing; DENG Min-Yi; KONC Ling-Jiang; LIU Mu-Ren
2008-01-01
Computer simulations on the evacuation process in a story are launched with cellular automaton in this article. The story is composed of five rooms and one corridor. Influence of various parameters on the evacuation process is investigated. It shows that the width of the door of rooms has little influence but the width of the corridor and themaximum velocity of the pedestrian have great influence on the time for evacuation. The relation between evacuation time and the width of corridor is found as tc ∝ W-.0.84. It is also found that appropriate shape of the room is helpful to evacuation.
Mendonça, J. Ricardo G.
2016-07-01
We investigate the inactive-active phase transition in an array of additive (exclusive-or) cellular automata (CA) under noise. The model is closely related with the Domany-Kinzel (DK) probabilistic cellular automaton (PCA), for which there are rigorous as well as numerical estimates on the transition probabilities. Here, we characterize the critical behavior of the noisy additive cellular automaton by mean field analysis and finite-size scaling and show that its phase transition belongs to the directed percolation universality class of critical behavior. As a by-product of our analysis, we argue that the critical behavior of the noisy elementary CA 90 and 102 (in Wolfram’s enumeration scheme) must be the same. We also perform an empirical investigation of the mean field equations to assess their quality and find that away from the critical point (but not necessarily very far away) the mean field approximations provide a reasonably good description of the dynamics of the PCA.
Neural model of finite state automaton based on hysteresis microensembles
The artificial neural network approach for the implementation of a deterministic finite state automaton has been considered. The previously proposed model of the micro-ensemble has been used as a building block for the automaton. It has been shown that hysteresis dynamics of such a model provides the memorize property needed for a neural network implementing the automaton. In addition, a method for the transformation of any deterministic finite state automaton into a functionally equivalent neural network has been proposed
Johnston, Matthew W; Purkis, Sam J
2013-01-01
The Indo-pacific panther grouper (Chromileptes altiveli) is a predatory fish species and popular imported aquarium fish in the United States which has been recently documented residing in western Atlantic waters. To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases. However, unlike lionfish, the panther grouper is not yet thought to have an established breeding population in the Atlantic. Using a proven modeling technique developed to track the lionfish invasion, presented is the first known estimation of the potential spread of panther grouper in the Atlantic. The employed cellular automaton-based computer model examines the life history of the subject species including fecundity, mortality, and reproductive potential and combines this with habitat preferences and physical oceanic parameters to forecast the distribution and periodicity of spread of this potential new invasive species. Simulations were examined for origination points within one degree of capture locations of panther grouper from the United States Geological Survey Nonindigenous Aquatic Species Database to eliminate introduction location bias, and two detailed case studies were scrutinized. The model indicates three primary locations where settlement is likely given the inputs and limits of the model; Jupiter Florida/Vero Beach, the Cape Hatteras Tropical Limit/Myrtle Beach South Carolina, and Florida Keys/Ten Thousand Islands locations. Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established. This insight is valuable if attempts are to be made to halt this potential marine invasive species. PMID:24009726
Matthew W Johnston
Full Text Available The Indo-pacific panther grouper (Chromileptes altiveli is a predatory fish species and popular imported aquarium fish in the United States which has been recently documented residing in western Atlantic waters. To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles, which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases. However, unlike lionfish, the panther grouper is not yet thought to have an established breeding population in the Atlantic. Using a proven modeling technique developed to track the lionfish invasion, presented is the first known estimation of the potential spread of panther grouper in the Atlantic. The employed cellular automaton-based computer model examines the life history of the subject species including fecundity, mortality, and reproductive potential and combines this with habitat preferences and physical oceanic parameters to forecast the distribution and periodicity of spread of this potential new invasive species. Simulations were examined for origination points within one degree of capture locations of panther grouper from the United States Geological Survey Nonindigenous Aquatic Species Database to eliminate introduction location bias, and two detailed case studies were scrutinized. The model indicates three primary locations where settlement is likely given the inputs and limits of the model; Jupiter Florida/Vero Beach, the Cape Hatteras Tropical Limit/Myrtle Beach South Carolina, and Florida Keys/Ten Thousand Islands locations. Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established. This insight is valuable if attempts are to be made to halt this potential marine invasive species.
A two-lane cellular automaton traffic flow model with the influence of driver, vehicle and road
Zhao, Han-Tao; Nie, Cen; Li, Jing-Ru; Wei, Yu-Ao
2016-07-01
On the basis of one-lane comfortable driving model, this paper established a two-lane traffic cellular automata model, which improves the slow randomization effected by brake light. Considering the driver psychological characteristics and mixed traffic, we studied the lateral influence between vehicles on adjacent lanes. Through computer simulation, the space-time diagram and the fundamental figure under different conditions are obtained. The study found that aggressive driver makes a slight congestion in low-density traffic and improves the capacity of high-density traffic, when the density exceeds 20pcu/km the more aggressive drivers the greater the flow, when the density below 40pcu/km driver character makes an effect, the more cautious driver, the lower the flow. The ratio of big cars has the same effect as the ratio of aggressive drivers. Brake lights have the greatest impact on traffic flow and when the density exceeds 10pcu/km the traffic flow fluctuates. Under periodic boundary conditions, the disturbance of road length on traffic is minimal. The lateral influence only play a limited role in the medium-density conditions, and only affect the average speed of traffic at low density.
The threshold of coexistence and critical behaviour of a predator-prey cellular automaton
We study a probabilistic cellular automaton to describe two population biology problems: the threshold of species coexistence in a predator-prey system and the spreading of an epidemic in a population. By carrying out mean-field approximations and numerical simulations we obtain the phase boundaries (thresholds) related to the transition between an active state, where prey and predators present a stable coexistence, and a prey absorbing state. The numerical estimates for the critical exponents show that the transition belongs to the directed percolation universality class. In the limit where the cellular automaton maps into a model for the spreading of an epidemic with immunization we observe a crossover from directed percolation class to the dynamic percolation class. Patterns of growing clusters related to species coexistence and spreading of epidemic are shown and discussed
Coarse-grained cellular automaton for traffic systems
Krawczyk, Malgorzata J
2012-01-01
A coarse-grained cellular automaton is proposed to simulate traffic systems. There, cells represent road sections. A cell can be in two states: jammed or passable. Numerical calculations are performed for a piece of square lattice with open boundary conditions, for the same piece with some cells removed and for a map of a small city. The results indicate the presence of a phase transition in the parameter space, between two macroscopic phases: passable and jammed. The results are supplemented by exact calculations of the stationary probabilities of states for the related Kripke structure constructed for the traffic system. There, the symmetry-based reduction of the state space allows to partially reduce the computational limitations of the numerical method.
Detector independent cellular automaton algorithm for track reconstruction
Track reconstruction is one of the most challenging problems of data analysis in modern high energy physics (HEP) experiments, which have to process per second of the order of 107 events with high track multiplicity and density, registered by detectors of different types and, in many cases, located in non-homogeneous magnetic field. Creation of reconstruction package common for all experiments is considered to be important in order to consolidate efforts. The cellular automaton (CA) track reconstruction approach has been used successfully in many HEP experiments. It is very simple, efficient, local and parallel. Meanwhile it is intrinsically independent of detector geometry and good candidate for common track reconstruction. The CA implementation for the CBM experiment has been generalized and applied to the ALICE ITS and STAR HFT detectors. Tests with simulated collisions have been performed. The track reconstruction efficiencies are at the level of 95% for majority of the signal tracks for all detectors.
Detector independent cellular automaton algorithm for track reconstruction
Kisel, Ivan; Kulakov, Igor; Zyzak, Maksym [Goethe Univ. Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Collaboration: CBM-Collaboration
2013-07-01
Track reconstruction is one of the most challenging problems of data analysis in modern high energy physics (HEP) experiments, which have to process per second of the order of 10{sup 7} events with high track multiplicity and density, registered by detectors of different types and, in many cases, located in non-homogeneous magnetic field. Creation of reconstruction package common for all experiments is considered to be important in order to consolidate efforts. The cellular automaton (CA) track reconstruction approach has been used successfully in many HEP experiments. It is very simple, efficient, local and parallel. Meanwhile it is intrinsically independent of detector geometry and good candidate for common track reconstruction. The CA implementation for the CBM experiment has been generalized and applied to the ALICE ITS and STAR HFT detectors. Tests with simulated collisions have been performed. The track reconstruction efficiencies are at the level of 95% for majority of the signal tracks for all detectors.
Radiatively-Driven Cosmology in the Cellular Automaton Universe
Kurucz, R L
2006-01-01
This is an updated version of my paper "An outline of radiatively-driven cosmology" (Kurucz 2000). Here the Big Bang universe is replaced by a finite cellular automaton universe with no expansion (Kurucz 2006). The Big Bang is replaced by many little bangs spread throughout the universe that interact to produce the initial perturbations that form Population III stars, globular clusters, and galaxies, but no large-scale structure. These perturbations evolve into the universe as we now observe it. Evolution during the first billion years is controlled by radiation. Globular clusters are formed by radiatively-driven implosions, galaxies are formed by radiatively-triggered gravitational collapse of systems of globular clusters, and voids and the microwave background are formed by radiatively-driven expansion. After this period most of the strong radiation sources are exhausted and the universe relaxes into gravitational old age as we know it. To relieve the boredom we present the results of gedanken experiments (...
Harun, R.
2013-05-01
This research provides an opportunity of collaboration between urban planners and modellers by providing a clear theoretical foundations on the two most widely used urban land use models, and assessing the effectiveness of applying the models in urban planning context. Understanding urban land cover change is an essential element for sustainable urban development as it affects ecological functioning in urban ecosystem. Rapid urbanization due to growing inclination of people to settle in urban areas has increased the complexities in predicting that at what shape and size cities will grow. The dynamic changes in the spatial pattern of urban landscapes has exposed the policy makers and environmental scientists to great challenge. But geographic science has grown in symmetry to the advancements in computer science. Models and tools are developed to support urban planning by analyzing the causes and consequences of land use changes and project the future. Of all the different types of land use models available in recent days, it has been found by researchers that the most frequently used models are Cellular Automaton (CA) and Artificial Neural Networks (ANN) models. But studies have demonstrated that the existing land use models have not been able to meet the needs of planners and policy makers. There are two primary causes identified behind this prologue. First, there is inadequate understanding of the fundamental theories and application of the models in urban planning context i.e., there is a gap in communication between modellers and urban planners. Second, the existing models exclude many key drivers in the process of simplification of the complex urban system that guide urban spatial pattern. Thus the models end up being effective in assessing the impacts of certain land use policies, but cannot contribute in new policy formulation. This paper is an attempt to increase the knowledge base of planners on the most frequently used land use model and also assess the
Simulation of Magnesium Alloy AZ91D Microstructure Using Modified Cellular Automaton Method
HUO Liang; LI Bin; SHI Yufeng; XU Qingyan; HAN Zhiqiang; LIU Baicheng
2009-01-01
A two-dimensional modified cellular automaton model was developed to simulate the solidification process of magnesium alloy, The stochastic nucleation, solute redistribution, and growth anisotropy effects were taken into account in the present model. The model was used to simulate the grain size of magnesium alloy AZ91D for various cooling rates during the solidification process. To quantitatively validate the current model, metallographic expedments were carded out on specimens obtained from sand mold AZ91D step castings. The metallographic results agree well with the prediction results. The current model can be used to accurately predict the grain sizes of cast AZ91D magnesium alloy.
Cellular automaton simulation of peritectic solidification of a C-Mn steel
Su Bin; Han Zhiqiang; Liu Baicheng
2012-01-01
A cellular automaton model has been developed to simulate the microstructure evolution of a C-Mn steel during the peritectic solidification. In the model, the thermodynamics and solute diffusion of multi-component systems were taken into account by using Thermo-Calc and Dictra software package. Scheil model was used to predict the relationship between the solid fraction and the temperature, which was used to calculate the movement velocity of the L/δ and the L/γ interfaces. A mixed-mode model...
Parallel track reconstruction in CMS using the cellular automaton approach
The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is a general-purpose particle detector and comprises the largest silicon-based tracking system built to date with 75 million individual readout channels. The precise reconstruction of particle tracks from this tremendous amount of input channels is a compute-intensive task. The foreseen LHC beam parameters for the next data taking period, starting in 2015, will result in an increase in the number of simultaneous proton-proton interactions and hence the number of particle tracks per event. Due to the stagnating clock frequencies of individual CPU cores, new approaches to particle track reconstruction need to be evaluated in order to cope with this computational challenge. Track finding methods that are based on cellular automata (CA) offer a fast and parallelizable alternative to the well-established Kalman filter-based algorithms. We present a new cellular automaton based track reconstruction, which copes with the complex detector geometry of CMS. We detail the specific design choices made to allow for a high-performance computation on GPU and CPU devices using the OpenCL framework. We conclude by evaluating the physics performance, as well as the computational properties of our implementation on various hardware platforms and show that a significant speedup can be attained by using GPU architectures while achieving a reasonable physics performance at the same time.
Cellular automaton based track reconstruction in the STAR TPC
STAR is an active collider heavy-ion experiment at RHIC/BNL (Upton, USA). The main tracking detector of the experiment is a Time Projection Chamber (TPC). For future collision rates of up to 1 kHz STAR experiment requires a fast track reconstruction procedure, which can deal with high track densities (up to 10-20 thousands tracks). The Cellular Automaton (CA) algorithm is based on local reconstruction and therefore is robust, fast and easily parallelized, that makes it perfectly suitable for the task under consideration. The algorithm has been implemented by adaptation of the Alice HLT TPC CA track finder for the STAR TPC detector. The efficiency, speed and robustness have been increased. The algorithm is highly parallelized on both data (uses SIMD instruction set) and task (uses Threading Building Blocks technology) levels. The memory usage in the algorithm is optimized as well. Tests with Au-Au at 200 AGeV real data events have been performed. It has been shown that event reconstruction procedure with the CA based track finder demonstrates better track reconstruction efficiency by 9% with respect to the previous scalar version based on track following with Kalman Filter. CA based track finder takes only 10% of event reconstruction procedure.
Swallowing a cellular automaton pill: predicting drug release from a matrix tablet
Buchla, Ezra; Hinow, Peter; Najera, Aisha; Radunskaya, AMi
2012-01-01
Matrix tablets are drug delivery devices designed to release a drug in a controlled manner over an extended period of time. We develop a cellular automaton (CA) model for the dissolution and release of a water-soluble drug and excipient from a matrix tablet of water-insoluble polymer. Cells of the CA are occupied by drug, excipient, water or polymer and the CA updating rules simulate the dissolution of drug and excipient and the subsequent diffusion of the dissolved substances. In addition we...
Cellular automaton simulation of peritectic solidification of a C-Mn steel
Su Bin
2012-08-01
Full Text Available A cellular automaton model has been developed to simulate the microstructure evolution of a C-Mn steel during the peritectic solidification. In the model, the thermodynamics and solute diffusion of multi-component systems were taken into account by using Thermo-Calc and Dictra software package. Scheil model was used to predict the relationship between the solid fraction and the temperature, which was used to calculate the movement velocity of the L/δ and the L/γ interfaces. A mixed-mode model in multi-component systems was adopted to calculate the movement velocity of the δ/γ interface. To validate the cellular automaton model, the variation of manganese distribution was studied. The simulated results showed a good agreement with experimental results reported in literatures. Meanwhile, the simulated growth kinetics of peritectic solidification agreed well with the experimental results obtained using confocal scanning laser microscopy (CSLM. The model can simulate the growth kinetics of the peritectic solidification and the distribution of concentrations of all components in grains.
Evolutionary continuous cellular automaton for the simulation of wet etching of quartz
Anisotropic wet chemical etching of quartz is a bulk micromachining process for the fabrication of micro-electro-mechanical systems (MEMS), such as resonators and temperature sensors. Despite the success of the continuous cellular automaton for the simulation of wet etching of silicon, the simulation of the same process for quartz has received little attention—especially from an atomistic perspective—resulting in a lack of accurate modeling tools. This paper analyzes the crystallographic structure of the main surface orientations of quartz and proposes a novel classification of the surface atoms as well as an evolutionary algorithm to determine suitable values for the corresponding atomistic removal rates. Not only does the presented evolutionary continuous cellular automaton reproduce the correct macroscopic etch rate distribution for quartz hemispheres, but it is also capable of performing fast and accurate 3D simulations of MEMS structures. This is shown by several comparisons between simulated and experimental results and, in particular, by a detailed, quantitative comparison for an extensive collection of trench profiles. (paper)
Lattice-gas cellular-automaton method for semiclassical transport in semiconductors
Kometer, K.; Zandler, G.; Vogl, P.
1992-07-01
A cellular-automaton method for solving the Boltzmann equation for semiclassical transport is presented and applied to nonlinear transport in semiconductors. It is shown that the Boltzmann equation for semiconductor transport can be transformed into a Boolean master equation, which represents a cellular automaton with nearest-neighbor interaction in position space. The resulting numerical algorithm is physically equivalent to the ensemble Monte Carlo method and tailored to modern vector or parallel processing. The algorithm is well suited for carrier systems with pronounced spatial inhomogeneities, large density variations, and scattering kernels involving single- and more-particle interactions. Several tests of the cellular-automaton technique for nonlinear transport in Si and GaAs are presented. The results agree very well with published Monte Carlo calculations.
M R Varma; R Sasikumar; S G K Pillai; P K Nair
2001-06-01
A two-dimensional diffusion based model is developed to describe transformation of austenite into ferrite and pearlite under continuous cooling conditions. The nucleation of ferrite is assumed to occur over grain boundaries and the nucleation of pearlite is assumed to be taking place all over the grain and at growing ferrite–austenite interfaces, when the composition and temperature conditions are favourable. A cellular automaton algorithm, with transformation rules based on this model is used for the growth of ferrite and pearlite. Model predicted results for continuous cooling transformations are verified by comparing the model predicted microstructure features with the experimental measurements for two sets of plain carbon steels of different composition and austenite grain size. Using the model, it is possible to generate results like undercooling to start ferrite and pearlite transformations, which are difficult to obtain experimentally.
Monte Carlo investigation of the critical behavior of Stavskaya's probabilistic cellular automaton.
Mendonça, J Ricardo G
2011-01-01
Stavskaya's model is a one-dimensional probabilistic cellular automaton (PCA) introduced in the end of the 1960s as an example of a model displaying a nonequilibrium phase transition. Although its absorbing state phase transition is well understood nowadays, the model never received a full numerical treatment to investigate its critical behavior. In this Brief Report we characterize the critical behavior of Stavskaya's PCA by means of Monte Carlo simulations and finite-size scaling analysis. The critical exponents of the model are calculated and indicate that its phase transition belongs to the directed percolation universality class of critical behavior, as would be expected on the basis of the directed percolation conjecture. We also explicitly establish the relationship of the model with the Domany-Kinzel PCA on its directed site percolation line, a connection that seems to have gone unnoticed in the literature so far. PMID:21405729
Dirac quantum cellular automaton in one dimension: Zitterbewegung and scattering from potential
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Tosini, Alessandro
2013-09-01
We study the dynamical behavior of a quantum cellular automaton which reproduces the Dirac dynamics in the limit of small wave vectors and masses. We present analytical evaluations along with computer simulations, showing that the automaton exhibits typical Dirac dynamical features, such as the Zitterbewegung and, considering the scattering from potential, the so-called Klein paradox. The motivation is to show concretely how pure processing of quantum information can lead to particle mechanics as an emergent feature, an issue that has been the focus of solid-state, optical, and atomic-physics quantum simulators.
The Dirac Quantum Cellular Automaton in one dimension: Zitterbewegung and scattering from potential
Bisio, Alessandro; Tosini, Alessandro
2013-01-01
We study the dynamical behaviour of the quantum cellular automaton of Refs. [1, 2], which reproduces the Dirac dynamics in the limit of small wavevectors and masses. We present analytical evaluations along with computer simulations, showing how the automaton exhibits typical Dirac dynamical features, as the Zitterbewegung and the scattering behaviour from potential that gives rise to the so-called Klein paradox. The motivation is to show concretely how pure processing of quantum information can lead to particle mechanics as an emergent feature, an issue that has been the focus of solid-state, optical and atomic-physics quantum simulator.
Simulation of plant communities with a cellular automaton
Gassmann, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
With a modelling approach based on cellular automata, five observed types of plant development can be simulated. In addition, the proposed model shows a strong tendency towards the formation of patches and a high degree of dynamical and structural instability leading to limits of predictability for the asymptotic solution chosen by the system among several possible metastable patterns (multistability). Further, external fluctuations can be shown to have advantages for certain plant types. The presented model unifies the fundamental dichotomy in vegetation dynamics between determinism (understood as predictability) and disorder (chance effects) by showing the outcome of both classical theories as special cases. (author) 2 figs., 4 refs.
Theory of multicolor lattice gas - A cellular automaton Poisson solver
Chen, H.; Matthaeus, W. H.; Klein, L. W.
1990-01-01
The present class of models for cellular automata involving a quiescent hydrodynamic lattice gas with multiple-valued passive labels termed 'colors', the lattice collisions change individual particle colors while preserving net color. The rigorous proofs of the multicolor lattice gases' essential features are rendered more tractable by an equivalent subparticle representation in which the color is represented by underlying two-state 'spins'. Schemes for the introduction of Dirichlet and Neumann boundary conditions are described, and two illustrative numerical test cases are used to verify the theory. The lattice gas model is equivalent to a Poisson equation solution.
Dirac Cellular Automaton from Split-step Quantum Walk
Mallick, Arindam; Chandrashekar, C. M.
2016-05-01
Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory.
Dirac Cellular Automaton from Split-step Quantum Walk.
Mallick, Arindam; Chandrashekar, C M
2016-01-01
Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory. PMID:27184159
Dirac Cellular Automaton from Split-step Quantum Walk
Mallick, Arindam; Chandrashekar, C. M.
2016-01-01
Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory. PMID:27184159
A cellular automaton simulation of contaminant transport in porous media
A simulation tool to investigate radionuclide transport in porous groundwater flow is described. The flow systems of interest are those important in determining the fate of radionuclides emplaced in an underground repository, such as saturated matrix flow, matrix and fracture flow in the unsaturated zone, and viscous fingering in porous fractures. The work discussed here is confined to consideration of saturated flow in porous media carrying a dilute, sorptive species. The simulation technique is based on a special class of cellular automata known as lattice gas automata (LGA) which are capable of predicting hydrodynamic behavior. The original two-dimensional scheme (that of Frisch et. al. known as the FHP model) used particles of unit mass traveling on a triangular lattice with unit velocity and undergoing simple collisions which conserve mass and momentum at each node. These microscopic rules go over to the incompressible Navier-Stokes equations in the macroscopic limit. One of the strengths of this technique is the natural way that heterogeneities, such as boundaries, are accommodated. Complex geometries such as those associated with porous microstructures can be modeled effectively. Several constructions based on the FHP model have been devised, including techniques to eliminate statistical noise, extension to three dimensions, and the addition of surface tension which leads to multiphase flow
Stable oscillations of a predator-prey probabilistic cellular automaton: a mean-field approach
Tome, Tania; Carvalho, Kelly C de [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo (Brazil)
2007-10-26
We analyze a probabilistic cellular automaton describing the dynamics of coexistence of a predator-prey system. The individuals of each species are localized over the sites of a lattice and the local stochastic updating rules are inspired by the processes of the Lotka-Volterra model. Two levels of mean-field approximations are set up. The simple approximation is equivalent to an extended patch model, a simple metapopulation model with patches colonized by prey, patches colonized by predators and empty patches. This approximation is capable of describing the limited available space for species occupancy. The pair approximation is moreover able to describe two types of coexistence of prey and predators: one where population densities are constant in time and another displaying self-sustained time oscillations of the population densities. The oscillations are associated with limit cycles and arise through a Hopf bifurcation. They are stable against changes in the initial conditions and, in this sense, they differ from the Lotka-Volterra cycles which depend on initial conditions. In this respect, the present model is biologically more realistic than the Lotka-Volterra model.
基于元胞自动机带有干预机制的传染病模型%A cellular automaton model with medical intervention for epidemic propagation
关超; 彭云; 袁文燕
2011-01-01
Based on the classical SEIR ( susceptible, exposed, infections, and recovered) model, a cellular automaton (CA) model with medical intervention is proposed to simulate epidemic propagation. The model describes the outbreak of infectious diseases dynamically at different time steps. The newly constructed rules of neighborhood can not only reflect the regional characteristics of epidemic propagation, but also indicate flow characteristics. The CA model can reflect the characteristics of spread, such as periodic and fade-type transmission and the peak value of outbreak. The effects of medical intervention and vaccination strategy have been studied. The proposed model can serve as a quantitative basis for future medical intervention.%在经典SEIR模型的基础上,提出了基于元胞自动机带有干预机制的传染病模型,模拟了在医疗干预下传染病的传播过程,动态刻画了不同时间段疾病的爆发情况,体现了传染病区域性传播的特性以及流动性传染的特点.不同传染病各自传播的特征如周期性传播、消退型传播、爆发等,均能在模拟中体现出来,符合传染病传播的规律.仿真结果表明医疗干预和疫苗等医疗措施对传染病传播起到一定的抑制作用,量化了医疗干预的效果,为采取合理的预防及干预手段提供了量化依据.
Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; Smolin, Alexey Yu., E-mail: igkon@ispms.tsc.ru; Konovalenko, Ivan S., E-mail: igkon@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Promakhov, Vladimir V. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)
2014-11-14
Movable cellular automaton method was used for investigating the mechanical behavior of ceramic composites under uniaxial compression. A 2D numerical model of ceramic composites based on oxides of zirconium and aluminum with different structural parameters was developed using the SEM images of micro-sections of a real composite. The influence of such structural parameters as the geometrical dimensions of layers, inclusions, and their spatial distribution in the sample, the volume content of the composite components and their mechanical properties (as well as the amount of zirconium dioxide that underwent the phase transformation) on the fracture, strength, deformation and dissipative properties was investigated.
Accountability Analysis of Electronic Commerce Protocols by Finite Automaton Model
Xie Xiao-yao; Zhang Huan-guo
2004-01-01
The accountability of electronic commerce protocols is an important aspect to insures security of electronic transaction. This paper proposes to use Finite Automaton (FA) model as a new kind of framework to analyze the trans action protocols in the application of electronic commerce.
Simulation of Microstructure during Laser Rapid Forming Solidification Based on Cellular Automaton
Zhi-jian Wang
2014-01-01
Full Text Available The grain microstructure of molten pool during the solidification of TC4 titanium alloy in the single point laser cladding was investigated based on the CAFE model which is the cellular automaton (CA coupled with the finite element (FE method. The correct temperature field is the prerequisite for simulating the grain microstructure during the solidification of the molten pool. The model solves the energy equation by the FE method to simulate the temperature distribution in the molten pool of the single point laser cladding. Based on the temperature field, the solidification microstructure of the molten pool is also simulated with the CAFE method. The results show that the maximum temperature in the molten pool increases with the laser power and the scanning rate. The laser power has a larger influence on the temperature distribution of the molten pool than the scanning rate. During the solidification of the molten pool, the heat at the bottom of the molten pool transfers faster than that at the top of the molten pool. The grains rapidly grow into the molten pool, and then the columnar crystals are formed. This study has a very important significance for improving the quality of the structure parts manufactured through the laser cladding forming.
Swallowing a cellular automaton pill: predicting drug release from a matrix tablet
Buchla, Ezra; Najera, Aisha; Radunskaya, Ami
2012-01-01
Matrix tablets are drug delivery devices designed to release a drug in a controlled manner over an extended period of time. We develop a cellular automaton (CA) model for the dissolution and release of a water-soluble drug and excipient from a matrix tablet of water-insoluble polymer. Cells of the CA are occupied by drug, excipient, water or polymer and the CA updating rules simulate the dissolution of drug and excipient and the subsequent diffusion of the dissolved substances. In addition we simulate the possible fracture of brittle drug and excipient powders during the tablet compression and the melting of the polymer during a possible thermal curing process. Different stirring mechanisms that facilitate the transport of dissolved drug in the fluid in which the tablet is immersed are modeled in the water cells adjacent to the boundary of the tablet. We find that our simulations can reproduce experimental drug release profiles. Our simulation tool can be used to streamline the formulation and production of s...
Probabilistic initial value problem for cellular automaton rule 172
Fuks, Henryk
2010-01-01
We present a method of solving of the probabilistic initial value problem for cellular automata (CA) using CA rule 172 as an example. For a disordered initial condition on an infinite lattice, we derive exact expressions for the density of ones at arbitrary time step. In order to do this, we analyze topological structure of preimage trees of finite strings of length 3. Level sets of these trees can be enumerated directly using classical combinatorial methods, yielding expressions for the numb...
Knowledge Discovery in Database: Induction Graph and Cellular Automaton
Baghdad Atmani; Bouziane Beldjilali
2012-01-01
In this article we present the general architecture of a cellular machine, which makes it possible to reduce the size of induction graphs, and to optimize automatically the generation of symbolic rules. Our objective is to propose a tool for detecting and eliminating non relevant variables from the database. The goal, after acquisition by machine learning from a set of data, is to reduce the complexity of storage, thus to decrease the computing time. The objective of this work is to experimen...
Cellular Automaton Study of Time-Dynamics of Avalanche Breakdown in IMPATT Diodes
G. Zandler; R. Oberhuber; Liebig, D.; Vogl, P.; M. Saraniti; Lugli, P.
1998-01-01
Employing a recently developed efficient cellular automaton technique for solving Boltzmann’s transport equation for realistic devices, we present a detailed study of the carrier dynamics in GaAs avalanche p-i-n (IMPATT) diodes. We find that the impact ionization in reverse bias p-i-n diodes with ultrathin (less than 50 nm) intrinsic regions is triggered by Zener tunneling rather than by thermal generation. The impact generation of hot carriers occurs mainly in the low-field junction regions ...
Marx, V.; Gottstein, G. [RWTH Aachen (Germany). Inst. fuer Metallkunde und Metallphysik
1998-12-31
A 3D model has been developed to simulate both primary static recrystallization and recovery of cold worked aluminum alloys. The model is based on a modified cellular automaton approach and incorporates the influence of crystallographic texture and microstructure in respect to both mechanisms mentioned above. The model takes into account oriented nucleation using an approach developed by Nes for aluminum alloys. The subsequent growth of the nuclei depends on the local stored energy of the deformed matrix (i.e. the driving pressure) and the misorientation between a growing nucleus and its surrounding matrix (i.e. the grain boundary mobility). This approach allows to model preferred growth of grains that exhibit maximum growth rate orientation relationship, e.g. for aluminum alloys a 40{degree}<111> relationship with the surrounding matrix. The model simulates kinetics, microstructure and texture development during heat treatment, discrete in time and space.
Path-integral solution of the one-dimensional Dirac quantum cellular automaton
Quantum cellular automata, which describe the discrete and exactly causal unitary evolution of a lattice of quantum systems, have been recently considered as a fundamental approach to quantum field theory and a linear automaton for the Dirac equation in one dimension has been derived. In the linear case a quantum cellular automaton is isomorphic to a quantum walk and its evolution is conveniently formulated in terms of transition matrices. The semigroup structure of the matrices leads to a new kind of discrete path-integral, different from the well known Feynman checkerboard one, that is solved analytically in terms of Jacobi polynomials of the arbitrary mass parameter. - Highlights: • Discrete path integral formulation of linear QCAs in terms of transition matrices. • Derivation of the analytical solution for the one dimensional Dirac QCA. • Solution given in terms of Jacobi polynomials versus the arbitrary mass parameter. • The discrete paths and the transition matrices of the Dirac QCA are binary encoded. • Paths are grouped in equivalence classes according to their overall transition matrix
Architecture and Behavior Modeling of Cyber-Physical Systems with MontiArcAutomaton
Ringert, Jan Oliver; Rumpe, Bernhard; Wortmann, Andreas
2015-01-01
This book presents MontiArcAutomaton, a modeling language for architecture and be- havior modeling of Cyber-Physical Systems as interactive Component & Connector mod- els. MontiArcAutomaton extends the Architecture Description Language MontiArc with automata to describe component behavior. The modeling language MontiArcAutomaton provides syntactical elements for defin- ing automata with states, variables, and transitions inside MontiArc components. These syntactical elements and a basic set o...
CATS a cellular automaton for tracking in silicon for the HERA-B vertex detector
Abt, I; Kisel, I; Masciocchi, S
2002-01-01
The new track reconstruction program CATS developed for the Vertex Detector System of the HERA-B experiment at DESY is presented. It employs a cellular automaton for track searching and the Kalman filter for track fitting. This results in a very fast algorithm that combines highly efficient track recognition with accurate and reliable track parameter estimation. To reduce the computational cost of the fit an optimized numerical implementation of the Kalman filter is used. Alternative approaches to the track reconstruction in the VDS are also discussed. Since 1999, after extensive tests on simulated data, CATS has been employed to reconstruct experimental data collected in HERA-B. Results regarding tracking performance, the accuracy of track parameter estimates and CPU time consumption are presented.
CATS: a cellular automaton for tracking in silicon for the HERA-B vertex detector
The new track reconstruction program CATS developed for the Vertex Detector System of the HERA-B experiment at DESY is presented. It employs a cellular automaton for track searching and the Kalman filter for track fitting. This results in a very fast algorithm that combines highly efficient track recognition with accurate and reliable track parameter estimation. To reduce the computational cost of the fit an optimized numerical implementation of the Kalman filter is used. Alternative approaches to the track reconstruction in the VDS are also discussed. Since 1999, after extensive tests on simulated data, CATS has been employed to reconstruct experimental data collected in HERA-B. Results regarding tracking performance, the accuracy of track parameter estimates and CPU time consumption are presented
Cellular Automaton Model for Simulating Station-front Turning-back%基于元胞自动机的列车站前折返仿真模型
徐瑞华; 石俊刚
2011-01-01
With an accurate description of urban rail transit station-front turning-back process, this paper establishes two cellular automaton models for two typical station-front turning-back modes,there are station-front single-line turning-back mode and station-front double-line turning-back mode. In order to simulate train turning-back accurately, the models set cell updated rules for different rail parts, besides that line identification .direction identification and signal identification are formulated to solve several problems,such as lane changing,steering and paths confliction preventing. Using computer programming to simulate the trainoperation process with the models proposed, analyzing speed-location and time-location diagrams of train operating,we find that the simulation results are exactly the same as the actual train turn-back processes,at the same time comparing the results of turning-back capacity worked out by simulating methods with the traditional graphic method,the error is only 2.4% ,it shows that the simulating models proposed can accurately simulate train turning-back operating process,it can be applied to train turning-back simulation.%在对城市轨道交通中列车站前折返过程准确描述的基础上,建立了2种典型站前折返模式的元胞自动机模型,即站前单渡线折返仿真模型和站前双渡线折返仿真模型.为准确模拟列车的折返过程,模型设定了列车在不同轨道部分的元胞更新规则,在此基础上还添加了线路标识、方向标识和信号标识等来实现列车的换道、转向和防止进路冲突等问题.采用计算机编程,运用已建立的模型来模拟列车的运行过程,对列车运行过程的速度-位置图和时间-位置图的分析发现,模型的模拟结果与实际列车的折返过程完全相同,同时采用仿真方法计算的折返站折返能力与传统图解法计算的结果误差仅为2.4％,由此说明所建立的模型能够准确模拟实际列
Matsubara, Takashi; Torikai, Hiroyuki
2016-04-01
Modeling and implementation approaches for the reproduction of input-output relationships in biological nervous tissues contribute to the development of engineering and clinical applications. However, because of high nonlinearity, the traditional modeling and implementation approaches encounter difficulties in terms of generalization ability (i.e., performance when reproducing an unknown data set) and computational resources (i.e., computation time and circuit elements). To overcome these difficulties, asynchronous cellular automaton-based neuron (ACAN) models, which are described as special kinds of cellular automata that can be implemented as small asynchronous sequential logic circuits have been proposed. This paper presents a novel type of such ACAN and a theoretical analysis of its excitability. This paper also presents a novel network of such neurons, which can mimic input-output relationships of biological and nonlinear ordinary differential equation model neural networks. Numerical analyses confirm that the presented network has a higher generalization ability than other major modeling and implementation approaches. In addition, Field-Programmable Gate Array-implementations confirm that the presented network requires lower computational resources. PMID:25974951
2D photonic crystal complete band gap search using a cyclic cellular automaton refination
González-García, R.; Castañón, G.; Hernández-Figueroa, H. E.
2014-11-01
We present a refination method based on a cyclic cellular automaton (CCA) that simulates a crystallization-like process, aided with a heuristic evolutionary method called differential evolution (DE) used to perform an ordered search of full photonic band gaps (FPBGs) in a 2D photonic crystal (PC). The solution is proposed as a combinatorial optimization of the elements in a binary array. These elements represent the existence or absence of a dielectric material surrounded by air, thus representing a general geometry whose search space is defined by the number of elements in such array. A block-iterative frequency-domain method was used to compute the FPBGs on a PC, when present. DE has proved to be useful in combinatorial problems and we also present an implementation feature that takes advantage of the periodic nature of PCs to enhance the convergence of this algorithm. Finally, we used this methodology to find a PC structure with a 19% bandgap-to-midgap ratio without requiring previous information of suboptimal configurations and we made a statistical study of how it is affected by disorder in the borders of the structure compared with a previous work that uses a genetic algorithm.
Berkovich, Simon
2015-04-01
The undamental advantage of a Cellular automaton construction foris that it can be viewed as an undetectable absolute frame o reference, in accordance with Lorentz-Poincare's interpretation.. The cellular automaton model for physical poblems comes upon two basic hurdles: (1) How to find the Elemental Rule that, and how to get non-locality from local transformations. Both problems are resolved considering the transfomation rule of mutual distributed synchronization Actually any information proessing device starts with a clocking system. and it turns out that ``All physical phenomena are different aspects of the high-level description of distributed mutual synchronization in a network of digital clocks''. Non-locality comes from two hugely different time-scales of signaling.. The universe is acombinines information and matter processes, These fast spreading diffusion wave solutions create the mechanism of the Holographic Universe. And thirdly Disengaged from synchronization, circular counters can perform memory functions by retaining phases of their oscillations, an idea of Von Neumann'. Thus, the suggested model generates the necessary constructs for the physical world as an Internet of Things. Life emerges due to the specifics of macromolecules that serve as communication means, with the holographic memory...
Chen Shijia
2013-11-01
Full Text Available Dans le domaine du soudage, les propriétés finales du cordon sont fortement liées à la structure de grains développée au cours des procédés de fusion / resolidification. La maîtrise des propriétés de l'assemblage final passe ainsi par une amélioration de la connaissance de sa structure de ce domaine. Dans cet objectif, un modèle couplé Automates Cellulaires – Eléments Finis est proposé pour simuler le développement, en volume, de cette structure, dans le cadre du soudage TIG. Ce modèle est appliqué au soudage d'acier Duplex 2202 et l'évolution de la structure de grains selon les paramètres procédés est discutée. In the welding area, the final properties of the weld bead are mainly induced by the grain structure developed during the melting and solidification steps. The mastery of the properties of the joining will be achieved with a better knowledge of the developed grain structure. A 3D coupled Cellular Automaton – Finite Element model is proposed in order to simulate the grains development in TIG process. This model is applied to the welding of a duplex stainless steel grade. The grain structure evolution is discussed for the various process parameters.
Traffic paradox on a road segment based on a cellular automaton: Impact of lane-changing behavior
Feng, Shumin; Li, Jinyang; Ding, Ning; Nie, Cen
2015-06-01
The traffic paradox "faster is slower" does not always apply. To study when and where it is valid, a simulation for a real road segment is performed using a novel cellular automaton. This simulation is used to analyze the change in global traffic flow status during free lane-changing behavior under general urban traffic conditions. The impact of lane-changing behavior is quantified into two aspects, time and space, and are described by average delay and transitable flow, respectively. Then surfaces are obtained, which adopt the arriving probability of vehicles and the green ratio as dual independent variables. Thus by the comparison of two surfaces, free lane-changing and straight proceeding, the horizontal projection of the intersecting lines is solved. Finally, the range of occurrence and reasons for the paradox are analyzed.
Watanabe, Tomonori
2002-01-01
Following the proposal of a filtration technique by Nobe, Satsuma and Tokihiro, we concretely construct partial difference equations, which preserve any time evolution patterns of cellular automaton (CA) stably by the filtration technique. We illustrate how to develop a method of filtration for applying to the typical two spatial dimensional CA rule - the game of life - and verify that the filtration method provides the stable difference equation associated with the CA, compared with the inverse ultradiscretization. Besides, in order to discuss whether the filtration technique can lead one to partial differential equations from CA rules, we show a derivation of the Burgers equation from Rule 184 CA via the discrete Burgers equation constructed by the filtration method as an example.
An extinction-survival-type phase transition in the probabilistic cellular automaton p182-q200
Mendonça, J. Ricardo G.; de Oliveira, Mário J.
2010-01-01
We investigate the critical behaviour of a probabilistic mixture of cellular automata (CA) rules 182 and 200 (in Wolfram's enumeration scheme) by mean-field analysis and Monte Carlo simulations. We found that as we switch off one CA and switch on the other by the variation of the single paramenter of the model the probabilistic CA (PCA) goes through an extinction-survival-type phase transition, and the numerical data indicate that it belongs to the directed percolation universality class of c...
This paper reports on work in developing a cellular automaton (CA) model coupling with a topology deformation technique to simulate the microstructural evolution of 30Cr2Ni4MoV rotor steel during the high-temperature austenitizing and dynamic recrystallization (DRX). The state transition rules for simulating the normal grain growth was established based on the curvature-driven mechanism, thermodynamic driving mechanism and established based on the curvature-driven mechanism, thermodynamic driving mechanism and the lowest energy principle. To describe the compression effect on the topology of grain deformation more accurately, the update topology deformation model was proposed in which a cellular coordinate system and a material coordinate system were established separately. The cellular coordinate system remains unchangeable, but the material coordinate system and the corresponding grain boundary shape will change with deformation in the update topology deformation model. The effects of a wide range of thermomechanical parameters (e.g., temperature and strain rate) on the DRX kinetics and mean grain size were investigated. It was found that increasing the temperature and/or decreasing the strain rate can reduce the incubation period, and decreasing the temperature and/or increasing the strain rate can refine the DRX grain size. The simulation results are validated by comparing the experimental results.
22号初等元胞自动机的演化复杂性%EVOLUTION COMPLEXITY OF THE ELEMENTARY CELLULAR AUTOMATON OF RULE 22
王益; 江志松
2002-01-01
Cellular automata are the discrete dynamical systems of simple construction but with complex and varied behaviors.In this paper,the elementary cellular automaton of rule 22 is studied by the tools of formal language theory and symbolic dynamics.Its temporal evolution orbits are coarse-grained into evolution sequences and the evolution languages are defined.It is proved that for every n≥2 its width n-evolution language is not regular.
Non-concave fundamental diagrams and phase transitions in a stochastic traffic cellular automaton
Maerivoet, S.; de Moor, B.
2004-11-01
Within the class of stochastic cellular automata models of traffic flows, we look at the velocity dependent randomization variant (VDR-TCA) whose parameters take on a specific set of extreme values. These initial conditions lead us to the discovery of the emergence of four distinct phases. Studying the transitions between these phases, allows us to establish a rigorous classification based on their tempo-spatial behavioral characteristics. As a result from the system’s complex dynamics, its flow-density relation exhibits a non-concave region in which forward propagating density waves are encountered. All four phases furthermore share the common property that moving vehicles can never increase their speed once the system has settled into an equilibrium.
Martín Del Rey, A.; Rodríguez Sánchez, G.
2015-03-01
The study of the reversibility of elementary cellular automata with rule number 150 over the finite state set 𝔽p and endowed with periodic boundary conditions is done. The dynamic of such discrete dynamical systems is characterized by means of characteristic circulant matrices, and their analysis allows us to state that the reversibility depends on the number of cells of the cellular space and to explicitly compute the corresponding inverse cellular automata.
Gosálvez, M. A.; Ferrando, N.; Xing, Y.; Pal, Prem; Sato, K.; Cerdá, J.; Gadea, R.
2011-06-01
An evolutionary algorithm is presented for the automated calibration of the continuous cellular automaton for the simulation of isotropic and anisotropic wet chemical etching of silicon in as many as 31 widely different and technologically relevant etchants, including KOH, KOH+IPA, TMAH and TMAH+Triton, in various concentrations and temperatures. Based on state-of-the-art evolutionary operators, we implement a robust algorithm for the simultaneous optimization of roughly 150 microscopic removal rates based on the minimization of a cost function with four quantitative error measures, including (i) the error between simulated and experimental macroscopic etch rates for numerous surface orientations all over the unit sphere, (ii) the error due to underetching asymmetries and floor corrugation features observed in simulated silicon samples masked using a circular pattern, (iii) the error associated with departures from a step-flow-based hierarchy in the values of the microscopic removal rates, and (iv) the error associated with deviations from a step-flow-based clustering of the microscopic removal rates. For the first time, we present the calibration and successful simulation of two technologically relevant CMOS compatible etchants, namely TMAH and, especially, TMAH+Triton, providing several comparisons between simulated and experimental MEMS structures based on multi-step etching in these etchants.
An evolutionary algorithm is presented for the automated calibration of the continuous cellular automaton for the simulation of isotropic and anisotropic wet chemical etching of silicon in as many as 31 widely different and technologically relevant etchants, including KOH, KOH+IPA, TMAH and TMAH+Triton, in various concentrations and temperatures. Based on state-of-the-art evolutionary operators, we implement a robust algorithm for the simultaneous optimization of roughly 150 microscopic removal rates based on the minimization of a cost function with four quantitative error measures, including (i) the error between simulated and experimental macroscopic etch rates for numerous surface orientations all over the unit sphere, (ii) the error due to underetching asymmetries and floor corrugation features observed in simulated silicon samples masked using a circular pattern, (iii) the error associated with departures from a step-flow-based hierarchy in the values of the microscopic removal rates, and (iv) the error associated with deviations from a step-flow-based clustering of the microscopic removal rates. For the first time, we present the calibration and successful simulation of two technologically relevant CMOS compatible etchants, namely TMAH and, especially, TMAH+Triton, providing several comparisons between simulated and experimental MEMS structures based on multi-step etching in these etchants
Fast encryption of RGB color digital images using a tweakable cellular automaton based schema
Faraoun, Kamel Mohamed
2014-12-01
We propose a new tweakable construction of block-enciphers using second-order reversible cellular automata, and we apply it to encipher RGB-colored images. The proposed construction permits a parallel encryption of the image content by extending the standard definition of a block cipher to take into account a supplementary parameter used as a tweak (nonce) to control the behavior of the cipher from one region of the image to the other, and hence avoid the necessity to use slow sequential encryption's operating modes. The proposed construction defines a flexible pseudorandom permutation that can be used with efficacy to solve the electronic code book problem without the need to a specific sequential mode. Obtained results from various experiments show that the proposed schema achieves high security and execution performances, and enables an interesting mode of selective area decryption due to the parallel character of the approach.
王益; Morita Kenichi
2006-01-01
Symbolic dynamics of cellular automata is introduced by coarse-graining the temporal evolution orbits. Evolution languages are defined. By using the theory of formal languages and automata, the complexity of evolution languages of the elementary cellular automaton of rule 146 is studied and it is proved that its width 1-evolution language is regular, but for every n ≥ 2 its width n-evolution language is not context-free but context-sensitive. Also, the same results hold for the equivalent (under conjugation) elementary cellular automaton of rule 182.
Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity
Louis, S.J.; Raines, G.L.
2003-01-01
We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.
A cellular automata model of Ebola virus dynamics
Burkhead, Emily; Hawkins, Jane
2015-11-01
We construct a stochastic cellular automaton (SCA) model for the spread of the Ebola virus (EBOV). We make substantial modifications to an existing SCA model used for HIV, introduced by others and studied by the authors. We give a rigorous analysis of the similarities between models due to the spread of virus and the typical immune response to it, and the differences which reflect the drastically different timing of the course of EBOV. We demonstrate output from the model and compare it with clinical data.
Car Deceleration Considering Its Own Velocity in Cellular Automata Model
LI Ke-Ping
2006-01-01
In this paper, we propose a new cellular automaton model, which is based on NaSch traffic model. In our method, when a car has a larger velocity, if the gap between the car and its leading car is not enough large, it will decrease. The aim is that the following car has a buffer space to decrease its velocity at the next time, and then avoid to decelerate too high. The simulation results show that using our model, the car deceleration is realistic, and is closer to thefield measure than that of NaSch model.
Cellular automata modelling of phase-change memories
Wanhua Yu; David Wright
2008-01-01
A novel approach to modelling phase-transition processes in phase change materials used for optical and electrical data storage applications is presented. The model is based on a cellular automaton (CA) approach to predict crystallization behaviour that is linked to thermal and electrical simulations to enable the study of the data writing and erasing processes. The CA approach is shown to be able to predict the evolution of the microstructure during the rapid heating and cooling cycles pertinent to data storage technology, and maps crystallization behaviour on the nanoscale. A simple example based on possible future nonvolatile phase-change random access solid-state memory is presented.
Gosálvez, M. A.; Ferrando, N.; Fedoryshyn, Y.; Leuthold, J.; McPeak, K. M.
2016-04-01
We combine experiments and simulations to study the acceleration of anisotropic etching of crystalline silicon at the mask-substrate interface, as a function of the coordination number of the substrate atoms located at the junction between obtuse-angled {1 1 1} facets and the mask layer. Atomistic simulations based on the use of the continuous cellular automaton (CCA) conclude that the interface atoms react faster with the etchant, thus initiating a step flow process that results in increased etch rates for the obtuse facets. By generating a wide range of complex cavities on high-index silicon wafers with a single-side, single-step etching, the comparison of the experimental and simulated results strongly indicates that the CCA method is suitable for accurately describing not only the development of micron-scaled structures but also, for the first time, the formation of submicron shapes. The study also describes the acceleration of obtuse facets formed through double-side etching, obtaining results in good agreement with previous experiments.
Lattice gas cellular automata model for rippling and aggregation in myxobacteria
Alber, Mark S.; Jiang, Yi; Kiskowski, Maria A.
2004-01-01
A lattice-gas cellular automaton (LGCA) model is used to simulate rippling and aggregation in myxobacteria. An efficient way of representing cells of different cell size, shape and orientation is presented that may be easily extended to model later stages of fruiting body formation. This LGCA model is designed to investigate whether a refractory period, a minimum response time, a maximum oscillation period and non-linear dependence of reversals of cells on C-factor are necessary assumptions f...
Irregular Cellular Learning Automata.
Esnaashari, Mehdi; Meybodi, Mohammad Reza
2015-08-01
Cellular learning automaton (CLA) is a recently introduced model that combines cellular automaton (CA) and learning automaton (LA). The basic idea of CLA is to use LA to adjust the state transition probability of stochastic CA. This model has been used to solve problems in areas such as channel assignment in cellular networks, call admission control, image processing, and very large scale integration placement. In this paper, an extension of CLA called irregular CLA (ICLA) is introduced. This extension is obtained by removing the structure regularity assumption in CLA. Irregularity in the structure of ICLA is needed in some applications, such as computer networks, web mining, and grid computing. The concept of expediency has been introduced for ICLA and then, conditions under which an ICLA becomes expedient are analytically found. PMID:25291810
Testing the applicability of mathematical models with carefully designed experiments is a powerful tool in the investigations of the effects of ionizing radiation on cells. The modeling and cellular studies complement each other, for modeling provides guidance for designing critical experiments which must provide definitive results, while the experiments themselves provide new input to the model. Based on previous experimental results the model for the accumulation of damage in Chlamydomonas reinhardi has been extended to include various multiple two-event combinations. Split dose survival experiments have shown that models tested to date predict most but not all the observed behavior. Stationary-phase mammalian cells, required for tests of other aspects of the model, have been shown to be at different points in the cell cycle depending on how they were forced to stop proliferating. These cultures also demonstrate different capacities for repair of sublethal radiation damage
Modeling evolution and immune system by cellular automata
Bezzi, M. [Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy); Istituto Nazionale di Fisica della Materia, Florence (Italy)
2001-07-01
In this review the behavior of two different biological systems is investigated using cellular automata. Starting from this spatially extended approach it is also tried, in some cases, to reduce the complexity of the system introducing mean-field approximation, and solving (or trying to solve) these simplified systems. It is discussed the biological meaning of the results, the comparison with experimental data (if available) and the different features between spatially extended and mean-field versions. The biological systems considered in this review are the following: Darwinian evolution in simple ecosystems and immune system response. In the first section the main features of molecular evolution are introduced, giving a short survey of genetics for physicists and discussing some models for prebiotic systems and simple ecosystems. It is also introduced a cellular automaton model for studying a set of evolving individuals in a general fitness landscape, considering also the effects of co-evolution. In particular the process of species formation (speciation) is described in sect. 5. The second part deals with immune system modeling. The biological features of immune response are discussed, as well as it is introduced the concept of shape space and of idiotypic network. More detailed reviews which deal with immune system models (mainly focused on idiotypic network models) can be found. Other themes here discussed: the applications of CA to immune system modeling, two complex cellular automata for humoral and cellular immune response. Finally, it is discussed the biological data and the general conclusions are drawn in the last section.
Modeling evolution and immune system by cellular automata
In this review the behavior of two different biological systems is investigated using cellular automata. Starting from this spatially extended approach it is also tried, in some cases, to reduce the complexity of the system introducing mean-field approximation, and solving (or trying to solve) these simplified systems. It is discussed the biological meaning of the results, the comparison with experimental data (if available) and the different features between spatially extended and mean-field versions. The biological systems considered in this review are the following: Darwinian evolution in simple ecosystems and immune system response. In the first section the main features of molecular evolution are introduced, giving a short survey of genetics for physicists and discussing some models for prebiotic systems and simple ecosystems. It is also introduced a cellular automaton model for studying a set of evolving individuals in a general fitness landscape, considering also the effects of co-evolution. In particular the process of species formation (speciation) is described in sect. 5. The second part deals with immune system modeling. The biological features of immune response are discussed, as well as it is introduced the concept of shape space and of idiotypic network. More detailed reviews which deal with immune system models (mainly focused on idiotypic network models) can be found. Other themes here discussed: the applications of CA to immune system modeling, two complex cellular automata for humoral and cellular immune response. Finally, it is discussed the biological data and the general conclusions are drawn in the last section
Process Expression of Security Automaton
无
2007-01-01
Security is an essential aspect for mobile systems. Usually, mobile system modeling and its security policies specification are realized in different techniques. So when constructed a mobile system using formal methods it is difficult to verify if the system comply with any given security policies. A method was introduced to express security automata which specifying enforceable security policies as processes in an extended π-calculus. In this extended π-calculus, an exception termination process was introduced, called bad. Any input which violating a security automaton will correspond to a step of transformation of the process that specifying the security automaton to exception termination process. Our method shows that any security automata which specifying enforceable security policies would decide a process in the extended π-calculus.
The Research of Image Encryption Algorithm Based on Chaos Cellular Automata
Shuiping Zhang; Huijune Luo
2012-01-01
The Research presents an image encryption algorithm which bases on chaotic cellular automata. This algorithm makes use of features that extreme sensitivity of chaotic system to initial conditions, the cellular automaton with a high degree of parallel processing. The encryption algorithm uses two-dimensional chaotic system to Encrypt image, Then establish a cellular automaton model on the initial encrypted image. Encryption key of this algorithm is made up of the initial value by the two-dimen...
Endy, Drew; Brent, Roger
2001-01-01
Representations of cellular processes that can be used to compute their future behaviour would be of general scientific and practical value. But past attempts to construct such representations have been disappointing. This is now changing. Increases in biological understanding combined with advances in computational methods and in computer power make it possible to foresee construction of useful and predictive simulations of cellular processes.
Modeling self-organizing traffic lights with elementary cellular automata
Gershenson, Carlos
2009-01-01
There have been several highway traffic models proposed based on cellular automata. The simplest one is elementary cellular automaton rule 184. We extend this model to city traffic with cellular automata coupled at intersections using only rules 184, 252, and 136. The simplicity of the model offers a clear understanding of the main properties of city traffic and its phase transitions. We use the proposed model to compare two methods for coordinating traffic lights: a green-wave method that tries to optimize phases according to expected flows and a self-organizing method that adapts to the current traffic conditions. The self-organizing method delivers considerable improvements over the green-wave method. For low densities, the self-organizing method promotes the formation and coordination of platoons that flow freely in four directions, i.e. with a maximum velocity and no stops. For medium densities, the method allows a constant usage of the intersections, exploiting their maximum flux capacity. For high dens...
Fast cellular automata with restricted inter-cell communication: computational capacity
Kutrib, Martin; Malcher, Andreas
2006-01-01
A d-dimensional cellular automaton with sequential input mode is a d-dimensional grid of interconnected interacting finite automata. The distinguished automaton at the origin, the communication cell, is connected to the outside world and fetches the input sequentially. Often in the literature this model is referred to as iterative array. We investigate d-dimensional iterative arrays and one-dimensional cellular automata operating in real and linear time, whose inter-cell communicati...
Using synchronization to improve the forecasting of large relaxations in a cellular-automaton model
González, Á.; Gómez, J.B.; Vázquez-Prada, M.;
2004-01-01
A new forecasting strategy for stochastic systems is introduced. It is inspired by the concept of synchronization, developed in the area of Dynamical Systems, and by the earthquake forecasting algorithms in which different pattern recognition functions are used for identifying seismic premonitory...
A Simulation of Oblivious Multi-head One-way Finite Automata by Real-time Cellular Automata
Borello, Alex
2010-01-01
In this paper, we present the simulation of a simple, yet significantly powerful, sequential model by cellular automata. The simulated model is called oblivious multi-head one-way finite automata and is characterized by having its heads moving only forward, on a trajectory that only depends on the length of the input. While the original finite automaton works in linear time, its corresponding cellular automaton performs the same task in real time, that is, exactly the length of the input. Alt...
Predictive Modelling of Cellular Load
Carolan, Emmett; McLoone, Seamus; Farrell, Ronan
2015-01-01
This work examines the temporal dynamics of cellular load in four Irish regions. Large scale underutilisation of network resources is identified both at the regional level and at the level of individual cells. Cellular load is modeled and prediction intervals are generated. These prediction intervals are used to put an upper bound on usage in a particular cell at a particular time. Opportunities for improvements in network utilization by incorporating these upper bounds on usage are identifie...
Fluctuation in option pricing using cellular automata based market models
Gao, Yuying; Beni, Gerardo
2005-05-01
A new agent-based Cellular Automaton (CA) computational algorithm for option pricing is proposed. CAs have been extensively used in modeling complex dynamical systems but not in modeling option prices. Compared with traditional tools, which rely on guessing volatilities to calculate option prices, the CA model is directly addressing market mechanisms and simulates price fluctuation from aggregation of actions made by interacting individual market makers in a large population. This paper explores whether CA models can provide reasonable good answers to pricing European options. The Black-Scholes model and the Binomial Tree model are used for comparison. Comparison reveals that CA models perform reasonably well in pricing options, reproducing overall characteristics of random walk based model, while at the same time providing plausible results for the 'fat-tail' phenomenon observed in many markets. We also show that the binomial tree model can be obtained from a CA rule. Thus, CA models are suitable tools to generalize the standard theories of option pricing.
On reversibility of cellular automata with periodic boundary conditions
Nobe, Atsushi [Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka 560-8531 (Japan); Yura, Fumitaka [Imai Quantum Computing and Information Project, ERATO, JST, Daini Hongo White Bldg 201, 5-28-3 Hongo, Bunkyo, Tokyo 113-0033 (Japan)
2004-06-04
Reversibility of one-dimensional cellular automata with periodic boundary conditions is discussed. It is shown that there exist exactly 16 reversible elementary cellular automaton rules for infinitely many cell sizes by means of a correspondence between elementary cellular automaton and the de Bruijn graph. In addition, a sufficient condition for reversibility of three-valued and two-neighbour cellular automaton is given.
Quantum Cloning by Cellular Automata
D'Ariano, G. M.; Macchiavello, C.; M. Rossi
2012-01-01
We introduce a quantum cellular automaton that achieves approximate phase-covariant cloning of qubits. The automaton is optimized for 1-to-2N economical cloning. The use of the automaton for cloning allows us to exploit different foliations for improving the performance with given resources.
Mondry Adrian
2004-08-01
Full Text Available Abstract Background Many arrhythmias are triggered by abnormal electrical activity at the ionic channel and cell level, and then evolve spatio-temporally within the heart. To understand arrhythmias better and to diagnose them more precisely by their ECG waveforms, a whole-heart model is required to explore the association between the massively parallel activities at the channel/cell level and the integrative electrophysiological phenomena at organ level. Methods We have developed a method to build large-scale electrophysiological models by using extended cellular automata, and to run such models on a cluster of shared memory machines. We describe here the method, including the extension of a language-based cellular automaton to implement quantitative computing, the building of a whole-heart model with Visible Human Project data, the parallelization of the model on a cluster of shared memory computers with OpenMP and MPI hybrid programming, and a simulation algorithm that links cellular activity with the ECG. Results We demonstrate that electrical activities at channel, cell, and organ levels can be traced and captured conveniently in our extended cellular automaton system. Examples of some ECG waveforms simulated with a 2-D slice are given to support the ECG simulation algorithm. A performance evaluation of the 3-D model on a four-node cluster is also given. Conclusions Quantitative multicellular modeling with extended cellular automata is a highly efficient and widely applicable method to weave experimental data at different levels into computational models. This process can be used to investigate complex and collective biological activities that can be described neither by their governing differentiation equations nor by discrete parallel computation. Transparent cluster computing is a convenient and effective method to make time-consuming simulation feasible. Arrhythmias, as a typical case, can be effectively simulated with the methods
Intuitionistic Fuzzy Automaton for Approximate String Matching
K.M. Ravi; Choubey, A.; K.K. Tripati
2014-01-01
This paper introduces an intuitionistic fuzzy automaton model for computing the similarity between pairs of strings. The model details the possible edit operations needed to transform any input (observed) string into a target (pattern) string by providing a membership and non-membership value between them. In the end, an algorithm is given for approximate string matching and the proposed model computes the similarity and dissimilarity between the pair of strings leading to better approximation.
Intuitionistic Fuzzy Automaton for Approximate String Matching
K.M. Ravi
2014-03-01
Full Text Available This paper introduces an intuitionistic fuzzy automaton model for computing the similarity between pairs of strings. The model details the possible edit operations needed to transform any input (observed string into a target (pattern string by providing a membership and non-membership value between them. In the end, an algorithm is given for approximate string matching and the proposed model computes the similarity and dissimilarity between the pair of strings leading to better approximation.
Cellular automata a parallel model
Mazoyer, J
1999-01-01
Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.
Study of phase separation using liquid-gas model of lattice-gas cellular automata
This report describes the study of phase separation by the liquid gas model of lattice gas cellular automata. The lattice gas cellular automaton is one model for simulating fluid phenomena which was proposed by Frisch, Hasslacher and Pomeau in 1986. In 1990, Appert and Zaleski added a new long-range interaction to lattice gas cellular automata to construct a model, the liquid-gas model, which could simulate phase separation using lattice-gas cellular automata. Gerits et al formulated the liquid-gas model mathematically using the theory of statistical dynamics in 1993 and explained the mechanism of phase separation in the liquid-gas model using the equation of state. At first this report explains the FHP model of lattice gas cellular automata and derives fluid dynamics equations such as the equation of continuity and the Navier-Stokes equation. Then the equation of state for the liquid-gas model which was derived by Gerits et al is modified by adding the interactions which were proposed by Appert but not considered by Gerits et al. The modified equation of state is verified by the computer simulation using the liquid gas model. The relation between phase separation and the equation of state is discussed. (author)
梁龙; 焦阳
2015-01-01
肿瘤的侵袭和转移行为，常常是导致病人的死亡的原因。而人们对这些由复杂的肿瘤-宿主以及肿瘤细胞与细胞之间相互作用而产生的群体性行为知之甚少。对这一过程了解的加深，需要多学科间的合作。在本篇文章中，作者将简要回顾肿瘤物理领域的一种新手段，即近年来由作者参与的通过元胞自动机(CA)模型来研究微环境促进的实体瘤侵袭性生长的研究，该模型整合了一系列微观的肿瘤宿主相互作用，包含了肿瘤细胞对细胞外基质的降解，肿瘤细胞趋向养分的迁移，肿瘤生长导致的局部组织压力累积以及该压力对局部的肿瘤-宿主界面稳定性的影响，并且，肿瘤生长时细胞间的粘连也被明确地考虑进来。该元胞自动机模型能成功地重现出一系列的标志性的肿瘤侵袭行为，这有力地表明出该模型的有效性和预测能力。这一模型，如果能与临床数据结合，理论上能够拓展从医学数据中得到的现有结论，帮助设计新的实验，检验假说，并且在实验难以检测到的情形下，预测肿瘤的行为，协助癌症的早期诊断和预后，并针对不同病人，提出最优的个体化医疗方案。%Emergence of invasive and metastatic behavior in malignant tumors can often lead to fatal outcomes for patients. The collective malignant tumor behavior resulting from the complex tumor-host interactions and the interactions between the tumor cells are currently poorly understood. Progress towards such an understanding necessarily requires an interdis-ciplinary and collaborative effort. In this paper, we review a state-of-art simulation technique, i.e., a cellular automaton (CA) model which has been developed by the authors over the past few years to investigate microenvironment-enhanced invasive growth of avascular solid tumors. This CA model incorporates a variety of microscopic-scale tumor-host in
M. Górny
2012-12-01
Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular AutomatonFinite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grainsgrowth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniformtemperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibriumnature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.
Yang, Xian-Qing; Zhang, Wei; Qiu, Kang; Xu, Wen-tao; Tang, Gang; Ren, Lin
2007-10-01
In this paper we numerically study the probability Pac of the occurrence of traffic accidents in the Nagel-Schreckenberg (NS) model with velocity-dependent randomization (VDR). Numerical results show that there is a critical density over which car accidents occur, but below which no car accidents happen. Different from the accident probability in the NS model, the accident probability in the VDR model monotonously decreases with increase of car density above the critical density. The value of the accident probability is only determined by the stochastic noise and the number of cars on road. In the stochastic VDR model with the speed limit vmax=1, no critical density exists and car accidents happen in the whole density region. The braking probabilities of standing cars and moving cars have different influences on the accident probability. A mean-field theory reveals that the accident probability is proportional to the mean density of “go and stop” wave per time step. Theoretical analyses give excellent agreement with numerical results in the VDR model.
Translating partitioned cellular automata into classical type cellular automata
Poupet, Victor
2008-01-01
Partitioned cellular automata are a variant of cellular automata that was defined in order to make it very simple to create complex automata having strong properties such as number conservation and reversibility (which are often difficult to obtain on cellular automata). In this article we show how a partitioned cellular automaton can be translated into a regular cellular automaton in such a way that these properties are conserved.
A Simulation of Oblivious Multi-Head One-Way Finite Automata by Real-Time Cellular Automata
Borello, Alex
2010-01-01
In this paper, we present the simulation of a simple, yet significantly powerful, sequential model by cellular automata. The simulated model is called oblivious multi-head one-way finite automata and is characterized by having its heads moving only forward, on a trajectory that only depends on the length of the input. While the original finite automaton works in linear time, its corresponding cellular automaton performs the same task in real time, that is, exactly the length of the input. Although not truly a speed-up, the simulation may be interesting and reminds us of the open question about the equivalence of linear and real times on cellular automata.
Quantum cellular automaton theory of light
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo
2016-05-01
We present a quantum theory of light based on the recent derivation of Weyl and Dirac quantum fields from general principles ruling the interactions of a countable set of abstract quantum systems, without using space-time and mechanics (D'Ariano and Perinotti, 2014). In a Planckian interpretation of the discreteness, the usual quantum field theory corresponds to the so-called relativistic regime of small wave-vectors. Within the present framework the photon is a composite particle made of an entangled pair of free Weyl Fermions, and the usual Bosonic statistics is recovered in the low photon density limit, whereas the Maxwell equations describe the relativistic regime. We derive the main phenomenological features of the theory in the ultra-relativistic regime, consisting in a dispersive propagation in vacuum, and in the occurrence of a small longitudinal polarization, along with a saturation effect originated by the Fermionic nature of the photon. We then discuss whether all these effects can be experimentally tested, and observe that only the dispersive effects are accessible to the current technology via observations of gamma-ray bursts.
Kuentz, M
2003-01-01
A two-dimensional lattice gas automaton (LGA) is used for simulating concentration-dependent diffusion in a microscopically random heterogeneous structure. The heterogeneous medium is initialized at a low density rho sub 0 and then submitted to a steep concentration gradient by continuous injection of particles at a concentration rho sub 1 >rho sub 0 from a one-dimensional source to model spreading of a density front. Whereas the nonlinear diffusion equation generally used to describe concentration-dependent diffusion processes predicts a scaling law of the type phi = xt sup - sup 1 sup / sup 2 in one dimension, the spreading process is shown to deviate from the expected t sup 1 sup / sup 2 scaling. The time exponent is found to be larger than 1/2, i.e. diffusion of the density front is enhanced with respect to standard Fickian diffusion. It is also established that the anomalous time exponent decreases as time elapses: anomalous spreading is thus not a timescaling process. We demonstrate that occurrence of a...
Understanding cisplatin resistance using cellular models.
STORDAL, BRITTA KRISTINA
2007-01-01
PUBLISHED Many mechanisms of cisplatin resistance have been proposed from studies of cellular models of resistance including changes in cellular drug accumulation, detoxification of the drug, inhibition of apoptosis and repair of the DNA adducts. A series of resistant models were developed from CCRF-CEM leukaemia cells with increasing doses of cisplatin from 100 ng/ml. This produced increasing resistance up to 7-fold with a treatment dose of 1.6 ?g/ml. Cisplatin resistance i...
Understanding cisplatin resistance using cellular models
Stordal, Britta; Davey, Mary
2007-01-01
Many mechanisms of cisplatin resistance have been proposed from studies of cellular models of resistance including changes in cellular drug accumulation, detoxification of the drug, inhibition of apoptosis and repair of the DNA adducts. A series of resistant models were developed from CCRF-CEM leukaemia cells with increasing doses of cisplatin from 100 ng/ml. This produced increasing resistance up to 7-fold with a treatment dose of 1.6 microg/ml. Cisplatin resistance in these cells correlated...
Khan, Muhammad Sadiq Ali; Yousuf, Sidrah
2016-03-01
Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle. PMID:27087101
Incorporating scale invariance into the cellular associative neural network
Burles, Nathan; O'Keefe, Simon; Austin, James
2014-01-01
This paper describes an improvement to the Cellular Associative Neural Network, an architecture based on the distributed model of a cellular automaton, allowing it to perform scale invariant pattern matching. The use of tensor products and superposition of patterns allows the system to recall patterns at multiple resolutions simultaneously. Our experimental results show that the architecture is capable of scale invariant pattern matching, but that further investigation is needed to reduce the...
Tritium release from the lithium ceramics as a fusion reactor breeder material is strongly affected by the composition of the sweep-gas as result of its influences with the material's surface. The typical surface processes which play important roles are adsorption, desorption and interaction between vacancy site and the constituents of the sweep-gas. Among a large number of studies and models, yet it seems to be difficult to model the overall behaviour of those processes due to its complex time-transient nature. In the present work the coarse grained atomic simulation based on the Cellular Automaton (CA) is used to model the dynamics of near-surface interaction between Li2O surface and sweep-gas that is consisting of a noble gas, hydrogen gas and water vapour. (author)
Animal and cellular models of human disease
Arends, Mark; White, Eric; Whitelaw, Christopher
2016-01-01
In this eighteenth (2016) Annual Review Issue of The Journal of Pathology, we present a collection of 19 invited review articles that cover different aspects of cellular and animal models of disease. These include genetically-engineered models, chemically-induced models, naturally-occurring models, and combinations thereof, with the focus on recent methodological and conceptual developments across a wide range of human diseases.
Automaton based detection of affected cells in three dimensional biological system
Dundas, Jitesh
2011-01-01
The aim of this research review is to propose the logic and search mechanism for the development of an artificially intelligent automaton (AIA) that can find affected cells in a 3-dimensional biological system. Research on the possible application of such automatons to detect and control cancer cells in the human body are greatly focused MRI and PET scans finds the affected regions at the tissue level even as we can find the affected regions at the cellular level using the framework. The AIA may be designed to ensure optimum utilization as they record and might control the presence of affected cells in a human body. The proposed models and techniques can be generalized and used in any application where cells are injured or affected by some disease or accident. The best method to import AIA into the body without surgery or injection is to insert small pill like automata, carrying material viz drugs or leukocytes that is needed to correct the infection. In this process, the AIA can be compared to nano pills to ...
Weyland, Mathias; Fellermann, Harold; Hadorn, Maik; Sorek, Daniel; Lancet, Doron; Rasmussen, Steen; Fuchslin, Rudolf
2013-01-01
In this paper, we propose the MATCHIT Automaton (MA), a theoretical framework that shows how to improve the yield of the synthesis of chemical polymer reactions. This is achieved by separating sub-steps of the path of syn- thesis into compartments. We use chemical containers (chemtainers) to carr...... endoplasmatic reticulum and the Golgi apparatus, and we show how this compartmentalization can be exploited for the synthesis of branched polymers. Lastly, we show exam- ples of artificial branched polymers and discuss how the MA can be configured to synthesize them with maximal yield....
Boyer, D.; López-Corona, O.
2009-01-01
We introduce a model of traveling agents ({\\it e.g.} frugivorous animals) who feed on randomly located vegetation patches and disperse their seeds, thus modifying the spatial distribution of resources in the long term. It is assumed that the survival probability of a seed increases with the distance to the parent patch and decreases with the size of the colonized patch. In turn, the foraging agents use a deterministic strategy with memory, that makes them visit the largest possible patches ac...
张俊娜; 范海菊
2012-01-01
In this paper, a new approach is proposed to solve urgent evacuation in fire disaster by combining artificial potential field with cellular automata model. First, aiming at the evacuated individual in fire, a micro-model is established using potential field in which factors influencing human behavior are quantified. Second, several cellular-mobile rules are constructed based on ihe above model to describe the next step of walking path. Finally, the evacuation system is simulated by VC+ + developing environment to represent the entire dynamic process, and then collects the data about two cases: whether to open e-mergency exits and whether lo conduct personnel persuasion. Simulation results show this system can describe the evacuation process accurately, which can provide us with detailed guidance.%基于元胞自动机模型对公众场合火灾中人员疏散进行研究,通过对火灾中疏散个体微观建模,结合人工势场将影响人行为的火、门和障碍物等各种因素量化,构建出元胞的移动规则,从而确定元胞下一时间步长的移动路径.仿真结果显示,该系统能够较真实地模拟人员疏散过程.
Automaton based detection of affected cells in three dimensional biological system
Dundas, Jitesh
2011-01-01
The aim of this research review is to propose the logic and search mechanism for the development of an artificially intelligent automaton (AIA) that can find affected cells in a 3-dimensional biological system. Research on the possible application of such automatons to detect and control cancer cells in the human body are greatly focused MRI and PET scans finds the affected regions at the tissue level even as we can find the affected regions at the cellular level using the framework. The AIA ...
A Mathematical Model for Cisplatin Cellular Pharmacodynamics
Ardith W. El-Kareh
2003-03-01
Full Text Available A simple theoretical model for the cellular pharmacodynamics of cisplatin is presented. The model, which takes into account the kinetics of cisplatin uptake by cells and the intracellular binding of the drug, can be used to predict the dependence of survival (relative to controls on the time course of extracellular exposure. Cellular pharmacokinetic parameters are derived from uptake data for human ovarian and head and neck cancer cell lines. Survival relative to controls is assumed to depend on the peak concentration of DNA-bound intracellular platinum. Model predictions agree well with published data on cisplatin cytotoxicity for three different cancer cell lines, over a wide range of exposure times. In comparison with previously published mathematical models for anticancer drug pharmacodynamics, the present model provides a better fit to experimental data sets including long exposure times (∼100 hours. The model provides a possible explanation for the fact that cell kill correlates well with area under the extracellular concentration-time curve in some data sets, but not in others. The model may be useful for optimizing delivery schedules and for the dosing of cisplatin for cancer therapy.
Cellular automata modelling of hantarvirus infection
Hantaviruses are a group of viruses which have been identified as being responsible for the outbreak of diseases such as the hantavirus pulmonary syndrome. In an effort to understand the characteristics and dynamics of hantavirus infection, mathematical models based on differential equations have been developed and widely studied. However, such models neglect the local characteristics of the spreading process and do not include variable susceptibility of individuals. In this paper, we develop an alternative approach based on cellular automata to analyze and study the spatiotemporal patterns of hantavirus infection.
Cellular automata modelling of hantarvirus infection
Abdul Karim, Mohamad Faisal [School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: faisal@usm.my; Md Ismail, Ahmad Izani [School of Mathematical Sciences, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: izani@cs.usm.my; Ching, Hoe Bee [School of Mathematical Sciences, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: Bee_Ching_Janice_Hoe@dell.com
2009-09-15
Hantaviruses are a group of viruses which have been identified as being responsible for the outbreak of diseases such as the hantavirus pulmonary syndrome. In an effort to understand the characteristics and dynamics of hantavirus infection, mathematical models based on differential equations have been developed and widely studied. However, such models neglect the local characteristics of the spreading process and do not include variable susceptibility of individuals. In this paper, we develop an alternative approach based on cellular automata to analyze and study the spatiotemporal patterns of hantavirus infection.
Transductions Computed by One-Dimensional Cellular Automata
Martin Kutrib
2012-08-01
Full Text Available Cellular automata are investigated towards their ability to compute transductions, that is, to transform inputs into outputs. The families of transductions computed are classified with regard to the time allowed to process the input and to compute the output. Since there is a particular interest in fast transductions, we mainly focus on the time complexities real time and linear time. We first investigate the computational capabilities of cellular automaton transducers by comparing them to iterative array transducers, that is, we compare parallel input/output mode to sequential input/output mode of massively parallel machines. By direct simulations, it turns out that the parallel mode is not weaker than the sequential one. Moreover, with regard to certain time complexities cellular automaton transducers are even more powerful than iterative arrays. In the second part of the paper, the model in question is compared with the sequential devices single-valued finite state transducers and deterministic pushdown transducers. It turns out that both models can be simulated by cellular automaton transducers faster than by iterative array transducers.
A numerical implementation of a three-dimensional (3D) cellular automaton (CA)–finite element (FE) model has been developed for the prediction of solidification grain structures. For the first time, it relies on optimized parallel computation to solve industrial-scale problems (centimeter to meter long) while using a sufficiently small CA grid size to predict representative structures. Several algorithm modifications and strategies to maximize parallel efficiency are introduced. Improvements on a real case simulation are measured and discussed. The CA–FE implementation here is demonstrated using 32 computing units to predict grain structure in a 2.08 m × 0.382 m × 0.382 m ingot involving 4.9 billion cells and 1.6 million grains. These numerical improvements permit tracking of local changes in texture and grain size over real-cast parts while integrating interactions with macrosegregation, heat flow and fluid flow. Full 3D is essential in all these analyses, and can be dealt with successfully using the implementation presented here. (paper)
The Research of Image Encryption Algorithm Based on Chaos Cellular Automata
Shuiping Zhang
2012-02-01
Full Text Available The Research presents an image encryption algorithm which bases on chaotic cellular automata. This algorithm makes use of features that extreme sensitivity of chaotic system to initial conditions, the cellular automaton with a high degree of parallel processing. The encryption algorithm uses two-dimensional chaotic system to Encrypt image, Then establish a cellular automaton model on the initial encrypted image. Encryption key of this algorithm is made up of the initial value by the two-dimensional chaotic systems, parameters, two-dimensional cellular automata local evolution rules f and iterations n. Experimental results shows that the algorithm has features that high efficiency, better security, sensitivity to the key and so on.
A cellular automata model for ant trails
Sibel Gokce; Ozhan Kayacan
2013-05-01
In this study, the unidirectional ant traffic flow with U-turn in an ant trail was investigated using one-dimensional cellular automata model. It is known that ants communicate with each other by dropping a chemical, called pheromone, on the substrate. Apart from the studies in the literature, it was considered in the model that (i) ant colony consists of two kinds of ants, goodand poor-smelling ants, (ii) ants might make U-turn for some special reasons. For some values of densities of good- and poor-smelling ants, the flux and mean velocity of the colony were studied as a function of density and evaporation rate of pheromone.
Turing degrees of limit sets of cellular automata
Borello, Alex; Cervelle, Julien; Vanier, Pascal
2014-01-01
Cellular automata are discrete dynamical systems and a model of computation. The limit set of a cellular automaton consists of the configurations having an infinite sequence of preimages. It is well known that these always contain a computable point and that any non-trivial property on them is undecidable. We go one step further in this article by giving a full characterization of the sets of Turing degrees of cellular automata: they are the same as the sets of Turing degrees of effectively c...
Modeling the topological organization of cellular processes.
Giavitto, Jean-Louis; Michel, Olivier
2003-07-01
The cell as a dynamical system presents the characteristics of having a dynamical structure. That is, the exact phase space of the system cannot be fixed before the evolution and integrative cell models must state the evolution of the structure jointly with the evolution of the cell state. This kind of dynamical systems is very challenging to model and simulate. New programming concepts must be developed to ease their modeling and simulation. In this context, the goal of the MGS project is to develop an experimental programming language dedicated to the simulation of this kind of systems. MGS proposes a unified view on several computational mechanisms (CHAM, Lindenmayer systems, Paun systems, cellular automata) enabling the specification of spatially localized computations on heterogeneous entities. The evolution of a dynamical structure is handled through the concept of transformation which relies on the topological organization of the system components. An example based on the modeling of spatially distributed biochemical networks is used to illustrate how these notions can be used to model the spatial and temporal organization of intracellular processes. PMID:12915272
Cellular automata modelling of biomolecular networks dynamics.
Bonchev, D; Thomas, S; Apte, A; Kier, L B
2010-01-01
The modelling of biological systems dynamics is traditionally performed by ordinary differential equations (ODEs). When dealing with intracellular networks of genes, proteins and metabolites, however, this approach is hindered by network complexity and the lack of experimental kinetic parameters. This opened the field for other modelling techniques, such as cellular automata (CA) and agent-based modelling (ABM). This article reviews this emerging field of studies on network dynamics in molecular biology. The basics of the CA technique are discussed along with an extensive list of related software and websites. The application of CA to networks of biochemical reactions is exemplified in detail by the case studies of the mitogen-activated protein kinase (MAPK) signalling pathway, the FAS-ligand (FASL)-induced and Bcl-2-related apoptosis. The potential of the CA method to model basic pathways patterns, to identify ways to control pathway dynamics and to help in generating strategies to fight with cancer is demonstrated. The different line of CA applications presented includes the search for the best-performing network motifs, an analysis of importance for effective intracellular signalling and pathway cross-talk. PMID:20373215
Cellular automata modeling of cooperative eutectic growth
E. Olejnik
2010-01-01
Full Text Available The model and results of the 2D simulation of the cooperative growth of two phases in the lamellar eutectic are presented. The pro-posed model takes into account heat transfer, components diffusion and nonstationary concentration distribution in the liquid and solid phases, non-equlibrium nature of the phase transformation and kinetics of the growth, influence of the surface energy and interface curva-ture on the conditions of the thermodynamic equilibrium. For the determination of the phase interface shape the Cellular Automata tech-nique (CA was used. For the calculation of temperature and concentration distribution the numerical solution of the Fourier equation was used. The partial differential equations were solved by Finite Differences Method (FDM. The spatial position and cell sizes of CA lattice and FDM mesh are equal.Proposed model can predict the steady state growth with a constant interlamellar spacing in the regular plate eutectic, as well as some transient processes that bring to the changes of that parameters. Obtained simulation data show the solid-liquid interface changes result in the termination of lamella and enlargement of interlamellar spacing. Another simulation results illustrate a pocket formation in the center of one phase that forestalls nucleation (or intergrowth of the new lamellae of another phase. The data of the solidification study of the transparent material (CBr4 – 8,4% C2Cl6 obtained in the thin layer demonstrate the qualita-tive agreement of the simulation.
Liu, L.; Liu, Y.; Wang, X.; Yu, D.; Liu, K.; Huang, H.; Hu, G.
2015-03-01
Flash floods have occurred frequently in the urban areas of southern China. An effective process-oriented urban flood inundation model is urgently needed for urban storm-water and emergency management. This study develops an efficient and flexible cellular automaton (CA) model to simulate storm-water runoff and the flood inundation process during extreme storm events. The process of infiltration, inlets discharge and flow dynamics can be simulated with little preprocessing on commonly available basic urban geographic data. In this model, a set of gravitational diverging rules are implemented to govern the water flow in a rectangular template of three cells by three cells of a raster layer. The model is calibrated by one storm event and validated by another in a small urban catchment in Guangzhou of southern China. The depth of accumulated water at the catchment outlet is interpreted from street-monitoring closed-circuit television (CCTV) videos and verified by on-site survey. A good level of agreement between the simulated process and the reality is reached for both storm events. The model reproduces the changing extent and depth of flooded areas at the catchment outlet with an accuracy of 4 cm in water depth. Comparisons with a physically based 2-D model (FloodMap) show that the model is capable of effectively simulating flow dynamics. The high computational efficiency of the CA model can meet the needs of city emergency management.
Evolving Transport Networks With Cellular Automata Models Inspired by Slime Mould.
Tsompanas, Michail-Antisthenis I; Sirakoulis, Georgios Ch; Adamatzky, Andrew I
2015-09-01
Man-made transport networks and their design are closely related to the shortest path problem and considered amongst the most debated problems of computational intelligence. Apart from using conventional or bio-inspired computer algorithms, many researchers tried to solve this kind of problem using biological computing substrates, gas-discharge solvers, prototypes of a mobile droplet, and hot ice computers. In this aspect, another example of biological computer is the plasmodium of acellular slime mould Physarum polycephalum (P. polycephalum), which is a large single cell visible by an unaided eye and has been proven as a reliable living substrate for implementing biological computing devices for computational geometry, graph-theoretical problems, and optimization and imitation of transport networks. Although P. polycephalum is easy to experiment with, computing devices built with the living slime mould are extremely slow; it takes slime mould days to execute a computation. Consequently, mapping key computing mechanisms of the slime mould onto silicon would allow us to produce efficient bio-inspired computing devices to tackle with hard to solve computational intelligence problems like the aforementioned. Toward this direction, a cellular automaton (CA)-based, Physarum-inspired, network designing model is proposed. This novel CA-based model is inspired by the propagating strategy, the formation of tubular networks, and the computing abilities of the plasmodium of P. polycephalum. The results delivered by the CA model demonstrate a good match with several previously published results of experimental laboratory studies on imitation of man-made transport networks with P. polycephalum. Consequently, the proposed CA model can be used as a virtual, easy-to-access, and biomimicking laboratory emulator that will economize large time periods needed for biological experiments while producing networks almost identical to the tubular networks of the real-slime mould. PMID
Modeling cellular effects of coal pollutants
The goal of this project is to develop and test models for the dose and dose-rate dependence of biological effects of coal pollutants on mammalian cells in tissue culture. Particular attention is given to the interaction of pollutants with the genetic material (deoxyribonucleic acid, or NDA) in the cell. Unlike radiation, which can interact directly with chromatin, chemical pollutants undergo numerous changes before the ultimate carcinogen becomes covalently bound to the DNA. Synthetic vesicles formed from a phospholipid bilayer are being used to investigate chemical transformations that may occur during the transport of pollutants across cellular membranes. The initial damage to DNA is rapidly modified by enzymatic repair systems in most living organisms. A model has been developed for predicting the effects of excision repair on the survival of human cells exposed to chemical carcinogens. In addition to the excision system, normal human cells also have tolerance mechanisms that permit continued growth and division of cells without removal of the damage. We are investigating the biological effect of damage passed to daughter cells by these tolerance mechanisms
Analytical Modeling of Uplink Cellular Networks
Novlan, Thomas D; Andrews, Jeffrey G
2012-01-01
Cellular uplink analysis has typically been undertaken by either a simple approach that lumps all interference into a single deterministic or random parameter in a Wyner-type model, or via complex system level simulations that often do not provide insight into why various trends are observed. This paper proposes a novel middle way that is both accurate and also results in easy-to-evaluate integral expressions based on the Laplace transform of the interference. We assume mobiles and base stations are randomly placed in the network with each mobile pairing up to its closest base station. The model requires two important changes compared to related recent work on the downlink. First, dependence is introduced between the user and base station point processes to make sure each base station serves a single mobile in the given resource block. Second, per-mobile power control is included, which further couples the locations of the mobiles and their receiving base stations. Nevertheless, we succeed in deriving the cov...
Jankovic, D.
2005-01-01
Numerical modeling of moisture flow, drying shrinkage and crack phenomena in cement microstructure, by coupling a Lattice Gas Automaton and a Lattice Fracture Model, highlighted the importance of a shrinkage coefficient (sh) as the most significant parameter for achieving realistic numerical result
L. Liu
2014-09-01
Full Text Available Flash floods have occurred frequently and severely in the urban areas of South China. An effective process-oriented urban flood inundation model becomes an urgent demand for urban storm water and emergency management. This study develops an effective and flexible cellular automaton (CA model to simulate storm water runoff and the flood inundation process during extreme storm events. The process of infiltration, inlets discharge and flow dynamic can be simulated only with little pre-processing on commonly available basic urban geographic data. In this model, a set of gravitational diverging rules are implemented in a cellular automation (CA model to govern the water flow in a 3 x 3 cell template of a raster layer. The model is calibrated by one storm event and validated by another in a small urban catchment in Guangzhou of Southern China. The depth of accumulated water at the catchment outlet is interpreted from street monitoring sensors and verified by on-site survey. A good level of agreement between the simulated process and the reality is reached for both storm events. The model reproduces the changing extent and depth of flooded areas at the catchment outlet with an accuracy of 4 cm in water depth. Comparisons with a physically-based 2-D model (FloodMap results show that the model have the capability of simulating flow dynamics. The high computational efficiency of CA model can satisfy the demand of city emergency management. The encouraging results of the simulations demonstrate that the CA-based approach is capable of effectively representing the key processes associated with a storm event and reproducing the process of water accumulation at the catchment outlet for making process-considered city emergency management decisions.
Speech intelligibility measure for vocal control of an automaton
Naranjo, Michel; Tsirigotis, Georgios
1998-07-01
The acceleration of investigations in Speech Recognition allows to augur, in the next future, a wide establishment of Vocal Control Systems in the production units. The communication between a human and a machine necessitates technical devices that emit, or are submitted to important noise perturbations. The vocal interface introduces a new control problem of a deterministic automaton using uncertain information. The purpose is to place exactly the automaton in a final state, ordered by voice, from an unknown initial state. The whole Speech Processing procedure, presented in this paper, has for input the temporal speech signal of a word and for output a recognised word labelled with an intelligibility index given by the recognition quality. In the first part, we present the essential psychoacoustic concepts for the automatic calculation of the loudness of a speech signal. The architecture of a Time Delay Neural Network is presented in second part where we also give the results of the recognition. The theory of the fuzzy subset, in third part, allows to extract at the same time a recognised word and its intelligibility index. In the fourth part, an Anticipatory System models the control of a Sequential Machine. A prediction phase and an updating one appear which involve data coming from the information system. A Bayesian decision strategy is used and the criterion is a weighted sum of criteria defined from information, minimum path functions and speech intelligibility measure.
Typhoid fever as cellular microbiological model
Andrade Dahir Ramos de; Andrade Júnior Dahir Ramos de
2003-01-01
The knowledge about typhoid fever pathogenesis is growing in the last years, mainly about the cellular and molecular phenomena that are responsible by clinical manifestations of this disease. In this article are discussed several recent discoveries, as follows: a) Bacterial type III protein secretion system; b) The five virulence genes of Salmonella spp. that encoding Sips (Salmonella invasion protein) A, B, C, D and E, which are capable of induce apoptosis in macrophages; c) The function of ...
Typhoid fever as cellular microbiological model
Andrade Dahir Ramos de
2003-01-01
Full Text Available The knowledge about typhoid fever pathogenesis is growing in the last years, mainly about the cellular and molecular phenomena that are responsible by clinical manifestations of this disease. In this article are discussed several recent discoveries, as follows: a Bacterial type III protein secretion system; b The five virulence genes of Salmonella spp. that encoding Sips (Salmonella invasion protein A, B, C, D and E, which are capable of induce apoptosis in macrophages; c The function of Toll R2 and Toll R4 receptors present in the macrophage surface (discovered in the Drosophila. The Toll family receptors are critical in the signalizing mediated by LPS in macrophages in association with LBP and CD14; d The lines of immune defense between intestinal lumen and internal organs; e The fundamental role of the endothelial cells in the inflammatory deviation from bloodstream into infected tissues by bacteria. In addition to above subjects, the authors comment the correlation between the clinical features of typhoid fever and the cellular and molecular phenomena of this disease, as well as the therapeutic consequences of this knowledge.
Typhoid fever as cellular microbiological model.
de Andrade, Dahir Ramos; de Andrade Júnior, Dahir Ramos
2003-01-01
The knowledge about typhoid fever pathogenesis is growing in the last years, mainly about the cellular and molecular phenomena that are responsible by clinical manifestations of this disease. In this article are discussed several recent discoveries, as follows: a) Bacterial type III protein secretion system; b) The five virulence genes of Salmonella spp. that encoding Sips (Salmonella invasion protein) A, B, C, D and E, which are capable of induce apoptosis in macrophages; c) The function of Toll R2 and Toll R4 receptors present in the macrophage surface (discovered in the Drosophila). The Toll family receptors are critical in the signalizing mediated by LPS in macrophages in association with LBP and CD14; d) The lines of immune defense between intestinal lumen and internal organs; e) The fundamental role of the endothelial cells in the inflammatory deviation from bloodstream into infected tissues by bacteria. In addition to above subjects, the authors comment the correlation between the clinical features of typhoid fever and the cellular and molecular phenomena of this disease, as well as the therapeutic consequences of this knowledge. PMID:14502344
Modeling In Vitro Cellular Responses to Silver Nanoparticles
Dwaipayan Mukherjee
2014-01-01
Full Text Available Engineered nanoparticles (NPs have been widely demonstrated to induce toxic effects to various cell types. In vitro cell exposure systems have high potential for reliable, high throughput screening of nanoparticle toxicity, allowing focusing on particular pathways while excluding unwanted effects due to other cells or tissue dosimetry. The work presented here involves a detailed biologically based computational model of cellular interactions with NPs; it utilizes measurements performed in human cell culture systems in vitro, to develop a mechanistic mathematical model that can support analysis and prediction of in vivo effects of NPs. The model considers basic cellular mechanisms including proliferation, apoptosis, and production of cytokines in response to NPs. This new model is implemented for macrophages and parameterized using in vitro measurements of changes in cellular viability and mRNA levels of cytokines: TNF, IL-1b, IL-6, IL-8, and IL-10. The model includes in vitro cellular dosimetry due to nanoparticle transport and transformation. Furthermore, the model developed here optimizes the essential cellular parameters based on in vitro measurements, and provides a “stepping stone” for the development of more advanced in vivo models that will incorporate additional cellular and NP interactions.
Full text: The Bauschinger effect refers to an observed asymmetry in the forward and reverse loading curves of a metal or an alloy. Typically, the absolute value of the yield stress in reverse loading is lower than the maximum stress imposed on the initial, forward loading. This difference arises from either the presence of a back stress or from the greater strength of obstacles opposing dislocation motion in the forward than in the reverse direction. Thus, the Bauschinger effect contributes to the phenomena referred to as kinematic hardening. In particular dispersion hardened systems, containing strong, non-shearable particles that offer obstacles to dislocation motion, will often exhibit a large kinematic hardening component. When a material is described as a group of parallel elements (a composite) having variable yield stresses and or Young's moduli, kinematic hardening of type KI, is observed when the first element to yield on forward loading is the first element to yield on reverse loading. Kinematic hardening types KII and KIII result when the order of relaxation of the elements is different from the order of their initial yielding. The reverse loading curves for types KII and KIII hardening generally exhibit inflection points at the initiation of yielding on reverse loading. In previous work, a micromechanics model, with a detailed description of the microstructure, was employed to model the effects of plastic inhomogeneity and duplicate the loading and unloading trends observed experimentally. Trends predicted by the model corresponded well to some of the expectations derived from observation, e.g. the effects related to the inclusions of different phases, however in some cases the correlation depended on the assignment of unrealistic properties to microstructural constituents. In the current work, the material is modeled as an array of coupled elements with varying stiffnesses and strengths. A stochastic cellular automaton is then used to simulate the
TRAFFIC FLOW MODEL BASED ON CELLULAR AUTOMATION WITH ADAPTIVE DECELERATION
Shinkarev, A. A.
2016-01-01
This paper describes continuation of the authors’ work in the field of traffic flow mathematical models based on the cellular automata theory. The refactored representation of the multifactorial traffic flow model based on the cellular automata theory is used for a representation of an adaptive deceleration step implementation. The adaptive deceleration step in the case of a leader deceleration allows slowing down smoothly but not instantly. Concepts of the number of time steps without confli...
Oh, Eung Seok; Heo, Chaejeong; Kim, Ji Seon; Lee, Young Hee; Kim, Jong Min
2013-05-01
Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss in the substantianigra (SN) and elevated iron levels demonstrated by autopsy and with 7-Tesla magnetic resonance imaging. Direct visualization of iron with live imaging techniques has not yet been successful. The aim of this study is to visualize and quantify the distribution of cellular iron using an intrinsic iron hyperspectral fluorescence signal. The 1-methyl-4-phenylpyridinium (MPP+)-induced cellular model of PD was established in SHSY5Y cells. The cells were exposed to iron by treatment with ferric ammonium citrate (FAC, 100 μM) for up to 6 hours. The hyperspectral fluorescence imaging signal of iron was examined usinga high- resolution dark-field optical microscope system with signal absorption for the visible/ near infrared (VNIR) spectral range. The 6-hour group showed heavy cellular iron deposition compared with the small amount of iron accumulation in the 1-hour group. The cellular iron was dispersed in a small, particulate form, whereas extracellular iron was detected in an aggregated form. In addition, iron particles were found to be concentrated on the cell membrane/edge of shrunken cells. The cellular iron accumulation readily occurred in MPP+-induced cells, which is consistent with previous studies demonstrating elevated iron levels in the SN in PD. This direct iron imaging methodology could be applied to analyze the physiological role of iron in PD, and its application might be expanded to various neurological disorders involving other metals, such as copper, manganese or zinc.
Toward an automaton Constraint for Local Search
Jun He
2009-10-01
Full Text Available We explore the idea of using finite automata to implement new constraints for local search (this is already a successful technique in constraint-based global search. We show how it is possible to maintain incrementally the violations of a constraint and its decision variables from an automaton that describes a ground checker for that constraint. We establish the practicality of our approach idea on real-life personnel rostering problems, and show that it is competitive with the approach of [Pralong, 2007].
Body composition analysis: Cellular level modeling of body component ratios
Z. Wang; Heymsfield, S. B.; PI-SUNYER, F.X.; Gallagher, D.; PIERSON, R.N.
2008-01-01
During the past two decades, a major outgrowth of efforts by our research group at St. Luke’s-Roosevelt Hospital is the development of body composition models that include cellular level models, models based on body component ratios, total body potassium models, multi-component models, and resting energy expenditure-body composition models. This review summarizes these models with emphasis on component ratios that we believe are fundamental to understanding human body composition during growt...
Stylized Facts Generated Through Cellular Automata Models. Case of Study: The Game of Life
Coronel-Brizio, H F; Rodriguez-Achach, M E; Stevens-Ramirez, G A
2007-01-01
In the present work, a geometrical method to generate a two dimensional random walk by means of a bidimensional Cellular Automaton is presented. We illustrate it by means of Conway's Game of Life with periodical borders, with a large lattice of 3000 x 3000 cells. The obtained random walk is of character anomalous, and its projection to a one dimensional random walk is analyzed, showing that it presents some statistical properties similar to the so-called stylized facts observed in financial time series. We consider that the procedure presented here is important not only because of its simplicity, but also because it could help us to understand and shed light on the stylized facts formation mechanism.
Modeling cellular deformations using the level set formalism
Yang Liu
2008-07-01
Full Text Available Abstract Background Many cellular processes involve substantial shape changes. Traditional simulations of these cell shape changes require that grids and boundaries be moved as the cell's shape evolves. Here we demonstrate that accurate cell shape changes can be recreated using level set methods (LSM, in which the cellular shape is defined implicitly, thereby eschewing the need for updating boundaries. Results We obtain a viscoelastic model of Dictyostelium cells using micropipette aspiration and show how this viscoelastic model can be incorporated into LSM simulations to recreate the observed protrusion of cells into the micropipette faithfully. We also demonstrate the use of our techniques by simulating the cell shape changes elicited by the chemotactic response to an external chemoattractant gradient. Conclusion Our results provide a simple but effective means of incorporating cellular deformations into mathematical simulations of cell signaling. Such methods will be useful for simulating important cellular events such as chemotaxis and cytokinesis.
Computational model of cellular metabolic dynamics
Li, Yanjun; Solomon, Thomas; Haus, Jacob M;
2010-01-01
Identifying the mechanisms by which insulin regulates glucose metabolism in skeletal muscle is critical to understanding the etiology of insulin resistance and type 2 diabetes. Our knowledge of these mechanisms is limited by the difficulty of obtaining in vivo intracellular data. To quantitatively...... cytosol and mitochondria. The model simulated skeletal muscle metabolic responses to insulin corresponding to human hyperinsulinemic-euglycemic clamp studies. Insulin-mediated rate of glucose disposal was the primary model input. For model validation, simulations were compared with experimental data...... type 2 diabetes....
Modeling cellular deformations using the level set formalism
Yang Liu; Effler Janet C; Kutscher Brett L; Sullivan Sarah E; Robinson Douglas N; Iglesias Pablo A
2008-01-01
Abstract Background Many cellular processes involve substantial shape changes. Traditional simulations of these cell shape changes require that grids and boundaries be moved as the cell's shape evolves. Here we demonstrate that accurate cell shape changes can be recreated using level set methods (LSM), in which the cellular shape is defined implicitly, thereby eschewing the need for updating boundaries. Results We obtain a viscoelastic model of Dictyostelium cells using micropipette aspiratio...
Cellular automata modeling of cooperative eutectic growth
E. Olejnik; E. Fraś; D. Gurgul; A. Burbelko
2010-01-01
The model and results of the 2D simulation of the cooperative growth of two phases in the lamellar eutectic are presented. The pro-posed model takes into account heat transfer, components diffusion and nonstationary concentration distribution in the liquid and solid phases, non-equlibrium nature of the phase transformation and kinetics of the growth, influence of the surface energy and interface curva-ture on the conditions of the thermodynamic equilibrium. For the determination of the phase ...
Obade, P.; Koedam, N.; Soetaert, K.E.R.; Neukermans, G.; Bogaert, J.; Nyssen, E.; van Nedervelde, F.; Berger, U.; Dahdouh-Guebas, F.
2009-01-01
Mangrove forests are ecologically and economically important and frequently dominating protected coastal areas in the tropics and subtropics at suitable intertidal zones and are often subjected to disturbances that disrupt the structure of an ecosystem, that change resource availability and that cre
Matthew W. Johnston; Sam J Purkis
2013-01-01
The Indo-pacific panther grouper (Chromileptes altiveli) is a predatory fish species and popular imported aquarium fish in the United States which has been recently documented residing in western Atlantic waters. To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases. However, unlike lionfish, the panther grouper is not yet thought...
Development and validation of computational models of cellular interaction
Smallwood, R H; Holcombe, W.M.L.; Walker, D C
2004-01-01
In this paper we take the view that computational models of biological systems should satisfy two conditions – they should be able to predict function at a systems biology level, and robust techniques of validation against biological models must be available. A modelling paradigm for developing a predictive computational model of cellular interaction is described, and methods of providing robust validation against biological models are explored, followed by a consideration of soft...
A cellular automata evacuation model considering friction and repulsion
SONG Weiguo; YU Yanfei; FAN Weicheng; Zhang Heping
2005-01-01
There exist interactions among pedestrians and between pedestrian and environment in evacuation. These interactions include attraction, repulsion and friction that play key roles in human evacuation behaviors, speed and efficiency. Most former evacuation models focus on the attraction force, while repulsion and friction are not well modeled. As a kind of multi-particle self-driven model, the social force model introduced in recent years can represent those three forces but with low simulation efficiency because it is a continuous model with complex rules. Discrete models such as the cellular automata model and the lattice gas model have simple rules and high simulation efficiency, but are not quite suitable for interactions' simulation. In this paper, a new cellular automata model based on traditional models is introduced in which repulsion and friction are modeled quantitatively. It is indicated that the model can simulate some basic behaviors, e.g.arching and the "faster-is-slower" phenomenon, in evacuation as multi-particle self-driven models, but with high efficiency as the normal cellular automata model and the lattice gas model.
Jankovic, D.
2005-01-01
Numerical modeling of moisture flow, drying shrinkage and crack phenomena in cement microstructure, by coupling a Lattice Gas Automaton and a Lattice Fracture Model, highlighted the importance of a shrinkage coefficient (sh) as the most significant parameter for achieving realistic numerical results. Therefore, experiments on drying of cement paste samples were conducted in an Environmental Scanning Electron Microscope to find shrinkage coefficient relating shrinkage deformations and moistur...
SELF-ORGANIZED CRITICALITY AND CELLULAR AUTOMATA
CREUTZ,M.
2007-01-01
Cellular automata provide a fascinating class of dynamical systems based on very simple rules of evolution yet capable of displaying highly complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and the scales. This article begins with an overview of self-organized criticality. This is followed by a discussion of a few examples of simple cellular automaton systems, some of which may exhibit critical behavior. Finally, some of the fascinating exact mathematical properties of the Bak-Tang-Wiesenfeld sand-pile model [1] are discussed.
Modeling diffusion of innovations with probabilistic cellular automata
Boccara, Nino; Fuks, Henryk
1997-01-01
We present a family of one-dimensional cellular automata modeling the diffusion of an innovation in a population. Starting from simple deterministic rules, we construct models parameterized by the interaction range and exhibiting a second-order phase transition. We show that the number of individuals who eventually keep adopting the innovation strongly depends on connectivity between individuals.
Modeling integrated cellular machinery using hybrid Petri-Boolean networks.
Natalie Berestovsky
Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them
WWW Business Applications Based on the Cellular Model
Toshio Kodama; Tosiyasu L. Kunii; Yoichi Seki
2008-01-01
A cellular model based on the Incrementally Modular Abstraction Hierarchy (IMAH) is a novel model that can represent the architecture of and changes in cyberworlds, preserving invariants from a general level to a specific one. We have developed a data processing system called the Cellular Data System (CDS). In the development of business applications, you can prevent combinatorial explosion in the process of business design and testing by using CDS. In this paper, we have first designed and implemented wide-use algebra on the presentation level. Next, we have developed and verified the effectiveness of two general business applications using CDS: 1) a customer information management system, and 2) an estimate system.
Lattice gas cellular automata and lattice Boltzmann models an introduction
Wolf-Gladrow, Dieter A
2000-01-01
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
A sub-cellular viscoelastic model for cell population mechanics.
Yousef Jamali
Full Text Available Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and 'in silico' (computational models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM, effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the
Station Model for Rail Transit System Using Cellular Automata
XUN Jing; NING Bin; LI Ke-Ping
2009-01-01
In this paper, we propose a new cellular automata model to simulate the railway traffic at station.Based on NaSch model, the proposed station model is composed of the main track and the siding track.Two different schemes for trains passing through station are considered.One is the scheme of "pass by the main track, start and stop by the siding track".The other is the scheme of "two tracks play the same role".We simulate the train movement using the proposed model and analyze the traffic flow at station.The simulation results demonstrate that the proposed cellular automata model can be successfully used for the simulations of railway traffic.Some characteristic behaviors of railway traffic flow can be reproduced.Moreover, the simulation values of the minimum headway are close to the theoretical values.This result demonstrates the dependability and availability of the proposed model.
Recursive definition of global cellular-automata mappings
Feldberg, Rasmus; Knudsen, Carsten; Rasmussen, Steen
1994-01-01
as the number of lattice sites is incremented. A proof of lattice size invariance of global cellular-automata mappings is derived from an approximation to the exact recursive definition. The recursive definitions are applied to calculate the fractal dimension of the set of reachable states and of the set......A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping...
Simulation of Self-Reproducing Micelles using a Lattice-Gas Automaton
Coveney*, Peter V; Emerton, Andrew N.; Boghosian, Bruce M.
1997-01-01
We simulate self-reproducing micellar systems using a recently introduced lattice-gas automaton. This dynamical model correctly describes the equilibrium and non-equilibrium properties of mixtures of oil, water and surfactants. The simulations reported here mimic the experiments of Luisi et al. in which caprylate micelles are formed by alkaline hydrolysis of immiscible ethyl caprylate ester. As in the laboratory experiments, we find an extended induction period during which the concentration ...
Cellular worlds: a framework for modeling micro - macro dynamics
H Couclelis
1985-01-01
Cellular spaces have recently received a lot of attention in computer science and elsewhere as models capable of bridging the gap between disaggregate and aggregate description. Despite their obvious spatial interpretation, standard cell-space models are too constrained by their background conventions to be useful in realistic geographic applications. In this paper, a generalization of the cell-space principle is presented, based on discrete model theory, and then applied to a hypothetical bu...